(19)

(12)

divisional application to the application mentioned under INID code 62.

(54) Compositions for immunising against Staphylococcus aureus

(57) An effective Staphylococcus aureus vaccine may require several antigenic components, and so various combinations of S.aureus antigens are identified for

I-53100 Siena (IT)

I-53100 Siena (IT)

· Biagini, Massimiliano

use in immunisation. These polypeptides may optionally be used in combination with S.aureus saccharides.

Description

TECHNICAL FIELD

⁵ **[0001]** This invention relates to antigens derived from *S.aureus* and to their use in immunisation.

BACKGROUND ART

- [0002] Staphylococcus aureus is a Gram-positive spherical bacterium. Annual US mortality exceeds that of any other ¹⁰ infectious disease, including HIV/AIDS, and *S.aureus* is the leading cause of bloodstream, lower respiratory tract, skin & soft tissue infections. There is currently no authorised vaccine. A vaccine based on a mixture of surface polysaccharides from bacterial types 5 and 8, StaphVAX[™], failed to reduce infections when compared to the placebo group in a phase III clinical trial in 2005.
- [0003] Reference 1 reports that the "V710" vaccine from Merck and Intercell is undergoing a phase 2/3 trial on patients undergoing cardiothoracic surgery. The V710 vaccine is based on a single antigen, IsdB [2], a conserved iron-sequestering cell-surface protein.

[0004] *S.aureus* causes a range of illnesses from minor skin infections to life-threatening diseases such as pneumonia, meningitis, osteomyelitis, bacteremia, endocarditis, toxic shock syndrome, organ abscesses and septicemia. The bacterium has multiple virulence factors which are differentially expressed during different phases of its life cycle, and so a

- vaccine which can prevent one disease might not prevent another. For instance, the V710 vaccine may be effective against hematic spread of the *S.aureus*, but may be ineffective against pneumonia and may not elicit any opsonic activity. One aim of the invention is to provide vaccines which can protect against hematic spread and pneumonia, and which may also elicit an opsonic response.
- [0005] Thus there remains a need to identify further and improved antigens for use in *S.aureus* vaccines, and in particular for vaccines which are useful against multiple *S.aureus* pathologies.

DISCLOSURE OF THE INVENTION

[0006] The inventors have identified various *S.aureus* polypeptides that are useful for immunisation, either alone or ³⁰ in combination. These polypeptides may be combined with *S.aureus* saccharides or other *S.aureus* polypeptides. The antigens are useful in *S.aureus* vaccines but may also be used as components in vaccines for immunising against multiple pathogens.

[0007] The inventors have identified the following 36 polypeptides: clfA, clfB, coA, eap, ebhA, ebpS, efb, emp, esaC, esxA, esxB, FnBA, FnBB, HIa, hlgB, hlgC, isdA, isdB, isdC, isdG, isdH, isdI, lukD, lukE, lukF, lukS, nuc, sasA, sasB,

- sasC, sasD, sasF, sdrC, sdrD, spa, and sdrE2. This set of antigens is referred to herein as 'the first antigen group'. Thus the invention provides an immunogenic composition comprising a combination of antigens, said combination comprising two or more (i. e. 2, 3, 4, 5, 6 or more) antigens selected from the group consisting of: (1) a clfA antigen; (2) a clfB antigen; (3) a coA antigen; (4) a eap antigen; (5) a ebhA antigen; (6) a ebpS antigen; (7) a efb antigen; (8) a emp antigen; (9) a esaC antigen; (10) a esxA antigen; (11) a esxB antigen; (12) a FnBA antigen; (13) a FnBB antigen; (14) a Hla
- ⁴⁰ antigen; (15) a hlgB antigen; (16) a hlgC antigen; (17) a isdA antigen; (18) a isdB antigen; (19) a isdC antigen; (20) a isdG antigen; (21) a isdH antigen; (22) a isdI antigen; (23) a lukD antigen; (24) a lukE antigen; (25) a lukF antigen; (26) a lukS antigen; (27) a nuc antigen; (28) a sasA antigen; (29) a sasB antigen; (30) a sasC antigen; (31) a sasD antigen; (32) a sasF antigen; (33) a sdrC antigen; (34) a sdrD antigen; (35) a spa antigen; (36) a sdrE2 antigen.
- **[0008]** Within the first antigen group, antigens are preferably selected from a subset of 16 of the 36 polypeptides, namely: clfA, clfB, emp, esaC, esxA, esxB, hla, isdA, isdB, isdC, sasD, sasF, sdrC, sdrD, spa, and sdrE2. Thus the invention provides an immunogenic composition comprising a combination of antigens, said combination comprising two or more (i.e. 2, 3, 4, 5, 6 or more) antigens selected from the group consisting of these sixteen antigens.
- [0009] The inventors have also identified the following 128 polypeptides: sta001, sta002, sta003, sta004, sta005, sta006, sta007, sta008, sta009, sta010, sta011, sta012, sta013, sta014, sta015, sta016, sta017, sta018, sta019, sta020, sta021, sta022, sta023, sta024, sta025, sta026, sta027, sta028, sta029, sta030, sta031, sta032, sta033, sta034, sta035, sta036, sta037, sta038, sta039, sta040, sta041, sta042, sta043, sta044, sta045, sta046, sta047, sta048, sta049, sta050, sta051, sta052, sta053, sta054, sta055, sta056, sta057, sta058, sta059, sta060, sta061, sta062, sta063, sta064, sta065, sta066, sta067, sta068, sta069, sta070, sta071, sta072, sta073, sta074, sta075, sta076, sta077, sta078, sta079, sta080,
- sta081, sta082, sta083, sta084, sta085, sta086, sta087, sta088, sta089, sta090, sta091, sta092, sta093, sta094, sta095,
 sta096, sta097, sta098, sta099, sta100, sta101, sta102, sta103, sta104, sta105, sta106, sta107, sta108, sta109, sta110, sta111, sta112, sta113, sta114, sta115, sta116, sta117, sta118, sta119, sta120, NW_6, NW_9, NW_10, NW_7, NW_8, NW_2, NW_1, and NW_5. This set of antigens is referred to herein as 'the second antigen group'. Thus the invention provides an immunogenic composition comprising a combination of antigens, said combination comprising two or more

(i.e. 2, 3, 4, 5, 6 or more) antigens selected from the group consisting of: (1) a sta001 antigen; (2) a sta002 antigen; (3) a sta003 antigen; (4) a sta004 antigen; (5) a sta005 antigen; (6) a sta006 antigen; (7) a sta007 antigen; (8) a sta008 antigen; (9) a sta009 antigen; (10) a sta010 antigen; (11) a sta011 antigen; (12) a sta012 antigen; (13) a sta013 antigen; (14) a sta014 antigen; (15) a sta015 antigen; (16) a sta016 antigen; (17) a sta017 antigen; (18) a sta018 antigen; (19) a sta019 antigen; (20) a sta019 antigen; (21) a sta014 antigen; (22) a sta018 antigen; (23) a sta018 antigen; (24) a sta019 antigen; (24) a sta019 antigen; (25) a sta019 antigen; (26) a sta019 antigen; (27) a sta019 antigen; (28) a sta019 antigen; (28) a sta019 antigen; (28) a sta019 antigen; (29) a sta019 antigen; (20) a sta019 antigen; (21) a sta019 antigen; (22) a sta019 antigen; (23) a sta019 antigen; (24) a sta019 antigen; (26) a sta019 antigen; (27) a sta019 antigen; (28) a sta019 antigen; (29) a sta019 antigen; (29) a sta019 antigen; (20) a sta019 antigen; (21) a sta019 antigen; (22) a sta019 antigen; (23) a sta019 antigen; (24) a sta019 antigen; (26) a sta019 antigen; (27) a sta019 antigen; (28) a sta019 antigen; (29) a sta019 antigen; (29) a sta019 antigen; (21) a sta019 antigen; (22) a sta019 antigen; (21) a sta019 antigen; (22) a sta019 antigen; (22) a sta019 antigen; (22) a sta019 antigen; (23) a sta019 antigen; (24) a sta019 antigen; (24) a sta019 antigen; (26) a sta019 antigen; (27) a sta019 antigen; (28) a sta019 antigen;

- a sta019 antigen; (20) a sta020 antigen; (21) a sta021 antigen; (22) a sta022 antigen; (23) a sta023 antigen; (24) a sta024 antigen; (25) a sta025 antigen; (26) a sta026 antigen; (27) a sta027 antigen; (28) a sta028 antigen; (29) a sta029 antigen; (30) a sta030 antigen; (31) a sta031 antigen; (32) a sta032 antigen; (33) a sta033 antigen; (34) a sta034 antigen; (35) a sta035 antigen; (36) a sta036 antigen; (37) a sta037 antigen; (38) a sta038 antigen; (39) a sta039 antigen; (40) a sta040 antigen; (41) a sta041 antigen; (42) a sta042 antigen; (43) a sta043 antigen; (44) a sta044 antigen; (45) a
- 10 sta045 antigen; (46) a sta046 antigen; (47) a sta047 antigen; (48) a sta048 antigen; (49) a sta049 antigen; (50) a sta050 antigen; (51) a sta051 antigen; (52) a sta052 antigen; (53) a sta053 antigen; (54) a sta054 antigen; (55) a sta055 antigen; (56) a sta056 antigen; (57) a sta057 antigen; (58) a sta058 antigen; (59) a sta059 antigen; (60) a sta060 antigen; (61) a sta061 antigen; (62) a sta062 antigen; (63) a sta063 antigen; (64) a sta064 antigen; (65) a sta065 antigen; (66) a sta066 antigen; (67) a sta067 antigen; (68) a sta068 antigen; (69) a sta069 antigen; (70) a sta070 antigen; (71) a sta071
- ¹⁵ antigen; (72) a sta072 antigen; (73) a sta073 antigen; (74) a sta074 antigen; (75) a sta075 antigen; (76) a sta076 antigen; (77) a sta077 antigen; (78) a sta078 antigen; (79) a sta079 antigen; (80) a sta080 antigen; (81) a sta081 antigen; (82) a sta082 antigen; (83) a sta083 antigen; (84) a sta084 antigen; (85) a sta085 antigen; (86) a sta086 antigen; (87) a sta087 antigen; (88) a sta088 antigen; (89) a sta089 antigen; (90) a sta090 antigen; (91) a sta091 antigen; (92) a sta092 antigen; (93) a sta093 antigen; (94) a sta094 antigen; (95) a sta095 antigen; (96) a sta096 antigen; (97) a sta097 antigen;
- (98) a sta098 antigen; (99) a sta099 antigen; (100) a sta100 antigen; (101) a sta101 antigen; (102) a sta102 antigen; (103) a sta103 antigen; (104) a sta104 antigen; (105) a sta105 antigen; (106) a sta106 antigen; (107) a sta107 antigen; (108) a sta108 antigen; (109) a sta109 antigen; (110) a sta110 antigen; (111) a sta111 antigen; (112) a sta112 antigen; (113) a sta113 antigen; (114) a sta114 antigen; (115) a sta115 antigen; (116) a sta116 antigen; (117) a sta117 antigen; (118) a sta118 antigen; (119) a sta119 antigen; (120) a sta120 antigen; (121) a NW_6 antigen; (122) a NW_9 antigen;
- (123) a NW_10 antigen; (124) a NW_7 antigen; (125) a NW_8 antigen; (126) a NW_2 antigen; (127) a NW_1 antigen; and (128) a NW_5 antigen.

[0010] Within the second antigen group of 128 antigens, a preferred subset of 113 antigens omits (81) and (107) to (120) from this list.

- [0011] Within the second antigen group, a subset of 27 of the 128 polypeptides is referred to herein as 'the third antigen group', namely: sta001, sta002, sta003, sta004, sta005, sta006, sta007, sta008, sta009, sta010, sta019, sta028, sta040, sta049, sta057, sta064, sta073, sta095, sta098, sta101, sta105, NW_1, NW_6, NW_7, NW_8, NW_9 and NW_10. The invention provides an immunogenic composition comprising a combination of antigens, said combination comprising two or more (i.e. 2, 3, 4, 5, 6 or more) antigens selected from the third antigen group.
- [0012] The 101 antigens that are in the second antigen group but not in the third antigen group are referred to herein as 'the fourth antigen group'. Within the fourth antigen group of 101 antigens, a preferred subset of 86 antigens omits (81) and (107) to (120) from the above list. The second antigen group thus consists of a combination of the third and fourth antigen groups.

40

50

[0013] Within the second antigen group, a subset of 8 of the 128 polypeptides is referred to herein as 'the fifth antigen group', namely: sta004, sta006, sta007, sta011, sta028, sta060, sta098 and sta112. The invention provides an immunogenic composition comprising a combination of antigens, said combination comprising two or more (*i.e.* 2, 3, 4, 5, 6

or more) antigens selected from the fifth antigen group. [0014] Within the 36 antigens of the first antigen group there are 630 possible pairs of different antigens. All such pairs are disclosed herein and are part of the invention. Thus the invention provides an immunogenic composition comprising a pair of antigens, wherein said pair is one of said 630 pairs.

⁴⁵ **[0015]** Within the 128 antigens of the second antigen group there are 8128 possible pairs of different antigens. All such pairs are disclosed herein and are part of the invention. Thus the invention provides an immunogenic composition comprising a pair of antigens, wherein said pair is one of said 8128 pairs.

[0016] Within the preferred 113 antigens of the second antigen group there are 6328 possible pairs of different antigens. All such pairs are disclosed herein and are part of the invention. Thus the invention provides an immunogenic composition comprising a pair of antigens, wherein said pair is one of said 6328 pairs.

[0017] Within the preferred 27 antigens of the third antigen group there are 351 possible pairs of different antigens. All such pairs are disclosed herein and are part of the invention. Thus the invention provides an immunogenic composition comprising a pair of antigens, wherein said pair is one of said 351 pairs.

[0018] Within the 101 antigens of the fourth antigen group there are 5050 possible pairs of different antigens. All such pairs are disclosed herein and are part of the invention. Thus the invention provides an immunogenic composition comprising a pair of antigens, wherein said pair is one of said 5050 pairs.

[0019] Within the preferred 86 antigens of the fourth antigen group there are 3655 possible pairs of different antigens. All such pairs are disclosed herein and are part of the invention. Thus the invention provides an immunogenic composition

comprising a pair of antigens, wherein said pair is one of said 3655 pairs.

[0020] In one embodiment, a composition includes at least one antigen (*i.e.* 1, 2, 3, 4, 5, 6 or more) selected from the first antigen group and at least one antigen (*i.e.* 1, 2, 3, 4, 5, 6 or more) selected from the second antigen group. Antigens from the first antigen group may be selected from the preferred subset of 16 antigens, and antigens from the second antigen group may be selected from the third antigen group or the fifth antigen group.

- ⁵ antigen group may be selected from the third antigen group or the fifth antigen group.
 [0021] The invention also provides an immunogenic composition comprising a combination of antigens, said combination comprising two or more (*i.e.* 2, 3, 4, 5, 6 or more) antigens selected from the group consisting of: (1) a clfA antigen; (2) a clfB antigen; (3) a sdrE2 antigen; (4) a sdrC antigen; (5) a SasF antigen; (6) a emp antigen; (7) a sdrD antigen; (8) a spa antigen; (9) a esaC antigen; (10) a esxA antigen; (11) a esxB antigen; (12) a sta006 antigen; (13) a isdC antigen;
- (14) a hla antigen; (15) a sta011 antigen; (16) isdA antigen; (17) a isdB antigen; (18) a sasF antigen. This group of 18 antigens is sometimes referred to herein as the 'sixth antigen group'.
 [0022] The invention also provides an immunogenic composition comprising a combination of antigens, said combination comprising two or more (*i.e.* 2, 3, 4 or 5) antigens selected from the group consisting of: (1) a esxA antigen; (2) a esxB antigen; (3) a sta006 antigen; (4) a hla antigen; and/or (5) a sta011 antigen. The composition may also include
- ¹⁵ an adjuvant e.g. an aluminium hydroxide adjuvant. [0023] Advantageous combinations of the invention are those in which two or more antigens act synergistically. Thus the protection against *S.aureus* disease achieved by their combined administration exceeds that expected by mere addition of their individual protective efficacy.

[0024] Specific combinations of interest include, but are not limited to:

20

(1) An immunogenic composition comprising a sdrD antigen, a sdrE2 antigen and a isdC antigen. The sdrD and sdrE2 antigens can usefully be combined as a hybrid polypeptide, as discussed below, e.g. an SdrDE hybrid with an sdrE2 antigen downstream of a sdrD antigen.

²⁵ (2) An immunogenic composition comprising a sasD antigen, a clfB antigen and a sdrC antigen.

(3) An immunogenic composition comprising a sasD antigen, a clfB antigen, a sdrC antigen and a clfA antigen.

- (4) An immunogenic composition comprising a sdrD antigen, a sdrE2 antigen, a isdC antigen and a sta011 antigen.
 The sdrD and sdrE2 antigens can usefully be combined as a hybrid polypeptide, as discussed below, *e.g.* a SdrDE hybrid with a sdrE2 antigen downstream of a sdrD antigen.
 - (5) An immunogenic composition comprising a sasD antigen, a clfB antigen, a sdrC antigen and a sta006 antigen.
- (6) An immunogenic composition comprising a sdrD antigen, a sdrE2 antigen, a isdC antigen and a hla antigen.
 The sdrD and sdrE2 antigens can usefully be combined as a hybrid polypeptide, as discussed below, *e.g.* a SdrDE hybrid with a sdrE2 antigen downstream of a sdrD antigen. The Hla antigen may be a detoxified mutant *e.g.* including a H35L mutation.
- 40 (7) An immunogenic composition comprising a sasD antigen, a clfB antigen, a sdrC antigen and a esxA antigen.

(8) An immunogenic composition comprising a esxA antigen, a esxB antigen, a sta006 antigen and a hla antigen. The esxA and esxB antigens can usefully be combined as a hybrid polypeptide, as discussed below, *e.g.* a EsxAB hybrid with a esxB antigen downstream of a esxA antigen. The Hla antigen may be a detoxified mutant *e.g.* including a H35L mutation.

(9) An immunogenic composition comprising a sdrD antigen, a sdrE2 antigen, a isdC antigen and a esxA antigen. The sdrD and sdrE2 antigens can usefully be combined as a hybrid polypeptide, as discussed below, *e.g.* a SdrDE hybrid with a sdrE2 antigen downstream of a sdrD antigen.

50

45

(10) An immunogenic composition comprising a esxA antigen, a esxB antigen, a sta006 antigen and a sta011 antigen. The esxA and esxB antigens may be combined as a hybrid polypeptide, as discussed below, *e.g.* an EsxAB hybrid.

⁵⁵ (11) An immunogenic composition comprising a esxA antigen, a esxB antigen and a sta011 antigen. The esxA and esxB antigens can usefully be combined as a hybrid polypeptide, as discussed below, *e.g.* a EsxAB hybrid with a esxB antigen downstream of a esxA antigen.

(12) An immunogenic composition comprising a sasD antigen, a clfB antigen, a sdrC antigen and a spa antigen.

(13) An immunogenic composition comprising a esxA antigen, a esxB antigen, a isdA antigen, a sta006 antigen, a sta011 antigen and a spa antigen. The esxA and esxB antigens may be combined as a hybrid polypeptide, as discussed below, *e.g.* an EsxAB hybrid. The isdA antigen may be a fragment of a full-length isdA antigen *e.g.* SEQ ID NO: 157. The spa antigen may be a fragment of a full-length spa antigen, such as a Spa(D) domain mutated to disrupt or decrease binding to IgG Fc.

5

15

20

25

30

40

(14) An immunogenic composition comprising a esxA antigen, a esxB antigen, a H1a antigen, a sta006 antigen and
 a sta011 antigen. The esxA and esxB antigens may be combined as a hybrid polypeptide, as discussed below, *e.g.* an EsxAB hybrid. The H1a antigen may be a detoxified mutant *e.g.* including a H35L mutation.

(15) An immunogenic composition comprising a sdrD antigen, a sdrE2 antigen, a isdC antigen and a sdrE2 antigen. The sdrD and sdrE2 antigens can usefully be combined as a hybrid polypeptide, as discussed below, *e.g.* a SdrDE hybrid with a sdrE2 antigen downstream of a sdrD antigen.

(16) An immunogenic composition comprising a esxA antigen, a esxB antigen and a hla antigen. The esxA and esxB antigens can usefully be combined as a hybrid polypeptide, as discussed below, *e.g.* a EsxAB hybrid with a esxB antigen downstream of a esxA antigen. The H1a antigen may be a detoxified mutant *e.g.* including a H35L mutation.

(17) An immunogenic composition comprising a hla antigen, a isdA antigen, a sta006 antigen and a sta011 antigen. The isdA antigen may be a fragment of a full-length isdA antigen *e.g.* SEQ ID NO: 157. The Hla antigen may be a detoxified mutant *e.g.* including a H35L mutation.

(18) An immunogenic composition comprising a esxA antigen, a esxB antigen, a sta006 antigen and a isdA antigen. The esxA and esxB antigens can usefully be combined as a hybrid polypeptide, as discussed below, *e.g.* a EsxAB hybrid with a esxB antigen downstream of a esxA antigen. The isdA antigen may be a fragment of a full-length isdA antigen *e.g.* SEQ ID NO: 157.

(19) An immunogenic composition comprising a sasD antigen, a clfB antigen, a sdrC antigen and a hla antigen. The Hla antigen may be a detoxified mutant *e.g.* including a H35L mutation.

(20) An immunogenic composition comprising a H1a antigen, a sta006 antigen and a sta011 antigen. The H1a antigen may be a detoxified mutant *e.g.* including a H35L mutation.

(21) An immunogenic composition comprising a esxA antigen and a esxB antigen. The esxA and esxB antigens can usefully be combined as a hybrid polypeptide, as discussed below, *e.g.* an EsxAB hybrid with an esxB antigen downstream of an esxA antigen.

(22) An immunogenic composition comprising a esxA antigen, a esxB antigen and a sta006 antigen. The esxA and esxB antigens can usefully be combined as a hybrid polypeptide, as discussed below, *e.g.* a EsxAB hybrid with a esxB antigen downstream of a esxA antigen.

- 45 (23) An immunogenic composition comprising a spa antigen, a sta006 antigen and a sta011 antigen. The spa antigen may be a fragment of a full-length spa antigen, such as a Spa(D) domain mutated to disrupt or decrease binding to IgG Fc.
- (24) An immunogenic composition comprising a esxA antigen, a esxB antigen, a isdA antigen, a sta006 antigen
 and a sta011 antigen. The esxA and esxB antigens may be combined as a hybrid polypeptide, as discussed below,
 e.g. an EsxAB hybrid. The isdA antigen may be a fragment of a full-length isdA antigen e.g. SEQ ID NO: 157.
 - (25) An immunogenic composition comprising a sta006 antigen and a sta011 antigen.
- ⁵⁵ (26) An immunogenic composition comprising a esxA antigen, a esxB antigen, a sta006 antigen, a isdA antigen and a clfB antigen. The esxA and esxB antigens can usefully be combined as a hybrid polypeptide, as discussed below, *e.g.* a EsxAB hybrid with a esxB antigen downstream of a esxA antigen. The isdA antigen may be a fragment of a full-length isdA antigen e.g. SEQ ID NO: 157. The clfB antigen may be a fragment of a full-length clfB antigen

e.g. SEQ ID NO: 163.

- (27) An immunogenic composition comprising a sta006 antigen, a sta011 antigen and a sta019 antigen.
- (28) An immunogenic composition comprising a esxA antigen, a esxB antigen, a sta006 antigen, a hla antigen and a clfB antigen. The esxA and esxB antigens can usefully be combined as a hybrid polypeptide, as discussed below, e.g. a EsxAB hybrid with a esxB antigen downstream of a esxA antigen. The clfB antigen may be a fragment of a full-length clfB antigen *e.g.* SEQ ID NO: 163. The H1a antigen may be a detoxified mutant *e.g.* including a H35L mutation.
 - (29) An immunogenic composition comprising a sta006 antigen, a sta011 antigen, a sta019 antigen, and a hla antigen. The H1a antigen may be a detoxified mutant *e.g.* including a H35L mutation.
- (30) An immunogenic composition comprising a esxA antigen, a esxB antigen, a sta006 antigen, a sta011 antigen
 and a clfB antigen. The esxA and esxB antigens can usefully be combined as a hybrid polypeptide, as discussed below, *e.g.* a EsxAB hybrid with a esxB antigen downstream of a esxA antigen. The clfB antigen may be a fragment of a full-length clfB antigen *e.g.* SEQ ID NO: 163.
- (31) An immunogenic composition comprising a spa antigen, a esxA antigen, a esxB antigen, a sta006 antigen and
 a sta011 antigen. The spa antigen may be a fragment of a full-length spa antigen, such as a Spa(D) domain mutated to disrupt or decrease binding to IgG Fc. The esxA and esxB antigens may be combined as a hybrid polypeptide, as discussed below, *e.g.* an EsxAB hybrid.
- (32) An immunogenic composition comprising a sdrD antigen, a sdrE2 antigen, a isdC antigen and a esxB antigen.
 The sdrD and sdrE2 antigens can usefully be combined as a hybrid polypeptide, as discussed below, *e.g.* a SdrDE hybrid with a sdrE2 antigen downstream of a sdrD antigen.

(33) An immunogenic composition comprising a esxA antigen, a esxB antigen, a sta006 antigen, a sta011 antigen and a sta019 antigen. The esxA and esxB antigens can usefully be combined as a hybrid polypeptide, as discussed below, *e.g.* a EsxAB hybrid with a esxB antigen downstream of a esxA antigen.

(34) An immunogenic composition comprising a esxA antigen, a esxB antigen, a sta006 antigen, a isdA antigen and a sdrD antigen. The esxA and esxB antigens can usefully be combined as a hybrid polypeptide, as discussed below, *e.g.* a EsxAB hybrid with a esxB antigen downstream of a esxA antigen. The isdA antigen may be a fragment of a full-length isdA antigen *e.g.* SEQ ID NO: 157. The sdrD antigen may be a fragment of a full-length sdrD antigen *e.g.* SEQ ID NO: 156.

(35) An immunogenic composition comprising a esxA antigen, a esxB antigen, and a isdA antigen. The esxA and esxB antigens can usefully be combined as a hybrid polypeptide, as discussed below, *e.g.* a EsxAB hybrid with a esxB antigen downstream of a esxA antigen. The isdA antigen may be a fragment of a full-length isdA antigen *e.g.* SEQ ID NO: 157.

(36) An immunogenic composition comprising a sasD antigen, a clfB antigen, a sdrC antigen, a esxA antigen and a esxB antigen. The esxA and esxB antigens can usefully be combined as a hybrid polypeptide, as discussed below, e.g. an EsxAB hybrid with an esxB antigen downstream of an esxA antigen.

(37) An immunogenic composition comprising a H1a antigen, a spa antigen, a sta006 antigen and a sta011 antigen. The H1a antigen may be a detoxified mutant *e.g.* including a H35L mutation. The spa antigen may be a fragment of a full-length spa antigen, such as a Spa(D) domain mutated to disrupt or decrease binding to IgG Fc.

50

10

30

35

40

45

[0025] In some embodiments, any of these 37 compositions may include additional staphylococcal antigens, and these further antigens can be polypeptides and/or saccharides. For example, they can usefully also include one or more *S.aureus* capsular saccharide conjugate(s) *e.g.* against a serotype 5 and/or a serotype 8 strain. The inclusion of one or both such conjugates is particularly useful for combinations (8), (10), (20), (23), (25), (31) and (37).

⁵⁵ **[0026]** In other embodiments, these 37 compositions include no additional staphylococcal polypeptide antigens. In other embodiments, these 37 compositions include no additional staphylococcal antigens. In other embodiments, these 37 compositions include no additional antigens.

[0027] The invention also provides a polypeptide comprising amino acid sequence (a) having 80% or more identity

(e.g. 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 151; and/or (b) comprising a fragment of at least 'n' consecutive amino acids from amino acids 1-97 of SEQ ID NO: 151 and at least 'n' consecutive amino acids from amino acids 104-207 of SEQ ID NO: 151, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). The invention also provides a polypeptide

- ⁵ comprising amino acid sequence (a) having 80% or more identity (*e.g.* 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 152; and/or (b) comprising a fragment of at least 'n' consecutive amino acids from amino acids 1-104 of SEQ ID NO: 152 and at least 'n' consecutive amino acids from amino acids 1-104 of SEQ ID NO: 152 and at least 'n' consecutive amino acids from amino acids 1-104 of SEQ ID NO: 152 and at least 'n' consecutive amino acids from amino acids 1-104 of SEQ ID NO: 152 and at least 'n' consecutive amino acids from amino acids 1-104 of SEQ ID NO: 152 and at least 'n' consecutive amino acids from amino acids 1-104 of SEQ ID NO: 152 and at least 'n' consecutive amino acids from amino acids 1-104 of SEQ ID NO: 152 and at least 'n' consecutive amino acids from amino acids 1-104 of SEQ ID NO: 152 and at least 'n' consecutive amino acids from amino acids 1-104 of SEQ ID NO: 152 and at least 'n' consecutive amino acids from amino acids 1-104 of SEQ ID NO: 152 and at least 'n' consecutive amino acids from amino acids 1-104 of SEQ ID NO: 152 and at least 'n' consecutive amino acids from amino acids 1-104 of SEQ ID NO: 152 and at least 'n' consecutive amino acids from amino acids 1-104 of SEQ ID NO: 152 and at least 'n' consecutive amino acids from amino acids 1-104 of SEQ ID NO: 152 and at least 'n' consecutive amino acids from amino acids 1-104 of SEQ ID NO: 152 and at least 'n' consecutive amino acids from amino acids 1-104 of SEQ ID NO: 152 and at least 'n' consecutive amino acids from amino acids 1-104 of SEQ ID NO: 152 and at least 'n' consecutive amino acids from amino acids from amino acids 1-104 of SEQ ID NO: 152, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These polypeptides can elicit antibodies (*e.g.* when administered to a human) which
- recognise both the wild-type staphylococcal protein comprising SEQ ID NO: 10 and the wild-type staphylococcal protein comprising SEQ ID NO: 11. Thus the immune response will recognise both of antigens esxA and esxB. Preferred fragments of (b) provide an epitope from SEQ ID NO: 10 and an epitope from SEQ ID NO: 11. The invention also provides an immunogenic composition comprising a combination of such a protein and an adjuvant, such as an aluminium hydroxide adjuvant.
- ¹⁵ [0028] The invention also provides a polypeptide comprising amino acid sequence (a) having 80% or more identity (e.g. 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 241; and/or (b) comprising both a fragment of at least 'n' consecutive amino acids from amino acids 1-96 of SEQ ID NO: 241 and a fragment of at least 'n' consecutive amino acids from amino acids 103-205 of SEQ ID NO: 241, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These polypeptides
- 20 (e.g. SEQ ID NO: 250) can elicit antibodies (e.g. when administered to a human) which recognise both the wild-type staphylococcal protein comprising SEQ ID NO: 10 and the wild-type staphylococcal protein comprising SEQ ID NO: 11. Thus the immune response will recognise both of antigens esxA and esxB. Preferred fragments of (b) provide an epitope from SEQ ID NO: 10 and an epitope from SEQ ID NO: 11. The invention also provides an immunogenic composition comprising a combination of such a protein and an adjuvant, such as an aluminium hydroxide adjuvant.
- [0029] The invention also provides a polypeptide comprising a staphylococcal hemolysin sequence, wherein the sequence does not include a sequence having at least 90% identity to SEQ ID NO: 217 but can elicit antibodies which can kill staphylococci. The polypeptide may have a first sequence having 80% or more identity (*e.g.* 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 218 and a second sequence having 80% or more identity (*e.g.* 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ
- ³⁰ ID NO: 219, wherein the first and second sequences are either directly joined or are joined by an intervening amino acid sequence having fewer than 40 amino acids (*e.g.* ≤35 amino acids, ≤30 amino acids, ≤25 amino acids, ≤20 amino acids, ≤15 amino acids, ≤10 amino acids, ≤5 amino acids). SEQ ID NOs: 189 and 216 are examples of such polypeptides, in which the first and second sequences are joined by a tetrapeptide PSGS sequence (SEQ ID NO: 225).
- [0030] The invention also provides an immunogenic composition comprising a Sta011 antigen and a Ca⁺⁺ ion. The antigen and Ca⁺⁺ ion may form a complex *e.g.* atoms in the antigen may coordinate the Ca⁺⁺ ion. The immunogenic composition may also include an adjuvant.

[0031] The invention also provides a oligomer of a Sta011 antigen, and also immunogenic compositions comprising such oligomers. The oligomer can be a dimer, trimer, tetramer, pentamer, hexamer, heptamer, octamer or higher. An oligomer may comprise a Ca⁺⁺ ion, and a composition comprising Sta011 oligomers may comprise 5-500mM Ca⁺⁺ ions.

40

Further polypeptide antigens

[0032] In additions to antigens from the various antigen groups of the invention, immunogenic compositions may include one or more of the following *S.aureus* antigens (or antigens comprising immunogenic fragment(s) thereof) to enhance the efficacy against *S.aureus* of an immune response elicited by the composition [e.g. see references 3-10]:

- AhpC
- AhpF
- 50

55

- Autolysin amidase
- Autolysin glucosaminidase
- Collagen binding protein CAN
- EbhB

- GehD lipase
- Heparin binding protein HBP (17kDa)
- Laminin receptor
 - MAP
 - MntC (also known as SitC)
- MRPII

5

10

20

30

- Npase
- 15 ORF0594
 - ORF0657n
 - ORF0826
 - PBP4
 - RAP (RNA III activating protein)
- 25 Sai-1
 - SasK
 - SBI
 - SdrG
 - SdrH
- 35 SSP-1
 - SSP-2
 - Vitronectin-binding protein
- 40

Combinations with saccharides

[0033] The individual antigens identified in the antigen groups of the invention may be used in combination with conjugated saccharide antigens. Thus the invention provides an immunogenic composition comprising a combination of:

- 45
- (1) one or more antigen(s) selected from the first, second, third or fourth antigen groups (as defined above); and
- (2) one or more conjugates of a S.aureus exopolysaccharide and a carrier protein.
- ⁵⁰ **[0034]** A conjugate used in component (2) of this combination includes a saccharide moiety and a carrier moiety. The saccharide moiety is from the exopolysaccharide of *S. aureus*, which is a poly-N-acetylglucosamine (PNAG). The saccharide may be a polysaccharide having the size that arises during purification of the exopolysaccharide from bacteria, or it may be an oligosaccharide achieved by fragmentation of such a polysaccharide e.g. size can vary from over 400kDa to between 75 and 400kDa, or between 10 and 75kDa, or up to 30 repeat units. The saccharide moiety can have various
- ⁵⁵ degrees of N-acetylation and, as described in reference 11, the PNAG may be less than 40% N-acetylated (e.g. less than 35, 30, 20, 15, 10 or 5% N-acetylated; deacetylated PNAG is also known as dPNAG). Deacetylated epitopes of PNAG can elicit antibodies that are capable of mediating opsonic killing. The PNAG may or may not be O-succinylated e.g. it may be O-succinylated on fewer less than 25, 20, 15, 10, 5, 2, 1 or 0.1 % of residues.

[0035] The invention also provides an immunogenic composition comprising a combination of:

- (1) one or more antigen(s) selected from the first, second, third or fourth antigen groups; and
- (2) one or more conjugates of a *S.aureus* capsular saccharide and a carrier protein.
- 5

10

20

[0036] A conjugate used in component (2) of this combination includes a saccharide moiety and a carrier moiety. The saccharide moiety is from the capsular saccharide of a *S.aureus*. The saccharide may be a polysaccharide having the size that arises during purification of capsular polysaccharide from bacteria, or it may be an oligosaccharide achieved by fragmentation of such a polysaccharide. Capsular saccharides may be obtained from any suitable strain of *S.aureus* (or any bacterium having a similar or identical saccharide), such as from a type 5 and/or a type 8 *S.aureus* strain and/or a type 336 *S.aureus* strain. Most strains of infectious *S.aureus* contain either Type 5 or Type 8 capsular saccharides.

Both have FucNAcp in their repeat unit as well as ManNAcA which can be used to introduce a sulfhydryl group for linkage. The repeating unit of the Type 5 saccharide is →4)-β-D-Man NAcA-(1→4)-α-L-FucNAc(30Ac)-(1→3)-β-D-FucNAc-(1→, whereas the repeating unit of the Type 8 saccharide is →3)-β-D-ManNAcA(40Ac)-(1→3)-α-L-FucNAc
 (1→3)-α-D-FucNAc(1→. The type 336 saccharide is a β-linked hexosamine with no O-acetylation [12,13] and is cross-reactive with antibodies raised against the 336 strain (ATCC 55804). A combination of a type 5 and a type 8 saccharide

is typical, and a type 336 saccharide may be added to this pairing [14]. [0037] The invention also provides an immunogenic composition comprising a combination of:

- (1) one or more antigen(s) selected from the first, second, third or fourth antigen groups;
 - (2) one or more conjugates of a *S.aureus* exopolysaccharide and a carrier protein; and
 - (3) one or more conjugates of a *S.aureus* capsular saccharide and a carrier protein.
- [0038] The carrier moiety in these conjugates will usually be a protein, but usually not one of the antigens of (1). Typical carrier proteins are bacterial toxins, such as diphtheria or tetanus toxins, or toxoids or mutants or fragments thereof. The CRM197 diphtheria toxin mutant [15] is useful. Other suitable carrier proteins include the *N.meningitidis* outer membrane protein complex [16], synthetic peptides [17,18], heat shock proteins [19,20], pertussis proteins [21,22], cytokines [23], lymphokines [23], hormones [23], growth factors [23], artificial proteins comprising multiple human CD4⁺ T cell epitopes from various pathogen-derived antigens [24] such as N19 [25], protein D from *H.influenzae* [26-28],
- ³⁰ pneumolysin [29] or its non-toxic derivatives [30], pneumococcal surface protein PspA [31], iron-uptake proteins [32], toxin A or B from *C.difficile* [33], recombinant *P.aeruginosa* exoprotein A (rEPA) [34], *etc.* In some embodiments the carrier protein is a *S.aureus* protein, such as an antigen selected from the first, second, third or fourth antigen groups. [0039] Where a composition includes more than one conjugate, each conjugate may use the same carrier protein or a different carrier protein.
- ³⁵ **[0040]** Conjugates may have excess carrier (w/w) or excess saccharide (w/w). In some embodiments, a conjugate may include substantially equal weights of each.

[0041] The carrier molecule may be covalently conjugated to the carrier directly or via a linker. Direct linkages to the protein may be achieved by, for instance, reductive amination between the saccharide and the carrier, as described in, for example, references 35 and 36. The saccharide may first need to be activated e.g. by oxidation. Linkages via a linker

- ⁴⁰ group may be made using any known procedure, for example, the procedures described in references 37 and 38. A preferred type of linkage is an adipic acid linker, which may be formed by coupling a free -NH₂ group (*e.g.* introduced to a glucan by amination) with adipic acid (using, for example, diimide activation), and then coupling a protein to the resulting saccharide-adipic acid intermediate [39,40]. Another preferred type of linkage is a carbonyl linker, which may be formed by reaction of a free hydroxyl group of a saccharide CDI [41, 42] followed by reaction with a protein to form
- ⁴⁵ a carbamate linkage. Other linkers include β -propionamido [43], nitrophenyl-ethylamine [44], haloacyl halides [45], glycosidic linkages [46], 6-aminocaproic acid [47], ADH [48], C₄ to C₁₂ moieties [49], *etc.* Carbodiimide condensation can also be used [50].

[0042] PNAG conjugates may be prepared in various ways *e.g.* by a process comprising: a) activating the PNAG by adding a linker comprising a maleimide group to form an activated PNAG; b) activating the carrier protein by adding a

- ⁵⁰ linker comprising a sulphydryl group to form an activated carrier protein; and c) reacting the activated PNAG and the activated carrier protein to form a PNAG-carrier protein conjugate; or by a process comprising a) activating the PNAG by adding a linker comprising a sulphydryl group to form an activated PNAG; b) activating the carrier protein by adding a linker comprising a maleimide group to form an activated carrier protein; and c) reacting the activated PNAG and the activated carrier protein to form a PNAG-carrier protein conjugate; or by a process comprising a) activated PNAG and the activated carrier protein to form a PNAG-carrier protein conjugate; or by a process comprising a) activating the PNAG and the activated carrier protein to form a PNAG-carrier protein conjugate; or by a process comprising a) activating the PNAG and the activated carrier protein to form a PNAG-carrier protein conjugate; or by a process comprising a) activating the PNAG and the activated carrier protein to form a PNAG-carrier protein conjugate; or by a process comprising a) activating the PNAG and the activated carrier protein to form a PNAG-carrier protein conjugate; or by a process comprising a) activating the PNAG
- ⁵⁵ by adding a linker comprising a sulphydryl group to form an activated PNAG; b) activating the carrier protein by adding a linker comprising a sulphydryl group to form an activated carrier protein; and c) reacting the activated PNAG and the activated carrier protein to form a PNAG-carrier protein conjugate.

[0043] The individual antigens identified in the antigen groups of the invention may be used as carrier proteins for

exopolysaccharides, to form a covalent conjugate. Thus the invention provides an immunogenic composition comprising a conjugate of (1) an antigen selected from the first, second, third and fourth antigen groups and (2) a *S. aureus* exopolysaccharide. The invention also provides an immunogenic composition comprising a conjugate of (1) an antigen selected from the first, second, third and fourth antigen groups and (2) a *S. aureus* exopolysaccharide. The invention also provides an immunogenic composition comprising a conjugate of (1) an antigen selected from the first, second, third and fourth antigen groups and (2) a *S. aureus* capsular saccharide. Further characteristics of such conjugates are described above. These conjugates may be combined with any of the antigens disclosed herein.

Combinations with non-staphylococcal antigens

[0044] The individual antigens identified in the antigen groups of the invention may be used in combination with nonstaphylococcal antigens, and in particular with antigens from bacteria associated with nosocomial infections. Thus the invention provides an immunogenic composition comprising a combination of:

- (1) one or more antigen(s) selected from the first, second, third and fourth antigen groups (as defined above); and
- (2) one or more antigen(s) selected from the group consisting of: Clostridium difficile; Pseudomonas aeruginosa;
- Candida albicans; and extraintestinal pathogenic Escherichia coli.

[0045] Further suitable antigens for use in combination with staphylococcal antigens of the invention are listed on pages 33-46 of reference 51.

20 First antigen group

clfA

5

15

- [0046] The 'clfA' antigen is annotated as 'clumping factor A'. In the NCTC 8325 strain clfA is SAOUHSC_00812 and has amino acid sequence SEQ ID NO: 1 (GI:88194572). In the Newman strain it is nwmn_0756 (GI:151220968).
 [0047] Useful clfA antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 1 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 1; and/or (b) comprising
- a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 1, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These clfA proteins include variants of SEQ ID NO: 1. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 1. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 1 while retaining at least one epitope of SEQ ID NO: 1. The final 368 C-terminal amino acids of SEQ ID NO: 1 can usefully be omitted. The first 39
- ³⁵ N-terminal amino acids of SEQ ID NO: 1 can usefully be omitted. Other fragments omit one or more protein domains. [0048] SEQ ID NO: 224 is a useful fragment of SEQ ID NO: 1 ('Clf₄₀₋₅₅₉'). This fragments omits the long repetitive region towards the C-terminal of SEQ ID NO: 1.

clfB

40

[0049] The 'clfB' antigen is annotated as 'clumping factor B'. In the NCTC 8325 strain clfB is SAOUHSC_02963 and has amino acid sequence SEQ ID NO: 2 (GI:88196585). In the Newman strain it is nwmn_2529 (GI:151222741).
[0050] Useful clfB antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO:

- 2 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 2; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 2, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These clfB proteins include variants of SEQ ID NO: 2. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 2. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids
- (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 2 while retaining at least one epitope of SEQ ID NO: 2. The final 40 C-terminal amino acids of SEQ ID NO: 2 can usefully be omitted. The first 44 N-terminal amino acids of SEQ ID NO: 2 can usefully be omitted. Other fragments omit one or more protein domains. ClfB is naturally a long protein and so the use of fragments is helpful *e.g.* for purification, handling, fusion, expression, *etc.* SEQ ID NO: 163 is a useful fragment of SEQ ID NO: 2 ('ClfB₄₅₋₅₅₂'). This fragment includes the most exposed domain
- of ClfB and is more easily used at an industrial scale. It also reduces the antigen's similarity with human proteins. Other useful fragments, based on a 3-domain model of ClfB, include: ClfB₄₅₋₃₆₀ (also known as CLfB-N12; SEQ ID NO: 196); ClfB₂₁₂₋₅₄₂ (also known as CLfB-N23; SEQ ID NO: 197); and ClfB₃₆₀₋₅₄₂ (also known as CLfB-N3; SEQ ID NO: 198).

соА

[0051] The 'coA' antigen is annotated as 'coagulase Coa'. In the NCTC 8325 strain coA is SAOUHSC_00192 and has amino acid sequence SEQ ID NO: 3 (GI:88194002). In the Newman strain it is nwmn_0166 (GI:151220378).

- ⁵ **[0052]** Useful coA antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 3 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 3; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 3, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These coA proteins include variants of SEQ ID NO:
- 3. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 3. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 3 while retaining at least one epitope of SEQ ID NO: 3. The first 14 N-terminal amino acids of SEQ ID NO: 3 can usefully be omitted. Other fragments omit one or more protein domains.
- 15

20

35

eap

[0053] The 'eap' antigen is annotated as 'MHC class II analog protein'. In the NCTC 8325 strain eap is SAOUHSC_ 02161 and has amino acid sequence SEQ ID NO: 4 (GI:88195840). In the Newman strain it is nwmn_1872 (GI: 151222084).

[0054] Useful eap antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 4 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 4; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 4, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18,

20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These eap proteins include variants of SEQ ID NO:
4. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 4. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 4 while retaining at least one epitope of SEQ ID NO: 4. The first 17 N-terminal amino acids of SEQ ID NO: 4 can usefully be omitted. Other fragments omit one or more protein domains.

ebhA

[0055] The 'ebhA' antigen is annotated as 'EbhA'. In the NCTC 8325 strain ebhA is SAOUHSC_01447 and has amino acid sequence SEQ ID NO: 5 (GI:88195168).

[0056] Useful ebhA antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 5 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 5; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 5, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18,

20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These ebhA proteins include variants of SEQ ID NO:
5. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 5. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 5 while retaining at least one epitope of SEQ ID NO: 5. The first 39 N-terminal amino acids of SEQ ID NO: 5 can usefully be omitted. Other fragments omit one or more protein domains.

ebpS

[0057] The 'ebpS' antigen is annotated as 'elastin binding protein EbpS'. In the NCTC 8325 strain ebpS is SAOUHSC_
 01501 and has amino acid sequence SEQ ID NO: 6 (GI:88195217). In the Newman strain it is nwmn_1389 (GI: 151221601).

[0058] Useful ebpS antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 6 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 6; and/or (b) comprising

⁵⁵ a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 6, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These ebpS proteins include variants of SEQ ID NO:
6. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 6. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids

(e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 6 while retaining at least one epitope of SEQ ID NO: 6. Other fragments omit one or more protein domains.

[0059] SEQ ID NO: 165 is a useful fragment of SEQ ID NO: 6 ('EbpS₁₋₁₉₈'). This fragment includes the most exposed domain of EbpS and is more easily used at an industrial scale. It also reduces the antigen's similarity with human proteins.

5

10

efb

[0060] The 'efb' antigen is annotated as 'fibrinogen-binding protein truncated'. In the NCTC 8325 strain efb is SAOUHSC_01114 and has amino acid sequence SEQ ID NO: 7 (GI:88194860). In the Newman strain it is nwmn_1069 (GI:151221281).

[0061] Useful efb antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 7 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 7; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 7, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18,

20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150 or more). These efb proteins include variants of SEQ ID NO: 7. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 7. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 7 while retaining at least one epitope of SEQ ID NO: 7. The first 14 N-terminal amino acids of SEQ ID NO: 7 can usefully be omitted. Other fragments omit one or more protein domains.

emp

[0062] The 'emp' antigen is annotated as 'extracellular matrix and plasma binding protein'. In the NCTC 8325 strain emp is SAOUHSC_00816 and has amino acid sequence SEQ ID NO: 8 (GI:88194575). In the Newman strain it is nwmn_ 0758 (GI:151220970).

[0063] Useful emp antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 8 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 8; and/or (b) comprising

- ³⁰ a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 8, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These emp proteins include variants of SEQ ID NO: 8. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 8. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 8 while retaining at least one
- ³⁵ epitope of SEQ ID NO: 8. The first 26 N-terminal amino acids of SEQ ID NO: 8 can usefully be omitted. Other fragments omit one or more protein domains.
 [0064] SEQ ID NOs: 190, 191, 192 and 193 are useful fragments of SEQ ID NO: 8 ('Emp₃₅₋₃₄₀', 'Emp₂₇₋₃₃₄', 'EMP₃₅₋₃₃₄' and 'Emp₂₇₋₁₄₇', respectively).
- 40 esaC

[0065] The 'esaC' antigen is annotated as 'esaC'. In the NCTC 8325 strain esaC is SAOUHSC_00264 and has amino acid sequence SEQ ID NO: 9 (GI:88194069).

- [0066] Useful esaC antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO:
 9 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 9; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 9, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100 or more). These esaC proteins include variants of SEQ ID NO: 9. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 9. Other preferred fragments lack one or more amino acids (e.g.
- 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 9 while retaining at least one epitope of SEQ ID NO: 9. Other fragments omit one or more protein domains.

esxA

55

[0067] The 'esxA' antigen is annotated as 'protein'. In the NCTC 8325 strain esxA is SAOUHSC_00257 and has amino acid sequence SEQ ID NO: 10 (GI:88194063).

[0068] Useful esxA antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO:

10 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 10; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 10, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90 or more). These esxA proteins include variants of SEQ ID NO: 10. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 10. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 10 while retaining at least one epitope of SEQ ID NO: 10. Other fragments omit one or more protein domains.

10 esxB

5

[0069] The 'esxB' antigen is annotated as 'esxB'. In the NCTC 8325 strain esxB is SAOUHSC_00265 and has amino acid sequence SEQ ID NO: 11 (GI:88194070).

- [0070] Useful esxB antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO:
 ¹⁵ 11 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 11; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 11, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100 or more). These esxB proteins include variants of SEQ ID NO: 11. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 11. Other preferred fragments lack one or more amino acids
- (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 11 while retaining at least one epitope of SEQ ID NO: 11. Other fragments omit one or more protein domains.

FnBA

25

[0071] The 'FnBA' antigen is annotated as 'fibronectin-binding protein A precursor FnBPA'. In the NCTC 8325 strain FnBA is SAOUHSC_02803 and has amino acid sequence SEQ ID NO: 12 (GI:88196438). In the Newman strain it is nwm_2399 (GI:151222611). Proteomic analysis has revealed that this protein is secreted or surface-exposed.

- [0072] Useful FnBA antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO:
 ³⁰ 12 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 12; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 12, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These FnBA proteins include variants of SEQ ID NO: 12. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 12. Other preferred fragments lack one or
- ³⁵ more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 12 while retaining at least one epitope of SEQ ID NO: 12. The final 37 C-terminal amino acids of SEQ ID NO: 12 can usefully be omitted. Other fragments omit one or more protein domains. FnBA is naturally a long protein and so the use of fragments is helpful *e.g.* for purification, handling, fusion, expression, *etc.*
- ⁴⁰ **[0073]** SEQ ID NOs: 166 ('FnBA₁₋₅₁₁') and 167 ('FnBA₅₁₂₋₉₅₃') are useful fragments of SEQ ID NO: 12. These fragments are more easily used at an industrial scale.

FnBB

⁴⁵ [0074] The 'FnBB' antigen is annotated as 'fibronectin binding protein B FnBPB'. In the NCTC 8325 strain FnBB is SAOUHSC_02802 and has amino acid sequence SEQ ID NO: 13 (GI:88196437). In the Newman strain it is nwmn_ 2397 (GI:151222609).

[0075] Useful FnBB antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 13 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%,

- 50 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 13; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 13, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These FnBB proteins include variants of SEQ ID NO: 13. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 13. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino
- ⁵⁵ acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 13 while retaining at least one epitope of SEQ ID NO: 13. The final 37 C-terminal amino acids of SEQ ID NO: 13 can usefully be omitted. Other fragments omit one or more protein domains.

Hla

5

[0076] The 'Hla' antigen is the 'alpha-hemolysin precursor' also known as 'alpha toxin' or simply 'hemolysin'. In the NCTC 8325 strain Hla is SAOUHSC_01121 and has amino acid sequence SEQ ID NO: 14 (GI:88194865). In the Newman strain it is nwmn_1073 (GI:151221285). Hla is an important virulence determinant produced by most strains of *S.aureus*, having pore-forming and haemolytic activity. Anti-Hla antibodies can neutralise the detrimental effects of the toxin in animal models, and Hla is particularly useful for protecting against pneumonia.

[0077] Useful HIa antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 14 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%,

- 10 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 14; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 14, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These HIa proteins include variants of SEQ ID NO: 14. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 14. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids
- (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 14 while retaining at least one epitope of SEQ ID NO: 14. The first 26 N-terminal amino acids of SEQ ID NO: 14 can usefully be omitted (e.g. to give SEQ ID NO: 231). Truncation at the C-terminus can also be used e.g. leaving only 50 amino acids (residues 27-76 of SEQ ID NO: 14) [52]. Other fragments omit one or more protein domains.
- [0078] Hla's toxicity can be avoided in compositions of the invention by chemical inactivation (*e.g.* using formaldehyde, glutaraldehyde or other cross-linking reagents). Instead, however, it is preferred to use mutant forms of Hla which remove its toxic activity while retaining its immunogenicity. Such detoxified mutants are already known in the art. One useful Hla antigen has a mutation at residue 61 of SEQ ID NO: 14, which is residue 35 of the mature antigen (*i.e.* after omitting the first 26 N-terminal amino acids = residue 35 of SEQ ID NO: 231). Thus residue 61 may not be histidine, and may instead be *e.g.* Ile, Val or preferably Leu. A His-Arg mutation at this position can also be used. For example, SEQ ID
- NO: 150 is the mature mutant HIa-H35L sequence (*i.e.* SEQ ID NO: 231 with a H35L mutation) and a useful HIa antigen comprises SEQ ID NO: 150. Another useful mutation replaces a long loop with a short sequence *e.g.* to replace the 39mer at residues 136-174 of SEQ ID NO: 14 with a tetramer such as PSGS (SEQ ID NO: 225), as in SEQ ID NO: 189 (which also includes the H35L mutation) and SEQ ID NO: 216 (which does not include the H35L mutation). Another useful mutation replaces residue Y101 *e.g.* with a leucine (SEQ ID NO: 242). Another useful mutation replaces residue
- ³⁰ D152 *e.g.* with a leucine (SEQ ID NO: 243). Another useful mutant replaces residues H35 and Y101 *e.g.* with a leucine (SEQ ID NO: 244). Another useful mutant replaces residues H35 and D152 *e.g.* with a leucine (SEQ ID NO: 245).
 [0079] Further useful HIa antigens are disclosed in references 53 and 54.
 [0080] SEQ ID NOs: 160, 161 & 194 are three useful fragments of SEQ ID NO: 14 ('HIa₂₇₋₇₆', 'HIa₂₇₋₈₉' and 'HIa₂₇₋₇₉',
 - respectively). SEQ ID NOs: 158, 159 and 195 are the corresponding fragments from SEQ ID NO: 150, 102_{7-79} , 1
- ³⁵ **[0081]** One useful HIa sequence is SEQ ID NO: 232, which was used in the examples. It has a N-terminal Met, then an Ala-Ser dipeptide from the expression vector, then SEQ ID NO: 150 (from NCTC8325 strain). It is encoded by SEQ ID NO: 233.

hlgB

40

[0082] The 'hlgB' antigen is annotated as 'leukocidin f subunit precursor HlgB'. In the NCTC 8325 strain hlgB is SAOUHSC_02710 and has amino acid sequence SEQ ID NO: 15 (GI:88196350).

- 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 15; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 15, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These hlgB proteins include variants of SEQ ID NO: 15. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 15. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids
- (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 15 while retaining at least one epitope of SEQ ID NO: 15. The first 26 N-terminal amino acids of SEQ ID NO: 15 can usefully be omitted. Other fragments omit one or more protein domains.

hlgC

55

[0084] The 'hlgC' antigen is annotated as 'leukocidin s subunit precursor HlgC'. In the NCTC 8325 strain hlgC is SAOUHSC_02709 and has amino acid sequence SEQ ID NO: 16 (GI:88196349).

[0085] Useful hlgC antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO:

16 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 16; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 16, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These hlgC proteins include variants of SEQ ID NO: 16. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 16. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 16 while retaining at least one epitope of SEQ ID NO: 16. The first 29 N-terminal amino acids of SEQ ID NO: 16 can usefully be omitted. Other fragments omit one or more protein domains.

10

5

isdA

[0086] The 'isdA' antigen is annotated as 'IsdA protein'. In the NCTC 8325 strain isdA is SAOUHSC_01081 and has amino acid sequence SEQ ID NO: 17 (GI:88194829). In the Newman strain it is nwmn_1041 (GI: 151221253).

- ¹⁵ **[0087]** Useful isdA antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 17 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 17; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 17, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These isdA proteins include variants of SEQ ID NO:
- 17. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 17. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 17 while retaining at least one epitope of SEQ ID NO: 17. The final 38 C-terminal amino acids of SEQ ID NO: 17 can usefully be omitted. The first 46 N-terminal amino acids of SEQ ID NO: 17 can useful be omitted. Truncation to exclude the C-terminal 38mer of SEQ ID NO: 17 can useful be omitted.
- ²⁵ ID NO: 17 (beginning with the LPKTG motif) is also useful. Other fragments omit one or more protein domains. [0088] SEQ ID NO: 157 is a useful fragment of SEQ ID NO: 17 (amino acids 40-184 of SEQ ID NO: 17; 'IsdA₄₀₋₁₈₄') which includes the natural protein's heme binding site and includes the antigen's most exposed domain. It also reduces the antigen's similarity with human proteins. Other useful fragments are disclosed in references 55 and 56.
- [0089] IsdA does not adsorb well to aluminium hydroxide adjuvants, so IsdA present in a composition may me unad-30 sorbed or may be adsorbed to an alternative adjuvant *e.g.* to an aluminium phosphate.
 - [0090] Anti-IsdA antibodies protect mice against S.aureus abscess formation and lethal challenge [57].

isdB

³⁵ **[0091]** The 'isdB' antigen is annotated as 'neurofilament protein isdB'. In the NCTC 8325 strain isdB is SAOUHSC_ 01079 and has amino acid sequence SEQ ID NO: 18 (GI:88194828). IsdB has been proposed for use as a vaccine antigen on its own [2], but this may not prevent pneumonia.

- 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 18; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 18, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These isdB proteins include variants of SEQ ID NO: 18. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 18. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids
- (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 18 while retaining at least one epitope of SEQ ID NO: 18. The final 36 C-terminal amino acids of SEQ ID NO: 18 can usefully be omitted. The first 40 N-terminal amino acids of SEQ ID NO: 18 can usefully be omitted. Other fragments omit one or more protein domains. Useful fragments of IsdB are disclosed in references 56 and 58 *e.g.* lacking 37 internal amino acids of SEQ ID 18.
 [0093] Anti-IsdB antibodies protect mice against *S.aureus* abscess formation and lethal challenge [57].
- ⁵⁰ **[0094]** In some embodiments, compositions of the invention do not include an isdB antigen.

isdC

[0095] The 'isdC' antigen is annotated as 'protein'. In the NCTC 8325 strain isdC is SAOUHSC_01082 and has amino acid sequence SEQ ID NO: 19 (GI:88194830).

[0096] Useful isdC antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 19 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 19; and/or (b) comprising

a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 19, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200 or more). These isdC proteins include variants of SEQ ID NO: 19. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 19. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1,

⁵ 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 19 while retaining at least one epitope of SEQ ID NO: 19. The final 39 C-terminal amino acids of SEQ ID NO: 19 can usefully be omitted. The first 28 N-terminal amino acids of SEQ ID NO: 19 can usefully be omitted. Useful amino acids of SEQ ID NO: 19 can usefully be omitted. Useful fragments of IsdB are disclosed in reference 56.

[0097] Reference 59 discloses antigens which usefully include epitopes from both IsdB and IsdH.

10

isdG

[0098] The 'isdG' antigen is annotated as 'heme-degrading monooxygenase IsdG'. In the NCTC 8325 strain isdG is SAOUHSC_01089 and has amino acid sequence SEQ ID NO: 20 (GI:88194836).

- ¹⁵ **[0099]** Useful isdG antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 20 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 20; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 20, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100 or more). These isdG proteins include variants of SEQ ID NO: 20. Preferred
- fragments of (b) comprise an epitope from SEQ ID NO: 20. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 20 while retaining at least one epitope of SEQ ID NO: 20. Other fragments omit one or more protein domains.

[0100] The 'isdH' antigen is annotated as 'isdH'. In the NCTC 8325 strain isdH is SAOUHSC_01843 and has amino acid sequence SEQ ID NO: 21 (GI:88195542). In the Newman strain it is nwmn_1624 (GI:151221836). It has also been known as HarA.

- ³⁰ **[0101]** Useful isdH antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 21 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 21; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 21, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These isdH proteins include variants of SEQ ID NO:
- 21. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 21. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 21 while retaining at least one epitope of SEQ ID NO: 21. The final 35 C-terminal amino acids of SEQ ID NO: 21 can usefully be omitted. The first 40 N-terminal amino acids of SEQ ID NO: 21 can usefully be omitted. Other fragments omit one or more protein domains.
- ⁴⁰ **[0102]** Reference 59 discloses antigens which usefully include epitopes from both IsdB and IsdH.

isdl

- **[0103]** The 'isdl' antigen is annotated as 'heme-degrading monooxygenase Isdl'. In the NCTC 8325 strain isdl is SAOUHSC_00130 and has amino acid sequence SEQ ID NO: 22 (GI:88193943).
- **[0104]** Useful isdl antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 22 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 22; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 22, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18,
- 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100 or more). These isdl proteins include variants of SEQ ID NO: 22. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 22. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 22 while retaining at least one epitope of SEQ ID NO: 22. Other fragments omit one or more protein domains.

55

lukD

45

²⁵ isdH

^[0105] The 'lukD' antigen is annotated as 'leukotoxin LukD'. In the NCTC 8325 strain lukD is SAOUHSC_01954 and

has amino acid sequence SEQ ID NO: 23 (GI:88195647). In the Newman strain it is nwmn_1718 (GI:151221930). [0106] Useful lukD antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 23 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 23; and/or (b) comprising

- ⁵ a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 23, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These lukD proteins include variants of SEQ ID NO: 23. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 23. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 23 while retaining at least one
- 10 epitope of SEQ ID NO: 23. The final 43 C-terminal amino acids of SEQ ID NO: 23 can usefully be omitted. The first 26 N-terminal amino acids of SEQ ID NO: 23 can usefully be omitted. Other fragments omit one or more protein domains.

lukE

¹⁵ **[0107]** The 'lukE' antigen is annotated as 'leukotoxin LukE'. In the NCTC 8325 strain lukE is SAOUHSC_01955 and has amino acid sequence SEQ ID NO: 24 (GI:88195648).

[0108] Useful lukE antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 24 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 24; and/or (b) comprising

- a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 24, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These lukE proteins include variants of SEQ ID NO: 24. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 24. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 24 while retaining at least one
- ²⁵ epitope of SEQ ID NO: 24. Other fragments omit one or more protein domains.

lukF

- [0109] The 'lukF' antigen is annotated as 'Leukocidin/Hemolysin toxin family LukF'. In the NCTC 8325 strain lukF is
 SAOUHSC_02241 and has amino acid sequence SEQ ID NO: 25 (GI:88195914). Useful lukF antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 25 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 25; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 25, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These lukF proteins include variants of SEQ ID NO: 25. Preferred fragments of (b)
- So, 100, 150, 200, 250 of more). These fuck proteins include variants of SEQ ID NO. 25. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 25. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 25 while retaining at least one epitope of SEQ ID NO: 25. Other fragments omit one or more protein domains.

40

45

lukS

[0110] The 'lukS' antigen is annotated as 'probable leukocidin S subunit LukS'. In the NCTC 8325 strain lukS is SAOUHSC_02243 and has amino acid sequence SEQ ID NO: 26 (GI:88195915). In the Newman strain it is nwmn_ 1928 (GI: 151222140).

[0111] Useful lukS antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 26 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 26; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 26, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18,

⁵⁵ omit one or more protein domains.

^{20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250} or more). These lukS proteins include variants of SEQ ID NO:
26. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 26. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 26 while retaining at least one epitope of SEQ ID NO: 26. The first 22 N-terminal amino acids of SEQ ID NO: 26 can usefully be omitted. Other fragments

nuc

[0112] The 'nuc' antigen is annotated as 'thermonuclease precursor'. In the NCTC 8325 strain nuc is SAOUHSC_ 01316 and has amino acid sequence SEQ ID NO: 27 (GI:88195046).

- ⁵ **[0113]** Useful nuc antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 27 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 27; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 27, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150 or more). These nuc proteins include variants of SEQ ID NO: 27. Preferred
- fragments of (b) comprise an epitope from SEQ ID NO: 27. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 27 while retaining at least one epitope of SEQ ID NO: 27. The final 39 C-terminal amino acids of SEQ ID NO: 27 can usefully be omitted. The first 19 N-terminal amino acids of SEQ ID NO: 27 can usefully be omitted. Other fragments omit one or more protein domains.

15

sasA

[0114] The 'sasA' antigen is annotated as 'SasA'. In the NCTC 8325 strain sasA is SAOUHSC_02990 and has amino acid sequence SEQ ID NO: 28 (GI:88196609).

- [0115] Useful sasA antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 28 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 28; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 28, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sasA proteins include variants of SEQ ID NO:
- 25 28. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 28. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 28 while retaining at least one epitope of SEQ ID NO: 28. The final 43 C-terminal amino acids of SEQ ID NO: 28 can usefully be omitted. The first 90 N-terminal amino acids of SEQ ID NO: 28 can usefully be omitted. Other fragments omit one or more protein domains.

30

sasB

[0116] The 'sasB' antigen is annotated as 'fmtB protein; SasB'. In the NCTC 8325 strain sasB is SAOUHSC_02404 and has amino acid sequence SEQ ID NO: 29 (GI:88196065).

- ³⁵ **[0117]** Useful sasB antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 29 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 29; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 29, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sasB proteins include variants of SEQ ID NO:
- 29. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 29. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 29 while retaining at least one epitope of SEQ ID NO: 29. The final 39 C-terminal amino acids of SEQ ID NO: 29 can usefully be omitted. The first 38 N-terminal amino acids of SEQ ID NO: 29 can useful DNO: 29 can useful be omitted.

45

sasC

[0118] The 'sasC' antigen is annotated as 'Mrp protein; SasC'. In the NCTC 8325 strain sasC is SAOUHSC_01873 and has amino acid sequence SEQ ID NO: 30 (GI:88195570).

- 50 [0119] Useful sasC antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 30 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 30; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 30, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sasC proteins include variants of SEQ ID NO:
- ⁵⁵ 30. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 30. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 30 while retaining at least one epitope of SEQ ID NO: 30. The final 36 C-terminal amino acids of SEQ ID NO: 30 can usefully be omitted. The first 37

N-terminal amino acids of SEQ ID NO: 30 can usefully be omitted. Other fragments omit one or more protein domains.

sasD

⁵ **[0120]** The 'sasD' antigen is annotated as 'SasD protein'. In the NCTC 8325 strain sasD is SAOUHSC_00094 and has amino acid sequence SEQ ID NO: 31 (GI:88193909).

[0121] Useful sasD antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 31 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 31; and/or (b) comprising

- a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 31, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150 or more). These sasD proteins include variants of SEQ ID NO: 31. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 31. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 31 while retaining at least one epitope
- ¹⁵ of SEQ ID NO: 31. The first 28 N-terminal amino acids of SEQ ID NO: 31 can usefully be omitted. Other fragments omit one or more protein domains.

sasF

²⁰ **[0122]** The 'sasF' antigen is annotated as 'sasF protein'. In the NCTC 8325 strain sasF is SAOUHSC_02982 and has amino acid sequence SEQ ID NO: 32 (GI:88196601).

[0123] Useful sasF antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 32 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 32; and/or (b) comprising

- a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 32, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sasF proteins include variants of SEQ ID NO: 32. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 32. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 32 while retaining at least one
- ³⁰ epitope of SEQ ID NO: 32. The final 39 C-terminal amino acids of SEQ ID NO: 32 can usefully be omitted. The first 37 N-terminal amino acids of SEQ ID NO: 32 can usefully be omitted. Other fragments omit one or more protein domains.

sdrC

³⁵ **[0124]** The 'sdrC' antigen is annotated as 'sdrC protein'. In the NCTC 8325 strain sdrC is SAOUHSC_00544 and has amino acid sequence SEQ ID NO: 33 (GI:88194324).

[0125] Useful sdrC antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 33 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 33; and/or (b) comprising a factor of CEO ID NO: 22 where is in it is 7 or more) to 24 up to 12 up to 12

- ⁴⁰ a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 33, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sdrC proteins include variants of SEQ ID NO: 33. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 33. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 33 while retaining at least one
- ⁴⁵ epitope of SEQ ID NO: 33. The final 38 C-terminal amino acids of SEQ ID NO: 33 can usefully be omitted. The first 50 N-terminal amino acids of SEQ ID NO: 33 can usefully be omitted. Other fragments omit one or more protein domains. SdrC is naturally a long protein and so the use of fragments is helpful *e.g.* for purification, handling, fusion, expression, *etc.*[0126] SEQ ID NO: 164 is a useful fragment of SEQ ID NO: 33 ('SdrC5₁₋₅₁₈'). This fragment includes the most exposed domain of SdrC and is more easily used at an industrial scale. It also reduces the antigen's similarity with human proteins.

50

sdrD

[0127] The 'sdrD' antigen is annotated as 'sdrD protein'. In the NCTC 8325 strain sdrD is SAOUHSC_00545 and has amino acid sequence SEQ ID NO: 34 (GI:88194325).

⁵⁵ **[0128]** Useful sdrD antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 34 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 34; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 34, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18,

20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sdrD proteins include variants of SEQ ID NO: 34. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 34. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 34 while retaining at least one epitope of SEQ ID NO: 34. The final 38 C-terminal amino acids of SEQ ID NO: 34 can usefully be omitted. The first 52 N-terminal amino acids of SEQ ID NO: 34 can usefully be omitted. Other fragments omit one or more protein domains. SdrD is naturally a long protein and so the use of fragments is very helpful *e.g.* for purification, handling, fusion, expression,

etc.
[0129] SEQ ID NO: 156 is a useful fragment of SEQ ID NO: 34 ('SdrD₅₃₋₅₉₂'). This fragment includes the most exposed domain of SdrD and is more easily used at an industrial scale. It also reduces the antigen's similarity with human proteins. Another useful fragment, with the same C-terminus residue, is SdrD₃₉₄₋₅₉₂ (also known as SdrD-N3; SEQ ID NO: 199). Another useful fragment is SEQ ID NO: 236 (amino acids 593-1123 of SEQ ID NO: 34), referred to herein as 'SdrD_{CnaB}'.

sdrE2

5

15

[0130] The 'sdrE2' antigen is annotated as 'Ser-Asp rich fibrinogen/bone sialoprotein-binding protein SdrE'. In the Newman strain sdrE2 is NWMN_0525 and has amino acid sequence SEQ ID NO: 35 (GI: 151220737).

- 20 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 35; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 35, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sdrE2 proteins include variants of SEQ ID NO: 35. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 35. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino
- ²⁵ acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 35 while retaining at least one epitope of SEQ ID NO: 35. The final 38 C-terminal amino acids of SEQ ID NO: 35 can usefully be omitted. The first 52 N-terminal amino acids of SEQ ID NO: 35 can usefully be omitted. Other fragments omit one or more protein domains. SdrE2 is naturally a long protein and so the use of fragments is very helpful *e.g.* for purification, handling, fusion, expression, *etc.*
- ³⁰ **[0132]** SEQ ID NO: 155 is a useful fragment of SEQ ID NO: 35 ('SdrE₅₃₋₆₃₂'). This fragment includes the most exposed domain of SdrE2 and is more easily used at an industrial scale. It also reduces the antigen's similarity with human proteins.

spa

- ³⁵ **[0133]** The 'spa' antigen is annotated as 'protein A' or 'SpA'. In the NCTC 8325 strain spa is SAOUHSC_00069 and has amino acid sequence SEQ ID NO: 36 (GI:88193885). In the Newman strain it is nwmn_0055 (GI:151220267). All *S.aureus* strains express the structural gene for spa, a well characterized virulence factor whose cell wall-anchored surface protein product has five highly homologous immunoglobulin binding domains designated E, D, A, B, and C [60]. These domains display ~80% identity at the amino acid level, are 56 to 61 residues in length, and are organized as
- tandem repeats [61]. SpA is synthesized as a precursor protein with an N-terminal signal peptide and a C-terminal sorting signal [62,63]. Cell wall-anchored spa is displayed in great abundance on the staphylococcal surface [64,65]. Each of its immunoglobulin binding domains is composed of antiparallel α-helices that assemble into a three helix bundle and can bind the Fc domain of immunoglobulin G (IgG) [66,67], the VH3 heavy chain (Fab) of IgM (*i.e.* the B cell receptor) [68], the von Willebrand factor at its A1 domain [69] and/or the TNF-α receptor I (TNFRI) [70], which is displayed on
- ⁴⁵ surfaces of airway epithelia.
 [0134] Useful spa antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 36 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 36; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 36, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 10, 12, 14,
- 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These spa proteins include variants of SEQ ID NO: 36. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 36. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 36 while retaining at least one epitope of SEQ ID NO: 36. The final 35 C-terminal amino acids of SEQ ID NO: 36 can usefully be omitted. The first 36
- ⁵⁵ N-terminal amino acids of SEQ ID NO: 36 can usefully be omitted. Other fragments omit one or more protein domains. Reference 71 suggests that individual IgG-binding domains might be useful immunogens, alone or in combination.
 [0135] SEQ ID NO: 162 is a useful fragment of SEQ ID NO: 36 ('Spa₃₇₋₃₂₅'). This fragment contains all the five SpA Ig-binding domains (which are naturally arranged from N- to C-terminus in the order E, D, A, B, C) and includes the

most exposed domain of SpA. It also reduces the antigen's similarity with human proteins. Other useful fragments may omit 1, 2, 3 or 4 of the natural A, B, C, D and/or E domains to prevent the excessive B cell expansion and then apoptosis which might occur if spa functions as a B cell superantigen. As reported in reference 71, other useful fragments may include only 1, 2, 3 or 4 of the natural A, B, C, D and/or E domains *e.g.* comprise only the SpA(A) domain but not B to

- ⁵ E, or comprise only the SpA(D) domain but not A, B, C or E, *etc.* Thus a spa antigen useful with the invention may include 1, 2, 3, 4 or 5 lgG-binding domains, but ideally has 4 or fewer If an antigen includes only one type of spa domain *(e.g.* only the Spa(A) or SpA(D) domain), it may include more than one copy of this domain *e.g.* multiple SpA(D) domains in a single polypeptide chain.
- [0136] An individual domain within the antigen may be mutated at 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more amino acids
 relative to SEQ ID NO: 36 (*e.g.* see ref. 71, disclosing mutations at residues 3 and/or 24 of domain D, at residue 46 and/or 53 of domain A, *etc.*). Such mutants should not remove the antigen's ability to elicit an antibody that recognises SEQ ID NO: 36, but may remove the antigen's binding to IgG and/or other human proteins (such as human blood proteins).
 [0137] In certain aspects a spa antigen includes a substitution at (a) one or more amino acid substitution in an IgG Fc binding sub-domain of SpA domain A, B, C, D and/or E that disrupts or decreases binding to IgG Fc, and (b) one or
- ¹⁵ more amino acid substitution in a V_H3 binding sub-domain of SpA domain A, B, C, D, and/or E that disrupts or decreases binding to V_H3. In certain embodiments, a variant SpA comprises at least or at most 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more variant SpA domain D peptides.

Second antigen group

20

25

sta001

[0138] The 'sta001' antigen is annotated as '5'-nucleotidase family protein'. In the NCTC 8325 strain sta001 is SAOUHSC_00025 and has amino acid sequence SEQ ID NO: 37 (GI:88193846). In the Newman strain it is nwmn_0022 (GI:151220234). It has also been referred to as AdsA and SasH and SA0024.

- **[0139]** Useful sta001 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 37 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 37; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 37, wherein 'n' is 7 or more (*e.g.* 8, 10,
- ³⁰ 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta001 proteins include variants of SEQ ID NO: 37. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 37. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 37 while retaining at least one epitope of SEQ ID NO: 37. The final 34 C-terminal amino acids of SEQ ID NO: 37 can usefully be omitted.
- ³⁵ The first 38 N-terminal amino acids of SEQ ID NO: 37 can usefully be omitted. Other fragments omit one or more protein domains.

sta002

- 40 [0140] The 'sta002' antigen is annotated as 'lipoprotein'. In the NCTC 8325 strain sta002 is SAOUHSC_00356 and has amino acid sequence SEQ ID NO: 38 (GI:88194155). In the Newman strain it is nwm_0364 (GI:151220576).
 [0141] Useful sta002 antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 38 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 38; and/or (b)
- ⁴⁵ comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 38, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150 or more). These sta002 proteins include variants of SEQ ID NO: 38. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 38. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 38 while retaining at least

one epitope of SEQ ID NO: 38. The first 18 N-terminal amino acids of SEQ ID NO: 38 can usefully be omitted. Other fragments omit one or more protein domains.
 [0142] SEQ ID NOs: 153 ('sta002₁₉₋₁₈₇') and 154 ('sta002₁₉₋₁₂₄') are two useful fragments of SEQ ID NO: 38 which reduce the antigen's similarity with human proteins.

⁵⁵ sta003

[0143] The 'sta003' antigen is annotated as 'surface protein'. In the NCTC 8325 strain sta003 is SAOUHSC_00400 and has amino acid sequence SEQ ID NO: 39 (GI:88194195). In the Newman strain it is nwmn_0401 (GI:151220613).

[0144] Useful sta003 antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 39 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 39; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 39, wherein 'n' is 7 or more (e.g. 8, 10,

5 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta003 proteins include variants of SEQ ID NO: 39. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 39. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 39 while retaining at least one epitope of SEQ ID NO: 39. The first 32 N-terminal amino acids of SEQ ID NO: 39 can usefully be omitted. 10

Other fragments omit one or more protein domains.

sta004

[0145] The 'sta004' antigen is annotated as 'Siderophore binding protein FatB'. In the NCTC 8325 strain sta004 is 15 SAOUHSC_00749 and has amino acid sequence SEQ ID NO: 40 (GI:88194514). In the Newman strain it is nwmn_ 0705 (GI: 151220917).

[0146] Useful sta004 antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 40 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 40; and/or (b)

- 20 comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 40, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta004 proteins include variants of SEQ ID NO: 40. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 40. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 40 while retaining
- 25 at least one epitope of SEQ ID NO: 40. The first 18 N-terminal amino acids of SEQ ID NO: 40 can usefully be omitted. Other fragments omit one or more protein domains.

sta005

30 [0147] The 'sta005' antigen is annotated as 'superantigen-like protein'. In the NCTC 8325 strain sta005 is SAOUHSC_ 01127 and has amino acid sequence SEQ ID NO: 41 (GI:88194870). In the Newman strain it is nwmn_1077 (GI: 151221289).

[0148] Useful sta005 antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 41 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%,

- 35 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 41; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 41, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200 or more). These sta005 proteins include variants of SEQ ID NO: 41. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 41. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more
- 40 amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 41 while retaining at least one epitope of SEQ ID NO: 41. The first 18 N-terminal amino acids of SEQ ID NO: 41 can usefully be omitted. Other fragments omit one or more protein domains.

sta006

45

[0149] The 'sta006' antigen is annotated as 'ferrichrome-binding protein', and has also been referred to as 'FhuD2' in the literature [72]. In the NCTC 8325 strain sta006 is SAOUHSC_02554 and has amino acid sequence SEQ ID NO: 42 (GI:88196199). In the Newman strain it is nwmn_2185 (GI: 151222397).

- [0150] Useful sta006 antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID 50 NO: 42 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 42; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 42, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta006 proteins include variants of SEQ ID NO: 42. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 42. Other preferred fragments lack
- 55 one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 42 while retaining at least one epitope of SEQ ID NO: 42. The first 17 N-terminal amino acids of SEQ ID NO: 42 can usefully be omitted (to provide SEQ ID NO: 246). Other fragments omit one or more protein domains. Mutant forms of sta006 are reported

in reference 73. A sta006 antigen may be lipidated *e.g.* with an acylated N-terminus cysteine. One useful sta006 sequence is SEQ ID NO: 248, which has a Met-Ala-Ser- sequence at the N-terminus.

sta007

5

[0151] The 'sta007' antigen is annotated as 'secretory antigen precursor'. In the NCTC 8325 strain sta007 is SAOUHSC_02571 and has amino acid sequence SEQ ID NO: 43 (GI:88196215). In the Newman strain it is nwmn_2199 (GI:151222411). Proteomic analysis has revealed that this protein is secreted or surface-exposed.

[0152] Useful sta007 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 43 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 43; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 43, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta007 proteins include variants of SEQ ID NO: 43. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 43. Other preferred fragments lack

¹⁵ one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 43 while retaining at least one epitope of SEQ ID NO: 43. The first 27 N-terminal amino acids of SEQ ID NO: 43 can usefully be omitted. Other fragments omit one or more protein domains.

20 sta008

[0153] The 'sta008' antigen is annotated as 'lipoprotein'. In the NCTC 8325 strain sta008 is SAOUHSC_02650 and has amino acid sequence SEQ ID NO: 44 (GI:88196290). In the Newman strain it is nwmn_2270 (GI:151222482). **[0154]** Useful sta008 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID

- NO: 44 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 44; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 44, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200 or more). These sta008 proteins include variants of SEQ ID NO: 44. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 44. Other preferred fragments lack
- ³⁰ one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 44 while retaining at least one epitope of SEQ ID NO: 44. The first 17 N-terminal amino acids of SEQ ID NO: 44 can usefully be omitted. Other fragments omit one or more protein domains.
- 35 sta009

[0155] The 'sta009' antigen is annotated as 'immunoglobulin G-binding protein Sbi'. In the NCTC 8325 strain sta009 is SAOUHSC_02706 and has amino acid sequence SEQ ID NO: 45 (GI:88196346). In the Newman strain it is nwmn_2317 (GI: 151222529).

- ⁴⁰ [0156] Useful sta009 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 45 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 45; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 45, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta009 proteins include variants
- of SEQ ID NO: 45. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 45. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 45 while retaining at least one epitope of SEQ ID NO: 45. The first 29 N-terminal amino acids of SEQ ID NO: 45 can usefully be omitted. Other fragments omit one or more protein domains.

55

sta010

[0157] The 'sta010' antigen is annotated as 'immunodominant antigen A'. In the NCTC 8325 strain sta010 is SAOUHSC_02887 and has amino acid sequence SEQ ID NO: 46 (GI:88196515). In the Newman strain it is nwmn_2469 (GI:151222681). Proteomic analysis has revealed that this protein is secreted or surface-exposed.

[0158] Useful sta010 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 46 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 46; and/or (b)

⁵⁰

comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 46, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200 or more). These sta010 proteins include variants of SEQ ID NO: 46. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 46. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 46 while retaining at least one epitope of SEQ ID NO: 46. The first 29 N-terminal amino acids of SEQ ID NO: 46 can usefully be omitted. Other fragments omit one or more protein domains.

sta011

[0159] The 'sta011' antigen is annotated as 'lipoprotein'. In the NCTC 8325 strain sta011 is SAOUHSC_00052 and has amino acid sequence SEQ ID NO: 47 (GI:88193872).

[0160] Useful sta011 antigens can elicit an antibody *(e.g.* when administered to a human) that recognises SEQ ID NO: 47 and/or may comprise an amino acid sequence: (a) having 50% or more identity *(e.g.* 60%, 65%, 70%, 75%,

- ¹⁵ 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 47; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 47, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta011 proteins include variants of SEQ ID NO: 47. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 47. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more
- amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 47 while retaining at least one epitope of SEQ ID NO: 47. The first 23 N-terminal amino acids of SEQ ID NO: 47 can usefully be omitted (to provide SEQ ID NO: 247). Other fragments omit one or more protein domains. A sta011 antigen may be lipidated *e.g.* with an acylated N-terminus cysteine. One useful sta011 sequence is SEQ ID NO: 249, which has a N-terminus methionine.
- [0161] Variant forms of SEQ ID NO: 47 which may be used as or for preparing sta011 antigens include, but are not limited to, SEQ ID NOs: 213, 214 and 215 with various lle/Val/Leu substitutions.
 [0162] Sta011 can exist as a monomer or an oligomer, with Ca⁺⁺ ions favouring oligomerisation. The invention can use monomers and/or oligomers of Sta011.
- ³⁰ sta012

[0163] The 'sta012' antigen is annotated as 'protein with leader'. In the NCTC 8325 strain sta012 is SAOUHSC_00106 and has amino acid sequence SEQ ID NO: 48 (GI:88193919).

- [0164] Useful sta012 antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 48 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 48; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 48, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta012 proteins include variants of SEQ ID NO: 48. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 48. Other preferred fragments lack
- 40 one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 48 while retaining at least one epitope of SEQ ID NO: 48. The first 21 N-terminal amino acids of SEQ ID NO: 48 can usefully be omitted. Other fragments omit one or more protein domains.
- ⁴⁵ sta013

[0165] The 'sta013' antigen is annotated as 'poly-gamma-glutamate capsule biosynthesis protein'. In the NCTC 8325 strain sta013 is SAOUHSC_00107 and has amino acid sequence SEQ ID NO: 49 (GI:88193920).

- [0166] Useful sta013 antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID
 NO: 49 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 49; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 49, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta013 proteins include variants of SEQ ID NO: 49. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 49. Other preferred fragments lack
- ⁵⁵ one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 49 while retaining at least one epitope of SEQ ID NO: 49. Other fragments omit one or more protein domains.

5

10

sta014

[0167] The 'sta014' antigen is annotated as 'lipoprotein'. In the NCTC 8325 strain sta014 is SAOUHSC_00137 and has amino acid sequence SEQ ID NO: 50 (GI:88193950).

- ⁵ [0168] Useful sta014 antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 50 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 50; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 50, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta014 proteins include variants
- of SEQ ID NO: 50. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 50. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 50 while retaining at least one epitope of SEQ ID NO: 50. The first 17 N-terminal amino acids of SEQ ID NO: 50 can usefully be omitted. Other fragments omit one or more protein domains.

```
15
```

sta015

[0169] The 'sta015' antigen is annotated as 'extracellular solute-binding protein; RGD containing lipoprotein'. In the NCTC 8325 strain sta015 is SAOUHSC_00170 and has amino acid sequence SEQ ID NO: 51 (GI:88193980).

20 [0170] Useful sta015 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 51 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 51; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 51, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta015 proteins include variants

of SEQ ID NO: 51. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 51. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 51 while retaining at least one epitope of SEQ ID NO: 51. The first 18 N-terminal amino acids of SEQ ID NO: 51 can usefully be omitted. Other fragments omit one or more protein domains.

30

sta016

[0171] The 'sta016' antigen is annotated as 'gamma-glutamyltranspeptidase'. In the NCTC 8325 strain sta016 is SAOUHSC_00171 and has amino acid sequence SEQ ID NO: 52 (GI:88193981).

- ³⁵ [0172] Useful sta016 antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 52 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 52; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 52, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta016 proteins include variants
- 40 of SEQ ID NO: 52. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 52. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 52 while retaining at least one epitope of SEQ ID NO: 52. Other fragments omit one or more protein domains.
- ⁴⁵ sta017

[0173] The 'sta017' antigen is annotated as 'lipoprotein'. In the NCTC 8325 strain sta017 is SAOUHSC_00186 and has amino acid sequence SEQ ID NO: 53 (GI:88193996).

- [0174] Useful sta017 antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID
 NO: 53 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 53; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 53, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta017 proteins include variants of SEQ ID NO: 53. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 53. Other preferred fragments lack
- ⁵⁵ one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 53 while retaining at least one epitope of SEQ ID NO: 53. The first 17 N-terminal amino acids of SEQ ID NO: 53 can usefully be omitted. Other fragments omit one or more protein domains.

sta018

[0175] The 'sta018' antigen is annotated as 'extracellular solute-binding protein'. In the NCTC 8325 strain sta018 is SAOUHSC_00201 and has amino acid sequence SEQ ID NO: 54 (GI:88194011).

- ⁵ [0176] Useful sta018 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 54 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 54; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 54, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta018 proteins include variants
- ¹⁰ of SEQ ID NO: 54. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 54. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 54 while retaining at least one epitope of SEQ ID NO: 54. Other fragments omit one or more protein domains.
- 15 sta019

[0177] The 'sta019' antigen is annotated as 'peptidoglycan hydrolase'. In the NCTC 8325 strain sta019 is SAOUHSC_ 00248 and has amino acid sequence SEQ ID NO: 55 (GI:88194055). In the Newman strain it is nwmn_0210 (GI: 151220422).

- 20 [0178] Useful sta019 antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 55 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 55; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 55, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta019 proteins include variants
- of SEQ ID NO: 55. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 55. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 55 while retaining at least one epitope of SEQ ID NO: 55. The first 25 N-terminal amino acids of SEQ ID NO: 55 can usefully be omitted. Other fragments omit one or more protein domains. Useful fragments are SEQ ID NOs: 228 and 229.
- ³⁰ **[0179]** Sta019 does not adsorb well to aluminium hydroxide adjuvants, so Sta019 present in a composition may me unadsorbed or may be adsorbed to an alternative adjuvant e.g. to an aluminium phosphate.

sta020

³⁵ **[0180]** The 'sta020' antigen is annotated as 'exported protein'. In the NCTC 8325 strain sta020 is SAOUHSC_00253 and has amino acid sequence SEQ ID NO: 56 (GI:88194059).

[0181] Useful sta020 antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 56 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 56; and/or (b)

- ⁴⁰ comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 56, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta020 proteins include variants of SEQ ID NO: 56. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 56. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 56 while retaining
- ⁴⁵ at least one epitope of SEQ ID NO: 56. The first 30 N-terminal amino acids of SEQ ID NO: 56 can usefully be omitted. Other fragments omit one or more protein domains.

sta021

- [0182] The 'sta021' antigen is annotated as 'secretory antigen SsaA-like protein'. In the NCTC 8325 strain sta021 is SAOUHSC_00256 and has amino acid sequence SEQ ID NO: 57 (GI:88194062).
 [0183] Useful sta021 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 57 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 00%, 01%, 02%, 04%, 05%, 06%, 07%, 08%, 00%, 00 5% or more) to SEQ ID NO: 57; and/or (b)
- 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 57; and/or (b)
 comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 57, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta021 proteins include variants of SEQ ID NO: 57. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 57. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more

amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 57 while retaining at least one epitope of SEQ ID NO: 57. The first 24 N-terminal amino acids of SEQ ID NO: 57 can usefully be omitted. Other fragments omit one or more protein domains.

5 sta022

[0184] The 'sta022' antigen is annotated as 'lipoprotein'. In the NCTC 8325 strain sta022 is SAOUHSC_00279 and has amino acid sequence SEQ ID NO: 58 (GI:88194083).

[0185] Useful sta022 antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 58 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 58; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 58, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100 or more). These sta022 proteins include variants of SEQ ID NO: 58. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 58. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 58 while retaining at least one epitope of SEQ ID NO: 58. The first 17 N-terminal amino acids of SEQ ID NO: 58 can usefully be omitted. Other

20 sta023

fragments omit one or more protein domains.

[0186] The 'sta023' antigen is annotated as '5'-nucleotidase; lipoprotein e(P4) family'. In the NCTC 8325 strain sta023 is SAOUHSC_00284 and has amino acid sequence SEQ ID NO: 59 (GI:88194087).

- [0187] Useful sta023 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID
 NO: 59 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 59; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 59, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta023 proteins include variants of SEQ ID NO: 59. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 59. Other preferred fragments lack
- ³⁰ one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 59 while retaining at least one epitope of SEQ ID NO: 59. The first 31 N-terminal amino acids of SEQ ID NO: 59 can usefully be omitted. Other fragments omit one or more protein domains.
- 35 sta024

[0188] The 'sta024' antigen is annotated as 'lipase precursor'. In the NCTC 8325 strain sta024 is SAOUHSC_00300 and has amino acid sequence SEQ ID NO: 60 (GI:88194101).

- [0189] Useful sta024 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID
 NO: 60 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 60; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 60, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta024 proteins include variants of SEQ ID NO: 60. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 60. Other preferred fragments lack
- ⁴⁵ one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 60 while retaining at least one epitope of SEQ ID NO: 60. The first 37 N-terminal amino acids of SEQ ID NO: 60 can usefully be omitted. Other fragments omit one or more protein domains.
- 50 sta025

[0190] The 'sta025' antigen is annotated as 'lipoprotein'. In the NCTC 8325 strain sta025 is SAOUHSC_00362 and has amino acid sequence SEQ ID NO: 61 (GI:88194160).

[0191] Useful sta025 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID
⁵⁵ NO: 61 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 61; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 61, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200 or more). These sta025 proteins include variants of SEQ

ID NO: 61. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 61. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 61 while retaining at least one epitope of SEQ ID NO: 61. The first 19 N-terminal amino acids of SEQ ID NO: 61 can usefully be omitted. Other fragments omit one or more protein domains.

sta026

5

10

[0192] The 'sta026' antigen is annotated as 'lipoprotein'. In the NCTC 8325 strain sta026 is SAOUHSC_00404 and has amino acid sequence SEQ ID NO: 62 (GI:88194198).

[0193] Useful sta026 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 62 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 62; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 62, wherein 'n' is 7 or more (*e.g.* 8, 10,

12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta026 proteins include variants of SEQ ID NO: 62. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 62. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 62 while retaining at least one epitope of SEQ ID NO: 62. The first 22 N-terminal amino acids of SEQ ID NO: 62 can usefully be omitted.

20 Other fragments omit one or more protein domains.

sta027

[0194] The 'sta027' antigen is annotated as 'probable lipase'. In the NCTC 8325 strain sta027 is SAOUHSC_00661 and has amino acid sequence SEQ ID NO: 63 (GI:88194426).

[0195] Useful sta027 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 63 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 63; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 63, wherein 'n' is 7 or more (*e.g.* 8, 10,

- 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta027 proteins include variants of SEQ ID NO: 63. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 63. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 63 while retaining at least one epitope of SEQ ID NO: 63. The first 23 N-terminal amino acids of SEQ ID NO: 63 can usefully be omitted.
- ³⁵ Other fragments omit one or more protein domains.

sta028

[0196] The 'sta028' antigen is annotated as 'secretory antigen SsaA-like protein'. In the NCTC 8325 strain sta028 is
 SAOUHSC_00671 and has amino acid sequence SEQ ID NO: 64 (GI:88194436). In the Newman strain it is nwmn_0634 (GI:151220846).

[0197] Useful sta028 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 64 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 64; and/or (b)

- ⁴⁵ comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 64, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta028 proteins include variants of SEQ ID NO: 64. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 64. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 64 while retaining
- ⁵⁰ at least one epitope of SEQ ID NO: 64. The first 25 N-terminal amino acids of SEQ ID NO: 64 can usefully be omitted. Other fragments omit one or more protein domains.

sta029

⁵⁵ **[0198]** The 'sta029' antigen is annotated as 'ferrichrome binding protein'. In the NCTC 8325 strain sta029 is SAOUHSC_ 00754 and has amino acid sequence SEQ ID NO: 65 (GI:88194518).

[0199] Useful sta029 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 65 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%,

80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 65; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 65, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta029 proteins include variants of SEQ ID NO: 65. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 65. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 65 while retaining at least one epitope of SEQ ID NO: 65. The final 25 C-terminal amino acids of SEQ ID NO: 65 can usefully be omitted. The first 19 N-terminal amino acids of SEQ ID NO: 65 can usefully be omitted. Other fragments omit one or more protein domains.

10

5

sta030

[0200] The 'sta030' antigen is annotated as 'lipoprotein'. In the NCTC 8325 strain sta030 is SAOUHSC_00808 and has amino acid sequence SEQ ID NO: 66 (GI:88194568).

