US 20130086228A1

a2y Patent Application Publication o) Pub. No.: US 2013/0086228 A1

a9 United States

Goldman

43) Pub. Date: Apr. 4,2013

(54) HTTP-BASED CLIENT-SERVER

(52) US.CL

COMMUNICATION SYSTEM AND METHOD CPC ... HO4L 29/08117 (2013.01); HO4L 29/0809
(2013.01)
(75) Inventor: Jason D. Goldman, Ft. Collins, CO USPC e 709/219
(US)
(73) Assignee: HEWLETT-PACKARD (57) ABSTRACT
DEVELOPMENT COMPANY, L.P.,
Fort Collins, CO (US) Systems and methods for robust, efficient, and secure client-
(21) Appl. No.: 13/703.240 server communication are provided. For example, one
T ’ method of such client-server communication may involve
(22) PCT Filed: Jun. 11, 2010 receiving in the server a long polling HTTP request and a
client status message, such as a file offer, via HT'TP from the
(86) PCT No.: PCT/US2010/038352 client. Such a file offer may indicate, for example, one or
more files that are available for transfer from the client.
§371 (C)(l)’. Thereafter, the server may issue a command, such as a file
(2), (4) Date: Dee. 10,2012 request, as a response to the long polling HTTP request. Such
Publication Classification a file request may request at least one of the one or more files
that are available for transfer. There-after, the server may
(51) Int.ClL receive the at least one of the one or more files from the client
HO4L 29/08 (2006.01) via FTP.
CLIENT SIDE NETWORK SERVER SIDE w40
12 OMMAND/ LONG POLL > 48
O iRE <L
REQUEST THREAD LONG POLL
S0 HANDLER
762
6 REQUEST
64 °6 FILE
_________ RE:QFX:JEE;E:;TE:D el FTP 5
SPACE 80
CLIENT
c54 QUELE
B HTTP HANDLER [
% ACK
at
- 44 COLLECT
COLLE TTEL;TP?E'\D ” OFFEREDFILE
OLLECTION THRE/ FILE OFFER 3
.]
« ACK

Apr. 4,2013 Sheet1 of 5 US 2013/0086228 A1l

Patent Application Publication

Zh-

ERINEIRY ERTENEIY
& wasn ¢C1 wasn
LR
0z~
AHOWAN {SIHOSSID0N AHOWAW {$140583004d
gL~ | gl 214 8- | 81 -
ERENENY ERTANEITY
NHOMLIN N N30 WHOMLIN L IN3MD
e .
& A
¥
s IERLEEEIY
MHOMLIN
AMONAN (S1H0SSI0ud
bl 8e- 9¢ -~
HAAYES
o—"

L Ol

Apr. 4,2013 Sheet2 of 5 US 2013/0086228 A1l

Patent Application Publication

g0z

Y05

~ e,

Z 34
= E
Va4

ADVHOLS € INJITO
~

ey

Z 34
g 411
Y J1i

Z 34
AT

9¢-/

J0VH0LS L INGHD
ﬁiiJ

84
v A4

ye-

¢ Ol

w“%‘!\

Z A4
A4
SIERE
WERE

Bl

29VH0LS L ENGND

iﬁiJ

Apr. 4,2013 Sheet3 of 5 US 2013/0086228 A1l

Patent Application Publication

£ 9ld

MOV >
9G
— mmﬁ&o <« 43440 374 QYIUHL NOLLDITION
G T4
1037100 ¢ b~
gg~
=
MOV 5
0L
HITONVH dLLH be NOLLYWHIANGD
ANIN0 ~F
IN3D rs 89
09~
ER I
v | (3153N03Y
EXE
183034 99
N@x
153A03Y TN e
| uFIONVH 057
[oy
TIOdONOT | EERET QYINHL 1SINORY
o A) T10d ONOT [ANVINNOD
14" — Va2l

BN EREE

Patent Application Publication Apr. 4,2013 Sheet 4 of 5 US 2013/0086228 A1

KSO

782
INITIATE LONG POLLING HTTP REQUEST <~

! L8
FIND FILES, COLLECT METADATA,AND

PACKAGE METADATA INTO FILE OFFER(S)

! 86
SEND FILE OFFER(S) VIAHTTP

TO CLIENT-SPECIFIC FILE OFFER URL

LONG

e POLLTIMEOU

" e &
................ < REQUEST RECEIVE

~ 92

SEND REQUEST FILE VIAFTP

v 94
SEND CONFIRMATION VIA

HTTP WHEN FILE TRANSFER COMPLETE

FIG. 4

Patent Application Publication Apr. 4,2013 SheetSof 5 US 2013/0086228 A1

RECEIVE LONG
POLLING HTTP REQUEST(S)

w

RECEIVE FILE OFFER(S)
AT CLIENT-SPECIFIC URLS

7

DETERMINE WHETHER

TO COLLECT OFFERED FILE(S)

444444444444444 <~ COLLECTFLEES)? >

~ 110

ADD FILE(S) TO CLIENT QUEUE

Y

CONSIDER NETWORK

TRAFFIC/CLIENT FILE TRANSFER STATUS

-~ 112

TISSUEFILE

?

<. REQUESTCOMMAND >

~ 116

WAIT

~ 118
REQUEST FILE VIA
LONG POLL HTTP REPLY
4 120
RECEIVE REQUEST FILEVIAFTP

" CONFIRMATION L
“~_ RECENED? =

124

VERIFY THAT FILE IS STILL NEEDED
AND MOVE FILE TO SERVER SHARES

FIG. 5

US 2013/0086228 Al

HTTP-BASED CLIENT-SERVER
COMMUNICATION SYSTEM AND METHOD

BACKGROUND

[0001] This section is intended to introduce the reader to
various aspects of art, which may be related to various aspects
of'the present disclosure that are described or claimed below.
This discussion is believed to be helpful in providing the
reader with background information to facilitate a better
understanding of the various aspects of the present disclosure.
Accordingly, it should be understood that these statements are
to be read in this light, and not as admissions of prior art.
[0002] A user may store a variety of files locally on several
different computers, but may desire access to these files from
each computer. For example, a user may create or store a
variety of media files, such as photos, music, and videos on
various home computers belonging to the user. These files
may be copied onto a home server, such as a server based on
Microsoft Windows Home Server (WHS). The home server
may allow the user to stream remote copies of the photos,
music, and videos from the server to the various home com-
puters.

[0003] Manually copying files from individual computers
to a server may be tedious. Thus, users may desire that a
server perform an automatic collection of certain files without
significant user intervention. Techniques have been devel-
oped to perform such automatic file collection, but these
techniques may have certain limitations. For example, these
techniques may limit server-initiated communication for
access security purposes and/or may inefficiently copy the
same files from multiple clients.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] FIG. 11is ablock diagram of a client-server system,
in accordance with an embodiment;

[0005] FIG. 2 is a block diagram describing a manner in
which files from the client may be stored on the server, in
accordance with an embodiment;

[0006] FIG. 3 is a flow diagram illustrating a manner of
automatic file collection, in accordance with an embodiment;
[0007] FIG. 4 is a flowchart describing an embodiment of a
method for the client-side of the automatic file collection of
FIG. 3; and

[0008] FIG.5 is a flowchart describing an embodiment of a
method for the server-side of the automatic file collection of
FIG. 3.

DETAILED DESCRIPTION OF SPECIFIC
EMBODIMENTS

[0009] One or more embodiments of the present disclosure
will be described below. In an effort to provide a concise
description of these embodiments, not all features of an actual
implementation are described in the specification. It should
be appreciated that in the development of any such actual
implementation, as in any engineering or design project,
numerous implementation-specific decisions must be made
to achieve the developers’ specific goals, such as compliance
with system-related and business-related constraints, which
may vary from one implementation to another. Moreover, it
should be appreciated that such a development effort might be
complex and time consuming, but would nevertheless be a
routine undertaking of design, fabrication, and manufacture
for those of ordinary skill having the benefit of this disclosure.

Apr. 4, 2013

[0010] Present embodiments relate to robust, secure, and
efficient HI'TP-based client-server communication. Accord-
ing to such embodiments, rather than provide each client
direct access to shares of storage on a server and allow each
client to save files onto the server shares, each client may
transfer files only when requested to do so by the server. In
particular, a given client may initiate a long polling Hypertext
Transfer Protocol (HTTP) request to the server. The server
then may respond to the long polling request with a command
to the client when the server is ready. In this way, the server
may securely request a specific file from the client without
direct access to the client’s file system.