- **IDENTIFY and SET USE 10 IDENTIFY and S**
- SEQ ID NO: 66. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 66. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 66 while retaining at least one epitope of SEQ ID NO: 66. The first 17 N-terminal amino acids of SEQ ID NO: 66 can usefully be omitted. Other fragments omit one or more protein domains.

25

sta031

[0202] The 'sta031' antigen is annotated as '5-nucleotidase family protein'. In the NCTC 8325 strain sta031 is SAOUHSC_00860 and has amino acid sequence SEQ ID NO: 67 (GI:88194617).

- ³⁰ [0203] Useful sta031 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 67 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 67; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 67, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta031 proteins include variants
- ³⁵ of SEQ ID NO: 67. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 67. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 67 while retaining at least one epitope of SEQ ID NO: 67. Other fragments omit one or more protein domains.

⁴⁰ sta032

[0204] The 'sta032' antigen is annotated as 'serine protease HtrA'. In the NCTC 8325 strain sta032 is SAOUHSC_00958 and has amino acid sequence SEQ ID NO: 68 (GI:88194715).

[0205] Useful sta032 antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID
NO: 68 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 68; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 68, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta032 proteins include variants of SEQ ID NO: 68. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 68. Other preferred fragments lack
one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 68 while retaining

at least one epitope of SEQ ID NO: 68. Other fragments omit one or more protein domains.

sta033

55

[0206] The 'sta033' antigen is annotated as 'cysteine protease precursor'. In the NCTC 8325 strain sta033 is SAOUHSC_00987 and has amino acid sequence SEQ ID NO: 69 (GI:88194744).

[0207] Useful sta033 antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID

NO: 69 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 69; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 69, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta033 proteins include variants of SEQ ID NO: 69. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 69. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 69 while retaining at least one epitope of SEQ ID NO: 69. The first 29 N-terminal amino acids of SEQ ID NO: 69 can usefully be omitted. Other fragments omit one or more protein domains.

10

5

sta034

[0208] The 'sta034' antigen is annotated as 'glutamyl endopeptidase precursor'. In the NCTC 8325 strain sta034 is SAOUHSC_00988 and has amino acid sequence SEQ ID NO: 70 (GI:88194745).

- IDENTIFY and State 10 (100) 100 (
- of SEQ ID NO: 70. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 70. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 70 while retaining at least one epitope of SEQ ID NO: 70. The first 29 N-terminal amino acids of SEQ ID NO: 70 can usefully be omitted. Other fragments omit one or more protein domains.

25

sta035

[0210] The 'sta035' antigen is annotated as 'fmt protein'. In the NCTC 8325 strain sta035 is SAOUHSC_00998 and has amino acid sequence SEQ ID NO: 71 (GI:88194754).

- 30 [0211] Useful sta035 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 71 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 71; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 71, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta035 proteins include variants
- ³⁵ of SEQ ID NO: 71. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 71. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 71 while retaining at least one epitope of SEQ ID NO: 71. The first 25 N-terminal amino acids of SEQ ID NO: 71 can usefully be omitted. Other fragments omit one or more protein domains.

40

sta036

[0212] The 'sta036' antigen is annotated as 'iron-regulated protein with leader'. In the NCTC 8325 strain sta036 is SAOUHSC_01084 and has amino acid sequence SEQ ID NO: 72 (GI:88194831).

- ⁴⁵ [0213] Useful sta036 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 72 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 72; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 72, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta036 proteins include variants
- of SEQ ID NO: 72. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 72. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 72 while retaining at least one epitope of SEQ ID NO: 72. The final 27 C-terminal amino acids of SEQ ID NO: 72 can usefully be omitted. The first 32 N-terminal amino acids of SEQ ID NO: 72 can usefully be omitted. Other fragments omit one or more protein domains.

sta037

[0214] The 'sta037' antigen is annotated as 'iron ABC transporter; iron -binding protein IsdE'. In the NCTC 8325 strain sta037 is SAOUHSC_01085 and has amino acid sequence SEQ ID NO: 73 (GI:88194832).

- ⁵ [0215] Useful sta037 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 73 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 73; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 73, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta037 proteins include variants
- of SEQ ID NO: 73. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 73. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 73 while retaining at least one epitope of SEQ ID NO: 73. The first 9 N-terminal amino acids of SEQ ID NO: 73 can usefully be omitted. Other fragments omit one or more protein domains.
- 15

sta038

[0216] The 'sta038' antigen is annotated as 'NPQTN specific sortase B'. In the NCTC 8325 strain sta038 is SAOUHSC_ 01088 and has amino acid sequence SEQ ID NO: 74 (GI:88194835).

- **[0217]** Useful sta038 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 74 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 74; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 74, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200 or more). These sta038 proteins include variants of
- SEQ ID NO: 74. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 74. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 74 while retaining at least one epitope of SEQ ID NO: 74. The first 21 N-terminal amino acids of SEQ ID NO: 74 can usefully be omitted. Other fragments omit one or more protein domains.

30

sta039

[0218] The 'sta039' antigen is annotated as 'superantigen-like protein'. In the NCTC 8325 strain sta039 is SAOUHSC_01124 and has amino acid sequence SEQ ID NO: 75 (GI:88194868).

- IO219] Useful sta039 antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 75 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 75; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 75, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200 or more). These sta039 proteins include variants of
- 40 SEQ ID NO: 75. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 75. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 75 while retaining at least one epitope of SEQ ID NO: 75. The first 22 N-terminal amino acids of SEQ ID NO: 75 can usefully be omitted. Other fragments omit one or more protein domains.
- 45

50

sta040

[0220] The 'sta040' antigen is annotated as 'superantigen-like protein'. In the NCTC 8325 strain sta040 is SAOUHSC_ 01125 and has amino acid sequence SEQ ID NO: 76 (GI:88194869). In the Newman strain it is nwmn_1076 (GI: 151221288).

[0221] Useful sta040 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 76 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 76; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 76, wherein 'n' is 7 or more (*e.g.* 8, 10,

⁵⁵ 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200 or more). These sta040 proteins include variants of SEQ ID NO: 76. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 76. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 76 while retaining

at least one epitope of SEQ ID NO: 76. The first 21 N-terminal amino acids of SEQ ID NO: 76 can usefully be omitted. Other fragments omit one or more protein domains.

sta041

5

[0222] The 'sta041' antigen is annotated as 'fibronectin-binding protein A-related'. In the NCTC 8325 strain sta041 is SAOUHSC_01175 and has amino acid sequence SEQ ID NO: 77 (GI:88194914).

[0223] Useful sta041 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 77 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 77; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 77, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta041 proteins include variants of SEQ ID NO: 77. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 77. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 77 while retaining

at least one epitope of SEQ ID NO: 77. Other fragments omit one or more protein domains.

sta042

²⁰ **[0224]** The 'sta042' antigen is annotated as 'lipoprotein'. In the NCTC 8325 strain sta042 is SAOUHSC_01180 and has amino acid sequence SEQ ID NO: 78 (GI:88194919).

[0225] Useful sta042 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 78 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 78; and/or (b)

- ²⁵ comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 78, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta042 proteins include variants of SEQ ID NO: 78. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 78. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 78 while retaining
- ³⁰ at least one epitope of SEQ ID NO: 78. The first 18 N-terminal amino acids of SEQ ID NO: 78 can usefully be omitted. Other fragments omit one or more protein domains.

sta043

³⁵ **[0226]** The 'sta043' antigen is annotated as 'cell wall hydrolase'. In the NCTC 8325 strain sta043 is SAOUHSC_01219 and has amino acid sequence SEQ ID NO: 79 (GI:88194955).

[0227] Useful sta043 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 79 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 79; and/or (b)

- ⁴⁰ comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 79, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta043 proteins include variants of SEQ ID NO: 79. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 79. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 79 while retaining
- ⁴⁵ at least one epitope of SEQ ID NO: 79. The first 38 N-terminal amino acids of SEQ ID NO: 79 can usefully be omitted. Other fragments omit one or more protein domains.

sta044

50 **[0228]** The 'sta044' antigen is annotated as 'lipoprotein'. In the NCTC 8325 strain sta044 is SAOUHSC_01508 and has amino acid sequence SEQ ID NO: 80 (GI:88195223).

[0229] Useful sta044 antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 80 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 80; and/or (b)

⁵⁵ comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 80, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta044 proteins include variants of SEQ ID NO: 80. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 80. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more

amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 80 while retaining at least one epitope of SEQ ID NO: 80. The first 17 N-terminal amino acids of SEQ ID NO: 80 can usefully be omitted. Other fragments omit one or more protein domains.

⁵ sta045

[0230] The 'sta045' antigen is annotated as 'lipoprotein'. In the NCTC 8325 strain sta045 is SAOUHSC_01627 and has amino acid sequence SEQ ID NO: 81 (GI:88195337).

- [0231] Useful sta045 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID
 NO: 81 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 81; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 81, wherein'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150 or more). These sta045 proteins include variants of SEQ ID NO: 81. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 81. Other preferred fragments lack one or
- ¹⁵ more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 81 while retaining at least one epitope of SEQ ID NO: 81. The first 16 N-terminal amino acids of SEQ ID NO: 81 can usefully be omitted. Other fragments omit one or more protein domains.

20 sta046

[0232] The 'sta046' antigen is annotated as 'Excalibur protein'. In the NCTC 8325 strain sta046 is SAOUHSC_01918 and has amino acid sequence SEQ ID NO: 82 (GI:88195613).

- [0233] Useful sta046 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID
 NO: 82 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 82; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 82, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200 or more). These sta046 proteins include variants of SEQ ID NO: 82. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 82. Other preferred fragments lack one or
- ³⁰ more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 82 while retaining at least one epitope of SEQ ID NO: 82. The first 53 N-terminal amino acids of SEQ ID NO: 82 can usefully be omitted. Other fragments omit one or more protein domains.
- 35 sta047

[0234] The 'sta047' antigen is annotated as 'lipoprotein'. In the NCTC 8325 strain sta047 is SAOUHSC_01920 and has amino acid sequence SEQ ID NO: 83 (GI:88195615).

- [0235] Useful sta047 antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID
 NO: 83 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 83; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 83, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200 or more). These sta047 proteins include variants of SEQ ID NO: 83. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 83. Other preferred fragments lack one or
- ⁴⁵ more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 83 while retaining at least one epitope of SEQ ID NO: 83. The first 18 N-terminal amino acids of SEQ ID NO: 83 can usefully be omitted. Other fragments omit one or more protein domains.
- 50 sta048

[0236] The 'sta048' antigen is annotated as 'intracellular serine protease'. In the NCTC 8325 strain sta048 is SAOUHSC_01949 and has amino acid sequence SEQ ID NO: 84 (GI:88195642).

[0237] Useful sta048 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID
⁵⁵ NO: 84 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 84; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 84, wherein'n'is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta048 proteins include variants

of SEQ ID NO: 84. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 84. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 84 while retaining at least one epitope of SEQ ID NO: 84. The first 27 N-terminal amino acids of SEQ ID NO: 84 can usefully be omitted. Other fragments omit one or more protein domains.

sta049

5

[0238] The 'sta049' antigen is annotated as 'protein export protein PrsA'. In the NCTC 8325 strain sta049 is SAOUHSC_
 01972 and has amino acid sequence SEQ ID NO: 85 (GI:88195663). In the Newman strain it is nwmn_1733 (GI: 151221945).

[0239] Useful sta049 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 85 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 85; and/or (b)

¹⁵ comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 85, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta049 proteins include variants of SEQ ID NO: 85. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 85. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 85 while retaining

at least one epitope of SEQ ID NO: 85. The first 25 N-terminal amino acids of SEQ ID NO: 85 can usefully be omitted. Other fragments omit one or more protein domains.

sta050

30

- [0240] The 'sta050' antigen is annotated as 'staphopain thiol proteinase'. In the NCTC 8325 strain sta050 is SAOUHSC_02127 and has amino acid sequence SEQ ID NO: 86 (GI:88195808).
 [0241] Useful sta050 antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 96 and/or more administered to a human) that recognises SEQ ID NO: 96 and/or more administered to a human.
 - NO: 86 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 86; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 86, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta050 proteins include variants of SEQ ID NO: 86. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 86. Other preferred fragments lack
- one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 86 while retaining
 ³⁵ at least one epitope of SEQ ID NO: 86. The first 25 N-terminal amino acids of SEQ ID NO: 86 can usefully be omitted. Other fragments omit one or more protein domains.

sta051

- 40 [0242] The 'sta051' antigen is annotated as 'protein with leader'. In the NCTC 8325 strain sta051 is SAOUHSC_02147 and has amino acid sequence SEQ ID NO: 87 (GI:88195827).
 [0243] Useful sta051 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID
- NO: 87 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 87; and/or (b) 5 comprising a fragment of at least 'a' consecutive amino acids of SEO ID NO: 87 wherein 'a' is 7 or more (e.g. 8, 10)
- ⁴⁵ comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 87, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta051 proteins include variants of SEQ ID NO: 87. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 87. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 87 while retaining
- ⁵⁰ at least one epitope of SEQ ID NO: 87. The first 24 N-terminal amino acids of SEQ ID NO: 87 can usefully be omitted. Other fragments omit one or more protein domains.

sta052

⁵⁵ [0244] The 'sta052' antigen is annotated as 'ferric hydroxamate receptor 1'. In the NCTC 8325 strain sta052 is SAOUHSC_02246 and has amino acid sequence SEQ ID NO: 88 (GI:88195918).
 [0245] Useful sta052 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID

NO: 88 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%,

80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 88; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 88, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta052 proteins include variants of SEQ ID NO: 88. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 88. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 88 while retaining at least one epitope of SEQ ID NO: 88. The first 17 N-terminal amino acids of SEQ ID NO: 88 can usefully be omitted. Other fragments omit one or more protein domains.

10 sta053

5

[0246] The 'sta053' antigen is annotated as 'srdH family protein'. In the NCTC 8325 strain sta053 is SAOUHSC_02257 and has amino acid sequence SEQ ID NO: 89 (GI:88195928).

- [0247] Useful sta053 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 89 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 89; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 89, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta053 proteins include variants of SEQ ID NO: 89. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 89. Other preferred fragments lack
- one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 89 while retaining at least one epitope of SEQ ID NO: 89. The first 26 N-terminal amino acids of SEQ ID NO: 89 can usefully be omitted. Other fragments omit one or more protein domains.

²⁵ sta054

[0248] The 'sta054' antigen is annotated as 'Probable transglycosylase isaA precursor'. In the NCTC 8325 strain sta054 is SAOUHSC_02333 and has amino acid sequence SEQ ID NO: 90 (GI:88195999). Useful sta054 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 90 and/or may comprise an amino

- ³⁰ acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 90; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 90, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200 or more). These sta054 proteins include variants of SEQ ID NO: 90. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 90. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9,
- ³⁵ 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 90 while retaining at least one epitope of SEQ ID NO: 90. The first 27 N-terminal amino acids of SEQ ID NO: 90 can usefully be omitted. Other fragments omit one or more protein domains.

sta055

40

[0249] The 'sta055' antigen is annotated as 'surface hydrolase'. In the NCTC 8325 strain sta055 is SAOUHSC_02448 and has amino acid sequence SEQ ID NO: 91 (GI:88196100).

[0250] Useful sta055 antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 91 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 91; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 91, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta055 proteins include variants of SEQ ID NO: 91. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 91. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more

⁵⁰ amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 91 while retaining at least one epitope of SEQ ID NO: 91. The first 31 N-terminal amino acids of SEQ ID NO: 91 can usefully be omitted. Other fragments omit one or more protein domains.

sta056

55

[0251] The 'sta056' antigen is annotated as 'hyaluronate lyase'. In the NCTC 8325 strain sta056 is SAOUHSC_02463 and has amino acid sequence SEQ ID NO: 92 (GI:88196115).

[0252] Useful sta056 antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID

NO: 92 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 92; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 92, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta056 proteins include variants of SEQ ID NO: 92. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 92. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 92 while retaining at least one epitope of SEQ ID NO: 92. The first 24 N-terminal amino acids of SEQ ID NO: 92 can usefully be omitted. Other fragments omit one or more protein domains.

10

15

5

sta057

[0253] The 'sta057' antigen is annotated as 'secretory antigen precursor SsaA'. In the NCTC 8325 strain sta057 is SAOUHSC_02576 and has amino acid sequence SEQ ID NO: 93 (GI:88196220). In the Newman strain it is nwmn_2203 (GI:151222415).

[0254] Useful sta057 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 93 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 93; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 93, wherein 'n' is 7 or more (*e.g.* 8, 10,

- 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150 or more). These sta057 proteins include variants of SEQ ID NO: 93. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 93. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 93 while retaining at least one epitope of SEQ ID NO: 93. The first 27 N-terminal amino acids of SEQ ID NO: 93 can usefully be omitted. Other
- ²⁵ fragments omit one or more protein domains.

sta058

[0255] The 'sta058' antigen is annotated as 'Zn-binding lipoprotein adcA-like'. In the NCTC 8325 strain sta058 is SAOUHSC_02690 and has amino acid sequence SEQ ID NO: 94 (GI:88196330).

[0256] Useful sta058 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 94 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 94; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 94, wherein 'n' is 7 or more (*e.g.* 8, 10,

12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta058 proteins include variants of SEQ ID NO: 94. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 94. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 94 while retaining at least one epitope of SEQ ID NO: 94. The first 20 N-terminal amino acids of SEQ ID NO: 94 can usefully be omitted.
Other fragments omit one or more protein domains.

sta059

- [0257] The 'sta059' antigen is annotated as 'gamma-hemolysin h-gamma-ii subunit'. In the NCTC 8325 strain sta059 is SAOUHSC_02708 and has amino acid sequence SEQ ID NO: 95 (GI:88196348).
- **[0258]** Useful sta059 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 95 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 95; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 95, wherein 'n' is 7 or more (*e.g.* 8, 10,
- 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta059 proteins include variants of SEQ ID NO: 95. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 95. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 95 while retaining at least one epitope of SEQ ID NO: 95. The first 20 N-terminal amino acids of SEQ ID NO: 95 can usefully be omitted.
- ⁵⁵ Other fragments omit one or more protein domains.
sta060

[0259] The 'sta060' antigen is annotated as 'peptide ABC transporter; peptide-binding protein'. In the NCTC 8325 strain sta060 is SAOUHSC_02767 and has amino acid sequence SEQ ID NO: 96 (GI:88196403).

- ⁵ [0260] Useful sta060 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 96 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 96; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 96, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta060 proteins include variants
- of SEQ ID NO: 96. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 96. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 96 while retaining at least one epitope of SEQ ID NO: 96. The first 20 N-terminal amino acids of SEQ ID NO: 96 can usefully be omitted. Other fragments omit one or more protein domains.
- 15

sta061

[0261] The 'sta061' antigen is annotated as 'protein with leader'. In the NCTC 8325 strain sta061 is SAOUHSC_02783 and has amino acid sequence SEQ ID NO: 97 (GI:88196419).

20 [0262] Useful sta061 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 97 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 97; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 97, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta061 proteins include variants

of SEQ ID NO: 97. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 97. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 97 while retaining at least one epitope of SEQ ID NO: 97. The first 21 N-terminal amino acids of SEQ ID NO: 97 can usefully be omitted. Other fragments omit one or more protein domains.

30

sta062

[0263] The 'sta062' antigen is annotated as 'protein with leader'. In the NCTC 8325 strain sta062 is SAOUHSC_02788 and has amino acid sequence SEQ ID NO: 98 (GI:88196424).

- ³⁵ **[0264]** Useful sta062 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 98 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 98; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 98, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta062 proteins include variants
- 40 of SEQ ID NO: 98. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 98. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 98 while retaining at least one epitope of SEQ ID NO: 98. The first 22 N-terminal amino acids of SEQ ID NO: 98 can usefully be omitted. Other fragments omit one or more protein domains.

45

sta063

[0265] The 'sta063' antigen is annotated as 'aureolysin'. In the NCTC 8325 strain sta063 is SAOUHSC_02971 and has amino acid sequence SEQ ID NO: 99 (GI:88196592).

- ⁵⁰ **[0266]** Useful sta063 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 99 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 99; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 99, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta063 proteins include variants
- ⁵⁵ of SEQ ID NO: 99. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 99. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 99 while retaining at least one epitope of SEQ ID NO: 99. The first 16 N-terminal amino acids of SEQ ID NO: 99 can usefully be omitted.

Other fragments omit one or more protein domains.

be omitted. Other fragments omit one or more protein domains.

sta064

- ⁵ [0267] The 'sta064' antigen is annotated as 'lipase'. In the NCTC 8325 strain sta064 is SAOUHSC_03006 and has amino acid sequence SEQ ID NO: 100 (GI:88196625). In the Newman strain it is nwmn_2569 (GI:151222781).
 [0268] Useful sta064 antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 100 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 100; and/or (b)
- comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 100, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta064 proteins include variants of SEQ ID NO: 100. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 100. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 100 while
 retaining at least one epitope of SEQ ID NO: 100. The first 34 N-terminal amino acids of SEQ ID NO: 100 can usefully
- retaining at least one epitope of SEQ ID NO: 100. The first 34 N-terminal amino acids of SEQ ID NO: be omitted. Other fragments omit one or more protein domains.

sta065

- [0269] The 'sta065' antigen is annotated as '1-phosphatidylinositol phosphodiesterase precursor'. In the NCTC 8325 strain sta065 is SAOUHSC_00051 and has amino acid sequence SEQ ID NO: 101 (GI:88193871).
 [0270] Useful sta065 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 101 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%,
- 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 101; and/or (b)
 comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 101, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta065 proteins include variants of SEQ ID NO: 101. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 101. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 101 while
 retaining at least one epitope of SEQ ID NO: 101. The first 26 N-terminal amino acids of SEQ ID NO: 101 can usefully

sta066

³⁵ **[0271]** The 'sta066' antigen is annotated as 'protein'. In the NCTC 8325 strain sta066 is SAOUHSC_00172 and has amino acid sequence SEQ ID NO: 102 (GI:88193982).

[0272] Useful sta066 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 102 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 102; and/or (b)

- ⁴⁰ comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 102, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta066 proteins include variants of SEQ ID NO: 102. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 102. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 102 while
- ⁴⁵ retaining at least one epitope of SEQ ID NO: 102. The first 21 N-terminal amino acids of SEQ ID NO: 102 can usefully be omitted. Other fragments omit one or more protein domains.

sta067

- ⁵⁰ [0273] The 'sta067' antigen is annotated as 'bacterial extracellular solute-binding protein'. In the NCTC 8325 strain sta067 is SAOUHSC_00176 and has amino acid sequence SEQ ID NO: 103 (GI:88193986).
 [0274] Useful sta067 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 103 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 103; and/or (b)
- ⁵⁵ comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 103, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta067 proteins include variants of SEQ ID NO: 103. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 103. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or

more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 103 while retaining at least one epitope of SEQ ID NO: 103. The first 20 N-terminal amino acids of SEQ ID NO: 103 can usefully be omitted. Other fragments omit one or more protein domains.

⁵ sta068

[0275] The 'sta068' antigen is annotated as 'iron permease FTR1'. In the NCTC 8325 strain sta068 is SAOUHSC_ 00327 and has amino acid sequence SEQ ID NO: 104 (GI:88194127).

- [0276] Useful sta068 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID
 NO: 104 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 104; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 104, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta068 proteins include variants of SEQ ID NO: 104. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 104. Other preferred fragments
- ¹⁵ lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 104 while retaining at least one epitope of SEQ ID NO: 104. The final 20 C-terminal amino acids of SEQ ID NO: 104 can usefully be omitted. The first 14 N-terminal amino acids of SEQ ID NO: 104 can usefully be omitted. Other fragments omit one or more protein domains.

20

sta069

sta070

[0277] The 'sta069' antigen is annotated as 'autolysin precursor'. In the NCTC 8325 strain sta069 is SAOUHSC_ 00427 and has amino acid sequence SEQ ID NO: 105 (GI:88194219).

- [0278] Useful sta069 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 105 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 105; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 105, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta069 proteins include variants
- ³⁰ of SEQ ID NO: 105. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 105. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 105 while retaining at least one epitope of SEQ ID NO: 105. The first 25 N-terminal amino acids of SEQ ID NO: 105 can usefully be omitted. Other fragments omit one or more protein domains.

35

[0279] The 'sta070' antigen is annotated as 'immunogenic secreted precursor-like protein (truncated)'. In the NCTC 8325 strain sta070 is SAOUHSC_00773 and has amino acid sequence SEQ ID NO: 106 (GI:88194535).

- ⁴⁰ [0280] Useful sta070 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 106 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 106; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 106, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta070 proteins include variants
- ⁴⁵ of SEQ ID NO: 106. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 106. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 106 while retaining at least one epitope of SEQ ID NO: 106. The first 24 N-terminal amino acids of SEQ ID NO: 106 can usefully be omitted. Other fragments omit one or more protein domains.

50

sta071

[0281] The 'sta071' antigen is annotated as 'hemolysin'. In the NCTC 8325 strain sta071 is SAOUHSC_00854 and has amino acid sequence SEQ ID NO: 107 (GI:88194612).

⁵⁵ **[0282]** Useful sta071 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 107 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 107; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 107, wherein 'n' is 7 or more (*e.g.* 8, 10,

12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta071 proteins include variants of SEQ ID NO: 107. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 107. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 107 while retaining at least one epitope of SEQ ID NO: 107. The first 24 N-terminal amino acids of SEQ ID NO: 107 can usefully be omitted. Other fragments omit one or more protein domains.

sta072

5

10 [0283] The 'sta072' antigen is annotated as 'extramembranal protein'. In the NCTC 8325 strain sta072 is SAOUHSC_ 00872 and has amino acid sequence SEQ ID NO: 108 (GI:88194629).

[0284] Useful sta072 antigens can elicit an antibody *(e.g.* when administered to a human) that recognises SEQ ID NO: 108 and/or may comprise an amino acid sequence: (a) having 50% or more identity *(e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 108; and/or (b)

comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 108, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta072 proteins include variants of SEQ ID NO: 108. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 108. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 108 while
retaining at least one epitope of SEQ ID NO: 108. The first 24 N-terminal amino acids of SEQ ID NO: 108 can usefully

be omitted. Other fragments omit one or more protein domains.

sta073

- ²⁵ [0285] The 'sta073' antigen is annotated as 'bifunctional autolysin precursor'. In the NCTC 8325 strain sta073 is SAOUHSC_00994 and has amino acid sequence SEQ ID NO: 109 (GI:88194750). In the Newman strain it is nwmn_0922 (GI: 151221134). Proteomic analysis has revealed that this protein is secreted or surface-exposed. [0286] Useful sta073 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID
- NO: 109 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 109; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 109, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta073 proteins include variants of SEQ ID NO: 109. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 109. Other preferred fragments
- lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or
 ³⁵ more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 109 while retaining at least one epitope of SEQ ID NO: 109. The first 24 N-terminal amino acids of SEQ ID NO: 109 can usefully be omitted. Other fragments omit one or more protein domains.

[0287] A Sta073 antigen can usefully be included in a composition in combination with a Sta112 [74].

[0288] Sta073 does not adsorb well to aluminium hydroxide adjuvants, so Sta073 present in a composition may be unadsorbed or may be adsorbed to an alternative adjuvant *e.g.* to an aluminium phosphate.

sta074

- [0289] The 'sta074' antigen is annotated as 'factor essential for methicillin resistance'. In the NCTC 8325 strain sta074 is SAOUHSC_01220 and has amino acid sequence SEQ ID NO: 110 (GI:88194956).
- [0290] Useful sta074 antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 110 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 110; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 110, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 40, 50, 60, 70, 80, 90, 00, 100, 150, and 50, 200, 250 or more).
- 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta074 proteins include variants of SEQ ID NO: 110. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 110. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 110 while retaining at least one epitope of SEQ ID NO: 110. Other fragments omit one or more protein domains.

55

sta075

^[0291] The 'sta075' antigen is annotated as 'insulysin; peptidase family M16'. In the NCTC 8325 strain sta075 is

SAOUHSC_01256 and has amino acid sequence SEQ ID NO: 111 (GI:88194989).

[0292] Useful sta075 antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 111 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 111; and/or (b) 5 comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 111, wherein'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta075 proteins include variants of SEQ ID NO: 111. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 111. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 111 while 10 retaining at least one epitope of SEQ ID NO: 111. Other fragments omit one or more protein domains.

sta076

[0293] The 'sta076' antigen is annotated as 'hydrolase'. In the NCTC 8325 strain sta076 is SAOUHSC_01263 and 15 has amino acid sequence SEQ ID NO: 112 (GI:88194996).

- [0294] Useful sta076 antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 112 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 112; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 112, wherein 'n' is 7 or more (e.g. 8, 10,
- 20 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta076 proteins include variants of SEQ ID NO: 112. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 112. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 112 while retaining at least one epitope of SEQ ID NO: 112. The first 24 N-terminal amino acids of SEQ ID NO: 112 can usefully 25
- be omitted. Other fragments omit one or more protein domains.

sta077

[0295] The 'sta077' antigen is annotated as 'protein'. In the NCTC 8325 strain sta077 is SAOUHSC_01317 and has 30 amino acid sequence SEQ ID NO: 113 (GI:88195047). Proteomic analysis has revealed that this protein is secreted or surface-exposed.

[0296] Useful sta077 antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 113 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 113; and/or (b)

- comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 113, wherein 'n' is 7 or more (e.g. 8, 10, 35 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta077 proteins include variants of SEQ ID NO: 113. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 113. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 113 while
- 40 retaining at least one epitope of SEQ ID NO: 113. The first 20 N-terminal amino acids of SEQ ID NO: 113 can usefully be omitted. Other fragments omit one or more protein domains.

sta078

45 [0297] The 'sta078' antigen is annotated as 'FtsK/SpoIIIE family protein'. In the NCTC 8325 strain sta078 is SAOUHSC_ 01857 and has amino acid sequence SEQ ID NO: 114 (GI:88195555).

[0298] Useful sta078 antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 114 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 114; and/or (b)

- 50 comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 114, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta078 proteins include variants of SEQ ID NO: 114. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 114. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 114 while
- 55 retaining at least one epitope of SEQ ID NO: 114. Other fragments omit one or more protein domains.

sta079

[0299] The 'sta079' antigen is annotated as 'serine protease SpIF'. In the NCTC 8325 strain sta079 is SAOUHSC_ 01935 and has amino acid sequence SEQ ID NO: 115 (GI:88195630).

- ⁵ [0300] Useful sta079 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 115 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 115; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 115, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200 or more). These sta079 proteins include variants of
- ¹⁰ SEQ ID NO: 115. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 115. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 115 while retaining at least one epitope of SEQ ID NO: 115. The first 36 N-terminal amino acids of SEQ ID NO: 115 can usefully be omitted. Other fragments omit one or more protein domains.
- 15

sta080

[0301] The 'sta080' antigen is annotated as 'serine protease SpIE'. In the NCTC 8325 strain sta080 is SAOUHSC_ 01936 and has amino acid sequence SEQ ID NO: 116 (GI:88195631).

[0302] Useful sta080 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 116 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 116; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 116, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200 or more). These sta080 proteins include variants of

SEQ ID NO: 116. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 116. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 116 while retaining at least one epitope of SEQ ID NO: 116. The first 36 N-terminal amino acids of SEQ ID NO: 116 can usefully be omitted. Other fragments omit one or more protein domains.

30

sta081

[0303] The 'sta081' antigen is annotated as 'serine protease SpID (EC:3.4.21.19)'. In the NCTC 8325 strain sta081 is SAOUHSC_01938 and has amino acid sequence SEQ ID NO: 170 (GI:88195633).

- ICONT [10304] Useful sta081 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 170 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 170; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 170, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200 or more). These sta081 proteins include variants of
- 40 SEQ ID NO: 170. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 170. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 170 while retaining at least one epitope of SEQ ID NO: 170. The first 36 N-terminal amino acids of SEQ ID NO: 170 can usefully be omitted. Other fragments omit one or more protein domains.

45

sta082

[0305] The 'sta082' antigen is annotated as 'serine protease SpIC'. In the NCTC 8325 strain sta082 is SAOUHSC_ 01939 and has amino acid sequence SEQ ID NO: 117 (GI:88195634).

- 50 [0306] Useful sta082 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 117 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 117; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 117, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200 or more). These sta082 proteins include variants of
- SEQ ID NO: 117. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 117. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 117 while retaining at least one epitope of SEQ ID NO: 117. The first 36 N-terminal amino acids of SEQ ID NO: 117 can usefully be omitted.

Other fragments omit one or more protein domains.

sta083

- ⁵ [0307] The 'sta083' antigen is annotated as 'serine protease SplB'. In the NCTC 8325 strain sta083 is SAOUHSC_01941 and has amino acid sequence SEQ ID NO: 118 (GI:88195635).
 [0308] Useful sta083 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 118 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 118; and/or (b)
- ¹⁰ comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 118, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200 or more). These sta083 proteins include variants of SEQ ID NO: 118. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 118. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 118 while retaining
- ¹⁵ at least one epitope of SEQ ID NO: 118. The first 36 N-terminal amino acids of SEQ ID NO: 118 can usefully be omitted. Other fragments omit one or more protein domains.

sta084

- [0309] The 'sta084' antigen is annotated as 'serine protease SpIA'. In the NCTC 8325 strain sta084 is SAOUHSC_01942 and has amino acid sequence SEQ ID NO: 119 (GI:88195636).
 [0310] Useful sta084 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 119 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%,
- 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 119; and/or (b)
 ²⁵ comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 119, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200 or more). These sta084 proteins include variants of SEQ ID NO: 119. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 119. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 119 while retaining
- ³⁰ at least one epitope of SEQ ID NO: 119. The first 35 N-terminal amino acids of SEQ ID NO: 119 can usefully be omitted. Other fragments omit one or more protein domains.

sta085

40

³⁵ **[0311]** The 'sta085' antigen is annotated as 'staphylokinase precursor'. In the NCTC 8325 strain sta085 is SAOUHSC_ 02171 and has amino acid sequence SEQ ID NO: 120 (GI:88195848).

[0312] Useful sta085 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 120 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 120; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 120, wherein 'n' is 7 or more (*e.g.* 8, 10,

- 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150 or more). These sta085 proteins include variants of SEQ ID NO: 120. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 120. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 120 while retaining at least
- ⁴⁵ one epitope of SEQ ID NO: 120. The first 27 N-terminal amino acids of SEQ ID NO: 120 can usefully be omitted. Other fragments omit one or more protein domains.

sta086

50 [0313] The 'sta086' antigen is annotated as 'OxaA-like protein'. In the NCTC 8325 strain sta086 is SAOUHSC_02327 and has amino acid sequence SEQ ID NO: 121 (GI:88195993).
(0214) Useful sta086 estimate can align an artified (or a when administered to a human) that recognizes SEQ ID

[0314] Useful sta086 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 121 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 121; and/or (b)

⁵⁵ comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 121, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta086 proteins include variants of SEQ ID NO: 121. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 121. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or

more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 121 while retaining at least one epitope of SEQ ID NO: 121. The first 19 N-terminal amino acids of SEQ ID NO: 121 can usefully be omitted. Other fragments omit one or more protein domains.

5 sta087

[0315] The 'sta087' antigen is annotated as 'teicoplanin resistance protein TcaA'. In the NCTC 8325 strain sta087 is SAOUHSC_02635 and has amino acid sequence SEQ ID NO: 122 (GI:88196276).

- [0316] Useful sta087 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID
 NO: 122 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 122; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 122, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta087 proteins include variants of SEQ ID NO: 122. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 122. Other preferred fragments
- ¹⁵ lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 122 while retaining at least one epitope of SEQ ID NO: 122. Other fragments omit one or more protein domains.

sta088

20

[0317] The 'sta088' antigen is annotated as 'esterase'. In the NCTC 8325 strain sta088 is SAOUHSC_02844 and has amino acid sequence SEQ ID NO: 123 (GI:88196477).

[0318] Useful sta088 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 123 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%,

80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 123; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 123, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta088 proteins include variants of SEQ ID NO: 123. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 123. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 123 while retaining at least one epitope of SEQ ID NO: 123. The first 18 N-terminal amino acids of SEQ ID NO: 123 can usefully

be omitted. Other fragments omit one or more protein domains.

sta089

35

[0319] The 'sta089' antigen is annotated as 'LysM domain protein'. In the NCTC 8325 strain sta089 is SAOUHSC_ 02855 and has amino acid sequence SEQ ID NO: 124 (GI:88196486).

[0320] Useful sta089 antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 124 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 124; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 124, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100 or more). These sta089 proteins include variants of SEQ ID NO: 124. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 124. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino

acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 124 while retaining at least one epitope of SEQ ID NO: 124. The first 20 N-terminal amino acids of SEQ ID NO: 124 can usefully be omitted. Other fragments omit one or more protein domains.

sta090

50

55

[0321] The 'sta090' antigen is annotated as 'LysM domain protein'. In the NCTC 8325 strain sta090 is SAOUHSC_ 02883 and has amino acid sequence SEQ ID NO: 125 (GI:88196512).

[0322] Useful sta090 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 125 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 125; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 125, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta090 proteins include variants of SEQ ID NO: 125. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 125. Other preferred fragments

lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 125 while retaining at least one epitope of SEQ ID NO: 125. The first 26 N-terminal amino acids of SEQ ID NO: 125 can usefully be omitted. Other fragments omit one or more protein domains.

sta091

5

[0323] The 'sta091' antigen is annotated as 'lipoprotein'. In the NCTC 8325 strain sta091 is SAOUHSC_00685 and has amino acid sequence SEQ ID NO: 126 (GI:88194450).

- 10 [0324] Useful sta091 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 126 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 126; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 126, wherein'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100 or more). These sta091 proteins include variants of SEQ ID
- NO: 126. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 126. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 126 while retaining at least one epitope of SEQ ID NO: 126. The first 15 N-terminal amino acids of SEQ ID NO: 126 can usefully be omitted. Other fragments omit one or more protein domains.

20

sta092

[0325] The 'sta092' antigen is annotated as 'M23/M37 peptidase domain protein'. In the NCTC 8325 strain sta092 is SAOUHSC_00174 and has amino acid sequence SEQ ID NO: 127 (GI:88193984).

- [0326] Useful sta092 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 127 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 127; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 127, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150 or more). These sta092 proteins include variants of SEQ
- ³⁰ ID NO: 127. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 127. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 127 while retaining at least one epitope of SEQ ID NO: 127. The first 25 N-terminal amino acids of SEQ ID NO: 127 can usefully be omitted. Other fragments omit one or more protein domains.

35

sta093

[0327] The 'sta093' antigen is annotated as 'protein'. In the NCTC 8325 strain sta093 is SAOUHSC_01854 and has amino acid sequence SEQ ID NO: 128 (GI:88195552).

- ⁴⁰ [0328] Useful sta093 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 128 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 128; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 128, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta093 proteins include variants
- ⁴⁵ of SEQ ID NO: 128. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 128. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 128 while retaining at least one epitope of SEQ ID NO: 128. Other fragments omit one or more protein domains.
- 50 sta094

[0329] The 'sta094' antigen is annotated as 'protein'. In the NCTC 8325 strain sta094 is SAOUHSC_01512 and has amino acid sequence SEQ ID NO: 129 (GI:88195226).

[0330] Useful sta094 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID
⁵⁵ NO: 129 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 129; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 129, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta094 proteins include variants

of SEQ ID NO: 129. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 129. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 129 while retaining at least one epitope of SEQ ID NO: 129. The first 17 N-terminal amino acids of SEQ ID NO: 129 can usefully be omitted. Other fragments omit one or more protein domains.

5

sta095

[0331] The 'sta095' antigen is annotated as 'superantigen-like protein'. In the NCTC 8325 strain sta095 is SAOUHSC_
 00383 and has amino acid sequence SEQ ID NO: 130 (GI:88194180). In the Newman strain it is nwmn_0388 (GI: 151220600).

[0332] Useful sta095 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 130 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 130; and/or (b)

comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 130, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200 or more). These sta095 proteins include variants of SEQ ID NO: 130. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 130. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 130 while retaining at least one epitope of SEQ ID NO: 130. The first 32 N-terminal amino acids of SEQ ID NO: 130 can usefully be omitted.

Other fragments omit one or more protein domains.

sta096

- [0333] The 'sta096' antigen is annotated as 'superantigen-like protein'. In the NCTC 8325 strain sta096 is SAOUHSC_00384 and has amino acid sequence SEQ ID NO: 131 (GI:88194181).
 [0334] Useful sta096 antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 131 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%,
- 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 131; and/or (b)
 comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 131, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200 or more). These sta096 proteins include variants of SEQ ID NO: 131. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 131. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 131 while retaining at least one epitope of SEQ ID NO: 131. The first 30 N-terminal amino acids of SEQ ID NO: 131 can usefully be omitted.
- Other fragments omit one or more protein domains.

sta097

- 40 [0335] The 'sta097' antigen is annotated as 'superantigen-like protein'. In the NCTC 8325 strain sta097 is SAOUHSC_00386 and has amino acid sequence SEQ ID NO: 132 (GI:88194182).
 [0336] Useful sta097 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 132 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 132; and/or (b)
- ⁴⁵ comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 132, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta097 proteins include variants of SEQ ID NO: 132. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 132. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 132 while
- ⁵⁰ retaining at least one epitope of SEQ ID NO: 132. The first 30 N-terminal amino acids of SEQ ID NO: 132 can usefully be omitted. Other fragments omit one or more protein domains.

sta098

⁵⁵ **[0337]** The 'sta098' antigen is annotated as 'superantigen-like protein'. In the NCTC 8325 strain sta098 is SAOUHSC_ 00389 and has amino acid sequence SEQ ID NO: 133 (GI:88194184). In the Newman strain it is nwmn_0391 (GI: 151220603).

[0338] Useful sta098 antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID

NO: 133 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 133; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 133, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta098 proteins include variants of SEQ ID NO: 133. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 133. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 133 while retaining at least one epitope of SEQ ID NO: 133. The first 30 N-terminal amino acids of SEQ ID NO: 133 can usefully be omitted. Other fragments omit one or more protein domains.

10

5

sta099

[0339] The 'sta099' antigen is annotated as 'superantigen-like protein 5'. In the NCTC 8325 strain sta099 is SAOUHSC_00390 and has amino acid sequence SEQ ID NO: 134 (GI:88194185).

- ¹⁵ [0340] Useful sta099 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 134 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 134; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 134, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200 or more). These sta099 proteins include variants of
- SEQ ID NO: 134. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 134. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 134 while retaining at least one epitope of SEQ ID NO: 134. The first 30 N-terminal amino acids of SEQ ID NO: 134 can usefully be omitted. Other fragments omit one or more protein domains.

25

sta100

[0341] The 'sta100' antigen is annotated as 'superantigen-like protein'. In the NCTC 8325 strain sta100 is SAOUHSC_ 00391 and has amino acid sequence SEQ ID NO: 135 (GI:88194186).

- ³⁰ [0342] Useful sta100 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 135 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 135; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 135, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200 or more). These sta100 proteins include variants of
- ³⁵ SEQ ID NO: 135. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 135. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 135 while retaining at least one epitope of SEQ ID NO: 135. The first 30 N-terminal amino acids of SEQ ID NO: 135 can usefully be omitted. Other fragments omit one or more protein domains.

40

45

sta101

[0343] The 'sta101' antigen is annotated as 'superantigen-like protein 7'. In the NCTC 8325 strain sta101 is SAOUHSC_ 00392 and has amino acid sequence SEQ ID NO: 136 (GI:88194187). In the Newman strain it is nwmn_0394 (GI: 151220606).

[0344] Useful sta101 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 136 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 136; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 136, wherein 'n' is 7 or more (*e.g.* 8, 10,

12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200 or more). These sta101 proteins include variants of SEQ ID NO: 136. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 136. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 136 while retaining at least one epitope of SEQ ID NO: 136. The first 30 N-terminal amino acids of SEQ ID NO: 136 can usefully be omitted.

⁵⁵ Other fragments omit one or more protein domains.

sta102

[0345] The 'sta102' antigen is annotated as 'superantigen-like protein'. In the NCTC 8325 strain sta102 is SAOUHSC_00393 and has amino acid sequence SEQ ID NO: 137 (GI:88194188).

- ⁵ [0346] Useful sta102 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 137 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 137; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 137, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200 or more). These sta102 proteins include variants of
- ¹⁰ SEQ ID NO: 137. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 137. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 137 while retaining at least one epitope of SEQ ID NO: 137. The first 17 N-terminal amino acids of SEQ ID NO: 137 can usefully be omitted. Other fragments omit one or more protein domains.
- 15

sta103

[0347] The 'sta103' antigen is annotated as 'superantigen-like protein'. In the NCTC 8325 strain sta103 is SAOUHSC_ 00394 and has amino acid sequence SEQ ID NO: 138 (GI:88194189).

- 20 [0348] Useful sta103 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 138 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 138; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 138, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200 or more). These sta103 proteins include variants of
- SEQ ID NO: 138. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 138. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 138 while retaining at least one epitope of SEQ ID NO: 138. The first 23 N-terminal amino acids of SEQ ID NO: 138 can usefully be omitted. Other fragments omit one or more protein domains.

30

sta104

[0349] The 'sta104' antigen is annotated as 'superantigen-like protein'. In the NCTC 8325 strain sta104 is SAOUHSC_ 00395 and has amino acid sequence SEQ ID NO: 139 (GI:88194190).

- ³⁵ [0350] Useful sta104 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 139 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 139; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 139, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200 or more). These sta104 proteins include variants of
- ⁴⁰ SEQ ID NO: 139. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 139. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 139 while retaining at least one epitope of SEQ ID NO: 139. Other fragments omit one or more protein domains.
- ⁴⁵ sta105

[0351] The 'sta105' antigen is annotated as 'superantigen-like protein'. In the NCTC 8325 strain sta105 is SAOUHSC_ 00399 and has amino acid sequence SEQ ID NO: 140 (GI:88194194). In the Newman strain it is nwmn_0400 (GI: 151220612).

- 50 [0352] Useful sta105 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 140 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 140; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 140, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200 or more). These sta105 proteins include variants of
- SEQ ID NO: 140. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 140. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 140 while retaining at least one epitope of SEQ ID NO: 140. The first 30 N-terminal amino acids of SEQ ID NO: 140 can usefully be omitted.

Other fragments omit one or more protein domains.

sta106

- ⁵ [0353] The 'sta106' antigen is annotated as 'hypothetical protein'. In the NCTC 8325 strain sta106 is SAOUHSC_01115 and has amino acid sequence SEQ ID NO: 141 (GI:88194861).
 [0354] Useful sta106 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 141 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 141; and/or (b)
- ¹⁰ comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 141, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100 or more). These sta106 proteins include variants of SEQ ID NO: 141. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 141. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 141 while retaining at
- ¹⁵ least one epitope of SEQ ID NO: 141. The first 16 N-terminal amino acids of SEQ ID NO: 141 can usefully be omitted. Other fragments omit one or more protein domains.

sta107

- [0355] The 'sta107' antigen is annotated as 'hypothetical protein'. In the NCTC 8325 strain sta107 is SAOUHSC_00354 and has amino acid sequence SEQ ID NO: 177 (GI:88194153).
 [0356] Useful sta107 antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 177 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%,
- 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 177; and/or (b)
 ²⁵ comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 177, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200 or more). These sta107 proteins include variants of SEQ ID NO: 177. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 177. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 177 while retaining
- ³⁰ at least one epitope of SEQ ID NO: 177. The first 35 N-terminal amino acids of SEQ ID NO: 177 can usefully be omitted. Other fragments omit one or more protein domains.

sta108

- ³⁵ [0357] The 'sta108' antigen is annotated as 'hypothetical protein'. In the NCTC 8325 strain sta108 is SAOUHSC_00717 and has amino acid sequence SEQ ID NO: 178 (GI:88194482).
 [0358] Useful sta108 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID
- NO: 178 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 178; and/or (b)
 comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 178, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100 or more). These sta108 proteins include variants of SEQ ID NO: 178. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 178. Other preferred fragments lack one or more variants of (b) comprise an epitope from SEQ ID NO: 178. Other preferred fragments lack one or more variants of (a, a, b, b, b, c, b) and b. (b) and b. (c, a, b) a
- more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 178 while retaining at
 least one epitope of SEQ ID NO: 178. The first 20 N-terminal amino acids of SEQ ID NO: 178 can usefully be omitted. Other fragments omit one or more protein domains.

sta109

- [0359] The 'sta109' antigen is annotated as 'N-acetylmuramoyl-L-alanine amidase '. In the NCTC 8325 strain sta109 is SAOUHSC_02979 and has amino acid sequence SEQ ID NO: 179 (GI:88196599).
 [0360] Useful sta109 antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 179 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 179; and/or (b)
- ⁵⁵ comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 179, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta109 proteins include variants of SEQ ID NO: 179. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 179. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or

more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 179 while retaining at least one epitope of SEQ ID NO: 179. The first 27 N-terminal amino acids of SEQ ID NO: 179 can usefully be omitted. Other fragments omit one or more protein domains.

5 sta110

[0361] The 'sta110' antigen is annotated as 'hypothetical protein'. In the NCTC 8325 strain sta110 is SAOUHSC_ 01039 and has amino acid sequence SEQ ID NO: 180 (GI:88194791).

- [0362] Useful sta110 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 180 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 180; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 180, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200 or more). These sta110 proteins include variants of SEQ ID NO: 180. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 180. Other preferred fragments lack
- ¹⁵ one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 180 while retaining at least one epitope of SEQ ID NO: 180. The first 19 N-terminal amino acids of SEQ ID NO: 180 can usefully be omitted. Other fragments omit one or more protein domains.

20 sta111

[0363] The 'sta111' antigen is annotated as 'hypothetical protein'. In the NCTC 8325 strain sta111 is SAOUHSC_ 01005 and has amino acid sequence SEQ ID NO: 181 (GI:88194760).

- [0364] Useful sta111 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID
 NO: 181 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 181; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 181, wherein'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100 or more). These sta111 proteins include variants of SEQ ID NO: 181. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 181. Other preferred fragments lack one or
- ³⁰ more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 181 while retaining at least one epitope of SEQ ID NO: 181. The first 20 N-terminal amino acids of SEQ ID NO: 181 can usefully be omitted. Other fragments omit one or more protein domains.
- 35 sta112

[0365] The 'sta112' antigen is annotated as a putative 'ABC transporter, substrate-binding protein'. In the NCTC 8325 strain sta112 is SAOUHSC_00634 and has amino acid sequence SEQ ID NO: 182 (GI:88194402).

- [0366] Useful sta112 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID
 NO: 182 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 182; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 182, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta112 proteins include variants of SEQ ID NO: 182. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 182. Other preferred fragments
- ⁴⁵ lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 182 while retaining at least one epitope of SEQ ID NO: 182. The first 17 N-terminal amino acids of SEQ ID NO: 182 can usefully be omitted. Other fragments omit one or more protein domains.

[0367] A Sta112 antigen can usefully be included in a composition in combination with a Sta073 [74].

50

sta113

[0368] The 'sta113' antigen is annotated as 'hypothetical protein'. In the NCTC 8325 strain sta113 is SAOUHSC_ 00728 and has amino acid sequence SEQ ID NO: 183 (GI:88194493).

[0369] Useful sta113 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 183 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 183; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 183, wherein 'n' is 7 or more (*e.g.* 8, 10, 100).

12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta113 proteins include variants of SEQ ID NO: 183. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 183. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 183 while retaining at least one epitope of SEQ ID NO: 183. The first 173 N-terminal amino acids of SEQ ID NO: 183 can usefully be omitted. Other fragments omit one or more protein domains.

sta114

5

¹⁰ **[0370]** The 'sta114' antigen is annotated as 'hypothetical protein'. In the NCTC 8325 strain sta114 is SAOUHSC_ 00810 and has amino acid sequence SEQ ID NO: 184 (GI:88194570).

[0371] Useful sta114 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 184 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 184; and/or (b)

comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 184, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150 or more). These sta114 proteins include variants of SEQ ID NO: 184. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 184. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 184 while retaining at least one epitope of SEQ ID NO: 184. Other fragments omit one or more protein domains.

sta115

[0372] The 'sta115' antigen is annotated as 'hypothetical protein'. In the NCTC 8325 strain sta115 is SAOUHSC_ 00817 and has amino acid sequence SEQ ID NO: 185 (GI:88194576).

[0373] Useful sta115 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 185 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 185; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 185, wherein 'n' is 7 or more (*e.g.* 8, 10,

12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150 or more). These sta115 proteins include variants of SEQ ID NO: 185. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 185. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 185 while retaining at least one epitope of SEQ ID NO: 185. The first 18 N-terminal amino acids of SEQ ID NO: 185 can usefully be omitted.
 Other fragments omit one or more protein domains.

sta116

40

[0374] The 'sta116' antigen is annotated as 'formyl peptide receptor-like 1 inhibitory protein'. In the NCTC 8325 strain sta116 is SAOUHSC_01112 and has amino acid sequence SEQ ID NO: 186 (GI:88194858).

- **[0375]** Useful sta116 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 186 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 186; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 186, wherein 'n' is 7 or more (*e.g.* 8, 10,
- 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100 or more). These sta116 proteins include variants of SEQ ID NO: 186. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 186. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 186 while retaining at least one epitope of SEQ ID NO: 186. The first 20 N-terminal amino acids of SEQ ID NO: 186 can usefully be omitted.
 Other fragments omit one or more protein domains.

sta117

[0376] The 'sta117' antigen is annotated as 'truncated beta-hemolysin'. In the NCTC 8325 strain sta117 is SAOUHSC_ 02240 and has amino acid sequence SEQ ID NO: 187 (GI:88195913).

[0377] Useful sta117 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 187 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 187; and/or (b)

comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 187, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta117 proteins include variants of SEQ ID NO: 187. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 187. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 187 while retaining at least one epitope of SEQ ID NO: 187. Other fragments omit one or more protein domains.

sta118

5

10 [0378] The 'sta118' antigen is annotated as 'cell division protein FtsZ'. In the NCTC 8325 strain sta118 is SAOUHSC_ 01150 and has amino acid sequence SEQ ID NO: 188 (GI:88194892).

[0379] Useful sta118 antigens can elicit an antibody *(e.g.* when administered to a human) that recognises SEQ ID NO: 188 and/or may comprise an amino acid sequence: (a) having 50% or more identity *(e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 188; and/or (b)

¹⁵ comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 188, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These sta118 proteins include variants of SEQ ID NO: 188. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 188. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 188 while
20 retaining at least one epitope of SEQ ID NO: 188. Other fragments omit one or more protein domains.

sta119

sta120

[0380] The 'sta119' antigen is annotated as 'thioredoxin'. In the NCTC 8325 strain sta119 is SAOUHSC_01100 and has amino acid sequence SEQ ID NO: 200 (GI:88194846).

[0381] Useful sta119 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 200 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 200; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 200, wherein 'n' is 7 or more (*e.g.* 8, 10,

³⁰ 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100 or more). These sta119 proteins include variants of SEQ ID NO: 200. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 200. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 200 while retaining at least one epitope of SEQ ID NO: 200. Other fragments omit one or more protein domains.

35

[0382] The 'sta120' antigen is annotated as ' alkyl hydroperoxide reductase subunit C'. In the NCTC 8325 strain sta120 is SAOUHSC_00365 and has amino acid sequence SEQ ID NO: 201 (GI:88194163).

- ⁴⁰ [0383] Useful sta120 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 201 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 201; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 201, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150 or more). These sta120 proteins include variants of SEQ
- ⁴⁵ ID NO: 201. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 201. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 201 while retaining at least one epitope of SEQ ID NO: 201. Other fragments omit one or more protein domains.
- 50 NW_6

[0384] The 'NW_6' antigen is annotated as 'secreted von Willebrand factor-binding protein precursor'. In the Newman strain NW_6 is NWMN_0757 and has amino acid sequence SEQ ID NO: 142 (GI: 151220969).

[0385] Useful NW_6 antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID
NO: 142 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 142; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 142, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These NW_6 proteins include variants

of SEQ ID NO: 142. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 142. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 142 while retaining at least one epitope of SEQ ID NO: 142. The first 13 N-terminal amino acids of SEQ ID NO: 142 can usefully be omitted. Other fragments omit one or more protein domains.

5

10

 NW_9

[0386] The 'NW_9' antigen is annotated as 'lipoprotein'. In the Newman strain NW_9 is NWMN_0958 and has amino acid sequence SEQ ID NO: 143 (GI: 151221170).

[0387] Useful NW_9 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 143 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 143; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 143, wherein 'n' is 7 or more (e.g. 8, 10,

12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200 or more). These NW_9 proteins include variants of SEQ ID NO: 143. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 143. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 143 while retaining at least one epitope of SEQ ID NO: 143. The first 19 N-terminal amino acids of SEQ ID NO: 143 can usefully be omitted.
20 Other fragments omit one or more protein domains.

NW_10

[0388] The 'NW_10' antigen is annotated as 'fibrinogen binding-related protein'. In the Newman strain NW_10 is NWMN_1066 and has amino acid sequence SEQ ID NO: 144 (GI: 151221278).

[0389] Useful NW_10 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 144 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 144; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 144, wherein 'n' is 7 or more (*e.g.* 8, 10,

12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100 or more). These NW_10 proteins include variants of SEQ ID NO: 144. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 144. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 144 while retaining at least one epitope of SEQ ID NO: 144. The first 20 N-terminal amino acids of SEQ ID NO: 144 can usefully be omitted.
 Other fragments omit one or more protein domains.

NW_7

[0390] The 'NW_7' antigen is annotated as 'staphylococcal complement inhibitor SCIN'. In the Newman strain NW_ 7 is NWMN_1876 and has amino acid sequence SEQ ID NO: 145 (GI:151222088).

- **[0391]** Useful NW_7 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 145 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 145; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 145, wherein 'n' is 7 or more (*e.g.* 8, 10,
- 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100 or more). These NW_7 proteins include variants of SEQ ID NO: 145. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 145. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 145 while retaining at least one epitope of SEQ ID NO: 145. The first 17 N-terminal amino acids of SEQ ID NO: 145 can usefully be omitted.
 Other fragments omit one or more protein domains.

NW_8

[0392] The 'NW_8' antigen is annotated as 'chemotaxis-inhibiting protein CHIPS'. In the Newman strain NW_8 is NWMN_1877 and has amino acid sequence SEQ ID NO: 146 (GI:151222089).

[0393] Useful NW_8 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 146 and/or may comprise an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 146; and/or (b)

comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 146, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100 or more). These NW_8 proteins include variants of SEQ ID NO: 146. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 146. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 146 while retaining at least one epitope of SEQ ID NO: 146. The first 19 N-terminal amino acids of SEQ ID NO: 146 can usefully be omitted. Other fragments omit one or more protein domains.

NW_2

5

10

[0394] The 'NW_2' antigen is annotated as 'enterotoxin type A precursor'. In the Newman strain NW_2 is NWMN_ 1883 and has amino acid sequence SEQ ID NO: 147 (GI: 151222095).

- ¹⁵ 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 147; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 147, wherein'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These NW_2 proteins include variants of SEQ ID NO: 147. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 147. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or
- 20 more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 147 while retaining at least one epitope of SEQ ID NO: 147. The first 16 N-terminal amino acids of SEQ ID NO: 147 can usefully be omitted. Other fragments omit one or more protein domains.

NW_1

25

30

40

[0396] The 'NW_1' antigen is annotated as 'lipoprotein'. In the Newman strain NW_1 is NWMN_1924 and has amino acid sequence SEQ ID NO: 148 (GI: 151222136).

[0397] Useful NW_1 antigens can elicit an antibody (*e.g.* when administered to a human) that recognises SEQ ID NO: 148 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 148; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 148, wherein 'n' is 7 or more (*e.g.* 8, 10,

- 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150 or more). These NW_1 proteins include variants of SEQ ID NO: 148. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 148. Other preferred fragments lack one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 148 while retaining at least one epitope of SEQ ID NO: 148. The first 17 N-terminal amino acids of SEQ ID NO: 148 can usefully be omitted.
- least one epitope of SEQ ID NO: 148. The first 17 N-terminal amino acids of SEQ ID NO: 148 can usefully be omitted. Other fragments omit one or more protein domains.

NW_5

[0398] The 'NW_5' antigen is annotated as 'cell wall surface anchor family protein'. In the Newman strain NW_5 is NWMN_2392 and has amino acid sequence SEQ ID NO: 149 (GI:151222604).

[0399] Useful NW_5 antigens can elicit an antibody (e.g. when administered to a human) that recognises SEQ ID NO: 149 and/or may comprise an amino acid sequence: (a) having 50% or more identity (e.g. 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 149; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 149, wherein 'n' is 7 or more (e.g. 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more). These NW_5 proteins include variants of SEQ ID NO: 149. Preferred fragments of (b) comprise an epitope from SEQ ID NO: 149. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino

⁵⁰ acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 149 while retaining at least one epitope of SEQ ID NO: 149. The first 52 N-terminal amino acids of SEQ ID NO: 149 can usefully be omitted. Other fragments omit one or more protein domains.

Hybrid polypeptides

55

[0400] Antigens used in the invention may be present in the composition as individual separate polypeptides. Where more than one antigen is used, however, they do not have to be present as separate polypeptides. Instead, at least two (e.g. 2, 3, 4, 5, or more) antigens can be expressed as a single polypeptide chain (a 'hybrid' polypeptide). Hybrid

polypeptides offer two main advantages: first, a polypeptide that may be unstable or poorly expressed on its own can be assisted by adding a suitable hybrid partner that overcomes the problem; second, commercial manufacture is simplified as only one expression and purification need be employed in order to produce two polypeptides which are both antigenically useful.

- ⁵ **[0401]** The hybrid polypeptide may comprise two or more polypeptide sequences from the first antigen group. The hybrid polypeptide may comprise one or more polypeptide sequences from the first antigen group and one or more polypeptide sequences from the second antigen group. Moreover, the hybrid polypeptide may comprise two or more polypeptide sequences from each of the antigens listed above, or two or more variants of the same antigen in the cases in which the sequence has partial variability across strains.
- ¹⁰ **[0402]** Hybrids consisting of amino acid sequences from two, three, four, five, six, seven, eight, nine, or ten antigens are useful. In particular, hybrids consisting of amino acid sequences from two, three, four, or five antigens are preferred, such as two or three antigens.

15

55

[0403] Different hybrid polypeptides may be mixed together in a single formulation. Hybrids may be combined with non-hybrid antigens selected from the first, second or third antigen groups. Within such combinations, an antigen may be present in more than one hybrid polypeptide and/or as a non-hybrid polypeptide. It is preferred, however, that an antigen is present either as a hybrid or as a non-hybrid, but not as both.

[0404] The hybrid polypeptides can also be combined with conjugates or non-*S.aureus* antigens as described above. **[0405]** Hybrid polypeptides can be represented by the formula NH_2 -A-{-X-L-}_n-B-COOH, wherein: X is an amino acid sequence of a *S.aureus* antigen, as described above; L is an optional linker amino acid sequence; A is an optional N-

terminal amino acid sequence; B is an optional C-terminal amino acid sequence; n is an integer of 2 or more (e.g. 2, 3, 4, 5, 6, etc.). Usually n is 2 or 3.

[0406] If a -X- moiety has a leader peptide sequence in its wild-type form, this may be included or omitted in the hybrid protein. In some embodiments, the leader peptides will be deleted except for that of the -X- moiety located at the N-terminus of the hybrid protein *i.e.* the leader peptide of X_1 will be retained, but the leader peptides of $X_2 \dots X_n$ will be omitted. This is equivalent to deleting all leader peptides and using the leader peptide of X_1 as moiety -A-.

- omitted. This is equivalent to deleting all leader peptides and using the leader peptide of X₁ as moiety -A-.
 [0407] For each n instances of {-X-L-}, linker amino acid sequence -L- may be present or absent. For instance, when n=2 the hybrid may be NH₂-X₁-L₁-X₂-L₂-COOH, NH₂-X₁-X₂-COOH, NH₂-X₁-L₁-X₂-COOH, NH₂-X₁-X₂-COOH, NH₂-X₁-X₂-COOH, NH₂-X₁-X₂-COOH, NH₂-X₁-X₁-X₂-COOH, NH₂-X₁-X₁-X₂-COOH, NH₂-X₁-X₂-COOH, NH₂-X₁-X₁-X₂-COOH, etc. Linker amino acid sequence(s) -L- will typically be short (*e.g.* 20 or fewer amino acids *i.e.* 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1). Examples comprise short peptide sequences which facilitate cloning, poly-glycine
- ³⁰ linkers (i.e. comprising Gly_n where n = 2, 3, 4, 5, 6, 7, 8, 9, 10 or more), and histidine tags (*i.e.* His_n where n = 3, 4, 5, 6, 7, 8, 9, 10 or more). Other suitable linker amino acid sequences will be apparent to those skilled in the art. A useful linker is GSGGGG (SEQ ID NO: 171) or GSGSGGGG (SEQ ID NO: 172), with the Gly-Ser dipeptide being formed from a *Bam*HI restriction site (or two of them, to form the SEQ ID NO: 230 tetrapeptide), thus aiding cloning and manipulation, and the (Gly)₄ tetrapeptide (SEQ ID NO: 227) being a typical poly-glycine linker. Other suitable linkers, particularly for use as the final L, are ASGGGS (SEQ ID NO: 173 *e.g.* encoded by SEQ ID NO: 174) or a Leu-Glu dipeptide.
- ³⁵ use as the final L_n are ASGGGS (SEQ ID NO: 173 *e.g.* encoded by SEQ ID NO: 174) or a Leu-Glu dipeptide. **[0408]** -A- is an optional N-terminal amino acid sequence. This will typically be short (e.g. 40 or fewer amino acids *i.e.* 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1). Examples include leader sequences to direct protein trafficking, or short peptide sequences which facilitate cloning or purification (*e.g.* histidine tags *i.e.* His_n where n = 3, 4, 5, 6, 7, 8, 9, 10 or more). Other suitable
- ⁴⁰ N-terminal amino acid sequences will be apparent to those skilled in the art. If X₁ lacks its own N-terminus methionine,
 -A-is preferably an oligopeptide (*e.g.* with 1, 2, 3, 4, 5, 6, 7 or 8 amino acids) which provides a N-terminus methionine
 e.g. Met-Ala-Ser, or a single Met residue.

[0409] -B- is an optional C-terminal amino acid sequence. This will typically be short (*e.g.* 40 or fewer amino acids *i.e.* 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9,

- ⁴⁵ 8, 7, 6, 5, 4, 3, 2, 1). Examples include sequences to direct protein trafficking, short peptide sequences which facilitate cloning or purification (*e.g.* comprising histidine tags *i.e.* His_n where n = 3, 4, 5, 6, 7, 8, 9, 10 or more, such as SEQ ID NO: 226), or sequences which enhance protein stability. Other suitable C-terminal amino acid sequences will be apparent to those skilled in the art.
- [0410] One hybrid polypeptide of the invention may include both EsxA and EsxB antigens. These may be in either order, N- to C- terminus. SEQ ID NOs: 151 ('EsxAB'; encoded by SEQ ID NO: 169) and 152 ('EsxBA') are examples of such hybrids, both having hexapeptide linkers ASGGGS (SEQ ID NO: 173). Another 'EsxAB' hybrid comprises SEQ ID NO: 241, which may be provided with a N-terminus methionine (e.g. SEQ ID NO: 250).

[0411] Another hybrid polypeptide of the invention may include both SdrD and SdrE antigens. These may be in either order, N- to C- terminus. SEQ ID NO: 168 ('SdrED') is an example of such a hybrid, having a hexapeptide linker ASGGGS (SEQ ID NO: 173).

[0412] Another hybrid polypeptide of the invention may include both ClfB and SdrD antigens. These may be in either order, N- to C- terminus. SEQ ID NO: 202 ('ClfB-SdrD') is an example of such a hybrid, having a hexapeptide linker ASGGGS (SEQ ID NO: 173). SEQ ID NO: 203 ('SdrD-ClfB') is another example of such a hybrid, having a hexapeptide

linker ASGGGS (SEQ ID NO: 173). SEQ ID NO: 211 ('ClfB-N3-sdrD-N3') is another example of such a hybrid, where the N3 fragments of ClfB and SdrD are joined by hexapeptide linker ASGGGS (SEQ ID NO: 173).

[0413] Another hybrid polypeptide of the invention may include both IsdA and EsxA antigens. These may be in either order, N- to C- terminus. SEQ ID NO: 204 ('IsdA-EsxA') is an example of such a hybrid, having a hexapeptide linker
 ⁵ ASGGGS (SEQ ID NO: 173). SEQ ID NO: 209 ('isdA40-184-esxA') is another example of such a hybrid, in which IsdA₄₀₋₁₈₄ is joined to EsxA via linker ASGGGS (SEQ ID NO: 173).

[0414] Another hybrid polypeptide of the invention may include both IsdA and sta006 antigens. These may be in either order, N- to C- terminus. SEQ ID NO: 221 ('isdA40-184-sta006') is an example of such a hybrid, in which IsdA₄₀₋₁₈₄ is joined to Sta006 via hexapeptide linker ASGGGS (SEQ ID NO: 173).

¹⁰ **[0415]** Another hybrid polypeptide of the invention may include both Hla and sta006 antigens. These may be in either order, N- to C- terminus. SEQ ID NO: 222 ('HIaH35L-sta006') is an example of such a hybrid, in which a H35L mutant of H1a is joined to Sta006 via hexapeptide linker ASGGGS (SEQ ID NO: 173).

[0416] Another hybrid polypeptide of the invention may include both Hla and Emp antigens. These may be in either order, N- to C- terminus. SEQ ID NO: 205 ('HlaH35L-Emp') is an example of such a hybrid, in which a H35L mutant Hla

- ¹⁵ is joined to Emp via linker ASGGGS (SEQ ID NO: 173). SEQ ID NO: 206 ('Hla27-76-Emp') is another example of such a hybrid, in which a Hla fragment is joined to Emp via linker ASGGGS (SEQ ID NO: 173); SEQ ID NO: 207 is a H35L mutant of SEQ ID NO: 206. SEQ ID NO: 208 ('HlaPSGS-Emp') is another example of such a hybrid, in which a Hla mutant is joined to Emp via linker ASGGGS (SEQ ID NO: 173).
- [0417] Another hybrid polypeptide of the invention may include IsdA and EsxA and EsxB antigens. These may be in any order, N- to C- terminus. SEQ ID NO: 210 ('isdA40-184-esxAB') is an example of such a triple hybrid, in which IsdA₄₀₋₁₈₄ is joined to EsxAB via linker ASGGGS (SEQ ID NO: 173). The EsxAB already includes the same linker, so SEQ ID NO: 210 includes two of these linkers. SEQ ID NO: 212 ('IsdA-esxAB') is another example of such a triple hybrid, in which IsdA is joined to EsxAB via linker ASGGGS (SEQ ID NO: 173).
- [0418] Another hybrid polypeptide of the invention may include Hla and EsxA and EsxB antigens. These maybe in any order, N- to C- terminus. SEQ ID NO: 220 ('HIaH35L-esxAB') is an example of such a triple hybrid, in which a H35L mutant of H1a is joined to EsxAB via linker ASGGGS (SEQ ID NO: 173). The EsxAB already includes the same linker, so SEQ ID NO: 220 includes two of these linkers. Another example of a hybrid polypeptide including Hla and EsxA and EsxB antigens is SEQ ID NO: 237 ('HIaH35L-esxAB' as used in the examples), in which a H35L mutant of H1a is joined to EsxA via linker APTARG (SEQ ID NO: 239) to replace its N-terminus, then to EsxB via linker ASGGGS (SEQ ID NO:
- ³⁰ 173) to replace its N-terminus. This hybrid can be provided with a suitable N-terminal sequence such as SEQ ID NO: 240. [0419] Another hybrid polypeptide of the invention may include sta006 and EsxA and EsxB antigens. These may be in any order, N- to C- terminus. SEQ ID NO: 223 ('sta006-esxAB') is an example of such a triple hybrid, in which sta006 is joined to EsxAB via linker ASGGGS (SEQ ID NO: 173). The EsxAB already includes the same linker, so SEQ ID NO: 223 includes two of these linkers. Another example of a hybrid polypeptide including sta006 and EsxA and EsxB antigens
- is SEQ ID NO: 238 ('sta006-esxAB' as used in the examples), in which a sta006 is joined to EsxA via linker APTARG (SEQ ID NO: 239) to replace its N-terminus, then to EsxB via linker ASGGGS (SEQ ID NO: 173) to replace its N-terminus. This hybrid can be provided with a suitable N-terminal sequence such as SEQ ID NO: 240.
 [0420] Usefully, these hybrid polypeptides can elicit an antibody (e.g. when administered to a human) that recognise
- each of the wild-type staphylococcal proteins (e.g. as shown in the sequence listing) represented in the hybrid e.g. which
 recognise both wild-type EsxA and wild-type EsxB, or which recognise both wild-type SdrD and wild-type SdrE, or which
 recognise both wild-type SdrD and wild-type ClfB, or which recognise both wild-type IsdA and wild-type EsxA, or which
 recognise both wild-type IsdA and wild-type sta006, or which recognise both wild-type Hla and wild-type sta006, or which recognise both wild-type Hla and wild-type Emp, or which recognise wild-type IsdA and wild-type EsxA and wild-type
 sxB, or which recognise wild-type Hla and wild-type Hla and wild-type EsxA and wild-type EsxA
- ⁴⁵ and wild-type EsxA and wild-type EsxB.

Polypeptides used with the invention

[0421] Polypeptides used with the invention can take various forms (*e.g.* native, fusions, glycosylated, non-glycosylat ⁵⁰ ed, lipidated, non-lipidated, phosphorylated, non-phosphorylated, myristoylated, non-myristoylated, monomeric, mul timeric, particulate, denatured, *etc.*).

[0422] Polypeptides used with the invention can be prepared by various means (*e.g.* recombinant expression, purification from cell culture, chemical synthesis, *etc.*). Recombinantly-expressed proteins are preferred, particularly for hybrid polypeptides.

⁵⁵ **[0423]** Polypeptides used with the invention are preferably provided in purified or substantially purified form i.e. substantially free from other polypeptides (*e.g.* free from naturally-occurring polypeptides), particularly from other staphylococcal or host cell polypeptides, and are generally at least about 50% pure (by weight), and usually at least about 90% pure *i.e.* less than about 50%, and more preferably less than about 10% (*e.g.* 5%) of a composition is made up of other

expressed polypeptides. Thus the antigens in the compositions are separated from the whole organism with which the molecule is expressed.

- [0424] Polypeptides used with the invention are preferably staphylococcal polypeptides.
- [0425] The term "polypeptide" refers to amino acid polymers of any length. The polymer may be linear or branched, it may comprise modified amino acids, and it may be interrupted by non-amino acids. The terms also encompass an amino acid polymer that has been modified naturally or by intervention; for example, disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation, or any other manipulation or modification, such as conjugation with a labeling component. Also included are, for example, polypeptides containing one or more analogs of an amino acid (including, for example, unnatural amino acids, *etc.*), as well as other modifications known in the art. Polypeptides can occur as single chains or associated chains.

[0426] The invention provides polypeptides comprising a sequence -P-Q- or -Q-P-, wherein: -P- is an amino acid sequence as defined above and -Q- is not a sequence as defined above *i. e.* the invention provides fusion proteins. Where the N-terminus codon of -P- is not ATG, but this codon is not present at the N-terminus of a polypeptide, it will be translated as the standard amino acid for that codon rather than as a Met. Where this codon is at the N-terminus of

- ¹⁵ a polypeptide, however, it will be translated as Met. Examples of -Q- moieties include, but are not limited to, histidine tags (*i.e.* His_n where n = 3, 4, 5, 6, 7, 8, 9, 10 or more), maltose-binding protein, or glutathione-S-transferase (GST). **[0427]** The invention also provides a process for producing a polypeptide of the invention, comprising the step of culturing a host cell transformed with nucleic acid of the invention under conditions which induce polypeptide expression. **[0428]** Although expression of the polypeptides of the invention may take place in a *Staphylococcus*, the invention
- will usually use a heterologous host for expression (recombinant expression). The heterologous host may be prokaryotic (e.g. a bacterium) or eukaryotic. It may be *E.coli*, but other suitable hosts include *Bacillus subtilis*, *Vibrio cholerae*, *Salmonella typhi*, *Salmonella typhimurium*, *Neisseria lactamica*, *Neisseria cinerea*, *Mycobacteria* (e.g. *M.tuberculosis*), yeasts, *etc.* Compared to the wild-type *S.aureus* genes encoding polypeptides of the invention, it is helpful to change codons to optimise expression efficiency in such hosts without affecting the encoded amino acids.
- ²⁵ **[0429]** The invention provides a process for producing a polypeptide of the invention, comprising the step of synthesising at least part of the polypeptide by chemical means.

Nucleic acids

³⁰ **[0430]** The invention also provides nucleic acid encoding polypeptides and hybrid polypeptides of the invention. It also provides nucleic acid comprising a nucleotide sequence that encodes one or more polypeptides or hybrid polypeptides of the invention.

[0431] The invention also provides nucleic acid comprising nucleotide sequences having sequence identity to such nucleotide sequences. Identity between sequences is preferably determined by the Smith-Waterman homology search

- ³⁵ algorithm as described above. Such nucleic acids include those using alternative codons to encode the same amino acid. [0432] The invention also provides nucleic acid which can hybridize to these nucleic acids. Hybridization reactions can be performed under conditions of different "stringency". Conditions that increase stringency of a hybridization reaction of widely known and published in the art (*e.g.* page 7.52 of reference 276). Examples of relevant conditions include (in order of increasing stringency): incubation temperatures of 25°C, 37°C, 50°C, 55°C and 68°C; buffer concentrations of
- ⁴⁰ 10 x SSC, 6 x SSC, 1 x SSC, 0.1 x SSC (where SSC is 0.15 M NaCl and 15 mM citrate buffer) and their equivalents using other buffer systems; formamide concentrations of 0%, 25%, 50%, and 75%; incubation times from 5 minutes to 24 hours; 1, 2, or more washing steps; wash incubation times of 1, 2, or 15 minutes; and wash solutions of 6 x SSC, 1 x SSC, 0.1 x SSC, or de-ionized water. Hybridization techniques and their optimization are well known in the art (*e.g.* see refs 75, 76, 276, 278, *etc.*].
- ⁴⁵ **[0433]** In some embodiments, nucleic acid of the invention hybridizes to a target under low stringency conditions; in other embodiments it hybridizes under intermediate stringency conditions; in preferred embodiments, it hybridizes under high stringency conditions. An exemplary set of low stringency hybridization conditions is 50°C and 10 x SSC. An exemplary set of intermediate stringency hybridization conditions is 55°C and 1 x SSC. An exemplary set of high stringency hybridization conditions is 68°C and 0.1 x SSC.
- ⁵⁰ [0434] The invention includes nucleic acid comprising sequences complementary to these sequences (e.g. for antisense or probing, or for use as primers).
 [0435] Nucleic acids of the invention can be used in hybridisation reactions (*e.g.* Northern or Southern blots, or in nucleic acid microarrays or 'gene chips') and amplification reactions (*e.g.* PCR, SDA, SSSR, LCR, TMA, NASBA, *etc.*) and other nucleic acid techniques.
- ⁵⁵ **[0436]** Nucleic acid according to the invention can take various forms (*e.g.* single-stranded, double-stranded, vectors, primers, probes, labelled *etc.*). Nucleic acids of the invention may be circular or branched, but will generally be linear. Unless otherwise specified or required, any embodiment of the invention that utilizes a nucleic acid may utilize both the double-stranded form and each of two complementary single-stranded forms which make up the double-stranded form.

Primers and probes are generally single-stranded, as are antisense nucleic acids.

[0437] Nucleic acids of the invention are preferably provided in purified or substantially purified form *i. e.* substantially free from other nucleic acids (*e.g.* free from naturally-occurring nucleic acids), particularly from other staphylococcal or host cell nucleic acids, generally being at least about 50% pure (by weight), and usually at least about 90% pure. Nucleic acids of the invention are preferably staphylococcal nucleic acids.

- **[0438]** Nucleic acids of the invention may be prepared in many ways *e.g.* by chemical synthesis (*e.g.* phosphoramidite synthesis of DNA) in whole or in part, by digesting longer nucleic acids using nucleases (*e.g.* restriction enzymes), by joining shorter nucleic acids or nucleotides (*e.g.* using ligases or polymerases), from genomic or cDNA libraries, *etc.*
- **[0439]** Nucleic acid of the invention may be attached to a solid support *(e.g.* a bead, plate, filter, film, slide, microarray support, resin, *etc.)*. Nucleic acid of the invention may be labelled *e.g.* with a radioactive or fluorescent label, or a biotin label. This is particularly useful where the nucleic acid is to be used in detection techniques *e.g.* where the nucleic acid is a primer or as a probe.

[0440] The term "nucleic acid" includes in general means a polymeric form of nucleotides of any length, which contain deoxyribonucleotides, ribonucleotides, and/or their analogs. It includes DNA, RNA, DNA/RNA hybrids. It also includes

- ¹⁵ DNA or RNA analogs, such as those containing modified backbones (*e.g.* peptide nucleic acids (PNAs) or phosphorothioates) or modified bases. Thus the invention includes mRNA, tRNA, rRNA, ribozymes, DNA, cDNA, recombinant nucleic acids, branched nucleic acids, plasmids, vectors, probes, primers, *etc.* Where nucleic acid of the invention takes the form of RNA, it may or may not have a 5' cap.
- [0441] Nucleic acids of the invention may be part of a vector *i.e.* part of a nucleic acid construct designed for transduction/ transfection of one or more cell types. Vectors may be, for example, "cloning vectors" which are designed for isolation, propagation and replication of inserted nucleotides, "expression vectors" which are designed for expression of a nucleotide sequence in a host cell, "viral vectors" which is designed to result in the production of a recombinant virus or viruslike particle, or "shuttle vectors", which comprise the attributes of more than one type of vector. Preferred vectors are plasmids. A "host cell" includes an individual cell or cell culture which can be or has been a recipient of exogenous
- ²⁵ nucleic acid. Host cells include progeny of a single host cell, and the progeny may not necessarily be completely identical (in morphology or in total DNA complement) to the original parent cell due to natural, accidental, or deliberate mutation and/or change. Host cells include cells transfected or infected *in vivo* or *in vitro* with nucleic acid of the invention. [0442] Where a nucleic acid is DNA, it will be appreciated that "U" in a RNA sequence will be replaced by "T" in the DNA. Similarly, where a nucleic acid is RNA, it will be appreciated that "T" in a DNA sequence will be replaced by "U"
- ³⁰ in the RNA.

45

5

[0443] The term "complement" or "complementary" when used in relation to nucleic acids refers to Watson-Crick base pairing. Thus the complement of C is G, the complement of G is C, the complement of A is T (or U), and the complement of T (or U) is A. It is also possible to use bases such as I (the purine inosine) e.g. to complement pyrimidines (C or T). **[0444]** Nucleic acids of the invention can be used, for example: to produce polypeptides; as hybridization probes for

- ³⁵ the detection of nucleic acid in biological samples; to generate additional copies of the nucleic acids; to generate ribozymes or antisense oligonucleotides; as single-stranded DNA primers or probes; or as triple-strand forming oligonucleotides. [0445] The invention provides a process for producing nucleic acid of the invention, wherein the nucleic acid is synthesised in part or in whole using chemical means.
- [0446] The invention provides vectors comprising nucleotide sequences of the invention (e.g. cloning or expression vectors) and host cells transformed with such vectors.
 - **[0447]** Nucleic acid amplification according to the invention may be quantitative and/or real-time.
 - [0448] For certain embodiments of the invention, nucleic acids are preferably at least 7 nucleotides in length (e.g. 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 45, 50, 55, 60, 65, 70, 75, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 225, 250, 275, 300 nucleotides or longer).

[0449] For certain embodiments of the invention, nucleic acids are preferably at most 500 nucleotides in length (e.g. 450, 400, 350, 300, 250, 200, 150, 140, 130, 120, 110, 100, 90, 80, 75, 70, 65, 60, 55, 50, 45, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15 nucleotides or shorter).

[0450] Primers and probes of the invention, and other nucleic acids used for hybridization, are preferably between 10 and 30 nucleotides in length (*e.g.* 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides).

Strains and variants

- ⁵⁵ **[0451]** Antigens are defined above by reference to existing nomenclature (*e.g.* "ClfA"), to "sta" numbers or to "NW_" numbers. Table 1 herein relates these three naming/numbering systems to existing
 - **[0452]** SAOUHSC numbering and/or NWMN numbering. SAOUHSC numbering refers to the genome of *S.aureus* strain NCTC 8325 (sequenced by Oklahoma University Health Sciences Center and disclosed in GenBank as

CP000253.1; GI:87201381), and individual SAOUHSC numbers are given as "locus_tag" entries in the genome sequence's "features" section. Similarly, NWMN numbering refers to the genome of *S.aureus* strain Newman (isolated in 1952 from a human infection, and having robust virulence phenotype) disclosed in GenBank as AP009351.1 (GI: 150373012) and individual NWMN numbers are given as "locus_tag" entries in the genome sequence's "features" section. Functional annotations for each antigen are also given in the databases.

- ⁵ section. Functional annotations for each antigen are also given in the databases. [0453] Table 1 also includes the GI number for each antigen of the invention. Thus an exemplary amino acid and nucleotide sequence for any of these antigens can easily be found in public sequence databases from the NCTC 8325 and/or Newman strain, but the invention is not limited to sequences from the NCTC 8325 and Newman strains. Genome sequences of several other strains of *S.aureus* are available, including those of MRSA strains N315 and Mu50 [77],
- MW2, N315, COL, MRSA252, MSSA476, RF122, USA300 (very virulent), JH1 and JH9. Standard search and alignment techniques can be used to identify in any of these (or other) further genome sequences the homolog of any particular sequence from the Newman or NCTC 8325 strain. Moreover, the available sequences from the Newman and NCTC 8325 strains can be used to design primers for amplification of homologous sequences from other strains. Thus the invention is not limited to these two strains, but rather encompasses such variants and homologs from other strains of
- S.aureus, as well as non-natural variants. In general, suitable variants of a particular SEQ ID NO include its allelic variants, its polymorphic forms, its homologs, its orthologs, its paralogs, its mutants, *etc.*[0454] Thus, for instance, polypeptides used with the invention may, compared to the SEQ ID NO herein, include one or more (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, *etc.*) amino acid substitutions, such as conservative substitutions (*i. e.* substitutions of one amino acid with another which has a related side chain). Genetically-encoded amino acids are generally divided
- into four families: (1) acidic *i.e.* aspartate, glutamate; (2) basic *i.e.* lysine, arginine, histidine; (3) non-polar *i.e.* alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan; and (4) uncharged polar *i.e.* glycine, asparagine, glutamine, cysteine, serine, threonine, tyrosine. Phenylalanine, tryptophan, and tyrosine are sometimes classified jointly as aromatic amino acids. In general, substitution of single amino acids within these families does not have a major effect on the biological activity. The polypeptides may also include one or more (*e.g.* 1, 2, 3, 4, 5, 6, 7, 8, 9, *etc.*) single
- amino acid deletions relative to the SEQ ID NO sequences. The polypeptides may also include one or more (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, etc.) insertions (e.g. each of 1, 2, 3, 4 or 5 amino acids) relative to the SEQ ID NO sequences.
 [0455] Similarly, a polypeptide used with the invention may comprise an amino acid sequence that:

is identical (i. e. 100% identical) to a sequence disclosed in the sequence listing;

30

35

40

45

shares sequence identity (*e.g.* 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) with a sequence disclosed in the sequence listing;

has 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 (or more) single amino acid alterations (deletions, insertions, substitutions), which may be at separate locations or may be contiguous, as compared to the sequences of (a) or (b); and

when aligned with a particular sequence from the sequence listing using a pairwise alignment algorithm, each moving window of x amino acids from N-terminus to C-terminus (such that for an alignment that extends to *p* amino acids, where p>x, there are p-x+1 such windows) has at least *x*·*y* identical aligned amino acids, where: *x* is selected from 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 150, 200; *y* is selected from 0.50, 0.60, 0.70, 0.75, 0.80, 0.85, 0.90, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99; and if *x*·*y* is not an integer then it is rounded up to the nearest integer. The preferred pairwise alignment algorithm is the Needleman-Wunsch global alignment algorithm [78], using default parameters (*e.g.* with Gap opening penalty = 10.0, and with Gap extension penalty = 0.5, using the EBLOSUM62 scoring matrix). This algorithm is conveniently implemented in the *needle* tool in the EMBOSS package [79].

[0456] Where hybrid polypeptides are used, the individual antigens within the hybrid *(i.e.* individual -X-moieties) may be from one or more strains. Where n=2, for instance, X_2 may be from the same strain as X_1 or from a different strain. Where n=3, the strains might be (i) $X_1=X_2=X_3$ (ii) $X_1=X_2\neq X_3$ (iii) $X_1\neq X_2=X_3$ (iv) $X_1\neq X_2\neq X_3$ or (v) $X_1=X_3\neq X_2$, *etc.*

- ⁵⁰ **[0457]** Within group (c), deletions or substitutions may be at the N-terminus and/or C-terminus, or may be between the two termini. Thus a truncation is an example of a deletion. Truncations may involve deletion of up to 40 (or more) amino acids at the N-terminus and/or C-terminus. N-terminus truncation can remove leader peptides *e.g.* to facilitate recombinant expression in a heterologous host. C-terminus truncation can remove anchor sequences *e.g.* to facilitate recombinant expression in a heterologous host.
- ⁵⁵ **[0458]** In general, when an antigen comprises a sequence that is not identical to a complete *S.aureus* sequence from the sequence listing (*e.g.* when it comprises a sequence listing with <100% sequence identity thereto, or when it comprises a fragment thereof) it is preferred in each individual instance that the antigen can elicit an antibody which recognises the respective complete *S.aureus* sequence.

Mutant bacteria

[0459] The invention also provides a *S.aureus* bacterium in which one or more of the antigens from the various antigen groups of the invention has/have been knocked out. Techniques for producing knockout bacteria are well known, and knockout *S.aureus* strains have been reported. A knockout mutation may be situated in the coding region of the gene or may lie within its transcriptional control regions (*e.g.* within its promoter). A knockout mutation will reduce the level of mRNA encoding the antigen to <1% of that produced by the wild-type bacterium, preferably <0.5%, more preferably <0.1%, and most preferably to 0%.

[0460] The invention also provides a *S.aureus* in which one or more of the antigens from the various antigen groups of the invention has a mutation which inhibits its activity. The gene encoding the antigen will have a mutation that changes the encoded amino acid sequence. Mutation may involve deletion, substitution, and/or insertion, any of which may be involve one or more amino acids.

[0461] The invention also provides a bacterium, such as a *S.aureus* bacterium, which hyper-expresses an antigen of the invention.

¹⁵ **[0462]** The invention also provides a bacterium, such as a *S. aureus* bacterium, that constitutively expresses an antigen of the invention. The invention also provides a meningococcus comprising a gene encoding an antigen of the invention, wherein the gene is under the control of an inducible promoter.

Immunogenic compositions and medicaments

20

5

[0463] Immunogenic compositions of the invention may be useful as vaccines. Vaccines according to the invention may either be prophylactic (*i.e.* to prevent infection) or therapeutic (*i.e.* to treat infection), but will typically be prophylactic. **[0464]** Compositions may thus be pharmaceutically acceptable. They will usually include components in addition to the antigens e.g. they typically include one or more pharmaceutical carrier(s) and/or excipient(s). A thorough discussion

²⁵ of such components is available in reference 273.

[0465] Compositions will generally be administered to a mammal in aqueous form. Prior to administration, however, the composition may have been in a non-aqueous form. For instance, although some vaccines are manufactured in aqueous form, then filled and distributed and administered also in aqueous form, other vaccines are lyophilised during manufacture and are reconstituted into an aqueous form at the time of use. Thus a composition of the invention may

³⁰ be dried, such as a lyophilised formulation.

[0466] The composition may include preservatives such as thiomersal or 2-phenoxyethanol. It is preferred, however, that the vaccine should be substantially free from (*i. e.* less than $5 \mu g/ml$) mercurial material *e.g.* thiomersal-free. Vaccines containing no mercury are more preferred. Preservative-free vaccines are particularly preferred.

[0467] To improve thermal stability, a composition may include a temperature protective agent. Further details of such agents are provided below.

[0468] To control tonicity, it is preferred to include a physiological salt, such as a sodium salt. Sodium chloride (NaCl) is preferred, which may be present at between 1 and 20 mg/ml *e.g.* about 10 ± 2 mg/ml NaCl. Other salts that may be present include potassium chloride, potassium dihydrogen phosphate, disodium phosphate dehydrate, magnesium chloride, calcium chloride, *etc.*

⁴⁰ **[0469]** Compositions will generally have an osmolality of between 200 mOsm/kg and 400 mOsm/kg, preferably between 240-360 mOsm/kg, and will more preferably fall within the range of 290-310 mOsm/kg.

[0470] Compositions may include one or more buffers. Typical buffers include: a phosphate buffer; a Tris buffer; a borate buffer; a succinate buffer; a histidine buffer (particularly with an aluminum hydroxide adjuvant); or a citrate buffer. Buffers will typically be included in the 5-20mM range.

⁴⁵ [0471] The pH of a composition will generally be between 5.0 and 8.1, and more typically between 6.0 and 8.0 *e.g.*6.5 and 7.5, or between 7.0 and 7.8.

[0472] The composition is preferably sterile. The composition is preferably non-pyrogenic *e.g.* containing <1 EU (endotoxin unit, a standard measure) per dose, and preferably <0.1 EU per dose. The composition is preferably gluten free.
 [0473] The composition may include material for a single immunisation, or may include material for multiple immuni-

⁵⁰ sations (*i.e.* a 'multidose' kit). The inclusion of a preservative is preferred in multidose arrangements. As an alternative (or in addition) to including a preservative in multidose compositions, the compositions may be contained in a container having an aseptic adaptor for removal of material.

[0474] Human vaccines are typically administered in a dosage volume of about 0.5ml, although a half dose (*i.e.* about 0.25ml) may be administered to children.

⁵⁵ **[0475]** Immunogenic compositions of the invention may also comprise one or more immunoregulatory agents. Preferably, one or more of the immunoregulatory agents include one or more adjuvants. The adjuvants may include a TH1 adjuvant and/or a TH2 adjuvant, further discussed below.

[0476] Thus the invention provides an immunogenic composition comprising a combination of:

(1) one or more antigen(s) selected from the first, second, third and fourth antigen groups (as defined above); and (2) an adjuvant, such as an aluminium hydroxide adjuvant (for example, one or more antigens may be adsorbed to aluminium hydroxide).

⁵ **[0477]** For instance, the invention provides an immunogenic composition comprising a combination of a sta006 antigen and an adjuvant, such as an aluminium hydroxide adjuvant. Similarly, the invention provides an immunogenic composition comprising a combination of a sta011 antigen and an adjuvant, such as an aluminium hydroxide adjuvant. These compositions are ideally buffered *e.g.* with a histidine buffer.

[0478] Adjuvants which may be used in compositions of the invention include, but are not limited to:

10

15

A. Mineral-containing compositions

[0479] Mineral containing compositions suitable for use as adjuvants in the invention include mineral salts, such as aluminium salts and calcium salts (or mixtures thereof). Calcium salts include calcium phosphate (*e.g.* the "CAP" particles disclosed in ref. 80). Aluminum salts include hydroxides, phosphates, sulfates, *etc.*, with the salts taking any suitable form (*e.g.* gel, crystalline, amorphous, *etc.*). Adsorption to these salts is preferred (*e.g.* all antigens may be adsorbed). The mineral containing compositions may also be formulated as a particle of metal salt [81].