[0011] Concurrently, the client may collect information
regarding available files in local client storage. The client may
transmit this collected file information via a file offer over
HTTP to an HTTP handler on the server side, which may
respond with an HTTP acknowledgement. It is from such file
offers that the server may determine what files are stored on
the various clients that are not stored on the server. The server
then may request those files from the client by sending a filed
request command in response to the long polling HTTP
request originally sent by the client. By subsequently trans-
ferring the file to the server via file transfer protocol (FTP),
the client may provide the file without direct access to the
server shares.

[0012] Since the client initiates all communication with the
server, a relatively high level of security for the client may be
maintained. Moreover, since the server may decide when to
issue a file request to the client in response to the long polling
HTTPrequest as needed, the server may request that the client
send certain files only when network bandwidth is available.
It should also be noted that the present embodiments may be
more efficient because the server may select which client
supplies a given file when that file is available on multiple
clients. By allowing the server to select a single point of origin
for the file, the tendency for multiple clients to copy the same
file to the server may be reduced or eliminated.

[0013] With the foregoing in mind, FIG. 1 represents such
a client-server system 10 that includes one or more clients 12
capable of communicating via HTTP with a server 14. As
such, the client-server system 10 may include at least one
server 14 and any suitable number of clients 12, labeled in
FIG. 1 as 1 to N. Each client 12 may include, among other
things, one or more processor(s) 16, memory 18, storage 20,
a user interface 22, and a network interface 24. The various
functional blocks of the client 12 may include hardware ele-
ments, software elements, or a combination of both. The
blocks of the client 12 illustrated in FIG. 1 are intended to
represent only one example of a particular implementation of
the client 12 and are intended to illustrate the types of com-
ponents that may be present in the client 12.

[0014] By way of example, the client 12 may be a notebook
or desktop computer produced by Hewlett-Packard Com-
pany. Additionally or alternatively, the client 12 may be any
other suitable electronic device capable of storing files and
initiating communication with the server 14 via HTTP. The
processor(s) 16 and/or other data processing circuitry may be
operably coupled to the memory 18 and the storage 20 to
perform various algorithms for carry out the presently closed
client-server techniques. These algorithms may be encoded in
programs and/or instructions that may be executed by the
processor(s) 12 and stored in any suitable article of manufac-
turer that includes one or more tangible, computer-readable

US 2013/0086228 Al

media at least collectively storing the instructions or routines,
such as the memory 18 and/or the storage 20.

[0015] The storage 20 may store many files, some of which
may be duplicated in the nonvolatile storage 20 of other
clients 12. Among other things, the storage 20 of the client 12
may contain media files, such as photos, music, and videos.
When a user interacts with the client 12 via the user interface
22 (e.g., a display, speakers, and/or a keyboard and mouse),
the user may access or modify the files contained in the
storage 20. In some embodiments, the client 12 may stream
files from the server 14 or may gain access to files located at
the server 14.

[0016] The server 14 may represent any suitable server
capable of carrying out the presently disclosed client-server
communication. By way of example, the server 14 may be a
home server capable of running Microsoft Windows Home
Server (WHS), such as the HP MediaSmart Server by
Hewlett-Packard Company. Like the client 12, the server 14
may include one or more processor(s) 26, memory 28, non-
volatile storage 30, and a network interface 32. These com-
ponents 26-32 may operate in manner similar to correspond-
ing components of the client 12.

[0017] The server 14 may collect certain files from the
storages 20 of clients 12 in communication with the server 14.
In particular, as shown in FIG. 2, the server storage 30 gen-
erally may include at most one copy of a given file, even
though that file may simultaneously be stored at more than
one client 12. FIG. 2 illustrates two storages 20A and 20B
respectively belonging to two different clients 12 in the client-
server system 10. As illustrated, the client storage 20A
includes three files labeled “A”, “B”, and “Z”. The client
storage 20B includes three files labeled “A”, “Y™, and “Z”.
Although six instances of the files are stored on the client
storages 20A and 20B, only four unique files exist in total.
Thus, to obtain one unique copy of each file, the server stor-
age 30 may only need to receive a few of the files from each
of the client storages 20A and 20B. As shown, the server
storage 30 may obtain a first set of files 34 (files “A” and “B”)
from the first client storage 20A and a second set of files 36
(files “Y” and “Z”) from the second client storage 20B.
[0018] To collect certain files, the client-server system 10
may perform an automatic file collection technique 40, as
shown in FIG. 3. The automatic file collection technique 40
may involve communication between the server 14 and any
suitable number of clients 12. As illustrated by FIG. 3, each
client 12 participating in the client-server system 10 may
operate via two parallel threads, namely, a command/request
thread 42 and a file collection thread 44.

[0019] In general, the command/request thread 42 may
issue and maintain a long polling HTTP request 46 to a long
poll handler 48 of the server 14. The long polling HTTP
request 46 may form a first line of communication with the
server 14 that the server 14 may respond to at will. The long
polling HTTP request 46 may not terminate for an extended
period of time, and may be reissued by the command/request
thread 42 when the long polling HTTP request 46 times out
without a response. When the server 14 clects to issue a
command to the client 12, such as a file request 50 or a
configuration reload message, the server 14 may issue the
command as a response to the long pulling HT'TP request 46.
Because the server 14 is only responding to HTTP commu-
nication initiated by the client 12, no special authentication or
intrusive interfaces running on the client 12, such as web
servers, are needed to send commands from the server 14 to

Apr. 4, 2013

the client 12. After receiving such a response to the long
polling HTTP request 46, the command/request thread 42
may issue and maintain the long polling HTTP request 46
again.

[0020] The file collection thread 44 may determine the
status of certain files stored on the storage 20 of the client 12.
For example, the file collection thread 44 may find all of
certain types of files (e.g., all media files) that are stored in the
storage 20 on the client 12. Collecting metadata associated
with these files, the file collection thread 44 may package
such metadata into one or more file offers 52 that describe
what files are available for transfer from the client 12 to the
server 14. Subsequently, the file collection thread 44 may
transmit the one or more of the file offers 52, via HTTP, to a
client-specific uniform resource locator (URL) at the server
14.

[0021] An HTTP handler 54 on the server 14 may receive
the file offer 52 from the client 12 and reply with an acknowl-
edgement packet 56. By receiving the acknowledgement
packet 56, the file collection thread 44 may know which file
offers 52 have been received by the server 14 and which may
have been disrupted due to network or other failure. File
offers 52 that have been disrupted may be resent at a later
time.

[0022] Upon receiving a file offer 52, the server 14 may
determine whether the one or more files described in the file
offer 52 should be requested from the client 12. For example,
if the file offer 52 indicates that the client 12 is storing a file
not currently located on the server storage 30, or storing a file
that is located in the server storage 30, but has been modified
since last being copied, the server 14 may determine to collect
the offered file (block 58). A request for this desired file 58
may be added to a client queue 60 on the server 14, which may
include a list of files the server 14 should request from the
various clients 12. Based on the client queue 60, and depend-
ing on the current network traffic and other considerations, as
discussed below, the server 14 may decide to request a spe-
cific file (block 62) from the client 12.

[0023] The long poll handler 48 may see a specific file
request 62 on the client queue 60 and, in response to a long
polling HTTP request 46, may reply with a file request 50
command. Such a file request 50 may include certain identi-
fying information that may specifically identify the file
requested by the file request 50. The command/request thread
42 of the client 12 may receive the file request 50 command.
In response, the command/request thread 42 may transfer a
copy of the file 64 via the transfer protocol (FTP) to FTP
space 66 on the server 14.

[0024] When the file has been fully transferred, the com-
mand/request thread 42 may issue a confirmation message 68
over HTTP to a client-specific the confirmation URL at the
server 14. This confirmation message 68 may include the
identifying information associated with the file request 50 to
indicate that that file has been fully transferred. When the
confirmation message 68 is received by the HTTP handler 54,
the HTTP handler 54 may verify that the requested file 64,
now located in the FTP space 66, is still needed. If so, the
HTTP handler 54 may cause the file to be transferred from the
FTP space 66 into an appropriate location in the server shares
of'the storage 30. The HTTP handler 54 also may provide an
acknowledgement packet 70 to indicate that it has received
the confirmation message 68.

[0025] The particular elements of the technique 40 per-
formed by the client 12 and the server 14 are represented by

US 2013/0086228 Al

FIGS. 4 and 5, respectively. Turning first to FIG. 4, a flow-
chart 80 represents an embodiment of a method for carrying
outthe technique 40 from the perspective of the client 12. The
flowchart 80 may begin when the command/request thread 42
issues the long pulling HTTP request 46 (block 82). Sepa-
rately, the file collection thread 44 may find certain files,
collect metadata regarding these files, and package such
metadata into one or more file offers (block 84). It should be
appreciated that the file collection thread 44 may perform
such a task regardless of whether the client 12 is currently
able to connect to the server 14 (e.g., as may occur if a
network connection to the server 14 becomes unavailable). In
carrying out block 84, the file collection thread 44 may trans-
mit the one or more file offers 52 via HT'TP to a client-specific
file offer URL at the server 14.