[0480] The adjuvants known as aluminum hydroxide and aluminum phosphate may be used. These names are conventional, but are used for convenience only, as neither is a precise description of the actual chemical compound which is present (*e.g.* see chapter 9 of reference 82)). The invention can use any of the "hydroxide" or "phosphate" adjuvants that are in general use as adjuvants. The adjuvants known as "aluminium hydroxide" are typically aluminium oxyhydroxide salts, which are usually at least partially crystalline. The adjuvants known as "aluminium hydroxyphosphate" are typically aluminium hydroxyphosphates, often also containing a small amount of sulfate (*i. e.* aluminium hydroxyphosphate sulfate). They may be obtained by precipitation, and the reaction conditions and concentrations during precipitation influence

- the degree of substitution of phosphate for hydroxyl in the salt. [0481] A fibrous morphology (*e.g.* as seen in transmission electron micrographs) is typical for aluminium hydroxide adjuvants. The pl of aluminium hydroxide adjuvants is typically about 11 *i.e.* the adjuvant itself has a positive surface charge at physiological pH. Adsorptive capacities of between 1.8-2.6 mg protein per mg Al⁺⁺⁺ at pH 7.4 have been reported for aluminium hydroxide adjuvants.
- ³⁰ [0482] Aluminium phosphate adjuvants generally have a PO₄/Al molar ratio between 0.3 and 1.2, preferably between 0.8 and 1.2, and more preferably 0.95±0.1. The aluminium phosphate will generally be amorphous, particularly for hydroxyphosphate salts. A typical adjuvant is amorphous aluminium hydroxyphosphate with PO₄/Al molar ratio between 0.84 and 0.92, included at 0.6mg Al³⁺/ml. The aluminium phosphate will generally be particulate (e.g. plate-like morphology as seen in transmission electron micrographs). Typical diameters of the particles are in the range 0.5-20µm
- (e.g. about 5-10µm) after any antigen adsorption. Adsorptive capacities of between 0.7-1.5 mg protein per mg Al⁺⁺⁺ at pH 7.4 have been reported for aluminium phosphate adjuvants.
 [0483] The point of zero charge (PZC) of aluminium phosphate is inversely related to the degree of substitution of phosphate for hydroxyl, and this degree of substitution can vary depending on reaction conditions and concentration of

⁴⁰ ions in solution (more phosphate = more acidic PZC) or by adding a buffer such as a histidine buffer (makes PZC more basic). Aluminium phosphates used according to the invention will generally have a PZC of between 4.0 and 7.0, more preferably between 5.0 and 6.5 e.g. about 5.7.

[0484] As shown below, adsorption of *S.aureus* protein antigens (except IsdA, Sta019 and Sta073) to an aluminium hydroxide adjuvant is advantageous, particularly in a multi-protein combination (in which all antigens may be adsorbed). A histidine buffer can usefully be included in such adjuvanted compositions.

A histidine buffer can usefully be included in such adjuvanted compositions.
 [0485] Suspensions of aluminium salts used to prepare compositions of the invention may contain a buffer (*e.g.* a phosphate or a histidine or a Tris buffer), but this is not always necessary. The suspensions are preferably sterile and pyrogen-free. A suspension may include free aqueous phosphate ions *e.g.* present at a concentration between 1.0 and 20 mM, preferably between 5 and 15 mM, and more preferably about 10 mM. The suspensions may also comprise sodium chloride.

[0486] The invention can use a mixture of both an aluminium hydroxide and an aluminium phosphate. In this case there may be more aluminium phosphate than hydroxide *e.g.* a weight ratio of at least 2:1 *e.g.* \geq 5:1, \geq 6:1, \geq 7:1, \geq 8:1, \geq 9:1, *etc.*

[0487] The concentration of Al⁺⁺⁺ in a composition for administration to a patient is preferably less than 10mg/ml *e.g.* ⁵⁵ ≤5 mg/ml, ≤4 mg/ml, ≤3 mg/ml, ≤2 mg/ml, ≤1 mg/ml, *etc.* A preferred range is between 0.3 and 1mg/ml. A maximum of 0.85mg/dose is preferred.

B. Oil Emulsions

5

10

[0488] Oil emulsion compositions suitable for use as adjuvants in the invention include squalene-water emulsions, such as MF59 [Chapter 10 of ref. 82; see also ref. 83] (5% Squalene, 0.5% Tween 80, and 0.5% Span 85, formulated into submicron particles using a microfluidizer). Complete Freund's adjuvant (CFA) and incomplete Freund's adjuvant (IFA) may also be used.

[0489] Various oil-in-water emulsion adjuvants are known, and they typically include at least one oil and at least one surfactant, with the oil(s) and surfactant(s) being biodegradable (metabolisable) and biocompatible. The oil droplets in the emulsion are generally less than 5 μ m in diameter, and ideally have a sub-micron diameter, with these small sizes being achieved with a microfluidiser to provide stable emulsions. Droplets with a size less than 220nm are preferred as

they can be subjected to filter sterilization. [0490] The emulsion can comprise oils such as those from an animal (such as fish) or vegetable source. Sources for vegetable oils include nuts, seeds and grains. Peanut oil, soybean oil, coconut oil, and olive oil, the most commonly available, exemplify the nut oils. Jojoba oil can be used *e.g.* obtained from the jojoba bean. Seed oils include safflower

- ¹⁵ oil, cottonseed oil, sunflower seed oil, sesame seed oil and the like. In the grain group, corn oil is the most readily available, but the oil of other cereal grains such as wheat, oats, rye, rice, teff, triticale and the like may also be used. 6-10 carbon fatty acid esters of glycerol and 1,2-propanediol, while not occurring naturally in seed oils, may be prepared by hydrolysis, separation and esterification of the appropriate materials starting from the nut and seed oils. Fats and oils from mammalian milk are metabolizable and may therefore be used in the practice of this invention. The procedures for
- 20 separation, purification, saponification and other means necessary for obtaining pure oils from animal sources are well known in the art. Most fish contain metabolizable oils which may be readily recovered. For example, cod liver oil, shark liver oils, and whale oil such as spermaceti exemplify several of the fish oils which may be used herein. A number of branched chain oils are synthesized biochemically in 5-carbon isoprene units and are generally referred to as terpenoids. Shark liver oil contains a branched, unsaturated terpenoids known as squalene, 2,6,10,15,19,23-hexamethyl-
- 26 2,6,10,14,18,22-tetracosahexaene, which is particularly preferred herein. Squalane, the saturated analog to squalene, is also a preferred oil. Fish oils, including squalene and squalane, are readily available from commercial sources or may be obtained by methods known in the art. Other preferred oils are the tocopherols (see below). Mixtures of oils can be used.
 [0491] Surfactants can be classified by their 'HLB' (hydrophile/lipophile balance). Preferred surfactants of the invention have a HLB of at least 10, preferably at least 15, and more preferably at least 16. The invention can be used with
- ³⁰ surfactants including, but not limited to: the polyoxyethylene sorbitan esters surfactants (commonly referred to as the Tweens), especially polysorbate 20 and polysorbate 80; copolymers of ethylene oxide (EO), propylene oxide (PO), and/or butylene oxide (BO), sold under the DOWFAX[™] tradename, such as linear EO/PO block copolymers; octoxynols, which can vary in the number of repeating ethoxy (oxy-1,2-ethanediyl) groups, with octoxynol-9 (Triton X-100, or t-octylphenoxypolyethoxyethanol) being of particular interest; (octylphenoxy)polyethoxyethanol (IGEPAL CA-630/NP-40);
- ³⁵ phospholipids such as phosphatidylcholine (lecithin); nonylphenol ethoxylates, such as the Tergitol[™] NP series; polyoxyethylene fatty ethers derived from lauryl, cetyl, stearyl and oleyl alcohols (known as Brij surfactants), such as triethyleneglycol monolauryl ether (Brij 30); and sorbitan esters (commonly known as the SPANs), such as sorbitan trioleate (Span 85) and sorbitan monolaurate. Non-ionic surfactants are preferred. Preferred surfactants for including in the emulsion are Tween 80 (polyoxyethylene sorbitan monooleate), Span 85 (sorbitan trioleate), lecithin and Triton X-100.
- ⁴⁰ **[0492]** Mixtures of surfactants can be used e.g. Tween 80/Span 85 mixtures. A combination of a polyoxyethylene sorbitan ester such as polyoxyethylene sorbitan monooleate (Tween 80) and an octoxynol such as t-octylphenoxypolyethoxyethanol (Triton X-100) is also suitable. Another useful combination comprises laureth 9 plus a polyoxyethylene sorbitan ester and/or an octoxynol.
- [0493] Preferred amounts of surfactants (% by weight) are: polyoxyethylene sorbitan esters (such as Tween 80) 0.01 to 1%, in particular about 0.1 %; octyl- or nonylphenoxy polyoxyethanols (such as Triton X-100, or other detergents in the Triton series) 0.001 to 0.1 %, in particular 0.005 to 0.02%; polyoxyethylene ethers (such as laureth 9) 0.1 to 20 %, preferably 0.1 to 10 % and in particular 0.1 to 1 % or about 0.5%.

[0494] Preferred emulsion adjuvants have an average droplets size of <1 μ m e.g. \leq 750nm, \leq 500nm, \leq 400nm, \leq 300nm, \leq 250nm, \leq 220nm, \leq 220nm, or smaller. These droplet sizes can conveniently be achieved by techniques such as microfluidisation.

[0495] Specific oil-in-water emulsion adjuvants useful with the invention include, but are not limited to:

● A submicron emulsion of squalene, Tween 80, and Span 85. The composition of the emulsion by volume can be about 5% squalene, about 0.5% polysorbate 80 and about 0.5% Span 85. In weight terms, these ratios become 4.3% squalene, 0.5% polysorbate 80 and 0.48% Span 85. This adjuvant is known as 'MF59' [84-86], as described in more detail in Chapter 10 of ref. 87 and chapter 12 of ref. 88. The MF59 emulsion advantageously includes citrate ions e.g. 10mM sodium citrate buffer.

55

50

• An emulsion of squalene, a tocopherol, and polysorbate 80 (Tween 80). The emulsion may include phosphate buffered saline. It may also include Span 85 (*e.g.* at 1%) and/or lecithin. These emulsions may have from 2 to 10% squalene, from 2 to 10% tocopherol and from 0.3 to 3% Tween 80, and the weight ratio of squalene:tocopherol is preferably \leq 1 as this provides a more stable emulsion. Squalene and Tween 80 may be present volume ratio of about 5:2 or at a weight ratio of about 11:5. One such emulsion can be made by dissolving Tween 80 in PBS to give a 2% solution, then mixing 90ml of this solution with a mixture of (5g of DL- α -tocopherol and 5ml squalene), then microfluidising the mixture. The resulting emulsion may have submicron oil droplets *e.g.* with an average diameter of between 100 and 250nm, preferably about 180nm. The emulsion may also include a 3-de-O-acylated monophosphoryl lipid A (3d-MPL). Another useful emulsion of this type may comprise, per human dose, 0.5-10 mg squalene, 0.5-11 mg tocopherol, and 0.1-4 mg polysorbate 80 [89].

5

10

20

25

30

35

40

45

50

• An emulsion of squalene, a tocopherol, and a Triton detergent (*e.g.* Triton X-100). The emulsion may also include a 3d-MPL (see below). The emulsion may contain a phosphate buffer.

- An emulsion comprising a polysorbate (e.g. polysorbate 80), a Triton detergent (e.g. Triton X-100) and a tocopherol (e.g. an α-tocopherol succinate). The emulsion may include these three components at a mass ratio of about 75: 11:10 (e.g. 750µg/ml polysorbate 80, 110µg/ml Triton X-100 and 100µg/ml α-tocopherol succinate), and these concentrations should include any contribution of these components from antigens. The emulsion may also include squalene. The emulsion may also include a 3d-MPL (see below). The aqueous phase may contain a phosphate buffer.
 - An emulsion of squalane, polysorbate 80 and poloxamer 401 ("Pluronic[™] L121"). The emulsion can be formulated in phosphate buffered saline, pH 7.4. This emulsion is a useful delivery vehicle for muramyl dipeptides, and has been used with threonyl-MDP in the "SAF-1" adjuvant [90] (0.05-1% Thr-MDP, 5% squalane, 2.5% Pluronic L121 and 0.2% polysorbate 80). It can also be used without the Thr-MDP, as in the "AF" adjuvant [91] (5% squalane, 1.25% Pluronic L121 and 0.2% polysorbate 80). Microfluidisation is preferred.
 - An emulsion comprising squalene, an aqueous solvent, a polyoxyethylene alkyl ether hydrophilic nonionic surfactant (e.g. polyoxyethylene (12) cetostearyl ether) and a hydrophobic nonionic surfactant (e.g. a sorbitan ester or mannide ester, such as sorbitan monoleate or 'Span 80'). The emulsion is preferably thermoreversible and/or has at least 90% of the oil droplets (by volume) with a size less than 200 nm [92]. The emulsion may also include one or more of: alditol; a cryoprotective agent (e.g. a sugar, such as dodecylmaltoside and/or sucrose); and/or an alkylpolyglycoside. The emulsion may include a TLR4 agonist [93]. Such emulsions may be lyophilized.
 - An emulsion of squalene, poloxamer 105 and Abil-Care [94]. The final concentration (weight) of these components in adjuvanted vaccines are 5% squalene, 4% poloxamer 105 (pluronic polyol) and 2% Abil-Care 85 (Bis-PEG/PPG-16/16 PEG/PPG-16/16 dimethicone; caprylic/capric triglyceride).
 - An emulsion having from 0.5-50% of an oil, 0.1-10% of a phospholipid, and 0.05-5% of a non-ionic surfactant. As described in reference 95, preferred phospholipid components are phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, phosphatidylglycerol, phosphatidic acid, sphingomyelin and cardiolipin. Submicron droplet sizes are advantageous.
 - A submicron oil-in-water emulsion of a non-metabolisable oil (such as light mineral oil) and at least one surfactant (such as lecithin, Tween 80 or Span 80). Additives may be included, such as QuilA saponin, cholesterol, a saponinlipophile conjugate (such as GPI-0100, described in reference 96, produced by addition of aliphatic amine to desacylsaponin via the carboxyl group of glucuronic acid), dimethyidioctadecylammonium bromide and/or N,N-dioctadecyl-N,N-bis (2-hydroxyethyl)propanediamine.
 - An emulsion in which a saponin (*e.g.* QuilA or QS21) and a sterol (*e.g.* a cholesterol) are associated as helical micelles [97].
 - An emulsion comprising a mineral oil, a non-ionic lipophilic ethoxylated fatty alcohol, and a non-ionic hydrophilic surfactant (*e.g.* an ethoxylated fatty alcohol and/or polyoxyethylene-polyoxypropylene block copolymer) [98].
- An emulsion comprising a mineral oil, a non-ionic hydrophilic ethoxylated fatty alcohol, and a non-ionic lipophilic surfactant (*e.g.* an ethoxylated fatty alcohol and/or polyoxyethylene-polyoxypropylene block copolymer) [98].
 - [0496] In some embodiments an emulsion may be mixed with antigen extemporaneously, at the time of delivery, and
 - 63

thus the adjuvant and antigen may be kept separately in a packaged or distributed vaccine, ready for final formulation at the time of use. In other embodiments an emulsion is mixed with antigen during manufacture, and thus the composition is packaged in a liquid adjuvanted form,. The antigen will generally be in an aqueous form, such that the vaccine is finally prepared by mixing two liquids. The volume ratio of the two liquids for mixing can vary (e.g. between 5:1 and 1:

⁵ 5) but is generally about 1:1. Where concentrations of components are given in the above descriptions of specific emulsions, these concentrations are typically for an undiluted composition, and the concentration after mixing with an antigen solution will thus decrease.

[0497] Where a composition includes a tocopherol, any of the α , β , γ , δ , ϵ or ξ tocopherols can be used, but α -tocopherols are preferred. The tocopherol can take several forms *e.g.* different salts and/or isomers. Salts include organic

- ¹⁰ salts, such as succinate, acetate, nicotinate, *etc.* D- α -tocopherol and DL- α -tocopherol can both be used. Tocopherols are advantageously included in vaccines for use in elderly patients (*e.g.* aged 60 years or older) because vitamin E has been reported to have a positive effect on the immune response in this patient group [99]. They also have antioxidant properties that may help to stabilize the emulsions [100]. A preferred α -tocopherol is DL- α -tocopherol, and the preferred salt of this tocopherol is the succinate. The succinate salt has been found to cooperate with TNF-related ligands *in vivo*.
- 15

40

45

C. Saponin formulations [chapter 22 of ref. 82]

[0498] Saponin formulations may also be used as adjuvants in the invention. Saponins are a heterogeneous group of sterol glycosides and triterpenoid glycosides that are found in the bark, leaves, stems, roots and even flowers of a wide range of plant species. Saponin from the bark of the *Quillaia saponaria* Molina tree have been widely studied as

- wide range of plant species. Saponin from the bark of the Quillaia saponaria Molina tree have been widely studied as adjuvants. Saponin can also be commercially obtained from Smilax ornata (sarsaprilla), Gypsophilla paniculata (brides veil), and Saponaria officianalis (soap root). Saponin adjuvant formulations include purified formulations, such as QS21, as well as lipid formulations, such as ISCOMs. QS21 is marketed as Stimulon™.
- [0499] Saponin compositions have been purified using HPLC and RP-HPLC. Specific purified fractions using these techniques have been identified, including QS7, QS17, QS18, QS21, QH-A, QH-B and QH-C. Preferably, the saponin is QS21. A method of production of QS21 is disclosed in ref. 101. Saponin formulations may also comprise a sterol, such as cholesterol [102].

[0500] Combinations of saponins and cholesterols can be used to form unique particles called immunostimulating complexs (ISCOMs) [chapter 23 of ref. 82]. ISCOMs typically also include a phospholipid such as phosphatidyleth-

³⁰ anolamine or phosphatidylcholine. Any known saponin can be used in ISCOMs. Preferably, the ISCOM includes one or more of QuilA, QHA & QHC. ISCOMs are further described in refs. 102-104. Optionally, the ISCOMS may be devoid of additional detergent [105].

[0501] A review of the development of saponin based adjuvants can be found in refs. 106 & 107.

35 D. Virosomes and virus-like particles

[0502] Virosomes and virus-like particles (VLPs) can also be used as adjuvants in the invention. These structures generally contain one or more proteins from a virus optionally combined or formulated with a phospholipid. They are generally non-pathogenic, non-replicating and generally do not contain any of the native viral genome. The viral proteins may be recombinantly produced or isolated from whole viruses. These viral proteins suitable for use in virosomes or VLPs include proteins derived from influenza virus (such as HA or NA), Hepatitis B virus (such as core or capsid proteins), Hepatitis E virus, measles virus, Sindbis virus, Rotavirus, Foot-and-Mouth Disease virus, Retrovirus, Norwalk virus, human Papilloma virus, HIV, RNA-phages, Qß-phage (such as coat proteins), GA-phage, fr-phage, AP205 phage, and Ty (such as retrotransposon Ty protein pl). VLPs are discussed further in refs. 108-113. Virosomes are discussed further in, for example, ref. 114

E. Bacterial or microbial derivatives

 [0503] Adjuvants suitable for use in the invention include bacterial or microbial derivatives such as non-toxic derivatives
 of enterobacterial lipopolysaccharide (LPS), Lipid A derivatives, immunostimulatory oligonucleotides and ADP-ribosylating toxins and detoxified derivatives thereof.

[0504] Non-toxic derivatives of LPS include monophosphoryl lipid A (MPL) and 3-O-deacylated MPL (3dMPL). 3dMPL is a mixture of 3 de-O-acylated monophosphoryl lipid A with 4, 5 or 6 acylated chains. A preferred "small particle" form of 3 De-O-acylated monophosphoryl lipid A is disclosed in ref. 115. Such "small particles" of 3dMPL are small enough

to be sterile filtered through a 0.22µm membrane [115]. Other non-toxic LPS derivatives include monophosphoryl lipid A mimics, such as aminoalkyl glucosaminide phosphate derivatives *e.g.* RC-529 [116,117].
 [0505] Lipid A derivatives include derivatives of lipid A from *Escherichia coli* such as OM-174. OM-174 is described for example in refs. 118 & 119.

[0506] Immunostimulatory oligonucleotides suitable for use as adjuvants in the invention include nucleotide sequences containing a CpG motif (a dinucleotide sequence containing an unmethylated cytosine linked by a phosphate bond to a guanosine). Double-stranded RNAs and oligonucleotides containing palindromic or poly(dG) sequences have also been shown to be immunostimulatory.

- ⁵ **[0507]** The CpG's can include nucleotide modifications/analogs such as phosphorothioate modifications and can be double-stranded or single-stranded. References 120, 121 and 122 disclose possible analog substitutions *e.g.* replacement of guanosine with 2'-deoxy-7-deazaguanosine. The adjuvant effect of CpG oligonucleotides is further discussed in refs. 123-128.
- [0508] The CpG sequence may be directed to TLR9, such as the motif GTCGTT or TTCGTT [129]. The CpG sequence may be specific for inducing a Th1 immune response, such as a CpG-A ODN, or it may be more specific for inducing a B cell response, such a CpG-B ODN. CpG-A and CpG-B ODNs are discussed in refs. 130-132. Preferably, the CpG is a CpG-A ODN.

[0509] Preferably, the CpG oligonucleotide is constructed so that the 5' end is accessible for receptor recognition. Optionally, two CpG oligonucleotide sequences may be attached at their 3' ends to form "immunomers". See, for example, refs. 129 & 133-135.

[0510] A useful CpG adjuvant is CpG7909, also known as ProMuneTM (Coley Pharmaceutical Group, Inc.). Another is CpG1826. As an alternative, or in addition, to using CpG sequences, TpG sequences can be used [136], and these oligonucleotides may be free from unmethylated CpG motifs. The immunostimulatory oligonucleotide may be pyrimidine-rich. For example, it may comprise more than one consecutive thymidine nucleotide (*e.g.* TTTT, as disclosed in ref.

- 136), and/or it may have a nucleotide composition with >25% thymidine (e.g. >35%, >40%, >50%, >60%, >80%, etc.). For example, it may comprise more than one consecutive cytosine nucleotide (e.g. CCCC, as disclosed in ref. 136), and/or it may have a nucleotide composition with >25% cytosine (e.g. >35%, >40%, >50%, >60%, >80%, etc.). These oligonucleotides may be free from unmethylated CpG motifs. Immunostimulatory oligonucleotides will typically comprise at least 20 nucleotides. They may comprise fewer than 100 nucleotides.
- 25 [0511] A particularly useful adjuvant based around immunostimulatory oligonucleotides is known as IC-31™ [137]. Thus an adjuvant used with the invention may comprise a mixture of (i) an oligonucleotide (e.g. between 15-40 nucleotides) including at least one (and preferably multiple) Cpl motifs (*i.e.* a cytosine linked to an inosine to form a dinucleotide), and (ii) a polycationic polymer, such as an oligopeptide (e.g. between 5-20 amino acids) including at least one (and preferably multiple) Lys-Arg-Lys tripeptide sequence(s). The oligonucleotide may be a deoxynucleotide comprising 26-
- ³⁰ mer sequence 5'-(IC)₁₃-3' (SEQ ID NO: 175). The polycationic polymer may be a peptide comprising 11-mer amino acid sequence KLKLLLLKLK (SEQ ID NO: 176). The oligonucleotide and polymer can form complexes *e.g.* as disclosed in references 138 & 139.

[0512] Bacterial ADP-ribosylating toxins and detoxified derivatives thereof may be used as adjuvants in the invention. Preferably, the protein is derived from *E.coli* (*E.coli* heat labile enterotoxin "LT"), cholera ("CT"), or pertussis ("PT"). The

- ³⁵ use of detoxified ADP-ribosylating toxins as mucosal adjuvants is described in ref. 140 and as parenteral adjuvants in ref. 141. The toxin or toxoid is preferably in the form of a holotoxin, comprising both A and B subunits. Preferably, the A subunit contains a detoxifying mutation; preferably the B subunit is not mutated. Preferably, the adjuvant is a detoxified LT mutant such as LT-K63, LT-R72, and LT-G192. The use of ADP-ribosylating toxins and detoxified derivatives thereof, particularly LT-K63 and LT-R72, as adjuvants can be found in refs. 142-149. A useful CT mutant is or CT-E29H [150].
- ⁴⁰ Numerical reference for amino acid substitutions is preferably based on the alignments of the A and B subunits of ADPribosylating toxins set forth in ref. 151, specifically incorporated herein by reference in its entirety.

F. Human immunomodulators

⁴⁵ [0513] Human immunomodulators suitable for use as adjuvants in the invention include cytokines, such as interleukins (e.g. IL-1, IL-2, IL-4, IL-5, IL-6, IL-7, IL-12 [152], etc.) [153], interferons (e.g. interferon-γ), macrophage colony stimulating factor, and tumor necrosis factor. A preferred immunomodulator is IL-12.

G. Bioadhesives and Mucoadhesives

50

15

[0514] Bioadhesives and mucoadhesives may also be used as adjuvants in the invention. Suitable bioadhesives include esterified hyaluronic acid microspheres [154] or mucoadhesives such as cross-linked derivatives of poly(acrylic acid), polyvinyl alcohol, polyvinyl pyrollidone, polysaccharides and carboxymethylcellulose. Chitosan and derivatives thereof may also be used as adjuvants in the invention [155].

55

H. Microparticles

[0515] Microparticles may also be used as adjuvants in the invention. Microparticles (i.e. a particle of ~100nm to ~

150 μ m in diameter, more preferably ~200nm to ~30 μ m in diameter, and most preferably ~500nm to ~10 μ m in diameter) formed from materials that are biodegradable and non-toxic (*e.g.* a poly(α -hydroxy acid), a polyhydroxybutyric acid, a polyorthoester, a polyanhydride, a polycaprolactone, *etc.*), with poly(lactide-co-glycolide) are preferred, optionally treated to have a negatively-charged surface (*e.g.* with SDS) or a positively-charged surface (*e.g.* with a cationic detergent, such as CTAB).

5

I. Liposomes (Chapters 13 & 14 of ref. 82)

[0516] Examples of liposome formulations suitable for use as adjuvants are described in refs. 156-158.

10

15

J. Polyoxyethylene ether and polyoxyethylene ester formulations

[0517] Adjuvants suitable for use in the invention include polyoxyethylene ethers and polyoxyethylene esters [159]. Such formulations further include polyoxyethylene sorbitan ester surfactants in combination with an octoxynol [160] as well as polyoxyethylene alkyl ethers or ester surfactants in combination with at least one additional non-ionic surfactant such as an octoxynol [161]. Preferred polyoxyethylene ethers are selected from the following group: polyoxyethylene-9-lauryl ether (laureth 9), polyoxyethylene-9-steoryl ether, polyoxytheylene-8-steoryl ether, polyoxyethylene-4-lauryl ether, polyoxyethylene-35-lauryl ether, and polyoxyethylene-23-lauryl ether.

20 K. Phosphazenes

[0518] A phosphazene, such as poly[di(carboxylatophenoxy)phosphazene] ("PCPP") as described, for example, in references 162 and 163, may be used.

²⁵ L. Muramyl peptides

[0519] Examples of muramyl peptides suitable for use as adjuvants in the invention include N-acetyl-muramyl-L-threonyl-D-isoglutamine (thr-MDP), N-acetyl-normuramyl-L-alanyl-D-isoglutamine (nor-MDP), and N-acetylmuramyl-L-alanyl-D-isoglutaminyl-L-alanine-2-(1'-2'-dipalmitoyl-*sn*-glycero-3-hydroxyphosphoryloxy)-ethylamine MTP-PE).

30

M. Imidazoquinolone Compounds.

[0520] Examples of imidazoquinolone compounds suitable for use adjuvants in the invention include Imiquimod ("R-837") [164,165], Resiquimod ("R-848") [166], and their analogs; and salts thereof (*e.g.* the hydrochloride salts). Further details about immunostimulatory imidazoquinolines can be found in references 167 to 171.

N. Substituted ureas

[0521] Substituted ureas useful as adjuvants include compounds of formula I, II or III, or salts thereof:

40

45

55

as defined in reference 172, such as 'ER 803058', 'ER 803732', 'ER 804053', ER 804058', 'ER 804059', 'ER 804442', 'ER 804680', 'ER 804764', ER 803022 or 'ER 804057' e.g.:

³⁰ O. Further adjuvants

[0522] Further adjuvants that may be used with the invention include:

• An aminoalkyl glucosaminide phosphate derivative, such as RC-529 [173,174].

35

40

[0523] Cyclic diguanylate ('c-di-GMP'), which has been reported as a useful adjuvant for *S. aureus* vaccines [175]. **[0524]** A thiosemicarbazone compound, such as those disclosed in reference 176. Methods of formulating, manufacturing, and screening for active compounds are also described in reference 176. The thiosemicarbazones are particularly effective in the stimulation of human peripheral blood mononuclear cells for the production of cytokines, such as TNF- α . **[0525]** A tryptanthrin compound, such as those disclosed in reference 177. Methods of formulating, manufacturing, and screening for active compounds are also described in reference 177. The thiosemicarbazones are particularly effective in the stimulation of human peripheral blood mononuclear cells for the production of cytokines, such as TNF- α .

A nucleoside analog, such as: (a) Isatorabine (ANA-245; 7-thia-8-oxoguanosine):

45

55

and prodrugs thereof; (b) ANA975; (c) ANA-025-1; (d) ANA380; (e) the compounds disclosed in references 178 to 180Loxoribine (7-allyl-8-oxoguanosine) [181].

O

0

- Compounds disclosed in reference 182, including: Acylpiperazine compounds, Indoledione compounds, Tetrahyd-• raisoquinoline (THIQ) compounds, Benzocyclodione compounds, Aminoazavinyl compounds, Aminobenzimidazole quinolinone (ABIQ) compounds [183,184], Hydrapthalamide compounds, Benzophenone compounds, Isoxazole compounds, Sterol compounds, Quinazilinone compounds, Pyrrole compounds [185], Anthraguinone compounds, Quinoxaline compounds, Triazine compounds, Pyrazalopyrimidine compounds, and Benzazole compounds [186].
- 5

15

20

- Compounds containing lipids linked to a phosphate-containing acyclic backbone, such as the TLR4 antagonist E5564 [187,188]:
- 10 A polyoxidonium polymer [189,190] or other N-oxidized polyethylene-piperazine derivative.
 - Methyl inosine 5'-monophosphate ("MIMP") [191]. •
 - A polyhydroxlated pyrrolizidine compound [192], such as one having formula:
 - CHOH
- where R is selected from the group comprising hydrogen, straight or branched, unsubstituted or substituted, saturated 25 or unsaturated acyl, alkyl (e.g. cycloalkyl), alkenyl, alkynyl and aryl groups, or a pharmaceutically acceptable salt or derivative thereof. Examples include, but are not limited to: casuarine, casuarine-6-α-D-glucopyranose, 3-epi-casuarine, 7-epi-casuarine, 3,7-diepi-casuarine, etc.
- A CDId ligand, such as an α -glycosylceramide [193-200] (e.g. α -galactosylceramide), phytosphingosine-containing 30 α-glycosylceramides, OCH, KRN7000 [(2S,3S,4R)-1-O-(α-D-galactopyranosyl)-2-(N-hexacosanoylamino)-1,3,4octadecanetriol], CRONY-101, 3"-O-sulfo-galactosylceramide, etc.
 - A gamma inulin [201]or derivative thereof, such as algammulin.

35

OPO(OH)2 CH₃C H₂)₉CH₃ (HO)2OPO Hſ CH₃(CH₂)₆ (CH₂)₆CH₃ o 40 CH30 45

Adjuvant combinations

50 the following adjuvant compositions may be used in the invention: (1) a saponin and an oil-in-water emulsion [202]; (2) a saponin (e.g. QS21) + a non-toxic LPS derivative (e.g. 3dMPL) [203]; (3) a saponin (e.g. QS21) + a non-toxic LPS derivative (e.g. 3dMPL) + a cholesterol; (4) a saponin (e.g. QS21) + 3dMPL + IL-12 (optionally + a sterol) [204]; (5) combinations of 3dMPL with, for example, QS21 and/or oil-in-water emulsions [205]; (6) SAF, containing 10% squalane,

0.4% Tween 80[™], 5% pluronic-block polymer L121, and thr-MDP, either microfluidized into a submicron emulsion or 55 vortexed to generate a larger particle size emulsion. (7) Ribi™ adjuvant system (RAS), (Ribi Immunochem) containing 2% squalene, 0.2% Tween 80, and one or more bacterial cell wall components from the group consisting of monophosphorylipid A (MPL), trehalose dimycolate (TDM), and cell wall skeleton (CWS), preferably MPL + CWS (Detox™); and (8) one or more mineral salts (such as an aluminum salt) + a non-toxic derivative of LPS (such as 3dMPL).

[0526] The invention may also comprise combinations of one or more of the adjuvants identified above. For example,

[0527] Other substances that act as immunostimulating agents are disclosed in chapter 7 of ref. 82.

5

45

[0528] The use of an aluminium hydroxide and/or aluminium phosphate adjuvant is particularly preferred, and antigens are generally adsorbed to these salts. Calcium phosphate is another preferred adjuvant. Other preferred adjuvant combinations include combinations of Th1 and Th2 adjuvants such as CpG & alum or resignimod & alum. A combination of aluminium phosphate and 3dMPL may be used.

[0529] The compositions of the invention may elicit both a cell mediated immune response as well as a humoral immune response. This immune response will preferably induce long lasting (e.g. neutralising) antibodies and a cell mediated immunity that can quickly respond upon exposure to pnuemococcus.

[0530] Two types of T cells, CD4 and CD8 cells, are generally thought necessary to initiate and/or enhance cell mediated immunity and humoral immunity. CD8 T cells can express a CD8 co-receptor and are commonly referred to as Cytotoxic T lymphocytes (CTLs). CD8 T cells are able to recognized or interact with antigens displayed on MHC Class I molecules.

[0531] CD4 T cells can express a CD4 co-receptor and are commonly referred to as T helper cells. CD4 T cells are able to recognize antigenic peptides bound to MHC class II molecules. Upon interaction with a MHC class II molecule,

¹⁵ the CD4 cells can secrete factors such as cytokines. These secreted cytokines can activate B cells, cytotoxic T cells, macrophages, and other cells that participate in an immune response. Helper T cells or CD4+ cells can be further divided into two functionally distinct subsets: TH1 phenotype and TH2 phenotypes which differ in their cytokine and effector function.

[0532] Activated TH1 cells enhance cellular immunity (including an increase in antigen-specific CTL production) and

- are therefore of particular value in responding to intracellular infections. Activated TH1 cells may secrete one or more of IL-2, IFN-γ, and TNF-β. A TH1 immune response may result in local inflammatory reactions by activating macrophages, NK (natural killer) cells, and CD8 cytotoxic T cells (CTLs). A TH1 immune response may also act to expand the immune response by stimulating growth of B and T cells with IL-12. TH1 stimulated B cells may secrete IgG2a.
 [0533] Activated TH2 cells enhance antibody production and are therefore of value in responding to extracellular
- ²⁵ infections. Activated TH2 cells may secrete one or more of IL-4, IL-5, IL-6, and IL-10. A TH2 immune response may result in the production of IgGI, IgE, IgA and memory B cells for future protection.
 [0534] An enhanced immune response may include one or more of an enhanced TH1 immune response and a TH2 immune response.
- **[0535]** A TH1 immune response may include one or more of an increase in CTLs, an increase in one or more of the cytokines associated with a TH1 immune response (such as IL-2, IFN-γ, and TNF-β), an increase in activated macro-phages, an increase in NK activity, or an increase in the production of IgG2a. Preferably, the enhanced TH1 immune response will include an increase in IgG2a production.

[0536] A TH1 immune response may be elicited using a TH1 adjuvant. A TH1 adjuvant will generally elicit increased levels of IgG2a production relative to immunization of the antigen without adjuvant. TH1 adjuvants suitable for use in

- ³⁵ the invention may include for example saponin formulations, virosomes and virus like particles, non-toxic derivatives of enterobacterial lipopolysaccharide (LPS), immunostimulatory oligonucleotides. Immunostimulatory oligonucleotides, such as oligonucleotides containing a CpG motif, are preferred TH1 adjuvants for use in the invention. [0537] A TH2 immune response may include one or more of an increase in one or more of the cytokines associated with a TH2 immune response (such as IL-4, IL-5, IL-6 and IL-10), or an increase in the production of IgGI, IgE, IgA and
- 40 memory B cells. Preferably, the enhanced TH2 immune resonse will include an increase in IgGI production. [0538] A TH2 immune response may be elicited using a TH2 adjuvant. A TH2 adjuvant will generally elicit increased levels of IgG1 production relative to immunization of the antigen without adjuvant. TH2 adjuvants suitable for use in the invention include, for example, mineral containing compositions, oil-emulsions, and ADP-ribosylating toxins and detoxified derivatives thereof. Mineral containing compositions, such as aluminium salts are preferred TH2 adjuvants for use
 - in the invention. **[0539]** Preferably, the invention includes a composition comprising a combination of a TH1 adjuvant and a TH2 adjuvant. Preferably, such a composition elicits an enhanced TH1 and an enhanced TH2 response, i.e., an increase in the production of both IgGI and IgG2a production relative to *immunization* without an adjuvant. Still more preferably, the composition comprising a combination of a TH1 and a TH2 adjuvant elicits an increased TH1 and/or an increased
- TH2 immune response relative to immunization with a single adjuvant (*i.e.*, relative to immunization with a TH1 adjuvant alone or immunization with a TH2 adjuvant alone).
 [0540] The immune response may be one or both of a TH1 immune response and a TH2 response. Preferably, immune response provides for one or both of an enhanced TH1 response and an enhanced TH2 response.
- [0541] The enhanced immune response may be one or both of a systemic and a mucosal immune response. Preferably, the immune response provides for one or both of an enhanced systemic and an enhanced mucosal immune response. Preferably the mucosal immune response is a TH2 immune response. Preferably, the mucosal immune response includes an increase in the production of IgA.

[0542] S. aureus infections can affect various areas of the body and so the compositions of the invention may be

prepared in various forms. For example, the compositions may be prepared as injectables, either as liquid solutions or suspensions. Solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection can also be prepared *(e.g. a lyophilised composition or a spray-freeze dried composition)*. The composition may be prepared for topical administration *e.g.* as an ointment, cream or powder. The composition may be prepared for oral administration *e.g.* as

- ⁵ a tablet or capsule, as a spray, or as a syrup (optionally flavoured). The composition may be prepared for pulmonary administration *e.g.* as an inhaler, using a fine powder or a spray. The composition may be prepared as a suppository or pessary. The composition may be prepared for nasal, aural or ocular administration *e.g.* as drops. The composition may be in kit form, designed such that a combined composition is reconstituted just prior to administration to a patient. Such kits may comprise one or more antigens in liquid form and one or more lyophilised antigens.
- [0543] Where a composition is to be prepared extemporaneously prior to use (*e.g.* where a component is presented in lyophilised form) and is presented as a kit, the kit may comprise two vials, or it may comprise one ready-filled syringe and one vial, with the contents of the syringe being used to reactivate the contents of the vial prior to injection.
 [0544] Immunogenic compositions used as vaccines comprise an immunologically effective amount of antigen(s), as
- well as any other components, as needed. By 'immunologically effective amount', it is meant that the administration of that amount to an individual, either in a single dose or as part of a series, is effective for treatment or prevention. This amount varies depending upon the health and physical condition of the individual to be treated, age, the taxonomic group of individual to be treated (e.g. non-human primate, primate, etc.), the capacity of the individual's immune system to synthesise antibodies, the degree of protection desired, the formulation of the vaccine, the treating doctor's assessment of the medical situation, and other relevant factors. It is expected that the amount will fall in a relatively broad range that
- can be determined through routine trials. Where more than one antigen is included in a composition then two antigens may be present at the same dose as each other or at different doses.
 [0545] As mentioned above, a composition may include a temperature protective agent, and this component may be particularly useful in adjuvanted compositions (particularly those containing a mineral adjuvant, such as an aluminium salt). As described in reference 206, a liquid temperature protective agent may be added to an aqueous vaccine com-
- ²⁵ position to lower its freezing point *e.g.* to reduce the freezing point to below 0°C. Thus the composition can be stored below 0°C, but above its freezing point, to inhibit thermal breakdown. The temperature protective agent also permits freezing of the composition while protecting mineral salt adjuvants against agglomeration or sedimentation after freezing and thawing, and may also protect the composition at elevated temperatures *e.g.* above 40°C. A starting aqueous vaccine and the liquid temperature protective agent may be mixed such that the liquid temperature protective agent
- ³⁰ forms from 1-80% by volume of the final mixture. Suitable temperature protective agents should be safe for human administration, readily miscible/soluble in water, and should not damage other components (*e.g.* antigen and adjuvant) in the composition. Examples include glycerin, propylene glycol, and/or polyethylene glycol (PEG). Suitable PEGs may have an average molecular weight ranging from 200-20,000 Da. In a preferred embodiment, the polyethylene glycol can have an average molecular weight of about 300 Da ('PEG-300').
- ³⁵ **[0546]** The invention provides an immunogenic composition comprising: (i) one or more antigen(s) selected from the first, second, third or fourth antigen groups; and (ii) a temperature protective agent. This composition may be formed by mixing (i) an aqueous composition comprising one or more antigen(s) selected from the first, second, third or fourth antigen groups, with (ii) a temperature protective agent. The mixture may then be stored *e.g.* below 0°C, from 0-20°C, from 20-35°C, from 35-55°C, or higher. It may be stored in liquid or frozen form. The mixture may be lyophilised. The
- 40 composition may alternatively be formed by mixing (i) a dried composition comprising one or more antigen(s) selected from the first, second, third or fourth antigen groups, with (ii) a liquid composition comprising the temperature protective agent. Thus component (ii) can be used to reconstitute component (i).

Methods of treatment, and administration of the vaccine

45

50

[0547] The invention also provides a method for raising an immune response in a mammal comprising the step of administering an effective amount of a composition of the invention. The immune response is preferably protective and preferably involves antibodies and/or cell-mediated immunity. The method may raise a booster response.

[0548] The invention also provides at least two antigens of the invention for combined use as a medicament *e.g.* for use in raising an immune response in a mammal.

[0549] The invention also provides the use of at least two antigens of the invention in the manufacture of a medicament for raising an immune response in a mammal.

[0550] By raising an immune response in the mammal by these uses and methods, the mammal can be protected against *S.aureus* infection, including a nosocomial infection. More particularly, the mammal may be protected against a skin infection, pneumonia, meningitis, osteomyelitis endocarditis, toxic shock syndrome, and/or septicaemia.

⁵⁵ a skin infection, pneumonia, meningitis, osteomyelitis endocarditis, toxic shock syndrome, and/or septicaemia. [0551] The invention also provides a kit comprising a first component and a second component wherein neither the first component nor the second component is a composition of the invention as described above, but wherein the first component and the second component can be combined to provide a composition of the invention as described above.

The kit may further include a third component comprising one or more of the following: instructions, syringe or other delivery device, adjuvant, or pharmaceutically acceptable formulating solution.

[0552] The invention also provides a delivery device pre-filled with an immunogenic composition of the invention.

- **[0553]** The mammal is preferably a human. Where the vaccine is for prophylactic use, the human is preferably a child (*e.g.* a toddler or infant) or a teenager; where the vaccine is for therapeutic use, the human is preferably a teenager or an adult. A vaccine intended for children may also be administered to adults *e.g.* to assess safety, dosage, immunogenicity, *etc.* Other mammals which can usefully be immunised according to the invention are cows, dogs, horses, and pigs.
- **[0554]** One way of checking efficacy of therapeutic treatment involves monitoring *S.aureus* infection after administration of the compositions of the invention. One way of checking efficacy of prophylactic treatment involves monitoring immune responses, systemically (such as monitoring the level of IgGI and IgG2a production) and/or mucosally (such as monitoring the level of IgA production), against the antigens in the compositions of the invention after administration of the composition. Typically, antigen-specific serum antibody responses are determined post-immunisation but prechallenge whereas antigen-specific mucosal antibody responses are determined post-immunisation and post-challenge.
- ¹⁵ **[0555]** Another way of assessing the immunogenicity of the compositions of the present invention is to express the proteins recombinantly for screening patient sera or mucosal secretions by immunoblot and/or microarrays. A positive reaction between the protein and the patient sample indicates that the patient has mounted an immune response to the protein in question. This method may also be used to identify immunodominant antigens and/or epitopes within antigens. **[0556]** The efficacy of vaccine compositions can also be determined *in vivo* by challenging animal models of *S.aureus*
- 20 infection, e.g., guinea pigs or mice, with the vaccine compositions. In particular, there are three useful animal models for the study of *S.aureus* infectious disease, namely: (i) the murine abscess model [207], (ii) the murine lethal infection model [207] and (iii) the murine pneumonia model [208]. The abscess model looks at abscesses in mouse kidneys after intravenous challenge. The lethal infection model looks at the number of mice which survive after being infected by a normally-lethal dose of *S.aureus* by the intravenous or intraperitoneal route. The pneumonia model also looks at the
- ²⁵ survival rate, but uses intranasal infection. A useful vaccine may be effective in one or more of these models. For instance, for some clinical situations it may be desirable to protect against pneumonia, without needing to prevent hematic spread or to promote opsonisation; in other situations the main desire may be to prevent hematic spread. Different antigens, and different antigen combinations, may contribute to different aspects of an effective vaccine.
- [0557] Compositions of the invention will generally be administered directly to a patient. Direct delivery may be accomplished by parenteral injection (*e.g.* subcutaneously, intraperitoneally, intravenously, intramuscularly, or to the interstitial space of a tissue), or mucosally, such as by rectal, oral (*e.g.* tablet, spray), vaginal, topical, transdermal or transcutaneous, intranasal, ocular, aural, pulmonary or other mucosal administration.
 [0558] The invention may be used to elicit systemic and/or mucosal immunity, preferably to elicit an enhanced systemic

and/or mucosal immunity.
 ³⁵ [0559] Preferably the enhanced systemic and/or mucosal immunity is reflected in an enhanced TH1 and/or TH2

immune response. Preferably, the enhanced immune response includes an increase in the production of IgGI and/or IgG2a and/or IgA.

40

[0560] Dosage can be by a single dose schedule or a multiple dose schedule. Multiple doses may be used in a primary immunisation schedule and/or in a booster immunisation schedule. In a multiple dose schedule the various doses may be given by the same or different routes *e.g.* a parenteral prime and mucosal boost, a mucosal prime and parenteral boost, *etc.* Multiple doses will typically be administered at least 1 week apart (*e.g.* about 2 weeks, about 3 weeks, about

4 weeks, about 6 weeks, about 8 weeks, about 10 weeks, about 12 weeks, about 16 weeks, *etc.*). [0561] Vaccines prepared according to the invention may be used to treat both children and adults. Thus a human

- patient may be less than 1 year old, 1-5 years old, 5-15 years old, 15-55 years old, or at least 55 years old. Preferred
 patients for receiving the vaccines are the elderly (*e.g.* ≥50 years old, ≥60 years old, and preferably ≥65 years), the young (*e.g.* ≤5 years old), hospitalised patients, healthcare workers, armed service and military personnel, pregnant women, the chronically ill, or immunodeficient patients. The vaccines are not suitable solely for these groups, however, and may be used more generally in a population.
- [0562] Vaccines produced by the invention may be administered to patients at substantially the same time as (e.g. during the same medical consultation or visit to a healthcare professional or vaccination centre) other vaccines e.g. at substantially the same time as an influenza vaccine, a measles vaccine, a mumps vaccine, a rubella vaccine, a MMR vaccine, a varicella vaccine, a MMRV vaccine, a diphtheria vaccine, a tetanus vaccine, a pertussis vaccine, a DTP vaccine, a conjugated *H.influenzae* type b vaccine, an inactivated poliovirus vaccine, a hepatitis B virus vaccine, a meningococcal conjugate vaccine (such as a tetravalent A-C-W135-Y vaccine), a respiratory syncytial virus vaccine,
- 55 etc. Further non-staphylococcal vaccines suitable for co-administration may include one or more antigens listed on pages 33-46 of reference 51.

Nucleic acid immunisation

5

30

[0563] The immunogenic compositions described above include polypeptide antigens from *S.aureus*. In all cases, however, the polypeptide antigens can be replaced by nucleic acids (typically DNA) encoding those polypeptides, to give compositions, methods and uses based on nucleic acid immunisation. Nucleic acid immunisation is now a developed field (*e.g.* see references 209 to 216 *etc.*).

[0564] The nucleic acid encoding the immunogen is expressed *in vivo* after delivery to a patient and the expressed immunogen then stimulates the immune system. The active ingredient will typically take the form of a nucleic acid vector comprising: (i) a promoter; (ii) a sequence encoding the immunogen, operably linked to the promoter; and optionally (iii)

- a selectable marker. Preferred vectors may further comprise (iv) an origin of replication; and (v) a transcription terminator downstream of and operably linked to (ii). In general, (i) & (v) will be eukaryotic and (iii) & (iv) will be prokaryotic.
 [0565] Preferred promoters are viral promoters e.g. from cytomegalovirus (CMV). The vector may also include transcriptional regulatory sequences (e.g. enhancers) in addition to the promoter and which interact functionally with the promoter. Preferred vectors include the immediate-early CMV enhancer/promoter, and more preferred vectors also
- ¹⁵ include CMV intron A. The promoter is operably linked to a downstream sequence encoding an immunogen, such that expression of the immunogen-encoding sequence is under the promoter's control.
 [0566] Where a marker is used, it preferably functions in a microbial host (e.g. in a prokaryote, in a bacteria, in a yeast). The marker is preferably a prokaryotic selectable marker (e.g. transcribed under the control of a prokaryotic

yeast). The marker is preferably a prokaryotic selectable marker (e.g. transcribed under the control of a prokaryotic promoter). For convenience, typical markers are antibiotic resistance genes.

²⁰ **[0567]** The vector of the invention is preferably an autonomously replicating episomal or extrachromosomal vector, such as a plasmid.

[0568] The vector of the invention preferably comprises an origin of replication. It is preferred that the origin of replication is active in prokaryotes but not in eukaryotes.

[0569] Preferred vectors thus include a prokaryotic marker for selection of the vector, a prokaryotic origin of replication, but a eukaryotic promoter for driving transcription of the immunogen-encoding sequence. The vectors will therefore (a) be amplified and selected in prokaryotic hosts without polypeptide expression, but (b) be expressed in eukaryotic hosts without being amplified. This arrangement is ideal for nucleic acid immunization vectors.

[0570] The vector of the invention may comprise a eukaryotic transcriptional terminator sequence downstream of the coding sequence. This can enhance transcription levels. Where the coding sequence does not have its own, the vector of the invention preferably comprises a polyadenylation sequence. A preferred polyadenylation sequence is from bovine growth hormone.

[0571] The vector of the invention may comprise a multiple cloning site

[0572] In addition to sequences encoding the immunogen and a marker, the vector may comprise a second eukaryotic coding sequence. The vector may also comprise an IRES upstream of said second sequence in order to permit translation

³⁵ of a second eukaryotic polypeptide from the same transcript as the immunogen. Alternatively, the immunogen-coding sequence may be downstream of an IRES.

[0573] The vector of the invention may comprise unmethylated CpG motifs *e.g.* unmethylated DNA sequences which have in common a cytosine preceding a guanosine, flanked by two 5' purines and two 3' pyrimidines. In their unmethylated form these DNA motifs have been demonstrated to be potent stimulators of several types of immune cell.

- 40 [0574] Vectors may be delivered in a targeted way. Receptor-mediated DNA delivery techniques are described in, for example, references 217 to 222. Therapeutic compositions containing a nucleic acid are administered in a range of about 100ng to about 200mg of DNA for local administration in a gene therapy protocol. Concentration ranges of about 500 ng to about 50 mg, about 1µg to about 2 mg, about 5µg to about 500µg, and about 20µg to about 100µg of DNA can also be used during a gene therapy protocol. Factors such as method of action (e.g. for enhancing or inhibiting
- ⁴⁵ levels of the encoded gene product) and efficacy of transformation and expression are considerations which will affect the dosage required for ultimate efficacy. Where greater expression is desired over a larger area of tissue, larger amounts of vector or the same amounts re-administered in a successive protocol of administrations, or several administrations to different adjacent or close tissue portions may be required to effect a positive therapeutic outcome. In all cases, routine experimentation in clinical trials will determine specific ranges for optimal therapeutic effect.
- [0575] Vectors can be delivered using gene delivery vehicles. The gene delivery vehicle can be of viral or non-viral origin (see generally references 223 to 226).
 [0576] Viral-based vectors for delivery of a desired nucleic acid and expression in a desired cell are well known in the art. Exemplary viral-based vehicles include, but are not limited to, recombinant retroviruses (e.g. references 227 to 237),
- alphavirus-based vectors (*e.g.* Sindbis virus vectors, Semliki forest virus (ATCC VR-67; ATCC VR-1247), Ross River
 virus (ATCC VR-373; ATCC VR-1246) and Venezuelan equine encephalitis virus (ATCC VR-923; ATCC VR-1250; ATCC VR 1249; ATCC VR-532); hybrids or chimeras of these viruses may also be used), poxvirus vectors (e.g. vaccinia, fowlpox, canarypox, modified vaccinia Ankara, *etc.*), adenovirus vectors, and adeno-associated virus (AAV) vectors (*e.g.* see refs. 238 to 243). Administration of DNA linked to killed adenovirus [244] can also be employed.
[0577] Non-viral delivery vehicles and methods can also be employed, including, but not limited to, polycationic condensed DNA linked or unlinked to killed adenovirus alone *[e.g.* 244], ligand-linked DNA [245], eukaryotic cell delivery vehicles cells *[e.g.* refs. 246 to 250] and nucleic charge neutralization or fusion with cell membranes. Naked DNA can also be employed. Exemplary naked DNA introduction methods are described in refs. 251 and 252. Liposomes *(e.g.*

⁵ immunoliposomes) that can act as gene delivery vehicles are described in refs. 253 to 257. Additional approaches are described in references 258 & 259.

[0578] Further non-viral delivery suitable for use includes mechanical delivery systems such as the approach described in ref. 259. Moreover, the coding sequence and the product of expression of such can be delivered through deposition of photopolymerized hydrogel materials or use of ionizing radiation *[e.g.* refs. 260 & 261]. Other conventional methods for gene delivery that can be used for delivery of the coding sequence include, for example, use of hand-held gene

for gene delivery that can be used for delivery of the coding sequence include, for example, use of hand-held gene transfer particle gun [262] or use of ionizing radiation for activating transferred genes [260 & 261].
[0579] Delivery DNA using PLG {poly(lactide-co-glycolide)} microparticles is a particularly preferred method *e.g.* by adsorption to the microparticles, which are optionally treated to have a negatively-charged surface *(e.g.* treated with

SDS) or a positively-charged surface (e.g. treated with a cationic detergent, such as CTAB).

15

30

40

S.epidermidis

[0580] Although the invention focuses on *S.aureus*, the inventors also realise that the sta006 and sta011 antigens have homologs in *S.epidermidis*. For example, SEQ ID NO: 234 is the 'iron (Fe+3) ABC superfamily ATP binding cassette transporter, binding protein' from *S.epidermidis* strain M23864:W1, with 73% identity to SEQ ID NO: 42 (sta006), and SEQ ID NO: 235 is the 'putative lipoprotein' from *S.epidermidis* strain RP62A, with 67% identity to SEQ ID NO: 47 (sta011). *S.epidermidis* is commonly present on human skin and can sometimes cause illness. Infection is usually associated with medical devices, such as catheters, and is a cause of nosocomial infections. The results disclosed herein for sta006 and sta011 against *S.aureus* suggest that the homologous proteins in *S. epidermidis* could be useful for immunising against this pathogen.

[0581] The invention provides an immunogenic composition comprising:

(i) a polypeptide comprising an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 234; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 234, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more); and/or

(ii) a polypeptide comprising an amino acid sequence: (a) having 50% or more identity (*e.g.* 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more) to SEQ ID NO: 235; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 235, wherein 'n' is 7 or more (*e.g.* 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 or more).

[0582] The composition may also include an adjuvant. These compositions are particularly useful for immunising a mammal (including a human) against *S.epidermidis* infection.

[0583] Preferred fragments of (b) comprise an epitope from SEQ ID NO: 234 or 235, respectively. Other preferred fragments lack one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the C-terminus and/or one or more amino acids (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25 or more) from the N-terminus of SEQ ID NO: 234/235 while retaining at least one epitope of SEQ ID NO: 234/235.

⁴⁵ **[0584]** More generally, the invention provides the use of the sta006 and/or sta011 homolog from any *Staphylococcus* species for immunising a mammal against that species.

Antibodies

- ⁵⁰ [0585] Antibodies against *S. aureus* antigens can be used for passive immunisation. Thus the invention provides an antibody which is specific for an antigen in the first, second, third or fourth antigen groups. The invention also provides the use of such antibodies in therapy. The invention also provides the use of such antibodies in the manufacture of a medicament. The invention also provides a method for treating a mammal comprising the step of administering an effective amount of an antibody of the invention. As described above for immunogenic compositions, these methods and uses allow a mammal to be protected against *S. aureus* infection.
- ⁵⁵ and uses allow a mammal to be protected against S.aureus infection. [0586] The term "antibody" includes intact immunoglobulin molecules, as well as fragments thereof which are capable of binding an antigen. These include hybrid (chimeric) antibody molecules [263, 264]; F(ab')2 and F(ab) fragments and Fv molecules; non-covalent heterodimers [265, 266]; single-chain Fv molecules (sFv) [267]; dimeric and trimeric antibody

fragment constructs; minibodies [268, 269]; humanized antibody molecules [270-272]; and any functional fragments obtained from such molecules, as well as antibodies obtained through non-conventional processes such as phage display. Preferably, the antibodies are monoclonal antibodies. Methods of obtaining monoclonal antibodies are well known in the art. Humanised or fully-human antibodies are preferred.

5

10

15

General

[0587] The practice of the present invention will employ, unless otherwise indicated, conventional methods of chemistry, biochemistry, molecular biology, immunology and pharmacology, within the skill of the art. Such techniques are explained fully in the literature. See, *e.g.*, references 273-280, *etc.*

[0588] "GI" numbering is used above. A GI number, or "GenInfo Identifier", is a series of digits assigned consecutively to each sequence record processed by NCBI when sequences are added to its databases. The GI number bears no resemblance to the accession number of the sequence record. When a sequence is updated (*e.g.* for correction, or to add more annotation or information) then it receives a new GI number. Thus the sequence associated with a given GI number is never changed.

- **[0589]** Where the invention concerns an "epitope", this epitope may be a B-cell epitope and/or a T-cell epitope. Such epitopes can be identified empirically (*e.g.* using PEPSCAN [281,282] or similar methods), or they can be predicted (*e.g.* using the Jameson-Wolf antigenic index [283], matrix-based approaches [284], MAPITOPE [285], TEPITOPE [286,287], neural networks [288], OptiMer & EpiMer [289, 290], ADEPT [291], Tsites [292], hydrophilicity [293], antigenic
- 20 index [294] or the methods disclosed in references 295-299, etc.). Epitopes are the parts of an antigen that are recognised by and bind to the antigen binding sites of antibodies or T-cell receptors, and they may also be referred to as "antigenic determinants".

[0590] Where an antigen "domain" is omitted, this may involve omission of a signal peptide, of a cytoplasmic domain, of a transmembrane domain, of an extracellular domain, *etc.*

²⁵ **[0591]** The term "comprising" encompasses "including" as well as "consisting" *e.g.* a composition "comprising" X may consist exclusively of X or may include something additional *e.g.* X + Y.

[0592] The term "about" in relation to a numerical value x is optional and means, for example, $x \pm 10\%$.

[0593] References to a percentage sequence identity between two amino acid sequences means that, when aligned, that percentage of amino acids are the same in comparing the two sequences. This alignment and the percent homology or sequence identity can be determined using software programs known in the art, for example those described in section 7.7.18 of ref. 300. A preferred alignment is determined by the Smith-Waterman homology search algorithm using an affine gap search with a gap open penalty of 12 and a gap extension penalty of 2, BLOSUM matrix of 62. The Smith-

35 BRIEF DESCRIPTION OF DRAWINGS

Waterman homology search algorithm is disclosed in ref. 301.

[0594]

40

45

Figure 1 shows bacterial counts (Log cfu/ml) after challenge of mice previously immunised with the indicated antigens.

Figures 2 to 4 show survival (%) after challenge of mice previously immunised with various mixtures of antigens over 14 days. In Figure 2, the six groups from SA-10-a are, from top to bottom at day 14. groups (i), (iii) & (iv) together, (ii), IsdB, then the negative control. In Figure 3, the six groups from SA-10-a are, from top to bottom at day 14. groups (i), (iii) & (iv) together, (ii), IsdB, then the negative control. In Figure 3, the six groups from SA-10-b are, from top to bottom at day 14.

groups (iii), (i), (iv), (ii) and IsdB together, then the negative control. In Figure 4, the six groups from SA-14 are, from top to bottom at day 14. groups (iv), (ii), (i), (iii), negative control, and IsdB.

⁵⁰ Figure 5 shows collected data on mouse survival from four different experiments after challenge of mice previously immunised with various compositions (PBS negative control; IsdB antigen; and "Combo-1" and "Combo-2" antigen combinations of the invention). Individual symbols show the survival duration of individual mice; the horizontal bar for each group shows the median survival duration; the percentage figures are survival 14 days after challenge; and the p values at the top are t-Test comparisons of median survival durations between groups.

55

Figure 6 shows the number of colony forming units (cfu) in mouse kidneys after infection with 9x10⁶ cfu of Newman strain in the abscess model. Horizontal bars are averages per group, and the figure beneath each group is the log reduction relative to the PBS control group.

Figure 7 shows bacterial count (log CFU/ml) in kidneys of mice in an abscess model experiment. Mice were challenged with the following strains: (A) MW2; (B) LAC; (C) Staph19; or (D) MU50. Each point is an individual animal and the bar shows the median count per group. Mice had been immunised as shown on the x-axis label.

⁵ Figure 8 shows the formation of Sta011 oligomers in the presence of increasing concentrations of Ca⁺⁺ ions. Numbers indicate mM concentrations, and a * indicates the presence of 50mM EDTA.

Figure 9 shows IgG titers against (A) EsxAB (B) Sta006 (C) HIa-H35L (D) Sta011. Each graph has three groups, with a pair of bars per group. The right-hand bar in a pair shows pre-immune IgG and the left-hand bar shows post-immune IgG. The three groups are the compositions used for immunising and, from left to right, are: negative control of adjuvant alone; the Combo 1 combination; and the relevant antigen alone.

Figure 10 shows bacterial counts values (log CFU/ml) in mice after challenge with the indicated strains. Each point is an individual animal and the bar shows the median CFU. The P value beneath the IsdB and Combo columns is a comparison against the adjuvant-only control.

Figure 11 shows the area of abscesses (mm²) in mice after challenge with Newman strain.

Figure 12 shows days of survival of mice after challenge with four different strains: Newman (\bigcirc), ST-80 (\square), USA300-20 FPR3757 (Δ) or USA300-Lac (x) strains. Each point is an individual animal, the bar shows the median survival, and the heading number shows the % of animals surviving after 15 days. Mice received aluminium hydroxide adjuvant alone, IsdB or Combo1.

Figure 13 shows the median survival (days) of mice after challenge. The mice had been immunised with the antigens
 indicated on the X-axis. Each point is an individual animal and the bar shows the median survival. The heading numbers show the % of animals surviving after 15 days.

MODES FOR CARRYING OUT THE INVENTION

30 Antigen selection

10

15

[0595] *S.aureus* proteins have been selected for use as vaccine components based on various criteria.

[0596] IsdA is a surface protein involved in iron uptake. It is detectable with a high molecular weight (>250kDa) in immunoblots of whole cell lysates and cell wall fractions of *S. aureus*. Furthermore, labelled anti-IsdA antibodies revealed extracellular structures. These structures were seen in a variety of growth and infection conditions, including iron positive

- conditions (in which IsdA expression is reported to be suppressed). The structures have a tail up to 4μ m long, with a typical orientation parallel to the mammalian cell surface. Detached IsdA-positive structures were observed to adhere on the surface of epithelial cells, but lose cell junction localization. Epithelia/bacteria interaction may stimulate expression of the structures. In addition, the inventors have found that IsdA is well conserved between different strains (present in
- 40 36/36 strains tested; see below), thus offering protection across a broad population of circulating strains. Iron uptake is important for virulence, so the protein is likely to be available for immune attack at pathological stages of the bacterial life cycle. The inventors have found that the protein is not cytotoxic to human cells (see below). The protein can also adsorb reasonably well to aluminium hydroxide (see below), which is useful for stable formulation for delivery to humans. It is useful for providing an immune response to prevent hematic spread of the bacterium.
- 45 [0597] EsxA and EsxB are small acidic dimeric secreted proteins. The inventors have found that EsxA is highly conserved between different strains (present in 36/36 strains tested; see below), while EsxB is present in 25/36 strains. The proteins are involved in persisting an infection and so are likely to be available for immune attack at pathological stages of the bacterial life cycle. The inventors have found that a fusion of EsxA and EsxB ('EsxAB') is not cytotoxic to human cells (see below). It can also adsorb well to aluminium hydroxide (see below), which is useful for stable formulation
- ⁵⁰ for delivery to humans. Thus the antigens are useful for providing an immune response to prevent hematic spread of the bacterium.

[0598] Hla is a pore-forming secreted toxin. This protein is well conserved between different strains (present in 36/36 strains tested; see below), thus offering protection across a broad population of circulating strains. It is an important virulence factor so is likely to be available for immune attack at pathological stages of the bacterial life cycle. It is not

⁵⁵ cytotoxic to human cells (see below). The protein can adsorb reasonably well to aluminium hydroxide (see below), which is useful for stable formulation for delivery to humans. It is useful for providing an immune response to prevent pneumonia.
 [0599] Spa is a surface protein involved in Fc binding. The inventors have found that this protein is well conserved between different strains (present in 36/36 strains tested), thus offering protection across a broad population of circulating

strains. It is important for virulence so is likely to be available for immune attack at pathological stages of the bacterial life cycle. The protein can also adsorb reasonably well to aluminium hydroxide (see below), which is useful for stable formulation for delivery to humans. It is useful for providing an immune response to prevent hematic spread of the bacterium.

- ⁵ **[0600]** Sta006 (also known as FhuD2) is a surface protein involved in iron uptake. The inventors have found that this protein is well conserved between different strains (present in 36/36 strains tested; see below), thus offering protection across a broad population of circulating strains. The inventors have found that the protein is not cytotoxic to human cells (see below). The protein can also adsorb well to aluminium hydroxide (see below), which is useful for stable formulation for delivery to humans. It is useful for providing an immune response to prevent hematic spread of the bacterium.
- 10 **[0601]** Sta011 is a surface lipoprotein. The inventors have found that this protein is well conserved between different strains (present in 36/36 strains tested; see below), thus offering protection across a broad population of circulating strains. The inventors have found that the protein is not cytotoxic to human cells (see below). The protein can also adsorb reasonably well to aluminium hydroxide (see below), which is useful for stable formulation for delivery to humans. It is useful for providing an immune response to prevent hematic spread of the bacterium. This protein has been shown
- ¹⁵ to assemble into oligomers in the presence of Ca⁺⁺ ions, but not Mg⁺⁺ ions (see Figure 8). These experiments used 5µg recombinant tag-free Sta011, incubated at 37°C for 25 minutes with increasing CaCl₂ concentrations from 0.5-50mM, then analysed by gel electrophoresis on a clear native gel. A mobility shift (indicating oligomerisation) was evident from 2mM Ca⁺⁺, and particularly >5mM. These levels compare to blood Ca⁺⁺ concentrations of about 1.2mM, serum concentrations of about 11mM, and milk concentrations of about 32mM. EDTA reversed the shift.
- [0602] Surface digestion [302] and/or analysis of secreted proteins revealed peptide fragments from ClfA, ClfB, coA, eap, ebhA, ebpS, efb, emp, FnBA, FnBB, hla, IsdA, IsdB, IsdH, ukD, lukS, sdrD, sdrE, sasB, sasD, sasF, spa, sta001, sta002, sta003, sta004, sta005, sta006, sta007, sta008, sta009, sta010, sta011, sta019, sta023, sta024, sta028, sta036, sta040, sta049, sta050, sta054, sta057, sta064, sta065, sta073, sta095, sta096, sta098, sta100, sta101, sta102, sta103, sta105, sta107, sta108, sta109, sta111, sta112, sta113, sta115, sta116, sta117, sta118, sta120, NW_06, NW_07, NW_
 08 NW, 09 and NW, 10 e a, SEQ ID NOS: 228 and 229 were identified as fragments of sta019
- 08, NW_09 and NW_10 *e.g.* SEQ ID NOs: 228 and 229 were identified as fragments of sta019.
 [0603] Conjugated capsular saccharides are useful for providing opsonic immunity. Serotypes 5 and 8 cover about 85% of clinical isolates.

Strain coverage

30

[0604] A panel of 36 clinical isolates was used to represent circulating strains, including strains belonging to the five clonal lineages representing the vast majority of worldwide circulating CA-MRSA (community-associated methicillin-resistant *S.aureus*). HA-MRSA (hospital-associated MRSA) and non-MRSA strains were also included. Overall the panel included 9 HA-MRSA strains, 7 CA-MRSA strains, 2 MRSA strains, and 18 other strains.

- ³⁵ **[0605]** Genes encoding IsdA, Hla, EsxA, Sta006, Sta011, Spa, and ClfB were present in all 36 strains. The gene for EsxB was absent from 11/36 strains, and the gene for SdrD was absent from 6/36 strains.
- [0606] The encoded IsdA sequences were 95-100% identical across the panel, and the protein was expressed in iron-limited conditions in the stationary growth phase. The encoded SdrD sequences were 95-100% identical in the 30/36 SdrD^{+ve} panel members. The encoded EsxA sequences were 100% identical across the panel; the encoded EsxB sequences were 95-100% identical in the 25 EsxB^{+ve} strains. The encoded ClfB sequences were 93-100% identical across the panel, and this protein was also found to be highly surface-exposed in the early exponential growth phase. [0607] Conservation in the encoded amino acid sequences were as follows (% identity):

45

Antigen	IsdA	ClfB	SdrD	Spa	Hla	EsxA	EsxB	Sta006
%	95-100	97-100	88-100	98-100	97-100	100	95-100	99.7-100

50

55

[0608] A larger panel of 61 strains was screened for the presence of genes encoding HIa and Sta006, as well as for their expression. This panel covered both MRSA and MSSA strains, a variety of geographical origins, and a variety of ST and clonal complex types. 9/61 strains did not express HIa, whereas all but one strain expressed Sta006 (data for the 61st strain were inconclusive). Thus a vaccine based on HIa alone is unlikely to give adequate coverage for a universal vaccine, but this problem could be overcome by addition of Sta006.

Cytotoxicity and cell binding studies

[0609] The analysis of the potential cellular cytotoxicity by *S.aureus* recombinant antigens Hla, Hla-H35L, IsdA, IsdB, sta006, sta011 and EsxAB was conducted on HBMECs and A549 cells. Annexin V and propidium iodide staining were

used to measure the percentage of early and late apoptotic cells by flow cytometry. Endothelial cells were grown in 24 well plates up to fully confluent. Cells were then incubated for 24 hours with three different concentration of recombinant antigens (10μg/ml, 1μg/ml, 0.1 μg/ml). The combination of TNF-α and cycloheximide (CHX), which has been reported to induce apoptosis in endothelial cells, was used as a positive control. Incubation with PBS buffer alone was a negative control. Analysis was then performed by FACS.

- [0610] None of the antigens induced a cytotoxic effect on HBMECs or A549 cells. Indeed, the percentage of live cell population compared to control cells remained essentially constant up to 24 hours of incubation. In contrast, the combination of TNF- α and CHX induced a 25% increase in the number of apoptotic cells.
- [0611] HBMECs were also used as an *in vitro* model for testing the binding of *S.aureus* recombinant antigens to 10 human endothelial cells. HBMECs were grown up to confluence at 37°C in humidified atmosphere in RPMI 1640 medium supplemented with 10% heat-inactivated fetal calf serum, 10% NuSerum, 2mM glutamine, 1 mM pyruvate, 1% nonessential amino acids, 1% MEM vitamins, 100 units/ml penicillin, and 100 µg/ml streptomycin. Binding of recombinant antigens to the cells was tested by indirect immunofluorescence and analyzed by FACS. The cells positive for binding were measured as net mean intensity of fluorescence respect to negative controls, identified as unspecific antibody
- 15 recognition. Binding experiments were performed at 4°C. Mouse polyclonal antibodies specific for each of the recombinant antigens were used as primary antibodies and binding was detected by R-Phycoerythrin-conjugated goat anti-mouse IgG secondary antibody. As negative control, HBMECs were incubated with primary polyclonal antibodies detected by fluorescence-labeled secondary antibody or fluorescence-labeled secondary antibody alone. Binding of a known surfaced-exposed GBS antigen was used as positive control.
- 20 [0612] Hla and Hla-H35L were the only antigens able to strongly bind to endothelial cells. The haemolytic activity of these two antigens was also tested.

[0613] De-fibrinated sheep and rabbit blood were used to measure their haemolytic activity by spectrophotometric assay. The blood was incubated at 37°C for 30 minutes with serial dilution 1:4 of the two proteins. Incubation with water, to cause osmotic lysis, and incubation with a S.pyogenes protein, were positive controls; as negative control, the blood was incubated with PBS+ BSA 0.5%.

25

[0614] Recombinant native HIa, but not its H35L mutant form, showed haemolytic activity on rabbit erythrocytes. The mutant was at least 150-fold less haemolytic than wild-type. Both proteins had no haemolytic activity on sheep blood. [0615] Thus the S.aureus recombinant vaccine candidates do not show any cytotoxicity both on A549 epithelial cell line and HBMEC endothelial cell line. Importantly, HIa, a secreted toxin known to form pores into the plasma membrane

30 of host cells, could bind A549 cells but did not induce cytotoxicity on them; it was also able to induce haemolysis of rabbit erythrocytes. In contrast, recombinant Hla-H35L, a variant toxin with a single amino acid substitution that cannot form cytolytic pores, did not induce cellular damage in both human cell lines and rabbit erythrocytes. These findings indicate that this mutant form of HIa may be more safely used in a vaccine composition. None of the other antigens showed the capacity to bind to host cells.

Adjuvant formulation

35

40

5

[0616] Selected S.aureus protein antigen candidates have been formulated with aluminium hydroxide, either individually or as a combination of proteins, with or without capsular polysaccharide conjugate(s). The formulations have been optimized for pH and osmolarity.

[0617] The antigens were EsxA-B, Sta006, Sta011, Hla-H35L, SdrD, IsdA, IsdA₄₀₋₁₈₄, Sta019, Sta021, Sta073, ClfB₄₅₋₅₅₂, SdrD₅₃₋₅₉₂, SasF, and IsdB. These are formulated as monovalent antigens at 100µg/ml, or as combinations at 50µg/ml each. Capsular saccharide conjugates from type 5 or type 8 strains are added at 5µg/ml, 10µg/ml or 25µg/ml. Aluminium hydroxide was used at 2mg/ml, in a 10mM histidine buffer (pH 6.5) and with 9mg/ml NaCl.

45 [0618] All monovalent and combination formulations, with or without conjugates, could be adjusted with respect to a desired pH and osmolality. The formulations had pH in the range 6.2-7.3, and osmolality in the range 248-360 mOsm/kg. Glycerol was excluded from formulations as it had a negative impact on osmolality.

[0619] All proteins tested, in various monovalent and combination formulations, adsorbed well to the aluminium hydroxide adjuvant, except for IsdA, IsdA₄₀₋₁₈₄, Sta019, and Sta073.

- 50 [0620] The individual Sta006, Sta011, EsxA-B and HIa-H35L proteins were completely adsorbed, and could be desorbed without altering their pre-adsorption electrophoretic profile. [0621] Each antigen in a combination of Sta006, Sta011, EsxA-B and Hla-H35L was completely adsorbed, with no inter-antigen competition for the adjuvant. The antigens in a combination of Sta006, Sta011, EsxA-B and IsdA40-184 were also completely adsorbed, except for $IsdA_{40-184}$, which behaved in the same way as the monovalent protein. For
- 55 both combinations, the antigens could be desorbed without altering their pre-adsorption electrophoretic profile. **[0622]** The additional presence of type 5 and/or type 8 conjugates also did not change the adsorption or desorption characteristics of the antigens e.g. in combination with Sta006+Sta011+EsxA-B.

[0623] A short stability study (2 weeks at 4°C) was performed to evaluate the stability of monovalent formulations and

to evaluate antigen integrity. All tested formulations were stable for their pH and osmolality. All antigens remained completely adsorbed to the adjuvant. All antigens maintained their desorption characteristics. There was no evidence of increased degradation or aggregation of antigens after desorption.

5 Efficacy testing

[0624] Individual antigens sta006, sta011, sta012, sta017, sta019, sta021 and sta028 were tested for their ability to protect against IV challenge by 1.2×10^7 cfu of Newman strain (type 5). Results are shown in Figure 1. All antigens reduced bacterial numbers compared with the control, and the best results were seen with sta006, sta011 and sta019.

- 10 [0625] Further individual antigens were tested: (i) NW_10; (ii) IsdA₄₀₋₁₈₄; (iii) Sta002; (iv) Sta003; (v) Sta073; (vi) Sta101; (vii) Sta014; (viii) HIa-PSGS; (ix) SdrD_{CnaB}. The increase in survival, compared to the negative control group, 15 days after challenge was: (i) 50%; (ii) 19%; (iii) 37%; (iv) 43%; (v) 25%; (vi) 12%; (vii) 25%; (viii) 56%; (ix) 39%. [0626] Two hybrid polypeptides were also tested: (i) HIaH35L-EsxAB; (ii) Sta006-EsxAB. The increase in survival after challenge, compared to the negative control group, was: (i) 25%; (ii) 25%.
- ¹⁵ [0627] Table 2 gives a summary of results obtained with various antigens in the abscess model. [0628] Experiment SA-10-a tested the efficacy of antigen combinations. Six groups of twelve CD-1 mice received a negative control (PBS), IsdB, or one of the following combinations, adjuvanted with aluminium hydroxide: (i) EsxAB + Hla-H35L; (ii) Sta006 + Sta011 + EsxAB; (iii) Sta006 + Sta011 + EsxAB; (iii) Sta006 + Sta011 + EsxAB; (iii) Sta006 + Sta011 + IsdA₄₀₋₁₈₄ + EsxAB. Two administrations were given, at days 0 and 14. At day 24 mice received 3x10⁸ cfu of Newman strain
- 20 staphylococcus and survival in each group was assessed every 24 hours for two weeks. Results are shown in Figure 2. After 14 days, 25% of animals in the positive control group had survived, but 50% of animals in group (ii) had survived, as had 58% of animals in groups (iii) & (iv), and 75% in group (i).
 20 Staphylococcus and survival in each group was assessed every 24 hours for two weeks. Results are shown in Figure 2. After 14 days, 25% of animals in the positive control group had survived, but 50% of animals in group (ii) had survived, as had 58% of animals in groups (iii) & (iv), and 75% in group (i).

[0629] Experiment SA-10-b used the same methods to test: (i) $ClfB_{45-552}$ + HIa-H35L + Sta006 + EsxAB; (ii) $ClfB_{45-552}$

- + Sta011 + Sta006 + EsxAB; (iii) ClfB₄₅₋₅₅₂ + IsdA₄₀₋₁₈₄ + Sta006 + EsxAB; or (iv) SdrD₅₃₋₅₉₂ + IsdA₄₀₋₁₈₄ + Sta006 + EsxAB. Results are shown in Figure 3. After 14 days, 25% of animals in the positive control group and in group (ii) had survived, but 33% of animals in group (iv) had survived, 75% of animals in group (i), and 83% of animals in group (iii).
 [0630] Further combinations were also used to immunise mice. The combinations were typically adjuvanted with aluminium hydroxide (see above) and were administered on days 0 and 14. The immunisations were in CD1 mice, 12 per group. On day 24 the mice were challenged with a lethal dose of live bacteria and survival was then followed for 14
- further days. For comparison, PBS was used as a negative control and IsdB as a positive control [2].
 [0631] Experiment SA-11 tested: (i) a type 5 conjugate combined with EsxAB + Sta006 + Sta011; (ii) EsxAB + Sta019 + Sta006 + Sta011; (iii) a type 5 conjugate + HIa-H35L + Sta006 + Sta011; (iv) EsxAB + HIa-H35L + Sta006 + Sta011; or (v) EsxAB + IsdA₄₀₋₁₈₄ + Sta006 + Sta011. 14 days after challenge all of the negative control animals had died, but 42% of positive control animals had survived. Survival results in the test groups were as follows: (i) 67%; (ii) 42%; (iii) 75%; (iv) 33%; and (v) 25%.

[0632] Experiment SA-12 tested: (i) Hla-H35L + IsdA₄₀₋₁₈₄ + Sta006 + Sta011; (ii) Hla-H35L + EsxAB + Sta006 + Sta011; (iii) EsxAB + IsdA₄₀₋₁₈₄ + Sta006 + Sta011; (iv) EsxAB + IsdA + Sta006 + Sta011. 14 days after challenge 8% of the negative control animals and 17% of positive control animals had survived. Survival results in the test groups were as follows: (i) 50%; (ii) 50%; (iii) 25%; (iv) 33%.

- 40 [0633] Experiment SA-14 tested: (i) EsxAB + Hla-H35L + Sta006 + Sta011; (ii) EsxAB + IsdA₄₀₋₁₈₄ + Sta006 + Sta011; (iii) Sta006 + Sta011 + Sta019 + EsxAB; (iv) Sta006 + Sta011 + Sta019 + Hla-H35L. 14 days after challenge with 5x10⁸ CFU of Newman strain, 18% of the negative control animals and 9% of positive control animals had survived; survival results in the test groups were as follows: (i) 58%; (ii) 67%; (iii) 42%; (iv) 83%. Survival numbers over 14 days are shown in Figure 4, showing that all combinations performed better than the two controls on every post-challenge day.
- ⁴⁵ [0634] Experiment SA-17a tested: (i) EsxAB + Sta006 + Sta011 + serotype 5 conjugate + serotype 8 conjugate; (ii) EsxAB + Sta073 + Sta011 + serotype 5 conjugate + serotype 8 conjugate; (iii) EsxAB + Hla-H35L + Sta011 + Sta073. Compared to the negative control, the increase in survival 15 days after challenge with Newman strain was: (i) 17%; (ii) 42%; (iii) 34%. The median survival in groups (ii) and (iii) was the full 15 days, and was 12 days in group (i). [0635] Further antigen combination experiments tested: (a) serotype 5 conjugate + serotype 8 conjugate + EsxAB +
- Sta006 + Sta011; (b) Sta002+Sta003+Sta021+NW-10; (c) EsxAB+ HlaH35L + Sta006 + Sta019; and (d) EsxAB + Sta006+Sta019. Compared to the negative control, the increase in survival after challenge with Newman strain was: (a) 37%; (b) 36%; (c) 13%.; and (d) 0%.

[0636] Survival data from studies SA-10, SA-11, SA-12 and SA-14 were combined to assess the efficacy of two combinations when compared to PBS or IsdB. "Combo-1" was EsxAB+HIa-H35L+Sta006+Sta011 (with polypeptides

⁵⁵ comprising SEQ ID NOs: 241, 150, 246 & 247). "Combo-2" was EsxAB+IsdA₄₀₋₁₈₄+Sta006+Sta011. The median survival times for each group of 48 mice after 14 days were compared. Whereas the PBS and IsdB groups had a median survival time of 1 day, mice in the "Combo-1" and "Combo-2" groups had a median survival time of 14 days. The differences in median survival duration were compared by a t-test: survival in the "Combo-1" group was statistically superior to both

the PBS group (p<0.0001) and the IsdB group (p<0.0001); survival in the "Combo-2" group was statistically superior to both the PBS group (p<0.0001) and the IsdB group (p=0.0049). These data are shown in Figure 5.

[0637] Figure 6 shows data with Combo-1 and Combo-2 in the abscess model. Kidneys of mice are isolated after challenge and are then homogenised and plated. The cfu count indicates the level of abscess formation. Figure 6 shows

⁵ data from a single experiment. The numbers beneath the data show the log reduction relative to the PBS group. The reduction is bigger in the two combination groups than with IsdB alone, with U-test (one tail) values of 0.0001 for Combo-1 and 0.0005 for Combo-2. The same effect was seen in the two combination groups in a second experiment in which an IsdB group was not included.

[0638] Further experiments compared protection achieved with Combo-1, IsdB or PBS against challenge with three different strains: Staph-19, FPR3757(USA300) and Lac(USA300). There were 44 mice per group and results were as follows (see also Figure 12), including one-tailed p-values for the survival proportion, where: P1 compares Combo-1 with PBS; P2 compares Combo-1 with IsdB; and P3 compared PBS with IsdB:

	Staph	-19	FPR3	757	Lac	
Survival	%	Days	%	Days	%	Days
PBS	20	1	45	8	47	7
IsdB	32	1	52	15	61	15
Combo-1	80	15	91	15	89	15
P1	<0.0001	-	<0.0001	-	0.0001	-
P2	<0.0001	-	<0.0004	-	0.0052	-
P3	0.1715	-	0.2137	-	0.1789	-

20

15

25

30

[0639] Further experiments showed that immunisation with adjuvanted Combo 1 reduced CFU counts after challenge with Newman, USA100, CC30 and USA300 strains, when compared to immunisation with adjuvant alone (aluminium hydroxide) or IsdB. Figure 10 shows CFU values (log/ml) for the four challenge strains. The lowest count, with p<0.015 in each case, was achieved with Combo 1. The area of abscess was also assessed and was also lower in the Combo1-immunised mice (e.g. Figure 11).

- **[0640]** Further experiments showed that Combo1 is highly protective against clinically relevant strains in the sepsis model, and always achieved a higher survival % than IsdB. Figure 12 shows that the median survival in Combo1-immunised mice (40 per group, 3 experiments) was the full 15 days when challenged with Newman, ST-80, FPR3757 or Lac strains, and that the proportion of mice surviving was ≥75%. In contrast, the median survival in IsdB-immunised
- 35 or Lac strains, and that the proportion of mice surviving was ≥75%. In contrast, the median survival in IsdB-immi mice was only 1 day with Newman and ST-80 challenge, with <65% survival for all four challenge strains.</p>

Comparison of Combo1 to its individual polypeptides

40 **[0641]** Various tests were performed to compare Combo1 to its four individual polypeptides (*i.e.* EsxAB, Hla-H35L, Sta006, Sta011), as well as to IsdB or to an antigen-free negative control.

[0642] The opsonophagocytic activity of sera from immunised animals was tested. Sera were obtained using (i) the four individual polypeptides, (ii) all pairs of the polypeptides, (iii) all triplets, or (iv) the full Combo 1 combination. For comparison, anti-IsdB serum was used. Pre-immune and negative control sera showed no killing of Newman strain in

- 45 this assay. In a first experiment: anti-IsdB serum showed 27% killing; sera against each of the four individual polypeptides showed between 26-34% killing; all multi-polypeptide combinations showed at least 34% killing; and sera raised with Combo-1 showed 39% killing. In a second experiment sera with Combo-1 showed 43% killing but anti-IsdB serum performed slightly better; all single or multi-polypeptide sera using the Combo-1 polypeptides showed at least 26% killing. [0643] Further experiments looked at passive protection achieved by transferring into mice (20 per group, 8 week old
- 50 CD1 mice) antiserum from immunised rabbits. Four groups received 200µl of sera from rabbits immunised with one of EsxAB, Hla-H35L, Sta006, Sta011; a fifth group received 50µl of each serum (200µl in total). Two other groups received serum from IsdB-immunised rabbits or serum from rabbits immunised with saline+adjuvant. 15 minutes later the mice were challenged intraperitoneally (10⁸ CFU of Newman strain) and then mortality was assessed after 14 days. Results were as follows:
- 55

	EsxA-B	Sta006	Sta011	HIaH35L	Combo1	IsdB	-ve ctrl
Survival	5%	26%	0%	15%	25%	10%	5%

[0644] In further experiments the level of specific antibodies induced in CD1 mice were examined to assess the immunogenicity of the four polypeptides in Combo1. Compositions included either 20µg of each of the four single polypeptides, or 4x10µg in the combination. The compositions included an aluminium hydroxide adjuvant. Serum levels of antigen-specific IgG were determined by Luminex 4Plex assay As shown in Figure 9, all four polypeptides were highly immunogenic in CD1 mice on their own and in combination. In each case the titer against a polypeptide was higher when it was administered in the combination than when administered alone (compare middle and right pairs).

[0645] Further experiments compared protection achieved either with Combo-1 or with its four individual polypeptides. IsdB was also included for comparison. The proportions of animals surviving (40 animals per group) 15 days after challenge with Newman strain, and the average (median) survival in days, were as follows, including a one-tailed pvalue of the surviving proportion in comparison with a PBS+adjuvant negative control:

	EsxA-B	Sta006	Sta011	HIaH35L	Combo1	IsdB	PBS
Survival	34%	28%	16%	39%	59%	22%	5%
р	0.0017	0.0003	0.0064	<0.0001	<0.0001	0.0006	-
Days	1	2	1	10	15	1	0

15

5

10

[0646] The murine abscess model was used to compare the four individual polypeptides with the Combo 1 combination. 20 In some experiments mice were immunised with IsdB for comparison. Antigens were adjuvanted with aluminium hydroxide, and adjuvant alone was used as a negative control. Figure 7 shows the numbers of bacteria in animals' kidneys after challenge with four different strains. The lowest average counts were seen for the Combo 1 combination.

[0647] Challenge experiments were performed following immunisation with (i) the four individual polypeptides, (ii) all pairs, (iii) all triplets, or (iv) the full Combo1 combination. IsdB or buffer alone were used for comparison. Survival results 25 from 24 mice per group (3 experiments) after challenge with 5x10⁸ CFU of Newman strain are shown in Figure 13. The median survival for IsdB was only 2 days. The median survival for the individual Combo1 polypeptides ranged from 1-6 days. Pairs of the polypeptides gave median survival of 2-11 days. Triplets gave median survival of 8-15 days. The full Combo1 combination gave a median survival of the full 15 days, with 59% of mice surviving this long (cf. only 35% with IsdB).

30 [0648] It will be understood that the invention has been described by way of example only and modifications may be made whilst remaining within the scope and spirit of the invention.

TABLE 1: NOMENCLATURE CROSS-REFERENCE									
35			NCTC 8325 s	train	Newman	strain			
	SEQ ID NO	Name	SAOUHSC_#	GI	NMWN_#	GI			
	1	clfA	SAOUHSC_00812	88194572	NWMN_0756	151220968			
	2	clfB	SAOUHSC_02963	88196585	NWMN_2529	151222741			
40	3	coA	SAOUHSC_00192	88194002	NWMN_0166	151220378			
	4	eap	SAOUHSC_02161	88195840	NWMN_1872	151222084			
	5	ebhA	SAOUHSC_01447	88195168	-	-			
45	6	ebpS	SAOUHSC_01501	88195217	NWMN_1389	151221601			
	7	efb	SAOUHSC_01114	88194860	NWMN_1069	151221281			
	8	emp	SAOUHSC_00816	88194575	NWMN_0758	151220970			
	9	esaC	SAOUHSC_00264	88194069	-	-			
50	10	esxA	SAOUHSC_00257	88194063	-	-			
	11	esxB	SAOUHSC_00265	88194070	-	-			
	12	FnBA	SAOUHSC_02803	88196438	NWMN_2399	151222611			
55	13	FnBB	SAOUHSC_02802	88196437	NWMN_2397	151222609			
	14	hla	SAOUHSC_01121	88194865	NWMN_1073	151221285			
	15	hlgB	SAOUHSC_02710	88196350	-	-			

NOMENCI ATUDE ODOGO DECEDENCE

			NCTC 8325 strain		Newman strain	
	SEQ ID NO	Name	SAOUHSC_#	GI	NMWN_#	GI
5	16	hlgC	SAOUHSC_02709	88196349	-	-
	17	isdA	SAOUHSC_01081	88194829	NWMN_1041	151221253
	18	isdB	SAOUHSC_01079	88194828	-	-
10	19	isdC	SAOUHSC_01082	88194830	-	-
	20	isdG	SAOUHSC_01089	88194836	-	-
	21	isdH	SAOUHSC_01843	88195542	NWMN_1624	151221836
	22	isdl	SAOUHSC_00130	88193943	-	-
15	23	lukD	SAOUHSC_01954	88195647	NWMN_1718	151221930
	24	lukE	SAOUHSC_01955	88195648	-	-
	25	lukF	SAOUHSC_02241	88195914	-	-
20	26	lukS	SAOUHSC_02243	88195915	NWMN_1928	151222140
	27	nuc	SAOUHSC_01316	88195046	-	-
	28	sasA	SAOUHSC_02990	88196609	-	-
	29	sasB	SAOUHSC_02404	88196065	-	-
25	30	sasC	SAOUHSC_01873	88195570	-	-
	31	sasD	SAOUHSC_00094	88193909	-	-
	32	sasF	SAOUHSC_02982	88196601	-	-
30	33	sdrC	SAOUHSC_00544	88194324	-	-
	34	sdrD	SAOUHSC_00545	88194325	-	-
	35	sdrE2	-	-	NWMN_0525	151220737
25	36	spa	SAOUHSC_00069	88193885	NWMN_0055	151220267
35	37	sta001	SAOUHSC_00025	88193846	NWMN_0022	151220234
	38	sta002	SAOUHSC_00356	88194155	NWMN_0364	151220576
	39	sta003	SAOUHSC_00400	88194195	NWMN_0401	151220613
40	40	sta004	SAOUHSC_00749	88194514	NWMN_0705	151220917
	41	sta005	SAOUHSC_01127	88194870	NWMN_1077	151221289
	42	sta006	SAOUHSC_02554	88196199	NWMN_2185	151222397
45	43	sta007	SAOUHSC_02571	88196215	NWMN_2199	151222411
	44	sta008	SAOUHSC_02650	88196290	NWMN_2270	151222482
	45	sta009	SAOUHSC_02706	88196346	NWMN_2317	151222529
	46	sta010	SAOUHSC_02887	88196515	NWMN_2469	151222681
50	47	sta011	SAOUHSC_00052	88193872	-	-
	48	sta012	SAOUHSC_00106	88193919	-	-
	49	sta013	SAOUHSC_00107	88193920	-	-
55	50	sta014	SAOUHSC_00137	88193950	-	-
	51	sta015	SAOUHSC_00170	88193980	-	-
	52	sta016	SAOUHSC_00171	88193981	-	-

			NCTC 8325 strain		Newman strain	
	SEQ ID NO	Name	SAOUHSC_#	GI	NMWN_#	GI
5	53	sta017	SAOUHSC_00186	88193996	-	-
	54	sta018	SAOUHSC_00201	88194011	-	-
	55	sta019	SAOUHSC_00248	88194055	NWMN_0210	151220422
10	56	sta020	SAOUHSC_00253	88194059	-	-
	57	sta021	SAOUHSC_00256	88194062	-	-
	58	sta022	SAOUHSC_00279	88194083	-	-
	59	sta023	SAOUHSC_00284	88194087	-	-
15	60	sta024	SAOUHSC_00300	88194101	-	-
	61	sta025	SAOUHSC_00362	88194160	-	-
	62	sta026	SAOUHSC_00404	88194198	-	-
20	63	sta027	SAOUHSC_00661	88194426	-	-
	64	sta028	SAOUHSC_00671	88194436	NWMN_0634	151220846
	65	sta029	SAOUHSC_00754	88194518	-	-
	66	sta030	SAOUHSC_00808	88194568	-	-
25	67	sta031	SAOUHSC_00860	88194617	-	-
	68	sta032	SAOUHSC_00958	88194715	-	-
	69	sta033	SAOUHSC_00987	88194744	-	-
30	70	sta034	SAOUHSC_00988	88194745	-	-
	71	sta035	SAOUHSC_00998	88194754	-	-
	72	sta036	SAOUHSC_01084	88194831	-	-
	73	sta037	SAOUHSC_01085	88194832	-	-
35	74	sta038	SAOUHSC_01088	88194835	-	-
	75	sta039	SAOUHSC_01124	88194868	-	-
	76	sta040	SAOUHSC_01125	88194869	NWMN_1076	151221288
40	77	sta041	SAOUHSC_01175	88194914	-	-
	78	sta042	SAOUHSC_01180	88194919	-	-
	79	sta043	SAOUHSC_01219	88194955	-	-
45	80	sta044	SAOUHSC_01508	88195223	-	-
45	81	sta045	SAOUHSC_01627	88195337	-	-
	82	sta046	SAOUHSC_01918	88195613	-	-
	83	sta047	SAOUHSC_01920	88195615	-	-
50	84	sta048	SAOUHSC_01949	88195642	-	-
	85	sta049	SAOUHSC_01972	88195663	NWMN_1733	151221945
	86	sta050	SAOUHSC_02127	88195808	-	-
55	87	sta051	SAOUHSC_02147	88195827	-	-
	88	sta052	SAOUHSC_02246	88195918	-	-
	89	sta053	SAOUHSC_02257	88195928	-	-

			NCTC 8325 strain		Newman strain	
	SEQ ID NO	Name	SAOUHSC_#	GI	NMWN_#	GI
5	90	sta054	SAOUHSC_02333	88195999	-	-
	91	sta055	SAOUHSC_02448	88196100	-	-
	92	sta056	SAOUHSC_02463	88196115	-	-
10	93	sta057	SAOUHSC_02576	88196220	NWMN_2203	151222415
	94	sta058	SAOUHSC_02690	88196330	-	-
	95	sta059	SAOUHSC_02708	88196348	-	-
	96	sta060	SAOUHSC_02767	88196403	-	-
15	97	sta061	SAOUHSC_02783	88196419	-	-
	98	sta062	SAOUHSC_02788	88196424	-	-
	99	sta063	SAOUHSC_02971	88196592	-	-
20	100	sta064	SAOUHSC_03006	88196625	NWMN_2569	151222781
	101	sta065	SAOUHSC_00051	88193871	-	-
	102	sta066	SAOUHSC_00172	88193982	-	-
	103	sta067	SAOUHSC_00176	88193986	-	-
25	104	sta068	SAOUHSC_00327	88194127	-	-
	105	sta069	SAOUHSC_00427	88194219	-	-
	106	sta070	SAOUHSC_00773	88194535	-	-
30	107	sta071	SAOUHSC_00854	88194612	-	-
	108	sta072	SAOUHSC_00872	88194629	-	-
	109	sta073	SAOUHSC_00994	88194750	NWMN_0922	151221134
05	110	sta074	SAOUHSC_01220	88194956	-	-
30	111	sta075	SAOUHSC_01256	88194989	-	-
	112	sta076	SAOUHSC_01263	88194996	-	-
	113	sta077	SAOUHSC_01317	88195047	-	-
40	114	sta078	SAOUHSC_01857	88195555	-	-
	115	sta079	SAOUHSC_01935	88195630	-	-
	116	sta080	SAOUHSC_01936	88195631	-	-
45	170	sta081	SAOUHSC_01938	88195633		
	117	sta082	SAOUHSC_01939	88195634	-	-
	118	sta083	SAOUHSC_01941	88195635	-	-
	119	sta084	SAOUHSC_01942	88195636	-	-
50	120	sta085	SAOUHSC_02171	88195848	-	-
	121	sta086	SAOUHSC_02327	88195993	-	-
	122	sta087	SAOUHSC_02635	88196276	-	-
55	123	sta088	SAOUHSC_02844	88196477	-	-
~~	124	sta089	SAOUHSC_02855	88196486	-	-
	125	sta090	SAOUHSC_02883	88196512	-	-

			NCTC 8325 strain		Newman strain	
	SEQ ID NO	Name	SAOUHSC_#	GI	NMWN_#	GI
5	126	sta091	SAOUHSC_00685	88194450	-	-
	127	sta092	SAOUHSC_00174	88193984	-	-
	128	sta093	SAOUHSC_01854	88195552	-	-
10	129	sta094	SAOUHSC_01512	88195226	-	-
	130	sta095	SAOUHSC_00383	88194180	NWMN_0388	151220600
	131	sta096	SAOUHSC_00384	88194181	-	-
	132	sta097	SAOUHSC_00386	88194182	-	-
15	133	sta098	SAOUHSC_00389	88194184	NWMN_0391	151220603
	134	sta099	SAOUHSC_00390	88194185	-	-
	135	sta100	SAOUHSC_00391	88194186	-	-
20	136	sta101	SAOUHSC_00392	88194187	NWMN_0394	151220606
	137	sta102	SAOUHSC_00393	88194188	-	-
	138	sta103	SAOUHSC_00394	88194189	-	-
	139	sta104	SAOUHSC_00395	88194190	-	-
25	140	sta105	SAOUHSC_00399	88194194	NWMN_0400	151220612
	141	sta106	SAOUHSC_01115	88194861	-	-
	177	sta107	SAOUHSC_00354	88194153	NWMN_0362	151220574
30	178	sta108	SAOUHSC_00717	88194482	NWMN_0677	151220889
	179	sta109	SAOUHSC_02979	88196599	NWMN_2543	151222755
	180	sta110	SAOUHSC_01039	88194791		
25	181	sta111	SAOUHSC_01005	88194760	NWMN_0931	151221143
30	182	sta112	SAOUHSC_00634	88194402	NWMN_0601	151220813
	183	sta113	SAOUHSC_00728	88194493	NWMN_0687	151220899
	184	sta114	SAOUHSC_00810	88194570		
40	185	sta115	SAOUHSC_00817	88194576	NWMN_0759	151220971
	186	sta116	SAOUHSC_01112	88194858	NWMN_1067	151221279
	187	sta117	SAOUHSC_02240	88195913	NWMN_1926	151222138
45	188	sta118	SAOUHSC_01150	88194892	NWMN_1096	151221308
+0	200	sta119	SAOUHSC_01100	88194846		
	201	sta120	SAOUHSC_00365	88194163		
	142	NW_6	-	-	NWMN_0757	151220969
50	143	NW_9	-	-	NWMN_0958	151221170
	144	NW_10	-	-	NWMN_1066	151221278
	145	NW_7	-	-	NWMN_1876	151222088
55	146	NW_8	-	-	NWMN_1877	151222089
~~	147	NW_2	-	-	NWMN_1883	151222095
	148	NW_1	-	-	NWMN_1924	151222136

(continued)

		NCTC 8325 s	strain	Newman	strain
SEQ ID NO	Name	SAOUHSC_#	GI	NMWN_#	GI
149	NW_5	-	-	NWMN_2392	15122260

TABLE 2: ABSCESS MODEL RESULTS SUMMARY

	Immunising antigon(s)	Adiuvant	infacting strai	in & doso	Reduction**
5	Enh	Aujuvant	Marrie Ma		2 12
	FIID St. 005		Newman	1.4E+07	2.13
		aium	Newman	1.4E+07	1.20
		alum	Newman	1.4E+07	1.08
	SasD	alum	Newman	1.4E+07	0.10
10	SpA G FII	alum	Newman	$\frac{1.4E+07}{1.4E+07}$	0.41
	SasFHis	alum	Newman	$\frac{1.4E+07}{1.4E+07}$	1.33
	COA	alum	Newman	1.4E+07	1.01
	Sta028	alum	Newman	1.2E+07	1.85
	Sta017	alum	Newman	1.2E+07	1.23
15	Sta006	alum	Newman	1.2E+07	2.33
	Sta012	alum	Newman	1.2E+07	1.69
	Sta011	alum	Newman	1.2E+07	2.66
	Sta019	alum	Newman	1.2E+07	2.36
	Sta021	alum	Newman	1.2E+07	1.58
20	IsdA + EsxAB	alum	Newman	1.8E+07	0.11
	EsxAB	alum	Newman	1.8E+07	1.31
	NW_1	alum	Newman	1.8E+07	1.00
	NW_10	alum	Newman	1.8E+07	-0.65
	Sta073	alum	Newman	1.8E+07	1.46
25	Sta002	alum	Newman	1.8E+07	0.17
	Sta064	alum	Newman	1.8E+07	1.04
	Sta014	alum	Newman	1.8E+07	1.74
	Sta002	alum	Newman	1.0E+07	0.52
	Sta014	alum	Newman	1.0E+07	1.02
30	Sta064	alum	Newman	1.0E+07	1.22
	Sta006	alum	Newman	1.0E+07	0.80
	Sta073	alum	Newman	1.0E+07	0.92
	NW 1	alum	Newman	1.0E+07	0.77
	NW 10	alum	Newman	1.0E+07	2.25
35	Sta017	alum	Newman	1.0E+07	2.13
	Sta028	alum	Newman	1.0E+07	0.64
	Sta021	alum	Newman	1.0E+07	1.03
	Sta019	alum	Newman	1.0E+07	1.28
	Sta011	alum	Newman	1.0E+07	0.78
40	IsdB	alum	Newman	1.0E+07	1.22
	IsdA40-184	none	Newman	1.0E+07	0.58
	Sta006	none	Newman	1.0E+07	0.30
	Sta011	none	Newman	1.0E+07	0.62
	EsxAB	none	Newman	1.0E+07	1.09
45	Sast	none	Newman	1.0E+07	0.11
	IsdB	none	Newman	1.0E+07	0.93
	IsdA _{40,184}	alum	Newman	1.0E+07	1.02
	Sta006	alum	Newman	1.0E+07	0.45
	Sta011	alum	Newman	1.0E+07	0.80
50	EsxAB	alum	Newman	1.0E+07	0.47
	Sast	alum	Newman	1.0E+07	-0.78
	IsdB	alum	Newman	1.0E+07	1 24
	Type 5 conjugate + Isd Δ_{12} and	alum	Newman	1 5E+07	0.34
	Type 5 conjugate	alum	Newman	1.5E+07	0.72
55	IsdA 40.104	alum	Newman	1.5E+07	1.08
		1111	_ (v) , 1110111		

	Type 5 conjugate	MF59	Newman	1.5E+07	0.45
	lsdB	alum	Newman	1.5E+07	1.50
	ClfB ₄₅₋₅₅₂	alum	Newman	1.5E+07	-0.05
5	Sta019	alum	Newman	1.5E+07	0.82
	$1sdA_{40-184} + ClfB_{45-552}$	alum	Newman	1.5E+07	0.72
	Type 8 conjugate	alum	Becker	4.0E+07	1.51
	Type 8 conjugate	MF59	Becker	4.0E+07	0.35
	Factor	alum	Newman	1.0E+07	1 54
10	combol	alum	Newman	1.0E+07	2.04
	$E_{SXAB} + I_{SdA_{40,184}} + Sta006 + Sta011$	alum	Newman	1.0E+07	0.84
	SdrD _{52,502}	alum	Newman	1.0E+07	1 15
	Sta105	alum	Newman	1.0E+07	0.54
	Sta101	alum	Newman	1.0E+07	1 51
15	Sta116	alum	Newman	1.0E+07	1.31
	Sta106	alum	Newman	1.0E+07	1.25
-	Sta100	alum	Newman	1.0E+07	1.20
	Sta107	alum	Newman	1.0E+0.7	0.70
	Sta004	alum	Newman	1.0E+07 1.0E+07	1.32
20	$\sum_{n=1}^{\infty} A D + \sum_{n=1}^{\infty} A D + \sum_{n=1}^{\infty$	alum	Newman	1.0E+07	2.04
	ESXAB + SIa019 + SIa000 + SIa011	alum	Newman	9.0E+06	3.04
		alum	Newman	9.0E+06	2.53
	$ESXAB + ISdA_{40-184} + Sta006 + Sta011$	alum	Newman	9.0E+06	1.85
	SdrD ₅₃₋₅₉₂	alum	Newman	9.0E+06	1.80
25	Sta105	alum	Newman	9.0E+06	0.60
-	Sta101	alum	Newman	9.0E+06	0.83
	Sta116	alum	Newman	9.0E+06	1.96
	Sta106	alum	Newman	9.0E+06	2.56
	IsdB	alum	Newman	9.0E+06	1.37
30	Sta004	alum	Newman	9.0E+06	1.01
	Sta003	alum	Newman	9.0E+06	2.20
	IsdB	alum	Newman	1.0E+07	0.83
	Sta107	alum	Newman	1.0E+07	0.24
	SrdC ₅₁₋₅₁₈	alum	Newman	1.0E+07	0.84
35	SdrE ₅₃₋₆₃₂	alum	Newman	1.0E+07	1.08
	Hla ₂₇₋₇₆	alum	Newman	1.0E+07	0.18
	EsxAB + HlaH35L + Sta006 + Sta021	alum	Newman	1.0E+07	0.59
	EsxAB + HlaH35L + Sta006 + Sta019	alum	Newman	1.0E+07	0.85
	EsxAB + HlaH35L + Sta006 + Sta017	alum	Newman	1.0E+07	1.88
40	EsxAB + Hla27-76 + Sta006 + Sta021	alum	Newman	1.0E+07	1.49
	$Hla_{27-76} + Sta006 + Sta017 + Sta019$	alum	Newman	1.0E+07	0.00
	IsdB	alum	Newman	1.2E+07	1.07
	Sta107	alum	Newman	1.2E+07	1.35
	SrdC ₅₁₋₅₁₈	alum	Newman	1.2E+07	2.17
45	SdrE ₅₃₋₆₃₂	alum	Newman	1.2E+07	2.82
	Hla_{27-76}	alum	Newman	1.2E+07	0.17
	EsxAB + HlaH35L + Sta006 + Sta021	alum	Newman	1.2E+07	1.70
	EsxAB + HlaH35L + Sta006 + Sta019	alum	Newman	1.2E+07	1.20
50	EsxAB + HlaH35L + Sta006 + Sta017	alum	Newman	1.2E+07	1.52
50	$EsxAB + Hla_{27-76} + Sta006 + Sta021$	alum	Newman	1.2E+07	1.81
	Hla ₂₇₋₇₆ + Sta006 + Sta017 + Sta019	alum	Newman	1.2E+07	0.89
	IsdB	alum	Mu-50	3.8E+07	0.44
	Combo1	alum	Mu-50	3.8E+07	1.73
55	IsdB	alum	USA 200	2.0E+07	1.17
	Combo1	alum	USA 200	2.0E+07	1.87

Combol alum USA 300 3.0E+07 2.19 5 Combol alum Staph19 2.7E+07 0.66 IsdB alum Mu-50 4.5E+07 0.76 IsdB alum Mu-50 4.5E+07 0.76 IsdB alum USA 200 1.6E+07 0.18 Combol alum USA 300 2.2E+07 0.21 Combol alum LAC 3.50E+07 2.07 Sta011 alum MW2 3.00E+07 0.01 Sta011 alum MW2 3.00E+07 0.01 <th></th> <th>IsdB</th> <th>alum</th> <th>USA 300</th> <th>3.0E+07</th> <th>0.09</th>		IsdB	alum	USA 300	3.0E+07	0.09
IsdB alum Staph19 2.7E+07 0.66 IsdB alum Mu-50 4.5E+07 0.98 IsdB alum Mu-50 4.5E+07 0.98 IsdB alum Mu-50 4.5E+07 0.98 IsdB alum Mu-50 4.5E+07 0.18 Combol alum USA 200 1.6E+07 0.19 IsdB alum USA 300 2.2E+07 0.29 IsdB alum USA 300 2.2E+07 0.29 IsdB alum USA 300 2.2E+07 0.29 IsdB alum LAC 3.50E+07 1.5 IsdB alum LAC 3.50E+07 2.1 Haf135L alum LAC 3.50E+07 2.1 IsdB alum MW2 3.00E+07 1.17 IsdB alum MW2 3.00E+07 1.8 IsdB alum MW2 3.00E+07 0.17 IsdB a		Combo1	alum	USA 300	3.0E+07	2.19
Combol alum Staph19 2.7E+07 0.46 IsdB alum Mu-50 4.5E+07 0.76 IsdB alum USA 200 1.6E+07 0.18 Combol alum USA 200 1.6E+07 0.19 IsdB alum USA 300 2.2E+07 0.21 Combol alum USA 300 2.2E+07 0.23 IsdB alum USA 300 2.2E+07 0.80 IsdB alum LAC 3.50E+07 2.67 IsdB alum LAC 3.50E+07 2.67 Sta011 alum LAC 3.50E+07 2.66 IsdB alum MW2 3.00E+07 1.7 IsdB		IsdB	alum	Staph19	2.7E+07	0.66
S IsdB alum Mu-50 4.5E+07 0.98 Combol alum Mu-50 4.5E+07 0.76 IsdB alum USA 200 1.6E+07 0.19 IsdB alum USA 300 2.2E+07 0.29 IsdB alum USA 300 2.2E+07 0.29 IsdB alum Staph19 2.3E+07 0.80 Combol alum Staph19 2.3E+07 0.80 IsdB alum LAC 3.50E+07 2.67 Sta011 alum LAC 3.50E+07 2.39 Combol alum MV2 3.00E+07 0.81 Ista01 alum MV2 3.00E+07 0.81	5	Combo1	alum	Staph19	2.7E+07	0.46
Combol alum Mu-S0 4.5E+07 0.76 IsdB alum USA 200 1.6E+07 0.18 Combol alum USA 300 2.2E+07 0.21 Combol alum USA 300 2.2E+07 0.27 IsdB alum USA 300 2.2E+07 0.27 IsdB alum Staph19 2.3E+07 0.57 Combol alum Staph19 2.3E+07 0.57 Sta011 alum LAC 3.50E+07 2.67 Sta012 alum LAC 3.50E+07 2.67 Sta013 alum LAC 3.50E+07 2.11 Sta006 alum LAC 3.50E+07 2.66 IsdB alum MW2 3.00E+07 1.89 FissAB alum MW2 3.00E+07 0.87 Sta011 alum MW2 3.00E+07 0.87 Sta011 alum LAC 4.00E+07 1.95 Es		IsdB	alum	Mu-50	4.5E+07	0.98
IsdB alum USA 200 1.6E+07 0.18 10 IsdB alum USA 300 2.2E+07 0.21 Combol alum USA 300 2.2E+07 0.21 Combol alum USA 300 2.2E+07 0.21 IsdB alum Staph19 2.3E+07 0.80 IsdB alum Staph19 2.3E+07 0.80 IsdB alum LAC 3.50E+07 2.67 EaxAB alum LAC 3.50E+07 2.21 Hal435L alum LAC 3.50E+07 2.23 Sta010 alum LAC 3.50E+07 2.30 EaxAB alum LAC 3.50E+07 2.66 IsdB alum MW2 3.00E+07 0.71 Sta011 alum MW2 3.00E+07 0.87 EaxAB alum MW2 3.00E+07 0.91 Combol alum MW2 3.00E+07 0.91		Combo1	alum	Mu-50	4.5E+07	0.76
Combol alum USA 200 1.6E+07 0.19 IsdB alum USA 300 2.2E+07 -0.21 Combol alum USA 300 2.2E+07 -0.29 IsdB alum Staph19 2.3E+07 0.80 IsdB alum Staph19 2.3E+07 0.80 IsdB alum LAC 3.50E+07 1.35 EsxAB alum LAC 3.50E+07 2.67 Sta011 alum LAC 3.50E+07 2.11 BidB alum LAC 3.50E+07 2.21 HlaH35L alum LAC 3.50E+07 2.17 Sta006 alum MW2 3.00E+07 1.66 IsdB alum MW2 3.00E+07 1.89 HaH35L alum MW2 3.00E+07 0.87 Sta006 alum MW2 3.00E+07 0.91 Combol alum MW2 3.00E+07 1.95 Sta006 </td <td></td> <td>IsdB</td> <td>alum</td> <td>USA 200</td> <td>1.6E+07</td> <td>0.18</td>		IsdB	alum	USA 200	1.6E+07	0.18
isdB alum USA 300 2.2E+07 -0.21 Combol alum USA 300 2.2E+07 -0.29 isdB alum Staph19 2.3E+07 -0.29 isdB alum Staph19 2.3E+07 -0.29 isdB alum LAC 3.50E+07 2.67 isdB alum LAC 3.50E+07 1.35 EaxAB alum LAC 3.50E+07 2.21 HaH3SL alum LAC 3.50E+07 2.39 Combol alum LAC 3.50E+07 2.39 isdB alum MW2 3.00E+07 0.87 sta011 alum MW2 3.00E+07 0.87 Sta006 alum MW2 3.00E+07 0.87 Sta011 alum MW2 3.00E+07 0.91 Combol alum LAC 4.00E+07 1.54 sta011 alum LAC 4.00E+07 1.54 sta011 <td></td> <td>Combol</td> <td>alum</td> <td>USA 200</td> <td>1.6E+07</td> <td>0.19</td>		Combol	alum	USA 200	1.6E+07	0.19
Combot alum USA 300 2.2E+07 4.0.29 IsdB alum Staph19 2.3E+07 0.57 Combot alum Staph19 2.3E+07 0.57 IsdB alum LAC 3.50E+07 2.67 Sta011 alum LAC 3.50E+07 2.67 Sta011 alum LAC 3.50E+07 2.11 Hiaf35L alum LAC 3.50E+07 0.71 Sta006 alum LAC 3.50E+07 0.71 Sta010 alum LAC 3.50E+07 0.71 Sta011 alum MW2 3.00E+07 0.82 ExxAB alum MW2 3.00E+07 0.87 Sta011 alum MW2 3.00E+07 0.87 Sta006 alum MW2 3.00E+07 0.87 Sta011 alum LAC 4.00E+07 1.54 Sta011 alum LAC 4.00E+07 1.55 Sta006	10	IsdB	alum	USA 300	2.2E+07	-0.21
IsdB alum Staph19 2.3E+07 0.57 15 IsdB alum Staph19 2.3E+07 0.80 15 IsdB alum LAC 3.50E+07 2.67 16 Sta011 alum LAC 3.50E+07 2.21 Hald135L alum LAC 3.50E+07 2.21 Sta006 alum LAC 3.50E+07 2.39 Combol alum LAC 3.50E+07 2.39 Sta006 alum MW2 3.00E+07 0.66 IsdB alum MW2 3.00E+07 0.87 Sta006 alum LAC 4.00E+07 0.87 Sta011 alum LAC 4.00E+07 1.55 Sta011 alum LAC 4.00E+07		Combo1	alum	USA 300	2.2E+07	-0.29
Combol alum Staph19 2.3E+07 0.80 15 IsdB alum LAC 3.50E+07 2.67 Sta011 alum LAC 3.50E+07 2.21 HlaH35L alum LAC 3.50E+07 2.21 HlaH35L alum LAC 3.50E+07 2.01 Sta006 alum LAC 3.50E+07 2.66 IsdB alum LAC 3.50E+07 2.66 IsdB alum MW2 3.00E+07 1.71 Sta011 alum MW2 3.00E+07 0.82 Sta011 alum MW2 3.00E+07 0.87 Sta006 alum MW2 3.00E+07 0.69 Combol alum MW2 3.00E+07 0.69 Sta011 alum LAC 4.00E+07 1.51 Sta011 alum LAC 4.00E+07 1.21 IsdB alum LAC 4.00E+07 1.22		IsdB	alum	Staph19	2.3E+07	0.57
IsdB alum LAC 3.50E+07 2.67 Sta011 alum LAC 3.50E+07 1.35 EsxAB alum LAC 3.50E+07 2.11 HlaH35L alum LAC 3.50E+07 2.21 HlaH35L alum LAC 3.50E+07 2.39 Combol alum LAC 3.50E+07 2.66 IsdB alum MW2 3.00E+07 1.87 Sta011 alum MW2 3.00E+07 0.82 EsxAB alum MW2 3.00E+07 0.87 Sta006 alum MW2 3.00E+07 0.87 Sta006 alum MW2 3.00E+07 0.87 Sta011 alum LAC 4.00E+07 1.54 Sta011 alum LAC 4.00E+07 1.51 Sta006 alum LAC 4.00E+07 1.74 Combol alum LAC 4.00E+07 1.74 Combol		Combol	alum	Staph19	2.3E+07	0.80
Sta01 alum LAC 3.50E+07 1.35 EsxAB alum LAC 3.50E+07 2.21 HaH3SL alum LAC 3.50E+07 2.39 20 Sta006 alum LAC 3.50E+07 2.39 20 Sta006 alum LAC 3.50E+07 2.39 20 Sta011 alum LAC 3.50E+07 2.39 20 Sta011 alum MW2 3.00E+07 0.82 EsxAB alum MW2 3.00E+07 0.87 Sta011 alum MW2 3.00E+07 0.87 Sta006 alum MW2 3.00E+07 0.87 Sta011 alum LAC 4.00E+07 1.54 Sta010 alum LAC 4.00E+07 1.54 Sta010 alum LAC 4.00E+07 1.25 Sta011 alum LAC 4.00E+07 1.22 IsdB alum MW2 2.75E		IsdB	alum	LAC	3 50E+07	2.67
Baska B alum LAC 3.50E+07 2.21 HlaH3SL alum LAC 3.50E+07 2.21 Sta006 alum LAC 3.50E+07 2.21 Sta006 alum LAC 3.50E+07 2.39 Combol alum LAC 3.50E+07 2.66 IsdB alum MW2 3.00E+07 1.17 Sta011 alum MW2 3.00E+07 0.82 EsxAB alum MW2 3.00E+07 0.82 Sta006 alum MW2 3.00E+07 0.87 Sta006 alum MW2 3.00E+07 0.87 Sta011 alum LAC 4.00E+07 1.54 Sta011 alum LAC 4.00E+07 1.54 Sta010 alum LAC 4.00E+07 1.74 Combol alum LAC 4.00E+07 1.74 Combol alum MW2 2.75E+07 1.16 Hat35L	15	Sta011	alum		3 50E+07	1 35
Hala 35L alum LAC 3.50E+07 0.71 Sta006 alum LAC 3.50E+07 2.39 Combol alum LAC 3.50E+07 2.66 IsdB alum MW2 3.00E+07 0.82 EsxAB alum MW2 3.00E+07 0.82 EsxAB alum MW2 3.00E+07 0.87 Sta010 alum MW2 3.00E+07 0.87 Sta006 alum MW2 3.00E+07 0.91 Combol alum MW2 3.00E+07 0.91 Sta006 alum MW2 3.00E+07 1.54 Sta011 alum LAC 4.00E+07 1.54 Sta006 alum LAC 4.00E+07 1.74 Combol alum LAC 4.00E+07 1.25 Sta011 alum MW2 2.75E+07 1.25 Sta011 alum MW2 2.75E+07 1.25 Sta011		EsxAB	alum	LAC	3 50E+07	2 21
Balance Balance Date Stabbe Stab 20 Stabbe alum LAC 3.50E+07 2.39 20 IsdB alum LAC 3.50E+07 2.66 IsdB alum MW2 3.00E+07 1.39 EsxAB alum MW2 3.00E+07 1.39 Half3SL alum MW2 3.00E+07 0.87 Sta006 alum MW2 3.00E+07 0.87 Sta006 alum MW2 3.00E+07 0.91 Combol alum MW2 3.00E+07 0.87 Sta010 alum LAC 4.00E+07 1.54 Sta011 alum LAC 4.00E+07 1.31 Hal+35L alum LAC 4.00E+07 1.25 Sta006 alum LAC 4.00E+07 1.25 Sta010 alum MW2 2.75E+07 1.26 Sta011 alum MW2 2.75E+07 1.16			alum		3.50E+07	0.71
		Sta006	alum		3.50E+07	2 39
20 Iduation Iduation Interface 100000 100000 100000 1000000 1000000 <td></td> <td>Combol</td> <td>alum</td> <td></td> <td>3.50E+07</td> <td>2.66</td>		Combol	alum		3.50E+07	2.66
$45 $ $\frac{5100}{510}$	20	IsdB	alum	MW2	3.00E+07	1 17
Bakari Bakari MW2 Bakari Bakari 25 EsxAB alum MW2 3.00E+07 0.87 26 Sta006 alum MW2 3.00E+07 0.91 26 Combol alum MW2 3.00E+07 0.91 27 Sta006 alum MW2 3.00E+07 0.91 28 Sta006 alum LAC 4.00E+07 1.54 30 HiaH35L alum LAC 4.00E+07 1.74 29 EsxAB alum LAC 4.00E+07 1.74 20 Bta011 alum LAC 4.00E+07 1.74 20 Sta0106 alum MW2 2.75E+07 1.25 31 Bta011 alum MW2 2.75E+07 1.16 11 Alum MW2 2.75E+07 1.61 31006 alum MW2 2.75E+07 1.16 311 alum MW2 2.75E+07		Sta011	alum	MW2	3.00E+07	0.82
Data Barrier Barrier Barrier Barrier 25 HaH35L alum MW2 3.00E+07 0.87 26 Sta006 alum MW2 3.00E+07 0.91 26 Gombol alum MW2 3.00E+07 0.67 27 Sta006 alum LAC 4.00E+07 1.54 28 Sta011 alum LAC 4.00E+07 1.31 29 EsxAB alum LAC 4.00E+07 1.74 20 Sta006 alum LAC 4.00E+07 1.22 20 Sta006 alum LAC 4.00E+07 1.21 21 IsdB alum MW2 2.75E+07 1.22 22 Sta011 alum MW2 2.75E+07 1.61 23 Sta006 alum MW2 2.75E+07 1.61 24 Sta011 alum MW2 2.75E+07 1.01 25 Sta011 alum		FsxAB	alum	MW2	3.00E+07	1 39
Sta006 alum MW2 3.00E+07 0.91 Combol alum MW2 3.00E+07 0.91 Sta006 alum MW2 3.00E+07 0.91 Sta011 alum LAC 4.00E+07 1.54 Sta011 alum LAC 4.00E+07 1.95 EsxAB alum LAC 4.00E+07 1.74 Sta006 alum LAC 4.00E+07 1.74 Combol alum LAC 4.00E+07 1.74 Sta006 alum LAC 4.00E+07 1.22 Sta006 alum MW2 2.75E+07 1.22 Sta011 alum MW2 2.75E+07 1.16 HH313L alum MW2 2.75E+07 1.16 Sta006 alum MW2 2.75E+07 1.17 Sta011 alum MW2 2.75E+07 1.13 Combol alum Mu-50 4.00E+07 0.71 Sta011		HlaH35L	alum	MW2	3.00E+07	0.87
25 30000 30000 30000 30000 30000 30000 30000 30000 30000 300000 300000 300000 <td></td> <td>Sta006</td> <td>alum</td> <td>MW2</td> <td>3.00E+07</td> <td>0.91</td>		Sta006	alum	MW2	3.00E+07	0.91
IsdB alum IAC 4.00E+07 1.53 30 IsdB alum IAC 4.00E+07 1.54 30 EsxAB alum IAC 4.00E+07 1.31 30 HiaH35L alum IAC 4.00E+07 1.31 30 HiaH35L alum IAC 4.00E+07 1.31 30 Sta006 alum IAC 4.00E+07 1.74 Combol alum IAC 4.00E+07 2.21 1sdB alum MW2 2.75E+07 1.22 Sta010 alum MW2 2.75E+07 1.25 Sta01 alum MW2 2.75E+07 1.61 Half35L alum MW2 2.75E+07 1.61 Sta006 alum MW2 2.75E+07 1.16 Sta011 alum MW2 2.75E+07 1.16 Sta006 alum MU-50 4.00E+07 0.71 Sta011 alum Mu-5	25	Combol	alum	MW2	3.00 ± 07 3.00 ± 07	2 69
45 45 40 40 40 40 40 40 40 40		IsdB	alum		$\frac{3.00\pm07}{4.00\pm07}$	1.54
$40 = \begin{bmatrix} bAW1 & bAW1 & bAW & bAW1 & bAW1 & bAW2 & bAW1 & bAW2 & b$		Sta011	alum		4.00E+07	1.95
30 Harrison adum LAC 4.00E+07 0.75 Sta006 alum LAC 4.00E+07 1.74 Combol alum LAC 4.00E+07 2.21 IsdB alum LAC 4.00E+07 2.21 IsdB alum MW2 2.75E+07 1.22 Sta011 alum MW2 2.75E+07 1.25 EsxAB alum MW2 2.75E+07 1.61 HIH35L alum MW2 2.75E+07 1.61 Sta006 alum MW2 2.75E+07 1.16 HIH35L alum MW2 2.75E+07 1.16 Sta006 alum MW2 2.75E+07 1.13 Combol alum MW2 2.75E+07 1.10 EsxAB alum Mu-50 4.00E+07 1.72 Sta011 alum Mu-50 4.00E+07 1.72 Sta011 alum Staph19 5.30E+07 1.23		FsrAB	alum		4.00E+07	1.33
Statub Balan LAC Hoberton 0.73 Statubo alum LAC 4.00E+07 0.74 Combol alum LAC 4.00E+07 2.21 IsdB alum MW2 2.75E+07 1.22 Sta011 alum MW2 2.75E+07 1.25 35 EssAB alum MW2 2.75E+07 1.16 H1aH35L alum MW2 2.75E+07 1.61 Sta006 alum MW2 2.75E+07 1.61 Sta011 alum MW2 2.75E+07 1.61 Sta010 alum MW2 2.75E+07 1.61 Sta006 alum MW2 2.75E+07 1.97 Sta011 alum Mu-50 4.00E+07 0.71 EsxAB alum Mu-50 4.00E+07 0.71 Sta006 alum Mu-50 4.00E+07 1.72 45 Sta011 alum Staph19 5.30E+07 2.02<	30	HlaH35I	alum		4.00E+07	0.75
	50	Sta006	alum	LAC	4 00E+07	1 74
$45 = \begin{bmatrix} 500001 & 100000000000000000000000000000$		Combol	alum	LAC	4 00E+07	2.21
		IsdB	alum	MW2	2.75E+07	1 22
35 EssAB alum MW2 2.75E+07 1.16 HlaH35L alum MW2 2.75E+07 1.61 Sta006 alum MW2 2.75E+07 1.13 Combol alum MW2 2.75E+07 1.13 Combol alum MW2 2.75E+07 1.97 40 Sta011 alum MW2 2.75E+07 1.97 40 Sta011 alum MW2 2.75E+07 1.97 40 EsxAB alum MW2 2.75E+07 1.97 40 EsxAB alum Mu-50 4.00E+07 0.86 HlaH35L alum Mu-50 4.00E+07 0.71 Sta006 alum Mu-50 4.00E+07 1.72 45 Sta011 alum Staph19 5.30E+07 1.23 50 Sta006 alum Staph19 5.30E+07 2.00 50 Sta011 alum Mu-50 4.30E+07 0.36		Sta011	alum	MW2	2.75E+07	1.25
HlaH35L alum MW2 2.75E+07 1.61 Sta006 alum MW2 2.75E+07 1.13 Combol alum MW2 2.75E+07 1.13 Combol alum MW2 2.75E+07 1.97 Sta011 alum MU-50 4.00E+07 1.10 EsxAB alum Mu-50 4.00E+07 0.86 HlaH35L alum Mu-50 4.00E+07 0.71 Sta006 alum Mu-50 4.00E+07 1.57 Combol alum Mu-50 4.00E+07 1.72 Sta011 alum Mu-50 4.00E+07 1.72 Sta011 alum Staph19 5.30E+07 1.23 EsxAB alum Staph19 5.30E+07 1.65 Sta006 alum Staph19 5.30E+07 2.00 Combol alum Staph19 5.30E+07 2.02 Sta011 alum Mu-50 4.30E+07 0.36	35	EsxAB	alum	MW2	2.75E+07	1.16
Sta006 alum MW2 2.75E+07 1.13 40 Sta011 alum MW2 2.75E+07 1.97 5ta011 alum MW-50 4.00E+07 1.10 EsxAB alum Mu-50 4.00E+07 0.86 HlaH35L alum Mu-50 4.00E+07 0.71 Sta006 alum Mu-50 4.00E+07 1.72 Sta006 alum Mu-50 4.00E+07 1.72 Sta011 alum Mu-50 4.00E+07 1.72 Sta011 alum Staph19 5.30E+07 1.23 EsxAB alum Staph19 5.30E+07 1.19 HlaH35L alum Staph19 5.30E+07 2.00 Combol alum Staph19 5.30E+07 2.02 50 Sta011 alum Mu-50 4.30E+07 0.36 HaH35L alum Mu-50 4.30E+07 0.36 HaH35L alum Mu-50 4.30E+		HlaH35L	alum	MW2	2.75E+07	1.61
Combol alum MW2 2.75E+07 1.97 40 Sta011 alum Mu-50 4.00E+07 1.10 EsxAB alum Mu-50 4.00E+07 0.86 HlaH35L alum Mu-50 4.00E+07 0.71 Sta006 alum Mu-50 4.00E+07 1.57 Combol alum Mu-50 4.00E+07 1.72 Sta011 alum Mu-50 4.00E+07 1.72 Sta011 alum Mu-50 4.00E+07 1.72 Sta011 alum Staph19 5.30E+07 1.23 EsxAB alum Staph19 5.30E+07 1.19 HlaH35L alum Staph19 5.30E+07 2.00 Sta006 alum Staph19 5.30E+07 2.02 50 Sta011 alum Mu-50 4.30E+07 0.36 HaH35L alum Mu-50 4.30E+07 0.36 HaH35L alum Mu-50 4.30		Sta006	alum	MW2	2.75E+07	1.13
40 Sta011 alum Mu-50 4.00E+07 1.10 EsxAB alum Mu-50 4.00E+07 0.86 HlaH35L alum Mu-50 4.00E+07 0.71 Sta006 alum Mu-50 4.00E+07 1.57 Combol alum Mu-50 4.00E+07 1.72 45 Sta011 alum Mu-50 4.00E+07 1.72 45 Sta011 alum Mu-50 4.00E+07 1.72 45 Sta011 alum Mu-50 4.00E+07 1.72 46 Sta011 alum Mu-50 4.00E+07 1.72 47 Sta011 alum Staph19 5.30E+07 1.23 48 EsxAB alum Staph19 5.30E+07 0.65 Sta006 alum Staph19 5.30E+07 2.00 50 Sta011 alum Mu-50 4.30E+07 1.33 EsxAB alum Mu-50 4.30E+07 0.36 HlaH35L alum Mu-50 4.30E+07 1.05 <		Combo1	alum	MW2	2.75E+07	1.97
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Sta011	alum	Mu-50	4 00E+07	1.10
Ham Num Num <td>40</td> <td>EsxAB</td> <td>alum</td> <td>Mu-50</td> <td>4.00E+07</td> <td>0.86</td>	40	EsxAB	alum	Mu-50	4.00E+07	0.86
Sta006 alum Mu-50 4.00E+07 1.57 Combol alum Mu-50 4.00E+07 1.57 45 Sta011 alum Mu-50 4.00E+07 1.72 45 Sta011 alum Staph19 5.30E+07 1.23 45 EsxAB alum Staph19 5.30E+07 1.19 HlaH35L alum Staph19 5.30E+07 0.65 Sta006 alum Staph19 5.30E+07 2.00 Combol alum Staph19 5.30E+07 2.00 50 Sta006 alum Staph19 5.30E+07 2.00 Combol alum Mu-50 4.30E+07 0.36 HaH35L alum Mu-50 4.30E+07 0.36 HaH35L alum Mu-50 4.30E+07 1.05 55 Sta010 alum Mu-50 4.30E+07 1.34 55 Sta011 alum Mu-50 4.30E+07 1.07		HlaH35L	alum	Mu-50	4.00E+07	0.71
Combol alum Mu-50 4.00E+07 1.72 45 Sta011 alum Staph19 5.30E+07 1.23 EsxAB alum Staph19 5.30E+07 1.19 HlaH35L alum Staph19 5.30E+07 0.65 Sta006 alum Staph19 5.30E+07 2.00 Combol alum Staph19 5.30E+07 2.02 50 Sta011 alum Staph19 5.30E+07 2.02 50 Sta011 alum Mu-50 4.30E+07 1.33 EsxAB alum Mu-50 4.30E+07 0.36 HlaH35L alum Mu-50 4.30E+07 0.11 Sta006 alum Mu-50 4.30E+07 1.05 Combol alum Mu-50 4.30E+07 1.05 Sta006 alum Mu-50 4.30E+07 1.05 Sta006 alum Mu-50 4.30E+07 1.07 55 Sta011 alu		Sta006	alum	Mu-50	4.00E+07	1.57
45 Sta011 alum Staph19 5.30E+07 1.23 EsxAB alum Staph19 5.30E+07 1.19 HlaH35L alum Staph19 5.30E+07 0.65 Sta006 alum Staph19 5.30E+07 2.00 Combol alum Staph19 5.30E+07 2.02 50 Sta011 alum Mu-50 4.30E+07 1.33 50 Sta011 alum Mu-50 4.30E+07 0.36 50 Sta011 alum Mu-50 4.30E+07 1.33 50 Sta011 alum Mu-50 4.30E+07 1.34 51 Sta006 alum Mu-50 4.30E+07 1.05 55 Sta010 alum Mu-50 4.30E+07 1.05 55 Sta011 alum Staph19 4.40E+07 1.07 55 Sta011 alum Staph19 4.40E+07 1.07		Combol	alum	Mu-50	4.00E+07	1.72
45 EsxAB alum Staph19 5.30E+07 1.19 HlaH35L alum Staph19 5.30E+07 0.65 Sta006 alum Staph19 5.30E+07 2.00 Combo1 alum Staph19 5.30E+07 2.02 50 Sta011 alum Mu-50 4.30E+07 1.33 EsxAB alum Mu-50 4.30E+07 0.36 HlaH35L alum Mu-50 4.30E+07 0.11 Sta006 alum Mu-50 4.30E+07 1.05 Combo1 alum Mu-50 4.30E+07 1.04 Sta006 alum Mu-50 4.30E+07 1.05 Sta011 alum Mu-50 4.30E+07 1.05 Sta011 alum Mu-50 4.30E+07 1.07 Sta011 alum Staph19 4.40E+07 1.07 EsxAB alum Staph19 4.40E+07 0.94	45	Sta011	alum	Staph19	5.30E+07	1.23
HlaH35L alum Staph19 5.30E+07 0.65 Sta006 alum Staph19 5.30E+07 2.00 Combol alum Staph19 5.30E+07 2.00 50 Sta011 alum Mu-50 4.30E+07 1.33 50 Sta011 alum Mu-50 4.30E+07 0.36 HlaH35L alum Mu-50 4.30E+07 0.11 Sta006 alum Mu-50 4.30E+07 1.05 Combol alum Mu-50 4.30E+07 1.05 Sta006 alum Mu-50 4.30E+07 1.05 Sta011 alum Mu-50 4.30E+07 1.05 Sta011 alum Mu-50 4.30E+07 1.05 Sta011 alum Staph19 4.40E+07 1.07 EsxAB alum Staph19 4.40E+07 0.94	45	EsxAB	alum	Staph19	5.30E+07	1.19
Sta006 alum Staph19 5.30E+07 2.00 Combol alum Staph19 5.30E+07 2.02 50 Sta011 alum Mu-50 4.30E+07 1.33 50 Sta011 alum Mu-50 4.30E+07 0.36 HlaH35L alum Mu-50 4.30E+07 0.11 Sta006 alum Mu-50 4.30E+07 1.05 Combol alum Mu-50 4.30E+07 1.05 Sta006 alum Mu-50 4.30E+07 1.05 Sta011 alum Mu-50 4.30E+07 1.05 Sta011 alum Mu-50 4.30E+07 1.05 Sta011 alum Mu-50 4.30E+07 1.07 EsxAB alum Staph19 4.40E+07 0.94		HlaH35L	alum	Staph19	5.30E+07	0.65
Combol alum Staph19 5.30E+07 2.02 50 Sta011 alum Mu-50 4.30E+07 1.33 EsxAB alum Mu-50 4.30E+07 0.36 HlaH35L alum Mu-50 4.30E+07 0.11 Sta006 alum Mu-50 4.30E+07 1.05 Combol alum Mu-50 4.30E+07 1.05 Sta010 alum Mu-50 4.30E+07 1.05 Sta011 alum Mu-50 4.30E+07 1.04 Sta011 alum Staph19 4.40E+07 1.07 EsxAB alum Staph19 4.40E+07 0.94		Sta006	alum	Staph19	5.30E+07	2.00
50 Sta011 alum Mu-50 4.30E+07 1.33 EsxAB alum Mu-50 4.30E+07 0.36 HlaH35L alum Mu-50 4.30E+07 0.11 Sta006 alum Mu-50 4.30E+07 1.05 Combol alum Mu-50 4.30E+07 1.05 55 Sta011 alum Staph19 4.40E+07 1.07 EsxAB alum Staph19 4.40E+07 0.94		Combo1	alum	Staph19	5.30E+07	2.02
EsxAB alum Mu-50 4.30E+07 0.36 HlaH35L alum Mu-50 4.30E+07 0.11 Sta006 alum Mu-50 4.30E+07 1.05 Combol alum Mu-50 4.30E+07 1.34 55 Sta011 alum Staph19 4.40E+07 1.07 EsxAB alum Staph19 4.40E+07 0.94	50	Sta011	alum	Mu-50	4.30E+07	1.33
HlaH35L alum Mu-50 4.30E+07 0.11 Sta006 alum Mu-50 4.30E+07 1.05 Combol alum Mu-50 4.30E+07 1.34 55 Sta011 alum Staph19 4.40E+07 1.07 EsxAB alum Staph19 4.40E+07 0.94	50	EsxAB	alum	Mu-50	4.30E+07	0.36
Sta006 alum Mu-50 4.30E+07 1.05 Combol alum Mu-50 4.30E+07 1.34 55 Sta011 alum Staph19 4.40E+07 1.07 EsxAB alum Staph19 4.40E+07 0.94		HlaH35L	alum	Mu-50	4.30E+07	0.11
Combol alum Mu-50 4.30E+07 1.34 55 Sta011 alum Staph19 4.40E+07 1.07 EsxAB alum Staph19 4.40E+07 0.94		Sta006	alum	Mu-50	4.30E+07	1.05
55 Sta011 alum Staph19 4.40E+07 1.07 EsxAB alum Staph19 4.40E+07 0.94		Combo1	alum	Mu-50	4.30E+07	1.34
EsxAB alum Staph19 4.40E+07 0.94	55	Sta011	alum	Staph19	4.40E+07	1.07
		EsxAB	alum	Staph19	4.40E+07	0.94

HlaH35L	alum	Staph19	4.40E+07	1.19
Sta006	alum	Staph19	4.40E+07	2.31
Combo1	alum	Staph19	4.40E+07	2.45

5

* alum = aluminium hydroxide

** Log reduction in kidney CFU

REFERENCES

10

[0649]

 [6] W02008/079315. [7] W02005/086663. 20 [8] W02006/033918. [10] W02006/078680. [11] W02007/053176. [14] O'Brien et al. (2000) J Dairy Sci 83:1758-66. [15] Research Disclosure, 453077 (Jan 2002). [16] EP-A-0372501. [17] EP-A-0378881. 30 [18] EP-A-0427347. [19] W093/17712. [20] W094/03208. [21] W098/58668. [22] EP-A-0471177. 35 [23] W091/01146. [24] Falugi et al. (2001) Eur J Immunol 31:3816-3824. [25] Baraldo et al. (2004) Infect Immun 72(8):4884-7. [26] EP-A-0594610. [27] Ruan et al. (1990) J Immunol 145:3379-3384. 40 [28] W000/56360. [29] Kuo et al. (1995) Infect Immun 63:2706-13. [30] Michon et al. (1998) Vaccine. 16:1732-41. [31] W002/091998. [32] W001/72337. 45 [33] W000/61761. [34] W000/33882 [35] US patent 4,761,283. [36] US patent 4,665,624. [39] Mol. Immunol., 1985, 22, 907-919 [40] EP-A-028375. [41] Bethell G.S. et al., J. Biol. Chem., 1979, 254, 2572-4 [42] Hearn M.T.W., J. Chromatogr., 1981, 218, 509-18 	15	 Sheridan (2009) Nature Biotechnology 27:499-501. Kuklin et al. (2006) Infect Immun. 74(4):2215-23. WO2007/113222. W02005/009379. W02009/029132.
 [12] WO20/11/15224. [12] WO98/10788. [13] W02007/053176. [14] O'Brien et al. (2000) J Dairy Sci 83:1758-66. [15] Research Disclosure, 453077 (Jan 2002). [16] EP-A-0372501. [17] EP-A-0378881. [18] EP-A-0427347. [19] WO93/17712. [20] WO94/03208. [21] WO98/58668. [22] EP-A-0471177. [23] WO91/01146. [24] Falugi et al. (2001) Eur J Immunol 31:3816-3824. [25] Baraldo et al. (2004) Infect Immun 72(8):4884-7. [26] EP-A-0594610. [27] Ruan et al. (1990) J Immunol 145:3379-3384. [28] WO00/56360. [29] Kuo et al. (1995) Infect Immun 63:2706-13. [30] Michon et al. (1998) Vaccine. 16:1732-41. [31] WO02/091998. [32] WO01/72337. [33] WO00/61761. [34] WO00/33882 [35] US patent 4,761,283. [36] US patent 4,695,624. [39] Mol. Immunol., 1985, 22, 907-919 [40] EP-A-0208375. [41] Bethell G.S. et al., J. Biol. Chem., 1979, 254, 2572-4 [42] Hearn M.T.W., J. Chromatogr., 1981, 218, 509-18 	20	 [6] W02008/079315. [7] W02005/086663. [8] WO2005/115113. [9] W02006/033918. [10] W02006/078680.
 [17] EP-A-0378881. [18] EP-A-0427347. [19] WO93/17712. [20] WO94/03208. [21] WO98/58668. [22] EP-A-0471177. [23] WO91/01146. [24] Falugi et al. (2001) Eur J Immunol 31:3816-3824. [25] Baraldo et al. (2004) Infect Immun 72(8):4884-7. [26] EP-A-0594610. [27] Ruan et al. (1990) J Immunol 145:3379-3384. [28] WO00/56360. [29] Kuo et al. (1995) Infect Immun 63:2706-13. [30] Michon et al. (1998) Vaccine. 16:1732-41. [31] WO02/091998. [32] WO01/72337. [33] WO00/1761. [34] WO00/3882 [35] US patent 4,761,283. [36] US patent 4,862,317. [38] US patent 4,865,624. [39] Mol. Immunol., 1985, 22, 907-919 [40] EP-A-0208375. [41] Bethell G.S. et al., J. Biol. Chem., 1979, 254, 2572-4 [42] Hearn M.T.W., J. Chromatogr., 1981, 218, 509-18 	25	 [11] WO2007/113224. [12] WO98/10788. [13] W02007/053176. [14] O'Brien et al. (2000) J Dairy Sci 83:1758-66. [15] Research Disclosure, 453077 (Jan 2002). [16] FP-A-0372501.
 [21] WO9/J0000. [22] EP-A-0471177. [23] WO91/01146. [24] Falugi et al. (2001) Eur J Immunol 31:3816-3824. [25] Baraldo et al. (2004) Infect Immun 72(8):4884-7. [26] EP-A-0594610. [27] Ruan et al. (1990) J Immunol 145:3379-3384. [28] WO00/56360. [29] Kuo et al. (1995) Infect Immun 63:2706-13. [30] Michon et al. (1998) Vaccine. 16:1732-41. [31] WO02/091998. [32] WO01/72337. [33] WO00/61761. [34] WO00/33882 [35] US patent 4,761,283. [36] US patent 4,356,170. [37] US patent 4,695,624. [39] Mol. Immunol., 1985, 22, 907-919 [40] EP-A-0208375. [41] Bethell G.S. et al., J. Biol. Chem., 1979, 254, 2572-4 [42] Hearn M.T.W., J. Chromatogr., 1981, 218, 509-18 	30	[17] EP-A-0378881. [18] EP-A-0427347. [19] WO93/17712. [20] WO94/03208. [21] WO98/58668
 [26] EP-A-0594610. [27] Ruan et al. (1990) J Immunol 145:3379-3384. (28] WO00/56360. [29] Kuo et al. (1995) Infect Immun 63:2706-13. [30] Michon et al. (1998) Vaccine. 16:1732-41. [31] WO02/091998. [32] WO01/72337. (33] WO00/61761. [34] WO00/33882 [35] US patent 4,761,283. [36] US patent 4,356,170. [37] US patent 4,882,317. [38] US patent 4,695,624. [39] Mol. Immunol., 1985, 22, 907-919 [40] EP-A-0208375. [41] Bethell G.S. et al., J. Biol. Chem., 1979, 254, 2572-4 [42] Hearn M.T.W., J. Chromatogr., 1981, 218, 509-18 [55] [43] WO00/10599. [44] Gever et al., Med. Microbiol. Immunol. 165 : 171-288 (197) 	35	 [22] EP-A-0471177. [23] WO91/01146. [24] Falugi et al. (2001) Eur J Immunol 31:3816-3824. [25] Baraldo et al. (2004) Infect Immun 72(8):4884-7.
 [31] WO02/091998. [32] WO01/72337. 45 [33] WO00/61761. [34] WO00/33882 [35] US patent 4,761,283. [36] US patent 4,356,170. [37] US patent 4,882,317. 50 [38] US patent 4,695,624. [39] Mol. Immunol., 1985, 22, 907-919 [40] EP-A-0208375. [41] Bethell G.S. et al., J. Biol. Chem., 1979, 254, 2572-4 [42] Hearn M.T.W., J. Chromatogr., 1981, 218, 509-18 55 [43] WO00/10599. [44] Gever et al., Med. Microbiol. Immunol. 165 : 171-288 (197) 	40	 [26] EP-A-0594610. [27] Ruan et al. (1990) J Immunol 145:3379-3384. [28] WO00/56360. [29] Kuo et al. (1995) Infect Immun 63:2706-13. [30] Michon et al. (1998) Vaccine. 16:1732-41.
 [36] US patent 4,356,170. [37] US patent 4,882,317. [38] US patent 4,695,624. [39] Mol. Immunol., 1985, 22, 907-919 [40] EP-A-0208375. [41] Bethell G.S. et al., J. Biol. Chem., 1979, 254, 2572-4 [42] Hearn M.T.W., J. Chromatogr., 1981, 218, 509-18 [43] WO00/10599. [44] Gever et al., Med. Microbiol. Immunol. 165 : 171-288 (197) 	45	 [31] WO02/091998. [32] WO01/72337. [33] WO00/61761. [34] WO00/33882 [35] US patent 4,761,283.
 [41] Bethell G.S. et al., J. Biol. Chem., 1979, 254, 2572-4 [42] Hearn M.T.W., J. Chromatogr., 1981, 218, 509-18 [43] WO00/10599. [44] Gever et al., Med. Microbiol. Immunol. 165 : 171-288 (1970) 	50	 [36] US patent 4,356,170. [37] US patent 4,882,317. [38] US patent 4,695,624. [39] Mol. Immunol., 1985, 22, 907-919 [40] EP-A-0208375.
[45] US patent 4,057,685.	55	 [41] Bethell G.S. et al., J. Biol. Chem., 1979, 254, 2572-4 [42] Hearn M.T.W., J. Chromatogr., 1981, 218, 509-18 [43] WO00/10599. [44] Gever et al., Med. Microbiol. Immunol, 165 : 171-288 (1979). [45] US patent 4,057,685. [46] US patent 4,057,574. 4 701 202; 4 202 700.

	[47] LIC meterst 4 450 200
	[47] US patent 4,459,286.
	[40] US patent 4,900,000.
	[49] 05 patent 4,005,100.
5	[50] W02007/000343. [51] W02008/010162
0	[51] WO2000/019102. [52] Rable & Wardenburg (2000) Infect Immun 77:2712-8
	[52] N(02007/145680
	[55] W02007/145003. [54] W02000/020831
	[54] W02009/029031. [55] W02005/070315
10	[55] W02003/07/3513. [56] W02008/152447
	[57] Kim et al. (2010) Vaccine doi:10.1016/i vaccine 2010.02.097
	[58] W02005/009379
	[59] W02005/009378
	[60] Siodahl (1977) J. Biochem. 73:343-351.
15	[61] Uhlen et al. (1984) J. Biol. Chem. 259:1695-1702 & 13628 (Corr.).
	[62] Schneewind et al. (1992) Cell 70:267-281.
	[63] DeDent et al. (2008) EMBO J. 27:2656-2668.
	[64] Sjoguist et al. (1972) Eur. J. Biochem. 30:190-194.
	[65] DeDent et al. (2007) J. Bacteriol. 189:4473-4484.
20	[66] Deisenhofer et al., (1978) Hoppe-Seyh Zeitsch. Physiol. Chem. 359:975-985.
	[67] Deisenhofer (1981) Biochemistry 20:2361-2370.
	[68] Graille et al. (2000) Proc. Nat. Acad. Sci. USA 97:5399-5404.
	[69] O'Seaghdha et al. (2006) FEBS J. 273:4831-41.
	[70] Gomez et al. (2006) J. Biol. Chem. 281:20190-20196.
25	[71] W02007/071692.
	[72] Sebulsky & Heinrichs (2001) J Bacteriol 183:4994-5000.
	[73] Sebulsky et al. (2003) J Biol Chem 278:49890-900.
	[74] W02010/039563.
00	[75] US patent 5,707,829
30	[76] Current Protocols in Molecular Biology (F.M. Ausubel et al. eds., 1987) Supplement 30.
	[77] Kuroda et al. (2001) Lancet 357:1225-1240.
	[70] Rice et al. (2000) Tranda Const 16:276-277
	[79] Rice et al. (2000) Trends Genet 10.270-277. [80] LIS potent 6355271
35	[80] 05 patent 055527 1. [81] WO00/23105
00	[82] Vaccine Design (1995) eds Powell & Newman ISBN: 030644867X Plenum
	[83] WO90/14837
	[84] WO90/14837
	[85] Podda & Del Giudice (2003) Expert Rev Vaccines 2:197-203.
40	[86] Podda (2001) Vaccine 19: 2673-2680.
	[87] Vaccine Design: The Subunit and Adjuvant Approach (eds. Powell & Newman) Plenum Press 1995 (ISBN
	0-306-44867-X).
	[88] Vaccine Adjuvants: Preparation Methods and Research Protocols (Volume 42 of Methods in Molecular Medicine
	series). ISBN: 1-59259-083-7. Ed. O'Hagan.
45	[89] W02008/043774.
	[90] Allison & Byars (1992) Res Immunol 143:519-25.
	[91] Hariharan et al. (1995) Cancer Res 55:3486-9.
	[92] US-2007/014805.
	[93] US-2007/0191314.
50	[94] Suli et al. (2004) Vaccine 22(25-26):3464-9.
	[95] WO95/11700.
	[96] US patent 6,080,725.
	[97] W02005/097181.
	[98] WO2006/113373.
55	[99] Han et al. (2005) Impact of Vitamin E on Immune Function and Infectious Diseases in the Aged at Nutrition,
	Immune functions and Health EuroConference, Paris, 9-10 June 2005.
	[100] US- 6630161.
	[101] US 5,057,540.

	[102] WO96/33739.
	[103] EP-A-0109942.
	[104] WO96/11711.
	[105] WO00/07621
5	[106] Barr et al. (1998) Advanced Drug Delivery Reviews 32:247-271
	[107] Siolanderet et al. (1998) Advanced Drug Delivery Reviews 32:321-338
	[108] Nijikura et al. (2002) Virology 293:273-280
	[109] Lenz et al. (2001) Limmunol 166:5346-5355
	[110] Dinto et al. (2003) Infort Dis 188:327 338
10	[111] Corbor at al. (2001) 1 Viral 75:4752 4760
10	$\begin{bmatrix} 111 \end{bmatrix} Gender et al. (2007) 5 Vitor 75.4752-4700.$
	[112] WO03/024460. [112] WO02/024461
	[115] WO05/024461. [114] Churk et al. (2002) Massing 20/D10 D10
	[114] GIUCK EL AL (2002) VACCINE 20.010-010.
15	[115] EP-A-0009454. [446] Jahrson et al. (4000) Discur Mad Cham Latt 0:0070, 0070
15	[110] Johnson et al. (1999) Bloorg Med Chem Lett 9.2273-2276.
	[117] Evans et al. (2003) Expert Rev Vaccines 2.219-229. [440] Maraldi et al. (2003) Massing 24:2495 2404
	[118] Meraidi et al. (2003) Vaccine 21:2485-2491.
	[119] Pajak et al. (2003) Vaccine 21:836-842.
	[120] Kandimalla et al. (2003) Nucleic Acids Research 31:2393-2400.
20	[121] WO02/26757.
	[122] WO99/62923.
	[123] Krieg (2003) Nature Medicine 9:831-835.
	[124] McCluskie et al. (2002) FEMS Immunology and Medical Microbiology 32:179-185.
	[125] WO98/40100.
25	[126] US 6,207,646.
	[127] US 6,239,116.
	[128] US 6,429,199.
	[129] Kandimalla et al. (2003) Biochemical Society Transactions 31 (part 3):654-658.
	[130] Blackwell et al. (2003) J Immunol 170:4061-4068.
30	[131] Krieg (2002) Trends Immunol 23:64-65.
	[132] WO01/95935.
	[133] Kandimalla et al. (2003) BBRC 306:948-953.
	[134] Bhagat et al. (2003) BBRC 300:853-861.
	[135] WO03/035836.
35	[136] WO01/22972.
	[137] Schellack et al. (2006) Vaccine 24:5461-72.
	[138] Kamath et al. (2008) Eur J Immunol 38:1247-56.
	[139] Riedl et al. (2008) Vaccine 26:3461-8.
	[140] WO95/17211.
40	[141] WO98/42375.
	[142] Beignon et al. (2002) Infect Immun 70:3012-3019.
	[143] Pizza et al. (2001) Vaccine 19:2534-2541.
	[144] Pizza et al. (2000) Int J Med Microbiol 290:455-461.
	[145] Scharton-Kersten et al. (2000) Infect Immun 68:5306-5313.
45	[146] Ryan et al. (1999) Infect Immun 67:6270-6280.
	[147] Partidos et al. (1999) Immunol Lett 67:209-216.
	[148] Peppoloni et al. (2003) Expert Rev Vaccines 2:285-293.
	[149] Pine et al. (2002) J Control Release 85:263-270.
	[150] Tebbey et al. (2000) Vaccine 18:2723-34.
50	[151] Domenighini et al. (1995) Mol Microbiol 15:1165-1167.
	[152] WO099/40936.
	[153] WO099/44636.
	[154] Singh et al] (2001) J Cont Release 70:267-276.
	[155] WO99/27960.
55	[156] US 6,090,406.
	[157] US 5,916,588.
	[158] EP-A-0626169.
	[159] WO99/52549.

	[160] WO01/21207.
	[161] WO01/21152.
	[162] Andrianov et al. (1998) Biomaterials 19:109-115.
	[163] Payne et al. (1998) Adv Drug Delivery Review 31:185-196.
5	[164] US 4,680,338.
	[165] US 4,988,815.
	[166] WO92/15582.
	[167] Stanley (2002) Clin Exp Dermatol 27:571-577.
10	[168] Wu et al. (2004) Antiviral Res. 64(2):79-83.
10	[169] Vasilakos et al. (2000) Cell Immunol. 204(1):64-74.
	[170] US patents 4689338, 4929624, 5238944, 5266575, 5268376, 5346905, 5352784, 5389640, 5395937,
	5462950, 5494910, 5525012, 0065505, 0440992, 0027040, 0050956, 0000755, 0000747, 0004200, 0004204, 6664265, 6667312, 6670372, 6677347, 6677348, 6677340, 6683088, 6703402, 6743020, 6800624, 6800203
	6888000 and 692/293
15	[171] Jones (2003) Curr Onin Investia Drugs 4:214-218
	[172] WO03/011223
	[173] Johnson et al. (1999) Bioorg Med Chem Lett 9:2273-2278.
	[174] Evans et al. (2003) Expert Rev Vaccines 2:219-229.
	[175] Hu et al. (2009) Vaccine 27:4867-73.
20	[176] W02004/060308.
	[177] W02004/064759.
	[178] US 6,924,271.
	[179] US2005/0070556.
	[180] US 5,658,731.
25	[181] US patent 5,011,828.
	[182] WU2UU4/8/153. [193] US 6 605 617
	[103] US 0,000,017. [184] WO02/18383
	[184] WOO2/16565. [185] WO2004/018455
30	[186] W003/082272
	[187] Word et al. (2003) J Clin Pharmacol 43(7):735-42.
	[188] US2005/0215517.
	[189] Dyakonova et al. (2004) Int Immunopharmacol 4(13):1615-23.
	[190] FR-2859633.
35	[191] Signorelli & Hadden (2003) Int Immunopharmacol 3(8):1177-86.
	[192] W02004/064715.
	[193] De Libero et al, Nature Reviews Immunology, 2005, 5: 485-496
	[194] US patent 5,936,076.
10	[195] Oki et al, J. Clin. Investig., 113: 1631-1640
40	[190] US2005/0192248 [107] Vang et al. Angew. Chem. Int. Ed. 2004, 42: 3818-3822
	[197] Tang et al, Angew. Chem. Int. Ed., 2004, 45. 5616-5622 [198] WO2005/102049
	[199] Goff et al. J. Am. Chem. Soc. 2004, 126: 13602-13603
	[200] WO03/105769
45	[201] Cooper (1995) Pharm Biotechnol 6:559-80.
	[202] WO99/11241.
	[203] WO94/00153.
	[204] WO98/57659.
	[205] European patent applications 0835318, 0735898 and 0761231.
50	[206] W02006/110603.
	[207] Stranger-Jones et al. (2006) PNAS USA 103:16942-7.
	[200] Depending et al. (2007) Intect Immun 75:1040-4.
	[209] Donnelly et al. (1997) Annu Kev immunol 15:617-648. [210] Strugpell et al. (1997) Immunol Cell Biol 75/4):264-269
55	[210] Straghen et al. (1997) Infination Cell Diol 73(4).304-309. [211] Cui (2005) Δdv Genet 54:257-89
20	[212] Robinson & Torres (1997) Seminars in Immunol 9:271-283
	[213] Brunham et al. (2000) J Infect Dis 181 Suppl 3:5538-43.
	[214] Svanholm et al. (2000) Scand J Immunol 51(4):345-53.

	[215] DNA Vaccination - Genetic Vaccination (1998) eds. Koprowski et al. (ISBN 3540633928).
	[216] Gene Vaccination : Theory and Practice (1998) ed. Raz (ISBN 3540644288).
	[217] Findeis et al., Trends Biotechnol. (1993) 11:202
	[218] Chiou et al. (1994) Gene Therapeutics: Methods And Applications Of Direct Gene Transfer. ed. Wolff
5	[219] Wu et al. J. Biol. Chem. (1988) 263:621
	[220] Wu et al. J. Biol. Chem. (1994) 269:542
	[221] Zenke et al. Proc. Natl. Acad. Sci. (USA) (1990) 87:3655
	[222] Wu et al. Biol Chem (1991) 266:338
	[222] Vid et al., 5. Diol. Ohem. (1997) 200.000
10	[224] Kimura Human Cana Tharany (1994) 1.51
10	[224] Kiniura, Human Gene Therapy (1994) 5.045
	[225] Connelly, Human Gene Therapy (1995) 1:185
	[226] Kaplitt, Nature Genetics (1994) 6:148
	[227] WO 90/07936.
	[228] WO 94/03622.
15	[229] WO 93/25698.
	[230] WO 93/25234.
	[231] US patent 5,219,740.
	[232] WO 93/11230.
	[233] WO 93/10218.
20	[234] US patent 4,777,127.
	[235] GB Patent No. 2,200,651.
	[236] EP-A-0345242.
	[237] WO 91/02805.
	[238] WO 94/12649.
25	[239] WO 93/03769.
	[240] WO 93/19191.
	[241] WO 94/28938.
	[242] WO 95/11984.
	[243] WO 95/00655.
30	[244] Curiel, Hum. Gene Ther. (1992) 3:147
	[245] Wu, J. Biol. Chem. (1989) 264:16985
	[246] US patent 5,814,482.
	[247] WO 95/07994.
	[248] WO 96/17072.
35	[249] WO 95/30763.
	[250] WO 97/42338.
	[251] WO 90/11092.
	[252] US patent 5,580,859
	[253] US patent 5,422,120
40	[254] WO 95/13796.
	[255] WO 94/23697.
	[256] WO 91/14445.
	[257] EP-0524968.
	[258] Philip, Mol. Cell Biol. (1994) 14:2411
45	[259] Woffendin, Proc. Natl. Acad. Sci. (1994) 91:11581
	[260] US patent 5,206,152.
	[261] WO 92/11033
	[262] US natent 5 149 655
	[263] Winter et al. (1991) Nature 349:203-99
50	[264] US 4 816 567
	[265] Inbar et al. (1972) Proc. Natl. Acad. Sci. LLS & 69·2659-62
	[266] Fhrlich et al. (1980) Biochem 19:4091-96
	[267] Huston et al. (1988) Proc. Natl. Acad. Sci. 11 S.A. 85:5807-83
	[207] Fusion et al., (1900) From Nati. Addu. 301, 0.3.A. 03.3037-03. [268] Dack et al. (1002) Biochem 31, 1570-84
55	[200] Later at al. (1002) Distribution of 1070^{-04} . [260] Cumber at al. (1002) L. Immunology 140B, 120-26
50	[200] Outriser et al., (1992) 3. Infinduology 1430, 120-20. [270] Riechmann et al. (1988) Nature 332-323-27
	[271] Verboevan et al. (1988) Science 230, 1531-36
	[27] CB 2 276 160

	[273] Gennaro (2000) Remington: The Science and Practice of Pharmacy. 20th edition, ISBN: 0683306472.
	[274] Methods In Enzymology (S. Colowick and N. Kaplan, eds., Academic Press, Inc.)
	[2/5] Handbook of Experimental Immunology, Vols. I-IV (D.M. Weir and C.C. Blackwell, eds, 1986, Blackwell Sci-
r	entific Publications)
5	[276] Sambrook et al. (2001) Molecular Cioning: A Laboratory Manual, 3rd edition (Cold Spring Harbor Laboratory
	Press). 1977: Handhashaf Ovefaas and Oellaidel Obersistry (Birdi 16 Oberse, 1997)
	[277] Handbook of Surface and Colloidal Chemistry (Birdi, K.S. ed., CRC Press, 1997)
	[276] Ausuber et al. (eds) (2002) Short protocols in molecular biology, 5th edition (Current Protocols).
10	[279] Nolecular Biology Techniques. An Intensive Laboratory Course, (Ream et al., eds., 1996, Academic Press)
10	[200] FCR (Introduction to Biotechniques Series), 2nd ed. (Newton & Granam eds., 1997, Springer Verlag)
	[201] Geysen et al. (1904) FINAS USA 01.3990-4002. [282] Cartar (1904) Mathada Mal Rial 26:207.23
	[283] Jameson BA et al. 1988. CABIOS $I/(1):181-186$
	[284] Raddrizzani & Hammer (2000) Brief Bioinform 1(2)·179-89
15	[285] Bublil et al. (2007) Proteins 68(1):294-304
	[286] De Lalla et al. (1999) J. Immunol. 163:1725-29.
	[287] Kwok et al. (2001) Trends Immunol 22:583-88.
	[288] Brusic et al. (1998) Bioinformatics 14(2):121-30
	[289] Meister et al. (1995) Vaccine 13(6):581-91.
20	[290] Roberts et al. (1996) AIDS Res Hum Retroviruses 12(7):593-610.
	[291] Maksyutov & Zagrebelnaya (1993) Comput Appl Biosci 9(3):291-7.
	[292] Feller & de la Cruz (1991) Nature 349(6311):720-1.
	[293] Hopp (1993) Peptide Research 6:183-190.
	[294] Welling et al. (1985) FEBS Lett. 188:215-218.
25	[295] Davenport et al. (1995) Immunogenetics 42:392-297.
	[296] Tsurui & Takahashi (2007) J Pharmacol Sci. 105(4):299-316.
	[297] Tong et al. (2007) Brief Bioinform. 8(2):96-108.
	[298] Schirle et al. (2001) J Immunol Methods. 257(1-2):1-16.
	[299] Chen et al. (2007) Amino Acids 33(3):423-8.
30	[300] Current Protocols in Molecular Biology (F.M. Ausubel et al., eds., 1987) Supplement 30
	[301] Smith & Waterman (1981) Adv. Appl. Math. 2: 482-489.
	[302] Doro et al. (2009) Molecular & Cellular Proteomics 8:1728-1737.

EMBODIMENTS OF THE INVENTION

35

[0650]

40	1. An immunogenic composition comprising a combination of antigens, said combination comprising two or more antigens selected from the group consisting of: (1) a sta006 antigen; (2) a sta011 antigen; (3) a esxA antigen; (4) a esxB antigen; (5) a hla antigen; (6) a ebpS antigen; (7) a efb antigen; (8) a emp antigen; (9) a esaC antigen; (10) a coA antigen; (11) a eap antigen; (12) a FnBA antigen; (13) a FnBB antigen; (14) a ebhA antigen; (15) a hlgB antigen; (16) a hlgC antigen; (17) a isdA antigen; (18) a isdB antigen; (19) a isdC antigen; (20) a isdG antigen; (21)
	a isdH antigen; (22) a isdI antigen; (23) a lukD antigen; (24) a lukE antigen; (25) a lukF antigen; (26) a lukS antigen;
	(27) a nuc antigen; (28) a sasA antigen; (29) a sasB antigen; (30) a sasC antigen; (31) a sasD antigen; (32) a sasF
45	antigen; (33) a sdrC antigen; (34) a sdrD antigen; (35) a sdrE2 antigen; (36) a spa antigen; (37) a clfA antigen; (38)
	a clfB antigen; (39) a sta001 antigen; (40) a sta002 antigen; (41) a sta003 antigen; (42) a sta004 antigen; (43) a
	sta005 antigen; (44) a sta007 antigen; (45) a sta008 antigen; (46) a sta009 antigen; (47) a sta010 antigen; (48) a
	sta012 antigen; (49) a sta013 antigen; (50) a sta014 antigen; (51) a sta015 antigen; (52) a sta016 antigen; (53) a
	sta017 antigen; (54) a sta018 antigen; (55) a sta019 antigen; (56) a sta020 antigen; (57) a sta021 antigen; (58) a
50	sta022 antigen; (59) a sta023 antigen; (60) a sta024 antigen; (61) a sta025 antigen; (62) a sta026 antigen; (63) a
	sta027 antigen; (64) a sta028 antigen; (65) a sta029 antigen; (66) a sta030 antigen; (67) a sta031 antigen; (68) a
	sta032 antigen; (69) a sta033 antigen; (70) a sta034 antigen; (71) a sta035 antigen; (72) a sta036 antigen; (73) a
	sta037 antigen; (74) a sta038 antigen; (75) a sta039 antigen; (76) a sta040 antigen; (77) a sta041 antigen; (78) a
	sta042 antigen; (79) a sta043 antigen; (80) a sta044 antigen; (81) a sta045 antigen; (82) a sta046 antigen; (83) a
55	sta047 antigen; (84) a sta048 antigen; (85) a sta049 antigen; (86) a sta050 antigen; (87) a sta051 antigen; (88) a
	sta052 antigen; (89) a sta053 antigen; (90) a sta054 antigen; (91) a sta055 antigen; (92) a sta056 antigen; (93) a
	sta057 antigen; (94) a sta058 antigen; (95) a sta059 antigen; (96) a sta060 antigen; (97) a sta061 antigen; (98) a
	sta062 antigen; (99) a sta063 antigen; (100) a sta064 antigen; (101) a sta065 antigen; (102) a sta066 antigen; (103)

a sta067 antigen; (104) a sta068 antigen; (105) a sta069 antigen; (106) a sta070 antigen; (107) a sta071 antigen; (108) a sta072 antigen; (109) a sta073 antigen; (110) a sta074 antigen; (111) a sta075 antigen; (112) a sta076 antigen; (113) a sta077 antigen; (114) a sta078 antigen; (115) a sta079 antigen; (116) a sta080 antigen; (117) a sta082 antigen; (118) a sta083 antigen; (119) a sta084 antigen; (120) a sta085 antigen; (121) a sta086 antigen; (122) a sta087 antigen; (123) a sta088 antigen; (124) a sta089 antigen; (125) a sta090 antigen; (126) a sta091 antigen; (127) a sta092 antigen; (128) a sta093 antigen; (129) a sta094 antigen; (130) a sta095 antigen; (131) a sta096 antigen; (132) a sta097 antigen; (133) a sta098 antigen; (134) a sta099 antigen; (135) a sta100 antigen; (136) a sta101 antigen; (137) a sta102 antigen; (138) a sta103 antigen; (139) a sta104 antigen; (140) a sta105 antigen; (141) a sta106 antigen; (142) a sta107 antigen; (143) a sta108 antigen; (144) a sta109 antigen; (145) a sta110 antigen; (150) a sta111 antigen; (147) a sta112 antigen; (148) a sta113 antigen; (149) a sta114 antigen; (150) a sta115 antigen; (151) a sta116 antigen; (152) a sta117 antigen; (153) a sta118 antigen; (154) a sta119 antigen; (155) a sta120 antigen; (156) a NW_6 antigen; (157) a NW_9 antigen; (158) a NW_10 antigen; (159) a NW_7 antigen; (160) a NW_8 antigen; (161) a NW_2 antigen; (162) a NW_1 antigen; (163) a sta081 antigen; and (164) a NW_5 antigen.

15

20

30

5

10

2. The composition of embodiment 1, comprising at least one antigen selected from numbers (3) to (38) and at least one antigen selected from numbers (1), (2) and (37) to (149).

3. The composition of embodiment 2, comprising:

at least one antigen selected from numbers (37), (38), (8), (9), (3), (4), (5), (17), (18), (19), (31), (32), (33), (34), (35) and (36);

and at least one antigen selected from (40), (1), (43), (2), (64), (96), (133) and (147).

4. The composition of embodiment 1, comprising two or more antigens selected from the group consisting of: (1) a clfA antigen; (2) a clfB antigen; (3) a sdrE2 antigen; (4) a sdrC antigen; (5) a SasF antigen; (6) a emp antigen; (7) a sdrD antigen; (8) a spa antigen; (9) a esaC antigen; (10) a esxA antigen; (11) a esxB antigen; (12) a sta006 antigen; (13) a isdC antigen; (14) a hla antigen; (15) a sta011 antigen; (16) isdA antigen; (17) a isdB antigen; (18) a sasF antigen.

5. The composition of embodiment 1, two or more antigens selected from the group consisting of: (1) a esxA antigen; (2) a esxB antigen; (3) a sta006 antigen; (4) a hla antigen; (5) a sta011 antigen.

6. The composition of any preceding embodiment, wherein one or more of said antigens is adsorbed to an aluminium hydroxide adjuvant, and optionally wherein the composition includes a histidine buffer.

7. The composition of any preceding embodiment, further comprising: one or more conjugates of (i) a *S. aureus* exopolysaccharide and (ii) a carrier protein.

- 40 8. The composition of any preceding embodiment, further comprising: one or more conjugates of (i) a *S. aureus* capsular polysaccharide and (ii) a carrier protein.
 - 9. A polypeptide of formula NH_2 -A-{-X-L-}_n-B-COOH, wherein:
- 45 X is an amino acid sequence of a staphylococcal antigen, selected from the group consisting of S.aureus antigens sta006, sta011, esxA, esxB, hla, clfA, clfB, coA, eap, ebhA, ebpS, efb, emp, esaC, FnBA, FnBB, hlgB, hlgC, isdA, isdB, isdC, isdG, isdH, isdI, lukD, lukE, lukF, lukS, nuc, sasA, sasB, sasC, sasD, sasF, sdrC, sdrD, sdrE2, spa, sta001, sta002, sta003, sta004, sta005, sta007, sta008, sta009, sta010, sta012, sta013, sta014, sta015, sta016, sta017, sta018, sta019, sta020, sta021, sta022, sta023, sta024, sta025, sta026, sta027, sta028, 50 sta029, sta030, sta031, sta032, sta033, sta034, sta035, sta036, sta037, sta038, sta039, sta040, sta041, sta042, sta043, sta044, sta045, sta046, sta047, sta048, sta049, sta050, sta051, sta052, sta053, sta054, sta055, sta056, sta057, sta058, sta059, sta060, sta061, sta062, sta063, sta064, sta065, sta066, sta067, sta068, sta069, sta070, sta071, sta072, sta073, sta074, sta075, sta076, sta077, sta078, sta079, sta080, sta081, sta082, sta083, sta084, sta085, sta086, sta087, sta088, sta089, sta090, sta091, sta092, sta093, sta094, sta095, sta096, sta097, sta098, 55 sta099, sta100, sta101, sta102, sta103, sta104, sta105, sta106, sta107, sta108, sta109, sta110, sta111, sta112, sta113, sta114, sta115, sta116, sta117, sta118, NW_6, NW_9, NW_10, NW_7, NW_8, NW_2, NW_1, and NW_ 5;

L is an optional linker amino acid sequence;

A is an optional N-terminal amino acid sequence; B is an optional C-terminal amino acid sequence; and n is an integer of 2 or more.

- ⁵ 10. An immunogenic composition comprising the polypeptide of embodiment 9 and further comprising: (A) one or more conjugates of (i) a *S.aureus* exopolysaccharide and (ii) a carrier protein; and/or (B) one or more conjugates of (i) a *S.aureus* capsular polysaccharide and (ii) a carrier protein.
- 11. The composition or polypeptide of any preceding embodiment, wherein the clfA antigen can elicit an antibody
 which recognises SEQ ID NO: 1 and comprises an amino acid sequence: (a) having 80% or more identity to SEQ ID NO: 1; and/or (b) comprising a fragment of at least 7 consecutive amino acids of SEQ ID NO: 1, wherein the fragment comprises an epitope from SEQ ID NO: 1.
- 12. A polypeptide comprising amino acid sequence (a) having 80% or more identity to SEQ ID NO: 151; and/or (b) comprising a fragment of at least 7 consecutive amino acids from amino acids 1-97 of SEQ ID NO: 151 and at least 7 consecutive amino acids 104-207 of SEQ ID NO: 151, wherein the polypeptide can elicit antibodies which recognise both the wild-type staphylococcal protein comprising SEQ ID NO: 10 and the wild-type staphylococcal protein comprising SEQ ID NO: 10 and the wild-type staphylococcal protein comprising SEQ ID NO: 11.
- ²⁰ 13. An immunogenic composition comprising the polypeptide of embodiment 12 and one or more of (i) a sta006 antigen; (ii) a hla antigen; and/or (iii) a sta011 antigen.
 - 14. The composition of embodiment 13, including an adjuvant.
- 25 15. A polypeptide comprising amino acid sequence having 80% or more identity to an amino acid sequence selected from SEQ ID NOs: 151, 152, 168, 202, 203, 204, 205. 206, 207, 208, 209 210,211,212,220,221,222,223,224,237,238,241.
- 16. A polypeptide comprising an amino acid sequence selected from SEQ ID NOs: 151, 152, 168, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 220, 221, 222, 223, 224, 237, 238, 241, 242,243,244,245.

17. A polypeptide comprising: (a) a first sequence having 90% or more identity to SEQ ID NO: 218; and (b) a second sequence having 90% or more identity to SEQ ID NO: 219, wherein the first and second sequences are either directly joined or are joined by an intervening amino acid sequence having fewer than 10 amino acids.

35

18. A pharmaceutical composition comprising the polypeptide of any one of embodiments 12, 15, 16 or 17.

19. A method for raising an immune response in a mammal comprising the step of administering to the mammal an effective amount of the polypeptide or composition of any preceding embodiment.

- 40
- 20. Nucleic acid encoding the polypeptide of embodiment 9, 12, 15, 16 or 17.

45

50

	SEQUENC	E LISTIN	G										
	<110>	NOVARTIS	S AG										
5	<120>	COMPOSI	TIONS	FOR I	MUNI	SING	AGA]	INST	STA	PHYLO		cus /	AUREUS
0	<130>	P054462\	٨O										
	<140> <141>	PCT/IB20 2010-04	010/00 -14	0998									
10	<150> <151>	US 61/2 2009-04	12,705 -14	5									
	<150> <151>	US 61/2 2009-08	34,079 -14	9									
15	<160>	250											
	<170>	SeqWin20)10, v	versio	n 1.0								
20	<210> <211> <212> <213>	1 927 PRT Staphylo	οςοςςι	us aure	eus								
	<400> Met Asn 1	1 Met Lys	Lys L 5	_ys Glı	ı Lys	His	A]a 10	Ile	Arg	Lys	Lys	Ser 15	Ile
25	Gly Val	Ala Ser 20	Val L	_eu Va	l Gly	⊤hr 25	Leu	Ile	Gly	Phe	G]y 30	Leu	Leu
	Ser Ser	Lys Glu 35	Ala A	Asp Ala	a Ser 40	Glu	Asn	Ser	Val	Thr 45	Gln	Ser	Asp
30	Ser Ala 50	Ser Asn	Glu S	ser Ly: 55	s Ser	Asn	Asp	ser	ser 60	ser	Val	Ser	Ala
	Ala Pro 65	Lys Thr	Asp 4	Asp ⊤h 70	^ Asn	Val	Ser	Asp 75	Thr	Lys	Thr	Ser	Ser 80
35	Asn Thr	Asn Asn	Gly C 85	Glu ⊤h	^r Ser	Val	A]a 90	Gln	Asn	Pro	Ala	Gln 95	Gln
	Glu Thr	Thr Gln 100	Ser S	Ser Se	⁻ Thr	Asn 105	Ala	Thr	Тhr	Glu	Glu 110	Тhr	Pro
40	Val Thr	Gly Glu 115	А]а 1	Thr ⊤h	⁻ Тhr 120	⊤hr	Тhr	Asn	Gln	Ala 125	Asn	Тhr	Pro
	Ala Thr 130	Thr Gln	Ser S	Ser Asi 13	n Thr	Asn	Ala	Glu	Glu 140	Leu	Val	Asn	Gln
45	Thr Ser 145	Asn Glu	Thr 1 1	Thr Se 150	^ Asn	Asp	тhr	Asn 155	Thr	Val	Ser	Ser	Va] 160
	Asn Ser	Pro Gln	Asn S 165	Ser ⊤h	^ Asn	Ala	Glu 170	Asn	Val	Ser	Тhr	Thr 175	Gln
50	Asp Thr	Ser Thr 180	Glu A	Ala ⊤h	r Pro	Ser 185	Asn	Asn	Glu	Ser	Ala 190	Pro	Gln
	Ser Thr	Asp Ala 195	Ser A	Asn Ly:	5 Asp 200	Val	Val	Asn	Gln	Ala 205	Val	Asn	Thr
55	Ser Ala 210	Pro Arg	Met A	Arg Ala 21	a Phe	Ser	Leu	Ala	Ala 220	Val	Ala	Ala	Asp
	Ala Pro	Val Ala	Gly 1	Thr As	o Ile	⊤hr	Asn	Gln	Leu	Thr	Asn	Val	Thr

225 230 235 240 Val Gly Ile Asp Ser Gly Thr Thr Val Tyr Pro His Gln Ala Gly Tyr 245 250 255 5 Val Lys Leu Asn Tyr Gly Phe Ser Val Pro Asn Ser Ala Val Lys Gly 260 265 270 Asp Thr Phe Lys Ile Thr Val Pro Lys Glu Leu Asn Leu Asn Gly Val 275 280 285 Thr Ser Thr Ala Lys Val Pro Pro Ile Met Ala Gly Asp Gln Val Leu 290 295 300 10 Ala Asn Gly Val Ile Asp Ser Asp Gly Asn Val Ile Tyr Thr Phe Thr 305 310 315 320 Asp Tyr Val Asn Thr Lys Asp Asp Val Lys Ala Thr Leu Thr Met Pro 325 330 335 15 Ala Tyr Ile Asp Pro Glu Asn Val Lys Lys Thr Gly Asn Val Thr Leu 340 345 350 Ala Thr Gly Ile Gly Ser Thr Thr Ala Asn Lys Thr Val Leu Val Asp 355 360 365 20 Tyr Glu Lys Tyr Gly Lys Phe Tyr Asn Leu Ser Ile Lys Gly Thr Ile 370 375 380 Asp Gln Ile Asp Lys Thr Asn Asn Thr Tyr Arg Gln Thr Ile Tyr Val 385 390 395 400 25 Asn Pro Ser Gly Asp Asn Val Ile Ala Pro Val Leu Thr Gly Asn Leu 405 410 415 Lys Pro Asn Thr Asp Ser Asn Ala Leu Ile Asp Gln Gln Asn Thr Ser 420 425 430 30 Ile Lys Val Tyr Lys Val Asp Asn Ala Ala Asp Leu Ser Glu Ser Tyr 435 440 445 Phe Val Asn Pro Glu Asn Phe Glu Asp Val Thr Asn Ser Val Asn Ile 450 455 460 35 Thr Phe Pro Asn Pro Asn Gln Tyr Lys Val Glu Phe Asn Thr Pro Asp465470475480 465 Asp Gln Ile Thr Thr Pro Tyr Ile Val Val Val Asn Gly His Ile Asp 485 490 495 40 Pro Asn Ser Lys Gly Asp Leu Ala Leu Arg Ser Thr Leu Tyr Gly Tyr 500 505 510 Asn Ser Asn Ile Ile Trp Arg Ser Met Ser Trp Asp Asn Glu Val Ala 515 520 525 45 Phe Asn Asn Gly Ser Gly Ser Gly Asp Gly Ile Asp Lys Pro Val Val 530 535 540 Pro Glu Gln Pro Asp Glu Pro Gly Glu Ile Glu Pro Ile Pro Glu Asp 545 550 555 560 50 Ser Asp Ser Asp Pro Gly Ser Asp Ser Gly Ser Asp Ser Asp Ser Asp 565 570 575 Ser Gly Ser Asp Ser Gly Ser Asp Ser Thr Ser Asp Ser Gly Ser Asp 580 585 590 55 Ser Ala Ser Asp Ser Asp Ser Ala Ser Asp Ser Asp Ser Ala Ser Asp 595 600 605

	Ser	Asp 610	Ser	Ala	Ser	Asp	Ser 615	Asp	Ser	Ala	Ser	Asp 620	Ser	Asp	Ser	Asp
5	Asn 625	Asp	Ser	Asp	Ser	Asp 630	Ser	Asp	Ser	Asp	Ser 635	Asp	Ser	Asp	Ser	Asp 640
	Ser	Asp	Ser	Asp	Ser 645	Asp	Ser	Asp	Ser	Asp 650	Ser	Asp	Ser	Asp	Ser 655	Asp
10	Ser	Asp	Ser	Asp 660	Ser	Asp	Ser	Asp	Ser 665	Asp	Ser	Asp	Ser	Asp 670	Ser	Asp
	Ser	Asp	Ser 675	Asp	Ser	Asp	Ser	Asp 680	Ser	Asp	Ser	Asp	Ser 685	Asp	Ser	Asp
15	Ser	Asp 690	Ser	Asp	Ser	Asp	Ser 695	Asp	Ser	Asp	Ser	Asp 700	Ser	Asp	Ser	Asp
	Ser 705	Asp	Ser	Asp	Ser	Asp 710	Ser	Asp	Ser	Asp	Ser 715	Asp	Ser	Asp	Ser	Asp 720
20	Ser	Asp	Ser	Asp	Ser 725	Asp	Ser	Asp	Ser	Asp 730	Ser	Asp	Ser	Asp	Ser 735	Asp
	Ser	Asp	Ser	Asp 740	Ser	Asp	Ser	Asp	Ser 745	Asp	Ser	Asp	Ser	Asp 750	Ser	Asp
25	Ser	Asp	Ser 755	Asp	Ser	Asp	Ser	Asp 760	Ser	Asp	Ser	Asp	Ser 765	Asp	Ser	Ala
20	Ser	Asp 770	Ser	Asp	Ser	Asp	Ser 775	Asp	Ser	Asp	Ser	Asp 780	Ser	Asp	Ser	Asp
30	Ser 785	Asp	Ser	Asp	Ser	Asp 790	Ser	Asp	Ser	Asp	Ser 795	Asp	Ser	Asp	Ser	Asp 800
50	Ser	Asp	Ser	Asp	Ser 805	Asp	Ser	Glu	Ser	Asp 810	Ser	Asp	Ser	Asp	Ser 815	Asp
25	Ser	Asp	Ser	Asp 820	Ser	Asp	Ser	Asp	Ser 825	Asp	Ser	Asp	Ser	Asp 830	Ser	Ala
30	Ser	Asp	Ser 835	Asp	Ser	GΊу	Ser	Asp 840	Ser	Asp	Ser	Ser	Ser 845	Asp	Ser	Asp
40	Ser	Glu 850	Ser	Asp	Ser	Asn	Ser 855	Asp	Ser	Glu	Ser	Va] 860	Ser	Asn	Asn	Asn
40	Va] 865	Val	Pro	Pro	Asn	Ser 870	Pro	Lys	Asn	Gly	Thr 875	Asn	Ala	Ser	Asn	Lys 880
45	Asn	Glu	Ala	Lys	Asp 885	Ser	Lys	Glu	Pro	Leu 890	Pro	Asp	Тhr	Gly	Ser 895	Glu
45	Asp	Glu	Ala	Asn 900	Thr	Ser	Leu	Ile	тгр 905	Gly	Leu	Leu	Ala	Ser 910	Ile	Gly
	Ser	Leu	Leu 915	Leu	Phe	Arg	Arg	Lys 920	Lys	Glu	Asn	Lys	Asp 925	Lys	Lys	
50	<210 <211 <212 <213)> L> }> }>	2 877 PRT Stap	ohy1c	ococo	cus a	aureu	ıs								
55	<400 Met 1)> Lys	2 Lys	Arg	Ile 5	Asp	Tyr	Leu	Ser	Asn 10	Lys	Gln	Asn	Lys	Tyr 15	Ser

	Ile	Arg	Arg	Phe 20	⊤hr	Val	Gly	Thr	Thr 25	Ser	Val	Ile	Val	G]y 30	Ala	⊤hr
5	Ile	Leu	Phe 35	Gly	Ile	Gly	Asn	ніs 40	Gln	Ala	Gln	Ala	ser 45	Glu	Gln	Ser
	Asn	Asp 50	Thr	Thr	Gln	Ser	Ser 55	Lys	Asn	Asn	Ala	Ser 60	Ala	Asp	Ser	Glu
	Lys 65	Asn	Asn	Met	Ile	Glu 70	Thr	Pro	Gln	Leu	Asn 75	⊤hr	Thr	Ala	Asn	Asp 80
10	⊤hr	Ser	Asp	Ile	Ser 85	Ala	Asn	Thr	Asn	Ser 90	Ala	Asn	Val	Asp	Ser 95	⊤hr
	⊤hr	Lys	Pro	Met 100	Ser	Тhr	Gln	Thr	Ser 105	Asn	Thr	⊤hr	Thr	Thr 110	Glu	Pro
15	Ala	Ser	Тhr 115	Asn	Glu	тhr	Pro	G]n 120	Pro	тhr	Ala	Ile	Lys 125	Asn	Gln	Ala
	⊤hr	A]a 130	Ala	Lys	Met	Gln	Asp 135	G]n	Thr	Val	Pro	G]n 140	Glu	Ala	Asn	Ser
20	Gln 145	Val	Asp	Asn	Lys	Thr 150	Thr	Asn	Asp	Ala	Asn 155	Ser	Ile	Ala	Тhr	Asn 160
	Ser	Glu	Leu	Lys	Asn 165	Ser	Gln	Тhr	Leu	Asp 170	Leu	Pro	Gln	Ser	Ser 175	Pro
25	Gln	Thr	Ile	Ser 180	Asn	Ala	Gln	Gly	Thr 185	Ser	Lys	Pro	Ser	Va] 190	Arg	⊤hr
	Arg	Ala	Va] 195	Arg	Ser	Leu	Ala	Va] 200	Ala	Glu	Pro	Val	Va] 205	Asn	Ala	Ala
30	Asp	A]a 210	Lys	Gly	⊤hr	Asn	Va] 215	Asn	Asp	Lys	Val	Thr 220	Ala	Ser	Asn	Phe
	Lys 225	Leu	Glu	Lys	⊤hr	Thr 230	Phe	Asp	Pro	Asn	G]n 235	Ser	Gly	Asn	Thr	Phe 240
35	Met	Ala	Ala	Asn	Phe 245	Thr	val	Thr	Asp	Lys 250	Val	Lys	Ser	Gly	Asp 255	⊤yr
	Phe	Thr	Ala	Lys 260	Leu	Pro	Asp	Ser	Leu 265	Thr	Gly	Asn	Gly	Asp 270	Val	Asp
40	Туr	Ser	Asn 275	Ser	Asn	Asn	Thr	Met 280	Pro	Ile	Ala	Asp	Ile 285	Lys	Ser	⊤hr
	Asn	Gly 290	Asp	Val	Val	Ala	Lys 295	Ala	Thr	Тyr	Asp	Ile 300	Leu	Тhr	Lys	⊤hr
45	туг 305	Thr	Phe	Val	Phe	Thr 310	Asp	Туr	Val	Asn	Asn 315	Lys	Glu	Asn	Ile	Asn 320
	Gly	Gln	Phe	Ser	Leu 325	Pro	Leu	Phe	Тhr	Asp 330	Arg	Ala	Lys	Ala	Pro 335	Lys
50	Ser	Gly	Thr	туг 340	Asp	Ala	Asn	I]e	Asn 345	I]e	Ala	Asp	Glu	Met 350	Phe	Asn
	Asn	Lys	Ile 355	Thr	туr	Asn	туr	Ser 360	Ser	Pro	Ile	Ala	Gly 365	Ile	Asp	Lys
55	Pro	Asn 370	Gly	Ala	Asn	Ile	Ser 375	Ser	Gln	Ile	Ile	G]y 380	Val	Asp	Тhr	Ala
	Ser	Gly	Gln	Asn	⊤hr	туr	Lys	Gln	Тhr	Val	Phe	Val	Asn	Pro	Lys	Gln

	385					390					395					400
	Arg	Val	Leu	Gly	Asn 405	Thr	тгр	Val	туг	I]e 410	Lys	Gly	туг	Gln	Asp 415	Lys
5	Ile	Glu	Glu	Ser 420	Ser	Gly	Lys	Val	Ser 425	Ala	Тhr	Asp	Тhr	Lys 430	Leu	Arg
	Ile	Phe	Glu 435	Val	Asn	Asp	Thr	Ser 440	Lys	Leu	Ser	Asp	Ser 445	Туr	туг	Ala
10	Asp	Pro 450	Asn	Asp	Ser	Asn	Leu 455	Lys	Glu	Val	Thr	Asp 460	Gln	Phe	Lys	Asn
	Arg 465	Ile	⊤yr	туr	Glu	His 470	Pro	Asn	Val	Ala	Ser 475	Ile	Lys	Phe	Gly	Asp 480
15	Ile	Thr	Lys	Тhr	Туг 485	Val	Val	Leu	Val	Glu 490	Gly	His	Тyr	Asp	Asn 495	Thr
	Gly	Lys	Asn	Leu 500	Lys	Thr	Gln	Val	Ile 505	Gln	Glu	Asn	Val	Asp 510	Pro	Val
20	Тhr	Asn	Arg 515	Asp	Тyr	Ser	Ile	Phe 520	Gly	⊤rp	Asn	Asn	Glu 525	Asn	Val	Val
	Arg	туг 530	Gly	Gly	Gly	Ser	Ala 535	Asp	Gly	Asp	Ser	Ala 540	Val	Asn	Pro	Lys
25	Asp 545	Pro	⊤hr	Pro	Gly	Pro 550	Pro	Val	Asp	Pro	Glu 555	Pro	Ser	Pro	Asp	Pro 560
	Glu	Pro	Glu	Pro	тhr 565	Pro	Asp	Pro	Glu	Pro 570	Ser	Pro	Asp	Pro	Glu 575	Pro
30	Glu	Pro	Ser	Pro 580	Asp	Pro	Asp	Pro	Asp 585	Ser	Asp	Ser	Asp	ser 590	Asp	Ser
	Gly	Ser	Asp 595	Ser	Asp	Ser	Gly	Ser 600	Asp	Ser	Asp	Ser	Glu 605	Ser	Asp	Ser
35	Asp	Ser 610	Asp	Ser	Asp	Ser	Asp 615	Ser	Asp	Ser	Asp	Ser 620	Asp	Ser	Glu	Ser
	Asp 625	Ser	Asp	Ser	Glu	Ser 630	Asp	Ser	Glu	Ser	Asp 635	Ser	Asp	Ser	Asp	Ser 640
40	Asp	Ser	Asp	Ser	Asp 645	Ser	Asp	Ser	Asp	ser 650	Asp	Ser	Asp	Ser	Asp 655	Ser
	Asp	Ser	Asp	Ser 660	Asp	Ser	Asp	Ser	Asp 665	Ser	Asp	Ser	Asp	Ser 670	Asp	Ser
45	Asp	Ser	Asp 675	Ser	Asp	Ser	Asp	Ser 680	Asp	Ser	Asp	Ser	Asp 685	Ser	Asp	Ser
	Asp	Ser 690	Asp	Ser	Asp	Ser	Asp 695	Ser	Asp	Ser	Asp	Ser 700	Asp	Ser	Asp	Ser
50	Asp 705	Ser	Asp	Ser	Asp	Ser 710	Asp	Ser	Asp	Ser	Asp 715	Ser	Asp	Ser	Asp	Ser 720
	Asp	Ser	Asp	Ser	Asp 725	Ser	Asp	Ser	Asp	Ser 730	Asp	Ser	Asp	Ser	Asp 735	Ser
55	Asp	Ser	Asp	Ser 740	Asp	Ser	Asp	Ser	Asp 745	Ser	Asp	Ser	Asp	Ser 750	Asp	Ser
	Asp	Ser	Asp 755	Ser	Asp	Ser	Asp	Ser 760	Asp	Ser	Asp	Ser	Asp 765	Ser	Asp	Ser

	Asp	Ser 770	Asp	Ser	Asp	Ser	Asp 775	Ser	Asp	Ser	Asp	Ser 780	Asp	Ser	Asp	Ser
5	Asp 785	Ser	Asp	Ser	Asp	Ser 790	Asp	Ser	Asp	Ser	Asp 795	Ser	Asp	Ser	Asp	Ser 800
	Asp	Ser	Asp	Ser	Arg 805	Val	Тhr	Pro	Pro	Asn 810	Asn	Glu	Gln	Lys	Ala 815	Pro
10	Ser	Asn	Pro	Lys 820	Gly	Glu	Val	Asn	ніs 825	Ser	Asn	Lys	Val	Ser 830	Lys	Gln
	His	Lys	Thr 835	Asp	Ala	Leu	Pro	Glu 840	Thr	Gly	Asp	Lys	Ser 845	Glu	Asn	Thr
15	Asn	Ala 850	Thr	Leu	Phe	Gly	Ala 855	Met	Met	Ala	Leu	Leu 860	Gly	Ser	Leu	Leu
10	Leu 865	Phe	Arg	Lys	Arg	Lys 870	Gln	Asp	His	Lys	Glu 875	Lys	Ala			
20	<210 <211 <212 <213)> L> }> }>	3 636 PRT Stap	ohy1c	ococo	cus a	aurei	ıs								
25	<400 Met 1)> Lys	3 Lys	Gln	Ile 5	Ile	Ser	Leu	Gly	A]a 10	Leu	Ala	Val	Ala	Ser 15	Ser
20	Leu	Phe	Тhr	тгр 20	Asp	Asn	Lys	Ala	Asp 25	Ala	Ile	Val	Тhr	Lys 30	Asp	туr
30	Ser	Gly	Lys 35	Ser	Gln	Val	Asn	Ala 40	Gly	Ser	Lys	Asn	Gly 45	Thr	Leu	Ile
	Asp	Ser 50	Arg	Тyr	Leu	Asn	Ser 55	Ala	Leu	Туr	туr	Leu 60	Glu	Asp	Туr	Ile
25	Ile 65	Туr	Ala	Ile	Gly	Leu 70	Thr	Asn	Lys	Туr	Glu 75	Тyr	Gly	Asp	Asn	Ile 80
35	туr	Lys	Glu	Ala	Lys 85	Asp	Arg	Leu	Leu	Glu 90	Lys	Val	Leu	Arg	Glu 95	Asp
10	Gln	туr	Leu	Leu 100	Glu	Arg	Lys	Lys	Ser 105	Gln	туr	Glu	Asp	Туг 110	Lys	Gln
40	тгр	туr	Ala 115	Asn	туr	Lys	Lys	Glu 120	Asn	Pro	Arg	⊤hr	Asp 125	Leu	Lys	Met
45	Ala	Asn 130	Phe	His	Lys	Туr	Asn 135	Leu	Glu	Glu	Leu	Ser 140	Met	Lys	Glu	Tyr
45	Asn 145	Glu	Leu	Gln	Asp	а]а 150	Leu	Lys	Arg	Ala	Leu 155	Asp	Asp	Phe	His	Arg 160
	Glu	Val	Lys	Asp	I]e 165	Lys	Asp	Lys	Asn	Ser 170	Asp	Leu	Lys	Thr	Phe 175	Asn
50	Ala	Ala	Glu	Glu 180	Asp	Lys	Ala	Thr	Lys 185	Glu	Val	Туr	Asp	Leu 190	Val	Ser
	Glu	Ile	Asp 195	Thr	Leu	Val	Val	Ser 200	Тyr	Туr	Gly	Asp	Lys 205	Asp	Туr	Gly
55	Glu	His 210	Ala	Lys	Glu	Leu	Arg 215	Ala	Lys	Leu	Asp	Leu 220	Ile	Leu	Gly	Asp

Thr Asp Asn Pro His Lys Ile Thr Asn Glu Arg Ile Lys Lys Glu Met 225 230 240 Ile Asp Asp Leu Asn Ser Ile Ile Asp Asp Phe Phe Met Glu Thr Lys 245 250 255 5 Gln Asn Arg Pro Lys Ser Ile Thr Lys Tyr Asn Pro Thr Thr His Asn 260 265 270 Tyr Lys Thr Asn Ser Asp Asn Lys Pro Asn Phe Asp Lys Leu Val Glu 275 280 285 10 Glu Thr Lys Lys Ala Val Lys Glu Ala Asp Asp Ser Trp Lys Lys Lys 290 295 300 Thr Val Lys Lys Tyr Gly Glu Thr Glu Thr Lys Ser Pro Val Val Lys 305 310 315 320 15 Glu Glu Lys Lys Val Glu Glu Pro Gln Ala Pro Lys Val Asp Asn Gln 325 330 335 Gln Glu Val Lys Thr Thr Ala Gly Lys Ala Glu Glu Thr Thr Gln Pro 340 345 350 20 Val Ala Gln Pro Leu Val Lys Ile Pro Gln Gly Thr Ile Thr Gly Glu 355 360 365 Ile Val Lys Gly Pro Glu Tyr Pro Thr Met Glu Asn Lys Thr Val Gln 370 375 380 Gly Glu Ile Val Gln Gly Pro Asp Phe Leu Thr Met Glu Gln Ser Gly 385 390 395 400 25 Pro Ser Leu Ser Asn Asn Tyr Thr Asn Pro Pro Leu Thr Asn Pro Ile 405 410 415 Leu Glu Gly Leu Glu Gly Ser Ser Lys Leu Glu Ile Lys Pro Gln 420 425 430 30 Gly Thr Glu Ser Thr Leu Lys Gly Thr Gln Gly Glu Ser Ser Asp Ile 435 440 445Glu Val Lys Pro Gln Ala Thr Glu Thr Glu Ala Ser Gln Tyr Gly 450 455 460 35 Pro Arg Pro Gln Phe Asn Lys Thr Pro Lys Tyr Val Lys Tyr Arg Asp 465 470 475 480 Ala Gly Thr Gly Ile Arg Glu Tyr Asn Asp Gly Thr Phe Gly Tyr Glu 485 490 495 40 Ala Arg Pro Arg Phe Asn Lys Pro Ser Glu Thr Asn Ala Tyr Asn Val 500 505 510 Thr Thr His Ala Asn Gly Gln Val Ser Tyr Gly Ala Arg Pro Thr Tyr 515 520 525 45 Lys Lys Pro Ser Glu Thr Asn Ala Tyr Asn Val Thr Thr His Ala Asn 530 535 540 Gly Gln Val Ser Tyr Gly Ala Arg Pro Thr Gln Asn Lys Pro Ser Lys 545 550 555 560 50 Thr Asn Ala Tyr Asn Val Thr Thr His Gly Asn Gly Gln Val Ser Tyr 565 570 575 Gly Ala Arg Pro Thr Gln Asn Lys Pro Ser Lys Thr Asn Ala Tyr Asn 580 585 590 55 Val Thr Thr His Ala Asn Gly Gln Val Ser Tyr Gly Ala Arg Pro Thr

			595					600					605			
	туr	Lys 610	Lys	Pro	Ser	Lys	Thr 615	Asn	Ala	⊤yr	Asn	Va] 620	Thr	Thr	His	Ala
5	Asp 625	Gly	⊤hr	Ala	Thr	Туг 630	Gly	Pro	Arg	Val	Thr 635	Lys				
10	<210 <211 <212 <213)> _> _>	4 584 PRT Stap	ohy1c	cocc	cus a	urei	IS								
	<400 Met 1)> Lys	4 Phe	Lys	Ser 5	Leu	Ile	Thr	Thr	⊤hr 10	Leu	Ala	Leu	Gly	Val 15	Leu
15	Ala	Ser	⊤hr	G]y 20	Ala	Asn	Phe	Asn	Asn 25	Asn	Glu	Ala	Ser	Ala 30	Ala	Ala
	Lys	Pro	Leu 35	Asp	Lys	Ser	Ser	Ser 40	Ser	Leu	His	His	G]y 45	Tyr	Ser	Lys
20	Val	ніs 50	Val	Pro	Туr	Ala	Ile 55	Thr	Val	Asn	Gly	Тhr 60	Ser	Gln	Asn	Ile
	Leu 65	Ser	Ser	Leu	Тhr	Phe 70	Asn	Lys	Asn	Gln	Asn 75	Ile	Ser	туr	Lys	Asp 80
25	Leu	Glu	Asp	Arg	Va] 85	Lys	Ser	Val	Leu	Lys 90	Ser	Asp	Arg	Gly	Ile 95	Ser
	Asp	Ile	Asp	Leu 100	Arg	Leu	Ser	Lys	Gln 105	Ala	Lys	туr	тhr	Val 110	туr	Phe
30	Lys	Asn	Gly 115	Thr	Lys	Lys	Val	I]e 120	Asp	Leu	Lys	Ala	Gly 125	Ile	туг	Thr
	Ala	Asp 130	Leu	Ile	Asn	Thr	Ser 135	Glu	Ile	Lys	Ala	I]e 140	Asn	Ile	Asn	Val
35	Asp 145	Thr	Lys	Lys	Gln	Val 150	Glu	Asp	Lys	Lys	Lys 155	Asp	Lys	Ala	Asn	Туг 160
	Gln	Val	Pro	туr	Thr 165	Ile	Thr	Val	Asn	G]y 170	Thr	Ser	Gln	Asn	Ile 175	Leu
40	Ser	Asn	Leu	⊤hr 180	Phe	Asn	Lys	Asn	Gln 185	Asn	Ile	Ser	туr	Lys 190	Asp	Leu
	Glu	Asp	Lys 195	Val	Lys	Ser	Val	Leu 200	Glu	Ser	Asn	Arg	G1y 205	Ile	Thr	Asp
45	Val	Asp 210	Leu	Arg	Leu	Ser	Lys 215	Gln	Ala	Lys	Туr	⊤hr 220	Val	Asn	Phe	Lys
	Asn 225	Gly	⊤hr	Lys	Lys	Va1 230	Ile	Asp	Leu	Lys	Ser 235	Gly	Ile	Туr	Thr	Ala 240
50	Asn	Leu	Ile	Asn	Ser 245	Ser	Asp	Ile	Lys	Ser 250	Ile	Asn	Ile	Asn	Va] 255	Asp
	Thr	Lys	Lys	His 260	Ile	Glu	Asn	Lys	Ala 265	Lys	Arg	Asn	Туr	Gln 270	Val	Pro
55	Тyr	Ser	Ile 275	Asn	Leu	Asn	Gly	Thr 280	Ser	⊤hr	Asn	Ile	Leu 285	Ser	Asn	Leu
	Ser	Phe 290	Ser	Asn	Lys	Pro	Тгр 295	Thr	Asn	⊤yr	Lys	Asn 300	Leu	Thr	Ser	Gln

	Ile 305	Lys	Ser	Val	Leu	Lys 310	His	Asp	Arg	Gly	I]e 315	Ser	Glu	Gln	Asp	Leu 320
5	Lys	Туг	Ala	Lys	Lys 325	Ala	Тyr	Туг	Тhr	Va] 330	туг	Phe	Lys	Asn	G]y 335	Gly
	Lys	Arg	Ile	Leu 340	Gln	Leu	Asn	Ser	Lys 345	Asn	туг	Thr	Ala	Asn 350	Leu	Val
10	His	Ala	Lys 355	Asp	Val	Lys	Arg	I]e 360	Glu	Ile	Thr	Val	Lys 365	Thr	Gly	Thr
	Lys	Ala 370	Lys	Ala	Asp	Arg	Туг 375	Val	Pro	Tyr	Thr	Ile 380	Ala	Val	Asn	Gly
15	Thr 385	Ser	Thr	Pro	Ile	Leu 390	Ser	Asp	Leu	Lys	Phe 395	Thr	Gly	Asp	Pro	Arg 400
	Val	Gly	Туr	Lys	Asp 405	Ile	Ser	Lys	Lys	∨a1 410	Lys	Ser	Val	Leu	Lys 415	His
20	Asp	Arg	Gly	Ile 420	Gly	Glu	Arg	Glu	Leu 425	Lys	Туr	Ala	Lys	Lys 430	Ala	Thr
20	Тyr	Thr	Va1 435	His	Phe	Lys	Asn	G]y 440	Thr	Lys	Lys	Val	11e 445	Asn	Ile	Asn
25	Ser	Asn 450	Ile	Ser	Gln	Leu	Asn 455	Leu	Leu	Тyr	Val	G]n 460	Asp	Ile	Lys	Lys
	Ile 465	Asp	Ile	Asp	Val	Lys 470	Thr	Gly	Thr	Lys	Ala 475	Lys	Ala	Asp	Ser	туг 480
30	Val	Pro	Туr	Тhr	Ile 485	Ala	Val	Asn	Gly	Thr 490	Ser	Thr	Pro	Ile	Leu 495	Ser
	Lys	Leu	Lys	Ile 500	Ser	Asn	Lys	Gln	Leu 505	Ile	Ser	Тyr	Lys	туг 510	Leu	Asn
25	Asp	Lys	Val 515	Lys	Ser	Val	Leu	Lys 520	Ser	Glu	Arg	Gly	Ile 525	Ser	Asp	Leu
30	Asp	Leu 530	Lys	Phe	Ala	Lys	G]n 535	Ala	Lys	туг	Тhr	Va1 540	туг	Phe	Lys	Asn
10	G]y 545	Lys	Lys	Gln	Val	Va] 550	Asn	Leu	Lys	Ser	Asp 555	Ile	Phe	Тhr	Pro	Asn 560
40	Leu	Phe	Ser	Ala	Lys 565	Asp	Ile	Lys	Lys	Ile 570	Asp	Ile	Asp	Val	Lys 575	Gln
45	Туr	Тhr	Lys	ser 580	Lys	Lys	Asn	Lys								
40	<210 <212 <212 <213)> 1> 2> 3>	5 9535 PRT Stap	5 ohyla	ococo	cus a	aureı	JS								
50	<400 Met 1)> Asn	5 Tyr	Arg	Asp 5	Lys	Ile	Gln	Lys	Phe 10	Ser	Ile	Arg	Lys	Tyr 15	Thr
	Val	Gly	Thr	Phe 20	Ser	Thr	Val	Ile	A]a 25	Thr	Leu	Val	Phe	Leu 30	Gly	Phe
55	Asn	Thr	Ser 35	Gln	Ala	His	Ala	Ala 40	Glu	Thr	Asn	Gln	Pro 45	Ala	Ser	Val

Val Lys Gln Lys Gln Gln Ser Asn Asn Glu Gln Thr Glu Asn Arg Glu 50 55 60 Ser Gln Val Gln Asn Ser Gln Asn Ser Gln Asn Gly Gln Ser Leu Ser 65 70 75 80 5 Ala Thr His Glu Asn Glu Gln Pro Asn Ile Ser Gln Ala Asn Leu Val 85 90 95 Asp Gln Lys Val Ala Gln Ser Ser Thr Thr Asn Asp Glu Gln Pro Ala 100 105 110 10 Ser Gln Asn Val Asn Thr Lys Lys Asp Ser Ala Thr Ala Ala Thr Thr 115 120 125 Gln Pro Asp Lys Glu Gln Ser Lys His Lys Gln Asn Glu Ser Gln Ser 130 135 140 15 Ala Asn Lys Asn Gly Asn Asp Asn Arg Ala Ala His Val Glu Asn His 145 150 155 160 Glu Ala Asn Val Val Thr Ala Ser Asp Ser Ser Asp Asn Gly Asn Val 165 170 175 20 Gln His Asp Arg Asn Glu Leu Gln Ala Phe Phe Asp Ala Asn Tyr His 180 185 190 Asp Tyr Arg Phe Ile Asp Arg Glu Asn Ala Asp Ser Gly Thr Phe Asn 195 200 205 25 Tyr Val Lys Gly Ile Phe Asp Lys Ile Asn Thr Leu Leu Gly Ser Asn 210 215 220 Asp Pro Ile Asn Asn Lys Asp Leu Gln Leu Ala Tyr Lys Glu Leu Glu 225 230 235 240 Gln Ala Val Ala Leu Ile Arg Thr Met Pro Gln Arg Gln Gln Thr Ser 245 250 255 30 Arg Arg Ser Asn Arg Ile Gln Thr Arg Ser Val Glu Ser Arg Ala Ala 260 265 270 Glu Pro Arg Ser Val Ser Asp Tyr Gln Asn Ala Asn Ser Ser Tyr Tyr 275 280 285 35 Val Glu Asn Ala Asn Asp Gly Ser Gly Tyr Pro Val Gly Thr Tyr Ile 290 295 300 Asn Ala Ser Ser Lys Gly Ala Pro Tyr Asn Leu Pro Thr Thr Pro Trp 305 310 315 320 40 Asn Thr Leu Lys Ala Ser Asp Ser Lys Glu Ile Ala Leu Met Thr Ala 325 330 335 Lys Gln Thr Gly Asp Gly Tyr Gln Trp Val Ile Lys Phe Asn Lys Gly 340 345 350 45 His Ala Pro His Gln Asn Met Ile Phe Trp Phe Ala Leu Pro Ala Asp 355 360 365 Gln Val Pro Val Gly Arg Thr Asp Phe Val Thr Val Asn Ser Asp Gly 370 375 380 50 Thr Asn Val Gln Trp Ser His Gly Ala Gly Ala Gly Ala Asn Lys Pro 385 390 395 400 385 Leu Gln Gln Met Trp Glu Tyr Gly Val Asn Asp Pro His Arg Ser His 405 410 415 55 Asp Phe Lys Ile Arg Asn Arg Ser Gly Gln Val Ile Tyr Asp Trp Pro

				420					425					430		
	Тhr	Val	His 435	Ile	туr	Ser	Leu	Glu 440	Asp	Leu	Ser	Arg	Ala 445	Ser	Asp	туr
5	Phe	Ser 450	Glu	Ala	Gly	Ala	Thr 455	Pro	Ala	⊤hr	Lys	Ala 460	Phe	Gly	Arg	Gln
	Asn 465	Phe	Glu	Туr	Ile	Asn 470	Gly	Gln	Lys	Pro	Ala 475	Glu	Ser	Pro	Gly	Va1 480
10	Pro	Lys	Val	Туr	Thr 485	Phe	Ile	Gly	Gln	G]y 490	Asp	Ala	Ser	Tyr	Thr 495	Ile
	Ser	Phe	Lys	тhr 500	Gln	Gly	Pro	Тhr	Val 505	Asn	Lys	Leu	туr	Туг 510	Ala	Ala
15	Gly	Gly	Arg 515	Ala	Leu	Glu	Туr	Asn 520	Gln	Leu	Phe	Met	Туг 525	Ser	Gln	Leu
	Туr	Va1 530	Glu	Ser	Thr	Gln	Asp 535	His	Gln	Gln	Arg	Leu 540	Asn	Gly	Leu	Arg
20	Gln 545	Val	Val	Asn	Arg	тhr 550	Tyr	Arg	Ile	Gly	Thr 555	Thr	Lys	Arg	Val	Glu 560
	Val	Ser	Gln	Gly	Asn 565	Val	Gln	Thr	Lys	Lys 570	Val	Leu	Glu	Ser	Thr 575	Asn
25	Leu	Asn	Ile	Asp 580	Asp	Phe	Val	Asp	Asp 585	Pro	Leu	Ser	туr	Val 590	Lys	тhr
	Pro	Ser	Asn 595	Lys	Val	Leu	Gly	Phe 600	туr	Ser	Asn	Asn	Ala 605	Asn	Тhr	Asn
30	Ala	Phe 610	Arg	Pro	Gly	Gly	Ala 615	Gln	Gln	Leu	Asn	Glu 620	туr	Gln	Leu	Ser
	G]n 625	Leu	Phe	Thr	Asp	G]n 630	Lys	Leu	Gln	Glu	Ala 635	Ala	Arg	Thr	Arg	Asn 640
35	Pro	Ile	Arg	Leu	Met 645	Ile	Gly	Phe	Asp	⊤yr 650	Pro	Asp	Ala	Туr	G1y 655	Asn
	Ser	Glu	⊤hr	Leu 660	Val	Pro	Val	Asn	Leu 665	⊤hr	Val	Leu	Pro	Glu 670	Ile	Gln
40	His	Asn	Ile 675	Lys	Phe	Phe	Lys	Asn 680	Asp	Asp	Thr	Gln	Asn 685	Ile	Ala	Glu -
	Lys	Pro 690	Phe	Ser	Lys	Gln	A1a 695	Gly	His	Pro	val	Phe 700	туr	val	туr	Ala
45	G1y 705	Asn	Gln	Gly	Asn	Ala 710	Ser	Val	Asn	Leu	Gly 715	Gly	Ser	val	Thr	Ser 720
	Ile	Gln	Pro	Leu	Arg 725	Ile	Asn	Leu	Thr	Ser 730	Asn	Glu	Asn	Phe	Thr 735	Asp
50	Lys	Asp	⊤rp	G1n 740	Ile	Thr	Gly	Ile	Pro 745	Arg	Thr	Leu	His	Ile 750	Glu	Asn
	Ser	Thr	Asn 755	Arg	Pro	Asn	Asn	Ala 760	Arg	Glu	Arg	Asn	11e 765	Glu	Leu	Val
55	Gly	Asn 770	Leu	Leu	Pro	Gly	Asp 775	Туr	Phe	Gly	Thr	11e 780	Arg	Phe	Gly	Arg
	Lys 785	Glu	Gln	Leu	Phe	Glu 790	Ile	Arg	Val	Lys	Pro 795	His	Thr	Pro	Thr	Ile 800

	Thr	Thr	Thr	Ala	Glu 805	Gln	Leu	Arg	Gly	Thr 810	Ala	Leu	Gln	Lys	Val 815	Pro
5	Val	Asn	Ile	Ser 820	Gly	Ile	Pro	Leu	Asp 825	Pro	Ser	Ala	Leu	Va1 830	Tyr	Leu
	Val	Ala	Pro 835	⊤hr	Asn	Gln	Thr	⊤hr 840	Asn	Gly	Gly	Ser	Glu 845	Ala	Asp	Gln
10	I]e	Pro 850	Ser	G∖J	Туr	Thr	I]e 855	Leu	Ala	Thr	Gly	Thr 860	Pro	Asp	Gly	Val
	ніs 865	Asn	Thr	Ile	Thr	Ile 870	Arg	Pro	Gln	Asp	Туг 875	Val	Val	Phe	Ile	Pro 880
15	Pro	Val	Gly	Lys	Gln 885	Ile	Arg	Ala	Val	Val 890	Туr	Тyr	Asn	Lys	Va1 895	Val
	Ala	Ser	Asn	Met 900	Ser	Asn	Ala	Val	тhr 905	Ile	Leu	Pro	Asp	Asp 910	Ile	Pro
20	Pro	Thr	I]e 915	Asn	Asn	Pro	Val	Gly 920	Ile	Asn	Ala	Lys	Туг 925	туr	Arg	Gly
	Asp	Glu 930	Val	Asn	Phe	Thr	Met 935	Gly	Val	Ser	Asp	Arg 940	His	Ser	Gly	Ile
25	Lys 945	Asn	Thr	⊤hr	Ile	тhr 950	Thr	Leu	Pro	Asn	Gly 955	тгр	Thr	Ser	Asn	Leu 960
	Thr	Lys	Ala	Asp	Lys 965	Asn	Asn	Gly	Ser	Leu 970	Ser	Ile	Thr	Gly	Arg 975	Val
30	Ser	Met	Asn	G]n 980	Ala	Phe	Asn	Ser	Asp 985	Ile	Thr	Phe	Lys	Va1 990	Ser	Ala
	Thr	Asp	Asn 995	Val	Asn	Asn	Thr	Thr 1000	Asn)	Asp	Ser	Gln	Ser 1005	Lys	His	Val
35	Ser	I]e 1010	His)	Val	Gly	Lys	I]e 1015	Ser	Glu	Asp	Ala	His 1020	Pro)	Ile	Val	Leu
	Gly 1025	Asn	Thr	Glu	Lys	val 1030	val)	Val	Val	Asn	Pro 1035	Thr 5	Ala	Val	Ser	Asn 1040
40	Asp	Glu	Lys	Gln	Ser 1045	I]e	Ile	Thr	Ala	Phe 1050	Met)	Asn	Lys	Asn	Gln 1055	Asn
-0	Ile	Arg	Gly	⊤yr 1060	Leu)	Ala	Ser	Thr	Asp 1065	Pro 5	Val	Тhr	Val	Asp 1070	Asn)	Asn
45	Gly	Asn	Val 1075	⊤hr 5	Leu	His	туг	Arg 108(Asp)	Gly	Ser	Ser	тhr 1085	Thr	Leu	Asp
	Ala	Thr 1090	Asn)	Val	Met	Thr	Туг 1095	Glu 5	Pro	Val	Val	Lys 1100	Pro)	Glu	Туr	Gln
50	Thr 1109	Val 5	Asn	Ala	Ala	Lys 1110	Thr)	Ala	Тhr	Val	Thr 1119	Ile 5	Ala	Lys	Gly	G]n 1120
50	Ser	Phe	Ser	Ile	Gly 1125	Asp	Ile	Lys	Gln	Туг 1130	Phe)	Thr	Leu	Ser	Asn 1135	Gly
	Gln	Pro	Ile	Pro 1140	Ser)	Gly	Thr	Phe	Thr 1145	Asn 5	Ile	Thr	Ser	Asp 1150	Arg)	Thr
00	I]e	Pro	Thr 1155	Ala 5	Gln	Glu	Val	Ser 1160	Gln)	Met	Asn	Ala	Gly 1165	Thr	Gln	Leu
5

10

15

20

25

30

35

40

45

50

55

Tyr His Ile Thr Ala Thr Asn Ala Tyr His Lys Asp Ser Glu Asp Phe 1170 1175 1180 Tyr Ile Ser Leu Lys Ile Ile Asp Val Lys Gln Pro Glu Gly Asp Gln 1185 1190 1195 120 1200 Arg Val Tyr Arg Thr Ser Thr Tyr Asp Leu Thr Thr Asp Glu Ile Ser 1205 1210 Lys Val Lys Gln Ala Phe Ile Asn Ala Asn Arg Asp Val Ile Thr Leu 1220 1225 1230 Ala Glu Gly Asp Ile Ser Val Thr Asn Thr Pro Asn Gly Ala Asn Val 1235 1240 1245 Ser Thr Ile Thr Val Asn Ile Asn Lys Gly Arg Leu Thr Lys Ser Phe 1250 1255 1260 Ala Ser Asn Leu Ala Asn Met Asn Phe Leu Arg Trp Val Asn Phe Pro 1265 1270 1275 1280 1280 Gln Asp Tyr Thr Val Thr Trp Thr Asn Ala Lys Ile Ala Asn Arg Pro 1285 1290 1295 Thr Asp Gly Gly Leu Ser Trp Ser Asp Asp His Lys Ser Leu Ile Tyr 1300 1305 1310 Arg Tyr Asp Ala Thr Leu Gly Thr Gln Ile Thr Thr Asn Asp Ile Leu131513201325 Thr Met Leu Lys Ala Thr Thr Thr Val Pro Gly Leu Arg Asn Asn Ile 1330 1335 1340 Thr Gly Asn Glu Lys Ser Gln Ala Glu Ala Gly Gly Arg Pro Asn Phe 1345 1350 1355 1360 1360 Arg Thr Thr Gly Tyr Ser Gln Ser Asn Ala Thr Thr Asp Gly Gln Arg136513701375 Gln Phe Thr Leu Asn Gly Gln Val Ile Gln Val Leu Asp Ile Ile Asn 1380 1385 1390 Pro Ser Asn Gly Tyr Gly Gly Gln Pro Val Thr Asn Ser Asn Thr Arg 1395 1400 1405 Ala Asn His Ser Asn Ser Thr Val Val Asn Val Asn Glu Pro Ala Ala 1410 1415 1420 1420 Asn Gly Ala Gly Ala Phe Thr Ile Asp His Val Val Lys Ser Asn Ser 1425 1430 1435 1440 Thr His Asn Ala Ser Asp Ala Val Tyr Lys Ala Gln Leu Tyr Leu Thr 1445 1450 1450 1455 Pro Tyr Gly Pro Lys Gln Tyr Val Glu His Leu Asn Gln Asn Thr Gly 1460 1465 1470 Asn Thr Thr Asp Ala Ile Asn Ile Tyr Phe Val Pro Ser Asp Leu Val 1475 1480 1485 Asn Pro Thr Ile Ser Val Gly Asn Tyr Thr Asn His Gln Val Phe Ser 1490 1495 1500 1490 Gly Glu Thr Phe Thr Asn Thr Ile Thr Ala Asn Asp Asn Phe Gly Val 1505 1510 1515 152 1520 Gln Ser Val Thr Val Pro Asn Thr Ser Gln Ile Thr Gly Thr Val Asp 1525 1530 1535 Asn Asn His Gln His Val Ser Ala Thr Ala Pro Asn Val Thr Ser Ala

		1540		1545	155	50
	Thr Asn Lys 155	Thr Ile 5	Asn Leu Le 15	eu Ala Thr Asp 560	Thr Ser Gly 1565	Asn Thr
5	Ala Thr Thr 1570	Ser Phe	Asn Val Th 1575	nr Val Lys Pro	Leu Arg Asp 1580) Lys Tyr
	Arg Val Gly 1585	Thr Ser	Ser Thr Al 1590	la Ala Asn Pro 1595	Val Arg Ile	e Ala Asn 1600
10	Ile Ser Asn	Asn Ala 1605	Thr Val Se	er Gln Ala Asp 1610	Gln Thr Thr	Ile Ile 1615
	Asn Ser Leu	Thr Phe 1620	Thr Glu Th	ır Val Pro Asn 1625	Arg Ser Tyr 163	r Ala Arg 80
15	Ala Ser Ala 163	Asn Glu 5	Ile ⊤hr Se 16	er Lys Thr Val 540	Ser Asn Val 1645	Ser Arg
	Thr Gly Asn 1650	Asn Ala	Asn Val Th 1655	ır Val Thr Val	Thr Tyr Glr 1660	ı Asp Gly
20	Thr Thr Ser 1665	Thr Val	Thr Val Pr 1670	ro Val Lys His 1675	Val Ile Pro 5	o Glu Ile 1680
	Val Ala His	Ser His 1685	Tyr Thr Va	al Gln Gly Gln 1690	Asp Phe Pro	o Ala Gly 1695
25	Asn Gly Ser	Ser Ala 1700	Ser Asp Ty	r Phe Lys Leu 1705	Ser Asn Gly 171	Ser Asp 0
	Ile Ala Asp 171	Ala Thr 5	Ile ⊤hr ⊤r 17	rp Val Ser Gly 720	Gln Ala Pro 1725) Asn Lys
30	Asp Asn Thr 1730	Arg Ile	Gly Glu As 1735	sp Ile Thr Val	Thr Ala His 1740	s Ile Leu
	Ile Asp Gly 1745	Glu Thr	Thr Pro Il 1750	le ⊤hr Lys ⊤hr 1755	Ala Thr Tyr 5	' Lys Val 1760
35	Val Arg Thr	Val Pro 1765	Lys His Va	al Phe Glu ⊤hr 1770	Ala Arg Gly	/ Val Leu 1775
	Tyr Pro Gly	Val Ser 1780	Asp Met Ty	r Asp Ala Lys 1785	Gln Tyr Val 179	Lys Pro 00
40	Val Asn Asn 179	Ser Trp 5	Ser ⊤hr As 18	sn Ala Gln His 300	Met Asn Phe 1805	e Gln Phe
	Val Gly Thr 1810	Tyr Gly	Pro Asn Ly 1815	/s Asp Val Val	Gly Ile Ser 1820	Thr Arg
45	Leu Ile Arg 1825	Val Thr	Tyr Asp As 1830	sn Arg Gln ⊤hr 1835	Glu Asp Leu	ı Thr Ile 1840
	Leu Ser Lys	Val Lys 1845	Pro Asp Pr	ro Pro Arg Ile 1850	Asp Ala Asr	1855 Ser Val
50	Thr Tyr Lys	Ala Gly 1860	Leu Thr As	sn Gln Glu Ile 1865	Lys Val Asr 187	a Asn Val '0
	Leu Asn Asn 187	Ser Ser 5	Val Lys Le 18	eu Phe Lys Ala 380	Asp Asn Thr 1885	Pro Leu
55	Asn Val Thr 1890	Asn Ile	Thr His Gl 1895	ly Ser Gly Phe	Ser Ser Val 1900	Val Thr
00	Val Ser Asp 1905	Ala Leu	Pro Asn Gl 1910	ly Gly Ile Lys 1915	Ala Lys Ser	Ser Ile 1920

	Ser	Met	Asn	Asn	Val 1925	Thr	Туr	Thr	Thr	Gln 1930	Asp)	Glu	His	Gly	Gln 1935	Val ;
5	Val	Thr	Val	⊤hr 1940	Arg)	Asn	Glu	Ser	Val 1945	Asp	Ser	Asn	Asp	Ser 1950	Ala	Thr
	Val	Thr	Val 1955	⊤hr	Pro	Gln	Leu	Gln 1960	Ala)	Thr	Thr	Glu	Gly 1965	Ala	Val	Phe
10	Ile	Lys 1970	G]y	Gly	Asp	Gly	Phe 1975	Asp	Phe	Gly	His	Val 1980	Glu)	Arg	Phe	Ile
10	Gln 1985	Asn	Pro	Pro	His	Gly 1990	Ala)	Thr	Val	Ala	Trp 1995	His 5	Asp	Ser	Pro	Asp 2000
15	Thr	тгр	Lys	Asn	Thr 2005	Val ;	Gly	Asn	Thr	His 2010	Lys)	Thr	Ala	Val	Va] 2015	Thr
15	Leu	Pro	Asn	G]y 2020	Gln)	Gly	Thr	Arg	Asn 2025	Val 5	Glu	Val	Pro	va] 2030	Lys	Val
20	Туr	Pro	Va] 2035	Ala	Asn	Ala	Lys	Ala 2040	Pro)	Ser	Arg	Asp	Val 2045	Lys	Gly	Gln
20	Asn	Leu 2050	Thr	Asn	Gly	Thr	Asp 2055	Ala	Met	Asn	туr	Ile 2060	Thr)	Phe	Asp	Pro
25	Asn 2065	Thr	Asn	⊤hr	Asn	Gly 2070	ıle)	Thr	Ala	Ala	тгр 2075	Ala 5	Asn	Arg	Gln	G]n 2080
20	Pro	Asn	Asn	Gln	Gln 2085	Ala	Gly	Val	Gln	His 2090	Leu)	Asn	Val	Asp	Va] 2095	Thr
20	Туr	Pro	Gly	I]e 2100	Ser)	Ala	Ala	Lys	Arg 2105	Val 5	Pro	Val	Thr	Va] 2110	Asn	Val
30	Tyr	Gln	Phe 2115	Glu	Phe	Pro	Gln	Thr 2120	Thr)	Туr	Thr	Thr	Thr 2125	Val 5	Gly	Gly
95	Thr	Leu 2130	Ala	Ser	Gly	Thr	Gln 2135	Ala	Ser	Gly	Tyr	Ala 2140	His)	Met	Gln	Asn
35	Ala 2145	Thr 5	Gly	Leu	Pro	⊤hr 2150	Asp)	Gly	Phe	⊤hr	Туг 2155	Lys	тгр	Asn	Arg	Asp 2160
	Thr	Thr	Gly	⊤hr	Asn 2165	Asp	Ala	Asn	Тгр	Ser 2170	Ala)	Met	Asn	Lys	Pro 2175	Asn
40	Val	Ala	Lys	Val 2180	Val)	Asn	Ala	Lys	Туг 2185	Asp 5	Val	Ile	туr	Asn 2190	Gly	His
	Thr	Phe	Ala 2195	⊤hr	Ser	Leu	Pro	Ala 2200	Lys)	Phe	Val	Val	Lys 2205	Asp	Val	Gln
45	Pro	Ala 2210	Lys)	Pro	Thr	Val	Thr 2215	Glu	Thr	Ala	Ala	G]y 2220	Ala)	Ile	Thr	Ile
	Ala 2225	Pro 5	Gly	Ala	Asn	G]n 2230	Thr)	Val	Asn	Thr	His 2235	Ala 5	Gly	Asn	Val	Thr 2240
50	Thr	Tyr	Ala	Asp	Lys 2245	Leu	Val	Ile	Lys	Arg 2250	Asn)	Gly	Asn	Val	Va] 2255	Thr
	Thr	Phe	Thr	Arg 2260	Arg)	Asn	Asn	Thr	Ser 2265	Pro 5	тгр	Val	Lys	Glu 2270	Ala	Ser
55	Ala	Ala	Thr 2275	Val 5	Ala	Gly	Ile	Ala 2280	Gly)	Тhr	Asn	Asn	G]y 2285	I]e	Thr	Val

	Ala	Ala 2290	Gly)	Thr	Phe	Asn	Pro 2295	Ala	Asp	Thr	Ile	G]n 2300	Val)	Val	Ala	⊤hr
5	Gln 2305	g]y	Ser	Gly	Glu	тhr 2310	val)	ser	Asp	Glu	G]n 2315	Arg	Ser	Asp	Asp	Phe 2320
0	⊤hr	Val	Val	Ala	Pro 2325	Gln	Pro	Asn	Gln	Ala 2330	Thr)	Тhr	Lys	I]e	тгр 2335	Gln
	Asn	Gly	His	Ile 2340	Asp)	Ile	Thr	Pro	Asn 2345	Asn	Pro	Ser	Gly	His 2350	Leu	Ile
10	Asn	Pro	Thr 2355	Gln	Ala	Met	Asp	I]e 2360	Ala)	туr	Thr	Glu	Lys 2365	Val 5	Gly	Asn
	Gly	Ala 2370	Glu	His	Ser	Lys	тhr 2375	Ile	Asn	Val	Val	Arg 2380	Gly	Gln	Asn	Asn
15	Gln 2385	тгр	Thr	Ile	Ala	Asn 2390	Lys)	Pro	Asp	Туr	Va] 2395	Thr 5	Leu	Asp	Ala	Gln 2400
	⊤hr	Gly	Lys	Val	Thr 2405	Phe	Asn	Ala	Asn	Thr 2410	Ile)	Lys	Pro	Asn	Ser 2415	Ser
20	Ile	Thr	Ile	Thr 2420	Pro)	Lys	Ala	Gly	Thr 2425	Gly	His	Ser	Val	Ser 2430	Ser	Asn
	Pro	Ser	Thr 2435	Leu	⊤hr	Ala	Pro	A]a 244(Ala)	His	Thr	Val	Asn 2445	Thr	Thr	Glu
25	Ile	Va] 2450	Lys)	Asp	Tyr	Gly	Ser 2455	Asn	Val	Thr	Ala	A]a 2460	Glu)	Ile	Asn	Asn
	Ala 2465	Val	Gln	Val	Ala	Asn 2470	Lys)	Arg	Thr	Ala	Thr 2475	Ile	Lys	Asn	Gly	⊤hr 2480
30	Ala	Met	Pro	Thr	Asn 2485	Leu	Ala	Gly	Gly	Ser 249(Thr	Thr	Thr	Ile	Pro 2495	Val
	⊤hr	Val	Thr	туr 2500	Asn	Asp	Gly	Ser	Thr 2505	Glu	Glu	Val	Gln	Glu 251(Ser	Ile
35	Phe	Thr	Lys 251ª	Ala	Asp	Lys	Arg	Glu 2520	Leu	Ile	Тhr	Ala	Lys 252ª	Asn	His	Leu
	Asp	Asp 2530	Pro	Val	Ser	Thr	Glu 2535	Gly	Lys	Lys	Pro	G]y 2540	Thr	Ile	Thr	Gln
40	Tyr 2545	Asn	Asn	Ala	Met	His 2550	Asn	Ala	Gln	Gln	G]n 2559	Ile	Asn	Thr	Ala	Lys 2560
	⊤hr	Glu	Ala	Gln	G]n 2565	val	Ile	Asn	Asn	Glu 2570	Arg	Ala	Thr	Pro	G]n 2575	Gln
45	Val	Ser	Asp	A]a 2580	Leu	, Thr	Lys	Val	Arg	Ala	Ala	G]n	Thr	Lys 2590	Ile	Asp
	Gln	Ala	Lys	Ala	Leu	Leu	Gln	Asn 2600	Lys	, Glu	Asp	Asn	Ser	Gln	Leu	Val
50	⊤hr	Ser	Lys	, Asn	Asn	Leu	Gln 2615	Ser	, Ser	Val	Asn	G]n	Val	, Pro	Ser	⊤hr
50	Ala	Gly	, Met	тhr	Gln	Gln	Ser	, Ile	Asp	Asn	Tyr	Asn	, Ala	Lys	Lys	Arg 2640
	Glu	Ala	Glu	Thr	Glu 2645	ile	, Thr	Ala	Ala	Gln	Arg	, Val	Ile	Asp	Asn 2655	Gly
55	Asp	Ala	Thr	Ala	Gln	, Gln	Ile	Ser	Asp	Glu	Lys	His	Arg	Val	Asp	Asn

				2660)				2665	5				2670)	
	Ala	Leu	Thr 2675	Ala	Leu	Asn	Gln	Ala 2680	Lys)	His	Asp	Leu	Thr 2685	Ala	Asp	Thr
5	His	Ala 2690	Leu)	Glu	Gln	Ala	Va] 2695	Gln 5	Gln	Leu	Asn	Arg 2700	Thr	Gly	Thr	Thr
	Thr 2705	Gly	Lys	Lys	Pro	Ala 2710	Ser)	Ile	⊤hr	Ala	⊤yr 2715	Asn	Asn	Ser	Ile	Arg 2720
10	Ala	Leu	Gln	Ser	Asp 2725	Leu	Thr	Ser	Ala	Lys 2730	Asn)	Ser	Ala	Asn	Ala 2735	Ile
	Ile	Gln	Lys	Pro 2740	Ile)	Arg	Thr	Val	Gln 2745	Glu 5	Val	Gln	Ser	Ala 2750	Leu)	Thr
15	Asn	Val	Asn 2755	Arg 5	Val	Asn	Glu	Arg 2760	Leu)	Thr	Gln	Ala	Ile 2765	Asn	Gln	Leu
	Val	Pro 2770	Leu)	Ala	Asp	Asn	Ser 2775	Ala 5	Leu	Lys	⊤hr	Ala 2780	Lys	Thr	Lys	Leu
20	Asp 2785	Glu	Glu	Ile	Asn	Lys 2790	Ser)	Val	⊤hr	Thr	Asp 2795	Gly	Met	Thr	Gln	Ser 2800
	Ser	Ile	Gln	Ala	туг 2805	Glu 5	Asn	Ala	Lys	Arg 2810	Ala	Gly	Gln	Thr	Glu 2815	Ser
25	Thr	Asn	Ala	Gln 2820	Asn)	Val	Ile	Asn	Asn 2825	Gly 5	Asp	Ala	Thr	Asp 2830	Gln)	Gln
	Ile	Ala	Ala 2835	Glu 5	Lys	Thr	Lys	Va] 2840	Glu)	Glu	Lys	Tyr	Asn 2845	Ser	Leu	Lys
30	Gln	Ala 2850	ıle	Ala	Gly	Leu	⊤hr 2855	Pro 5	Asp	Leu	Ala	Pro 2860	Leu	Gln	Thr	Ala
	Lys 2865	Thr	Gln	Leu	Gln	Asn 2870	Asp)	Ile	Asp	Gln	Pro 2875	Thr	Ser	Thr	Thr	G]y 2880
35	Met	Thr	Ser	Ala	Ser 2885	Ile 5	Ala	Ala	Phe	Asn 2890	Glu)	Lys	Leu	Ser	Ala 2895	Ala
	Arg	Thr	Lys	Ile 2900	Gln)	Glu	Ile	Asp	Arg 2905	Val 5	Leu	Ala	Ser	ніs 2910	Pro)	Asp
40	Val	Ala	Thr 2915	ile	Arg	Gln	Asn	Val 2920	⊤hr)	Ala	Ala	Asn	Ala 2925	Ala	Lys	Ser
	Ala	Leu 2930	Asp)	Gln	АТа	Arg	Asn 2935	Gly 5	Leu	Thr	Val	Asp 2940	Lys	Ala	Pro	Leu
45	Glu 2945	Asn	Ala	Lys	Asn	Gln 2950	Leu)	Gln	His	Ser	Ile 2955	Asp	Thr	Gln	Thr	Ser 2960
	Thr	Thr	Gly	Met	Thr 2965	Gln 5	Asp	Ser	Ile	Asn 2970	Ala	туr	Asn	Ala	Lys 2975	Leu
50	Thr	Ala	Ala	Arg 2980	Asn)	Lys	Ile	Gln	Gln 2985	Ile 5	Asn	Gln	Val	Leu 2990	Ala)	Gly
	Ser	Pro	Thr 2995	Val 5	Glu	Gln	Ile	Asn 3000	⊤hr)	Asn	⊤hr	Ser	Thr 3005	Ala 5	Asn	Gln
	Ala	Lys 3010	Ser	Asp	Leu	Asp	His 3015	Ala 5	Arg	Gln	Ala	Leu 3020	Thr	Pro	Asp	Lys
55	Ala 3025	Pro	Leu	Gln	Thr	Ala 3030	Lys)	Thr	Gln	Leu	Glu 3035	Gln	Ser	Ile	Asn	G]n 3040

	Pro	Thr	Asp	⊤hr	Thr 3045	Gly 5	Met	Thr	Thr	Ala 3050	Ser)	Leu	Asn	Ala	Tyr 3055	Asn 5
5	Gln	Lys	Leu	Gln 3060	Ala)	Ala	Arg	Gln	Lys 3065	Leu	Thr	Glu	Ile	Asn 3070	Gln)	Val
	Leu	Asn	Gly 3075	Asn	Pro	Thr	Val	G]n 3080	Asn)	Ile	Asn	Asp	Lys 3085	Val 5	Thr	Glu
10	Ala	Asn 3090	Gln)	Ala	Lys	Asp	Gln 3095	Leu	Asn	Тhr	Ala	Arg 3100	Gln)	Gly	Leu	Thr
	Leu 3105	Asp	Arg	Gln	Pro	Ala 3110	Leu)	Thr	Thr	Leu	His 3115	Gly	Ala	Ser	Asn	Leu 3120
15	Asn	Gln	Ala	Gln	G]n 3125	Asn	Asn	Phe	Thr	G]n 3130	Gln)	Ile	Asn	Ala	Ala 3135	Gln
15	Asn	His	Ala	Ala 3140	Leu)	Glu	Thr	Ile	Lys 3145	Ser	Asn	Ile	Тhr	Ala 3150	Leu)	Asn
20	Thr	Ala	Met 3155	⊤hr	Lys	Leu	Lys	Asp 3160	Ser)	Val	Ala	Asp	Asn 3165	Asn	Thr	Ile
20	Lys	Ser 3170	Asp)	Gln	Asn	Туr	Thr 3175	Asp	Ala	Тhr	Pro	Ala 3180	Asn)	Lys	Gln	Ala
25	туг 3185	Asp	Asn	Ala	Val	Asn 3190	Ala)	Ala	Lys	Gly	Val 3195] j	Gly	Glu	Thr	Thr 3200
20	Asn	Pro	Thr	Met	Asp 3205	Val 5	Asn	Thr	Val	Asn 3210	Gln)	Lys	Ala	Ala	Ser 3215	Val 5
22	Lys	Ser	Thr	Lys 3220	Asp)	Ala	Leu	Asp	G]y 3225	G]n	Gln	Asn	Leu	Gln 3230	Arg	Ala
30	Lys	Thr	Glu 3235	Ala 5	Thr	Asn	Ala	Ile 3240	Thr)	His	Ala	Ser	Asp 3245	Leu	Asn	Gln
~~	Ala	Gln 3250	Lys)	Asn	Ala	Leu	Thr 3255	Gln	Gln	Val	Asn	Ser 3260	Ala)	Gln	Asn	Val
35	G]n 3265	Ala 5	Val	Asn	Asp	Ile 3270	Lys)	Gln	Thr	тhr	Gln 3275	Ser	Leu	Asn	Thr	Ala 3280
	Met	Thr	Gly	Leu	Lys 3285	Arg	Gly	Val	Ala	Asn 3290	His)	Asn	Gln	Val	Va] 3295	Gln
40	Ser	Asp	Asn	⊤yr 3300	Val)	Asn	Ala	Asp	Thr 3305	Asn 5	Lys	Lys	Asn	Asp 3310	Tyr)	Asn
	Asn	Ala	туг 3315	Asn	His	Ala	Asn	Asp 3320	Ile)	Ile	Asn	Gly	Asn 3325	Ala	Gln	His
45	Pro	Va] 3330	Ile)	⊤hr	Pro	Ser	Asp 3335	Val	Asn	Asn	Ala	Leu 3340	Ser)	Asn	Val	Thr
	Ser 3345	Lys	Glu	His	Ala	Leu 3350	Asn)	Gly	Glu	Ala	Lys 3355	Leu	Asn	Ala	Ala	Lys 3360
50	Gln	Glu	Ala	Asn	Thr 3365	Ala	Leu	Gly	His	Leu 3370	Asn)	Asn	Leu	Asn	Asn 3375	Ala 5
	Gln	Arg	Gln	Asn 3380	Leu)	Gln	Ser	Gln	Ile 3385	Asn 5	Gly	Ala	His	Gln 3390	Ile)	Asp
55	Ala	Val	Asn 3395	⊤hr 5	Ile	Lys	Gln	Asn 3400	Ala)	Тhr	Asn	Leu	Asn 3403	Ser	Ala	Met

Gly Asn Leu Arg Gln Ala Val Ala Asp Lys Asp Gln Val Lys Arg Thr 3410 3415 3420 Glu Asp Tyr Ala Asp Ala Asp Thr Ala Lys Gln Asn Ala Tyr Asn Ser 3430 3425 3435 3440 5 Ala Val Ser Ser Ala Glu Thr Ile Ile Asn Gln Thr Thr Asn Pro Thr 3445 3450 Met Ser Val Asp Asp Val Asn Arg Ala Thr Ser Ala Val Thr Ser Asn 3460 3465 3470 10 Asn Ala Leu Asn Gly Tyr Glu Lys Leu Ala Gln Ser Lys Thr Asp 3475 3480 3485 Lys Ala Ala Arg Ala Ile Asp Ala Leu Pro His Leu Asn Asn Ala Gln Lys 3490 3495 3500 15 Ala Asp Val Lys Ser Lys Ile Asn Ala Ala Ser Asn Ile Ala Gly Val 3505 3510 3515 3520 Asn Thr Val Lys Gln Gln Gly Thr Asp Leu Asn Thr Ala Met Gly Asn 3525 3530 3535 20 Leu Gln Gly Ala Ile Asn Asp Glu Gln Thr Thr Leu Asn Ser Gln Asn 3540 3545 3550 Tyr Gln Asp Ala Thr Pro Ser Lys Lys Thr Ala Tyr Thr Asn Ala Val 3555 3560 3565 25 Gln Ala Ala Lys Asp Ile Leu Asn Lys Ser Asn Gly Gln Asn Lys Thr 3570 3575 3580 Lys Asp Gln Val Thr Glu Ala Met Asn Gln Val Asn Ser Ala Lys Asn 3585 3590 3595 3600 3600 Asn Leu Asp Gly Thr Arg Leu Leu Asp Gln Ala Lys Gln Thr Ala Lys 3605 3610 3615 30 Gln Gln Leu Asn Asn Met Thr His Leu Thr Thr Ala Gln Lys Thr Asn 3620 3625 3630 Leu Thr Asn Gln Ile Asn Ser Gly Thr Thr Val Ala Gly Val Gln Thr 3635 3640 3645 35 Val Gln Ser Asn Ala Asn Thr Leu Asp Gln Ala Met Asn Thr Leu Arg 3650 3655 3660 3660 Gln Ser Ile Ala Asn Lys Asp Ala Thr Lys Ala Ser Glu Asp Tyr Val 3665 3670 3675 3680 40 Asp Ala Asn Asn Asp Lys Gln Thr Ala Tyr Asn Asn Ala Val Ala Ala 3685 3690 3695 Ala Glu Thr Ile Ile Asn Ala Asn Ser Asn Pro Glu Met Asn Pro Ser 3700 3705 3710 45 Thr Ile Thr Gln Lys Ala Glu Gln Val Asn Ser Ser Lys Thr Ala Leu 3715 3720 3725 Gly Asp Glu Asn Leu Ala Ala Ala Lys Gln Asn Ala Lys Thr Tyr 3730 3735 3740 Asn 50 Leu Asn Thr Leu Thr Ser Ile Thr Asp Ala Gln Lys Asn Asn Leu Ile 3745 3750 3755 3760 3760 Ser Gln Ile Thr Ser Ala Thr Arg Val Ser Gly Val Asp Thr Val Lys 3765 3770 3775 55 Gln Asn Ala Gln His Leu Asp Gln Ala Met Ala Ser Leu Gln Asn Gly

				3780)				3785	,				3790)	
	Ile	Asn	Asn 3795	Glu	Ser	Gln	Val	Lys 3800	Ser	Ser	Glu	Lys	Туг 3805	Arg	Asp	Ala
5	Asp	Thr 3810	Asn	Lys	Gln	Gln	Glu 3815	Tyr 5	Asp	Asn	Ala	Ile 3820	Thr	Ala	Ala	Lys
	Ala 3825	Ile	Leu	Asn	Lys	Ser 3830	Thr)	Gly	Pro	Asn	⊤hr 3835	Ala	Gln	Asn	Ala	Va] 3840
10	Glu	Ala	Ala	Leu	Gln 3845	Arg	Val	Asn	Asn	Ala 3850	Lys	Asp	Ala	Leu	Asn 3855	Gly
	Asp	Ala	Lys	Leu 3860	Ile	Ala	Ala	Gln	Asn 3865	Ala	Ala	Lys	G]n	His 3870	Leu	Gly
15	Thr	Leu	Thr 3875	His	Ile	Thr	⊤hr	Ala 3880	Gln)	Arg	Asn	Asp	Leu 3885	Thr	Asn	Gln
	Ile	Ser 3890	Gln	Ala	Thr	Asn	Leu 3895	Ala 5	Gly	Val	Glu	Ser 3900	Val	Lys	Gln	Asn
20	Ala 3905	Asn	Ser	Leu	Asp	Gly 3910	Ala)	Met	Gly	Asn	Leu 3915	Gln	Thr	Ala	Ile	Asn 3920
	Asp	Lys	Ser	Gly	тhr 3925	Leu	Ala	Ser	Gln	Asn 3930	Phe	Leu	Asp	Ala	Asp 3935	Glu
25	Gln	Lys	Arg	Asn 3940	Ala	Tyr	Asn	Gln	Ala 3945	Val	Ser	Ala	Ala	Glu 3950	Thr	Ile
	Leu	Asn	Lys 3955	Gln	Тhr	Gly	Pro	Asn 3960	⊤hr)	Ala	Lys	Thr	Ala 3965	Val	Glu	Gln
30	Ala	Leu 3970	Asn	Asn	Val	Asn	Asn 3975	Ala 5	Lys	His	Ala	Leu 3980	Asn	Gly	Thr	Gln
	Asn 3985	Leu	Asn	Asn	Ala	Lys 3990	Gln)	Ala	Ala	Ile	⊤hr 3995	Ala	I]e	Asn	Gly	Ala 4000
35	Ser	Asp	Leu	Asn	G]n 4005	Lys	Gln	Lys	Asp	Ala 4010	Leu	Lys	Ala	Gln	Ala 4015	Asn
	Gly	Ala	Gln	Arg 4020	Val	Ser	Asn	Ala	Gln 4025	Asp	Val	Gln	His	Asn 4030	Ala	Thr
40	Glu	Leu	Asn 4035	Thr	АТа	Met	Gly	⊤hr 4040	Leu)	Lys	His	Ala	Ile 4045	Ala	Asp	Lys
	Thr	Asn 4050	Thr	Leu	Ala	Ser	Ser 4055	Lys	⊤yr	Val	Asn	а]а 4060	Asp	Ser	Thr	Lys
45	Gln 4065	Asn	Ala	Tyr	Thr	Thr 4070	Lys)	Val	⊤hr	Asn	Ala 4075	Glu	His	Ile	Ile	Ser 4080
	Gly	Thr	Pro	Thr	Val 4085	Val	⊤hr	Thr	Pro	Ser 4090	Glu	Val	Thr	Ala	Ala 4095	Ala
50	Asn	Gln	Val	Asn 4100	Ser	Ala	Lys	Gln	Glu 4105	Leu	Asn	Gly	Asp	Glu 4110	Arg	Leu
	Arg	Glu	Ala 4115	Lys	Gln	Asn	Ala	Asn 4120	⊤hr)	Ala	Ile	Asp	Ala 4125	Leu	Thr	Gln
55	Leu	Asn 4130	Thr	Pro	Gln	Lys	Ala 4135	Lys	Leu	Lys	Glu	Gln 4140	Val	Gly	Gln	Ala
	Asn 4145	Arg	Leu	Glu	Asp	Val 4150	Gln)	Thr	Val	Gln	⊤hr 4155	Asn	Gly	Gln	Ala	Leu 4160

	Asn	Asn	Ala	Met	Lys 4165	Gly 5	Leu	Arg	Asp	Ser 4170	Ile)	Ala	Asn	Glu	Thr 4175	Thr 5
5	Val	Lys	Thr	Ser 4180	Gln)	Asn	Tyr	Thr	Asp 4185	Ala 5	Ser	Pro	Asn	Asn 4190	Gln)	Ser
	Thr	Туr	Asn 4195	Ser	Ala	Val	Ser	Asn 4200	Ala)	Lys	Gly	Ile	I]e 4203	Asn 5	Gln	Thr
10	Asn	Asn 4210	Pro)	⊤hr	Met	Asp	Thr 4215	Ser	Ala	Ile	Thr	G]n 4220	Ala)	Thr	Thr	Gln
	Val 4225	Asn	Asn	Ala	Lys	Asn 4230	Gly)	Leu	Asn	Gly	Ala 4235	Glu 5	Asn	Leu	Arg	Asn 4240
15	Ala	Gln	Asn	⊤hr	Ala 4245	Lys	Gln	Asn	Leu	Asn 4250	Thr)	Leu	Ser	His	Leu 4255	Thr
	Asn	Asn	Gln	Lys 4260	Ser)	Ala	Ile	Ser	Ser 4265	Gln 5	Ile	Asp	Arg	Ala 4270	Gly	His
20	Val	Ser	Glu 4275	Val	Thr	Ala	Thr	Lys 4280	Asn)	Ala	Ala	Thr	Glu 4285	Leu	Asn	Thr
20	Gln	Met 4290	Gly)	Asn	Leu	Glu	Gln 4295	Ala	Ile	His	Asp	G]n 4300	Asn)	Thr	Val	Lys
25	Gln 4305	Ser	Val	Lys	Phe	Thr 4310	Asp)	Ala	Asp	Lys	Ala 4315	Lys	Arg	Asp	Ala	туг 4320
	Thr	Asn	Ala	Val	Ser 4325	Arg	Ala	Glu	Ala	Ile 4330	Leu)	Asn	Lys	Thr	G]n 4335	Gly
30	Ala	Asn	Thr	Ser 4340	Lys)	Gln	Asp	Val	Glu 4345	Ala 5	Ala	Ile	Gln	Asn 4350	Val)	Ser
	Ser	Ala	Lys 4355	Asn	Ala	Leu	Asn	Gly 4360	Asp)	Gln	Asn	Val	тhr 4365	Asn	Ala	Lys
25	Asn	Ala 4370	Ala)	Lys	Asn	Ala	Leu 4375	Asn	Asn	Leu	Thr	Ser 4380	ıle)	Asn	Asn	Ala
55	G]n 4385	Lys	Arg	Asp	Leu	⊤hr 4390	Thr)	Lys	Ile	Asp	Gln 4395	Ala 5	⊤hr	Thr	Val	Ala 4400
40	Gly	Val	Glu	Ala	Va] 4405	Ser	Asn	Thr	Ser	⊤hr 4410	Gln)	Leu	Asn	Thr	Ala 4415	Met
40	Ala	Asn	Leu	G]n 4420	Asn)	Gly	Ile	Asn	Asp 4425	Lys 5	Thr	Asn	Thr	Leu 4430	Ala)	Ser
45	Glu	Asn	туг 4435	His	Asp	Ala	Asp	Ser 444(Asp)	Lys	Lys	Thr	Ala 4445	Tyr 5	Thr	Gln
40	Ala	Val 4450	Thr)	Asn	Ala	Glu	Asn 4455	Ile	Leu	Asn	Lys	Asn 4460	Ser)	Gly	Ser	Asn
50	Leu 4465	Asp	Lys	⊤hr	Ala	Val 4470	Glu)	Asn	Ala	Leu	Ser 4475	Gln	Val	Ala	Asn	Ala 4480
50	Lys	Gly	Ala	Leu	Asn 4485	Gly G	Asn	His	Asn	Leu 4490	Glu)	Gln	Ala	Lys	Ser 4495	Asn
	Ala	Asn	Thr	⊤hr 4500	Ile)	Asn	Gly	Leu	Gln 4505	His 5	Leu	Thr	Thr	Ala 4510	Gln)	Lys
00	Asp	Lys	Leu 4515	Lys	Gln	Gln	Val	Gln 4520	Gln)	Ala	Gln	Asn	Val 4525	Ala 5	G∣y	Val

	Asp	Thr 4530	Val)	Lys	Ser	Ser	Ala 4535	Asn	Thr	Leu	Asn	Gly 4540	Ala)	Met	Gly	⊤hr
5	Leu 4545	Arg	Asn	Ser	Ile	Gln 4550	Asp)	Asn	Thr	Ala	тhr 4555	Lys	Asn	Gly	Gln	Asn 4560
5	⊤yr	Leu	Asp	Ala	Thr 4565	Glu	Arg	Asn	Lys	Thr 457(Asn)	Тyr	Asn	Asn	A]a 4575	Val
	Asp	Ser	Ala	Asn 4580	Gly)	Val	Ile	Asn	Ala 4585	Thr	Ser	Asn	Pro	Asn 4590	Met	Asp
10	Ala	Asn	Ala 4595	Ile	Asn	Gln	Ile	Ala 4600	Thr)	Gln	Val	Thr	Ser 4605	Thr	Lys	Asn
	Ala	Leu 4610	Asp)	Gly	Thr	His	Asn 4615	Leu	Thr	Gln	Ala	Lys 4620	Gln)	Thr	Ala	Thr
15	Asn 4625	Ala	Ile	Asp	Gly	Ala 4630	Thr)	Asn	Leu	Asn	Lys 4635	Ala	Gln	Lys	Asp	A]a 4640
	Leu	Lys	Ala	Gln	Val 4645	Thr	Ser	Ala	Gln	Arg 465(Val	Ala	Asn	Val	Thr 465'	Ser
20	Ile	Gln	Gln	Thr 4660	Ala	Asn	Glu	Leu	Asn 4665	Thr	Ala	Met	Gly	G]n 4670	Leu	Gln
	His	Gly	1]e 4679	Asp	Asp	Glu	Asn	A]a 4680	Thr	Lys	Gln	⊤hr	G]n 4685	Lys	туr	Arg
25	Asp	Ala 4690	Glu	Gln	Ser	Lys	Lys 4695	Thr	Ala	Тyr	Asp	G]n 4700	Ala	, Val	Ala	Ala
	Ala 4705	Lys	Ala	Ile	Leu	Asn 4710	Lys	, G]n	Thr	Gly	Ser 471	Asn	Ser	Asp	Lys	Ala 4720
30	Ala	, Val	Asp	Arg	Ala 4725	Leu	, Gln	Gln	Val	Thr	Ser	, Thr	Lys	Asp	A]a 4735	Leu
	Asn	Gly	Asp	A]a	Lys	, Leu	Ala	Glu	Ala 4745	Lys	, Ala	Ala	Ala	Lys	Gln	, Asn
35	Leu	Gly	Thr 4755	Leu	, Asn	His	Ile	Thr	Asn	, Ala	Gln	Arg	Thr 4765	Asp	, Leu	Glu
	Gly	Gln	Ile	, Asn	Gln	Ala	Thr	Thr	, Val	Asp	Gly	Val	Asn	, Thr	Val	Lys
40	Thr	Asn	, Ala	Asn	Thr	Leu	Asp	, Gly	Ala	Met	Asn	Ser	, Leu	Gln	Gly	Ser
	Ile	, Asn	Asp	Lys	Asp	Ala	, Thr	Leu	Arg	Asn	Gln	, Asn	Тyr	Leu	Asp	4800 Ala
45	Asp	Glu	Ser	Lys	Arg	, Asn	Ala	Тyr	Thr	Gln	, Ala	Val	Thr	Ala	Ala	, Glu
	Gly	Ile	Leu	Asn	, Lys	Gln	Thr	Gly	4823 Gly	Asn	Thr	Ser	Lys	4850 Ala	, Asp	Val
	Asp	Asn	4653 Ala	, Leu	Asn	Ala	Val	4840 	, Arg	Ala	Lys	Ala	4843 Ala	, Leu	Asn	Gly
50	Ala	Asp	Asn	Leu	Arg	Asn	4855 Ala	Lys	Thr	Ser	Ala	4800 	Asn	Тhr	Ile	Asp
	4865 Gly	Leu	Pro	Asn	Leu	4870 Thr	, Gln	Leu	Gln	Lys	4873 Asp	Asn	Leu	Lys	His	4880 Gln
55	Val	Glu	Gln	Ala	4885 Gln	Asn	Val	Ala	Gly	4890 Val	, Asn	Gly	Val	Lys	4895 Asp	b Lys

				4900)				4905	5				4910)	
	Gly	Asn	Thr 4915	Leu	Asn	Thr	Ala	Met 4920	Gly)	Ala	Leu	Arg	Thr 4925	Ser	Ile	Gln
5	Asn	Asp 4930	Asn	Thr	Thr	Lys	⊤hr 4935	Ser	Gln	Asn	Туr	Leu 4940	Asp	Ala	Ser	Asp
	Ser 4945	Asn	Lys	Asn	Asn	Tyr 4950	Asn)	Thr	Ala	Val	Asn 4955	Asn	Ala	Asn	Gly	Val 4960
10	Ile	Asn	Ala	Thr	Asn 4965	Asn	Pro	Asn	Met	Asp 4970	Ala	Asn	Ala	Ile	Asn 4975	Gly
	Met	Ala	Asn	Gln 4980	Val)	Asn	Thr	Thr	Lys 4985	Ala	Ala	Leu	Asn	Gly 4990	Ala	Gln
15	Asn	Leu	Ala 4995	Gln	Ala	Lys	⊤hr	Asn 5000	Ala)	Thr	Asn	Thr	Ile 5005	Asn	Asn	Ala
	His	Asp 5010	Leu	Asn	Gln	Lys	Gln 5015	Lys	Asp	Ala	Leu	Lys 5020	Thr	Gln	Val	Asn
20	Asn 5025	Ala	Gln	Arg	Val	Ser 5030	Asp)	Ala	Asn	Asn	Va] 5035	Gln	His	Thr	Ala	Thr 5040
	Glu	Leu	Asn	Ser	А]а 5045	Met	⊤hr	Ala	Leu	Lys 5050	Ala	Ala	I]e	Ala	Asp 5055	Lys
25	Glu	Arg	Thr	Lys 5060	Ala)	Ser	Gly	Asn	⊤yr 5065	Val 5	Asn	Ala	Asp	G]n 5070	Glu	Lys
	Arg	Gln	Ala 5075	Tyr	Asp	Ser	Lys	Va] 5080	⊤hr)	Asn	Ala	Glu	Asn 5085	I]e	Ile	Ser
30	Gly	Thr 5090	Pro	Asn	Ala	Тhr	Leu 5095	Thr 5	Val	Asn	Asp	Val 5100	Asn	Ser	Ala	Ala
	Ser 5105	Gln	Val	Asn	Ala	Ala 5110	Lys)	Thr	Ala	Leu	Asn 5115	Gly	Asp	Asn	Asn	Leu 5120
35	Arg	Val	Ala	Lys	Glu 5125	His	Ala	Asn	Asn	Thr 5130	I]e	Asp	Gly	Leu	Ala 5135	Gln
	Leu	Asn	Asn	Ala 5140	Gln)	Lys	Ala	Lys	Leu 5145	Lys	Glu	Gln	Val	Gln 5150	Ser	Ala
40	Thr	Thr	Leu 5155	Asp	Gly	Val	Gln	⊤hr 5160	val)	Lys	Asn	Ser	Ser 5165	Gln	Thr	Leu
	Asn	Thr 5170	Ala	Met	Lys	Gly	Leu 5175	Arg 5	Asp	Ser	Ile	Ala 5180	Asn	Glu	Ala	Thr
45	Ile 5185	Lys	Ala	Gly	Gln	Asn 5190	⊤yr)	Thr	Asp	Ala	Ser 5195	Pro	Asn	Asn	Arg	Asn 5200
	Glu	туг	Asp	Ser	Ala 5205	Val ;	⊤hr	Ala	Ala	Lys 5210	Ala	Ile	I]e	Asn	Gln 5215	Thr
50	Ser	Asn	Pro	Thr 5220	Met)	Glu	Pro	Asn	⊤hr 5225	Ile 5	⊤hr	Gln	Val	Thr 5230	Ser	Gln
	Val	Thr	Thr 5235	Lys	Glu	Gln	Ala	Leu 5240	Asn)	Gly	Ala	Arg	Asn 5245	Leu	Ala	Gln
55	Ala	Lys 5250	Thr	Thr	АТа	Lys	Asn 5255	Asn 5	Leu	Asn	Asn	Leu 5260	Thr	Ser	Ile	Asn
	Asn 5265	Ala	Gln	Lys	Asp	Ala 5270	Leu)	Thr	Arg	Ser	Ile 5275	Asp	Gly	Ala	Thr	Thr 5280

	Val	Ala	Gly	Val	Asn 5285	Gln	Glu	Thr	Ala	Lys 5290	Ala)	Thr	Glu	Leu	Asn 5295	Asn
5	Ala	Met	His	Ser 5300	Leu	Gln	Asn	Gly	Ile 5305	Asn	Asp	Glu	Thr	Gln 5310	Thr	Lys
	Gln	Thr	Gln 5315	Lys	Tyr	Leu	Asp	Ala 5320	Glu)	Pro	Ser	Lys	Lys 5325	Ser	Ala	Туr
10	Asp	G]n 5330	Ala)	Val	Asn	Ala	Ala 5335	Lys	Ala	Ile	Leu	Thr 5340	Lys)	Ala	Ser	Gly
	Gln 5345	Asn	Val	Asp	Lys	Ala 5350	Ala)	Val	Glu	Gln	Ala 5355	Leu	Gln	Asn	Val	Asn 5360
15	Ser	Thr	Lys	⊤hr	Ala 5365	Leu	Asn	Gly	Asp	Ala 5370	Lys)	Leu	Asn	Glu	Ala 5375	Lys
	Ala	Ala	Ala	Lys 5380	Gln	Thr	Leu	Gly	Thr 5385	Leu	Thr	His	Ile	Asn 5390	Asn	Ala
20	Gln	Arg	Thr 5395	Ala	Leu	Asp	Asn	Glu 5400	Ile	Thr	Gln	Ala	Thr 5405	Asn	Val	Glu
20	Gly	Va] 5410	Asn)	⊤hr	Val	Lys	Ala 5415	Lys	Ala	Gln	Gln	Leu 5420	Asp)	Gly	Ala	Met
25	Gly 5425	Gln	Leu	Glu	Thr	Ser 5430	ıle)	Arg	Asp	Lys	Asp 5435	Thr	Thr	Leu	Gln	Ser 5440
20	Gln	Asn	Tyr	Gln	Asp 5445	Ala	Asp	Asp	Ala	Lys 5450	Arg	Thr	Ala	Tyr	Ser 5455	Gln
20	Ala	Val	Asn	Ala 5460	Ala	Ala	Thr	Ile	Leu 5465	Asn	Lys	Thr	Ala	Gly 5470	Gly	Asn
30	Thr	Pro	Lys 5475	Ala	Asp	Val	Glu	Arg 5480	Ala)	Met	Gln	Ala	Va] 5485	Thr	Gln	Ala
05	Asn	Thr 5490	Ala)	Leu	Asn	Gly	Ile 5495	Gln	Asn	Leu	Asp	Arg 5500	Ala)	Lys	Gln	Ala
35	Ala 5505	Asn	Thr	Ala	Ile	⊤hr 5510	Asn)	Ala	Ser	Asp	Leu 5515	Asn	Thr	Lys	Gln	Lys 5520
	Glu	Ala	Leu	Lys	Ala 5525	Gln	Val	Thr	Ser	Ala 5530	Gly	Arg	Val	Ser	Ala 5535	Ala
40	Asn	Gly	Val	Glu 5540	His	Thr	Ala	Thr	Glu 5545	Leu	Asn	Thr	Ala	Met 5550	Thr	Ala
	Leu	Lys	Arg 5555	Ala	Ile	Ala	Asp	Lys 5560	Ala)	Glu	Thr	Lys	Ala 5565	Ser	Gly	Asn
45	Туr	Val 5570	Asn)	Ala	Asp	Ala	Asn 5575	Lys	Arg	Gln	Ala	туг 5580	Asp)	Glu	Lys	Val
	Thr 5585	Ala	Ala	Glu	Asn	Ile 5590	Val)	Ser	Gly	Thr	Pro 5595	Thr	Pro	Thr	Leu	Thr 5600
50	Pro	Ala	Asp	Val	Thr 5605	Asn	Ala	Ala	Thr	Gln 5610	Val)	Thr	Asn	Ala	Lys 5615	Thr
	Gln	Leu	Asn	G]y 5620	Asn	His	Asn	Leu	Glu 5625	Val 5	Ala	Lys	Gln	Asn 5630	Ala	Asn
55	Thr	Ala	Ile 5635	Asp	Gly	Leu	Thr	Ser 5640	Leu)	Asn	Gly	Pro	G]n 5645	Lys	Ala	Lys

5

Leu Lys Glu Gln Val Gly Gln Ala Thr Thr Leu Pro Asn Val Gln Thr 5650 5655 5660 Val Arg Asp Asn Ala Gln Thr Leu Asn Thr Ala Met Lys Gly Leu Arg 5665 5670 5675 568 5680 Asp Ser Ile Ala Asn Glu Ala Thr Ile Lys Ala Gly Gln Asn Tyr Thr 5685 5690 5695 Asp Ala Ser Gln Asn Lys Gln Thr Asp Tyr Asn Ser Ala Val Thr Ala 5700 5705 5710 10 Ala Lys Ala Ile Ile Gly Gln Thr Thr Ser Pro Ser Met Asn Ala Gln 5715 5720 5725 Glu Ile Asn Gln Ala Lys Asp Gln Val Thr Ala Lys Gln Gln Ala Leu 5730 5735 5740 15 Asn Gly Gln Glu Asn Leu Arg Thr Ala Gln Thr Asn Ala Lys Gln His 5745 5750 5755 576 5760 Leu Asn Gly Leu Ser Asp Leu Thr Asp Ala Gln Lys Asp Ala Val Lys 5765 5770 5775 20 Arg Gln Ile Glu Gly Ala Thr His Val Asn Glu Val Thr Gln Ala Gln 5780 5785 5790 Asn Asn Ala Asp Ala Leu Asn Thr Ala Met Thr Asn Leu Lys Asn Gly 5795 5800 5805 25 Ile Gln Asp Gln Asn Thr Ile Lys Gln Gly Val Asn Phe Thr Asp Ala 5810 5815 5820 5820 Asp Glu Ala Lys Arg Asn Ala Tyr Thr Asn Ala Val Thr Gln Ala Glu 5825 5830 5835 5840 5840 Gln Ile Leu Asn Lys Ala Gln Gly Pro Asn Thr Ser Lys Asp Gly Val 5845 5850 5855 30 Glu Thr Ala Leu Glu Asn Val Gln Arg Ala Lys Asn Glu Leu Asn Gly 5860 5865 5870 Asn Gln Asn Val Ala Asn Ala Lys Thr Thr Ala Lys Asn Ala Leu Asn 5875 5880 5885 35 Asn Leu Thr Ser Ile Asn Asn Ala Gln Lys Glu Ala Leu Lys Ser Gln 5890 5895 5900 5890 Ile Glu Gly Ala Thr Thr Val Ala Gly Val Asn Gln Val Ser Thr Thr 5905 5910 5915 5920 40 5920 Ala Ser Glu Leu Asn Thr Ala Met Ser Asn Leu Gln Asn Gly Ile Asn 5925 5930 5935 Asp Glu Ala Ala Thr Lys Ala Ala Leu Asn Gly Thr Gln Asn Leu Glu 5940 5945 5950 45 Ala Lys Gln His Ala Asn Thr Ala Ile Asp Gly Leu Ser His Leu 5955 5960 5965 Asn Ala Gln Lys Glu Ala Leu Lys Gln Leu Val Gln Gln Ser Thr 5970 5975 5980 Thr 50 Thr Val Ala Glu Ala Gln Gly Asn Glu Gln Lys Ala Asn Asn Val Asp 5985 5990 5995 600 6000 Ala Ala Met Asp Lys Leu Arg Gln Ser Ile Ala Asp Asn Ala Thr Thr 6005 6010 6015 55 Lys Gln Asn Gln Asn Tyr Thr Asp Ala Ser Gln Asn Lys Lys Asp Ala

				6020)				6025	5				6030)	
	Туr	Asn	Asn 6035	Ala	Val	Thr	Thr	Ala 6040	Gln)	Gly	Ile	Ile	Asp 6045	Gln	Thr	Thr
5	Ser	Pro 6050	Thr)	Leu	Asp	Pro	⊤hr 6055	Val 5	Ile	Asn	Gln	Ala 6060	Ala	Gly	Gln	Val
	Ser 6065	Thr	Thr	Lys	Asn	Ala 6070	Leu)	Asn	Gly	Asn	Glu 6075	Asn	Leu	Glu	Ala	Ala 6080
10	Lys	Gln	Gln	Ala	Ser 6085	Gln	Ser	Leu	Gly	Ser 6090	Leu)	Asp	Asn	Leu	Asn 6095	Asn
	Ala	Gln	Lys	Gln 6100	Thr)	Val	⊤hr	Asp	Gln 6105	Ile 5	Asn	Gly	Ala	Ніs 6110	Thr)	Val
15	Asp	Glu	Ala 6115	Asn	Gln	Ile	Lys	Gln 6120	Asn)	Ala	Gln	Asn	Leu 6125	Asn	Thr	Ala
	Met	G]y 6130	Asn)	Leu	Lys	Gln	Ala 6135	Ile 5	Ala	Asp	Lys	Asp 6140	Ala	Thr	Lys	Ala
20	тhr 6145	Val ;	Asn	Phe	Thr	Asp 6150	Ala)	Asp	Gln	Ala	Lys 6155	Gln	G]n	Ala	Туr	Asn 6160
	Тhr	Ala	Val	Thr	Asn 6165	Ala	Glu	Asn	Ile	I]e 6170	Ser	Lys	Ala	Asn	G]y 6175	Gly Б
25	Asn	Ala	Тhr	Gln 6180	Ala	Glu	Val	Glu	G]n 6185	Ala	Ile	Lys	G]n	Val 6190	Asn)	Ala
	Ala	Lys	G]n 6195	Ala	Leu	Asn	Gly	Asn 6200	Ala)	Asn	Val	Gln	His 6205	Ala 5	Lys	Asp
30	Glu	Ala 6210	Thr)	Ala	Leu	Ile	Asn 6215	Ser	Ser	Asn	Asp	Leu 6220	Asn	Gln	Ala	Gln
	Lys 6225	Asp	Ala	Leu	Lys	G]n 6230	Gln)	Val	Gln	Asn	Ala 6235	Thr	Thr	Val	Ala	G]y 6240
35	Val	Asn	Asn	Val	Lys 6245	Gln	⊤hr	Ala	Gln	Glu 6250	Leu)	Asn	Asn	Ala	Met 6255	Thr
	Gln	Leu	Lys	Gln 6260	Gly)	Ile	Ala	Asp	Lys 6265	Glu 5	Gln	Thr	Lys	Ala 6270	Asp)	Gly
40	Asn	Phe	Va1 6275	Asn	Аlа	Asp	Pro	Asp 6280	Lys)	Gln	Asn	Ala	туг 6285	Asn	Gln	Ala
	Val	Ala 6290	Lys)	Ala	Glu	Ala	Leu 6295	ıle 5	Ser	Ala	⊤hr	Pro 6300	Asp	Val	Val	Val
45	Thr 6305	Pro	Ser	Glu	Ile	Thr 6310	Ala)	Ala	Leu	Asn	Lys 6315	Val	Thr	Gln	Ala	Lys 6320
	Asn	Asp	Leu	Asn	Gly 6325	Asn	⊤hr	Asn	Leu	Ala 6330	⊤hr)	Ala	Lys	Gln	Asn 6335	val
50	Gln	His	Ala	Ile 6340	Asp	Gln	Leu	Pro	Asn 6345	Leu	Asn	Gln	Ala	Gln 6350	Arg)	Asp
	Glu	Tyr	Ser 6355	Lys	Gln	Ile	Thr	Gln 6360	Ala)	Thr	Leu	Val	Pro 6365	Asn	Val	Asn
55	Ala	Ile 6370	Gln)	Gln	Ala	Ala	⊤hr 6375	Thr 5	Leu	Asn	Asp	Ala 6380	Met	Thr	Gln	Leu
	Lys 6385	Gln	Gly	Ile	Ala	Asn 6390	Lys)	Ala	Gln	Ile	Lys 6395	Gly	Ser	Glu	Asn	туг 6400

	His	Asp	Ala	Asp	Thr 6405	Asp 5	Lys	Gln	Thr	A]a 6410	Tyr)	Asp	Asn	Ala	Va] 6415	Thr 5
5	Lys	Ala	Glu	Glu 6420	Leu)	Leu	Lys	Gln	Thr 6425	Thr 5	Asn	Pro	Thr	Met 6430	Asp)	Pro
	Asn	Thr	Ile 6435	Gln 5	Gln	Ala	Leu	тhr 6440	Lys)	Val	Asn	Asp	тhr 6445	Asn	Gln	Ala
10	Leu	Asn 6450	Gly)	Asn	Gln	Lys	Leu 6455	Ala 5	Asp	Ala	Lys	G]n 6460	Asp)	Ala	Lys	Thr
	тhr 6465	Leu	Gly	⊤hr	Leu	Asp 6470	His)	Leu	Asn	Asp	Ala 6475	Gln	Lys	Gln	Ala	Leu 6480
15	Thr	Thr	Gln	Val	Glu 6485	Gln 5	Ala	Pro	Asp	Ile 6490	Ala)	Thr	Val	Asn	Asn 6495	Val
	Lys	Gln	Asn	Ala 6500	Gln)	Asn	Leu	Asn	Asn 6505	Ala 5	Met	Thr	Asn	Leu 6510	Asn)	Asn
20	Ala	Leu	Gln 6515	Asp	Lys	Thr	Glu	тhr 6520	Leu)	Asn	Ser	Ile	Asn 6525	Phe	Thr	Asp
20	Ala	Asp 6530	Gln)	Ala	Lys	Lys	Asp 6535	Ala	Туr	Тhr	Asn	Ala 6540	Val)	Ser	His	Ala
25	Glu 6545	Gly 5	Ile	Leu	Ser	Lys 6550	Ala)	Asn	Gly	Ser	Asn 6555	Ala	Ser	Gln	Thr	G]u 6560
20	Val	Glu	Gln	Ala	Met 6565	Gln 5	Arg	Val	Asn	Glu 6570	Ala)	Lys	Gln	Ala	Leu 6575	Asn
30	Gly	Asn	Asp	Asn 6580	Val)	Gln	Arg	Ala	Lys 6585	Asp 5	Ala	Ala	Lys	Gln 6590	Val)	Ile
	Thr	Asn	Ala 6595	Asn	Asp	Leu	Asn	Gln 6600	Ala)	Met	Thr	Gln	Leu 6605	Lys	Gln	Gly
25	Ile	Ala 6610	Asp)	Lys	Asp	Gln	Thr 6615	Lys	Ala	Asn	Gly	Asn 6620	Phe	Val	Asn	Ala
30	Asp 6625	Thr 5	Asp	Lys	Gln	Asn 6630	Ala)	туr	Asn	Asn	Ala 6635	val 5	Ala	His	Ala	Glu 6640
10	Gln	Ile	Ile	Ser	Gly 6645	Thr	Pro	Asn	Ala	Asn 6650	Val)	Asp	Pro	Gln	Gln 6655	Val 5
40	Ala	Gln	Ala	Leu 6660	Gln)	Gln	Val	Asn	Gln 6665	Ala 5	Lys	Gly	Asp	Leu 6670	Asn)	Gly
45	Asn	His	Asn 6675	Leu	Gln	Val	Ala	Lys 6680	Asp)	Asn	Ala	Asn	Thr 6685	Ala 5	Ile	Asp
40	Gln	Leu 6690	Pro)	Asn	Leu	Asn	Gln 6695	Pro 5	Gln	Lys	Thr	Ala 6700	Leu)	Lys	Asp	Gln
	Val 6705	Ser 5	His	Ala	Glu	Leu 6710	Val)	Thr	Gly	Val	Asn 6715	Ala 5	Ile	Lys	Gln	Asn 6720
50	Ala	Asp	Ala	Leu	Asn 6725	Asn 5	Ala	Met	Gly	тhr 6730	Leu)	Lys	Gln	Gln	Ile 6735	Gln
	Ala	Asn	Ser	G]n 6740	Val)	Pro	Gln	Ser	Va] 6745	Asp 5	Phe	Thr	Gln	Ala 6750	Asp)	Gln
22	Asp	Lys	G]n 6755	Gln 5	Ala	Туr	Asn	Asn 6760	Ala)	Ala	Asn	Gln	Ala 6765	Gln 5	Gln	Ile

Ala Asn Gly Ile Pro Thr Pro Val Leu Thr Pro Asp Thr Val Thr Gln 6770 6775 6780 Ala Val Thr Thr Met Asn Gln Ala Lys Asp Ala Leu Asn Gly Asp Glu 6785 6790 6795 680 6785 6800 5 Lys Leu Ala Gln Ala Lys Gln Glu Ala Leu Ala Asn Leu Asp Thr Leu 6805 6810 6815 Arg Asp Leu Asn Gln Pro Gln Arg Asp Ala Leu Arg Asn Gln Ile Asn682068256830 10 Gln Ala Gln Ala Leu Ala Thr Val Glu Gln Thr Lys Gln Asn Ala Gln 6835 6840 6845 Asn Val Asn Thr Ala Met Ser Asn Leu Lys Gln Gly Ile Ala Asn Lys 6850 6855 6860 15 Asp Thr Val Lys Ala Ser Glu Asn Tyr His Asp Ala Asp Ala Asp Lys 6865 6870 6875 6886 6880 Gln Thr Ala Tyr Thr Asn Ala Val Ser Gln Ala Glu Gly Ile Ile Asn 6885 6890 6895 20 Gln Thr Thr Asn Pro Thr Leu Asn Pro Asp Glu Ile Thr Arg Ala Leu 6900 6905 6910 Thr Gln Val Thr Asp Ala Lys Asn Gly Leu Asn Gly Glu Ala Lys Leu 6915 6920 6925 25 Ala Thr Glu Lys Gln Asn Ala Lys Asp Ala Val Ser Gly Met Thr His 6930 6935 6940 Leu Asn Asp Ala Gln Lys Gln Ala Leu Lys Gly Gln Ile Asp Gln Ser 6945 6950 6955 6960 6960 Pro Glu Ile Ala Thr Val Asn Gln Val Lys Gln Thr Ala Thr Ser Leu 6965 6970 6975 30 Asp Gln Ala Met Asp Gln Leu Ser Gln Ala Ile Asn Asp Lys Ala Gln 6980 6985 6990 Thr Leu Ala Asp Gly Asn Tyr Leu Asn Ala Asp Pro Asp Lys Gln Asn 6995 7000 7005 35 Ala Tyr Lys Gln Ala Val Ala Lys Ala Glu Ala Leu Leu Asn Lys Gln 7010 7015 7020 Ser Gly Thr Asn Glu Val Gln Ala Gln Val Glu Ser Ile Thr Asn Glu 7025 7030 7035 7040 40 7040 Val Asn Ala Ala Lys Gln Ala Leu Asn Gly Asn Asp Asn Leu Ala Asn 7045 7050 7055 Ala Lys Gln Gln Ala Lys Gln Gln Leu Ala Asn Leu Thr His Leu Asn 7060 7065 7070 45 Asp Ala Gln Lys Gln Ser Phe Glu Ser Gln Ile Thr Gln Ala Pro Leu 7075 7080 7085 Val Thr Asp Val Thr Thr Ile Asn Gln Lys Ala Gln Thr Leu Asp His 7090 7095 7100 50 Ala Met Glu Leu Leu Arg Asn Ser Val Ala Asp Asn Gln Thr Thr Leu 7105 7110 7115 7120 7120 Ala Ser Glu Asp Tyr His Asp Ala Thr Ala Gln Arg Gln Asn Asp Tyr 7125 7130 7135 55 Asn Gln Ala Val Thr Ala Ala Asn Asn Ile Ile Asn Gln Thr Thr Ser

		7140		7145	7150
	Pro Thr Met 715	Asn Pro A	sp Asp Val 7160	Asn Gly Ala T)	nr Thr Gln Val Asn 7165
5	Asn Thr Lys 7170	Val Ala L	eu Asp Gly. 7175	Asp Glu Asn L 7	eu Ala Ala Ala Lys 180
	Gln Gln Ala 7185	Asn Asn A 7	rg Leu Asp 190	Gln Leu Asp H 7195	is Leu Asn Asn Ala 7200
10	Gln Lys Gln	Gln Leu G 7205	Gln Ser Gln	Ile Thr Gln S 7210	er Ser Asp Ile Ala 7215
	Ala Val Asn	Gly His L 7220	ys Gln Thr	Ala Glu Ser L 7225	eu Asn Thr Ala Met 7230
15	Gly Asn Leu 723	Ile Asn A	ala Ile Ala 7240	Asp His Gln A	la Val Glu Gln Arg 7245
	Gly Asn Phe 7250	Ile Asn A	ala Asp Thr 7255	Asp Lys Gln T 7	nr Ala Tyr Asn Thr 260
20	Ala Val Asn 7265	Glu Ala A 7	ala Ala Met 270	Ile Asn Lys G 7275	ln Thr Gly Gln Asn 7280
	Ala Asn Gln	Thr Glu V 7285	/al Glu Gln	Ala Ile Thr L 7290	ys Val Gln Thr Thr 7295
25	Leu Gln Ala	Leu Asn G 7300	ily Asp His	Asn Leu Gln V 7305	al Ala Lys Thr Asn 7310
	Ala Thr Gln 731	Ala Ile A	sp Ala Leu 7320	⊤hr Ser Leu A	sn Asp Pro Gln Lys 7325
30	Thr Ala Leu 7330	Lys Asp G	iln Val Thr 7335	Ala Ala Thr L 7	eu Val Thr Ala Val 340
	His Gln Ile 7345	Glu Gln A 7	Asn Ala Asn '350	⊤hr Leu Asn G 7355	ln Ala Met His Gly 7360
35	Leu Arg Gln	Ser Ile G 7365	iln Asp Asn	Ala Ala Thr L 7370	ys Ala Asn Ser Lys 7375
	Tyr Ile Asn	Glu Asp G 7380	iln Pro Glu	Gln Gln Asn T 7385	yr Asp Gln Ala Val 7390
40	Gln Ala Ala 739	Asn Asn I	le Ile Asn 7400	Glu Gln Thr A	la Thr Leu Asp Asn 7405
	Asn Ala Ile 7410	Asn Gln A	la Ala Thr 7415	⊤hr Val Asn T 7	nr Thr Lys Ala Ala 420
45	Leu His Gly 7425	Asp Val L 7	ys Leu Gln 430	Asn Asp Lys A 7435	sp His Ala ∟ys Gln 7440
	Thr Val Ser	Gln Leu A 7445	ala His Leu	Asn Asn Ala G 7450	ln Lys His Met Glu 7455
50	Asp Thr Leu	Ile Asp S 7460	Ser Glu Thr	Thr Arg Thr A 7465	la Val Lys Gln Asp 7470
	Leu Thr Glu 747	Ala Gln A 5	ala Leu Asp 7480	Gln Leu Met A	sp Ala Leu Gln Gln 7485
	Ser Ile Ala 7490	Asp Lys A	sp Ala Thr 7495	Arg Ala Ser S 7	er Ala Tyr Val Asn 500
55	Ala Glu Pro 7505	Asn Lys L 7	ys Gln Ser '510	Tyr Asp Glu A 7515	la Val Gln Asn Ala 7520

val Ser Ser Ala Thr Gln Ala Val The Ser Ser Lys Asn Ala Leu Asp 7550Gly Val Glu Arg Leu Ala Gln Asp Lys Gln Thr Ala Gly Asn Ser Leu Asn His Leu Asp Gln Leu Thr Pro Ala Gln Gln Gln Ala Leu Glu Asn 757070Gln Ala Gln Asn Ala Thr Thr Arg Asp Lys Val Ala Glu Ile Ile Ala 7585710Gln Ala Gln Ala Leu Asn Glu Ala Met Lys Ala Leu Lys Glu Ser Ile 7680715Gln Ala Gln Ala Leu Asn Glu Ala Met Lys Ala Leu Lys Glu Ser Ile 7663716Gln Ala Gln Ala Leu Asn Glu Ala Ser Ser Lys Phe Ile Asn Glu Asp 7663717Gln Ala Gln Lys Asp Ala Tyr Thr Gln Ala val Gln His Ala Lys Asp 7665718Leu Ile Asn Lys Thr Thr Asp Pro Thr Leu Ala Lys Ser Ile Ile Asp 7665720Gln Ala Gln Ala Gln Asp Lys Gln Arg Asn Asn Asn Asn Asp 7655721Leu Ile Asn Lys Thr Thr Asp Ala Lys Asn Asn Lu His Gly Asp 7665725Gln Lys Leu Ala Gln Asp Lys Gln Arg Ala Thr Glu Thr Leu Asp 7665726Gln Lys Leu Ala Gln Asp Lys Gln Arg Ala Thr Glu Thr Leu Asp 76780726Gln Lys Leu Ala Gln Asp Lys Gln Arg Ala Thr Glu Thr Leu Asp 7770726Gln Ala thr Gln Ala Val Thr Asp Ala Lys Asp Ash Ser Ile Gln Asp 7770726Gln Lys Leu Asn Gln Ala Met Glu Ala Leu Arg Asn Ser Ile Gln Asp 77730726Gln Ala Leu Asn Gln Ala Met Glu Ala Leu Arg Ash Ser Ile Gln Asp 77730736Gln Ala Leu Asn Gln Ala Asp Asp Lys Asp Ash Leu His Gly Asp Int 77730737Gln Ala Leu Asn Gln Ala Asp Asp Lys Asp Ash Leu His Gly Asp Gln Leu 77730737Gln Ala Asp Asp Lys Gln Ala Leu Arg Ash Ash Lys Asp Lys Pro 77730746Asn Gln Thr Glu Ala Gln Ala Leu Arg Ash Ash Lys Asp Int<		Glu	Ser	Ile	Ile	Ala 7525	Gly 5	Leu	Asn	Asn	Pro 7530	Thr)	Ile	Asn	Lys	Gly 7535	Asn 5
Gly Val Glu Arg Leu Ala Gln Asp Lys Gln Thr Ala Gly Asn Ser LeuAsn His Leu Asp Gln Leu Thr Pro Ala Gln Gln Gln Ala Leu Glu AsnGln Tle Asn Asn Ala Thr Thr Arg Asp Lys Yala Ala Glu Ile Ile Ala7585Gln Ala Gln Ala Leu Asn Glu Ala Met Lys Ala Leu Lys Glu Ser Tle101112131415151516161717171819191910191019101010101010111212131414151515161616171718 <t< td=""><td>5</td><td>Val</td><td>Ser</td><td>Ser</td><td>Ala 7540</td><td>Thr)</td><td>Gln</td><td>Ala</td><td>Val</td><td>Ile 7545</td><td>Ser</td><td>Ser</td><td>Lys</td><td>Asn</td><td>Ala 7550</td><td>Leu)</td><td>Asp</td></t<>	5	Val	Ser	Ser	Ala 7540	Thr)	Gln	Ala	Val	Ile 7545	Ser	Ser	Lys	Asn	Ala 7550	Leu)	Asp
Asn His Leu Asp Gln Leu Thr Pro Ala Gln Gln Gln Ala Leu Glu Asn 7580Gln Tle Asn Asn Ala Thr Thr Arg Asp Lys Val Ala Glu Ile Ile Ala 7585Gln Ala Gln Ala Leu Asn Glu Ala Met Lys Ala Leu Lys Glu Ser Ile 7620Lys Asp Gln Pro Gln Thr Glu Ala Ser Ser Lys Phe Ile Asn Glu Asp 7620Gln Ala Gln Lys Asp Ala Tyr Thr Gln Ala Val Gln His Ala Lys Asp 7625Leu Ile Asn Lys Thr Thr Asp Pro Thr Leu Ala Lys Ser Ile Ile Asp 7665Gln Ala Thr Gln Ala Val Thr Gln Ala Lys Asp Ala Tyr 7640Leu Ile Asn Lys Thr Thr Asp Pro Thr Leu Ala Lys Asn Leu His Gly Asp 7665Gln Ala Thr Gln Ala Val Thr Asp Ala Lys Asn Asn Leu His Gly Asp 7670Jan Asn Ala Ala Thr Gln Ala Val Thr Asp Ala Lys Asn Asn Leu Glu Asn Gln Ile 7700Asn Asn Ala Ala Thr Arg Gly Glu Val Ala Gln Lys Leu Thr Glu Ala 7775Gln Ala Leu Asn Gln Ala Met Glu Ala Leu Arg Asn Ser Ile Gln Asp 7775Gln Lys Leu Asn Gln Ala Met Gly Ser Lys Phe Ile Asn Glu Asp Lys Pro 7765Gln Lys Asp Ala Tyr Gln Ala Ala Val Gln Asp Lys Asp Asn Leu Fig Glu Ala 7770Gln Lys Asp Ala Tyr Gln Ala Ala Val Gln Asp Asp Ser Ile Gln Asp 7775Gln Lys Asp Ala Tyr Gln Ala Ala Val Gln Asn Glu Asp Lys Pro 7785Gln Lys Asp Ala Tyr Gln Ala Ala Val Gln Asn Ala Lys Asp Lys Pro 7785Asn Gln Thr Asn Asn Pro Thr Leu Asp Lys Asp Ash Leu His Gly Asp Gln Lys 7780Asn Gln Thr Asn Asn Pro Thr Leu Asp Lys Asp Ash Leu Asp Gln Ala Lys Asp Asp Cur 7780Asn Ash Ala Asp Asp Lys Gln Ala Ala Val Gln Val Gln Val Glu Gln Leu 7780An Ash Asp Asp Lys Gln Ala Lys Asp Asp Leu Asn Gln Leu Asn 7880As Ash Asp Asp Lys Gln Ala Lys Asp Asp Leu Asp Gln Lys 7880As Ash Ash Asn Pro Gln Ala L		Gly	Val	Glu 7555	Arg	Leu	Ala	Gln	Asp 7560	Lys)	Gln	Thr	Ala	Gly 7565	Asn	Ser	Leu
Gin Ile Asn Asn Ala Thr Thr Arg Asp Lys Val Ala Glu Ile Ile Ala 7585Gin Ile Asn Asn Ala Thr Thr Arg Asp Lys Val Ala Glu Ile Ile Ala 7585Gin Ala Gin Ala Leu Asn Glu Ala Met Lys Ala Leu Lys Glu Ser Ile 7620Lys Asp Gin Pro Gin Thr Glu Ala Ser Ser Lys Phe Ile Asn Glu Asp 7635Gin Ala Gin Lys Asp Ala Tyr Thr Gin Ala Val Gin His Ala Lys Asp 7665Leu Ile Asn Lys Thr Thr Asp Pro Thr Leu Ala Lys Ser Ile Ile Asp 7665Gin Ala Thr Gin Ala Val Thr Asp Ala Ly Asn Asn Asn Leu His Gly Asp 7665Gin Lys Leu Ala Gin Asp Tro Gin Arg Ala Thr Glu Thr Leu Asn Asn 7680Gin Lys Leu Ala Gin Asp Lys Glu Arg Gin Ala Leu Glu Asn Gin Ile 7700Asn Asn Ala Ala Thr Arg Gly Glu Val Ala Gin Lys Leu Ala 7715Gin Ala Chi Thr Glu Ala Met Gin Ala Leu Arg Asn Ser Ile Gln Asp 77730Gin Ala Chi Thr Glu Ala Met Gin Ala Leu Arg Asn Ser Ile Gin Asp 77735Gin Ala Chi Thr Glu Ala Met Gin Ala Val Gin Lys Asp Leu 	10	Asn	His 7570	Leu)	Asp	Gln	Leu	Thr 7575	Pro	Ala	Gln	Gln	Gln 7580	Ala)	Leu	Glu	Asn
Gln Ala Gln Ala Leu Asn Glu Ala Met Lys Ala Leu Lys Glu Ser Ile 761015Lys Asp Gln Pro Gln Thr Glu Ala Ser Ser Lys Phe Ile Asn Glu Asp 762320Gln Ala Gln Lys Asp Ala Tyr Thr Gln Ala Val Gln His Ala Lys Asp 765520Leu Ile Asn Lys Thr Thr Asp Pro Thr Leu Ala Lys Ser Ile Ile Asp 765521Gln Ala Thr Gln Ala Val Thr Asp Ala Lys Asp Af65525Gln Lys Leu Ala Gln Asp Lys Gln Arg Ala Thr Glu Thr Leu Asn Asn 766530Asn Asn Ala Ala Thr Arg Gly Glu Val Ala Gln Lys Leu Glu Asn Gln Ala 771530Gln Ala Chin Thr Glu Ala Mag Gly Ser Lys Phe Ile Asn Glu Asp 777031Gln Ala Chin Thr Glu Ala Mag Gly Ser Lys Phe Ile Asn Glu Asp Lys Pro 774535Gln Gln Thr Glu Ala Glin Ala Ala Val Glin Asn Ala Lys Asp Lys Pro 774546Asn Glin Thr Glu Ala Gli Ser Lys Phe Ile Asn Glu Asp Lys Pro 7775547Asn Glin Thr Asn Asn Pro Thr Leu Asp Lys Ala Glin Val Glin Ceu 7770548Glin Ala Lya Asp Asp Lys Glin Ala Leu Glu Ser Jie Glin Leu 7770549Asn Glin Thr Glu Ala Gli Ser Lys Phe Ile Asn Glu Asp Lys Pro 7775540Asn Glin Thr Asp Asp Crys Asp Asp Lys Ala Glin Val Glin Leu 7770541Asn Glin Ala Val Glin Ala Ala Val Thr Asp Leu Asp Glin Leu Asp 788042Ala Ala Thr Arg Glin Ala Cal Thr Asp Leu Ala Glin Leu Asp 	10	Gln 7585	Ile 5	Asn	Asn	Ala	Thr 7590	Thr)	Arg	Asp	Lys	Val 7595	Ala	Glu	Ile	Ile	Ala 7600
LysAspGlnProGlnThrGluAlaSerSerLysPheIleAsnGluAsp20GlnAlaGlnAlaGlnAlaGlnAlaLysAspAsp20LeuIleAsnLysAsnLysAsnFrFrGlnAlaLysAsnGlnAlaLysAsnLeuIleAsnAsp20GlnAlaThrGlnAlaValThrAsnAsnAsnAsnAsp20GlnAlaThrGlnAlaValAsnAsnAsnAsnAsp766525GlnAlaThrGlnAlaValAsn <td< td=""><td>15</td><td>Gln</td><td>Ala</td><td>Gln</td><td>Ala</td><td>Leu 7605</td><td>Asn</td><td>Glu</td><td>Ala</td><td>Met</td><td>Lys 7610</td><td>Ala)</td><td>Leu</td><td>Lys</td><td>Glu</td><td>Ser 7615</td><td>Ile</td></td<>	15	Gln	Ala	Gln	Ala	Leu 7605	Asn	Glu	Ala	Met	Lys 7610	Ala)	Leu	Lys	Glu	Ser 7615	Ile
20Gln Ala Gln Lys Asp Ala Tyr Thr Gln Ala Val Gln His Ala Lys Asp 763520Leu Ile Asn Lys Thr Thr Asp Pro Thr Leu Ala Lys Ser Ile Ile Asp 766025Gln Ala Thr Gln Ala Val Thr Asp Ala Lys Asn Asn Leu His Gly Asp 766526Gln Lys Leu Ala Gln Asp Lys Gln Arg Ala Thr Glu Thr Leu Asn Asn 766530Gln Lys Leu Ala Gln Asp Lys Gln Arg Gln Ala Leu Glu Asn Gln Ile 770030Asn Asn Ala Ala Thr Arg Gly Glu Val Ala Gln Lys Leu Thr Glu Ala 771531Gln Ala Leu Asn Gln Ala Met Glu Ala Leu Arg Asn Ser Ile Gln Asp 773535Gln Gln Gln Thr Glu Ala Gly Ser Lys Phe Ile Asn Glu Asp Lys Pro 774540Gln Lys Asp Ala Tyr Gln Ala Ala Val Gln Ala Leu His Gly Asp Crift 776540Asn Gln Thr Asn Gln Ala Ala Val Gln Ala Lys Asp Lys Pro 777540Asn Gln Thr Glu Ala Gly Ser Lys Phe Ile Asn Glu Asp Lys Pro 777541Asn Gln Thr Asn Gln Ala Lys Asp Asn Leu His Gly Asp Gln Leu 778042Thr Gln Ala Val Asn Gln Ala Lys Asp Asn Leu His Gly Asp Gln Lys 778043Thr Gln Ala Sp Sp Lys Gln His Ala Val Thr Asp Leu Asn Gln Lys 780044Ala Asp Asp Lys Gln Ala Lys Asp Asn Leu His Gly Asp Gln Lys 780045Leu Asn Asn Pro 781046Ala Asp Asp Lys Gln Arg Gln Ala Leu Glu Ser Gln Ile Asn Asn 782546Asn Gln Asn Pro 783047Gln Ala Cu Asn Asn Pro 783048Gln Ala Leu Asn Asn Pro 783049Ala Ala Thr Arg Gly Glu Val Ala Gln Leu Glu Asn Gln Leu Asn 782046Ala Ala Thr Arg Gly Ser Lys Phe Ile Asn Ser Ile Gln Asp Gln Gln 785047Ala Ala Thr Arg Gl	15	Lys	Asp	Gln	Pro 7620	Gln)	Thr	Glu	Ala	Ser 7625	Ser	Lys	Phe	Ile	Asn 7630	Glu)	Asp
Leu Ile Asn Lys Thr Thr Asp Pro Thr Leu Ala Lys Ser Ile Ile Asp25Gln Ala Thr Gln Ala Val Thr Asp Ala Lys Asn Asn Leu His Gly Asp26Gln Lys Leu Ala Gln Asp Lys Gln Arg Ala Thr Glu Thr Leu Asn Asn30Gln Asn Asn Ala Ala Thr Arg Gly Glu Val Ala Gln Lys Leu Thr Glu Ala30Asn Asn Ala Ala Thr Arg Gly Glu Val Ala Gln Lys Leu Thr Glu Ala30Gln Ala Leu Asn Gln Ala Met Glu Ala Leu Arg Asn Ser Ile Gln Asp31Gln Ala Leu Asn Gln Ala Met Glu Ala Leu Arg Asn Ser Ile Gln Asp32Gln Gln Gln Thr Glu Ala Gly Ser Lys Phe Ile Asn Glu Asp Lys Pro35Gln Lys Asp Ala Tyr Gln Ala Ala Val Gln Asn Asn Gln Lys Asp Leu36Gln Lys Asp Ala Tyr Gln Ala Ala Val Gln Val Glu Gln Lys Asp Leu37Fredo36Gln Lys Asp Ala Tyr Gln Ala Ala Val Gln Val Glu Gln Lus36Gln Lys Asp Ala Tyr Gln Ala Ala Val Gln Val Glu Gln Leu37778036Gln Lys Asp Asp Asp Clys Gln His Ala Val Gln Val Glu Gln Leu37778036Gln Ala Ser Asp Asp Clys Gln His Ala Val Thr Asp Leu Asn Gln Leu Asn 781037Asn Asn Asn Pro Gln Arg Gln Ala Leu Glu Ser Gln Ile Asn 784036Ala Ala Thr Arg Gly Glu Val Ala Gln Lys Leu Ala Glu Ala Lys Asp37Gln Ja Ser Gln Ala Met Gln Ala Leu Arg Asn Ser Ile Gln Asp 784538Gln Ala Thr Arg Gly Glu Val Ala Gln Lys Leu Ala Glu Ala Lys Asp39Gln Thr Glu Ser Gly Ser Lys Phe Ile Asn Glu Asp Lys Pro Gln Lys 7845	20	Gln	Ala	Gln 7635	Lys	Asp	Ala	Tyr	Thr 7640	Gln)	Ala	Val	Gln	His 7645	Ala	Lys	Asp
25Gln Ala Thr Gln Ala Val Thr Asp Ala Lys Asn Asn Leu His Gly Asp 766526Gln Lys Leu Ala Gln Asp Lys Gln Arg Ala Thr Glu Thr Leu Asn Asn 768530Leu Ser Asn Leu Asn Thr Pro Gln Arg Gln Ala Leu Glu Asn Gln Ile 770030Asn Asn Ala Ala Thr Arg Gly Glu Val Ala Gln Lys Leu Thr Glu Ala 771531Gln Ala Leu Asn Gln Ala Met Gly Asg Glu Ala Leu Arg Asn Gln Asp 773035Gln Gln Gln Thr Glu Ala Met Gly Ser Lys Phe Ile Asn Glu Asp Lys Pro 774540Gln Lys Asp Ala Tyr Gln Ala Ala Val Gln Asn Ala Lys Asp Leu 778040Asn Gln Thr Asn Asn Pro Thr Leu Asp Lys Ash Ala Lys Asp Leu 778040Asn Gln Thr Asn Asn Pro Thr Leu Asp Lys Ash Ala Lys Asp Leu 778040Asn Gln Thr Asn Asn Pro Thr Leu Asp Lys Ash Ala Lys Asp Clu Gln Lys 778040Asn Gln Thr Asn Asn Pro Thr Leu Asp Lys Ash Ala Lys Asp Gln Lys 778041Ash Ash Ash Ash Pro Thr Leu Asp Lys Ash Ala Lys Asp Gln Lys 780042Ash Gln Ala Val Ash Gln Ala Lys Asp Ash Leu His Gly Asp Gln Lys 780043Ala Ala Thr Arg Gly Glu Val Ala Gln Leu Glu Ser Gln Ile Ash 7840 782544Ala Ala Thr Arg Gly Glu Val Ala Gln Lys Leu Ala Glu Ala Lys Ala 782545Leu Ash Ash Pro Gln Ala Leu Arg Ash Ser Ile Gln Asp Cla Lys 782546Gln Thr Glu Ser Gly Ser Lys Phe Ile Ash Glu Asp Lys Pro Gln Lys47Ala Ala Thr Arg Cly Glu Val Ala Gln Lys Leu Ala Glu Ala Lys Ala 786048Ala Ala Thr Arg Phy Cly Clu Val Ala Gln Lys Pro Cln Lys 786045Gln Thr Glu Ser Gly Ser Lys Phe Ile Ash Glu Asp Lys Pro Gln Lys	20	Leu	Ile 7650	Asn)	Lys	Thr	Thr	Asp 7655	Pro	Thr	Leu	Ala	Lys 7660	Ser)	Ile	Ile	Asp
Gln Lys Leu Ala Gln Asp Lys Gln Arg Ala Thr Glu Thr Leu Asn Asn Gln Lys Leu Ala Gln Asp Lys Gln Arg Gln Ala Leu Glu Asn Gln Ile Leu Ser Asn Leu Asn Thr Pro Gln Arg Gln Ala Leu Glu Asn Gln Ile Asn Asn Ala Ala Thr Arg Gly Glu Val Ala Gln Lys Leu Thr Glu Ala Gln Ala Leu Asn Gln Ala Met Glu Ala Leu Arg Asn Ser Ile Gln Asp Gln Gln Gln Thr Glu Ala Gly Ser Lys Phe Tle Asn Glu Asp Lys Pro 7745 Gln Lys Asp Ala Tyr Gln Ala Ala Val Gln Asn Ala Lys Asp Leu Ile Asn Gln Thr Asn Asn Pro Thr Leu Asp Lys Ala Gln Val Glu Gln Leu Thr Gln Ala Sp Asp Lys Gln Ala Lys Asp Asn Leu His Gly Asp Gln Leu Thr Gln Ala Sp Asp Lys Gln His Ala Val Thr Asp Leu Asn Gln Leu Asn Gly Leu Asn Asn Pro Gln Arg Gln Ala Leu Glu Ser Gln Ile Asn Asn 7825 Gly Leu Asn Asn Pro Gln Arg Gln Ala Leu Glu Ser Gln Ile Asn Asn 7840 Ala Ala Thr Arg Gly Glu Val Ala Gln Lys Leu Ala Glu Ala Lys Asp Leu Asp Gln Asn Asn Pro Gln Arg Gln Ala Leu Glu Ser Gln Ile Asn 7840 Ala Ala Thr Arg Gly Glu Val Ala Gln Lys Leu Ala Glu Ala Lys Asn 60 Ala Ala Thr Arg Gly Glu Val Ala Gln Lys Leu Ala Glu Ala Lys Asn 7840 Ala Ala Thr Arg Gly Glu Val Ala Gln Lys Leu Ala Glu Asp Gln Gln T 7850 Gln Thr Glu Ser Gly Ser Lys Phe Tle Asn Glu Asp Lys Pro Gln Lys 7860 Gln Thr Glu Ser Gly Ser Lys Phe Tle Asn Glu Asp Lys Pro Gln Lys 7880	05	Gln 7665	Ala	Thr	Gln	Ala	Val 7670	Thr)	Asp	Ala	Lys	Asn 7675	Asn	Leu	His	Gly	Asp 7680
Leu Ser Asn Leu Asn Thr Pro Gln Arg Gln Ala Leu Glu Asn Gln Ile Asn Asn Ala Ala Thr Arg Gly Glu Val Ala Gln Lys Leu Thr Glu Ala Gln Ala Leu Asn Gln Ala Met Glu Ala Leu Arg Asn Ser Ile Gln Asp 7730 Gln Gln Gln Thr Glu Ala Gly Ser Lys Phe Ile Asn Glu Asp Lys Pro 7745 Gln Lys Asp Ala Tyr Gln Ala Ala Val Gln Asn Ala Lys Asp Leu Ile Asn Gln Thr Asn Asn Pro Thr Leu Asp Lys Ala Gln Val Glu Gln Leu 7785 Leu Ala Asp Asp Lys Gln Ala Lys Asp Asn Leu His Gly Asp Gln Lys 6 Gly Leu Asn Asn Pro Gln Ala Lys Asp Asn Leu His Gly Asp Gln Lys 7810 Gly Leu Asn Asn Pro Gln Ala Lys Asp Asn Leu His Gly Asp Gln Lys 7825 Leu Ala Asp Asp Lys Gln His Ala Val Thr Asp Leu Asn Gln Leu Asn 7825 Gly Leu Asn Asn Pro Gln Ala Cln Leu Glu Ser Gln Ile Asn Asn 7825 Gln Thr Asn Asn Pro Gln Ala Cln Leu Glu Ser Gln Ala Lys Asp Ala Ala Thr Arg Gly Glu Val Ala Gln Lys Leu Ala Glu Ala Lys Asp Leu Asp Gln Ala Met Gln Ala Leu Arg Asn Ser Ile Gln Asp Cln Thr Glu Ser Gly Ser Lys Phe Ile Asn Glu Asp Lys Pro Gln Cln 7865 Gln Thr Glu Ser Gly Ser Lys Phe Ile Asn Glu Asp Lys Pro Gln Lys 7800 Gln Thr Glu Ser Gly Ser Lys Phe Ile Asn Glu Asp Lys Pro Gln Lys 7800 Gln Thr Glu Ser Gly Ser Lys Phe Ile Asn Glu Asp Lys Pro Gln Lys	25	Gln	Lys	Leu	Ala	Gln 7685	Asp	Lys	Gln	Arg	Ala 7690	Thr)	Glu	Thr	Leu	Asn 7695	Asn
Asn Asn Ala Ala Thr Arg Gly Glu Val Ala Gln Lys Leu Thr Glu Ala Gln Ala Leu Asn Gln Ala Met Glu Ala Leu Arg Asn Ser Ile Gln Asp 7730 Gln Gln Gln Thr Glu Ala Gly Ser Lys Phe Ile Asn Glu Asp Lys Pro 7745 Gln Lys Asp Ala Tyr Gln Ala Ala Val Gln Asn Ala Lys Asp Leu Ile Asn Gln Thr Asn Asn Pro Thr Leu Asp Lys Ala Gln Val Glu Gln Leu Thr Gln Ala Val Asn Gln Ala Lys Asp Asn Leu His Gly Asp Gln Lys Leu Ala Asp Asp Lys Gln His Ala Val Thr Asp Leu Asn Gln Leu Asn 7810 Gly Leu Asn Asn Pro Gln Arg Gln Ala Leu Glu Ser Gln Ile Asn Asn 7840 Ala Ala Thr Arg Gly Glu Val Ala Gln Lys Leu Ala Glu Ala Lys Ala Leu Asp Gln Ala Met Gln Ala Leu Arg Asn Ser Ile Gln Asp Gln Thr Glu Ser Gly Ser Lys Phe Ile Asn Glu Asp Lys Pro 7880 Gln Thr Gln Ala Thr Arg Cly Ser Lys Phe Ile Asn Glu Asp Lys Pro 60 Ala Ala Thr Arg Gly Ser Lys Phe Ile Asn Glu Asp Lys Pro 61 Gln Thr Glu Ser Gly Ser Lys Phe Ile Asn Glu Asp Lys Pro 61 Gln Thr Glu Ser Gly Ser Lys Phe Ile Asn Glu Asp Lys Pro 61 Gln Thr Glu Ser Gly Ser Lys Phe Ile Asn Glu Asp Lys Pro 61 61 61 61 7875 61 7875 61 7875 61 7875 61 7875 61 7875 61 7875 7885		Leu	Ser	Asn	Leu 7700	Asn)	Thr	Pro	Gln	Arg 7705	Gln	Ala	Leu	Glu	Asn 7710	Gln)	Ile
Gln Ala Leu Asn Gln Ala Met Glu Ala Leu Arg Asn Ser Ile Gln Asp Gln Gln Gln Thr Glu Ala Gly Ser Lys Phe Ile Asn Glu Asp Lys Pro 7745 Gln Lys Asp Ala Tyr Gln Ala Ala Val Gln Asn Ala Lys Asp Leu Ile Asn Gln Thr Asn Asn Pro Thr Leu Asp Lys Ala Gln Val Glu Gln Leu Thr Gln Ala Val Asn Gln Ala Lys Asp Asn Leu His Gly Asp Gln Lys Leu Ala Asp Asp Lys Gln His Ala Val Thr Asp Leu Asn Gln Leu Asn 619 Leu Asn Asn Pro Gln Arg Gln Ala Leu Glu Ser Gln Ile Asn Asn 620 Ala Ala Thr Arg Gly Glu Val Ala Gln Leu Grass er Gln Ile Asn Asn 630 641 642 643 644 644 654 644 645 645 646 647 647 647 647 647 647 647	30	Asn	Asn	Ala 7715	Ala	Thr	Arg	Gly	Glu 7720	Val)	Ala	Gln	Lys	Leu 7725	Thr	Glu	Ala
 ³⁵ Gln Gln Gln Thr Glu Ala Gly Ser Lys Phe Ile Asn Glu Asp Lys Pro 7760 Gln Lys Asp Ala Tyr Gln Ala Ala Val Gln Asn Ala Lys Asp Leu Ile 7765 Asn Gln Thr Asn Asn Pro Thr Leu Asp Lys Ala Gln Val Glu Gln Leu 7780 ⁴⁰ Thr Gln Ala Val Asn Gln Ala Lys Asp Asn Leu His Gly Asp Gln Leu 7780 ⁴⁵ Leu Ala Asp Asp Lys Gln His Ala Val Thr Asp Leu Asn Gln Leu Asn 7810 ⁵⁰ Gly Leu Asn Asn Pro Gln Arg Gln Ala Leu Glu Ser Gln Ile Asn Asn 7840 ⁵⁰ Ala Ala Thr Arg Gly Glu Val Ala Gln Lys Leu Ala Glu Ala Lys Ala Glu Ala Lys Asp Gln Gln Gln Gln Ala Cheu Asn 7850 ⁵⁶ Gln Thr Gln Ala Met Gln Ala Leu Asn 7865 ⁵⁶ Gln Thr Glu Ser Gly Ser Lys Phe Ile Asn Glu Asp Lys Pro Gln Lys 7860 		Gln	Ala 7730	Leu)	Asn	Gln	Ala	Met 7735	Glu	Ala	Leu	Arg	Asn 7740	Ser	Ile	Gln	Asp
Gln Lys Asp Ala Tyr Gln Ala Ala Val Gln Asn Ala Lys Asp Leu Ile Asn Gln Thr Asn Asn Pro Thr Leu Asp Lys Ala Gln Val Glu Gln Leu Thr Gln Ala Val Asn Gln Ala Lys Asp Asn Leu His Gly Asp Gln Lys Leu Ala Asp Asp Lys Gln His Ala Val Thr Asp Leu Asn Gln Leu Asn Gly Leu Asn Asn Pro Gln Arg Gln Ala Leu Glu Ser Gln Ile Asn Asn Gly Leu Asn Asn Pro Gly Gln Val Ala Gln Leu Glu Ser Gln Ile Asn Asn Ala Ala Thr Arg Gly Glu Val Ala Gln Lys Leu Ala Glu Ala Lys Ala Leu Asp Gln Ala Met Gln Ala Leu Arg Asn Ser Ile Gln Asp Gln Gln Thr Glu Ser Gly Ser Lys Phe Ile Asn Glu Asp Lys Pro Gln Lys 7880	35	Gln 7745	G]n	Gln	⊤hr	Glu	Ala 7750	Gly	Ser	Lys	Phe	Ile 7755	Asn	Glu	Asp	Lys	Pro 7760
 Asn Gln Thr Asn Asn Pro Thr Leu Asp Lys Ala Gln Val Glu Gln Leu Thr Gln Ala Val Asn Gln Ala Lys Asp Asn Leu His Gly Asp Gln Lys 7795 Ala Asn Gln Ala Lys Asp Asn Leu His Gly Asp Gln Lys Leu Ala Asp Asp Lys Gln His Ala Val Thr Asp Leu Asn Gln Leu Asn 7810 Gly Leu Asn Asn Pro Gln Arg Gln Ala Leu Glu Ser Gln Ile Asn Asn 7825 Ala Ala Thr Arg Gly Glu Val Ala Gln Lys Leu Ala Glu Ala Lys Ala Ala Ala Thr Arg Gly Glu Val Ala Gln Lys Leu Ala Glu Ala Lys Ala Leu Asp Gln Ala Met Gln Ala Leu Arg Asn Ser Ile Gln Asp Gln Gln 7875 Gln Thr Glu Ser Gly Ser Lys Phe Ile Asn Glu Asp Lys Pro Gln Lys 7880 Asp Cln Asp Pro Gln Lys 		Gln	Lys	Asp	Ala	Туг 7765	Gln	Ala	Ala	Val	Gln 7770	Asn)	Ala	Lys	Asp	Leu 7775	Ile 5
 Thr Gln Ala Val Asn Gln Ala Lys Asp Asn Leu His Gly Asp Gln Lys Leu Ala Asp Asp Lys Gln His Ala Val Thr Asp Leu Asn Gln Leu Asn 7810 Gly Leu Asn Asn Pro Gln Arg Gln Ala Leu Glu Ser Gln Ile Asn Asn 7840 Ala Ala Thr Arg Gly Glu Val Ala Gln Lys Leu Ala Glu Ala Lys Ala 7855 Leu Asp Gln Ala Met Gln Ala Leu Arg Asn Ser Ile Gln Asp Gln Gln Gln 7865 Gln Thr Glu Ser Gly Ser Lys Phe Ile Asn Glu Asp Lys Pro Gln Lys 7885 	40	Asn	Gln	Thr	Asn 7780	Asn)	Pro	Thr	Leu	Asp 7785	Lys	Ala	Gln	Val	Glu 7790	Gln)	Leu
 Leu Ala Asp Asp Lys Gln His Ala Val Thr Asp Leu Asn Gln Leu Asn 7810 Gly Leu Asn Asn Pro Gln Arg Gln Ala Leu Glu Ser Gln Ile Asn Asn 7825 Ala Ala Thr Arg Gly Glu Val Ala Gln Lys Leu Ala Glu Ala Lys Ala 7855 Leu Asp Gln Ala Met Gln Ala Leu Arg Asn Ser Ile Gln Asp Gln Gln 7860 Gln Thr Glu Ser Gly Ser Lys Phe Ile Asn Glu Asp Lys Pro Gln Lys 7880 		Thr	Gln	Ala 7795	Val 5	Asn	Gln	Ala	Lys 7800	Asp)	Asn	Leu	His	Gly 7805	Asp 5	Gln	Lys
Gly Leu Asn Asn Pro Gln Arg Gln Ala Leu Glu Ser Gln Ile Asn Asn 7825 Ala Ala Thr Arg Gly Glu Val Ala Gln Lys Leu Ala Glu Ala Lys Ala 7855 Leu Asp Gln Ala Met Gln Ala Leu Arg Asn Ser Ile Gln Asp Gln Gln 7860 Gln Thr Glu Ser Gly Ser Lys Phe Ile Asn Glu Asp Lys Pro Gln Lys 7880	45	Leu	Ala 7810	Asp)	Asp	Lys	Gln	His 7815	Ala	Val	Thr	Asp	Leu 7820	Asn)	Gln	Leu	Asn
Ala Ala Thr Arg Gly Glu Val Ala Gln Lys Leu Ala Glu Ala Lys Ala 7855 Leu Asp Gln Ala Met Gln Ala Leu Arg Asn Ser Ile Gln Asp Gln Gln 7860 55 Gln Thr Glu Ser Gly Ser Lys Phe Ile Asn Glu Asp Lys Pro Gln Lys 7880		Gly 7825	Leu	Asn	Asn	Pro	Gln 7830	Arg)	Gln	Ala	Leu	Glu 7835	Ser	Gln	Ile	Asn	Asn 7840
Leu Asp Gln Ala Met Gln Ala Leu Arg Asn Ser Ile Gln Asp Gln Gln 7860 55 Gln Thr Glu Ser Gly Ser Lys Phe Ile Asn Glu Asp Lys Pro Gln Lys 7875 7880 7885	50	Ala	Ala	Thr	Arg	Gly 7845	Glu	Val	Ala	Gln	Lys 7850	Leu)	Ala	Glu	Ala	Lys 7855	Ala
⁵⁵ Gln Thr Glu Ser Gly Ser Lys Phe Ile Asn Glu Asp Lys Pro Gln Lys 7875 7880 7885		Leu	Asp	Gln	Ala 7860	Met	Gln	Ala	Leu	Arg 7865	Asn 5	Ser	Ile	Gln	Asp 7870	Gln)	Gln
	55	Gln	Thr	Glu 7875	Ser	Gly	Ser	Lys	Phe 7880	Ile)	Asn	Glu	Asp	Lys 7885	Pro	Gln	Lys

Ala Tyr Gln Ala Ala Val Gln Asn Ala Lys Asp Leu Ile Asn Gln 7890 7895 7900 Thr Gly Asn Pro Thr Leu Asp Lys Ser Gln Val Glu Gln Leu Thr Gln Ala Val Thr Thr Ala Lys Asp Asn Leu His Gly Asp Gln Lys Leu Ala 7925 7930 7935 Arg Asp Gln Gln Gln Ala Val Thr Thr Val Asn Ala Leu Pro Asn Leu 7940 7945 7950 Asn His Ala Gln Gln Gln Ala Leu Thr Asp Ala Ile Asn Ala Ala Pro Thr Arg Thr Glu Val Ala Gln His Val Gln Thr Ala Thr Glu Leu Asp 7970 7975 7980 His Ala Met Glu Thr Leu Lys Asn Lys Val Asp Gln Val Asn Thr Asp 7985 7990 7995 800 Lys Ala Gln Pro Asn Tyr Thr Glu Ala Ser Thr Asp Lys Lys Glu Ala 8005 8010 8015 Val Asp Gln Ala Leu Gln Ala Ala Glu Ser Ile Thr Asp Pro Thr Asn 8020 8025 8030 Gly Ser Asn_Ala Asn Lys Asp Ala Val Asp Gln Val Leu Thr Lys Leu Gln Glu Lys Glu Asn Glu Leu Asn Gly Asn Glu Arg Val Ala Glu Ala 8050 8055 8060 Lys Thr Gln Ala Lys Gln Thr Ile Asp Gln Leu Thr His Leu Asn Ala 8065 8070 8075 8080 Asp Gln Ile Ala Thr Ala Lys Gln Asn Ile Asp Gln Ala Thr Lys Leu 8085 8090 8095 Gln Pro Ile Ala Glu Leu Val Asp Gln Ala Thr Gln Leu Asn Gln Ser Met Asp Gln Leu Gln Gln Ala Val Asn Glu His Ala Asn Val Glu Gln 8115 8120 8125 Thr Val Asp Tyr Thr Gln Ala Asp Ser Asp Lys Gln Asn Ala Tyr Lys 8130 8135 8140 Gln Ala Ile Ala Asp Ala Glu Asn Val Leu Lys Gln Asn Ala Asn Lys 8145 8150 8155 8160 Gln Gln Val Asp Gln Ala Leu Gln Asn Ile Leu Asn Ala Lys Gln Ala Leu Asn Gly Asp Glu Arg Val Ala Leu Ala Lys Thr Asn Gly Lys His 8180 8185 8190 Asp Ile Asp Gln Leu Asn Ala Leu Asn Asn Ala Gln Gln Asp Gly Phe 8195 8200 Gly Arg Ile Asp Gln Ser Asn Asp Leu Asn Gln Ile Gln Gln Ile Lys Val Asp Glu Ala Lys Ala Leu Asn Arg Ala Met Asp Gln Leu Ser Gln Glu Ile Thr Asp Asn Glu Gly Arg Thr Lys Gly Ser Thr Asn Tyr Val 8245 8250 8255 Asn Ala Asp Thr Gln Val Lys Gln Val Tyr Asp Glu Thr Val Asp Lys

				8260)				8265	5				8270)	
	Ala	Lys	Gln 8275	Ala	Leu	Asp	Lys	Ser 8280	⊤hr)	Gly	Gln	Asn	Leu 8285	Thr	Ala	Lys
5	Gln	Va] 8290	Ile	Lys	Leu	Asn	Asp 8295	Ala 5	Val	Thr	Ala	Ala 8300	Lys	Lys	Ala	Leu
	Asn 8305	Gly	Glu	Glu	Arg	Leu 8310	Asn)	Asn	Arg	Lys	Ala 8315	Glu	Ala	Leu	Gln	Arg 8320
10	Leu	Asp	Gln	Leu	Thr 8325	His	Leu	Asn	Asn	Ala 8330	Gln)	Arg	Gln	Leu	Ala 8335	Ile
	Gln	Gln	Ile	Asn 8340	Asn	Ala	Glu	Thr	Leu 8345	Asn	Lys	Ala	Ser	Arg 8350	Ala)	Ile
15	Asn	Arg	Ala 8355	Thr	Lys	Leu	Asp	Asn 8360	Ala)	Met	Gly	Ser	Va] 8365	Gln 5	Gln	Tyr
	Ile	Asp 8370	Glu	Gln	His	Leu	Gly 8375	Val 5	Ile	Ser	Ser	Thr 8380	Asn	Tyr	Ile	Asn
20	Ala 8385	Asp	Asp	Asn	Leu	Lys 8390	Ala)	Asn	Tyr	Asp	Asn 8395	Ala	Ile	Ala	Asn	Ala 8400
	Ala	His	Glu	Leu	Asp 8405	Lys	Val	Gln	Gly	Asn 8410	Ala	Ile	Ala	Lys	Ala 8415	Glu
25	Ala	Glu	Gln	Leu 8420	Lys)	Gln	Asn	Ile	Ile 8425	Asp	Ala	Gln	Asn	Ala 8430	Leu)	Asn
	Gly	Asp	Gln 8435	Asn	Leu	Ala	Asn	Ala 8440	Lys)	Asp	Lys	Ala	Asn 8445	Ala	Phe	Val
30	Asn	ser 8450	Leu	Asn	Gly	Leu	Asn 8455	Gln 5	Gln	Gln	Gln	Asp 8460	Leu	Ala	His	Lys
	Ala 8465	Ile	Asn	Asn	Ala	Asp 8470	⊤hr)	Val	Ser	Asp	Val 8475	Thr	Asp	Ile	Val	Asn 8480
35	Asn	Gln	Ile	Asp	Leu 8485	Asn	Asp	Ala	Met	Glu 8490	⊤hr)	Leu	Lys	His	Leu 8495	Val
	Asp	Asn	Glu	Ile 8500	Pro)	Asn	Ala	Glu	Gln 8505	Thr	Val	Asn	Туr	Gln 8510	Asn)	Ala
40	Asp	Asp	Asn 8515	Ala	Lys	Thr	Asn	Phe 8520	Asp)	Asp	Ala	Lys	Arg 8525	Leu	Ala	Asn
	Thr	Leu 8530	Leu	Asn	Ser	Asp	Asn 8535	Thr 5	Asn	Val	Asn	Asp 8540	Ile	Asn	Gly	Ala
45	Ile 8545	Gln	Ala	Val	Asn	Asp 8550	Ala)	Ile	His	Asn	Leu 8555	Asn	Gly	Asp	Gln	Arg 8560
	Leu	Gln	Asp	Ala	Lys 8565	Asp	Lys	Ala	Ile	Gln 8570	Ser)	Ile	Asn	Gln	Ala 8575	Leu
50	Ala	Asn	Lys	Leu 8580	Lys	Glu	Ile	Glu	Ala 8585	Ser	Asn	Ala	Thr	Asp 8590	Gln)	Asp
	Lys	Leu	Ile 8595	Ala	Lys	Asn	Lys	Ala 8600	Glu)	Glu	Leu	Ala	Asn 8605	Ser	Ile	Ile
55	Asn	Asn 8610	Ile	Asn	Lys	Ala	⊤hr 8615	Ser	Asn	Gln	Ala	Va] 8620	Ser	Gln	Val	Gln
	Thr 8625	Ala	Gly	Asn	His	Ala 8630	Ile)	Glu	Gln	Val	His 8635	Ala	Asn	Glu	Ile	Pro 8640

	Lys	Ala	Lys	Ile	Asp 8645	Ala 5	Asn	Lys	Asp	Val 8650	Asp)	Lys	Gln	Val	Gln 8655	Ala 5
5	Leu	Ile	Asp	Glu 8660	ıle)	Asp	Arg	Asn	Pro 8665	Asn 5	Leu	Thr	Asp	Lys 8670	Glu)	Lys
	Gln	Ala	Leu 8675	Lys	Asp	Arg	Ile	Asn 8680	Gln)	Ile	Leu	Gln	Gln 8685	Gly 5	His	Asn
10	Gly	Ile 8690	Asn)	Asn	Ala	Met	Thr 8695	Lys	Glu	Glu	I]e	Glu 8700	Gln)	Ala	Lys	Ala
	Gln 8705	Leu	Ala	Gln	Ala	Leu 8710	Gln)	Asp	Ile	Lys	Asp 8715	Leu	Val	Lys	Ala	Lys 8720
15	Glu	Asp	Ala	Lys	Gln 8725	Asp	Val	Asp	Lys	G]n 8730	Val)	Gln	Ala	Leu	Ile 8735	Asp
15	Glu	Ile	Asp	Gln 8740	Asn)	Pro	Asn	Leu	Thr 8745	Asp 5	Lys	Glu	Lys	Gln 8750	Ala)	Leu
20	Lys	Asp	Arg 8755	Ile	Asn	Gln	Ile	Leu 8760	Gln)	Gln	Gly	His	Asn 8765	Asp	Ile	Asn
20	Asn	Ala 8770	Met)	⊤hr	Lys	Glu	Ala 8775	Ile 5	Glu	Gln	Ala	Lys 8780	Glu)	Arg	Leu	Ala
05	Gln 8785	Ala	Leu	Gln	Asp	Ile 8790	Lys)	Asp	Leu	Val	Lys 8795	Ala	Lys	Glu	Asp	Ala 8800
25	Lys	Asn	Asp	Ile	Asp 8805	Lys	Arg	Val	Gln	A]a 8810	Leu)	Ile	Asp	Glu	Ile 8815	Asp
	Gln	Asn	Pro	Asn 8820	Leu)	Тhr	Asp	Lys	Glu 8825	Lys	Gln	Ala	Leu	Lys 8830	Asp)	Arg
30	Ile	Asn	Gln 8835	Ile 5	Leu	Gln	Gln	Gly 8840	His)	Asn	Asp	Ile	Asn 8845	Asn	Ala	Leu
	Thr	Lys 8850	Glu)	Glu	Ile	Glu	Gln 8855	Ala	Lys	Ala	Gln	Leu 8860	Ala)	Gln	Ala	Leu
35	Gln 8865	Asp	Ile	Lys	Asp	Leu 8870	val)	Lys	Ala	Lys	Glu 8875	Asp	Ala	Lys	Asn	Ala 8880
	Ile	Lys	Ala	Leu	Ala 8885	Asn	Ala	Lys	Arg	Asp 8890	Gln)	Ile	Asn	Ser	Asn 8895	Pro
40	Asp	Leu	Thr	Pro 8900	Glu)	Gln	Lys	Ala	Lys 8905	Ala 5	Leu	Lys	Glu	I]e 8910	Asp)	Glu
	Ala	Glu	Lys 8915	Arg	Ala	Leu	Gln	Asn 8920	Val)	Glu	Asn	Ala	Gln 8925	Thr	Ile	Asp
45	Gln	Leu 8930	Asn)	Arg	Gly	Leu	Asn 8935	Leu	Gly	Leu	Asp	Asp 8940	Ile)	Arg	Asn	Thr
	His 8945	Val 5	тгр	Glu	Val	Asp 8950	Glu)	Gln	Pro	Ala	Val 8955	Asn	Glu	Ile	Phe	Glu 8960
50	Ala	Thr	Pro	Glu	Gln 8965	Ile 5	Leu	Val	Asn	Gly 8970	Glu)	Leu	Ile	Val	His 8975	Arg
	Asp	Asp	Ile	Ile 8980	Thr)	Glu	Gln	Asp	Ile 8985	Leu	Ala	His	Ile	Asn 8990	Leu)	Ile
55	Asp	Gln	Leu 8995	Ser	Ala	Glu	Val	Ile 9000	Asp)	Тhr	Pro	Ser	Thr 9003	Ala 5	Thr	Ile

	Ser	Asp 9010	Ser)	Leu	⊤hr	Ala	Lys 9015	Val 5	Glu	Val	Thr	Leu 9020	Leu)	Asp	Gly	Ser
5	Lys 9025	val 5	Ile	Val	Asn	val 9030	Pro)	Val	Lys	Val	va1 9035	G]u	Lys	Glu	Leu	ser 9040
	Val	Val	Lys	Gln	Gln 9045	Ala	Ile	G]u	Ser	Ile 9050	Glu)	Asn	Ala	Ala	Gln 9055	Gln
	Lys	Ile	Asn	Glu 9060	Ile)	Asn	Asn	Ser	Val 9065	Thr	Leu	Thr	Leu	Glu 9070	Gln	Lys
10	Glu	Ala	Ala 9075	Ile	Ala	Glu	Val	Asn 9080	Lys)	Leu	Lys	Gln	Gln 9085	Ala	Ile	Asp
	His	Val 9090	Asn)	Asn	Ala	Pro	Asp 9095	Val	His	Ser	Val	G]u 9100	Glu)	Ile	Gln	Gln
15	Gln 9105	Glu	Gln	Ala	His	Ile 9110	Glu)	G]n	Phe	Asn	Pro 9115	Glu	Gln	Phe	Thr	I]e 9120
	Glu	Gln	Ala	Lys	Ser 9125	Asn	Ala	I]e	Lys	Ser 9130	I]e	Glu	Asp	Ala	I]e 9135	Gln
20	His	Met	Ile	Asp 9140	Glu	Ile	Lys	Ala	Arg 9145	Thr	Asp	Leu	Thr	Asp 9150	Lys	Glu
	Lys	Gln	Glu 9154	Ala	Ile	Ala	Lys	Leu 9160	Asn	Gln	Leu	Lys	Glu 9165	Gln	Ala	Ile
25	Gln	A]a 9170	Ile	Gln	Arg	Ala	G]n 9175	Ser	Ile	Asp	Glu	I]e 9180	Ser	Glu	Gln	Leu
	Glu 9185	Gln	Phe	Lys	Ala	G]n 9190	Met	Lys	Ala	Ala	Asn 9195	Pro	Thr	Ala	Lys	Glu 9200
30	Leu	, Ala	Lys	Arg	Lys 9205	Gln	Glu	Ala	Ile	Ser	Arg	Ile	Lys	Asp	Phe 9215	Ser
	Asn	Glu	Lys	Ile	Asn	, Ser	Ile	Arg	Asn	Ser	, Glu	I]e	Gly	Thr	Ala	Asp
35	Glu	Lys	Gln 9235	Ala	, Ala	Met	Asn	G]n 9240	Ile	, Asn	Glu	I]e	Val 9245	Leu	, Glu	⊤hr
	Ile	Arg	Asp	, Ile	Asn	Asn	Ala	His	, Thr	Leu	Gln	Gln	Val	, Glu	Ala	Ala
40	Leu	Asn	Asn	Gly	Ile	Ala	Arg	, Ile	Ser	Ala	Val	G]n	, Ile	Val	Thr	Ser
	Asp	, Arg	Ala	Lys	Gln	Ser	, Ser	Ser	Thr	Gly	Asn	, Glu	Ser	Asn	Ser	His
45	Leu	Thr	Ile	Gly	Tyr	, Gly	Thr	Ala	Asn	His	, Pro	Phe	Asn	Ser	Ser	, ⊤hr
	Ile	Gly	His	Lys	, Lys	Lys	Leu	Asp	Glu	Asp	Asp	Asp	Ile	Asp	, Pro	Leu
	His	Met	931: Arg	, His	Phe	Ser	Asn	9320 _Asn) Phe	Gly	Asn	Val	9325 Ile	b Lys	Asn	Ala
50	Ile	9330 Gly) Val	Val	Gly	Ile	9335 Ser	, Gly	Leu	Leu	Ala	934(Ser) Phe	Trp	Phe	Phe
	9345 Ile	Ala	Lys	Arg	Arg	9350 Arg) Lys	Glu	Asp	Glu	9355 Glu	, Glu	Glu	Leu	Glu	9360 Ile
55	Arg	Asp	Asn	Asn	9365 Lys	Asp	Ser	I]e	Lys	9370 Glu) Thr	Leu	Asp	Asp	9375 Thr	Lys

		938	0		9385	93	90
	His Leu	Pro Leu 9395	Leu Phe	e Ala Lys 940	Arg Arg Arg 0	Lys Glu As 9405	p Glu Glu
5	Asp Val 9410	Thr Val)	Glu Glu	ı Lys Asp 9415	Ser Leu Asn	Asn Gly Gl 9420	u Ser Leu
	Asp Lys 9425	Val Lys	His Thr 943	r Pro Phe 80	Phe Leu Pro 943	Lys Arg Ar 5	g Arg Lys 9440
10	Glu Asp	Glu Glu	Asp Val 9445	Glu Val	⊤hr Asn Glu 9450	Asn Thr As	p Glu Lys 9455
	Val Leu	Lys Asp 946	Asn Glu 0	ı His Ser	Pro Leu Leu 9465	Phe Ala Ly 94	rs Arg Arg 70
15	Lys Asp	Lys Glu 9475	Glu Asp	val Glu 948	⊤hr ⊤hr ⊤hr 0	Ser Ile Gl 9485	u Ser Lys
	Asp Glu 9490	Asp Val D	Pro Lei	I Leu Leu 9495	Ala Lys Lys	Lys Asn Gl 9500	n Lys Asp
20	Asn Gln 9505	Ser Lys	Asp Lys 951	s Lys Ser LO	Ala Ser Lys 951	Asn Thr Se 5	r Lys Lys 9520
	Val Ala	Ala Lys	Lys Lys 9525	5 Lys Lys	Lys Ala Lys 9530	Lys Asn Ly	rs Lys 9535
25	<210> <211> <212> <213>	6 486 PRT Staphyle	ococcus	aureus			
30	<400> Met Ser 1	6 Asn Asn	Phe Lys 5	s Asp Asp	Phe Glu Lys 10	Asn Arg Gl	n Ser Ile 15
	Asp Thr	Asn Ser 20	His Glr	n Asp His	⊤hr Glu Asp 25	Val Glu Ly 30	s Asp Gln
35	Ser Glu	Leu Glu 35	His Glr	n Asp Thr 40	Ile Glu Asn	Thr Glu Gl 45	n Gln Phe
	Pro Pro 50	Arg Asn	Ala Glr	n Arg Arg 55	Lys Arg Arg	Arg Asp Le 60	u Ala Thr
40	Asn His 65	Asn Lys	Gln Val 70	His Asn	Glu Ser Gln 75	Thr Ser Gl	u Asp Asn 80
	Val Gln	Asn Glu	Ala Gly 85	/Thr Ile	Asp Asp Arg 90	Gln Val Gl	u Ser Ser 95
45	His Ser	Thr Glu 100	Ser Glr	n Glu Pro	Ser His Gln 105	Asp Ser Th 11	r Pro Gln 0
	His Glu	Glu Glu 115	Tyr Tyr	Asn Lys 120	Asn Ala Phe	Ala Met As 125	p Lys Ser
50	His Pro 130	Glu Pro	Ile Glu	I Asp Asn 135	Asp Lys His	Asp Thr Il 140	e Lys Asn
	Ala Glu 145	Asn Asn	Thr Glu 150	ı His Ser)	Thr Val Ser 155	Asp Lys Se	r Glu Ala 160
55	Glu Gln	Ser Gln	Gln Pro 165) Lys Pro	Tyr Phe Thr 170	Thr Gly Al	a Asn Gln 175
00	Ser Glu	Thr Ser 180	Lys Asr	ı Glu His	Asp Asn Asp 185	Ser Val Ly 19	rs Gln Asp 0

	Gln	Asp	Glu 195	Pro	Lys	Glu	His	His 200	Asn	Gly	Lys	Lys	Ala 205	Ala	Ala	Ile
5	Gly	Ala 210	Gly	Тhr	Ala	Gly	Va] 215	Ala	Gly	Ala	Ala	G]y 220	Ala	Met	Ala	Ala
	Ser 225	Lys	Ala	Lys	Lys	His 230	Ser	Asn	Asp	Ala	G]n 235	Asn	Lys	Ser	Asn	Ser 240
10	Gly	Lys	Ala	Asn	Asn 245	Ser	Thr	Glu	Asp	Lys 250	Ala	Ser	Gln	Asp	Lys 255	Ser
	Lys	Asp	His	ніs 260	Asn	Gly	Lys	Lys	Gly 265	Ala	Ala	Ile	Gly	Ala 270	Gly	Thr
15	Ala	Gly	Leu 275	Ala	Gly	Gly	Ala	A]a 280	Ser	Lys	Ser	Ala	Ser 285	Ala	Ala	Ser
	Lys	Pro 290	His	Ala	Ser	Asn	Asn 295	Ala	Ser	Gln	Asn	ніs 300	Asp	Glu	His	Asp
20	Asn 305	His	Asp	Arg	Asp	Lys 310	Glu	Arg	Lys	Lys	Gly 315	Gly	Met	Ala	Lys	Va1 320
	Leu	Leu	Pro	Leu	Ile 325	Ala	Ala	Val	Leu	Ile 330	Ile	Gly	Ala	Leu	Ala 335	Ile
25	Phe	Gly	Gly	Met 340	Ala	Leu	Asn	Asn	ніs 345	Asn	Asn	Gly	Тhr	Lys 350	Glu	Asn
	Lys	Ile	Ala 355	Asn	Thr	Asn	Lys	Asn 360	Asn	Ala	Asp	Glu	Ser 365	Lys	Asp	Lys
30	Asp	Thr 370	Ser	Lys	Asp	Ala	Ser 375	Lys	Asp	Lys	Ser	Lys 380	Ser	Тhr	Asp	Ser
	Asp 385	Lys	Ser	Lys	Glu	Asp 390	Gln	Asp	Lys	Ala	тhr 395	Lys	Asp	Glu	Ser	Asp 400
35	Asn	Asp	Gln	Asn	Asn 405	Ala	Asn	Gln	Ala	Asn 410	Asn	Gln	Ala	Gln	Asn 415	Asn
	Gln	Asn	Gln	G]n 420	Gln	Ala	Asn	Gln	Asn 425	Gln	Gln	Gln	Gln	G]n 430	Gln	Arg
40	Gln	Gly	G]y 435	Gly	Gln	Arg	His	Thr 440	Val	Asn	Gly	Gln	Glu 445	Asn	Leu	Туr
	Arg	Ile 450	Ala	Ile	Gln	Туr	Туг 455	Gly	Ser	Gly	Ser	Pro 460	Glu	Asn	Val	Glu
45	Lys 465	Ile	Arg	Arg	Ala	Asn 470	Gly	Leu	Ser	Gly	Asn 475	Asn	Ile	Arg	Asn	Gly 480
	Gln	Gln	Ile	Val	Ile 485	Pro										
50	<210 <211 <211 <211	0> 1> 2> 3>	7 165 PRT Stap	ohyla	ococo	cus a	aurei	ıs								
	<400 Met 1)> Lys	7 Asn	Lys	Leu 5	Ile	Ala	Lys	Ser	Leu 10	Leu	Thr	Leu	Ala	Ala 15	Ile
55	Gly	Ile	Thr	Thr 20	Thr	Thr	Ile	Ala	Ser 25	Thr	Ala	Asp	Ala	Ser 30	Glu	Gly

	Туr	Gly	Pro 35	Arg	Glu	Lys	Lys	Pro 40	Val	Ser	Ile	Asn	His 45	Asn	Ile	Val
5	Glu	туг 50	Asn	Asp	Gly	Тhr	Phe 55	Lys	туr	Gln	Ser	Arg 60	Pro	Lys	Phe	Asn
	Ser 65	Thr	Pro	Lys	Туr	Ile 70	Lys	Phe	Lys	His	Asp 75	⊤yr	Asn	Ile	Leu	Glu 80
	Phe	Asn	Asp	Gly	⊤hr 85	Phe	Glu	Туr	Gly	Ala 90	Arg	Pro	Gln	Phe	Asn 95	Lys
10	Pro	Ala	Ala	Lys 100	⊤hr	Asp	Ala	Thr	Ile 105	Lys	Lys	Glu	Gln	Lys 110	Leu	Ile
	Gln	Ala	G]n 115	Asn	Leu	Val	Arg	Glu 120	Phe	Glu	Lys	⊤hr	ніs 125	Тhr	Val	Ser
15	Ala	ніs 130	Arg	Lys	Ala	Gln	Lys 135	Ala	Val	Asn	Leu	Val 140	Ser	Phe	Glu	Tyr
	Lys 145	Val	Lys	Lys	Met	Va] 150	Leu	G]n	Glu	Arg	I]e 155	Asp	Asn	Val	Leu	Lys 160
20	Gln	Gly	Leu	Val	Lys 165											
25	<210 <211 <211 <211)> 1> 2> 3>	8 340 PRT Stap	ohy]c	ococo	cus a	aurei	ıs								
	<400 Met 1)> Lys	8 Lys	Lys	Leu 5	Leu	Val	Leu	Thr	Met 10	Ser	⊤hr	Leu	Phe	A]a 15	Thr
30	Gln	Ile	Met	Asn 20	Ser	Asn	His	Ala	Lys 25	Ala	Ser	Val	Thr	Glu 30	Ser	Val
	Asp	Lys	Lys 35	Phe	Val	Val	Pro	Glu 40	Ser	Gly	Ile	Asn	Lys 45	Ile	Ile	Pro
35	Ala	туг 50	Asp	Glu	Phe	Lys	Asn 55	Ser	Pro	Lys	Val	Asn 60	Val	Ser	Asn	Leu
	⊤hr 65	Asp	Asn	Lys	Asn	Phe 70	Val	Ala	Ser	Glu	Asp 75	Lys	Leu	Asn	Lys	Ile 80
40	Ala	Asp	Ser	Ser	Ala 85	Ala	Ser	Lys	Ile	Val 90	Asp	Lys	Asn	Phe	Val 95	Val
	Pro	Glu	Ser	Lys 100	Leu	Gly	Asn	Ile	Val 105	Pro	Glu	⊤yr	Lys	Glu 110	Ile	Asn
45	Asn	Arg	Va] 115	Asn	Val	Ala	Тhr	Asn 120	Asn	Pro	Ala	Ser	G]n 125	Gln	Val	Asp
	Lys	Ніs 130	Phe	Val	Ala	Lys	Gly 135	Pro	Glu	Val	Asn	Arg 140	Phe	Ile	Тhr	Gln
50	Asn 145	Lys	Val	Asn	His	Ніs 150	Phe	I]e	Thr	Thr	G]n 155	⊤hr	His	туг	Lys	Lys 160
	Val	Ile	Тhr	Ser	⊤yr 165	Lys	Ser	Тhr	His	Va] 170	His	Lys	His	Val	Asn 175	His
55	Ala	Lys	Asp	Ser 180	Ile	Asn	Lys	His	Phe 185	Ile	Val	Lys	Pro	Ser 190	Glu	Ser
	Pro	Arg	туr	Тhr	His	Pro	Ser	Gln	Ser	Leu	Ile	Ile	Lys	His	His	Phe

		195			200					205			
	Ala Val 210	Pro Gly	Tyr His	Ala 215	His	Lys	Phe	Val	Thr 220	Pro	Gly	His	Ala
5	Ser Ile 225	Lys Ile	Asn His 230	Phe	Cys	Val	Val	Pro 235	Gln	Ile	Asn	Ser	Phe 240
	Lys Val	Ile Pro	Pro Tyr 245	Gly	His	Asn	Ser 250	His	Arg	Met	His	Va] 255	Pro
10	Ser Phe	Gln Asn 260	Asn Thr	Thr	Ala	Thr 265	His	Gln	Asn	Ala	Lys 270	Val	Asn
	Lys Ala	⊤yr Asp 275	Tyr Lys	Тyr	Phe 280	туr	Ser	туr	Lys	Va] 285	Val	Lys	Gly
15	Val Lys 290	Lys Tyr	Phe Ser	Phe 295	Ser	Gln	Ser	Asn	Gly 300	Тyr	Lys	Ile	Gly
	Lys Pro 305	Ser Leu	Asn Ile 310	Lys	Asn	Val	Asn	Туг 315	Gln	Туr	Ala	Val	Pro 320
20	Ser Tyr	Ser Pro	Thr His 325	Тyr	Val	Pro	Glu 330	Phe	Lys	Gly	Ser	Leu 335	Pro
	Ala Pro	Arg Val 340											
25	<210> <211> <212> <213>	9 130 PRT Staphyl	ococcus	aurei	us								
30	<400> Met Asn 1	9 Phe Asn	Asp Ile 5	Glu	Thr	Met	Va] 10	Lys	Ser	Lys	Phe	Lys 15	Asp
	Ile Lys	Lys His 20	Ala Glu	Glu	Ile	A]a 25	His	Glu	Ile	Glu	Va] 30	Arg	Ser
35	Gly Tyr	Leu Arg 35	Lys Ala	Glu	G]n 40	туr	Lys	Arg	Leu	Glu 45	Phe	Asn	Leu
	Ser Phe 50	Ala Leu	Asp Asp	Ile 55	Glu	Ser	⊤hr	Ala	Lys 60	Asp	Val	Gln	Thr
40	Ala Lys 65	Ser Ser	Ala Asn 70	Lys	Asp	Ser	Val	⊤hr 75	Val	Lys	Gly	Lys	Ala 80
	Pro Asn	⊤hr Leu	Tyr Ile 85	Glu	Lys	Arg	Asn 90	Leu	Met	Lys	Gln	Lys 95	Leu
45	Glu Met	Leu Gly 100	Glu Asp	Ile	Asp	Lys 105	Asn	Lys	Glu	Ser	Leu 110	Gln	Lys
	Ala Lys	Glu Ile 115	Ala Gly	Glu	Lys 120	Ala	Ser	Gไน	туг	Phe 125	Asn	Lys	Ala
50	Met Asn 130												
	<210> <211> <212> <213>	10 97 PRT Staphyl	ococcus	aurei	us								
55	<400> Met Ala 1	10 Met Ile	Lys Met 5	Ser	Pro	Glu	Glu 10	Ile	Arg	Ala	Lys	Ser 15	Gln

	Ser	туг	Gly	Gln 20	Gly	Ser	Asp	Gln	Ile 25	Arg	Gln	Ile	Leu	Ser 30	Asp	Leu
5	Тhr	Arg	A]a 35	Gln	Gly	Glu	Ile	А]а 40	Ala	Asn	тгр	Glu	G]y 45	Gln	Ala	Phe
	Ser	Arg 50	Phe	Glu	Glu	Gln	Phe 55	Gln	Gln	Leu	Ser	Pro 60	Lys	Val	Glu	Lys
10	Phe 65	Ala	Gln	Leu	Leu	G]u 70	Glu	I]e	Lys	Gln	G]n 75	Leu	Asn	Ser	Thr	Ala 80
	Asp	Ala	Val	Gln	Glu 85	Gln	Asp	Gln	Gln	Leu 90	Ser	Asn	Asn	Phe	Gly 95	Leu
15	Gln															
	<210 <212 <212 <213)> 1> 2> 3>	11 104 PRT Stap	ohyla	ococo	cus a	aureu	ıs								
20	<400 Met 1)> Gly	11 Gly	Tyr	Lys 5	Gly	Ile	Lys	Ala	Asp 10	Gly	Gly	Lys	Val	Asp 15	Gln
25	Ala	Lys	Gln	Leu 20	Ala	Ala	Lys	Thr	A]a 25	Lys	Asp	Ile	Glu	A]a 30	Cys	Gln
20	Lys	Gln	Thr 35	Gln	Gln	Leu	Ala	Glu 40	туr	Ile	Glu	Gly	Ser 45	Asp	тгр	Glu
30	Gly	Gln 50	Phe	Ala	Asn	Lys	Val 55	Lys	Asp	Val	Leu	Leu 60	Ile	Met	Ala	Lys
30	Phe 65	Gln	Glu	Glu	Leu	Va] 70	Gln	Pro	Met	Ala	Asp 75	His	Gln	Lys	Ala	Ile 80
35	Asp	Asn	Leu	Ser	G]n 85	Asn	Leu	Ala	Lys	туг 90	Asp	Thr	Leu	Ser	Ile 95	Lys
33	Gln	Gly	Leu	Asp 100	Arg	Val	Asn	Pro								
40	<210 <212 <212 <213)> 1> 2> 3>	12 990 PRT Stap	ohylo	ococo	cus a	aureu	ıs								
45	<400 Met 1)> Gly	12 Gln	Asp	Lys 5	Glu	Ala	Ala	Ala	Ser 10	Glu	Gln	Lys	Thr	Thr 15	Thr
45	Val	Glu	Glu	Asn 20	Gly	Asn	Ser	Ala	Thr 25	Asp	Asn	Lys	Thr	Ser 30	Glu	Thr
	Gln	Thr	Thr 35	Ala	Тhr	Asn	Val	Asn 40	His	Ile	Glu	Glu	Thr 45	Gln	Ser	туг
50	Asn	А]а 50	Thr	Val	Thr	Glu	Gln 55	Pro	Ser	Asn	Ala	тhr 60	Gln	Val	Тhr	Thr
	Glu 65	Glu	Ala	Pro	Lys	Ala 70	Val	Gln	Ala	Pro	G]n 75	Thr	Ala	Gln	Pro	Ala 80
55	Asn	Ile	Glu	Тhr	Val 85	Lys	Glu	Glu	Val	Val 90	Lys	Glu	Glu	Ala	Lys 95	Pro

	Gln	Val	Lys	Glu 100	⊤hr	Thr	Gln	Ser	Gln 105	Asp	Asn	Ser	Gly	Asp 110	Gln	Arg
5	Gln	Val	Asp 115	Leu	⊤hr	Pro	Lys	Lys 120	Ala	тhr	Gln	Asn	Gln 125	Val	Ala	Glu
-	⊤hr	Gln 130	Val	Glu	Val	Ala	G]n 135	Pro	Arg	Thr	Ala	Ser 140	Glu	Ser	Lys	Pro
10	Arg 145	Val	Thr	Arg	Ser	Ala 150	Asp	Val	Ala	Glu	Ala 155	Lys	Glu	Ala	Ser	Asn 160
10	Ala	Lys	Val	Glu	⊤hr 165	Gly	Thr	Asp	Val	Thr 170	Ser	Lys	Val	Thr	Va] 175	Glu
	Ile	Gly	Ser	I]e 180	Glu	Gly	His	Asn	Asn 185	Thr	Asn	Lys	Val	Glu 190	Pro	His
15	Ala	Gly	Gln 195	Arg	Ala	Val	Leu	Lys 200	Туr	Lys	Leu	Lys	Phe 205	Glu	Asn	Gly
	Leu	His 210	Gln	Gly	Asp	Тyr	Phe 215	Asp	Phe	Thr	Leu	Ser 220	Asn	Asn	Val	Asn
20	⊤hr 225	His	Gly	Val	Ser	Thr 230	Ala	Arg	Lys	Val	Pro 235	Glu	Ile	Lys	Asn	Gly 240
	Ser	Val	Val	Met	Ala 245	Тhr	Gly	Glu	Val	Leu 250	Glu	Gly	Gly	Lys	11e 255	Arg
25	⊤yr	Thr	Phe	Thr 260	Asn	Asp	Ile	Glu	Asp 265	Lys	Val	Asp	Val	Thr 270	Ala	Glu
	Leu	Glu	Ile 275	Asn	Leu	Phe	Ile	Asp 280	Pro	Lys	Тhr	Val	Gln 285	Тhr	Asn	Gly
30	Asn	Gln 290	Thr	Ile	⊤hr	Ser	Thr 295	Leu	Asn	Glu	Glu	G]n 300	Thr	Ser	Lys	Glu
	Leu 305	Asp	Val	Lys	Tyr	Lys 310	Asp	Gly	Ile	Gly	Asn 315	⊤yr	туr	Ala	Asn	Leu 320
35	Asn	Gly	Ser	Ile	Glu 325	Thr	Phe	Asn	Lys	A]a 330	Asn	Asn	Arg	Phe	Ser 335	His
	Val	Ala	Phe	I]e 340	Lys	Pro	Asn	Asn	Gly 345	Lys	Thr	⊤hr	Ser	Va1 350	Thr	Val
40	⊤hr	Gly	тhr 355	Leu	Met	Lys	Gly	Ser 360	Asn	Gln	Asn	Gly	Asn 365	Gln	Pro	Lys
	Val	Arg 370	Ile	Phe	Glu	Тyr	Leu 375	Gly	Asn	Asn	Glu	Asp 380	Ile	Ala	Lys	Ser
45	Val 385	туr	Ala	Asn	⊤hr	тhr 390	Asp	Thr	Ser	Lys	Phe 395	Lys	Glu	Val	Thr	Ser 400
	Asn	Met	Ser	Gly	Asn 405	Leu	Asn	Leu	Gln	Asn 410	Asn	Gly	Ser	Туr	Ser 415	Leu
50	Asn	I]e	Glu	Asn 420	Leu	Asp	Lys	Thr	Туг 425	Val	Val	His	Тyr	Asp 430	Gly	Glu
	⊤yr	Leu	Asn 435	Gly	⊤hr	Asp	Glu	Va] 440	Asp	Phe	Arg	⊤hr	Gln 445	Met	Val	Gly
55	His	Pro 450	Glu	Gln	Leu	туг	Lys 455	туг	туr	туг	Asp	Arg 460	Gly	туг	Тhr	Leu
	⊤hr	тгр	Asp	Asn	Gly	Leu	Val	Leu	Тyr	Ser	Asn	Lys	Ala	Asn	Gly	Asn

	465					470					475					480
	Glu	Lys	Asn	Gly	Pro 485	Ile	Ile	Gln	Asn	Asn 490	Lys	Phe	Glu	Туr	Lys 495	Glu
5	Asp	Thr	Ile	Lys 500	Glu	Thr	Leu	Thr	G]y 505	Gln	Туr	Asp	Lys	Asn 510	Leu	Val
	Thr	Thr	Va] 515	Glu	Glu	Glu	Туr	Asp 520	Ser	Ser	Тhr	Leu	Asp 525	Ile	Asp	Туr
10	His	Thr 530	Ala	Ile	Asp	Gly	G]y 535	Gly	Gly	Tyr	Val	Asp 540	Gly	Туr	Ile	Glu
	Thr 545	Ile	Glu	Glu	Тhr	Asp 550	Ser	Ser	Ala	Ile	Asp 555	Ile	Asp	Туr	His	тhr 560
15	Ala	Val	Asp	Ser	Glu 565	Ala	Gly	His	Val	G]y 570	Gly	Туr	Thr	Glu	Ser 575	Ser
	Glu	Glu	Ser	Asn 580	Pro	Ile	Asp	Phe	Glu 585	Glu	Ser	Тhr	His	Glu 590	Asn	Ser
20	Lys	His	His 595	Ala	Asp	Val	Val	Glu 600	Туr	Glu	Glu	Asp	тhr 605	Asn	Pro	Gly
	Gly	G]y 610	Gln	Val	Thr	Тhr	Glu 615	Ser	Asn	Leu	Val	Glu 620	Phe	Asp	Glu	Glu
25	Ser 625	Тhr	Lys	Gly	Ile	Va] 630	Тhr	Gly	Ala	Val	Ser 635	Asp	His	Тhr	тhr	Val 640
	Glu	Asp	⊤hr	Lys	Glu 645	туr	Тhr	Тhr	Glu	Ser 650	Asn	Leu	Ile	Glu	Leu 655	Val
30	Asp	Glu	Leu	Pro 660	Glu	Glu	ніs	Gly	G]n 665	Ala	Gln	Gly	Pro	Va] 670	Glu	Glu
	IJe	Thr	Lys 675	Asn	Asn	His	His	I]e 680	Ser	His	Ser	Gly	Leu 685	Gly	Тhr	Glu
35	Asn	G]y 690	His	Gly	Asn	туг	Asp 695	Val	Ile	Glu	ิดไน	Ile 700	ิดไน	Glu	Asn	Ser
	ніs 705	Val	Asp	Ile	Lys	Ser 710	Glu	Leu	Gly	⊤yr	Glu 715	Gly	Gly	Gln	Asn	Ser 720
40	Gly	Asn	Gln	Ser	Phe 725	Glu	Glu	Asp	Thr	Glu 730	Glu	Asp	Lys	Pro	Lys 735	туг
	Glu	Gln	Gly	Gly 740	Asn	Ile	Val	Asp	1]e 745	Asp	Phe	Asp	Ser	Va1 750	Pro	Gln
45	Ile	ніs	G]y 755	Gln	Asn	Lys	Gly	Asn 760	Gln	Ser	Phe	Glu	Glu 765	Asp	Thr	Glu
	Lys	Asp 770	Lys	Pro	Lys	туг	Glu 775	His	Gly	Gly	Asn	11e 780	Ile	Asp	Ile	Asp
50	Phe 785	Asp	Ser	Val	Pro	His 790	Ile	His	Gly	Phe	Asn 795	Lys	His	Thr	Glu	Ile 800
	Ile	Glu	Glu	Asp	Тhr 805	Asn	Lys	Asp	Lys	Pro 810	Ser	туг	Gln	Phe	Gly 815	Gly
55	His	Asn	Ser	Va1 820	Asp	Phe	Glu	Glu	Asp 825	⊤hr	Leu	Pro	Lys	Va1 830	Ser	Gly
	Gln	Asn	Glu 835	Gly	Gln	Gln	Thr	Ile 840	Glu	Glu	Asp	Thr	Thr 845	Pro	Pro	Ile

	Val	Pro 850	Pro	Thr	Pro	Pro	Thr 855	Pro	Glu	Val	Pro	Ser 860	Glu	Pro	Glu	Thr
5	Pro 865	Thr	Pro	Pro	Thr	Pro 870	Glu	Val	Pro	Ser	Glu 875	Pro	Glu	Thr	Pro	тhr 880
	Pro	Pro	Thr	Pro	Glu 885	Val	Pro	Ser	Glu	Pro 890	Glu	Thr	Pro	Тhr	Pro 895	Pro
10	Thr	Pro	Glu	Va1 900	Pro	Ala	Glu	Pro	G]y 905	Lys	Pro	Val	Pro	Pro 910	Ala	Lys
	Glu	Glu	Pro 915	Lys	Lys	Pro	Ser	Lys 920	Pro	Val	Glu	Gln	Gly 925	Lys	Val	Val
15	Thr	Pro 930	Val	Ile	Glu	Ile	Asn 935	Glu	Lys	Val	Lys	Ala 940	Val	Ala	Pro	Thr
	Lys 945	Lys	Pro	Gln	Ser	Lys 950	Lys	Ser	Glu	Leu	Pro 955	Glu	Тhr	Gly	Gly	Glu 960
20	Glu	Ser	Thr	Asn	Lys 965	Gly	Met	Leu	Phe	Gly 970	Gly	Leu	Phe	Ser	Ile 975	Leu
20	Gly	Leu	Ala	Leu 980	Leu	Arg	Arg	Asn	Lys 985	Lys	Asn	His	Lys	Ala 990		
25	<210 <211 <212 <213)> L> 2> 3>	13 917 PRT Stap	ohyla	ococo	cus a	aurei	ıs								
	<400 Met 1)> Ile	13 Val	Val	Gly 5	Met	Gly	Gln	Glu	Lys 10	Glu	Ala	Ala	Ala	Ser 15	Glu
30	Gln	Asn	Asn	Thr 20	Thr	Val	Glu	Glu	Ser 25	Gly	Ser	Ser	Ala	Thr 30	Glu	Ser
	Lys	Ala	Ser 35	Glu	Thr	Gln	Thr	Thr 40	Тhr	Asn	Asn	Val	Asn 45	Тhr	Ile	Asp
35	Glu	⊤hr 50	Gln	Ser	туr	Ser	A]a 55	⊤hr	Ser	Thr	Glu	G]n 60	Pro	Ser	Gln	Ser
10	Thr 65	Gln	Val	Тhr	Thr	Glu 70	Glu	Ala	Pro	Lys	Thr 75	Val	Gln	Ala	Pro	Lys 80
40	Val	Glu	Thr	Ser	Arg 85	Val	Asp	Leu	Pro	Ser 90	Glu	Lys	Val	Ala	Asp 95	Lys
45	Glu	Thr	Thr	Gly 100	Thr	Gln	Val	Asp	I]e 105	Ala	Gln	Pro	Ser	Asn 110	Val	Ser
40	Glu	Ile	Lys 115	Pro	Arg	Met	Lys	Arg 120	Ser	Тhr	Asp	Val	Thr 125	Ala	Val	Ala
50	Glu	Lys 130	Glu	Val	Val	Glu	Glu 135	Тhr	Lys	Ala	Тhr	Gly 140	Thr	Asp	Val	Тhr
JU	Asn 145	Lys	Val	Glu	Val	Glu 150	Glu	Gly	Ser	Glu	I]e 155	Val	Gly	His	Lys	Gln 160
55	Asp	Thr	Asn	Val	Va] 165	Asn	Pro	His	Asn	Ala 170	Glu	Arg	Val	Тhr	Leu 175	Lys
00	Тyr	Lys	тгр	Lys 180	Phe	Gly	Glu	Gly	I]e 185	Lys	Ala	Gly	Asp	Туг 190	Phe	Asp

	Phe	Thr	Leu 195	Ser	Asp	Asn	Val	G]u 200	Thr	His	Gly	I]e	Ser 205	Thr	Leu	Arg
5	Lys	Val 210	Pro	Glu	Ile	Lys	Ser 215	Тhr	Asp	Gly	Gln	Va1 220	Met	Ala	Тhr	Gly
	Glu 225	Ile	Ile	Gly	Glu	Arg 230	Lys	Val	Arg	туr	Thr 235	Phe	Lys	Glu	туr	Va1 240
	Gln	Glu	Lys	Lys	Asp 245	Leu	Thr	Ala	Glu	Leu 250	Ser	Leu	Asn	Leu	Phe 255	Ile
10	Asp	Pro	Thr	Thr 260	Val	Thr	Gln	Lys	Gly 265	Asn	Gln	Asn	Val	Glu 270	Val	Lys
	Leu	Gly	Glu 275	Thr	⊤hr	Val	Ser	Lys 280	Ile	Phe	Asn	Ile	Gln 285	Туr	Leu	Gly
15	Gly	Va] 290	Arg	Asp	Asn	Trp	G]y 295	Val	Thr	Ala	Asn	Gly 300	Arg	Ile	Asp	⊤hr
	Leu 305	Asn	Lys	Val	Asp	Gly 310	Lys	Phe	Ser	His	Phe 315	A]a	Туr	Met	Lys	Pro 320
20	Asn	Asn	Gln	Ser	Leu 325	Ser	Ser	Val	Thr	Va] 330	Thr	Gly	Gln	Val	Thr 335	Lys
	Gly	Asn	Lys	Pro 340	Gly	Val	Asn	Asn	Pro 345	Thr	Val	Lys	Val	туг 350	Lys	His
25	Ile	Gly	Ser 355	Asp	Asp	Leu	Ala	G]u 360	Ser	Val	туr	Ala	Lys 365	Leu	Asp	Asp
	Val	Ser 370	Lys	Phe	Glu	Asp	Va] 375	Thr	Asp	Asn	Met	Ser 380	Leu	Asp	Phe	Asp
30	⊤hr 385	Asn	Gly	Gly	Tyr	Ser 390	Leu	Asn	Phe	Asn	Asn 395	Leu	Asp	Gln	Ser	Lys 400
	Asn	Туr	Val	Ile	Lys 405	Туr	Glu	G∣y	Туr	Туг 410	Asp	Ser	Asn	Ala	Ser 415	Asn
35	Leu	Glu	Phe	G]n 420	⊤hr	His	Leu	Phe	Gly 425	туг	туr	Asn	туг	туг 430	туr	⊤hr
	Ser	Asn	Leu 435	Тhr	тгр	Lys	Asn	G]y 440	Val	Ala	Phe	⊤yr	Ser 445	Asn	Asn	Ala
40	Gln	Gly 450	Asp	Gly	Lys	Asp	Lys 455	Leu	Lys	Glu	Pro	I]e 460	Ile	Glu	His	Ser
	⊤hr 465	Pro	Ile	Glu	Leu	Glu 470	Phe	Lys	Ser	Glu	Pro 475	Pro	Val	Glu	Lys	His 480
45	Glu	Leu	Тhr	Gly	⊤hr 485	Ile	Glu	Glu	Ser	Asn 490	Asp	Ser	Lys	Pro	Ile 495	Asp
	Phe	Glu	Туr	ніs 500	⊤hr	Ala	Val	Glu	Gly 505	Ala	Glu	Gly	His	Ala 510	Glu	Gly
50	⊤hr	Ile	Glu 515	⊤hr	Glu	Glu	Asp	Ser 520	Ile	His	Val	Asp	Phe 525	Glu	Glu	Ser
	⊤hr	His 530	Glu	Asn	Ser	Lys	His 535	His	Ala	Asp	Val	Va1 540	Glu	туr	Glu	Glu
55	Asp 545	Thr	Asn	Pro	Gly	Gly 550	Gly	G]n	Val	Thr	⊤hr 555	Glu	Ser	Asn	Leu	Va1 560
	Glu	Phe	Asp	Glu	Asp	Ser	Thr	Lys	Gly	Ile	Val	⊤hr	Gly	Ala	Val	Ser

					565					570					575	
	Asp	His	⊤hr	тhr 580	Ile	Glu	Asp	Thr	Lys 585	Glu	туr	Тhr	Thr	Glu 590	Ser	Asn
5	Leu	Ile	Glu 595	Leu	Val	Asp	Glu	Leu 600	Pro	Glu	Glu	His	Gly 605	Gln	Ala	Gln
	Gly	Pro 610	Ile	Glu	Glu	Ile	тhr 615	Glu	Asn	Asn	His	His 620	Ile	Ser	His	Ser
10	Gly 625	Leu	Gly	Thr	Glu	Asn 630	Gly	His	Gly	Asn	Туг 635	Gly	Val	Ile	Glu	Glu 640
	Ile	Glu	Glu	Asn	Ser 645	His	Val	Asp	Ile	Lys 650	Ser	Glu	Leu	Gly	туг 655	Glu
15	Gly	Gly	Gln	Asn 660	Ser	Gly	Asn	Gln	Ser 665	Phe	Glu	Glu	Asp	тhr 670	Glu	Glu
	Asp	Lys	Pro 675	Lys	Туr	Glu	Gln	Gly 680	Gly	Asn	Ile	Val	Asp 685	Ile	Asp	Phe
20	Asp	Ser 690	Val	Pro	Gln	Ile	ніs 695	Gly	Gln	Asn	Asn	G]y 700	Asn	Gln	Ser	Phe
	Glu 705	Glu	Asp	тhr	Glu	Lys 710	Asp	Lys	Pro	Lys	туг 715	Glu	Gln	Gly	Gly	Asn 720
25	Ile	Ile	Asp	Ile	Asp 725	Phe	Asp	Ser	Val	Pro 730	His	Ile	НİS	Gly	Рһе 735	Asn
	Lys	His	⊤hr	Glu 740	Ile	Ile	Glu	Glu	Asp 745	⊤hr	Asn	Lys	Asp	Lys 750	Pro	Asn
30	Туr	Gln	Phe 755	Gly	Gly	His	Asn	Ser 760	Val	Asp	Phe	Glu	Glu 765	Asp	Thr	Leu
	Pro	G]n 770	Val	Ser	Gly	His	Asn 775	Glu	Gly	Gln	Gln	Thr 780	Ile	Glu	Glu	Asp
35	тhr 785	Thr	Pro	Pro	Ile	Va] 790	Pro	Pro	Тhr	Pro	Pro 795	Thr	Pro	Glu	Val	Pro 800
	Ser	Glu	Pro	Glu	Thr 805	Pro	Thr	Pro	Pro	⊤hr 810	Pro	Glu	Val	Pro	Ser 815	Glu
40	Pro	Glu	⊤hr	Pro 820	Thr	Pro	Pro	Thr	Pro 825	Glu	Val	Pro	Thr	Glu 830	Pro	Gly
	Lys	Pro	Ile 835	Pro	Pro	Ala_	Lys	G1u 840	Glu	Pro	Lys	Lys	Pro 845	Ser	Lys	Pro
45	Va I	G I u 850	Gln	Gly	Lys	Val	Va I 855	Thr	Pro	Va I	Ile	G I u 860	Ile	Asn	Glu	Lys
	Va1 865	Lys	Ala -	Val	Val	Pro 870	Thr	Lys	Lys	Ala	Gln 875	Ser	Lys	Lys	Ser	Glu 880
50	Leu	Pro	Glu	Thr	Gly 885	Gly	Glu	Glu	Ser	⊤hr 890	Asn	Asn	Gly	Met	Leu 895	Phe
	Gly	Gly	Leu	Phe 900	Ser	Ile	Leu	Gly	Leu 905	Ala	Leu	Leu	Arg	Arg 910	Asn	Lys
55	Lys	Asn	Ніs 915	Lys	Ala											
	<210 <211)> L>	14 319													

	<212> <213>	PRT Sta	phylo	ococo	cus a	aurei	ıs								
5	<400> Met Lys 1	14 5 ⊤hr	Arg	Ile 5	Val	Ser	Ser	Val	⊤hr 10	Thr	Thr	Leu	Leu	Leu 15	Gly
	Ser Ile	e Leu	Met 20	Asn	Pro	Val	Ala	Asn 25	Ala	Ala	Asp	Ser	Asp 30	Ile	Asn
10	Ile Lys	5 ⊤hr 35	Gly	Thr	Тhr	Asp	1]e 40	Gly	Ser	Asn	Thr	Thr 45	Val	Lys	Thr
	Gly Asp 50) Leu	Val	Thr	Тyr	Asp 55	Lys	Glu	Asn	Gly	Met 60	His	Lys	Lys	Val
15	Phe Tyr 65	' Ser	Phe	Ile	Asp 70	Asp	Lys	Asn	His	Asn 75	Lys	Lys	Leu	Leu	Val 80
	Ile Arg	j ⊤hr	Lys	G]y 85	Thr	Ile	А]а	Gly	Gln 90	Тyr	Arg	Val	Тyr	Ser 95	Glu
20	Glu Gly	⁄ Ala	Asn 100	Lys	Ser	Gly	Leu	A]a 105	тгр	Pro	Ser	Ala	Phe 110	Lys	Val
	G]n Lei	ı Gln 115	Leu	Pro	Asp	Asn	Glu 120	Val	Ala	Gln	Ile	Ser 125	Asp	туг	Туr
25	Pro Arg 130	JASN)	Ser	Ile	Asp	Thr 135	Lys	Glu	Туr	Met	Ser 140	Thr	Leu	Thr	Туr
	Gly Phe 145	e Asn	Gly	Asn	Va] 150	Thr	Gly	Asp	Asp	Thr 155	Gly	Lys	Ile	Gly	Gly 160
30	Leu Ile	e Gly	Ala	Asn 165	Val	Ser	Ile	Gly	His 170	Thr	Leu	Lys	Туr	Val 175	Gln
	Pro As) Phe	Lys 180	Thr	Ile	Leu	Glu	Ser 185	Pro	Thr	Asp	Lys	Lys 190	Val	Gly
25	Trp Lys	: Val 195	Ile	Phe	Asn	Asn	Met 200	Val	Asn	Gln	Asn	Тгр 205	Gly	Pro	Туr
30	Asp Arg 210) Asp	Ser	Тгр	Asn	Pro 215	Val	туг	Gly	Asn	G]n 220	Leu	Phe	Met	Lys
	Thr Arg 225	JASN	Gly	Ser	Met 230	Lys	Ala	Ala	Asp	Asn 235	Phe	Leu	Asp	Pro	Asn 240
40	Lys Ala	ι Ser	Ser	Leu 245	Leu	Ser	Ser	Gly	Р he 250	Ser	Pro	Asp	Phe	Ala 255	Thr
	Val Ile	e ⊤hr	Met 260	Asp	Arg	Lys	Ala	Ser 265	Lys	Gln	Gln	Thr	Asn 270	Ile	Asp
45	Val Ile	e Tyr 275	Glu	Arg	Val	Arg	Asp 280	Asp	Туr	Gln	Leu	His 285	Тгр	Thr	Ser
	Thr Asi 290	ı⊤rp)	Lys	Gly	Thr	Asn 295	Thr	Lys	Asp	Lys	Тгр 300	Ile	Asp	Arg	Ser
50	Ser Glu 305	ı Arg	Туr	Lys	I]e 310	Asp	тгр	Glu	Lys	Glu 315	Glu	Met	Thr	Asn	
55	<210> <211> <212> <213>	15 325 PRT Sta	phyla	ococo	cus a	aurei	ıs								
	<400>	15													

	Met 1	Lys	Met	Asn	Lys 5	Leu	Val	Lys	Ser	Ser 10	Val	Ala	Thr	Ser	Met 15	Ala
5	Leu	Leu	Leu	Leu 20	Ser	Gly	Thr	Ala	Asn 25	Ala	Glu	Gly	Lys	11e 30	Thr	Pro
	Val	Ser	Va] 35	Lys	Lys	Val	Asp	Asp 40	Lys	Val	Thr	Leu	Tyr 45	Lys	Thr	⊤hr
	Ala	Thr 50	Ala	Asp	Ser	Asp	Lys 55	Phe	Lys	Ile	Ser	G]n 60	Ile	Leu	Thr	Phe
10	Asn 65	Phe	Ile	Lys	Asp	Lys 70	Ser	тyr	Asp	Lys	Asp 75	⊤hr	Leu	Val	Leu	Lys 80
	Ala	Thr	Gly	Asn	Ile 85	Asn	Ser	Gly	Phe	Val 90	Lys	Pro	Asn	Pro	Asn 95	Asp
15	⊤yr	Asp	Phe	Ser 100	Lys	Leu	Тyr	Тrр	Gly 105	Ala	Lys	⊤yr	Asn	Va] 110	Ser	Ile
	Ser	Ser	Gln 115	Ser	Asn	Asp	Ser	Va] 120	Asn	Val	Val	Asp	Туг 125	Ala	Pro	Lys
20	Asn	Gln 130	Asn	Glu	Glu	Phe	G]n 135	Val	Gln	Asn	Thr	Leu 140	Gly	Туr	Thr	Phe
	Gly 145	Gly	Asp	Ile	Ser	Ile 150	Ser	Asn	Gly	Leu	Ser 155	G∣y	Gly	Leu	Asn	Gly 160
25	Asn	Thr	Ala	Phe	Ser 165	Glu	тhr	Ile	Asn	туг 170	Lys	G]n	Glu	Ser	Туг 175	Arg
	⊤hr	Thr	Leu	Ser 180	Arg	Asn	Thr	Asn	Туг 185	Lys	Asn	Val	Gly	тгр 190	Gly	Val
30	Glu	Ala	ніs 195	Lys	Ile	Met	Asn	Asn 200	Gly	тгр	Gly	Pro	Туг 205	Gly	Arg	Asp
	Ser	Phe 210	His	Pro	⊤hr	Туr	Gly 215	Asn	Glu	Leu	Phe	Leu 220	Ala	Gly	Arg	Gln
35	Ser 225	Ser	Ala	Тyr	Ala	Gly 230	Gln	Asn	Phe	Ile	Ala 235	G]n	His	Gln	Met	Pro 240
	Leu	Leu	Ser	Arg	Ser 245	Asn	Phe	Asn	Pro	Glu 250	Phe	Leu	Ser	Val	Leu 255	Ser
40	His	Arg	Gln	Asp 260	Gly	Ala	Lys	Lys	Ser 265	Lys	Ile	⊤hr	Val	тhr 270	туг	Gln
	Arg	Glu	Met 275	Asp	Leu	Туr	Gln	I]e 280	Arg	тгр	Asn	G∣y	Phe 285	туr	тгр	Ala
45	Gly	Ala 290	Asn	Тyr	Lys	Asn	Phe 295	Lys	Thr	Arg	Thr	Phe 300	Lys	Ser	Тhr	Tyr
	Glu 305	Ile	Asp	Тrр	Glu	Asn 310	His	Lys	Val	Lys	Leu 315	Leu	Asp	Thr	Lys	Glu 320
50	⊤hr	Glu	Asn	Asn	Lys 325											
	<210 <211 <212 <213)> L> 2> }>	16 315 PRT Stap	ohy1c	ococo	cus a	aureu	ıs								
55	<400 Met)> Leu	16 Lys	Asn	Lys	Ile	Leu	Тhr	Thr	Thr	Leu	Ser	Val	Ser	Leu	Leu

	1				5					10					15	
	Ala	Pro	Leu	Ala 20	Asn	Pro	Leu	Leu	Glu 25	Asn	Ala	Lys	Ala	Ala 30	Asn	Asp
5	Thr	Glu	Asp 35	Ile	Gly	Lys	Gly	Ser 40	Asp	Ile	Glu	Ile	Ile 45	Lys	Arg	Thr
	Glu	Asp 50	Lys	Тhr	Ser	Asn	Lys 55	тгр	Gly	Val	Тhr	G]n 60	Asn	Ile	Gln	Phe
10	Asp 65	Phe	Val	Lys	Asp	Lys 70	Lys	Тyr	Asn	Lys	Asp 75	Ala	Leu	Ile	Leu	Lys 80
	Met	Gln	Gly	Phe	Ile 85	Ser	Ser	Arg	Тhr	⊤hr 90	Тyr	Туr	Asn	Туr	Lys 95	Lys
15	Thr	Asn	His	Val 100	Lys	Ala	Met	Arg	Тгр 105	Pro	Phe	Gln	Тyr	Asn 110	Ile	Gly
	Leu	Lys	⊤hr 115	Asn	Asp	Lys	туr	Va] 120	Ser	Leu	Ile	Asn	Туг 125	Leu	Pro	Lys
20	Asn	Lys 130	Ile	Glu	Ser	Тhr	Asn 135	Val	Ser	Gln	Тhr	Leu 140	Gly	Туr	Asn	Ile
	G]y 145	Gly	Asn	Phe	Gln	Ser 150	Ala	Pro	Ser	Leu	Gly 155	Gly	Asn	Gly	Ser	Phe 160
25	Asn	туr	Ser	Lys	Ser 165	Ile	ser	туr	Тhr	G]n 170	Gln	Asn	туr	Val	Ser 175	Glu
	Val	Glu	Gln	Gln 180	Asn	Ser	Lys	Ser	Va] 185	Leu	тгр	Gly	Val	Lys 190	АТа	Asn
30	Ser	Phe	Ala 195	Тhr	Glu	Ser	Gly	G]n 200	Lys	Ser	Ala	Phe	Asp 205	Ser	Asp	Leu
	Phe	Val 210	Gly	туr	Lys	Pro	ніs 215	Ser	Lys	Asp	Pro	Arg 220	Asp	Туr	Phe	Val
35	Pro 225	Asp	Ser	Glu	Leu	Pro 230	Pro	Leu	Val	Gln	Ser 235	Gly	Phe	Asn	Pro	Ser 240
	Phe	Ile	Ala	Thr	Va] 245	Ser	His	Glu	Lys	G]y 250	Ser	Ser	Asp	Тhr	Ser 255	Glu
40	Phe	Glu	Ile	⊤hr 260	туr	Gly	Arg	Asn	Met 265	Asp	Val	Thr	His	Ala 270	Ile	Lys
	Arg	Ser	⊤hr 275	His	туr	Gly	Asn	Ser 280	туr	Leu	Asp	Gly	ніs 285	Arg	Val	His
45	Asn	А]а 290	Phe	Val	Asn	Arg	Asn 295	туr	Thr	Val	Lys	туг 300	Glu	Val	Asn	Тгр
	Lys 305	Тhr	His	Glu	Ile	Lys 310	Val	Lys	Gly	Gln	Asn 315					
50	<210 <211 <212 <213)> L> }> }>	17 350 PRT Stap	ohy1c	ococo	cus a	aurei	ıs								
	<400 Met 1)> Thr	17 Lys	His	Tyr 5	Leu	Asn	Ser	Lys	⊤yr 10	Gln	Ser	Glu	Gln	Arg 15	Ser
55	Ser	Ala	Met	Lys 20	Lys	Ile	Thr	Met	G]y 25	⊤hr	Ala	Ser	Ile	Ile 30	Leu	Gly

	Ser	Leu	Va] 35	Туr	Ile	Gly	Ala	Asp 40	Ser	Gln	Gln	Val	Asn 45	Ala	Ala	Thr
5	Glu	Ala 50	Thr	Asn	Ala	Thr	Asn 55	Asn	Gln	Ser	Тhr	G]n 60	Val	Ser	Gln	Ala
	Thr 65	Ser	Gln	Pro	Ile	Asn 70	Phe	Gln	Val	Gln	Lys 75	Asp	Gly	Ser	Ser	Glu 80
10	Lys	Ser	His	Met	Asp 85	Asp	Туr	Met	Gln	His 90	Pro	Gly	Lys	Val	Ile 95	Lys
	Gln	Asn	Asn	Lys 100	Тyr	Тyr	Phe	Gln	Thr 105	Val	Leu	Asn	Asn	A]a 110	Ser	Phe
15	Тгр	Lys	Glu 115	туr	Lys	Phe	Туr	Asn 120	Ala	Asn	Asn	Gln	Glu 125	Leu	Ala	Thr
	Тhr	Val 130	Val	Asn	Asp	Asn	Lys 135	Lys	Ala	Asp	Thr	Arg 140	Thr	Ile	Asn	Val
20	Ala 145	Val	Glu	Pro	Gly	Туг 150	Lys	Ser	Leu	Тhr	Thr 155	Lys	Val	His	Ile	Val 160
20	Val	Pro	Gln	Ile	Asn 165	туr	Asn	His	Arg	Туг 170	Тhr	Тhr	His	Leu	Glu 175	Phe
25	Glu	Lys	Ala	I]e 180	Pro	Thr	Leu	Ala	Asp 185	Ala	Ala	Lys	Pro	Asn 190	Asn	Val
20	Lys	Pro	Va] 195	Gln	Pro	Lys	Pro	Ala 200	Gln	Pro	Lys	Тhr	Pro 205	Тhr	Glu	Gln
30	Тhr	Lys 210	Pro	Val	Gln	Pro	Lys 215	Val	Glu	Lys	Val	Lys 220	Pro	Тhr	Val	Thr
	Thr 225	Тhr	Ser	Lys	Val	Glu 230	Asp	Asn	His	Ser	Thr 235	Lys	Val	Val	Ser	Thr 240
35	Asp	Thr	Thr	Lys	Asp 245	Gln	Тhr	Lys	Thr	G]n 250	Thr	Ala	His	Тhr	Va] 255	Lys
	Тhr	Ala	Gln	⊤hr 260	Ala	Gln	Glu	Gln	Asn 265	Lys	Val	Gln	Thr	Pro 270	Val	Lys
40	Asp	Val	Ala 275	Thr	Ala	Lys	Ser	Glu 280	Ser	Asn	Asn	Gln	Ala 285	Val	Ser	Asp
70	Asn	Lys 290	Ser	Gln	Gln	Thr	Asn 295	Lys	Val	Thr	Lys	ніs 300	Asn	Glu	Thr	Pro
45	Lys 305	Gln	Ala	Ser	Lys	Ala 310	Lys	Glu	Leu	Pro	Lys 315	Thr	Gly	Leu	Тhr	Ser 320
45	Val	Asp	Asn	Phe	Ile 325	Ser	Thr	Val	Ala	Phe 330	Ala	Thr	Leu	Ala	Leu 335	Leu
50	Gly	Ser	Leu	Ser 340	Leu	Leu	Leu	Phe	Lys 345	Arg	Lys	Glu	Ser	Lys 350		
50	<210 <211 <211 <213)> L> 2> }>	18 645 PRT Stap	ohyla	ococo	cus a	aureu	ıs								
55	<400 Met 1)> Asn	18 Lys	Gln	Gln 5	Lys	Glu	Phe	Lys	Ser 10	Phe	Tyr	Ser	Ile	Arg 15	Lys
	Ser	Ser	Leu	G]y 20	Val	Ala	Ser	Val	Ala 25	Ile	Ser	⊤hr	Leu	Leu 30	Leu	Leu
----	------------	------------	------------	------------	------------	------------	-------------------	------------	------------	------------	------------	------------	------------	------------	------------	------------
5	Met	Ser	Asn 35	Gly	Glu	Ala	Gln	а]а 40	Ala	Ala	Glu	Glu	тhr 45	Gly	Gly	⊤hr
	Asn	Thr 50	Glu	Ala	Gln	Pro	Lys 55	Thr	Glu	Ala	Val	A]a 60	Ser	Pro	Thr	⊤hr
	⊤hr 65	Ser	Glu	Lys	Ala	Pro 70	Glu	Thr	Lys	Pro	Va] 75	Ala	Asn	Ala	Val	Ser 80
10	Val	Ser	Asn	Lys	Glu 85	Val	Glu	Ala	Pro	Thr 90	Ser	Glu	Thr	Lys	Glu 95	Ala
	Lys	Glu	Val	Lys 100	Glu	Val	Lys	Ala	Pro 105	Lys	Glu	⊤hr	Lys	Glu 110	Val	Lys
15	Pro	Ala	Ala 115	Lys	Ala	Thr	Asn	Asn 120	Thr	Тyr	Pro	Ile	Leu 125	Asn	Gln	Glu
	Leu	Arg 130	Glu	Ala	Ile	Lys	Asn 135	Pro	Ala	Ile	Lys	Asp 140	Lys	Asp	His	Ser
20	Ala 145	Pro	Asn	Ser	Arg	Pro 150	Ile	Asp	Phe	Glu	Met 155	Lys	Lys	Lys	Asp	Gly 160
	⊤hr	Gln	Gln	Phe	⊤yr 165	His	туг	Ala	Ser	Ser 170	Val	Lys	Pro	Ala	Arg 175	Val
25	Ile	Phe	Тhr	Asp 180	Ser	Lys	Pro	Glu	I]e 185	Glu	Leu	Gly	Leu	Gln 190	Ser	Gly
	Gln	Phe	Trp 195	Arg	Lys	Phe	Glu	Va] 200	Туr	Glu	Gly	Asp	Lys 205	Lys	Leu	Pro
30	Ile	Lys 210	Leu	Val	Ser	туг	Asp 215	Thr	Val	Lys	Asp	⊤yr 220	Ala	туг	Ile	Arg
	Phe 225	Ser	Val	Ser	Asn	G]y 230	Thr	Lys	Ala	Val	Lys 235	Ile	Val	Ser	Ser	⊤hr 240
35	His	Phe	Asn	Asn	Lys 245	Glu	Glu	Lys	туr	Asp 250	туr	⊤hr	Leu	Met	Glu 255	Phe
	Ala	Gln	Pro	I]e 260	⊤yr	Asn	Ser	Ala	Asp 265	Lys	Phe	Lys	Thr	G]u 270	Glu	Asp
40	Tyr	Lys	Ala 275	Glu	Lys	Leu	Leu	A]a 280	Pro	Туr	Lys	Lys	Ala 285	Lys	Thr	Leu
	Glu	Arg 290	Gln	Val	⊤yr	Glu	Leu 295	Asn	Lys	Ile	Gln	Asp 300	Lys	Leu	Pro	Glu
45	Lys 305	Leu	Lys	Ala	Glu	туг 310	Lys	Lys	Lys	Leu	Glu 315	Asp	Thr	Lys	Lys	Ala 320
	Leu	Asp	Glu	Gln	Val 325	Lys	Ser	Ala	Ile	Thr 330	Glu	Phe	Gln	Asn	Va] 335	Gln
50	Pro	Thr	Asn	G]u 340	Lys	Met	Thr	Asp	Leu 345	Gln	Asp	⊤hr	Lys	Туг 350	Val	Val
	туr	Glu	Ser 355	Val	Glu	Asn	Asn	G]u 360	Ser	Met	Met	Asp	тhr 365	Phe	Val	Lys
55	His	Pro 370	Ile	Lys	⊤hr	Gly	Met 375	Leu	Asn	Gly	Lys	Lys 380	туг	Met	Val	Met
	Glu	Thr	Thr	Asn	Asp	Asp	туr	тгр	Lys	Asp	Phe	Met	Val	Glu	Gly	Gln

	385					390					395					400
	Arg	Val	Arg	Thr	Ile 405	Ser	Lys	Asp	Ala	Lys 410	Asn	Asn	Тhr	Arg	тhr 415	Ile
5	Ile	Phe	Pro	туг 420	Val	Glu	Gly	Lys	тhr 425	Leu	туr	Asp	Ala	I]e 430	Val	Lys
	Val	His	Va] 435	Lys	Thr	Ile	Asp	туг 440	Asp	Gly	Gln	Туr	His 445	Val	Arg	Ile
10	Val	Asp 450	Lys	Glu	Ala	Phe	тhr 455	Lys	Ala	Asn	тhr	Asp 460	Lys	Ser	Asn	Lys
	Lys 465	Glu	Gln	Gln	Asp	Asn 470	Ser	Ala	Lys	Lys	Glu 475	Ala	Тhr	Pro	Ala	Thr 480
15	Pro	Ser	Lys	Pro	Thr 485	Pro	Ser	Pro	Val	Glu 490	Lys	Glu	Ser	Gln	Lys 495	Gln
	Asp	Ser	Gln	Lys 500	Asp	Asp	Asn	Lys	G]n 505	Leu	Pro	Ser	Val	Glu 510	Lys	Glu
20	Asn	Asp	Ala 515	Ser	Ser	Glu	Ser	Gly 520	Lys	Asp	Lys	Тhr	Pro 525	Ala	Тhr	Lys
	Pro	тhr 530	Lys	Gly	Glu	Val	Glu 535	Ser	Ser	Ser	тhr	тhr 540	Pro	тhr	Lys	Val
25	Val 545	Ser	⊤hr	Тhr	Gln	Asn 550	Val	Ala	Lys	Pro	тhr 555	Тhr	Ala	Ser	Ser	Lys 560
	Тhr	Тhr	Lys	Asp	Va] 565	Val	Gln	Тhr	Ser	Ala 570	Gly	Ser	Ser	Glu	Ala 575	Lys
30	Asp	Ser	Ala	Pro 580	Leu	Gln	Lys	Ala	Asn 585	Ile	Lys	Asn	Тhr	Asn 590	Asp	Gly
	His	Thr	G]n 595	Ser	Gln	Asn	Asn	Lys 600	Asn	⊤hr	Gln	Glu	Asn 605	Lys	Ala	Lys
35	Ser	Leu 610	Pro	Gln	⊤hr	Gly	Glu 615	Glu	Ser	Asn	Lys	Asp 620	Met	Тhr	Leu	Pro
	Leu 625	Met	Ala	Leu	Leu	Ala 630	Leu	Ser	Ser	Ile	Va] 635	Ala	Phe	Val	Leu	Pro 640
40	Arg	Lys	Arg	Lys	Asn 645											
	<210 <212 <212 <213)> L> 2> 3>	19 227 PRT Stap	ohyla	ococo	cus a	aureu	ıs								
45	<400 Met 1)> Lys	19 Asn	Ile	Leu 5	Lys	Val	Phe	Asn	⊤hr 10	Thr	Ile	Leu	Ala	Leu 15	Ile
50	Ile	Ile	Ile	A]a 20	Thr	Phe	Ser	Asn	Ser 25	Ala	Asn	Ala	Ala	Asp 30	Ser	Gly
50	Thr	Leu	Asn 35	туr	Glu	Val	Туr	Lys 40	туг	Asn	Thr	Asn	Asp 45	Thr	Ser	Ile
	Ala	Asn 50	Asp	туr	Phe	Asn	Lys 55	Pro	Ala	Lys	туг	Ile 60	Lys	Lys	Asn	Gly
55	Lys 65	Leu	⊤yr	Val	Gln	Ile 70	Thr	Val	Asn	His	Ser 75	His	Тгр	Ile	Thr	Gly 80

	Met	Ser	Ile	Glu	Gly 85	His	Lys	Glu	Asn	Ile 90	Ile	Ser	Lys	Asn	Thr 95	Ala
5	Lys	Asp	Glu	Arg 100	Thr	Ser	Glu	Phe	Glu 105	Val	Ser	Lys	Leu	Asn 110	Gly	Lys
	Ile	Asp	G]y 115	Lys	Ile	Asp	Val	Туг 120	Ile	Asp	Glu	Lys	Va] 125	Asn	Gly	Lys
10	Pro	Phe 130	Lys	Тyr	Asp	His	His 135	Туr	Asn	Ile	Thr	Туг 140	Lys	Phe	Asn	Gly
	Pro 145	Тhr	Asp	Val	Ala	Gly 150	Ala	Asn	Ala	Pro	Gly 155	Lys	Asp	Asp	Lys	Asn 160
15	Ser	Ala	Ser	Gly	Ser 165	Asp	Lys	Gly	Ser	Asp 170	Gly	Тhr	Тhr	Тhr	Gly 175	Gln
	Ser	Glu	Ser	Asn 180	Ser	Ser	Asn	Lys	Asp 185	Lys	Val	Glu	Asn	Pro 190	Gln	Thr
20	Asn	Ala	Gly 195	Thr	Pro	Ala	Туr	Ile 200	Туr	Ala	Ile	Pro	Va1 205	Ala	Ser	Leu
20	Ala	Leu 210	Leu	Ile	Ala	Ile	Thr 215	Leu	Phe	Val	Arg	Lys 220	Lys	Ser	Lys	Gly
25	Asn 225	Val	Glu													
20	<21(<21) <212 <213)> L> 2> 3>	20 107 PRT Stap	ohy1c	ococo	cus a	aurei	ıs								
30	<400 Met 1)> Lys	20 Phe	Met	Ala 5	Glu	Asn	Arg	Leu	Thr 10	Leu	Thr	Lys	Gly	Thr 15	Ala
95	Lys	Asp	Ile	Ile 20	Glu	Arg	Phe	Туr	Thr 25	Arg	His	Gly	Ile	Glu 30	Thr	Leu
35	Glu	Gly	Phe 35	Asp	Gly	Met	Phe	Va] 40	⊤hr	Gln	⊤hr	Leu	Glu 45	Gln	Glu	Asp
	Phe	Asp 50	Glu	Val	Lys	Ile	Leu 55	Thr	Val	Тгр	Lys	Ser 60	Lys	Gln	Ala	Phe
40	тhr 65	Asp	тгр	Leu	Lys	Ser 70	Asp	Val	Phe	Lys	Ala 75	Ala	His	Lys	His	Val 80
	Arg	Ser	Lys	Asn	Glu 85	Asp	Glu	Ser	Ser	Pro 90	Ile	Ile	Asn	Asn	Lys 95	Val
45	Ile	Thr	Туr	Asp 100	Ile	Gly	Туr	Ser	Туг 105	Met	Lys					
50	<210 <211 <212 <213)> L> 2> 3>	21 895 PRT Stap	ohyla	ococo	cus a	aureu	ıs								
	<400 Met 1)> Asn	21 Lys	His	His 5	Pro	Lys	Leu	Arg	Ser 10	Phe	Tyr	Ser	Ile	Arg 15	Lys
55	Ser	Thr	Leu	G]y 20	Val	Ala	Ser	Val	I]e 25	Val	Ser	Thr	Leu	Phe 30	Leu	Ile

	⊤hr	Ser	Gln 35	His	Gln	Ala	Gln	A]a 40	Ala	Glu	Asn	⊤hr	Asn 45	Thr	Ser	Asp
5	Lys	Ile 50	Ser	Glu	Asn	Gln	Asn 55	Asn	Asn	Ala	Тhr	⊤hr 60	Thr	Gln	Pro	Pro
	Lys 65	Asp	Тhr	Asn	Gln	тhr 70	Gln	Pro	Ala	Thr	G]n 75	Pro	Ala	Asn	Тhr	Ala 80
<i>(</i> 0	Lys	Asn	Туr	Pro	Ala 85	Ala	Asp	Glu	Ser	Leu 90	Lys	Asp	Ala	Ile	Lys 95	Asp
10	Pro	Ala	Leu	Glu 100	Asn	Lys	Glu	His	Asp 105	Ile	Gly	Pro	Arg	Glu 110	Gln	Val
	Asn	Phe	Gln 115	Leu	Leu	Asp	Lys	Asn 120	Asn	Glu	Thr	G]n	Туг 125	туr	His	Phe
15	Phe	Ser 130	Ile	Lys	Asp	Pro	Ala 135	Asp	Val	Туr	Туr	⊤hr 140	Lys	Lys	Lys	Ala
	Glu 145	Val	Glu	Leu	Asp	Ile 150	Asn	Thr	Ala	Ser	Thr 155	⊤rp	Lys	Lys	Phe	Glu 160
20	Val	туr	Glu	Asn	Asn 165	Gln	Lys	Leu	Pro	Va] 170	Arg	Leu	Val	Ser	Туг 175	Ser
	Pro	Val	Pro	Glu 180	Asp	His	Ala	туr	Ile 185	Arg	Phe	Pro	Val	Ser 190	Asp	Gly
25	⊤hr	Gln	Glu 195	Leu	Lys	Ile	Val	Ser 200	Ser	Thr	Gln	Ile	Asp 205	Asp	Gly	Glu
	Glu	Thr 210	Asn	Тyr	Asp	туr	тhr 215	Lys	Leu	Val	Phe	A]a 220	Lys	Pro	Ile	Tyr
30	Asn 225	Asp	Pro	Ser	Leu	Va] 230	Lys	Ser	Asp	Thr	Asn 235	Asp	Ala	Val	Val	⊤hr 240
	Asn	Asp	Gln	Ser	Ser 245	Ser	Val	Ala	Ser	Asn 250	Gln	⊤hr	Asn	Thr	Asn 255	⊤hr
35	Ser	Asn	Gln	Asn 260	Ile	Ser	Тhr	I]e	Asn 265	Asn	Ala	Asn	Asn	G]n 270	Pro	Gln
	Ala	Thr	Тhr 275	Asn	Met	Ser	Gln	Pro 280	Ala	Gln	Pro	Lys	Ser 285	Ser	Thr	Asn
40	Ala	Asp 290	Gln	Ala	Ser	Ser	Gln 295	Pro	Ala	His	Glu	⊤hr 300	Asn	Ser	Asn	Gly
	Asn 305	Thr	Asn	Asp	Lys	Thr 310	Asn	Glu	Ser	Ser	Asn 315	G]n	Ser	Asp	Val	Asn 320
45	Gln	Gln	туr	Pro	Pro 325	Ala	Asp	Glu	Ser	Leu 330	Gln	Asp	Ala	Ile	Lys 335	Asn
	Pro	Ala	Ile	Ile 340	Asp	Lys	Glu	His	Тhr 345	Ala	Asp	Asn	тгр	Arg 350	Pro	Ile
50	Asp	Phe	Gln 355	Met	Lys	Asn	Asp	Lys 360	Gly	Glu	Arg	G∣n	Phe 365	туr	His	Tyr
	Ala	Ser 370	Тhr	Val	Glu	Pro	Ala 375	Тhr	Val	Ile	Phe	⊤hr 380	Lys	Тhr	Gly	Pro
55	1]e 385	Ile	Glu	Leu	Gly	Leu 390	Lys	Тhr	Ala	Ser	Тhr 395	⊤rp	Lys	Lys	Phe	Glu 400
	Val	туг	Glu	Gly	Asp	Lys	Lys	Leu	Pro	Val	Glu	Leu	Val	Ser	туr	Asp

					405					410					415	
	Ser	Asp	Lys	Asp 420	туr	Ala	Туr	Ile	Arg 425	Phe	Pro	Val	Ser	Asn 430	Gly	Thr
5	Arg	Glu	Va] 435	Lys	Ile	Val	Ser	Ser 440	Ile	Glu	туr	Gly	Glu 445	Asn	Ile	His
	Glu	Asp 450	⊤yr	Asp	Туr	Thr	Leu 455	Met	Val	Phe	Ala	G]n 460	Pro	Ile	Thr	Asn
10	Asn 465	Pro	Asp	Asp	Туr	Va] 470	Asp	Glu	Glu	⊤hr	Туг 475	Asn	Leu	Gln	Lys	Leu 480
	Leu	Ala	Pro	туr	His 485	Lys	Ala	Lys	Тhr	Leu 490	Glu	Arg	Gln	Val	туг 495	Glu
15	Leu	Glu	Lys	Leu 500	Gln	Glu	Lys	Leu	Pro 505	Glu	Lys	Тyr	Lys	Ala 510	Glu	Туr
	Lys	Lys	Lys 515	Leu	Asp	Gln	Thr	Arg 520	Val	Glu	Leu	Ala	Asp 525	Gln	Val	Lys
20	Ser	Ala 530	Val	Thr	Glu	Phe	Glu 535	Asn	Val	⊤hr	Pro	тhr 540	Asn	Asp	Gln	Leu
	тhr 545	Asp	Leu	Gln	Glu	А]а 550	His	Phe	Val	Val	Phe 555	Glu	Ser	Glu	Glu	Asn 560
25	Ser	Glu	Ser	Val	Met 565	Asp	Gly	Phe	Val	Glu 570	His	Pro	Phe	туr	тhr 575	Ala
	Тhr	Leu	Asn	Gly 580	Gln	Lys	туr	Val	Val 585	Met	Lys	тhr	Lys	Asp 590	Asp	Ser
30	туr	тгр	Lys 595	Asp	Leu	Ile	Val	Glu 600	Gly	Lys	Arg	Val	тhr 605	Thr	Val	Ser
	Lys	Asp 610	Pro	Lys	Asn	Asn	Ser 615	Arg	Thr	Leu	Ile	Phe 620	Pro	Туr	Ile	Pro
35	Asp 625	Lys	Ala	Val	Туr	Asn 630	Ala	Ile	Val	Lys	Va1 635	Val	Val	Ala	Asn	Ile 640
	Gly	Туr	Glu	Gly	G1n 645	туr	His	Val	Arg	Ile 650	Ile	Asn	Gln	Asp	Ile 655	Asn
40	Thr	Lys	Asp	Asp 660	Asp	Тhr	Ser	Gln	Asn 665	Asn	Тhr	Ser	Glu	Pro 670	Leu	Asn
	Val	Gln	⊤hr 675	Gly	Gln	Glu	Gly	Lys 680	Val	Ala	Asp	Тhr	Asp 685	Val	Ala	Glu
45	Asn	Ser 690	Ser	Thr	Ala	Thr	Asn 695	Pro	Lys	Asp	Ala	Ser 700	Asp	Lys	Ala	Asp
	Va1 705	Ile	Glu	Pro	Glu	Ser 710	Asp	Val	Val	Lys	Asp 715	Ala	Asp	Asn	Asn	Ile 720
50	Asp	Lys	Asp	Val	G1n 725	His	Asp	Val	Asp	His 730	Leu	Ser	Asp	Met	Ser 735	Asp
	Asn	Asn	His	Phe 740	Asp	Lys	Туr	Asp	Leu 745	Lys	Glu	Met	Asp	Thr 750	Gln	Ile
55	Ala	Lys	Asp 755	Thr	Asp	Arg	Asn	Va1 760	Asp	Lys	Asp	Ala	Asp 765	Asn	Ser	Val
	Gly	Met 770	Ser	Ser	Asn	Val	Asp 775	Thr	Asp	Lys	Asp	Ser 780	Asn	Lys	Asn	Lys

	Asp 785	Lys	Val	Ile	Gln	Leu 790	Asn	His	Ile	Ala	Asp 795	Lys	Asn	Asn	His	Thr 800
5	Gly	Lys	Ala	Ala	Lys 805	Leu	Asp	Val	Val	Lys 810	Gln	Asn	Тyr	Asn	Asn 815	Thr
	Asp	Lys	Val	Thr 820	Asp	Lys	Lys	Thr	Thr 825	Glu	His	Leu	Pro	Ser 830	Asp	Ile
10	His	Lys	Thr 835	Val	Asp	Lys	Thr	Va] 840	Lys	Thr	Lys	Glu	Lys 845	Ala	Gly	Thr
	Pro	Ser 850	Lys	Glu	Asn	Lys	Leu 855	Ser	Gln	Ser	Lys	Met 860	Leu	Pro	Lys	Thr
15	Gly 865	Glu	Тhr	Тhr	Ser	Ser 870	Gln	Ser	тгр	тгр	Gly 875	Leu	туr	Ala	Leu	Leu 880
	Gly	Met	Leu	Ala	Leu 885	Phe	Ile	Pro	Lys	Phe 890	Arg	Lys	Glu	Ser	Lys 895	
20	<21(<212 <212 <213)> L> 2> 3>	22 108 PRT Stap	ohyla	ococo	cus a	aurei	JS								
25	<40(Met 1)> Phe	22 Met	Ala	Glu 5	Asn	Arg	Leu	Gln	Leu 10	Gln	Lys	Gly	Ser	Ala 15	Glu
20	Glu	Thr	Ile	Glu 20	Arg	Phe	Туr	Asn	Arg 25	Gln	Gly	Ile	Glu	Thr 30	Ile	Glu
20	Gly	Phe	Gln 35	Gln	Met	Phe	Val	тhr 40	Lys	Thr	Leu	Asn	Thr 45	Glu	Asp	Thr
30	Asp	Glu 50	Val	Lys	Ile	Leu	Thr 55	Ile	тгр	Glu	Ser	Glu 60	Asp	Ser	Phe	Asn
25	Asn 65	тгр	Leu	Asn	Ser	Asp 70	Val	Phe	Lys	Glu	Ala 75	His	Lys	Asn	Val	Arg 80
30	Leu	Lys	Ser	Asp	Asp 85	Asp	Gly	Gln	Gln	Ser 90	Pro	Ile	Leu	Ser	Asn 95	Lys
40	Val	Phe	Lys	Туг 100	Asp	Ile	Gly	Туr	His 105	Туr	Gln	Lys				
40	<210 <211 <212 <213)> L> 2> 3>	23 327 PRT Stap	ohyla	ococo	cus a	aurei	JS								
45	<400 Met 1)> Lys	23 Met	Lys	Lys 5	Leu	Val	Lys	Ser	Ser 10	Val	Ala	Ser	Ser	Ile 15	Ala
	Leu	Leu	Leu	Leu 20	Ser	Asn	Thr	Val	Asp 25	Ala	Ala	Gln	His	Ile 30	Thr	Pro
50	Val	Ser	Glu 35	Lys	Lys	Val	Asp	Asp 40	Lys	Ile	Thr	Leu	туг 45	Lys	Thr	Thr
	Ala	тhr 50	Ser	Asp	Asn	Asp	Lys 55	Leu	Asn	Ile	Ser	G]n 60	Ile	Leu	Thr	Phe
55	Asn 65	Phe	Ile	Lys	Asp	Lys 70	Ser	Туr	Asp	Lys	Asp 75	Thr	Leu	Val	Leu	Lys 80

	Ala	Ala	Gly	Asn	Ile 85	Asn	Ser	Gly	Тyr	Lys 90	Lys	Pro	Asn	Pro	Lys 95	Asp
5	туr	Asn	тyr	Ser 100	Gln	Phe	тyr	тгр	Gly 105	Gly	Lys	⊤yr	Asn	Va] 110	Ser	Val
	Ser	Ser	Glu 115	Ser	Asn	Asp	Ala	Va] 120	Asn	Val	Val	Asp	Туг 125	Ala	Pro	Lys
10	Asn	Gln 130	Asn	Glu	Glu	Phe	Gln 135	Val	Gln	Gln	Thr	Leu 140	Gly	Туr	Ser	Tyr
10	Gly 145	Gly	Asp	Ile	Asn	Ile 150	Ser	Asn	Gly	Leu	Ser 155	Gly	Gly	Leu	Asn	Gly 160
	Ser	Lys	Ser	Phe	Ser 165	Glu	Тhr	I]e	Asn	Туг 170	Lys	Gln	Glu	Ser	Туг 175	Arg
15	⊤hr	Thr	Ile	Asp 180	Arg	Lys	Thr	Asn	ніs 185	Lys	Ser	Ile	Gly	Тгр 190	Gly	Val
	Glu	Ala	Ніs 195	Lys	Ile	Met	Asn	Asn 200	Gly	тгр	Gly	Pro	Туг 205	Gly	Arg	Asp
20	Ser	Туг 210	Asp	Pro	⊤hr	туr	G]y 215	Asn	Glu	Leu	Phe	Leu 220	Gly	Gly	Arg	Gln
	Ser 225	Ser	Ser	Asn	Ala	G]y 230	Gln	Asn	Phe	Leu	Pro 235	⊤hr	His	Gln	Met	Pro 240
25	Leu	Leu	Ala	Arg	Gly 245	Asn	Phe	Asn	Pro	Glu 250	Phe	Ile	Ser	Val	Leu 255	Ser
	His	Lys	Gln	Asn 260	Asp	Thr	Lys	Lys	Ser 265	Lys	Ile	Lys	Val	тhr 270	туr	Gln
30	Arg	Glu	Met 275	Asp	Arg	туг	Thr	Asn 280	Gln	тгр	Asn	Arg	Leu 285	His	тгр	Val
	Gly	Asn 290	Asn	Тyr	Lys	Asn	Gln 295	Asn	Thr	Val	Thr	Phe 300	Thr	Ser	Тhr	Tyr
35	Glu 305	Val	Asp	тгр	Gln	Asn 310	His	Тhr	Val	Lys	Leu 315	I]e	Gly	тhr	Asp	Ser 320
	Lys	Glu	Thr	Asn	Pro 325	Gly	Val									
40	<210 <211 <212 <213)> L> 2> 3>	24 301 PRT Stap	ohyld	ococo	cus a	aurei	ıs								
45	<400 Met 1)> Ser	24 Val	Gly	Leu 5	Ile	Ala	Pro	Leu	A]a 10	Ser	Pro	Ile	Gln	Glu 15	Ser
	Arg	Ala	Asn	Thr 20	Asn	Ile	Glu	Asn	Ile 25	Gly	Asp	Gly	Ala	Glu 30	Val	Ile
50	Lys	Arg	Thr 35	Glu	Asp	Val	Ser	Ser 40	Lys	Lys	тгр	Gly	Val 45	Thr	Gln	Asn
	Val	Gln 50	Phe	Asp	Phe	Val	Lys 55	Asp	Lys	Lys	туг	Asn 60	Lys	Asp	Ala	Leu
55	Ile 65	Val	Lys	Met	Gln	Gly 70	Phe	I]e	Asn	Ser	Arg 75	⊤hr	Ser	Phe	Ser	Asp 80
	Val	Lys	Gly	Ser	Gly	туr	Glu	Leu	Thr	Lys	Arg	Met	Ile	тгр	Pro	Phe

					85					90					95	
	Gln	Туr	Asn	Ile 100	Gly	Leu	Тhr	Thr	Lys 105	Asp	Pro	Asn	Val	Ser 110	Leu	Ile
5	Asn	Туr	Leu 115	Pro	Lys	Asn	Lys	I]e 120	Glu	⊤hr	Thr	Asp	Va] 125	Gly	Gln	Thr
	Leu	Gly 130	⊤yr	Asn	Ile	Gly	Gly 135	Asn	Phe	Gln	Ser	Ala 140	Pro	Ser	Ile	Gly
10	Gly 145	Asn	Gly	Ser	Phe	Asn 150	Туr	Ser	Lys	⊤hr	I]e 155	Ser	Тyr	Тhr	Gln	Lys 160
	Ser	Туr	Val	Ser	Glu 165	Val	Asp	Lys	Gln	Asn 170	Ser	Lys	Ser	Val	Lys 175	тгр
15	Gly	Val	Lys	Ala 180	Asn	Glu	Phe	Val	Thr 185	Pro	Asp	Gly	Lys	Lys 190	Ser	Ala
	His	Asp	Arg 195	туr	Leu	Phe	Val	G]n 200	Ser	Pro	Asn	Gly	Pro 205	Тhr	Gly	Ser
20	Ala	Arg 210	Glu	Тyr	Phe	Ala	Pro 215	Asp	Asn	Gln	Leu	Pro 220	Pro	Leu	Val	Gln
	Ser 225	Gly	Phe	Asn	Pro	Ser 230	Phe	Ile	тhr	⊤hr	Leu 235	ser	His	Glu	Lys	G]y 240
25	Ser	Ser	Asp	тhr	Ser 245	Glu	Phe	Glu	Ile	Ser 250	туr	Gly	Arg	Asn	Leu 255	Asp
	Ile	Thr	⊤yr	A]a 260	Thr	Leu	Phe	Pro	Arg 265	⊤hr	Gly	Ile	туr	A]a 270	Glu	Arg
30	Lys	His	Asn 2 7 5	Ala	Phe	Val	Asn	Arg 280	Asn	Phe	Val	Val	Arg 285	туr	Glu	Val
	Asn	Тгр 290	Lys	Тhr	His	Glu	Ile 295	Lys	Val	Lys	Gly	ніs 300	Asn			
35	<210 <211 <211 <211)> L> 2> 3>	25 338 PRT Stap	ohy1a	ococo	cus a	aurei	ıs								
40	<400 Met 1)> Ile	25 Lys	Gln	Leu 5	Cys	Lys	Asn	Ile	⊤hr 10	Ile	Cys	Тhr	Leu	A]a 15	Leu
	Ser	Thr	⊤hr	Phe 20	⊤hr	Val	Leu	Pro	А]а 25	⊤hr	Ser	Phe	Ala	Lys 30	Ile	Asn
45	Ser	Glu	Ile 35	Lys	Gln	Val	Ser	Glu 40	Lys	Asn	Leu	Asp	G]y 45	Asp	Тhr	Lys
	Met	туг 50	⊤hr	Arg	⊤hr	Ala	Thr 55	Thr	Ser	Asp	Ser	G]n 60	Lys	Asn	Ile	⊤hr
50	G1n 65	Ser	Leu	Gln	Phe	Asn 70	Phe	Leu	Thr	Glu	Pro 75	Asn	Тyr	Asp	Lys	Glu 80
	Thr	Val	Phe	Ile	Lys 85	Ala	Lys	Gly	Thr	Ile 90	Gly	Ser	Gly	Leu	Arg 95	Ile
55	Leu	Asp	Pro	Asn 100	Gly	туr	тгр	Asn	Ser 105	⊤hr	Leu	Arg	тгр	Pro 110	Gly	Ser
55	Тyr	Ser	Va] 115	Ser	Ile	Gln	Asn	Va] 120	Asp	Asp	Asn	Asn	Asn 125	Thr	Asn	Val

	Тhr	Asp 130	Phe	Ala	Pro	Lys	Asn 135	Gln	Asp	Glu	Ser	Arg 140	Glu	Val	Lys	Tyr
5	Тhr 145	туг	Gly	Туr	Lys	Тhr 150	Gly	Gly	Asp	Phe	Ser 155	Ile	Asn	Arg	Gly	Gly 160
	Leu	Thr	Gly	Asn	Ile 165	Thr	Lys	Glu	Ser	Asn 170	Туг	Ser	Glu	Тhr	I]e 175	Ser
10	Туr	Gln	Gln	Pro 180	Ser	Туr	Arg	Thr	Leu 185	Leu	Asp	Gln	Ser	Thr 190	Ser	His
	Lys	Gly	Val 195	Gly	тгр	Lys	Val	G]u 200	Ala	His	Leu	Ile	Asn 205	Asn	Met	Gly
15	His	Asp 210	His	Thr	Arg	Gln	Leu 215	Thr	Asn	Asp	Ser	Asp 220	Asn	Arg	Thr	Lys
	Ser 225	Glu	Ile	Phe	Ser	Leu 230	Тhr	Arg	Asn	Gly	Asn 235	Leu	тгр	Ala	Lys	Asp 240
20	Asn	Phe	Thr	Pro	Lys 245	Asp	Lys	Met	Pro	Va1 250	Thr	Val	Ser	Glu	G]y 255	Phe
	Asn	Pro	Glu	Phe 260	Leu	Ala	Val	Met	Ser 265	His	Asp	Lys	Lys	Asp 270	Lys	Gly
25	Lys	Ser	G]n 275	Phe	Val	Val	His	туг 280	Lys	Arg	Ser	Met	Asp 285	Glu	Phe	Lys
	Ile	Asp 290	Тгр	Asn	Arg	His	Gly 295	Phe	тгр	Gly	Туr	Тгр 300	Ser	Gly	Glu	Asn
30	Ніs 305	Val	Asp	Lys	Lys	Glu 310	Glu	Lys	Leu	Ser	A]a 315	Leu	Туr	Glu	Val	Asp 320
	Тгр	Lys	Thr	His	Asn 325	Val	Lys	Phe	Val	Lys 330	Val	Leu	Asn	Asp	Asn 335	Glu
25	Lys	Lys														
30	<210 <211 <212 <213)> L> 2> }>	26 351 PRT Stap	ohyla	ococo	cus a	aureu	ıs								
40	<400 Met 1)> Lys	26 Asn	Lys	Lys 5	Arg	Val	Leu	Ile	Ala 10	Ser	Ser	Leu	Ser	Cys 15	Ala
_	Ile	Leu	Leu	Leu 20	Ser	Ala	Ala	Thr	тhr 25	Gln	Ala	Asn	Ser	Ala 30	His	Lys
45	Asp	Ser	Gln 35	Asp	Gln	Asn	Lys	Lys 40	Glu	His	Val	Asp	Lys 45	Ser	Gln	Gln
	Lys	Asp 50	Lys	Arg	Asn	Val	Thr 55	Asn	Lys	Asp	Lys	Asn 60	Ser	Тhr	Ala	Pro
50	Asp 65	Asp	Ile	Gly	Lys	Asn 70	Gly	Lys	Ile	Тhr	Lys 75	Arg	Thr	Glu	Thr	Val 80
	Туr	Asp	Glu	Lys	Thr 85	Asn	Ile	Leu	Gln	Asn 90	Leu	Gln	Phe	Asp	Phe 95	Ile
55	Asp	Asp	Pro	Thr 100	туr	Asp	Lys	Asn	Va] 105	Leu	Leu	Val	Lys	Lys 110	Gln	Gly

	Ser	Ile	His 115	Ser	Asn	Leu	Lys	Phe 120	Glu	Ser	His	Lys	Glu 125	Glu	Lys	Asn
5	Ser	Asn 130	тгр	Leu	Lys	туг	Pro 135	Ser	Glu	туr	His	Va] 140	Asp	Phe	Gln	Val
	Lys 145	Arg	Asn	Arg	Lys	Thr 150	Glu	I]e	Leu	Asp	G]n 155	Leu	Pro	Lys	Asn	Lys 160
	Ile	Ser	Тhr	Ala	Lys 165	Val	Asp	Ser	Thr	Phe 170	Ser	⊤yr	Ser	Ser	Gly 175	Gly
10	Lys	Phe	Asp	Ser 180	⊤hr	Lys	Gly	Ile	Gly 185	Arg	Thr	Ser	Ser	Asn 190	Ser	Tyr
	Ser	Lys	Thr 195	Ile	Ser	туг	Asn	G]n 200	Gln	Asn	туr	Asp	Thr 205	Ile	Ala	Ser
15	Gly	Lys 210	Asn	Asn	Asn	Trp	His 215	Val	His	Trp	Ser	Va] 220	Ile	Ala	Asn	Asp
	Leu 225	Lys	Туr	Gly	Gly	Glu 230	Val	Lys	Asn	Arg	Asn 235	Asp	Glu	Leu	Leu	Phe 240
20	Tyr	Arg	Asn	Thr	Arg 245	Ile	Ala	Thr	Val	G]u 250	Asn	Pro	Glu	Leu	Ser 255	Phe
	Ala	Ser	Lys	туг 260	Arg	туг	Pro	Ala	Leu 265	Val	Arg	Ser	Gly	Phe 270	Asn	Pro
25	Glu	Phe	Leu 275	Thr	Tyr	Leu	Ser	Asn 280	Glu	Lys	Ser	Asn	Glu 285	Lys	Thr	Gln
	Phe	Glu 290	Val	тhr	Тyr	тhr	Arg 295	Asn	Gln	Asp	Ile	Leu 300	Lys	Asn	Arg	Pro
30	G]y 305	Ile	His	туг	Ala	Pro 310	Pro	Ile	Leu	Glu	Lys 315	Asn	Lys	Asp	Gly	Gln 320
	Arg	Leu	Ile	Val	⊤hr 325	Туг	Glu	Val	Asp	Тгр 330	Lys	Asn	Lys	Тhr	Va] 335	Lys
35	Val	Val	Asp	Lys 340	⊤yr	Ser	Asp	Asp	Asn 345	Lys	Pro	⊤yr	Lys	Glu 350	Gly	
40	<210 <211 <212 <212)> 1> 2> 3>	27 177 PRT Stap	ohylo	ococo	cus a	aurei	JS								
40	<400 Met)> Lys	27 Ser	Asn	Lys	Ser	Leu	Ala	Met	Ile	Val	Val	Ala	Ile	I]e	Ile
	1 Val	Gly	Val	Leu	5 Ala	Phe	Gln	Phe	Met	10 Asn	His	⊤hr	Gly	Pro	15 Phe	Lys
45	Lys	Gly	Thr	20 Asn	His	Glu	Thr	Val	25 Gln	Asp	Leu	Asn	Gly	30 Lys	Asp	Lys
	Val	His	35 Val	Gln	Ara	Val	Val	40 Asp	Glv	Asp	Thr	Phe	45´ Ile	Ala	Asn	Gln
50	۵sn	50 61v	LVS	Glu	Tle	l vs	55 Val	Ara	Гец	Tle	Glv	60 Val	Asn	Thr	Pro	Glu
	65	319	_, _	0.0	110	70		/y	200	110	75	,	,,			80
55	⊤hr	Val	Lys	Pro	Asn 85	Тhr	Pro	Val	Gln	Pro 90	Phe	Gly	Lys	Glu	А]а 95	Ser
	Asn	туг	Ser	Lys	Lys	Thr	Leu	Thr	Asn	Gln	Asp	Val	туг	Leu	Glu	Tyr

100 105 110 Asp Lys Glu Lys Gln Asp Arg Tyr Gly Arg Thr Leu Ala Tyr Val Trp 115 120 125 5 Ile Ser Lys Asp Arg Met Tyr Asn Lys Glu Leu Val Glu Lys Gly Leu 130 135 140 Ala Arg Glu Lys Tyr Phe Ser Pro Asn Gly Lys Tyr Arg Asn Val Phe 145 150 155 160 Ile Glu Ala Gln Asn Lys Ala Lys Gln Gln Lys Leu Asn Ile Trp Ser 165 170 175 10 Lys 28 2271 <210> 15 <211> <212> PRT <213> Staphylococcus aureus <400> Met Ser Lys Arg Gln Lys Ala Phe His Asp Ser Leu Ala Asn Glu Lys 1 5 10 15 20 Thr Arg Val Arg Leu Tyr Lys Ser Gly Lys Asn Trp Val Lys Ser Gly 20 25 30 Ile Lys Glu Ile Glu Met Phe Lys Ile Met Gly Leu Pro Phe Ile Ser 40 45 25 His Ser Leu Val Ser Gln Asp Asn Gln Ser Ile Ser Lys Lys Met Thr 50 55 60 Gly Tyr Gly Leu Lys Thr Thr Ala Val Ile Gly Gly Ala Phe Thr Val 65 70 75 80 30 Asn Met Leu His Asp Gln Gln Ala Phe Ala Ala Ser Asp Ala Pro Leu 85 90 95 Thr Ser Glu Leu Asn Thr Gln Ser Glu Thr Val Gly Asn Gln Asn Ser 100 105 110 35 Thr Thr Ile Glu Ala Ser Thr Ser Thr Ala Asp Ser Thr Ser Val Thr 115 120 125 Lys Asn Ser Ser Ser Val Gln Thr Ser Asn Ser Asp Thr Val Ser Ser 130 135 140 40 Glu Lys Ser Glu Lys Val Thr Ser Thr Thr Asn Ser Thr Ser Asn Gln 145 150 155 160 Gln Glu Lys Leu Thr Ser Thr Ser Glu Ser Thr Ser Ser Lys Asn Thr 165 170 175 45 Thr Ser Ser Asp Thr Lys Ser Val Ala Ser Thr Ser Ser Thr Glu 180 185 190 Gln Pro Ile Asn Thr Ser Thr Asn Gln Ser Thr Ala Ser Asn Asn Thr 195 200 205 50 Ser Gln Ser Thr Thr Pro Ser Ser Val Asn Leu Asn Lys Thr Ser Thr 210 215 220 Thr Ser Thr Ser Thr Ala Pro Val Lys Leu Arg Thr Phe Ser Arg Leu 225 230 235 240 225 55 Ala Met Ser Thr Phe Ala Ser Ala Ala Thr Thr Thr Ala Val Thr Ala 245 250 255

EP 2 510 947 A1

	Asn	Thr	Ile	Thr 260	Val	Asn	Lys	Asp	Asn 265	Leu	Lys	Gln	Туr	Met 270	Thr	Thr
5	Ser	Gly	Asn 275	Ala	Thr	Туr	Asp	G]n 280	Ser	Thr	Gly	Ile	Val 285	Thr	Leu	Thr
	Gln	Asp 290	Ala	туr	Ser	Gln	Lys 295	Gly	Ala	Ile	Thr	Leu 300	Gly	Thr	Arg	Ile
10	Asp 305	Ser	Asn	Lys	Ser	Phe 310	His	Phe	Ser	Gly	Lys 315	Val	Asn	Leu	Gly	Asn 320
	Lys	Туr	Glu	Gly	Ніs 325	Gly	Asn	Gly	Gly	Asp 330	Gly	Ile	Gly	Phe	Ala 335	Phe
15	Ser	Pro	Gly	Va1 340	Leu	Gly	Glu	Thr	Gly 345	Leu	Asn	Gly	Ala	Ala 350	Val	Gly
	Ile	Gly	G]y 355	Leu	Ser	Asn	Ala	Phe 360	Gly	Phe	Lys	Leu	Asp 365	Thr	туr	His
20	Asn	Thr 370	Ser	Lys	Pro	Asn	Ser 375	Ala	Ala	Lys	Ala	Asn 380	Ala	Asp	Pro	Ser
	Asn 385	Val	Ala	Gly	Gly	G]y 390	Ala	Phe	Gly	Ala	Phe 395	Val	Thr	Thr	Asp	Ser 400
25	туr	Gly	Val	Ala	Thr 405	Thr	туr	Thr	Ser	Ser 410	Ser	Thr	Ala	Asp	Asn 415	Ala
	Ala	Lys	Leu	Asn 420	Val	Gln	Pro	Thr	Asn 425	Asn	Thr	Phe	Gln	Asp 430	Phe	Asp
30	Ile	Asn	Tyr 435	Asn	Gly	Asp	Thr	Lys 440	Val	Met	Thr	Val	Lys 445	туr	Ala	Gly
	Gln	Thr 450	тгр	Thr	Arg	Asn	Ile 455	Ser	Asp	Trp	Ile	а1а 460	Lys	Ser	Gly	Thr
35	Thr 465	Asn	Phe	Ser	Leu	Ser 470	Met	Thr	Ala	Ser	Thr 475	Gly	Gly	Ala	Thr	Asn 480
30	Leu	Gln	Gln	Val	G]n 485	Phe	Gly	Thr	Phe	Glu 490	Туr	Thr	Glu	Ser	Ala 495	Val
40	Thr	Gln	Val	Arg 500	Tyr	Val	Asp	Val	Thr 505	Thr	Gly	Lys	Asp	I]e 510	Ile	Pro
40	Pro	Lys	Thr 515	Туr	Ser	Gly	Asn	Va1 520	Asp	Gln	Val	Val	Thr 525	Ile	Asp	Asn
45	Gln	G]n 530	Ser	Ala	Leu	Thr	Ala 535	Lys	Gly	Туr	Asn	туг 540	Thr	Ser	Val	Asp
	Ser 545	Ser	туr	Ala	Ser	Thr 550	Туr	Asn	Asp	Thr	Asn 555	Lys	Thr	Val	Lys	Met 560
50	Thr	Asn	Ala	Gly	Gln 565	Ser	Val	Thr	туr	туг 570	Phe	Thr	Asp	Val	Lys 575	Ala
50	Pro	Thr	Val	Thr 580	Val	Gly	Asn	Gln	Thr 585	Ile	Glu	Val	Gly	Lys 590	Thr	Met
	Asn	Pro	Ile 595	Val	Leu	Thr	Thr	Thr 600	Asp	Asn	Gly	Thr	Gly 605	Thr	Val	Thr
55	Asn	Thr 610	Val	Thr	Gly	Leu	Pro 615	Ser	Gly	Leu	Ser	туг 620	Asp	Ser	Ala	Thr

Asn Ser Ile Ile Gly Thr Pro Thr Lys Ile Gly Gln Ser Thr Val Thr 625 630 635 640 Val Val Ser Thr Asp Gln Ala Asn Asn Lys Ser Thr Thr Thr Phe Thr 645 650 655 5 Ile Asn Val Val Asp Thr Thr Ala Pro Thr Val Thr Pro Ile Gly Asp 660 665 670 Gln Ser Ser Glu Val Tyr Ser Pro Ile Ser Pro Ile Lys Ile Ala Thr 675 680 685 10 Gln Asp Asn Ser Gly Asn Ala Val Thr Asn Thr Val Thr Gly Leu Pro 690 695 700 Ser Gly Leu Thr Phe Asp Ser Thr Asn Asn Thr Ile Ser Gly Thr Pro 705 710 715 720 15 Thr Asn Ile Gly Thr Ser Thr Ile Ser Ile Val Ser Thr Asp Ala Ser 725 730 735 Gly Asn Lys Thr Thr Thr Thr Phe Lys Tyr Glu Val Thr Arg Asn Ser 740 745 750 20 Met Ser Asp Ser Val Ser Thr Ser Gly Ser Thr Gln Gln Ser Gln Ser 755 760 765 Val Ser Thr Ser Lys Ala Asp Ser Gln Ser Ala Ser Thr Ser Thr Ser 770 775 780 25 Gly Ser Ile Val Val Ser Thr Ser Ala Ser Thr Ser Lys Ser Thr Ser 785 790 795 800 Val Ser Leu Ser Asp Ser Val Ser Ala Ser Lys Ser Leu Ser Thr Ser 805 810 815 Glu Ser Asn Ser Val Ser Ser Ser Thr Ser Thr Ser Leu Val Asn Ser 820 825 830 30 Gln Ser Val Ser Ser Ser Met Ser Asp Ser Ala Ser Lys Ser Thr Ser 835 840 845 Leu Ser Asp Ser Ile Ser Asn Ser Ser Ser Thr Glu Lys Ser Glu Ser 850 855 860 35 Leu Ser Thr Ser Thr Ser Asp Ser Leu Arg Thr Ser Thr Ser Leu Ser 865 870 875 880 Asp Ser Leu Ser Met Ser Thr Ser Gly Ser Leu Ser Lys Ser Gln Ser 885 890 895 40 Leu Ser Thr Ser Ile Ser Gly Ser Ser Ser Thr Ser Ala Ser Leu Ser 900 905 910 Asp Ser Thr Ser Asn Ala Ile Ser Thr Ser Thr Ser Leu Ser Glu Ser 915 920 925 45 Ala Ser Thr Ser Asp Ser Ile Ser Ile Ser Asn Ser Ile Ala Asn Ser 930 935 940 Gln Ser Ala Ser Thr Ser Lys Ser Asp Ser Gln Ser Thr Ser Ile Ser 945 950 955 960 50 Leu Ser Thr Ser Asp Ser Lys Ser Met Ser Thr Ser Glu Ser Leu Ser 965 970 975 Asp Ser Thr Ser Thr Ser Gly Ser Val Ser Gly Ser ∟eu Ser Ile Ala 980 985 990 55 Ala Ser Gln Ser Val Ser Thr Ser Thr Ser Asp Ser Met Ser Thr Ser

			995					1000)				1005	,		
	Glu	Ile 1010	Val)	Ser	Asp	Ser	Ile 1015	Ser	⊤hr	Ser	Gly	Ser 1020	Leu)	Ser	Ala	Ser
5	Asp 1025	Ser	Lys	Ser	Met	Ser 1030	Val)	Ser	Ser	Ser	Met 1035	Ser	Thr	Ser	Gln	Ser 1040
	Gly	Ser	Thr	Ser	Glu 1045	Ser 5	Leu	Ser	Asp	Ser 1050	Gln)	Ser	Thr	Ser	Asp 1055	Ser
10	Asp	Ser	Lys	Ser 1060	Leu)	Ser	Gln	Ser	⊤hr 1065	Ser 5	Gln	Ser	Gly	Ser 1070	Thr)	Ser
	Thr	Ser	Thr 1075	Ser	Thr	Ser	Ala	Ser 1080	Val)	Arg	Thr	Ser	Glu 1085	Ser	Gln	Ser
15	Thr	Ser 1090	Gly)	Ser	Met	Ser	Ala 1095	Ser 5	Gln	Ser	Asp	Ser 1100	Met)	Ser	Ile	Ser
	Thr 1105	Ser	Phe	Ser	Asp	Ser 1110	⊤hr)	Ser	Asp	Ser	Lys 1115	Ser	Ala	Ser	Thr	Ala 1120
20	Ser	Ser	Glu	Ser	Ile 1125	Ser	Gln	Ser	Ala	Ser 1130	⊤hr)	Ser	Thr	Ser	Gly 1135	Ser
	Val	Ser	Thr	Ser 1140	Thr)	Ser	Leu	Ser	⊤hr 1145	Ser	Asn	Ser	Glu	Arg 1150	Thr)	Ser
25	Тhr	Ser	Met 1155	Ser	Asp	Ser	⊤hr	Ser 1160	Leu)	Ser	⊤hr	Ser	Glu 1165	Ser	Asp	Ser
	Ile	Ser 1170	Glu)	Ser	Тhr	Ser	⊤hr 1175	Ser	Asp	Ser	Ile	Ser 1180	Glu)	Ala	Ile	Ser
30	Ala 1185	Ser	Glu	Ser	Thr	Phe 1190	ıle)	Ser	Leu	Ser	Glu 1195	Ser	Asn	Ser	Thr	Ser 1200
	Asp	Ser	Glu	Ser	Gln 1205	Ser	Ala	Ser	Ala	Phe 1210	Leu	Ser	Glu	Ser	Leu 1215	Ser
35	Glu	Ser	Thr	Ser 1220	Glu)	Ser	⊤hr	Ser	Glu 1225	_ser	Val	Ser	Ser	Ser 1230	Thr)	Ser
	Glu	Ser	Thr 1235	Ser	Leu	Ser	Asp	Ser 1240	⊤hr)	Ser	Glu	Ser	Gly 1245	Ser	Thr	Ser
40	Thr	Ser 1250	Leu)	Ser	Asn	Ser	⊤hr 1255	Ser	G∣y	Ser	⊤hr	Ser 1260	ıle)	Ser	Thr	Ser
	тhr 1265	Ser	Ile	Ser	Glu	Ser 1270	⊤hr)	Ser	⊤hr	Phe	Lys 1275	Ser	Glu	Ser	Val	Ser 1280
45	Thr	Ser	Leu	Ser	Met 1285	Ser	⊤hr	Ser	⊤hr	Ser 1290	Leu)	Ser	Asp	Ser	Thr 1295	Ser
	Leu	Ser	Thr	Ser 1300	Leu)	Ser	Asp	Ser	⊤hr 1305	Ser 5	Asp	Ser	Lys	Ser 1310	Asp)	Ser
50	Leu	Ser	Thr 1315	Ser	Met	Ser	Thr	Ser 1320	Asp)	Ser	Ile	Ser	Thr 1325	Ser	Lys	Ser
	Asp	Ser 1330	Ile)	Ser	Thr	Ser	Thr 1335	Ser	Leu	Ser	Gly	Ser 1340	Thr)	Ser	Glu	Ser
55	Glu 1345	Ser	Asp	Ser	Thr	Ser 1350	Ser)	Ser	Glu	Ser	Lys 1355	Ser	Asp	Ser	Thr	Ser 1360
~~	Met	Ser	Ile	Ser	Met 1365	Ser	Gln	Ser	⊤hr	Ser 1370	G]Y	Ser	Thr	Ser	Thr 1375	Ser

	Thr Se	er Thr	Ser 1380	Leu)	Ser	Asp	Ser	Thr 1385	Ser	Thr	Ser	Leu	Ser 1390	Leu)	Ser
5	Ala Se	er Met 139	Asn 5	Gln	Ser	Gly	Val 1400	Asp)	Ser	Asn	Ser	Ala 1405	Ser	Gln	Ser
	Ala Se 14	er Asn 110	Ser	Тhr	Ser	Thr 1415	Ser	Thr	Ser	Glu	Ser 1420	Asp)	Ser	Gln	Ser
10	Thr Se 1425	er Ser	⊤yr	Thr	Ser 1430	Gln)	Ser	Thr	Ser	G]n 1435	Ser 5	Glu	Ser	Thr	Ser 1440
	Thr Se	er Thr	Ser	Leu 1445	Ser 5	Asp	Ser	Thr	Ser 1450	ıle)	Ser	Lys	Ser	тhr 1455	Ser
15	Gln Se	er Gly	Ser 1460	Val)	Ser	Тhr	Ser	Ala 1465	Ser	Leu	Ser	Gly	Ser 147(Glu)	Ser
	Glu Se	er Asp 147	Ser 5	Gln	Ser	Ile	Ser 1480	Thr)	Ser	Ala	Ser	Glu 1485	Ser	Тhr	Ser
20	Glu Se 14	er Ala 190	Ser	Thr	Ser	Leu 1495	Ser	Asp	Ser	Thr	Ser 1500	Thr)	Ser	Asn	Ser
	Gly Se 1505	er Ala	Ser	Тhr	Ser 151(Thr)	Ser	Leu	Asn	Asn 1515	Ser 5	Ala	Ser	Ala	Ser 1520
25	Glu Se	er Asp	Leu	Ser 1525	Ser 5	Thr	Ser	Leu	Ser 1530	Asp)	Ser	Thr	Ser	Ala 1535	Ser
	Met G	ln Ser	Ser 1540	Glu)	Ser	Asp	Ser	G]n 1545	Ser 5	Thr	Ser	Ala	Ser 1550	Leu)	Ser
30	Asp Se	er Leu 155	Ser 5	Thr	Ser	Thr	Ser 1560	Asn)	Arg	Met	Ser	Thr 1565	Ile 5	Ala	Ser
	Leu Se 1	er Thr 570	Ser	Val	Ser	Thr 1575	Ser	Glu	Ser	Gly	Ser 1580	Thr)	Ser	Glu	Ser
35	Thr Se 1585	er Glu	Ser	Asp	Ser 1590	Thr)	Ser	Thr	Ser	Leu 1595	Ser	Asp	Ser	Gln	Ser 1600
	Thr Se	er Arg	Ser	тhr 1605	Ser 5	Ala	Ser	Gly	Ser 1610	Ala)	Ser	Thr	Ser	Thr 1615	Ser
40	Thr Se	er Asp	Ser 1620	Arg)	Ser	Thr	Ser	Ala 1625	Ser	Thr	Ser	Thr	Ser 1630	Met)	Arg
	Thr Se	er Thr 163	Ser 5	Asp	Ser	Gln	Ser 1640	Met)	Ser	Leu	Ser	Thr 1645	Ser	Thr	Ser
45	Thr Se 10	er Met 550	Ser	Asp	Ser	тhr 1655	Ser	Leu	Ser	Asp	Ser 1660	Val)	Ser	Asp	Ser
	Thr Se 1665	er Asp	Ser	Thr	Ser 167(Ala)	Ser	Thr	Ser	Gly 1675	Ser	Met	Ser	Val	Ser 1680
50	Ile Se	er Leu	Ser	Asp 1685	Ser 5	Thr	Ser	Тhr	Ser 1690	Thr)	Ser	Ala	Ser	Glu 1695	Val 5
50	Met Se	er Ala	Ser 1700	Ile)	Ser	Asp	Ser	Gln 1705	Ser 5	Met	Ser	Glu	Ser 171(Val)	Asn
55	Asp Se	er Glu 171	Ser 5	Val	Ser	Glu	Ser 1720	Asn)	Ser	Glu	Ser	Asp 1725	Ser 5	Lys	Ser
00	Met Se 17	er Gly 730	Ser	Thr	Ser	Va] 1735	Ser	Asp	Ser	Gly	Ser 1740	Leu)	Ser	Val	Ser

Thr Ser Leu Arg Lys Ser Glu Ser Val Ser Glu Ser Ser Leu Ser 1745 1750 1755 1760 Cys Ser Gln Ser Met Ser Asp Ser Val Ser Thr Ser Asp Ser Ser Ser 1765 1770 1775 5 Leu Ser Val Ser Thr Ser Leu Arg Ser Ser Glu Ser Val Ser Glu Ser 1785 1780 1790 Asp Ser Leu Ser Asp Ser Lys Ser Thr Ser Gly Ser Thr Ser Thr Ser 1795 1800 1805 10 Thr Ser Gly Ser Leu Ser Thr Ser Thr Ser Leu Ser Gly Ser Glu Ser 1815 1810 1820 Val Ser Glu Ser Thr Ser Leu Ser Asp Ser Ile Ser Met Ser Asp Ser 1825 1830 1835 1840 1840 15 Thr Ser Thr Ser Asp Ser Asp Ser Leu Ser Gly Ser Ile Ser Leu Ser 1845 1850 1855 Gly Ser Thr Ser Leu Ser Thr Ser Asp Ser Leu Ser Asp Ser Lys Ser 1860 1865 1870 20 Leu Ser Ser Ser Gln Ser Met Ser Gly Ser Glu Ser Thr Ser Thr Ser 1875 1880 1885 Val Ser Asp Ser Gln Ser Ser Ser Thr Ser Asn Ser Gln Phe Asp Ser 1890 1895 1900 25 Met Ser Ile Ser Ala Ser Glu Ser Asp Ser Met Ser Thr Ser Asp Ser 1905 1910 1915 1920 1905 1920 Ser Ser Ile Ser Gly Ser Asn Ser Thr Ser Thr Ser Leu Ser Thr Ser 1925 1930 1935 Asp Ser Met Ser Gly Ser Val Ser Val Ser Thr Ser Thr Ser Leu Ser 1940 1945 1950 30 Asp Ser Ile Ser Gly Ser Thr Ser Val Ser Asp Ser Ser Ser Thr Ser 1955 1960 1965 Thr Ser Thr Ser Leu Ser Asp Ser Met Ser Gln Ser Gln Ser Thr Ser 1970 1975 1980 35 Thr Ser Ala Ser Gly Ser Leu Ser Thr Ser Ile Ser Thr Ser Met Ser 1985 1990 1995 2000 2000 Met Ser Ala Ser Thr Ser Ser Gln Ser Thr Ser Val Ser Thr Ser 2005 2010 2015 40 2015 Leu Ser Thr Ser Asp Ser Ile Ser Asp Ser Thr Ser Ile Ser Ile Ser 2020 2025 2030 Gly Ser Gln Ser Thr Val Glu Ser Glu Ser Thr Ser Asp Ser Thr Ser 2035 2040 2045 45 Ile Ser Asp Ser Glu Ser Leu Ser Thr Ser Asp Ser Asp Ser Thr Ser 2050 2055 2060 Thr Ser Thr Ser Asp Ser Thr Ser Gly Ser Thr Ser Thr Ser Ile Ser 2065 2070 2075 2080 50 Glu Ser Leu Ser Thr Ser Gly Ser Gly Ser Thr Ser Val Ser Asp Ser 2085 2090 2095 Thr Ser Met Ser Glu Ser Asn Ser Ser Ser Val Ser Met Ser Gln Asp 2100 2105 2110 2100 55 Lys Ser Asp Ser Thr Ser Ile Ser Asp Ser Glu Ser Val Ser Thr Ser

		2115		2	2120		212	25	
	Thr Ser 213	Thr Ser D	Leu Ser	Thr S 2135	Ser Asp	Ser ⊤hr	Ser Thi 2140	Ser G	ilu Ser
5	Leu Ser 2145	Thr Ser	Met Ser 215	Gly S D	Ser Gln	Ser Ile 2155	Ser Asp) Ser T	hr Ser 2160
	Thr Ser	Met Ser	Gly Ser 2165	Thr S	Ser ⊤hr	Ser Glu 2170	Ser Asr	ISerM 2	let His 175
10	Pro Ser	Asp Ser 218	Met Ser)	Met H	His His 2185	Thr His	Ser Thi	Ser T 2190	hr Ser
	Arg Leu	Ser Ser 2195	Glu Ala	Thr T 2	Thr Ser 2200	Thr Ser	Glu Ser 220	Gln S 95	er Thr
15	Leu Ser 221	Ala Thr 0	Ser Glu	Vа] т 2215	「hr Lys	His Asn	Gly Thr 2220	Pro A	la Gln
	Ser Glu 2225	Lys Arg	Leu Pro 2230	Asp T D	⊺hr Gly	Asp Ser 2235	Ile Lys	Gln A	sn Gly 2240
20	Leu Leu	Gly Gly	Val Met 2245	⊤hr L	eu Leu	Val Gly 2250	Leu Gly	′Leu M 2	let Lys 255
	Arg Lys	Lys Lys 226	Lys Asp)	Glu A	Asn Asp 2265	Gln Asp	Asp Ser	Gln A 2270	la
25	<210> <211> <212> <213>	29 2478 PRT Staphyle	ococcus a	aureus	5				
30	<400> Met Asn 1	29 Leu Phe	Arg Gln 5	Gln L	ys Phe	Ser Ile 10	Arg Lys	5 Phe A 1	sn Val 5
	Gly Ile	Phe Ser 20	Ala Leu	Ile A	Ala ⊤hr 25	Val ⊤hr	Phe Ile	e Ser T 30	hr Asn
35	Pro Thr	Thr Ala 35	Ser Ala	Ala G 4	Glu Gln 40	Asn Gln	Pro Ala 45	ιGln A	sn Gln
	Pro Ala 50	Gln Pro	Ala Asp	Ala A 55	Asn ⊤hr	Gln Pro	Asn Ala 60	ι Asn A	la Gly
40	Ala Gln 65	Ala Asn	Pro Thr 70	Ala G	Gln Pro	Ala Ala 75	Pro Ala	ı Asn G	aln Gly 80
	Gln Pro	Ala Val	Gln Pro 85	Ala A	Asn Gln	Gly Gly 90	Gln Ala	i Asn P g	ro Ala 95
45	Gly Gly	Ala Ala 100	Gln Pro	Asn T	⊺hr Gln 105	Pro Ala	Gly Glr	i G]y ∆ 110	sp Gln
	Ala Asp	Pro Asn 115	Asn Ala	Ala G 1	Gln Ala L20	Gln Pro	Gly Asr 125	i Gln A	la Thr
50	Pro Ala 130	Asn Gln	Ala Gly	Gln 0 135	Gly Asn	Asn Gln	Ala Thi 140	Pro A	sn Asn
	Asn Ala 145	Thr Pro	Ala Asn 150	Gln T	「hr Gln	Pro Ala 155	Asn Ala	ι Pro A	la Ala 160
55	Ala Gln	Pro Ala	Ala Pro 165	Val A	Ala Ala	Asn Ala 170	Gln Thr	'Gln⊿ 1	sp Pro 75
00	Asn Ala	Ser Asn 180	Thr Gly	Glu G	Gly Ser 185	Ile Asn	Thr Th	' Leu T 190	hr Phe

	Asp	Asp	Pro 195	Ala	Ile	Ser	Thr	Asp 200	Glu	Asn	Arg	Gln	Asp 205	Pro	Thr	Val
5	Thr	Val 210	Thr	Asp	Lys	Val	Asn 215	Gly	туr	Ser	Leu	Ile 220	Asn	Asn	Gly	Lys
	I]e 225	Gly	Phe	Val	Asn	Ser 230	Glu	Leu	Arg	Arg	Ser 235	Asp	Met	Phe	Asp	Lys 240
10	Asn	Asn	Pro	Gln	Asn 245	туr	Gln	Ala	Lys	G]y 250	Asn	Val	Ala	Ala	Leu 255	Gly
	Arg	Val	Asn	Ala 260	Asn	Asp	Ser	Thr	Asp 265	His	Gly	Asn	Phe	Asn 270	Gly	Ile
15	Ser	Lys	Thr 275	Val	Asn	Val	Lys	Pro 280	Asp	Ser	Glu	Leu	Ile 285	Ile	Asn	Phe
	Тhr	⊤hr 290	Met	Gln	Thr	Asn	Ser 295	Lys	Gln	Gly	Ala	Thr 300	Asn	Leu	Val	Ile
20	Lys 305	Asp	Ala	Lys	Lys	Asn 310	Thr	Glu	Leu	Ala	Thr 315	Val	Asn	Val	Ala	Lys 320
20	Thr	Gly	Thr	Ala	His 325	Leu	Phe	Lys	Val	Pro 330	Thr	Asp	Ala	Asp	Arg 335	Leu
25	Asp	Leu	Gln	Phe 340	Ile	Pro	Asp	Asn	тhr 345	Ala	Val	Ala	Asp	Ala 350	Ser	Arg
23	Ile	Thr	Thr 355	Asn	Lys	Asp	Gly	туг 360	Lys	Туr	Tyr	Ser	Phe 365	Ile	Asp	Asn
20	Val	Gly 370	Leu	Phe	Ser	Gly	Ser 375	His	Leu	Тyr	Val	Lys 380	Asn	Arg	Asp	Leu
30	Ala 385	Pro	Lys	Ala	Thr	Asn 390	Asn	Lys	Glu	Тyr	Thr 395	Ile	Asn	Thr	Glu	Ile 400
95	Gly	Asn	Asn	Gly	Asn 405	Phe	Gly	Ala	Ser	Leu 410	Lys	Ala	Asp	Gln	Phe 415	Lys
35	туr	Glu	Val	⊤hr 420	Leu	Pro	Gln	Gly	va1 425	Thr	Туr	Val	Asn	Asn 430	Ser	Leu
	Thr	Thr	Thr 435	Phe	Pro	Asn	Gly	Asn 440	Glu	Asp	Ser	Thr	Va] 445	Leu	Lys	Asn
40	Met	Thr 450	Val	Asn	Туr	Asp	G]n 455	Asn	Ala	Asn	Lys	Va] 460	Thr	Phe	Thr	Ser
	G]n 465	Gly	Val	Тhr	Тhr	Ala 470	Arg	Gly	Тhr	His	тhr 475	Lys	Glu	Val	Leu	Phe 480
45	Pro	Asp	Lys	Ser	Leu 485	Lys	Leu	Ser	Тyr	Lys 490	Val	Asn	Val	Ala	Asn 495	Ile
	Asp	Тhr	Pro	Lys 500	Asn	Ile	Asp	Phe	Asn 505	Glu	Lys	Leu	Thr	туг 510	Arg	Thr
50	Ala	Ser	Asp 515	Val	Val	Ile	Asn	Asn 520	Ala	Gln	Pro	Glu	Va] 525	Тhr	Leu	Thr
	Ala	Asp 530	Pro	Phe	Ser	Val	Ala 535	Val	Glu	Met	Asn	Lys 540	Asp	Ala	Leu	Gln
55	G]n 545	Gln	Val	Asn	Ser	G1n 550	Val	Asp	Asn	Ser	His 555	туr	Thr	Тhr	Ala	Ser 560

Ile Ala Glu Tyr Asn Lys Leu Lys Gln Gln Ala Asp Thr Ile Leu Asn 565 570 575 Glu Asp Ala Asn His Val Lys Thr Ala Asn Arg Ala Ser Gln Ala Asp 580 585 590 5 Ile Asp Gly Leu Val Thr Lys Leu Gln Ala Ala Leu Ile Asp Asn Gln 595 600 605 Ala Ala Ile Ala Glu Leu Asp Thr Lys Ala Gln Glu Lys Val Thr Ala 610 615 620 10 Ala Gln Gln Ser Lys Lys Val Thr Gln Asp Glu Val Ala Ala Leu Val 625 630 635 640 Thr Lys Ile Asn Asn Asp Lys Asn Asn Ala Ile Ala Glu Ile Asn Lys 645 650 655 15 Gln Thr Thr Ala Gln Gly Val Thr Thr Glu Lys Asp Asn Gly Ile Ala 660 665 670 Val Leu Glu Gln Asp Val Ile Thr Pro Thr Val Lys Pro Gln Ala Lys 675 680 685 20 Gln Asp Ile Ile Gln Ala Val Thr Thr Arg Lys Gln Gln Ile Lys Lys 690 695 700 Ser Asn Ala Ser Leu Gln Asp Glu Lys Asp Val Ala Asn Asp Lys Ile 705 710 715 720 25 Gly Lys Ile Glu Thr Lys Ala Ile Lys Asp Ile Asp Ala Ala Thr Thr 725 730 735 Asn Ala Gln Val Glu Ala Ile Lys Thr Lys Ala Ile Asn Asp Ile Asn 740 745 750 Gln Thr Thr Pro Ala Thr Thr Ala Lys Ala Ala Ala Leu Glu Glu Phe 755 760 765 30 Asp Glu Val Val Gln Ala Gln Ile Asp Gln Ala Pro Leu Asn Pro Asp 770 775 780 Thr Thr Asn Glu Glu Val Ala Glu Ala Ile Glu Arg Ile Asn Ala Ala 785 790 795 800 35 Lys Val Ser Gly Val Lys Ala Ile Glu Ala Thr Thr Ala Gln Asp 805 810 815 Leu Glu Arg Val Lys Asn Glu Glu Ile Ser Lys Ile Glu Asn Ile Thr 820 825 830 40 Asp Ser Thr Gln Thr Lys Met Asp Ala Tyr Asn Glu Val Lys Gln Ala 835 840 845 Ala Thr Ala Arg Lys Ala Gln Asn Ala Thr Val Ser Asn Ala Thr Asn 850 855 860 45 Glu Glu Val Ala Glu Ala Asp Ala Ala Val Asp Ala Ala Gln Lys Gln 865 870 875 880 865 Gly Leu His Asp Ile Gln Val Val Lys Ser Lys Gln Glu Val Ala Asp 885 890 895 50 Thr Lys Ser Lys Val Leu Asp Lys Ile Asn Ala Ile Gln Thr Gln Ala 900 905 910 Lys Val Lys Pro Ala Ala Asp Thr Glu Val Glu Asn Ala Tyr Asn Thr 915 920 925 55 Arg Lys Gln Glu Ile Gln Asn Ser Asn Ala Ser Thr Thr Glu Glu Lys

	93	0				935					940				
	Gln Al 945	a Ala	Tyr	Тhr	Glu 950	Leu	Asp	⊤hr	Lys	Lys 955	Gln	Glu	Ala	Arg	Thr 960
5	Asn Le	u Asp	Ala	Ala 965	Asn	⊤hr	Asn	Ser	Asp 970	Val	тhr	Тhr	Ala	Lys 975	Asp
	Asn Se	r Ile	Ala 980	Ala	Ile	Asn	Gln	Va] 985	Gln	Ala	Ala	Thr	тhr 990	Lys	Lys
10	Ser As	р Аla 995	Lys	Ala	Glu	Ile	Ala 1000	Gln)	Lys	Ala	Ser	Glu 1005	Arg 5	Lys	Thr
	Ala Il 10	e Glu 10	Ala	Met	Asn	Asp 1015	Ser	⊤hr	Тhr	Glu	Glu 1020	G]n)	Gln	Ala	Ala
15	Lys As 1025	p Lys	Val	Asp	Gln 1030	Ala)	Val	Val	Тhr	Ala 1035	Asn 5	Ala	Asp	Ile	Asp 1040
	Asn Al	a Ala	Ala	Asn 104:	Asn 5	Asp	Val	Asp	Asn 105(Ala)	Lys	Тhr	Тhr	Asn 1055	Glu 5
20	Ala Th	r Ile	Ala 1060	Ala)	Ile	⊤hr	Pro	Asp 1065	Ala 5	Asn	Val	Lys	Pro 107(Ala)	Ala
	Lys Gl	n Ala 107	ıle 5	Ala	Asp	Lys	Va] 1080	Gln)	Ala	Gln	Glu	Thr 1085	Ala 5	Ile	Asp
25	Gly As 10	n Asn 90	Gly	Ser	Тhr	⊤hr 1095	Glu 5	Glu	Lys	Ala	A]a 1100	Ala)	Lys	Gln	Gln
	Val Gl 1105	n Thr	Glu	Lys	Thr 111(⊤hr)	Ala	Asp	Ala	A]a 1115	I]e	Asp	Ala	Ala	ніs 1120
30	Thr As	n Ala	Glu	Val 112	Glu 5	Ala	Ala	Lys	Lys 113(Ala)	Ala	Ile	Ala	Lys 1135	ile
	Glu Al	a Ile	Gln 1140	Pro)	Ala	⊤hr	Thr	⊤hr 1145	Lys 5	Asp	Asn	Ala	Lys 115(Glu)	Ala
35	Ile Al	a Thr 115	Lys 5	Ala	Asn	Glu	Arg 116(Lys)	Тhr	Ala	Ile	A]a 1165	Gln	⊤hr	Gln
	Asp Il 11	е Thr 70	Ala	Glu	Glu	I]e 1175	Ala 5	Ala	Ala	Asn	Ala 1180	Asp)	Val	Asp	Asn
40	Ala Va 1185	l Thr	Gln	Ala	Asn 119(Ser)	Asn	Ile	Glu	Ala 1195	Ala 5	Asn	Ser	Gln	Asn 1200
	Asp Va	l Asp	Gln	Ala 1205	Lys 5	⊤hr	Тhr	Gly	Glu 121(Asn)	Ser	I]e	Asp	Gln 1215	val
45	Thr Pr	o Thr	Val 1220	Asn)	Lys	Lys	Ala	⊤hr 1225	Ala 5	Arg	Asn	Glu	I]e 1230	Thr)	Ala
	Ile Le	u Asn 123	Asn 5	Lys	Leu	Gln	Glu 124(ıle)	Gln	Ala	тhr	Pro 1245	Asp	Ala	⊤hr
50	Asp Gl 12	u Glu 50	Lys	Gln	Ala	Ala 1255	Asp 5	Ala	Glu	Ala	Asn 1260	Thr)	Glu	Asn	Gly
	Lys Al 1265	a Asn	Gln	Ala	I]e 127(Ser)	Ala	Ala	Thr	⊤hr 1275	Asn 5	Ala	Gln	Val	Asp 1280
	Glu Al	a Lys	Ala	Asn 1285	Ala 5	Glu	Ala	Ala	I]e 129(Asn)	Ala	Val	Thr	Pro 1295	Lys
55	Val Va	l Lys	Lys 1300	Gln)	Ala	Ala	Lys	Asp 1305	Glu 5	Ile	Asp	Gln	Leu 1310	Gln)	Ala

	Thr Gln Thr Asn Val Ile Asn Asn Asp Gln Asn Ala Thr Thr Glu 1315 1320 1325	Glu
5	Lys Glu Ala Ala Ile Gln Gln Leu Ala Thr Ala Val Thr Asp Ala 1330 1335 1340	Lys
	Asn Asn Ile Thr Ala Ala Thr Asp Asp Asn Gly Val Asp Gln Ala 1345 1350 1355	Lys 1360
10	Asp Ala Gly Lys Asn Ser Ile Gln Ser Thr Gln Pro Ala Thr Ala 1365 1370 1375	Val
	Lys Ser Asn Ala Lys Asn Asp Val Asp Gln Ala Val Thr Thr Gln 1380 1385 1390	Asn
15	Gln Ala Ile Asp Asn Thr Thr Gly Ala Thr Thr Glu Glu Lys Asn 1395 1400 1405	Ala
15	Ala Lys Asp Leu Val Leu Lys Ala Lys Glu Lys Ala Tyr Gln Asp 1410 1415 1420	Ile
20	Leu Asn Ala Gln Thr Thr Asn Asp Val Thr Gln Ile Lys Asp Gln 1425 1430 1435	Ala 1440
20	Val Ala Asp Ile Gln Gly Ile Thr Ala Asp Thr Thr Ile Lys Asp 1445 1450 1450	val ;
25	Ala Lys Asp Glu Leu Ala Thr Lys Ala Asn Glu Gln Lys Ala Leu 1460 1465 1470	Ile
20	Ala Gln Thr Ala Asp Ala Thr Thr Glu Glu Lys Glu Gln Ala Asn 1475 1480 1485	Gln
30	Gln Val Asp Ala Gln Leu Thr Gln Gly Asn Gln Asn Ile Glu Asn 1490 1495 1500	Ala
50	Gln Ser Ile Asp Asp Val Asn Thr Ala Lys Asp Asn Ala Ile Gln 1505 1510 1515	Ala 1520
25	Ile Asp Pro Ile Gln Ala Ser Thr Asp Val Lys Thr Asn Ala Arg 1525 1530 1535	Ala ;
35	Glu Leu Leu Thr Glu Met Gln Asn Lys Ile Thr Glu Ile Leu Asn 1540 1545 1550	Asn
10	Asn Glu Thr Thr Asn Glu Glu Lys Gly Asn Asp Ile Gly Pro Val 1555 1560 1565	Arg
40	Ala Ala Tyr Glu Glu Gly Leu Asn Asn Ile Asn Ala Ala Thr Thr 1570 1575 1580	Thr
45	Gly Asp Val Thr Thr Ala Lys Asp Thr Ala Val Gln Lys Val Gln 1585 1590 1595	Gln 1600
45	Leu His Ala Asn Pro Val Lys Lys Pro Ala Gly Lys Lys Glu Leu 1605 1610 1615	Asp
	Gln Ala Ala Asp Lys Lys Thr Gln Ile Glu Gln Thr Pro Asn 1620 1625 1630	Ala
50	Ser Gln Gln Glu Ile Asn Asp Ala Lys Gln Glu Val Asp Thr Glu 1635 1640 1645	Leu
	Asn Gln Ala Lys Thr Asn Val Asp Gln Ser Ser Thr Asn Glu Tyr 1650 1655 1660	Val
55	Asp Asn Ala Val Lys Glu Gly Lys Ala Lys Ile Asn Ala Val Lys 1665 1670 1675	Thr 1680

	Phe	Ser	Glu	Туr	Lys 1685	Lys	Asp	Ala	Leu	Ala 1690	Lys)	Ile	Glu	Asp	Ala 1695	Tyr
5	Asn	Ala	Lys	Val 1700	Asn)	Glu	Ala	Asp	Asn 1705	Ser	Asn	Ala	Ser	Thr 171(Ser)	Ser
0	Glu	Ile	Ala 1715	Glu	Ala	Lys	Gln	Lys 1720	Leu)	Ala	Glu	Leu	Lys 1725	Gln	Thr	Ala
	Asp	Gln 1730	Asn)	Val	Asn	Gln	Ala 1735	Thr 5	Ser	Lys	Asp	Asp 1740	I]e)	Glu	Val	Gln
10	I]e 1745	His 5	Asn	Asp	Leu	Asp 1750	Asn)	Ile	Asn	Asp	Туг 1755	Thr	I]e	Pro	⊤hr	Gly 1760
	Lys	Lys	Glu	Ser	Ala 1765	Thr 5	⊤hr	Asp	Leu	Туг 1770	Ala)	туr	Ala	Asp	G]n 1775	Lys
15	Lys	Asn	Asn	Ile 1780	Ser)	Ala	Asp	Thr	Asn 1785	Ala	⊤hr	Gln	Asp	Glu 1790	Lys)	Gln
	Gln	Ala	I]e 1795	Lys	Gln	Val	Asp	Gln 1800	Asn)	Val	Gln	Thr	A]a 1805	Leu	Glu	Ser
20	I]e	Asn 181(Asn)	Gly	Val	Asp	Asn 1815	Gly	Asp	Val	Asp	Asp 1820	A]a)	Leu	Thr	Gln
	Gly 1825	Lys	Ala	Ala	Ile	Asp 1830	Ala)	Ile	Gln	Val	Asp 1835	Ala	Thr	Val	Lys	Pro 1840
25	Lys	Ala	Asn	Gln	Ala 1845	Ile	Glu	Val	Lys	Ala 1850	Glu)	Asp	Thr	Lys	Glu 1855	Ser
	Ile	Asp	Gln	Ser 1860	Asp)	Gln	Leu	Thr	Ala 1865	Glu	Glu	Lys	Thr	Glu 1870	Ala)	Leu
30	Ala	Met	I]e 1875	Lys	Gln	Ile	⊤hr	Asp 1880	Gln)	Ala	Lys	Gln	Gly 1885	Ile	Thr	Asp
	Ala	Thr 1890	Thr)	Thr	Ala	Glu	Va] 1895	Glu	Lys	Ala	Lys	Ala 1900	G]n)	Gly	Leu	Glu
35	Ala 1905	Phe	Asp	Asn	Ile	Gln 191(Ile	Asp	Ser	Thr	Glu 1915	Lys	G]n	Lys	Ala	I]e 1920
	Glu	Glu	Leu	Glu	Thr 1925	Ala	Leu	Asp	Gln	Ile 1930	Glu)	Ala	G∣y	val	Asn 1935	val
40	Asn	Ala	Asp	Ala 194(Thr)	Thr	Glu	Glu	Lys 1945	Glu	Ala	Phe	Thr	Asn 1950	Ala)	Leu
	Glu	Asp	I]e 1955	Leu	Ser	Lys	Ala	Thr 1960	G]u)	Asp	I]e	Ser	Asp 1965	Gln	Thr	Thr
45	Asn	A]a 197(Glu	Ile	Ala	Thr	Val 1975	Lys	Asn	Ser	Ala	Leu 1980	G]u)	Gln	Leu	Lys
	Ala 1985	Gln	Arg	Ile	Asn	Pro 1990	Glu	Val	Lys	Lys	Asn 1995	Ala	Leu	Glu	Ala	I]e 2000
50	Arg	Glu	Val	Val	Asn 2005	Lys	Gln	Ile	Glu	I]e 2010	I]e	Lys	Asn	Ala	Asp 2015	Ala
	Asp	Ala	Ser	Ala 2020	Lys)	Glu	Ile	Ala	Arg 2025	Thr	Asp	Leu	G∣y	Arg 2030	Туr)	Phe
55	Asp	Arg	Phe 2035	Ala	Asp	Lys	Leu	Asp 2040	Lys	Thr	Gln	Thr	Asn 2045	Ala	Glu	Val
	Ala	Glu	Leu	Gln	Asn	Val	⊤hr	Ile	Pro	Ala	Ile	Glu	Ala	Ile	Val	Pro

		2050)				2055	5				2060)			
	G]n 2065	Asn	Asp	Pro	Asp	Ala 2070	Asn)	Asp	⊤hr	Asn	Asn 2075	Gly	I]e	Asp	Asn	Asn 2080
5	Asp	Ala	Thr	Ala	Asn 2085	Ser	Asn	Ala	Asn	Ala 2090	⊤hr)	Pro	Glu	Asn	Thr 2095	Gly Б
	Gln	Pro	Asn	Val 2100	Ser	Glu	Thr	Thr	Ala 2105	Asn 5	Gly	Lys	Ala	Asp 2110	Ala)	Ser
10	Pro	Thr	Thr 2115	Pro 5	Asn	Asn	Ser	Asp 2120	Ala)	Ala	Thr	Gly	Glu 2125	Thr	Thr	Ala
	Thr	Ser 2130	Ala	Thr	Asp	Asp	Ala 2135	Asn	Asp	Lys	Pro	Gln 2140	Ala)	Asn	Asn	Asn
15	Ser 2145	Ser	Val	Asp	Ala	Ser 2150	⊤hr)	Asn	Ser	Pro	⊤hr 2155	Met	Asp	Asn	Asp	Va] 2160
	Thr	Ser	Lys	Pro	Glu 2165	Val 5	Glu	Ser	⊤hr	Asn 2170	Asn)	Gly	Thr	Thr	Asp 2175	Lys
20	Pro	Val	Thr	Glu 2180	Thr)	Asp	Asn	Ala	⊤hr 2185	Pro 5	Ala	Glu	Ser	Thr 2190	Thr)	Asn
	Asn	Asn	Ser 2195	Thr	Тhr	Тhr	АТа	Thr 2200	Asn)	Glu	Asn	Ala	Pro 2205	Thr	Gly	Ser
25	Thr	Ala 2210	Thr	Ala	Pro	Thr	⊤hr 2215	Ala 5	Ser	Thr	Glu	Ala 2220	Ala)	Ser	Ser	Ala
	Asp 2225	ser	Lys	Asp	Asn	Ala 2230	Ser)	Val	Asn	Asp	Ser 2235	Lys	G]n	Asn	Ala	GTU 2240
30	Val	Asn	Asn	Ser	Ala 2245	Glu 5	Ser	Gln	Ser	Thr 2250	Asn)	Asp	Lys	Val	Ala 2255	Gln
	Pro	Lys	Ser	Glu 2260	Asn	Lys	АТа	Lys	Ala 2265	Glu 5	Lys	Asp	Gly	Ser 2270	Asp)	Ser
35	Thr	Asn	G]n 2275	Ser	Met	Val	Glu	Ser 2280	⊤hr)	Thr	Glu	Thr	Leu 2285	Pro	Ser	Ala
	Asp	Ile 2290	Thr	Glu	Pro	Asn	Va] 2295	Pro 5	Ser	Asn	⊤hr	Ser 2300	Lys)	Asp	Lys	Glu
40	Glu 2305	Ser	Thr	Thr	Asn	Gln 2310	⊤hr)	Asp	Ala	Gly	Gln 2315	Leu	Lys	Ser	Glu	Thr 2320
	Asn	Val	Ala	Ser	Asn 2325	Glu 5	ΑΊа	Asp	Lys	Ser 2330	Pro)	Ser	Lys	Ala	Asp 2335	Thr 5
45	Glu	Val	Ser	Asn 2340	Lys	Pro	Ser	Thr	Ser 2345	Ala 5	Ser	Ser	Glu	Ala 2350	Lys)	Glu
	Lys	Met	Thr 2355	Ser	Thr	Asn	Val	Ser 2360	Gln)	Lys	Asp	Asp	⊤hr 2365	Ala	Thr	Ala
50	Asp	Thr 2370	Asn	Asp	Thr	Gln	Lys 2375	Ser	Val	Gly	Ser	Ala 2380	Ala)	Asn	Asn	Lys
	Ala 2385	Thr	Gln	Asn	Asp	Gly 2390	Ala)	Asn	Ala	Ser	Pro 2395	Ala	Thr	Val	Ser	Asn 2400
	Gly	Ser	Asn	Ser	Ala 2405	Asn 5	Gln	Asp	Met	Leu 2410	Asn)	Val	Thr	Asn	Thr 2415	Asp
00	Asp	His	Gln	Ala 2420	Lys)	Thr	Lys	Ser	Ala 2425	Gln 5	Gln	Gly	Lys	Va] 2430	Asn)	Lys

	Ala	Lys	Gln 2435	Gln	Ala	Lys	Thr	Leu 2440	Pro)	Asp	Thr	Gly	Met 2445	Ser	His	Asn
5	Asp	Asp 2450	Leu)	Pro	Туr	Ala	Glu 2455	Leu	Ala	Leu	Gly	Ala 2460	Gly)	Met	Ala	Phe
	Leu 2465	Ile	Arg	Arg	Phe	Thr 2470	Lys)	Lys	Asp	Gln	Gln 2475	Thr	Glu	Glu		
10	<210 <211 <212 <213		30 2186 PRT Stap	5 ohylc	ococc	us a	ureu	IS								
15	<400 Met 1)> Asn	30 Leu	Leu	Lys 5	Lys	Asn	Lys	Туr	Ser 10	Ile	Arg	Lys	Туr	Lys 15	Val
	Gly	Ile	Phe	Ser 20	Thr	Leu	Ile	Gly	Thr 25	Val	Leu	Leu	Leu	Ser 30	Asn	Pro
20	Asn	Gly	Ala 35	Gln	Ala	Leu	Thr	Thr 40	Asp	Asn	Asn	Val	G]n 45	Ser	Asp	Thr
	Asn	G]n 50	Ala	Thr	Pro	Val	Asn 55	Ser	Gln	Asp	Lys	Asp 60	Val	Ala	Asn	Asn
25	Arg 65	Gly	Leu	Ala	Asn	Ser 70	Ala	Gln	Asn	Thr	Pro 75	Asn	Gln	Ser	Ala	тhr 80
	Thr	Asn	Gln	Ala	Thr 85	Asn	Gln	Ala	Leu	Va] 90	Asn	His	Asn	Asn	Gly 95	Ser
30	Ile	Val	Asn	Gln 100	Ala	Thr	Pro	Thr	Ser 105	Val	Gln	Ser	Ser	Thr 110	Pro	Ser
	Ala	Gln	Asn 115	Asn	Asn	His	Thr	Asp 120	Gly	Asn	Thr	Thr	Ala 125	Thr	Glu	Thr
35	Val	Ser 130	Asn	Ala	Asn	Asn	Asn 135	Asp	Val	Val	Ser	Asn 140	Asn	Thr	Ala	Leu
	Asn 145	Val	Pro	Thr	Lys	⊤hr 150	Asn	Glu	Asn	Gly	Ser 155	Gly	Gly	His	Leu	тhr 160
40	Leu	Lys	Glu	Ile	Gln 165	Glu	Asp	Val	Arg	His 170	Ser	Ser	Asn	Lys	Pro 175	Glu
+0	Leu	Val	Ala	Ile 180	Ala	Glu	Pro	Ala	Ser 185	Asn	Arg	Pro	Lys	Lys 190	Arg	Ser
45	Arg	Arg	Ala 195	Ala	Pro	Ala	Asp	Pro 200	Asn	Ala	Thr	Pro	Ala 205	Asp	Pro	Ala
+0	Ala	Ala 210	Ala	Val	Gly	Asn	Gly 215	Gly	Ala	Pro	Val	Ala 220	Ile	Thr	Ala	Pro
50	Tyr 225	Thr	Pro	Thr	Thr	Asp 230	Pro	Asn	Ala	Asn	Asn 235	Ala	Gly	Gln	Asn	Ala 240
20	Pro	Asn	Glu	Val	Leu 245	Ser	Phe	Asp	Asp	Asn 250	Gly	Ile	Arg	Pro	Ser 255	Thr
	Asn	Arg	Ser	Va1 260	Pro	Thr	Val	Asn	Va1 265	Val	Asn	Asn	Leu	Pro 270	Gly	Phe
55	Thr	Leu	11e 275	Asn	Gly	Gly	Lys	Va1 280	Gly	Val	Phe	Ser	His 285	Ala	Met	Val

Arg Thr Ser Met Phe Asp Ser Gly Asp Asn Lys Asn Tyr Gln Ala Gln 290 295 300 Gly Asn Val Ile Ala ∟eu Gly Arg Ile His Gly Thr Asp Thr Asn Asp 305 310 315 320 5 His Gly Asp Phe Asn Gly Ile Glu Lys Ala Leu Thr Val Asn Pro Asn 325 330 335 Ser Glu Leu Ile Phe Glu Phe Asn Thr Met Thr Thr Lys Asn Gly Gln 340 345 350 10 Gly Ala Thr Asn Val Ile Ile Lys Asn Ala Asp Thr Asn Asp Thr Ile 355 360 365 Ala Glu Lys Thr Val Glu Gly Gly Pro Thr Leu Arg Leu Phe Lys Val 370 375 380 15 Pro Asp Asn Val Arg Asn Leu Lys Ile Gln Phe Val Pro Lys Asn Asp 385 390 395 400 Ala Ile Thr Asp Ala Arg Gly Ile Tyr Gln Leu Lys Asp Gly Tyr Lys 405 410 415 20 Tyr Tyr Ser Phe Val Asp Ser Ile Gly Leu His Ser Gly Ser His Val 420 425 430 Phe Val Glu Arg Arg Thr Met Asp Pro Thr Ala Thr Asn Asn Lys Glu 435 440 445 25 Phe Thr Val Thr Thr Ser Leu Lys Asn Asn Gly Asn Ser Gly Ala Ser 450 455 460 Leu Asp Thr Asn Asp Phe Val Tyr Gln Val Gln Leu Pro Glu Gly Val 465 470 475 480 465 Glu Tyr Val Asn Asn Ser Leu Thr Lys Asp Phe Pro Ser Asn Asn Ser 485 490 495 30 Gly Val Asp Val Asn Asp Met Asn Val Thr Tyr Asp Ala Ala Asn Arg 500 505 510 Val Ile Thr Ile Lys Ser Thr Gly Gly Gly Thr Ala Asn Ser Pro Ala 515 520 525 35 Arg Leu Met Pro Asp Lys Ile Leu Asp Leu Arg Tyr Lys Leu Arg Val 530 535 540 Asn Asn Val Pro Thr Pro Arg Thr Val Thr Phe Asn Glu Thr Leu Thr 545 550 555 560 40 Tyr Lys Thr Tyr Thr Gln Asp Phe Ile Asn Ser Ala Ala Glu Ser His 565 570 575 Thr Val Ser Thr Asn Pro Tyr Thr Ile Asp Ile Ile Met Asn Lys Asp 580 585 590 45 Ala Leu Gln Ala Glu Val Asp Arg Arg Ile Gln Gln Ala Asp Tyr Thr 595 600 605 Phe Ala Ser Leu Asp Ile Phe Asn Gly Leu Lys Arg Arg Ala Gln Thr 610 615 620 50 Ile Leu Asp Glu Asn Arg Asn Asn Val Pro Leu Asn Lys Arg Val Ser625630635640 625 Gln Ala Tyr Ile Asp Ser Leu Thr Asn Gln Met Gln His Thr Leu Ile 645 650 655 55 Arg Ser Val Asp Ala Glu Asn Ala Val Asn Lys Lys Val Asp Gln Met

				660					665					670		
	Glu	Asp	Leu 675	Val	Asn	Gln	Asn	Asp 680	Glu	Leu	⊤hr	Asp	Glu 685	Glu	Lys	Gln
5	Ala	Ala 690	Ile	Gln	Val	Ile	Glu 695	Glu	His	Lys	Asn	Glu 700	I]e	Ile	Gly	Asn
	11e 705	Gly	Asp	Gln	Thr	Thr 710	Asp	Asp	G∣y	Val	⊤hr 715	Arg	I]e	Lys	Asp	G]n 720
10	Gly	Ile	Gln	Thr	Leu 725	Ser	Gly	Asp	⊤hr	Ala 730	⊤hr	Pro	Val	Val	Lys 735	Pro
	Asn	Ala	Lys	Lys 740	Ala	Ile	Arg	Asp	Lys 745	Ala	⊤hr	Lys	Gln	Arg 750	Glu	Ile
15	Ile	Asn	Ala 755	Thr	Pro	Asp	Ala	Thr 760	Glu	Asp	Glu	Ile	G]n 765	Asp	Ala	Leu
	Asn	G]n 770	Leu	Ala	Thr	Asp	Glu 775	Thr	Asp	Ala	Ile	Asp 780	Asn	Val	⊤hr	Asn
20	Ala 785	Thr	Thr	Asn	Ala	Asp 790	Val	Glu	⊤hr	Ala	Lys 795	Asn	Asn	Gly	Ile	Asn 800
	⊤hr	Ile	Gly	Ala	Va1 805	Val	Pro	Gln	Val	тhr 810	His	Lys	Lys	Ala	Ala 815	Arg
25	Asp	Ala	Ile	Asn 820	Gln	Ala	⊤hr	Ala	⊤hr 825	Lys	Arg	Gln	G]n	Ile 830	Asn	Ser
	Asn	Arg	Glu 835	Ala	Тhr	Gln	Glu	Glu 840	Lys	Asn	Ala	Ala	Leu 845	Asn	Glu	Leu
30	тhr	Gln 850	Ala	Тhr	Asn	His	Ala 855	Leu	Glu	Gln	Ile	Asn 860	G]n	Ala	Тhr	Thr
	Asn 865	Ala	Asn	Val	Asp	Asn 870	Ala	Lys	Gly	Asp	Gly 875	Leu	Asn	Ala	Ile	Asn 880
35	Pro	Ile	Ala	Pro	Val 885	тhr	Val	Val	Lys	G]n 890	Ala	Ala	Arg	Asp	Ala 895	Val
	Ser	Ніs	Asp	Ala 900	Gln	Gln	His	Ile	Ala 905	Glu	Ile	Asn	Ala	Asn 910	Pro	Asp
40	Ala	Thr	Gln 915	Glu	Glu	Arg	Gln	Ala 920	Ala	Ile	Asp	Lys	Val 925	Asn	Ala	Ala
	Val	⊤hr 930	Ala	Ala	Asn	Тhr	Asn 935	Ile	Leu	Asn	Ala	Asn 940	Thr	Asn	Ala	Asp
45	Val 945	Glu	Gln	Val	Lys	тhr 950	Asn	Ala	I]e	Gln	Gly 955	Ile	Gln	Ala	Ile	⊤hr 960
	Pro	Ala	Thr	Lys	Val 965	Lys	⊤hr	Asp	Ala	Lys 970	Asn	Ala	I]e	Asp	Lys 975	Ser
50	Ala	Glu	Thr	Gln 980	His	Asn	⊤hr	Ile	Phe 985	Asn	Asn	Asn	Asp	Ala 990	Thr	Leu
	Glu	Glu	Gln 995	Gln	Ala	Ala	Gln	Gln 1000	Leu)	Leu	Asp	Gln	Ala 1005	Val 5	Ala	Thr
FF	Ala	Lys 1010	Gln)	Asn	Ile	Asn	Ala 1015	Ala 5	Asp	Thr	Asn	Gln 1020	Glu)	Val	Ala	Gln
00	Ala 1025	Lys	Asp	Gln	Gly	Thr 1030	Gln)	Asn	Ile	Val	Val 1035	Ile	Gln	Pro	Ala	Thr 1040

	Gln	Val	Lys	⊤hr	Asp 1045	Thr 5	Arg	Asn	Val	Val 1050	Asn)	Asp	Lys	Ala	Arg 1055	Glu
5	Ala	Ile	Thr	Asn 1060	ıle	Asn	Ala	Thr	Thr 1065	Gly 5	Ala	Thr	Arg	Glu 1070	Glu	Lys
	Gln	Glu	Ala 1075	Ile	Asn	Arg	Val	Asn 1080	Thr)	Leu	Lys	Asn	Arg 1085	Ala	Leu	Thr
10	Asp	Ile 1090	Gly	Val	Thr	Ser	Thr 1095	Thr	Ala	Met	Val	Asn 1100	Ser)	Ile	Arg	Asp
10	Asp 1105	Ala	Val	Asn	Gln	I]e 1110	Gly	Ala	Val	Gln	Pro 1115	His	Val	Thr	Lys	Lys 1120
	Gln	Thr	Ala	⊤hr	Gly 1125	Val	Leu	Asn	Asp	Leu 1130	Ala)	Thr	Ala	Lys	Lys 1135	Gln
15	Glu	Ile	Asn	Gln 1140	Asn)	Thr	Asn	Ala	Thr 1145	Thr 5	Glu	Glu	Lys	Gln 1150	Val	Ala
	Leu	Asn	Gln 1155	Val	Asp	Gln	Glu	Leu 1160	Ala)	Тhr	Ala	Ile	Asn 1165	Asn	Ile	Asn
20	Gln	Ala 1170	Asp)	⊤hr	Asn	Ala	Glu 1175	Val	Asp	Gln	Ala	Gln 1180	Gln)	Leu	Gly	Thr
	Lys 1185	Ala	Ile	Asn	Ala	I]e 1190	Gln	Pro	Asn	Ile	Val 1195	Lys	Lys	Pro	Ala	Ala 1200
25	Leu	Ala	Gln	Ile	Asn 1205	Gln	His	Tyr	Asn	A]a 1210	Lys)	Leu	Ala	Glu	I]e 1215	Asn
	Ala	Thr	Pro	Asp 1220	Ala)	Thr	Asn	Asp	Glu 1225	Lys	Asn	Ala	Ala	I]e 1230	Asn	Thr
30	Leu	Asn	Gln 1235	Asp	Arg	Gln	Gln	Ala 1240	Ile)	Glu	Ser	Ile	Lys 1245	Gln	Ala	Asn
	Thr	Asn 1250	Ala)	Glu	Val	Asp	Gln 1255	Ala	Ala	Thr	Val	Ala 1260	Glu)	Asn	Asn	Ile
35	Asp 1265	Ala	Val	Gln	Val	Asp 1270	Val)	Val	Lys	Lys	Gln 1275	Ala	Ala	Arg	Asp	Lys 1280
	Ile	Thr	Ala	Glu	Va] 1285	Ala	Lys	Arg	Ile	Glu 1290	Ala)	Val	Lys	Gln	Thr 1295	Pro
40	Asn	Ala	Thr	Asp 1300	Glu	Glu	Lys	Gln	Ala 1305	Ala 5	Val	Asn	Gln	Ile 1310	Asn	Gln
	Leu	Lys	Asp 1315	Gln	Ala	Ile	Asn	Gln 1320	Ile)	Asn	Gln	Asn	Gln 1325	Thr	Asn	Asp
45	Gln	Val 1330	Asp)	⊤hr	Thr	Thr	Asn 1335	Gln	Ala	Val	Asn	Ala 1340	Ile)	Asp	Asn	Val
	Glu 1345	Ala	Glu	Val	Val	Ile 1350	Lys	Thr	Lys	Ala	Ile 1355	Ala	Asp	Ile	Glu	Lys 1360
50	Ala	Val	Lys	Glu	Lys 1365	Gln	Gln	Gln	Ile	Asp 1370	Asn)	Ser	Leu	Asp	Ser 1375	Thr
	Asp	Asn	Glu	Lys 1380	Glu	Val	Ala	Ser	Gln 1385	Ala	Leu	Ala	Lys	Glu 1390	Lys	Glu
55	Lys	Ala	Leu 1395	Ala 5	Ala	Ile	Asp	Gln 1400	Ala)	Gln	Thr	Asn	Ser 1405	G]n	Val	Asn

5

10

15

20

25

30

35

40

45

50

55

Gln Ala Ala Thr Asn Gly Val Ser Ala Ile Lys Ile Ile Gln Pro Glu 1410 1415 1420 1410 Thr Lys Val Lys Pro Ala Ala Arg Glu Lys Ile Asn Gln Lys Ala Asn 1425 1430 1435 1440 Glu Leu Arg Ala Lys Ile Asn Gln Asp Lys Glu Ala Thr Ala Glu Glu 1445 1450 1455 Arg Gln Val Ala Leu Asp Lys Ile Asn Glu Phe Val Asn Gln Ala Met 1460 1465 1470 Thr Asp Ile Thr Asn Asn Arg Thr Asn Gln Gln Val Asp Asp Thr Thr 1475 1480 1485 Ser Gln Ala Leu Asp Ser Ile Ala Leu Val Thr Pro Asp His Ile Val 1490 1495 1500 Arg Ala Ala Arg Asp Ala Val Lys Gln Gln Tyr Glu Ala Lys Lys 1505 1510 1515 1520 Arg Glu Ile Glu Gln Ala Glu His Ala Thr Asp Glu Glu Lys Gln Val 1525 1530 1535 Ala Leu Asn Gln Leu Ala Asn Asn Glu Lys Arg Ala Leu Gln Asn Ile 1540 1545 1550 Asp Gln Ala Ile Ala Asn Asn Asp Val Lys Arg Val Glu Thr Asn Gly 1555 1560 1565 Ile Ala Thr Leu Lys Gly Val Gln Pro His Ile Val Ile Lys Pro Glu 1570 1575 1580 Ala Gln Gln Ala Ile Lys Ala Ser Ala Glu Asn Gln Val Glu Ser Ile 1585 1590 1595 1600 Lys Asp Thr Pro His Ala Thr Val Asp Glu Leu Asp Glu Ala Asn Gln 1605 1610 1615 Leu Ile Ser Asp Thr Leu Lys Gln Ala Gln Gln Glu Ile Glu Asn Thr 1620 1625 1630 Asn Gln Asp Ala Ala Val Thr Asp Val Arg Asn Gln Thr Ile Lys Ala 1635 1640 1645 Ile Glu Gln Ile Lys Pro Lys Val Arg Arg Lys Arg Ala Ala Leu Asp 1650 1655 1660 Ser Ile Glu Glu Asn Asn Lys Asn Gln Leu Asp Ala Ile Arg Asn Thr 1665 1670 1675 1680 1680 Leu Asp Thr Thr Gln Asp Glu Arg Asp Val Ala Ile Asp Thr Leu Asn 1685 1690 1695 Lys Ile Val Asn Thr Ile Lys Asn Asp Ile Ala Gln Asn Lys Thr Asn 1700 1705 1710 Ala Glu Val Asp Arg Thr Glu Thr Asp Gly Asn Asp Asn Ile Lys Val 1715 1720 1725 Ile Leu Pro Lys Val Gln Val Lys Pro Ala Ala Arg Gln Ser Val Gly 1730 1735 1740 Val Lys Ala Glu Ala Gln Asn Ala Leu Ile Asp Gln Ser Asp Leu Ser 1745 1750 1755 1760 Thr Glu Glu Glu Arg Leu Ala Ala Lys His Leu Val Glu Gln Ala Leu 1765 1770 1775 Asn Gln Ala Ile Asp Gln Ile Asn His Ala Asp Lys Thr Ala Gln Val

				1780)				1785	5				1790)	
	Asn	Gln	Asp 1795	Ser	Ile	Asn	Ala	Gln 1800	Asn)	Ile	Ile	Ser	Lys 1805] ;	Lys	Pro
5	Ala	Thr 1810	Thr)	Val	Lys	Ala	⊤hr 1815	Ala 5	Leu	Gln	Gln	I]e 1820	G]n	Asn	Ile	Ala
	Thr 1825	Asn	Lys	Ile	Asn	Leu 1830	Ile)	Lys	Ala	Asn	Asn 1835	Glu	Ala	Thr	Asp	Glu 1840
10	Glu	Gln	Asn	Ile	Ala 1845	Ile 5	Ala	Gln	Val	Glu 1850	Lys)	Glu	Leu	Ile	Lys 1855	Ala
	Lys	Gln	Gln	Ile 1860	Ala)	Ser	Ala	Val	⊤hr 1865	Asn	Ala	Asp	Val	Ala 1870	Туr)	Leu
15	Leu	His	Asp 1875	Glu	Lys	Asn	Glu	Ile 1880	Arg)	Glu	Ile	Glu	Pro 1885	val	Ile	Asn
	Arg	Lys 1890	Ala)	Ser	Ala	Arg	Glu 1895	Gln	Leu	Thr	⊤hr	Leu 1900	Phe	Asn	Asp	Lys
20	Lys 1905	Gln	Ala	Ile	Glu	Ala 1910	Asn)	Ile	Gln	Ala	⊤hr 1915	Val ;	Glu	Glu	Arg	Asn 1920
	Ser	Ile	Leu	Ala	Gln 1925	Leu	Gln	Asn	Ile	туг 1930	Asp	Thr	Ala	Ile	Gly 1935	Gln
25	Ile	Asp	Gln	Asp 1940	Arg)	Ser	Asn	Ala	Gln 1945	Val 5	Asp	Lys	Thr	Ala 1950	Ser)	Leu
	Asn	Leu	Gln 1955	Thr	IJe	His	Asp	Leu 1960	Asp)	Val	His	Pro	I]e 1965	Lys	Lys	Pro
30	Asp	Ala 1970	Glu)	Lys	Thr	Ile	Asn 1975	Asp	Asp	Leu	Ala	Arg 1980	Val	Thr	Ala	Leu
	Val 1985	Gln	Asn	Tyr	Arg	Lys 1990	val)	Ser	Asn	Arg	Asn 1995	Lys	Ala	Asp	Ala	Leu 2000
35	Lys	Ala	Ile	Thr	Ala 2005	Leu 5	Lys	Leu	Gln	Met 2010	Asp	Glu	Glu	Leu	Lys 2015	Thr
	Ala	Arg	Thr	Asn 2020	Ala)	Asp	Val	Asp	Ala 2025	Val 5	Leu	Lys	Arg	Phe 2030	Asn)	Val
40	Ala	Leu	Ser 2035	Asp	Ile	Glu	АТа	va1 2040	⊥le)	Thr	Glu	Lys	Glu 2045	Asn	Ser	Leu
	Leu	Arg 2050	ıle)	Asp	Asn	Ile	Ala 2055	Gln 5	Gln	Thr	⊤yr	Ala 2060	Lys	Phe	Lys	Ala
45	11e 2065	Ala	Thr	Pro	Glu	Gln 2070	Leu)	Ala	Lys	Val	Lys 2075	Val	Leu	Ile	Asp	G]n 2080
	Туr	Val	Ala	Asp	Gly 2085	Asn	Arg	Met	Ile	Asp 2090	Glu)	Asp	Ala	Thr	Leu 2095	Asn
50	Asp	Ile	Lys	Gln 2100	His)	Thr	Gln	Phe	I]e 2105	Val 5	Asp	Glu	I]e	Leu 2110	Ala)	Ile
	Lys	Leu	Pro 2115	Ala	Glu	Ala	⊤hr	Lys 2120	Val)	Ser	Pro	Lys	Glu 2125	Ile	Gln	Pro
55	Ala	Pro 2130	Lys)	Val	Cys	Thr	Pro 2135	Ile 5	Lys	Lys	Glu	Glu 2140	Thr	His	Glu	Ser
00	Arg 2145	Lys	Val	Glu	Lys	Glu 2150	Leu)	Pro	Asn	Thr	Gly 2155	Ser	Glu	Gly	Met	Asp 2160

	Leu	Pro	Leu	Lys	Glu 2165	Phe 5	Ala	Leu	Ile	Thr 217(Gly)	Ala	Ala	Leu	Leu 2175	Ala 5
5	Arg	Arg	Arg	Thr 2180	Lys)	Asn	Glu	Lys	Glu 2185	Ser						
	<210 <211 <212 <213)> L> 2> }>	31 199 PRT Stap	ohy1c	ococo	cus a	aureu	ıs								
10	<400 Met 1)> Lys	31 Lys	Leu	Ala 5	Thr	Val	Gly	Ser	Leu 10	Ile	Val	Thr	Ser	Thr 15	Leu
15	Val	Phe	Ser	Ser 20	Met	Pro	Phe	Gln	Asn 25	Ala	His	Ala	Asp	Thr 30	Thr	Ser
10	Met	Asn	Va] 35	Ser	Asn	Lys	Gln	Ser 40	Gln	Asn	Val	Gln	Asn 45	His	Arg	Pro
20	Туr	G]y 50	Gly	Val	Val	Pro	Gln 55	Gly	Met	Thr	Gln	A]a 60	Gln	Туr	Thr	Glu
20	Leu 65	Glu	Lys	Ala	Leu	Pro 70	Gln	Leu	Ser	Ala	G]y 75	Ser	Asn	Met	Gln	Asp 80
25	туг	Asn	Met	Lys	Leu 85	туг	Asp	Ala	Тhr	G]n 90	Asn	Ile	Ala	Asp	Lys 95	туг
	Asn	Val	Ile	I]e 100	Thr	Тhr	Asn	Val	Gly 105	Val	Phe	Lys	Pro	His 110	Ala	Val
30	Arg	Asp	Met 115	Asn	Gly	His	Ala	Leu 120	Pro	Leu	Thr	Lys	Asp 125	Gly	Asn	Phe
	туr	Gln 130	Thr	Asn	Val	Asp	Ala 135	Asn	Gly	Val	Asn	ніs 140	Gly	Gly	Ser	Glu
35	Met 145	Val	Gln	Asn	Lys	Thr 150	Gly	His	Met	Ser	G]n 155	Gln	Gly	His	Met	Asn 160
	Gln	Asn	Тhr	ніs	Glu 165	Pro	Тhr	Ala	Тhr	ніs 170	Ala	Тhr	Arg	Ser	Туг 175	Ala
40	Ile	Ile	Lys	Pro 180	Ser	Asn	Asp	Glu	Ser 185	Lys	Ser	Lys	Тyr	A]a 190	Phe	Ile
	Lys	Ser	Ser 195	Asn	Glu	Pro	Lys									
45	<210 <211 <212 <213)> L> 2> }>	32 635 PRT Stap	ohyla		cus a	aureu	ıs								
50	<400 Met 1)> Ala	32 Lys	Tyr	Arg 5	Gly	Lys	Pro	Phe	G]n 10	Leu	Tyr	Val	Lys	Leu 15	Ser
50	Cys	Ser	Тhr	Met 20	Met	Ala	Тhr	Ser	Ile 25	Ile	Leu	Тhr	Asn	Ile 30	Leu	Pro
	туг	Asp	A]a 35	Gln	Ala	Ala	Ser	Glu 40	Lys	Asp	Thr	Glu	Ile 45	Thr	Lys	Glu
55	I]e	Leu 50	Ser	Lys	Gln	Asp	Leu 55	Leu	Asp	Lys	Val	Asp 60	Lys	Ala	Ile	Arg

Gln Ile Glu Gln Leu Lys Gln Leu Ser Ala Ser Ser Lys Glu His Tyr 65 70 75 80 Lys Ala Gln Leu Asn Glu Ala Lys Thr Ala ser Gln Ile Asp Glu Ile 85 90 95 5 Ile Lys Arg Ala Asn Glu Leu Asp Ser Lys Asp Asn Lys Ser Ser His 100 105 110 Thr Glu Met Asn Gly Gln Ser Asp Ile Asp Ser Lys Leu Asp Gln Leu 115 120 125 10 Leu Lys Asp Leu Asn Glu Val Ser Ser Asn Val Asp Arg Gly Gln Gln 130 135 140 Ser Gly Glu Asp Asp Leu Asn Ala Met Lys Asn Asp Met Ser Gln Thr 145 150 155 160 15 Ala Thr Thr Lys His Gly Glu Lys Asp Asp Lys Asn Asp Glu Ala Met 165 170 175 Val Asn Lys Ala Leu Glu Asp Leu Asp His Leu Asn Gln Gln Ile His 180 185 190 20 Lys Ser Lys Asp Ala Ser Lys Asp Thr Ser Glu Asp Pro Ala Val Ser 195 200 205 Thr Thr Asp Asn Asn His Glu Val Ala Lys Thr Pro Asn Asn Asp Gly 210 215 220 25 Ser Gly His Val Val Leu Asn Lys Phe Leu Ser Asn Glu Glu Asn Gln 225 230 235 240 Ser His Ser Asn Arg Leu Thr Asp Lys Leu Gln Gly Ser Asp Lys Ile 245 250 255 Asn His Ala Met Ile Glu Lys Leu Ala Lys Ser Asn Ala Ser Thr Gln 260 265 270 30 His Tyr Thr Tyr His Lys Leu Asn Thr Leu Gln Ser Leu Asp Gln Arg 275 280 285 Ile Ala Asn Thr Gln Leu Pro Lys Asn Gln Lys Ser Asp Leu Met Ser 290 295 300 35 Glu Val Asn Lys Thr Lys Glu Arg Ile Lys Ser Gln Arg Asn Ile Ile 305 310 315 320 Leu Glu Glu Leu Ala Arg Thr Asp Asp Lys Lys Tyr Ala Thr Gln Ser 325 330 335 40 Ile Leu Glu Ser Ile Phe Asn Lys Asp Glu Ala Val Lys Ile Leu Lys 340 345 350 Asp Ile Arg Val Asp Gly Lys Thr Asp Gln Gln Ile Ala Asp Gln Ile 355 360 365 45 Thr Arg His Ile Asp Gln Leu Ser Leu Thr Thr Ser Asp Asp Leu Leu 370 375 380 Thr Ser Leu Ile Asp Gln Ser Gln Asp Lys Ser Leu Leu Ile Ser Gln 385 390 395 400 50 Ile Leu Gln Thr Lys Leu Gly Lys Ala Glu Ala Asp Lys Leu Ala Lys 405 410 415 Asp Trp Thr Asn Lys Gly Leu Ser Asn Arg Gln Ile Val Asp Gln Leu 420 425 430 55 Lys Lys His Phe Ala Ser Thr Gly Asp Thr Ser Ser Asp Asp Ile Leu

				435					440					445			
		Lys	Ala 450	Ile	Leu	Asn	Asn	Ala 455	Lys	Asp	Lys	Lys	G]n 460	Ala	Ile	Glu	Thr
5		Ile 465	Leu	Ala	Thr	Arg	Ile 470	Glu	Arg	Gln	Lys	Ala 475	Lys	Leu	Leu	Ala	Asp 480
	Leu	Ile	⊤hr	Lys	Ile 485	Glu	Тhr	Asp	Gln	Asn 490	Lys	Ile	Phe	Asn	Leu 495	Val	
10		Lys	Ser	Ala	Leu 500	Asn	Gly	Lys	Ala	Asp 505	Asp	Leu	Leu	Asn	Leu 510	Gln	Lys
		Arg	Leu	Asn 515	Gln	⊤hr	Lys	Lys	Asp 520	Ile	Asp	Туr	Ile	Leu 525	Ser	Pro	Ile
15		Val	Asn 530	Arg	Pro	Ser	Leu	Leu 535	Asp	Arg	Leu	Asn	Lys 540	Asn	Gly	Lys	Thr
		тhr 545	Asp	Leu	Asn	Lys	Leu 550	Ala	Asn	Leu	Met	Asn 555	Gln	Gly	Ser	Asp	Leu 560
20		Leu	Asp	Ser	Ile	Pro 565	Asp	Ile	Pro	тhr	Pro 570	Lys	Pro	Glu	Lys	Thr 575	Leu
		Тhr	Leu	Gly	Lys 580	Gly	Asn	Gly	Leu	Leu 585	Ser	Gly	Leu	Leu	Asn 590	А]а	Asp
25		Gly	Asn	Va] 595	Ser	Leu	Pro	Lys	Ala 600	Gly	Glu	тhr	Ile	Lys 605	Glu	His	тгр
		Leu	Pro 610	Ile	Ser	Val	Ile	Va] 615	Gly	Ala	Met	Gly	Va7 620	Leu	Met	Ile	тгр
30		Leu 625	Ser	Arg	Arg	Asn	Lys 630	Leu	Lys	Asn	Lys	Ala 635					
		<210 <212 <212 <213)> L> 2> 3>	33 995 PRT Stap	ohyla	ococo	cus a	aurei	ıs								
35		<400 Met 1)> Asn	33 Asn	Lys	Lys 5	Thr	Ala	Thr	Asn	Arg 10	Lys	Gly	Met	Ile	Pro 15	Asn
40		Arg	Leu	Asn	Lys 20	Phe	Ser	Ile	Arg	Lys 25	⊤yr	Ser	Val	Gly	Thr 30	ΑΊа	Ser
		Ile	Leu	Va1 35	Gly	Thr	Тhr	Leu	11e 40	Phe	Gly	Leu	Ser	Gly 45	His	Glu	Ala
45		Lys	A]a 50	Ala	Glu	His	Тhr	Asn 55	Gly	Glu	Leu	Asn	G]n 60	Ser	Lys	Asn	Glu
		⊤hr 65	Тhr	Ala	Pro	Ser	Glu 70	Asn	Lys	тhr	⊤hr	Lys 75	Lys	Val	Asp	Ser	Arg 80
50		Gln	Leu	Lys	Asp	Asn 85	Thr	Gln	Thr	Ala	⊤hr 90	Ala	Asp	Gln	Pro	Lys 95	Val
50		Thr	Met	Ser	Asp 100	Ser	Ala	Thr	Val	Lys 105	Glu	Thr	Ser	Ser	Asn 110	Met	Gln
		Ser	Pro	Gln 115	Asn	Ala	Thr	Ala	Asn 120	Gln	Ser	Thr	Thr	Lys 125	Thr	Ser	Asn
55		Val	Thr 130	⊤hr	Asn	Asp	Lys	Ser 135	Ser	Thr	⊤hr	туr	Ser 140	Asn	Glu	Thr	Asp

Lys Ser Asn Leu Thr Gln Ala Lys Asp Val Ser Thr Thr Pro Lys Thr 145 150 155 160 Thr Thr Ile Lys Pro Arg Thr Leu Asn Arg Met Ala Val Asn Thr Val 165 170 175 5 Ala Ala Pro Gln Gln Gly Thr Asn Val Asn Asp Lys Val His Phe Ser 180 185 190 Asn Ile Asp Ile Ala Ile Asp Lys Gly His Val Asn Gln Thr Thr Gly 195 200 205 10 Lys Thr Glu Phe Trp Ala Thr Ser Ser Asp Val Leu Lys Leu Lys Ala 210 215 220 Tyr Thr Ile Asp Asp Ser Val Lys Glu Gly Asp Thr Phe Thr Phe 230 235 240 Asn 225 15 Lys Tyr Gly Gln Tyr Phe Arg Pro Gly Ser Val Arg Leu Pro Ser Gln 245 250 255 Thr Gln Asn Leu Tyr Asn Ala Gln Gly Asn Ile Ile Ala Lys Gly Ile 260 265 270 20 Tyr Asp Ser Thr Thr Asn Thr Thr Thr Tyr Thr Phe Thr Asn Tyr Val 275 280 285 Asp Gln Tyr Thr Asn Val Arg Gly Ser Phe Glu Gln Val Ala Phe Ala 290 295 300 25 Lys Arg Lys Asn Ala Thr Thr Asp Lys Thr Ala Tyr Lys Met Glu Val 305 310 315 320 Thr Leu Gly Asn Asp Thr Tyr Ser Glu Glu Ile Ile Val Asp Tyr Gly 325 330 335 30 Asn Lys Lys Ala Gln Pro Leu Ile Ser Ser Thr Asn Tyr Ile Asn Asn 340 345 350 Glu Asp Leu Ser Arg Asn Met Thr Ala Tyr Val Asn Gln Pro Lys Asn 355 360 365 35 Thr Tyr Thr Lys Gln Thr Phe Val Thr Asn Leu Thr Gly Tyr Lys Phe 370 375 380 Asn Pro Asn Ala Lys Asn Phe Lys Ile Tyr Glu Val Thr Asp Gln Asn 385 390 395 400 40 Gln Phe Val Asp Ser Phe Thr Pro Asp Thr Ser Lys Leu Lys Asp Val 405 410 415 Thr Asp Gln Phe Asp Val Ile Tyr Ser Asn Asp Asn Lys Thr Ala Thr 420 425 430 45 Val Asp Leu Met Lys Gly Gln Thr Ser Ser Asn Lys Gln Tyr Ile Ile 435 440 445 Gln Gln Val Ala Tyr Pro Asp Asn Ser Ser Thr Asp Asn Gly Lys Ile 450 455 460 50 Asp Tyr Thr Leu Asp Thr Asp Lys Thr Lys Tyr Ser Trp Ser Asn Ser 465 470 475 480 Tyr Ser Asn Val Asn Gly Ser Ser Thr Ala Asn Gly Asp Gln Lys Lys 485 490 495 55 Tyr Asn Leu Gly Asp Tyr Val Trp Glu Asp Thr Asn Lys Asp Gly Lys 500 505 510

Gln Asp Ala Asn Glu Lys Gly Ile Lys Gly Val Tyr Val Ile Leu Lys 515 520 525 Asp Ser Asn Gly Lys Glu Leu Asp Arg Thr Thr Thr Asp Glu Asn Gly 530 535 540 5 Lys Tyr Gln Phe Thr Gly Leu Ser Asn Gly Thr Tyr Ser Val Glu Phe 545 550 555 560 Ser Thr Pro Ala Gly Tyr Thr Pro Thr Ala Asn Val Gly Thr Asp 565 570 575 10 Asp Ala Val Asp Ser Asp Gly Leu Thr Thr Gly Val Ile Lys Asp 580 585 590 Ala Asp Asn Met Thr Leu Asp Ser Gly Phe Tyr Lys Thr Pro Lys Tyr 595 600 605 15 Ser Leu Gly Asp Tyr Val Trp Tyr Asp Ser Asn Lys Asp Gly Lys Gln 610 615 620 Asp Ser Thr Glu Lys Gly Ile Lys Gly Val Lys Val Thr Leu Gln Asn 625 630 640 20 Glu Lys Gly Glu Val Ile Gly Thr Thr Glu Thr Asp Glu Asn Gly Lys 645 650 655 Tyr Arg Phe Asp Asn Leu Asp Ser Gly Lys Tyr Lys Val Ile Phe Glu 660 665 670 25 Lys Pro Ala Gly Leu Thr Gln Thr Gly Thr Asn Thr Thr Glu Asp Asp 675 680 685 Lys Asp Ala Asp Gly Gly Glu Val Asp Val Thr Ile Thr Asp His Asp 690 695 700 Asp Phe Thr Leu Asp Asn Gly Tyr Tyr Glu Glu Glu Thr Ser Asp Ser 705 710 715 720 30 Asp Ser Asp Se 35 Asp Ser Asp Se 40 Asp Ser Asp Se Asp Ser Asp Se 45 Asp Ser Asp Se Asp Ser Asp Se 50 Asp Ser Asp Ser Asp Ser Asp Ser Asp Asn Asp Ser Asp Ser Asp Ser 850 855 860 Asp Ser 865 870 875 55 Asp Ser
					885					890					895	
	Asp	Ser	Asp	Ser 900	Asp	Ser	Asp	Ser	Asp 905	Ser	Asp	Ser	Asp	Ser 910	Asp	Ser
5	Asp	Ser	Asp 915	Ser	Asp	Ser	Asp	Ser 920	Asp	Ser	Asp	Asn	Asp 925	Ser	Asp	Ser
	Asp	Ser 930	Asp	Ser	Asp	Ser	Asp 935	Ala	Gly	Lys	His	тhr 940	Pro	Ala	Lys	Pro
10	Met 945	Ser	⊤hr	Val	Lys	Asp 950	Gln	His	Lys	Thr	A]a 955	Lys	Ala	Leu	Pro	Glu 960
	Тhr	Gly	Ser	Glu	Asn 965	Asn	Asn	Ser	Asn	Asn 970	Gly	Тhr	Leu	Phe	Gly 975	Gly
15	Leu	Phe	Ala	Ala 980	Leu	Gly	Ser	Leu	Leu 985	Leu	Phe	Gly	Arg	Arg 990	Lys	Lys
	Gln	Asn	Lys 995													
20	<210 <211 <212 <213)> L> 2> 3>	34 1349 PRT Stap	€ Dhylo	ococo	cus a	aurei	ıs								
25	<400 Met 1)> Leu	34 Asn	Arg	Glu 5	Asn	Lys	Thr	Ala	I]e 10	Thr	Arg	Lys	Gly	Met 15	Val
	Ser	Asn	Arg	Leu 20	Asn	Lys	Phe	Ser	I]e 25	Arg	Lys	туr	тhr	Va] 30	Gly	Thr
30	Ala	Ser	Ile 35	Leu	Val	Gly	Thr	тhr 40	Leu	Ile	Phe	Gly	Leu 45	Gly	Asn	Gln
	Glu	Ala 50	Lys	Ala	Ala	Glu	ser 55	Thr	Asn	Lys	Glu	Leu 60	Asn	Glu	Ala	Thr
35	Thr 65	Ser	Ala	Ser	Asp	Asn 70	Gln	Ser	Ser	Asp	Lys 75	Val	Asp	Met	Gln	G]n 80
	Leu	Asn	Gln	Glu	Asp 85	Asn	Thr	Lys	Asn	Asp 90	Asn	Gln	Lys	Glu	Met 95	Val
40	Ser	Ser	Gln	Gly 100	Asn	Glu	Thr	Thr	Ser 105	Asn	Gly	Asn	Lys	Leu 110	Ile	Glu
	Lys	Glu	Ser 115	Val	Gln	Ser	Thr	Тhr 120	Gly	Asn	Lys	Val	Glu 125	Val	Ser	тhr
45	Ala	Lys 130	Ser	Asp	Glu	Gln	Ala 135	Ser	Pro	Lys	Ser	тhr 140	Asn	Glu	Asp	Leu
	Asn 145	Тhr	Lys	Gln	Тhr	1]e 150	Ser	Asn	Gln	Glu	Ala 155	Leu	Gln	Pro	Asp	Leu 160
50	Gln	Glu	Asn	Lys	Ser 165	Val	Val	Asn	Val	Gln 170	Pro	Thr	Asn	Glu	Glu 175	Asn
	Lys	Lys	Val	Asp 180	Ala	Lys	Thr	Glu	Ser 185	⊤hr	Thr	Leu	Asn	Val 190	Lys	Ser
55	Asp	Ala	I]e 195	Lys	Ser	Asn	Asp	G]u 200	Thr	Leu	Val	Asp	Asn 205	Asn	Ser	Asn
00	Ser	Asn 210	Asn	Glu	Asn	Asn	A]a 215	Asp	Ile	Ile	Leu	Pro 220	Lys	Ser	Тhr	Ala

Pro Lys Arg Leu Asn Thr Arg Met Arg Ile Ala Ala Val Gln Pro Ser 225 230 235 240 Ser Thr Glu Ala Lys Asn Val Asn Asp Leu Ile Thr Ser Asn Thr Thr 245 250 250 255 5 Leu Thr Val Val Asp Ala Asp Lys Asn Asn Lys Ile Val Pro Ala Gln 260 265 270 Asp Tyr Leu Ser Leu Lys Ser Gln Ile Thr Val Asp Asp Lys Val Lys 275 280 285 10 Ser Gly Asp Tyr Phe Thr Ile Lys Tyr Ser Asp Thr Val Gln Val Tyr 290 295 300 Gly Leu Asn Pro Glu Asp Ile Lys Asn Ile Gly Asp Ile Lys Asp Pro 305 310 315 320 15 Asn Asn Gly Glu Thr Ile Ala Thr Ala Lys His Asp Thr Ala Asn Asn 325 330 335 Leu Ile Thr Tyr Thr Phe Thr Asp Tyr Val Asp Arg Phe Asn Ser Val 340 345 350 20 Gln Met Gly Ile Asn Tyr Ser Ile Tyr Met Asp Ala Asp Thr Ile Pro 355 360 365 Ser Lys Asn Asp Val Glu Phe Asn Val Thr Ile Gly Asn Thr Thr 370 375 380 25 Thr Lys Thr Thr Ala Asn Ile Gln Tyr Pro Asp Tyr Val Val Asn Glu 385 390 395 400 Lys Asn Ser Ile Gly Ser Ala Phe Thr Glu Thr Val Ser His Val Gly 405 410 415 30 Asn Lys Glu Asn Pro Gly Tyr Tyr Lys Gln Thr Ile Tyr Val Asn Pro 420 425 430 Ser Glu Asn Ser Leu Thr Asn Ala Lys Leu Lys Val Gln Ala Tyr His 435 440 445 35 Ser Ser Tyr Pro Asn Asn Ile Gly Gln Ile Asn Lys Asp Val Thr Asp 450 455 460 Ile Lys Ile Tyr Gln Val Pro Lys Gly Tyr Thr Leu Asn Lys Gly Tyr465470470475 40 Asp Val Asn Thr Lys Glu Leu Thr Asp Val Thr Asn Gln Tyr Leu Gln 485 490 495 Lys Ile Thr Tyr Gly Asp Asn Asn Ser Ala Val Ile Asp Phe Gly Asn 500 505 510 45 Ala Asp Ser Ala Tyr Val Val Met Val Asn Thr Lys Phe Gln Tyr Thr 515 520 525 Asn Ser Glu Ser Pro Thr Leu Val Gln Met Ala Thr Leu Ser Ser Thr 530 535 540 50 Gly Asn Lys Ser Val Ser Thr Gly Asn Ala Leu Gly Phe Thr Asn Asn 545 550 555 560 Gln Ser Gly Gly Ala Gly Gln Glu Val Tyr Lys Ile Gly Asn Tyr Val 565 570 575 55 Trp Glu Asp Thr Asn Lys Asn Gly Val Gln Glu Leu Gly Glu Lys Gly 580 585 590
	Val	Gly	Asn 595	Val	⊤hr	Val	Thr	Va] 600	Phe	Asp	Asn	Asn	Тhr 605	Asn	Thr	Lys
5	Val	Gly 610	Glu	Ala	Val	тhr	Lys 615	Glu	Asp	Gly	Ser	⊤yr 620	Leu	Ile	Pro	Asn
	Leu 625	Pro	Asn	Gly	Asp	туг 630	Arg	Val	Glu	Phe	Ser 635	Asn	Leu	Pro	Lys	Gly 640
10	⊤yr	Glu	Val	Тhr	Pro 645	Ser	Lys	G]n	Gly	Asn 650	Asn	Glu	Glu	Leu	Asp 655	Ser
10	Asn	Gly	Leu	Ser 660	Ser	Val	Ile	Thr	Va1 665	Asn	Gly	Lys	Asp	Asn 670	Leu	Ser
	Ala	Asp	Leu 675	Gly	Ile	туr	Lys	Pro 680	Lys	туr	Asn	Leu	Gly 685	Asp	Тyr	Val
15	⊤rp	Glu 690	Asp	Thr	Asn	Lys	Asn 695	G∣y	Ile	Gln	Asp	G]n 700	Asp	Glu	Lys	Gly
	Ile 705	Ser	Gly	Val	⊤hr	Va] 710	Thr	Leu	Lys	Asp	Glu 715	Asn	Gly	Asn	Val	Leu 720
20	Lys	Thr	Val	Thr	⊤hr 725	Asp	Ala	Asp	Gly	Lys 730	Туr	Lys	Phe	Тhr	Asp 735	Leu
	Asp	Asn	Gly	Asn 740	⊤yr	Lys	Val	Glu	Рһе 745	Thr	Тhr	Pro	Glu	G]y 750	туг	⊤hr
25	Pro	Thr	Тhr 755	Val	⊤hr	Ser	Gly	Ser 760	Asp	Ile	Glu	Lys	Asp 765	Ser	Asn	Gly
	Leu	тhr 770	тhr	Thr	Gly	Val	Ile 775	Asn	Gly	Ala	Asp	Asn 780	Met	тhr	Leu	Asp
30	Ser 785	Gly	Phe	туr	Lys	тhr 790	Pro	Lys	туr	Asn	Leu 795	Gly	Asn	туг	Val	⊤rp 800
	Glu	Asp	Thr	Asn	Lys 805	Asp	Gly	Lys	Gln	Asp 810	Ser	⊤hr	Glu	Lys	Gly 815	Ile
35	Ser	Gly	Val	⊤hr 820	Val	Thr	Leu	Lys	Asn 825	Glu	Asn	Gly	Glu	Va1 830	Leu	Gln
	⊤hr	Thr	Lys 835	Thr	Asp	Lys	Asp	G]y 840	Lys	туr	Gln	Phe	Thr 845	GЈу	Leu	Glu
40	Asn	Gly 850	Thr	Туr	Lys	Val	Glu 855	Phe	Glu	Thr	Pro	Ser 860	Gly	Туr	Thr	Pro
	⊤hr 865	Gln	Val	Gly	Ser	Gly 870	Thr	Asp	Glu	Gly	Ile 875	Asp	Ser	Asn	Gly	⊤hr 880
45	Ser	Thr	Thr	Gly	Val 885	Ile	Lys	Asp	Lys	Asp 890	Asn	Asp	Thr	Ile	Asp 895	Ser
	Gly	Phe	Туr	Lys 900	Pro	Thr	Туr	Asn	Leu 905	Gly	Asp	⊤yr	Val	Тгр 910	Glu	Asp
50	⊤hr	Asn	Lys 915	Asn	Gly	Val	Gln	Asp 920	Lys	Asp	Glu	Lys	Gly 925	I]e	Ser	Gly
	Val	тhr 930	Val	Тhr	Leu	Lys	Asp 935	Glu	Asn	Asp	Lys	Val 940	Leu	Lys	Тhr	Val
55	⊤hr 945	Thr	Asp	Glu	Asn	Gly 950	Lys	туr	Gln	Phe	тhr 955	Asp	Leu	Asn	Asn	Gly 960
	⊤hr	Туr	Lys	Val	Glu	Phe	Glu	Thr	Pro	Ser	Gly	Tyr	Thr	Pro	Тhr	Ser

					965					970					975	
	Val	Thr	Ser	Gly 980	Asn	Asp	Thr	Glu	Lys 985	Asp	Ser	Asn	G∣y	Leu 990	Thr	Thr
5	Thr	Gly	Va] 995	Ile	Lys	Asp	Ala	Asp 1000	Asn)	Met	⊤hr	Leu	Asp 1005	Ser	Gly	Phe
	Tyr	Lys 1010	Thr	Pro	Lys	Tyr	Ser 1015	Leu 5	Gly	Asp	Tyr	Val 1020	Trp)	Tyr	Asp	Ser
10	Asn 1025	Lys	Asp	Gly	Lys	Gln 1030	Asp)	Ser	⊤hr	Glu	Lys 1035	Gly 5	I]e	Lys	Asp	Va] 1040
	Lys	Val	Thr	Leu	Leu 1045	Asn	Glu	Lys	G∣y	Glu 1050	Val)	Ile	Gly	Thr	Thr 1055	Lys
15	Thr	Asp	Glu	Asn 1060	Gly	Lys	⊤yr	Cys	Phe 1065	Asp	Asn	Leu	Asp	Ser 1070	Gly	Lys
	Tyr	Lys	Val 1075	Ile	Phe	Glu	Lys	Pro 1080	Ala)	Gly	Leu	Thr	G]n 1085	Thr	Val	Thr
20	Asn	Thr 1090	Thr	Glu	Asp	Asp	Lys 1095	Asp	Ala	Asp	G∣y	Gly 1100	Glu)	Val	Asp	Val
	Thr 1105	Ile	Thr	Asp	His	Asp 1110	Asp)	Phe	⊤hr	Leu	Asp 1115	Asn	G∣y	туr	Phe	Glu 1120
25	Glu	Asp	Thr	Ser	Asp 1125	Ser	Asp	Ser	Asp	Ser 1130	Asp	Ser	Asp	Ser	Asp 1135	ser
	Asp	Ser	Asp	Ser 1140	Asp	Ser	Asp	Ser	Asp 1145	Ser	Asp	Ser	Asp	Ser 1150	Asp	Ser
30	Asp	Ser	Asp 1155	Ser	Asp	Ser	Asp	Ser 1160	Asp)	Ser	Asp	Ser	Asp 1165	Ser	Asp	Ser
	Asp	Ser 1170	Asp	Ser	Asp	Ser	Asp 1175	Ser 5	Asp	Ser	Asp	Ser 1180	Asp)	Ser	Asp	Ser
35	Asp 1185	Ser	Asp	Ser	Asp	Ser 1190	Asp)	Ser	Asp	Ser	Asp 1195	Ser	Asp	Ser	Asp	Ser 1200
	Asp	Ser	Asp	Ser	Asp 1205	Ser	Asp	Ser	Asp	Ser 1210	Asp	Ser	Asp	Ser	Asp 1215	ser
40	Asp	Ser	Asp	Ser 1220	Asp	Ser	Asp	Ser	Asp 1225	Ser	Asp	Ser	Asp	Ser 1230	Asp	Ser
	Asp	Ser	Asp 1235	Ser	Asp	Ser	Asp	Ser 1240	Asp)	Ser	Asp	Ser	Asp 1245	Ser	Asp	Ser
45	Asp	Ser 1250	Asp	Ser	Asp	Ser	Asp 1255	Ser	Asp	Ser	Asp	Ser 1260	Asp)	Ser	Asp	Ser
	Asp 1265	Ser	Asp	Ser	Asp	Ser 1270	Asp)	Ser	Asp	Ser	Asp 1275	Ser	Asp	Ser	Asp	Ser 1280
50	Asp	Ser	Asp	Ser	Asp 1285	Ser	Asp	Ser	Asp	Ala 1290	G]y)	Lys	His	Thr	Pro 1295	Val ;
	Lys	Pro	Met	Ser 1300	Thr)	Thr	Lys	Asp	His 1305	His	Asn	Lys	Ala	Lys 1310	Ala	Leu
55	Pro	Glu	Thr 1315	Gly	Ser	Glu	Asn	Asn 1320	G]y)	Ser	Asn	Asn	Ala 1325	Thr	Leu	Phe
00	Gly	Gly 1330	Leu	Phe	А]а	Ala	Leu 1335	Gly 5	Ser	Leu	Leu	Leu 1340	Phe)	Gly	Arg	Arg

	Lys Lys 1345	Gln	Asn	Lys											
5	<210> <211> <212> <213>	35 116 PRT Sta	6 phyla	ococo	cus a	aurei	JS								
10	<400> Met Ile 1	35 Asn	Arg	Asp 5	Asn	Lys	Lys	Ala	Ile 10	Thr	Lys	Lys	Gly	Met 15	Ile
	Ser Asr	Arg	Leu 20	Asn	Lys	Phe	Ser	Ile 25	Arg	Lys	Туr	Thr	Va1 30	Gly	Thr
15	Ala Ser	ıle 35	Leu	Val	Gly	Thr	Thr 40	Leu	Ile	Phe	Gly	Leu 45	Gly	Asn	Gln
	Glu Ala 50	Lys	Ala	Ala	Glu	Asn 55	Тhr	Ser	Тhr	Glu	Asn 60	Ala	Lys	Gln	Asp
20	Asp Ala 65	\ Thr	Тhr	Ser	Asp 70	Asn	Lys	Glu	Val	Val 75	Ser	Glu	Тhr	Glu	Asn 80
	Asn Ser	' Thr	Тhr	Glu 85	Asn	Asn	Ser	Тhr	Asn 90	Pro	Ile	Lys	Lys	Glu 95	Thr
25	Asn Thr	' Asp	Ser 100	Gln	Pro	Glu	Ala	Lys 105	Lys	Glu	Ser	Thr	Ser 110	Ser	Ser
	Thr Glr	Lys 115	Gln	Gln	Asn	Asn	Va] 120	Thr	Ala	Thr	Thr	Glu 125	Thr	Lys	Pro
30	Gln Asr 130	Ile	Glu	Lys	Glu	Asn 135	Val	Lys	Pro	Ser	Thr 140	Asp	Lys	Тhr	Ala
	Thr Glu 145	I Asp	Тhr	Ser	Val 150	Ile	Leu	Glu	Glu	Lys 155	Lys	Ala	Pro	Asn	Asn 160
35	Thr Asr	Asn	Asp	Val 165	Тhr	Thr	Lys	Pro	Ser 170	Thr	Ser	Glu	Pro	Ser 175	Thr
	Ser Glı	ı Ile	Gln 180	Thr	Lys	Pro	Тhr	Thr 185	Pro	Gln	Glu	Ser	⊤hr 190	Asn	Ile
40	Glu Asr	Ser 195	Gln	Pro	Gln	Pro	Thr 200	Pro	Ser	Lys	Val	Asp 205	Asn	Gln	Val
	Thr Asp 210	Ala	Тhr	Asn	Pro	Lys 215	Glu	Pro	Val	Asn	Va1 220	Ser	Lys	Glu	Glu
45	Leu Lys 225	Asn	Asn	Pro	Glu 230	Lys	Leu	Lys	Glu	Leu 235	Val	Arg	Asn	Asp	Ser 240
	Asn Thr	' Asp	His	Ser 245	Thr	Lys	Pro	Val	Ala 250	Thr	Ala	Pro	Thr	Ser 255	Val
50	Ala Pro) Lys	Arg 260	Val	Asn	Ala	Lys	Met 265	Arg	Phe	Ala	Val	Ala 270	Gln	Pro
	Ala Ala	val 275	Ala	Ser	Asn	Asn	Va1 280	Asn	Asp	Leu	Ile	Lys 285	Val	Thr	Lys
55	Gln Thr 290]]	Lys	Val	Gly	Asp 295	Gly	Lys	Asp	Asn	Va] 300	Ala	Ala	Ala	His
55	Asp Gly 305	' Lys	Asp	Ile	Glu 310	Туr	Asp	Thr	Glu	Phe 315	Тhr	Ile	Asp	Asn	Lys 320

Val Lys Lys Gly Asp Thr Met Thr Ile Asn Tyr Asp Lys Asn Val Ile 325 330 335 Pro Ser Asp Leu Thr Asp Lys Asn Asp Pro Ile Asp Ile Thr Asp Pro 340 345 350 5 Ser Gly Glu Val Ile Ala Lys Gly Thr Phe Asp Lys Ala Thr Lys Gln 355 360 365 Ile Thr Tyr Thr Phe Thr Asp Tyr Val Asp Lys Tyr Glu Asp Ile Lys 370 375 380 10 Ser Arg Leu Thr Leu Tyr Ser Tyr Ile Asp Lys Lys Thr Val Pro Asn 385 390 395 400 Glu Thr Ser Leu Asn Leu Thr Phe Ala Thr Ala Gly Lys Glu Thr Ser 405 410 415 15 Gln Asn Val Thr Val Asp Tyr Gln Asp Pro Met Val His Gly Asp Ser 420 425 430 Asn Ile Gln Ser Ile Phe Thr Lys Leu Asp Glu Asp Lys Gln Thr Ile 435 440 445 20 Glu Gln Gln Ile Tyr Val Asn Pro Leu Lys Lys Ser Ala Thr Asn Thr 450 455 460 Lys Val Asp Ile Ala Gly Ser Gln Val Asp Asp Tyr Gly Asn Ile Lys 465 470 475 480 25 Leu Gly Asn Gly Ser Thr Ile Ile Asp Gln Asn Thr Glu Ile Lys Val 485 490 495 Tyr Lys Val Asn Ser Asp Gln Gln Leu Pro Gln Ser Asn Arg Ile Tyr 500 505 510 Asp Phe Ser Gln Tyr Glu Asp Val Thr Ser Gln Phe Asp Asn Lys Lys 515 520 525 30 Ser Phe Ser Asn Asn Val Ala Thr Leu Asp Phe Gly Asp Ile Asn Ser 530 535 540 Ala Tyr Ile Ile Lys Val Val Ser Lys Tyr Thr Pro Thr Ser Asp Gly 545 550 555 560 35 Glu Leu Asp Ile Ala Gln Gly Thr Ser Met Arg Thr Thr Asp Lys Tyr 565 570 575 Gly Tyr Tyr Asn Tyr Ala Gly Tyr Ser Asn Phe Ile Val Thr Ser Asn 580 585 590 40 Asp Thr Gly Gly Gly Asp Gly Thr Val Lys Pro Glu Glu Lys Leu Tyr 595 600 605 Lys Ile Gly Asp Tyr Val Trp Glu Asp Val Asp Lys Asp Gly Val Gln 610 615 620 45 Gly Thr Asp Ser Lys Glu Lys Pro Met Ala Asn Val Leu Val Thr Leu 625 630 635 640 Thr Tyr Pro Asp Gly Thr Thr Lys Ser Val Arg Thr Asp Ala Asn Gly 645 650 655 50 His Tyr Glu Phe Gly Gly Leu Lys Asp Gly Glu Thr Tyr Thr Val Lys 660 665 670 Phe Glu Thr Pro Thr Gly Tyr Leu Pro Thr Lys Val Asn Gly Thr Thr 675 680 685 55 Asp Gly Glu Lys Asp Ser Asn Gly Ser Ser Val Thr Val Lys Ile Asn

		690					695					700				
	Gly 705	Lys	Asp	Asp	Met	Ser 710	Leu	Asp	⊤hr	Gly	Рһе 715	туr	Lys	Glu	Pro	Lys 720
5	туr	Asn	Leu	Gly	Asp 725	Tyr	Val	тгр	Glu	Asp 730	⊤hr	Asn	Lys	Asp	G]y 735	Ile
	Gln	Asp	Ala	Asn 740	Glu	Pro	Gly	Ile	Lys 745	Asp	Val	Lys	Val	тhr 750	Leu	Lys
10	Asp	Ser	Thr 755	Gly	Lys	Val	Ile	Gly 760	⊤hr	Тhr	⊤hr	Thr	Asp 765	Ala	Ser	Gly
	Lys	туг 770	Lys	Phe	Thr	Asp	Leu 775	Asp	Asn	Gly	Asn	туг 780	Тhr	Val	Glu	Phe
15	Glu 785	Thr	Pro	Ala	Gly	туг 790	⊤hr	Pro	⊤hr	Val	Lys 795	Asn	Тhr	Тhr	Ala	Asp 800
	Asp	Lys	Asp	Ser	Asn 805	Gly	Leu	Thr	⊤hr	тhr 810	Gly	Val	Ile	Lys	Asp 815	Ala
20	Asp	Asn	Met	Thr 820	Leu	Asp	Arg	Gly	Phe 825	Туr	Lys	Тhr	Pro	Lys 830	Туr	Ser
	Leu	Gly	Asp 835	туr	Val	тгр	туr	Asp 840	Ser	Asn	Lys	Asp	G]y 845	Lys	Gln	Asp
25	Ser	тhr 850	Glu	Lys	Gly	Ile	Lys 855	Asp	Val	тhr	Val	тhr 860	Leu	Gln	Asn	Glu
	Lys 865	Gly	Glu	Val	Ile	Gly 870	⊤hr	тhr	Lys	тhr	Asp 875	Glu	Asn	Gly	Lys	туг 880
30	Arg	Phe	Asp	Asn	Leu 885	Asp	Ser	Gly	Lys	туг 890	Lys	Val	Ile	Phe	Glu 895	Lys
	Pro	Ala	Gly	Leu 900	Thr	Gln	⊤hr	Val	⊤hr 905	Asn	⊤hr	Thr	Glu	Asp 910	Asp	Lys
35	Asp	Ala	Asp 915	Gly	Gly	Glu	Val	Asp 920	Val	Thr	Ile	Thr	Asp 925	His	Asp	Asp
	Phe	тhr 930	Leu	Asp	Asn	Gly	Туг 935	Phe	Glu	Glu	Asp	тhr 940	Ser	Asp	Ser	Asp
40	ser 945	Asp	Ser	Asp	Ser	Asp 950	Ser	Asp	Ser	Asp	ser 955	Asp	Ser	Asp	Ser	Asp 960
	Ser	Asp	Ser	Asp	ser 965	Asp	Ser	Asp	Ser	Asp 970	Ser	Asp	Ser	Asp	Ser 975	Asp
45	Ser	Asp	Ser	Asp 980	Ser	Asp	Ser	Asp	Ser 985	Asp	Ser	Asp	Ser	Asp 990	Ser	Asp
	Ser	Asp	Ser 995	Asp	Ser	Asp	Ser	Asp 1000	Ser)	Asp	Ser	Asp	Ser 1005	Asp 5	Ser	Asp
50	Ser	Asp 101(Ser)	Asp	Ser	Asp	Ser 101	Asp 5	Ser	Asp	Ser	Asp 102(Ser)	Asp	Ser	Asp
	Ser 1025	Asp 5	Ser	Asp	Ser	Asp 103(Ser)	Asp	Ser	Asp	Ser 1035	Asp 5	Ser	Asp	Ser	Asp 1040
55	Ser	Asp	Ser	Asp	Ser 1045	Asp 5	Ser	Asp	Ser	Asp 105(Ser)	Asp	Ser	Asp	Ser 1055	Asp 5
	Ser	Asp	Ser	Asp 1060	Ser)	Asp	Ser	Asp	Ser 1065	Asp 5	Ser	Asp	Ser	Asp 1070	Ser)	Asp

	Ser	Asp	Ser 1075	Asp 5	Ser	Asp	Ser	Asp 1080	Ser)	Asp	Ser	Asp	Ser 1085	Asp 5	Ser	Asp
5	Ser	Asp 1090	Ser)	Asp	Ser	Asp	Ser 1095	Asp 5	Ser	Asp	Ser	Asp 1100	Ser)	Asp	Ser	Asp
	Ser 1105	Asp 5	Ala	Gly	Lys	Ніs 111(Thr)	Pro	Val	Lys	Pro 1115	Met	Ser	Thr	Thr	Lys 1120
10	Asp	His	His	Asn	Lys 1125	Ala 5	Lys	Ala	Leu	Pro 1130	Glu)	Thr	Gly	Ser	Glu 1135	Asn
	Asn	Gly	Ser	Asn 1140	Asn)	Ala	Thr	Leu	Phe 1145	Gly 5	Gly	Leu	Phe	A]a 1150	Ala)	Leu
15	Gly	Ser	Leu 1155	Leu	Leu	Phe	Gly	Arg 116(Arg)	Lys	Lys	Gln	Asn 1165	Lys		
	<210 <211 <212 <213)> L> 2> }>	36 516 PRT Stap	ohyld	ococo	cus a	aurei	ıs								
20	<400 Met 1)> Lys	36 Lys	Lys	Asn 5	Ile	Tyr	Ser	Ile	Arg 10	Lys	Leu	Gly	Val	Gly 15	Ile
25	Ala	Ser	Val	⊤hr 20	Leu	Gly	Тhr	Leu	Leu 25	Ile	Ser	Gly	Gly	Val 30	Thr	Pro
23	Ala	Ala	Asn 35	Ala	Ala	Gln	His	Asp 40	Glu	Ala	Gln	Gln	Asn 45	Ala	Phe	Tyr
20	Gln	Va] 50	Leu	Asn	Met	Pro	Asn 55	Leu	Asn	Ala	Asp	G]n 60	Arg	Asn	Gly	Phe
30	Ile 65	Gln	Ser	Leu	Lys	Asp 70	Asp	Pro	Ser	Gln	Ser 75	Ala	Asn	Val	Leu	Gly 80
25	Glu	Ala	Gln	Lys	Leu 85	Asn	Asp	Ser	Gln	Ala 90	Pro	Lys	Ala	Asp	A]a 95	Gln
35	Gln	Asn	Asn	Phe 100	Asn	Lys	Asp	Gln	G]n 105	Ser	Ala	Phe	Туr	Glu 110	Ile	Leu
40	Asn	Met	Pro 115	Asn	Leu	Asn	Glu	A]a 120	Gln	Arg	Asn	Gly	Phe 125	Ile	Gln	Ser
40	Leu	Lys 130	Asp	Asp	Pro	Ser	G]n 135	Ser	⊤hr	Asn	Val	Leu 140	Gly	Glu	Ala	Lys
45	Lys 145	Leu	Asn	Glu	Ser	Gln 150	Ala	Pro	Lys	Ala	Asp 155	Asn	Asn	Phe	Asn	Lys 160
40	Glu	Gln	Gln	Asn	Ala 165	Phe	Тyr	Glu	Ile	Leu 170	Asn	Met	Pro	Asn	Leu 175	Asn
50	Glu	Glu	Gln	Arg 180	Asn	Gly	Phe	Ile	Gln 185	Ser	Leu	Lys	Asp	Asp 190	Pro	Ser
50	Gln	Ser	Ala 195	Asn	Leu	Leu	Ser	G]u 200	Ala	Lys	Lys	Leu	Asn 205	Glu	Ser	Gln
	Ala	Pro 210	Lys	Ala	Asp	Asn	Lys 215	Phe	Asn	Lys	Glu	G]n 220	Gln	Asn	Ala	Phe
55	Туг 225	Glu	Ile	Leu	His	Leu 230	Pro	Asn	Leu	Asn	Glu 235	Glu	Gln	Arg	Asn	Gly 240

	Phe	Ile	Gln	Ser	Leu 245	Lys	Asp	Asp	Pro	Ser 250	Gln	Ser	Ala	Asn	Leu 255	Leu
5	Ala	Glu	АТа	Lys 260	Lys	Leu	Asn	Asp	Ala 265	Gln	АТа	Pro	Lys	А]а 270	Asp	Asn
-	Lys	Phe	Asn 275	Lys	Glu	Gln	Gln	Asn 280	Ala	Phe	туг	Glu	Ile 285	Leu	His	Leu
10	Pro	Asn 290	Leu	Thr	Glu	Glu	Gln 295	Arg	Asn	Gly	Phe	Ile 300	Gln	Ser	Leu	Lys
10	Asp 305	Asp	Pro	Ser	Val	Ser 310	Lys	Glu	Ile	Leu	A]a 315	Glu	Ala	Lys	Lys	Leu 320
	Asn	Asp	Ala	Gln	Ala 325	Pro	Lys	Glu	Glu	Asp 330	Asn	Asn	Lys	Pro	G]y 335	Lys
15	Glu	Asp	Asn	Asn 340	Lys	Pro	Gly	Lys	Glu 345	Asp	Asn	Asn	Lys	Pro 350	Gly	Lys
	Glu	Asp	Asn 355	Asn	Lys	Pro	Gly	Lys 360	Glu	Asp	Asn	Asn	Lys 365	Pro	Gly	Lys
20	Glu	Asp 370	Gly	Asn	Lys	Pro	G]y 375	Lys	Glu	Asp	Asn	Lys 380	Lys	Pro	Gly	Lys
	Glu 385	Asp	Gly	Asn	Lys	Pro 390	Gly	Lys	Glu	Asp	Asn 395	Lys	Lys	Pro	Gly	Lys 400
25	Glu	Asp	Gly	Asn	Lys 405	Pro	Gly	Lys	Glu	Asp 410	Gly	Asn	Lys	Pro	Gly 415	Lys
	Glu	Asp	Gly	Asn 420	Gly	Val	His	Val	Va] 425	Lys	Pro	Gly	Asp	тhr 430	Val	Asn
30	Asp	Ile	Ala 435	Lys	Ala	Asn	Gly	Thr 440	Thr	Ala	Asp	Lys	Ile 445	Ala	Ala	Asp
	Asn	Lys 450	Leu	Ala	Asp	Lys	Asn 455	Met	Ile	Lys	Pro	Gly 460	Gln	Glu	Leu	Val
35	Va1 465	Asp	Lys	Lys	Gln	Pro 470	Ala	Asn	His	Ala	Asp 475	Ala	Asn	Lys	Ala	Gln 480
	Ala	Leu	Pro	Glu	⊤hr 485	Gly	Glu	Glu	Asn	Pro 490	Phe	IJ∫e	Gly	Тhr	тhr 495	Val
40	Phe	Gly	Gly	Leu 500	Ser	Leu	Ala	Leu	Gly 505	Ala	Ala	Leu	Leu	A]a 510	Gly	Arg
	Arg	Arg	Glu 515	Leu												
45	<210 <211 <212 <213)> L> 2> }>	37 772 PRT Stap	ohyld	οςοςα	cus a	aureu	15								
50	<400 Met 1)> Lys	37 Ala	Leu	Leu 5	Leu	Lys	Thr	Ser	Va] 10	Trp	Leu	Val	Leu	Leu 15	Phe
	Ser	Val	Met	G]y 20	Leu	тгр	Gln	Val	Ser 25	Asn	Ala	Ala	Glu	G]n 30	His	⊤hr
55	Pro	Met	Lys 35	Ala	Нis	Ala	Val	⊤hr 40	Thr	Ile	Asp	Lys	A]a 45	Тhr	Thr	Asp
	Lys	Gln	Gln	Val	Pro	Pro	Thr	Lys	Glu	Ala	Ala	His	His	Ser	Gly	Lys

		50					55					60				
	Glu 65	Ala	Ala	Thr	Asn	Va] 70	Ser	Ala	Ser	Ala	G]n 75	Gly	Thr	Ala	Asp	Asp 80
5	Thr	Asn	Ser	Lys	Va] 85	Тhr	Ser	Asn	Ala	Pro 90	Ser	Asn	Lys	Pro	Ser 95	Thr
	Val	Val	Ser	Thr 100	Lys	Val	Asn	Glu	Тhr 105	Arg	Asp	Val	Asp	Thr 110	Gln	Gln
10	Ala	Ser	⊤hr 115	Gln	Lys	Pro	Thr	Ніs 120	Тhr	Ala	Тhr	Phe	Lys 125	Leu	Ser	Asn
	Ala	Lys 130	⊤hr	Ala	Ser	Leu	Ser 135	Pro	Arg	Met	Phe	Ala 140	Ala	Asn	Ala	Pro
15	Gln 145	Тhr	⊤hr	Тhr	His	Lys 150	Ile	Leu	His	⊤hr	Asn 155	Asp	Ile	His	Gly	Arg 160
	Leu	Ala	Glu	Glu	Lys 165	Gly	Arg	Val	Ile	Gly 170	Met	Ala	Lys	Leu	Lys 175	Thr
20	Val	Lys	Glu	Gln 180	Glu	Lys	Pro	Asp	Leu 185	Met	Leu	Asp	Ala	Gly 190	Asp	Ala
	Phe	Gln	Gly 195	Leu	Pro	Leu	Ser	Asn 200	Gln	Ser	Lys	Gly	G]u 205	Glu	Met	Ala
25	Lys	A]a 210	Met	Asn	Ala	Val	G]y 215	туr	Asp	Ala	Met	A]a 220	Val	Gly	Asn	His
	G]u 225	Phe	Asp	Phe	Gly	туг 230	Asp	Gln	Leu	Lys	Lys 235	Leu	Glu	Gly	Met	Leu 240
30	Asp	Phe	Pro	Met	Leu 245	Ser	Thr	Asn	Val	⊤yr 250	Lys	Asp	Gly	Lys	Arg 255	Ala
	Phe	Lys	Pro	Ser 260	Thr	Ile	Val	Thr	Lys 265	Asn	Gly	Ile	Arg	Туг 270	Gly	Ile
35	Ile	Gly	Val 275	Тhr	Тhr	Pro	Glu	Thr 280	Lys	⊤hr	Lys	⊤hr	Arg 285	Pro	Glu	Gly
	Ile	Lys 290	Gly	Val	Glu	Phe	Arg 295	Asp	Pro	Leu	Gln	Ser 300	Val	Тhr	Ala	Glu
40	Met 305	Met	Arg	Ile	туг	Lys 310	Asp	Val	Asp	⊤hr	Phe 315	Val	Val	Ile	Ser	His 320
	Leu	Gly	Ile	Asp	Pro 325	Ser	Thr	Gln	Glu	⊤hr 330	тгр	Arg	Gly	Asp	туг 335	Leu
45	Val	Lys	Gln	Leu 340	Ser	Gln	Asn	Pro	G]n 345	Leu	Lys	Lys	Arg	Ile 350	Тhr	Val
	Ile	Asp	G]y 355	His	Ser	His	Тhr	Va1 360	Leu	Gln	Asn	Gly	Gln 365	Ile	туг	Asn
50	Asn	Asp 370	Ala	Leu	Ala	Gln	Thr 375	Gly	Thr	Ala	Leu	Ala 380	Asn	Ile	Gly	Lys
	Ile 385	Thr	Phe	Asn	туr	Arg 390	Asn	Gly	Glu	Val	Ser 395	Asn	Ile	Lys	Pro	Ser 400
55	Leu	Ile	Asn	Val	Lys 405	Asp	Val	Glu	Asn	Va] 410	Thr	Pro	Asn	Lys	Ala 415	Leu
	Ala	Glu	Gln	Ile 420	Asn	Gln	Ala	Asp	Gln 425	⊤hr	Phe	Arg	Ala	G]n 430	Thr	Ala

	Glu	Val	Ile 435	Ile	Pro	Asn	Asn	⊤hr 440	Ile	Asp	Phe	Lys	Gly 445	Glu	Arg	Asp
5	Asp	Va] 450	Arg	Thr	Arg	Glu	тhr 455	Asn	Leu	Gly	Asn	A]a 460	Ile	Ala	Asp	Ala
	Met 465	Glu	Ala	Туr	Gly	Va] 470	Lys	Asn	Phe	Ser	Lys 475	Lys	Thr	Asp	Phe	Ala 480
10	Val	Thr	Asn	Gly	Gly 485	Gly	Ile	Arg	Ala	Ser 490	Ile	Ala	Lys	Gly	Lys 495	Val
10	Тhr	Arg	Тyr	Asp 500	Leu	Ile	Ser	Val	Leu 505	Pro	Phe	Gly	Asn	тhr 510	Ile	Ala
45	Gln	Ile	Asp 515	Val	Lys	Gly	Ser	Asp 520	Val	тгр	Thr	Ala	Phe 525	Glu	His	Ser
15	Leu	G]y 530	Ala	Pro	Thr	Thr	G]n 535	Lys	Asp	Gly	Lys	тhr 540	Val	Leu	Thr	Ala
	Asn 545	Gly	Gly	Leu	Leu	His 550	Ile	Ser	Asp	Ser	I]e 555	Arg	Val	Тyr	Тyr	Asp 560
20	I]e	Asn	Lys	Pro	Ser 565	Gly	Lys	Arg	Ile	Asn 570	Ala	Ile	Gln	I]e	Leu 575	Asn
	Lys	Glu	Thr	Gly 580	Lys	Phe	Glu	Asn	Ile 585	Asp	Leu	Lys	Arg	Va] 590	Тyr	His
25	Val	Thr	Met 595	Asn	Asp	Phe	Thr	Ala 600	Ser	Gly	Gly	Asp	Gly 605	Туr	Ser	Met
	Phe	Gly 610	Gly	Pro	Arg	Glu	Glu 615	Gly	Ile	Ser	Leu	Asp 620	Gln	Val	Leu	Ala
30	Ser 625	туr	Leu	Lys	Thr	Ala 630	Asn	Leu	Ala	Lys	туг 635	Asp	Thr	⊤hr	Glu	Pro 640
	Gln	Arg	Met	Leu	Leu 645	Gly	Lys	Pro	Ala	Val 650	Ser	Glu	Gln	Pro	Ala 655	Lys
35	Gly	Gln	Gln	Gly 660	Ser	Lys	Gly	Ser	Lys 665	Ser	Gly	Lys	Asp	тhr 670	Gln	Pro
	I]e	Gly	Asp 675	Asp	Lys	Val	Met	Asp 680	Pro	Ala	Lys	Lys	Pro 685	Ala	Pro	Gly
40	Lys	Va] 690	Val	Leu	Leu	Leu	Ala 695	His	Arg	Gly	Тhr	Va] 700	Ser	Ser	Gly	Thr
	Glu 705	Gly	Ser	Gly	Arg	Тhr 710	Ile	Glu	Gly	Ala	Тhr 715	Val	Ser	Ser	Lys	Ser 720
45	Gly	Lys	Gln	Leu	Ala 725	Arg	Met	Ser	Val	Pro 730	Lys	Gly	Ser	Ala	ніs 735	Glu
	Lys	Gln	Leu	Pro 740	Lys	Тhr	Gly	⊤hr	Asn 745	Gln	Ser	Ser	Ser	Pro 750	Glu	Ala
50	Met	Phe	Va] 755	Leu	Leu	Ala	Gly	Ile 760	Gly	Leu	Ile	Ala	тhr 765	Val	Arg	Arg
	Arg	Lys 770	Ala	Ser												
55	<210 <211 <212)> L> ?>	38 190 PRT													

	<213>	Stap	ohy]c	coco	cus a	aurei	JS								
E	<400> Met Lys 1	38 Leu	Lys	ser 5	Leu	Ala	Val	Leu	Ser 10	Met	Ser	Ala	Val	Val 15	Leu
0	⊤hr Ala	Cys	G]y 20	Asn	Asp	Thr	Pro	Lys 25	Asp	Glu	⊤hr	Lys	Ser 30	Thr	Glu
	Ser Asn	Thr 35	Asn	Gln	Asp	Thr	Asn 40	Thr	Thr	Lys	Asp	Val 45	Ile	Ala	Leu
10	Lys Asp 50	Val	Lys	⊤hr	Ser	Pro 55	Glu	Asp	Ala	Val	Lys 60	Lys	Ala	Glu	Glu
	⊤hr Tyr 65	Lys	Gly	Gln	Lys 70	Leu	Lys	Gly	Ile	Ser 75	Phe	Glu	Asn	Ser	Asn 80
15	Gly Glu	Тгр	Ala	⊤yr 85	Lys	Val	Тhr	Gln	Gln 90	Lys	Ser	Gly	Glu	Glu 95	Ser
	Glu Val	Leu	Va] 100	Ala	Asp	Lys	Asn	Lys 105	Lys	Val	IJ∫e	Asn	Lys 110	Lys	⊤hr
20	Glu Lys	Glu 115	Asp	⊤hr	Met	Asn	Glu 120	Asn	Asp	Asn	Phe	Lys 125	туr	Ser	Asp
	Ala Ile 130	Asp	туг	Lys	Lys	Ala 135	Ile	Lys	Glu	Gly	G]n 140	Lys	Glu	Phe	Asp
25	Gly Asp 145	Ile	Lys	Glu	тгр 150	Ser	Leu	Glu	Lys	Asp 155	Asp	Gly	Lys	Leu	Val 160
	⊤yr Asn	Ile	Asp	Leu 165	Lys	Lys	Gly	Asn	Lys 170	Lys	G]n	Glu	Val	Тhr 175	Val
30	Asp Ala	Lys	Asn 180	Gly	Lys	Val	Leu	Lys 185	Ser	Glu	G]n	Asp	His 190		
35	<210> <211> <212> <213>	39 502 PRT Stap	ohyla	ococo	cus a	aurei	JS								
	<400> Met Arg 1	39 Glu	Asn	Phe 5	Lys	Leu	Arg	Lys	Met 10	Lys	Val	Gly	Leu	Val 15	Ser
40	Val Ala	Ile	Thr 20	Met	Leu	туг	Ile	Met 25	Thr	Asn	Gly	Gln	A]a 30	Glu	Ala
	Ser Glu	Asn 35	Gln	Asn	Ala	Leu	Ile 40	Ser	Asn	Ile	Asn	Va1 45	Asp	Asn	Gln
45	Glu Lys 50	Gln	Asn	Asn	Val	Asn 55	Gln	Ala	Val	Gln	Pro 60	Gln	Asn	Asn	⊤hr
	Asn Glu 65	Thr	Ser	Lys	Va] 70	Pro	Ala	Asn	Phe	Va] 75	Lys	Leu	Asn	Asp	Ile 80
50	Lys Pro	Gly	Asp	⊤hr 85	Ser	Ile	G]n	Gly	Thr 90	Тhr	Leu	Pro	Asn	Gln 95	Phe
	Ile Leu	Leu	Thr 100	Ile	Asp	Lys	Lys	Asp 105	Val	Ser	Ser	Val	Glu 110	Asp	Ser
55	Asp Ser	Ser 115	Phe	Val	Met	Ser	Asp 120	Lys	Asp	Gly	Asn	Phe 125	Lys	туг	Asp
	Leu Asn	Gly	Arg	Lys	Ile	Val	His	Asn	Gln	Glu	Ile	Glu	Val	Ser	Ser

EP 2 510 947 A1

		130					135					140				
	Ser 145	Asp	Pro	туr	Leu	Gly 150	Asp	Asp	Glu	Glu	Asp 155	Glu	Glu	Val	Glu	Glu 160
5	Thr	Ser	⊤hr	Glu	Glu 165	Val	Gly	Ala	Glu	Glu 170	Glu	Ser	Тhr	Glu	Ala 175	Lys
	Ala	Тhr	⊤yr	Thr 180	Тhr	Pro	Arg	Тyr	Glu 185	Lys	Ala	Туr	Glu	Ile 190	Pro	Lys
10	Glu	Gln	Leu 195	Lys	Glu	Lys	Asp	Gly 200	His	His	Gln	Val	Phe 205	Ile	Glu	Pro
	Ile	Thr 210	Glu	Gly	Ser	Gly	I]e 215	Ile	Lys	Gly	His	Thr 220	Ser	Val	Lys	Gly
15	Lys 225	Val	Ala	Leu	Ser	I]e 230	Asn	Asn	Lys	Phe	Ile 235	Asn	Phe	Glu	Thr	Asn 240
	Ala	Asn	Gly	Gly	Pro 245	Asn	Lys	Glu	Glu	Ala 250	Lys	Ser	Gly	Ser	Glu 255	Gly
20	Ile	Тгр	Met	Pro 260	Ile	Asp	Asp	Lys	Gly 265	⊤yr	Phe	Asn	Phe	Asp 270	Phe	Lys
	тhr	Lys	Arg 275	Phe	Asp	Asp	Leu	Glu 280	Leu	Lys	Lys	Asn	Asp 285	Glu	Ile	Ser
25	Leu	тhr 290	Phe	Ala	Pro	Asp	Asp 295	Glu	Asp	Glu	Ala	Leu 300	Lys	Ser	Leu	Ile
	Рһе 305	Lys	⊤hr	Lys	Val	тhr 310	Ser	Leu	Glu	Asp	I]e 315	Asp	Lys	Ala	Glu	тhr 320
30	Lys	туr	Asp	ніs	Тhr 325	Lys	Val	Glu	Lys	Va] 330	Lys	Val	Leu	Lys	Asp 335	Val
	Lys	Glu	Asp	Leu 340	His	Val	Asp	Glu	I]e 345	⊤yr	Gly	Ser	Leu	туг 350	His	Thr
35	Glu	Lys	G]y 355	Lys	Gly	Ile	Leu	Asp 360	Lys	Glu	Gly	Тhr	Lys 365	Val	Ile	Lys
	Gly	Lys 370	⊤hr	Lys	Phe	Ala	Asn 375	Ala	Val	Val	Lys	Va] 380	Asp	Ser	Glu	Leu
40	Gly 385	Glu	Gly	Gln	Glu	Phe 390	Pro	Asp	Leu	Gln	Va1 395	Asp	Glu	Lys	Gly	Glu 400
	Phe	Ser	Phe	Asp	Va] 405	Asp	His	А]а	Gly	Рһе 410	Arg	Leu	Gln	Asn	Gly 415	Glu
45	Thr	Leu	Asn	Phe 420	⊤hr	Val	Val	Asp	Pro 425	Ile	⊤hr	Gly	Glu	Leu 430	Leu	Ser
	Gly	Asn	Phe 435	Val	Ser	Lys	Asn	1]e 440	Asp	Ile	туr	Glu	Ser 445	Pro	Glu	Glu
50	Lys	A]a 450	Asp	Arg	Glu	Phe	Asp 455	Glu	Arg	Met	Glu	Asn 460	Thr	Pro	Ala	туг
	ніs 465	Lys	Leu	His	Gly	Asp 470	Lys	Ile	Val	Gly	туг 475	Asp	Thr	Asn	Gly	Phe 480
55	Pro	Ile	⊤hr	тгр	Phe 485	Тyr	Pro	Leu	Gly	Glu 490	Lys	Lys	Val	Glu	Arg 495	Lys
	Ala	Pro	Lys	Leu 500	Glu	Lys										

<210> 40 342 <211> <212> PRT Staphylococcus aureus <213> <400> Met Lys Lys Thr Val Leu Tyr Leu Val Leu Ala Val Met Phe Leu Leu 1 5 10 15 Ala Ala Cys Gly Asn Asn Ser Asp Lys Glu Gln Ser Lys Ser Glu Thr 20 25 30 Lys Gly Ser Lys Asp Thr Val Lys Ile Glu Asn Asn Tyr Lys Met Arg 35 40 45 Gly Glu Lys Lys Asp Gly Ser Asp Ala Lys Lys Val Lys Glu Thr Val 50 55 60 Glu Val Pro Lys Asn Pro Lys Asn Ala Val Val Leu Asp Tyr Gly Ala 65 70 75 80 Leu Asp Val Met Lys Glu Met Gly Leu Ser Asp Lys Val Lys Ala Leu 85 90 95 Pro Lys Gly Glu Gly Gly Lys Ser Leu Pro Asn Phe Leu Glu Ser Phe 100 105 110 Lys Asp Asp Lys Tyr Thr Asn Val Gly Asn Leu Lys Glu Val Asn Phe 115 120 125 Asp Lys Ile Ala Ala Thr Lys Pro Glu Val Ile Phe Ile Ser Gly Arg 130 135 140 Thr Ala Asn Gln Lys Asn Leu Asp Glu Phe Lys Lys Ala Ala Pro Lys 145 150 155 160 145 Ala Lys Ile Val Tyr Val Gly Ala Asp Glu Lys Asn Leu Ile Gly Ser 165 170 175 Met Lys Gln Asn Thr Glu Asn Ile Gly Lys Ile Tyr Asp Lys Glu Asp 180 185 190 Lys Ala Lys Glu Leu Asn Lys Asp Leu Asp Asn Lys Ile Ala Ser Met 195 200 205 Lys Asp Lys Thr Lys Asn Phe Asn Lys Thr Val Met Tyr Leu Leu Val 210 215 220 Asn Glu Gly Glu Leu Ser Thr Phe Gly Pro Lys Gly Arg Phe Gly Gly 225 230 235 240 225 Leu Val Tyr Asp Thr Leu Gly Phe Asn Ala Val Asp Lys Lys Val Ser 245 250 255 Asn Ser Asn His Gly Gln Asn Val Ser Asn Glu Tyr Val Asn Lys Glu 260 265 270 Asn Pro Asp Val Ile Leu Ala Met Asp Arg Gly Gln Ala Ile Ser Gly 275 280 285 Lys Ser Thr Ala Lys Gln Ala Leu Asn Asn Pro Val Leu Lys Asn Val 290 295 300 Lys Ala Ile Lys Glu Asp Lys Val Tyr Asn Leu Asp Pro Lys Leu Trp 305 310 315 320 Tyr Phe Ala Ala Gly Ser Thr Thr Thr Thr Ile Lys Gln Ile Glu Glu 325 330 335

5

10

15

20

25

30

35

40

45

50

55

Leu Asp Lys Val Val Lys 340 <210> <211> 41 241 <212> PRT Staphylococcus aureus <213> <400> Met Lys Lys Asn Ile Met Asn Lys Leu Val Leu Ser Thr Ala Leu Leu 1 5 10 15 Leu Leu Glu Thr Thr Ser Thr Gln Leu Pro Lys Thr Pro Ile Ser Phe 20 25 30 Ser Ser Glu Ala Lys Ala Tyr Asn Ile Ser Glu Asn Glu Thr Asn Ile 35 40 45 Asn Glu Leu Ile Lys Tyr Tyr Thr Gln Pro His Phe Ser Leu Ser Gly 50 55 60 Lys Trp Leu Trp Gln Lys Pro Asn Gly Ser Ile His Ala Thr Leu Gln 65 70 75 80 Thr Trp Val Trp Tyr Ser His Ile Gln Val Phe Gly Ser Glu Ser Trp 85 90 95 Gly Asn Ile Asn Gln Leu Arg Asn Lys Tyr Val Asp Ile Phe Gly Thr 100 105 110 Lys Asp Glu Asp Thr Val Glu Gly Tyr Trp Thr Tyr Asp Glu Thr Phe 115 120 125 Thr Gly Gly Val Thr Pro Ala Ala Thr Ser Ser Asp Lys Pro Tyr Arg 130 135 140 Leu Phe Leu Lys Tyr Ser Asp Lys Gln Gln Thr Ile Ile Gly Gly His 145 150 155 160 Glu Phe Tyr Lys Gly Asn Lys Pro Val Leu Thr Leu Lys Glu Leu Asp 165 170 175 Phe Arg Ile Arg Gln Thr Leu Ile Lys Asn Lys Lys Leu Tyr Asn Gly 180 185 190 Glu Phe Asn Lys Gly Gln Ile Lys Ile Thr Ala Asp Gly Asn Asn Tyr 195 200 205 Thr Ile Asp Leu Ser Lys Lys Leu Lys Leu Thr Asp Thr Asn Arg Tyr 210 215 220 Val Lys Asn Pro Arg Asn Ala Glu Ile Glu Val Ile Leu Glu Lys Ser 225 230 235 240 Asn <210> 42 302 <211> <212> PRT Staphylococcus aureus <213> <400> Met Lys Lys Leu Leu Leu Pro Leu Ile Ile Met Leu Leu Val Leu Ala 1 5 10 15 Ala Cys Gly Asn Gln Gly Glu Lys Asn Asn Lys Ala Glu Thr Lys Ser 20 25 30

EP 2 510 947 A1

5

10

15

20

25

30

35

40

45

50

55

193

Tyr Lys Met Asp Asp Gly Lys Thr Val Asp Ile Pro Lys Asp Pro Lys

			35					40					45			
	Arg	Ile 50	Ala	Val	Val	Ala	Pro 55	Thr	туr	Ala	Gly	Gly 60	Leu	Lys	Lys	Leu
5	G]y 65	Ala	Asn	Ile	Val	А]а 70	Val	Asn	Gln	Gln	Va] 75	Asp	Gln	Ser	Lys	Val 80
	Leu	Lys	Asp	Lys	Phe 85	Lys	Gly	Val	Тhr	Lys 90	Ile	Gly	Asp	Gly	Asp 95	Val
10	Glu	Lys	Val	Ala 100	Lys	Glu	Lys	Pro	Asp 105	Leu	Ile	Ile	Val	Туг 110	Ser	Thr
	Asp	Lys	Asp 115	Ile	Lys	Lys	Туr	G]n 120	Lys	Val	Ala	Pro	Thr 125	Val	Val	Val
15	Asp	Туг 130	Asn	Lys	His	Lys	Туг 135	Leu	Glu	Gln	Gln	Glu 140	Met	Leu	Gly	Lys
	1]e 145	Val	Gly	Lys	Glu	Asp 150	Lys	Val	Lys	Ala	Тгр 155	Lys	Lys	Asp	тгр	Glu 160
20	Glu	Thr	⊤hr	Ala	Lys 165	Asp	Gly	Lys	Glu	I]e 170	Lys	Lys	Ala	Ile	Gly 175	Gln
	Asp	Ala	⊤hr	Va] 180	Ser	Leu	Phe	Asp	Glu 185	Phe	Asp	Lys	Lys	Leu 190	туг	Thr
25	Туr	Gly	Asp 195	Asn	тгр	Gly	Arg	G]y 200	Gly	Glu	Val	Leu	туг 205	Gln	Ala	Phe
	Gly	Leu 210	Lys	Met	Gln	Pro	Glu 215	Gln	Gln	Lys	Leu	тhr 220	Ala	Lys	Ala	Gly
30	Тгр 225	Ala	Glu	Val	Lys	G]n 230	Glu	Glu	Ile	Glu	Lys 235	туг	Ala	Gly	Asp	туг 240
	Ile	Val	Ser	Тhr	Ser 245	Glu	Gly	Lys	Pro	⊤hr 250	Pro	Gly	туr	Glu	Ser 255	Thr
35	Asn	Met	⊤rp	Lys 260	Asn	Leu	Lys	Аlа	тhr 265	Lys	Glu	Gly	His	Ile 270	Val	Lys
	Val	Asp	Ala 275	Gly	Thr	туг	тгр	туг 280	Asn	Asp	Pro	туг	Thr 285	Leu	Asp	Phe
40	Met	Arg 290	Lys	Asp	Leu	Lys	Glu 295	Lys	Leu	Ile	Lys	Ala 300	Ala	Lys		
	<210 <211 <212 <213)> L> 2> 3>	43 267 PRT Stap	ohyla	ососо	cus a	aurei	ıs								
45	<400 Met 1)> Lys	43 Lys	Ile	Ala 5	Thr	Ala	Thr	Ile	Ala 10	Thr	Ala	Gly	Phe	Ala 15	Thr
50	Ile	Ala	Ile	A]a 20	Ser	Gly	Asn	Gln	A]a 25	His	Ala	Ser	Glu	G]n 30	Asp	Asn
อบ	Тyr	Gly	⊤yr 35	Asn	Pro	Asn	Asp	Pro 40	Thr	Ser	Тyr	Ser	Tyr 45	Thr	туг	Thr
	Ile	Asp 50	Ala	Gln	Gly	Asn	Tyr 55	His	Тyr	⊤hr	тгр	Lys 60	Gly	Asn	тгр	His
55	Pro 65	Ser	Gln	Leu	Asn	G]n 70	Asp	Asn	Gly	⊤yr	туг 75	Ser	Туг	Тyr	туг	туг 80

	Asn	Gly	Туr	Asn	Asn 85	Туr	Asn	Asn	Туr	Asn 90	Asn	Gly	Туr	Ser	Tyr 95	Asn
5	Asn	Туr	Ser	Arg 100	Тyr	Asn	Asn	Туr	Ser 105	Asn	Asn	Asn	Gln	Ser 110	Туr	Asn
	Туr	Asn	Asn 115	туг	Asn	Ser	Туr	Asn 120	Thr	Asn	Ser	Тyr	Arg 125	Тhr	Gly	Gly
10	Leu	Gly 130	Ala	Ser	туr	Ser	Thr 135	Ser	Ser	Asn	Asn	Va] 140	Gln	Val	Thr	Thr
	Тhr 145	Met	Ala	Pro	Ser	Ser 150	Asn	Gly	Arg	Ser	Ile 155	Ser	Ser	Gly	туг	тhr 160
15	Ser	Gly	Arg	Asn	Leu 165	туr	Thr	Ser	Gly	G]n 170	Cys	Thr	туг	туr	Va] 175	Phe
	Asp	Arg	Val	Gly 180	Gly	Lys	Ile	Gly	Ser 185	Тhr	тгр	Gly	Asn	Ala 190	Ser	Asn
20	Тгр	Ala	Asn 195	Ala	Ala	Ala	Arg	Ala 200	Gly	Туr	Тhr	Val	Asn 205	Asn	Thr	Pro
	Lys	Ala 210	Gly	Ala	Ile	Met	G]n 215	Thr	Тhr	Gln	Gly	A]a 220	Туr	Gly	His	Val
25	Ala 225	Тyr	Val	Glu	Ser	Va] 230	Asn	Ser	Asn	Gly	Ser 235	Val	Arg	Val	Ser	Glu 240
20	Met	Asn	Туr	Gly	Туг 245	Gly	Pro	Gly	Val	Va1 250	Thr	Ser	Arg	Тhr	Ile 255	Ser
	Ala	Ser	Gln	Ala	Ala	Glv	Tvr	Asn	Phe	Ile	His					
20		20.	••••	260	,	_ ,	.,	,	265							
30	<210 <211 <212 <212)> 1> 2> 3>	44 209 PRT Stap	260 ohylo	ococo	cus a	aurei	ıs	265							
30 35	<210 <211 <212 <213 <213 <400 Met 1)> 1> 2> 3>)> Lys	44 209 PRT Stap 44 Arg	260 phylo Leu	val	cus a Thr	aurei Gly	us Leu	265 Leu	A]a 10	Leu	Ser	Leu	Phe	Leu 15	Ala
30 35	<21(<212 <212 <213 <400 Met 1 Ala)> 1> 2> 3>)> Lys Cys	44 209 PRT Stap 44 Arg Gly	260 ohylo Leu Gln 20	val 5 Asp	cus a Thr Ser	aurei Gly Asp	us Leu Gln	265 Leu Gln 25	Ala 10 Lys	Leu Asp	Ser Gly	Leu Asn	Phe Lys 30	Leu 15 Glu	Ala Lys
30 35 40	<210 <212 <212 <213 <400 Met 1 Ala Asp)> l> 2> 3> D> Lys Cys Asp	44 209 PRT Stap 44 Arg Gly Lys 35	260 Dhylo Leu Gln 20 Ala	val 5 Asp Lys	Thr Ser Thr	Gly Gly Glu	us Leu Gln 40	265 Leu Gln 25 Gln	Ala 10 Lys Asp	Leu Asp Lys	Ser Gly Lys	Leu Asn Thr 45	Phe Lys 30 Asn	Leu 15 Glu Asp	Ala Lys Ser
30 35 40	<210 <212 <212 <213 <400 Met 1 Ala Asp Ser)> 1> 2> 3> D> Lys Cys Asp Lys 50	44 209 PRT Stap 44 Arg Gly Lys 35 Asp	260 Dhylo Leu Gln 20 Ala Lys	val 5 Asp Lys Lys	Thr Ser Thr Asp	Gly Gly Glu Glu Asn 55	Leu Gln Gln 40 Lys	265 Leu Gln 25 Gln Asp	Ala 10 Lys Asp Asp	Leu Asp Lys Ser	Ser Gly Lys 60	Leu Asn Thr 45 Asp	Phe Lys 30 Asn Val	Leu 15 Glu Asp Asn	Ala Lys Ser Lys
30 35 40 45	<210 <211 <211 <211 <400 Met 1 Ala Asp Ser Asp 65)> l> 2> 3>)> Lys Cys Asp Lys 50 Asn	44 209 PRT Stap 44 Arg Gly Lys 35 Asp Lys	260 Dhylo Leu Gln 20 Ala Lys Asp	val 5 Asp Lys Lys Asn	Thr