[0026] As noted above, the command/request thread 42
may operate largely independent of the file collection thread
44. In general, the command/request thread 42 may ensure
that the long polling HTTP connection remains open to the
server 14. To that end, if the long polling HTTP request 46
times out (decision block 88), the command/request thread 42
may issue another long polling HTTP request 46 (block 82).
Otherwise, the command/request thread 42 may wait until a
command, such as a file request command 50, is received in
reply to the long polling HTTP request 46 (decision block
90).

[0027] When a file request 50 is received in response to the
long polling HTTP request 46, the command/request thread
42 may obtain and transfer the requested file via FTP to the
server 14 (block 92). When the file has been transferred, the
command/request thread 42 may send a confirmation mes-
sage 68 via HTTP (block 94).

[0028] A flowchart 100 of HG. 5 represents the actions
taken by the server 14 in carrying out the automatic file
collection technique 40. The flowchart 100 may begin when
the long poll handler 48 of the server 14 receives one or more
long polling HTTP requests 46 from corresponding clients 12
(block 102). As should be appreciated, the long poll handler
48 may not necessarily respond to these long polling HTTP
requests 46 immediately. As a result, the various long polling
HTTP requests 46 may occasionally timeout and be resent.
The long poll handler 48 thus may receive new long polling
HTTPrequests 46 as they are resent, which may occur at other
times throughout the flowchart 100. Moreover, if a long poll-
ing HTTP connection breaks (e.g., the server 14 fails to
receive a long polling HTTP request 46 from a given client
12), the server 14 may save communication (e.g., file requests
50) for a later time when the long polling HT'TP connection
becomes available once again.

[0029] Atsomepoint, the HT TP handler 54 on the server 14
may receive one or more file offers 52 at certain client-spe-
cific uniform resource locators (URLs) (block 104). For
example, to revisit the example of FIG. 2, the server 14 may
receive file offers 52 indicating that files “A”, “B”, and “Z” are
available for transfer at a first URL associated with a first
client 12. Meanwhile, the server 14 may receive file offers 52
indicating that files “A”, “Y™, and “Z” are available for trans-
fer ata second URL associated with a second client 12. Based
on these file offers 52 and/or what files may already be stored
in the storage 30 of the server 14, the server 14 may determine
whether to collect such files and from which client 12 to do so
from (block 106). In one embodiment, if one of the clients 12
is likely to transfer the files more efficiently or for other
reasons, file transfers from that client 12 may be prioritized.

Apr. 4, 2013

[0030] If the server 14 determines to collect a given file
indicated by a file offer 52 (decision block 108), a request for
the specific file may be added to a client queue 60 (block 110),
before considering certain factors relating to the status of the
network and/or the clients 12 (block 112). Otherwise, if the
server 14 determines not to collect a given file from a file offer
52 (decision block 108), the process may flow directly to
block 112 without adding any new file requests to the client
queue 60. The various factors considered at block 112 may
include, for example, the current amount of traffic over the
network, whether a client 12 is currently transferring a file to
the server 14, whether the server 14 is currently streaming a
file (e.g., a music or video file) to a client 12, and/or whether
a client 12 is currently actively performing a task that a file
request 50 would interfere with.

[0031] Based on the status of the network and/or the status
of'a client 12, the server 14 may decide to issue a file request
command 50 to the client 12 for a file listed for request in the
client queue 60. If the server 14 determines not to issue the file
request command 50 based on the current network status
and/or client 12 status (decision block 114), the server 14 may
wait for a certain period of time (block 116) before again
reconsidering the factors to decide whether to issue the file
request command 50. If the server 14 determines to issue afile
request command 50 based on favorable network status and/
or client 12 status (decision block 114), the long poll handler
48 may respond to the open long poling HT TP request 46 of
the client 12 from which the file is requested (block 118).
[0032] The server 14 then may receive the requested file
from the client 12 via FTP (block 120). If the server 14 fails to
receive a confirmation message 68 (decision block 122), the
server 14 may elect to reissue the file request command 50
again at another time. For example, the server 14 may peri-
odically check (e.g., once a day, once every hour, once every
half hour, and so forth) whether a confirmation message 68
has been received for a requested file. In some embodiments,
the server 14 may check whether a confirmation message 68
has been received after a certain expected amount of data has
been received, based on an expected size of a requested file.
[0033] When a confirmation message 68 is received by the
HTTP handler 54 (decision block 122), the server 14 may
verify that the received file is still needed before moving the
file from the FTP space 66 to the server shares of the storage
30. For example, in some embodiments, the confirmation
message 68 may include metadata associated with the file that
has been transferred. The server 14 may use the metadata
associated with the recently received file to determine
whether the file transferred is up-to-date. That is, if the file
had changed since the receipt of the file request 50, as may
have been indicated by a new file offer 52, the server 14 may
determine that the recently transferred file is not needed. In
this way, the server 14 may ensure that the files contained on
its storage 30 are up-to-date, particularly in case communi-
cation between the client 12 and server 14 is disrupted.
[0034] It should be noted that the client-server system 10
may be more secure than other similar systems because,
according to the automatic file collection technique 40, the
client 12 initiates all communication with the server 14. In
particular, the server 14 may send commands on demand in
response to the long polling HTTP request 46, which may be
continually refreshed by the client 12. As mentioned above,
sending commands in response to the long polling HTTP
request 46 may eliminate a need for intrusive access to the
client 12 by the server 14 and vice versa. For example, the

US 2013/0086228 Al

client-server system 10 may not require special authentica-
tion or intrusive interfaces running on the client 12, such as
web servers, to perform automatic file collection. Also, the
client 12 may elect not to receive commands from the server
14 by allowing the long polling HTTP request 46 to timeout
without reissuing another long polling HTTP request 46.
[0035] Additionally, the client-server system 10 may be
more system-focused rather than user-focused. That is, under
the automatic file collection technique 40, the server 14,
rather than the clients 12, decides whether to transfer a given
file to the server storage 30. Because the server 14 may
receive file offers 52 from many clients 12, the server 14 may
consider both the files that are currently stored in the server
storage 30 and the files are available for offer from the indi-
vidual clients 30. The server 14 thus may gain a system-wide
view of files available for transfer, files that have already been
transferred, and files that are scheduled to be transferred in the
future.

[0036] This system-wide view may increase efficiency. For
example, the server 14 may leverage its system-wide knowl-
edge to handle file collisions (e.g., when two copies of the
same file or similar files are stored locally different clients
12), which might otherwise lead to multiple copies of the
same file being stored on the storage 30 of the server 14.
Moreover, the server 14 may throttle file transfers based on
the status of the network and the statuses of individual clients
12 to maintain a desired level of performance.

[0037] Finally, the automatic file collection technique 40
may not only increase efficiency, but also may prove more
robust. Specifically, the client 12 may be aware of communi-
cation failures with the server 14 and the server 14 may be
aware of communication failures with each client 12. As
noted above, if the client 12 sends a file offer 52, but does not
receive an HTTP acknowledgment 56, the client 12 may
queue the file offer 52 for transmittal at another time. If the
client 12 transfers a file via FTP to the server 14 and subse-
quently sends a confirmation message 68 to the server 14, the
client 12 may queue the file for re-transmittal if no HTTP
acknowledgment 70 is received in response. Similarly, if the
server 14 issues a command, such as a file request 50, but
never receives a confirmation message, the server 14 may
queue and resend the command again at a later time. In
addition, if the server 14 should fail for any reason, the state
of'its client queue 60 may be saved. Thus, while certain file
transfer progress may be lost, file requests 50 may simply be
re-transmitted when the client 12 and the server 14 regain
communication.

[0038] In addition, it should be understood that the auto-
matic file collection technique 40 may be extended for many
other forms of client-server communication. For example, in
response to the long polling HTTP request 46, the server 14
may provide any suitable command alternatively to or in
addition to a file request 52. Such a command may enable the
server 14 to initiate, for example, a backup procedure on the
client 12 or a configuration status reload procedure. Thus, for
example, upon receipt of such a command, the command/
request thread 42 may cause another thread, such as the file
collection thread 44, to resend all file offers 52. In another
example, in response to the command, the command/request
thread 42 may cause another thread to initiate a backup pro-
cedure. Other commands the server 14 may send in response
to the long polling HTTP request 46 may include, for
example, an indication of what space has been allocated on
the server storage 30.

Apr. 4, 2013

[0039] The specific embodiments described above have
been shown by way of example, and it should be understood
that these embodiments may be susceptible to various modi-
fications and alternative forms. It should be further under-
stood that the claims are not intended to be limited to the
particular forms disclosed, but rather to cover all modifica-
tions, equivalents, and alternatives falling within the spirit
and scope of this disclosure.

What is claimed is:
1. A method comprising:
receiving, in a server, a long polling HTTP request from a
client;
receiving, in the server, a file offer from the client via
HTTP, wherein the file offer indicates one or more files
that are available for transfer from the client;
issuing, from the server, a file request in response to the
long polling HTTP request, wherein the file request
requests at least one of the one or more files that are
available for transfer; and
receiving, in the server, the at least one of the one or more
files from the client via FTP.
2. The method of claim 1, wherein the file offer is received
at a client-specific uniform resource locator (URL) that iden-
tifies the client.

3. The method of claim 1, comprising receiving, in the
server, a confirmation message indicating that the at least one
of'the one or more files has been fully transferred at a client-
specific uniform resource locator (URL) that identifies the
client.

4. The method of claim 1, comprising determining, using
the server, whether a confirmation message indicating that the
at least one of the one or more files has been fully transferred
has been received in the server from the client and, when the
confirmation has been received, storing the at least one of the
one or more files in the server.

5. The method of claim 1, comprising determining, using
the server, whether a confirmation message indicating that the
at least one of the one or more files has been transferred has
been received in the server from the client and, when the
confirmation has not been received, reissuing the file request
from the server.

6. The method of claim 5, wherein determining whether the
confirmation message has been received from the client is
performed on a periodic basis.

7. The method of claim 5, wherein determining whether the
confirmation message has been received from the client is
performed after an amount of data has been received from the
client, wherein the amount of data is estimated to equal a size
of the at least one of the one or more files.

8. The method of claim 1, comprising determining, using
the server, whether the one or more files that are available for
transfer from the client should be requested and, when the one
or more files are determined to be requested, adding the file
request for the one or more files to a client queue that lists files
for which future file requests are to be issued, wherein the file
request is issued based at least in part on the client queue.

9. The method of claim 1, comprising determining, using
the server, that network traffic or traffic to the client is beneath
a threshold before issuing the file request.

10. The method of claim 1, comprising determining, using
the server, that the client is not receiving a streamed file before
issuing the file request.

US 2013/0086228 Al

11. A system comprising:

a client configured to initiate a long polling HT TP request,
to communicate information regarding the client to a
client-specific uniform resource locator via HI'TP, and
to receive a client-specific command in response to the
long polling HTTP request; and

a server configured to receive the long polling HTTP
request, to receive the information regarding the client at
a client-specific uniform resource locator via HTTP, to
generate the client-specific command based at least in
part on the information regarding the client, and to com-
municate the client-specific command as a response to
the long polling HTTP request.

12. The system of claim 11, wherein the information
regarding the client comprises a file offer indicating one or
more files available for transfer from the client and wherein
the command comprises a file request that requests at least
one of the one or more files.

13. The system of claim 11, comprising another client
configured to initiate another long polling HTTP request, to
communicate information regarding the other client to
another client-specific uniform resource locator via HTTP,
and to receive another client-specific command in response to
the other long polling HTTP request;

Apr. 4, 2013

wherein the server is configured to receive the other long
polling HTTP request, to receive the information regard-
ing the other client at the other client-specific uniform
resource locator via HTTP, to generate the other client-
specific command based at least in part on the informa-
tion regarding the client, and to communicate the other
client-specific command as a response to the long poll-
ing HTTP request.

14. A method comprising:

initiating a long polling HTTP request from a client to a

server;

transmitting a file offer via HTTP from the client to the

server, wherein the file offer indicates one or more files
that are available for transfer from the client to the
server;

receiving, in the client, a file request from the server in

response to the long polling HTTP request, wherein the
file request requests at least one of the one or more files
that are available for transfer; and

transferring the at least one of the one or more files from the

client to the server via FTP.

15. The method of claim 14, comprising determining,
using the client, the file offer by collecting and packaging
metadata associated with the one or more files that are avail-
able for transfer.

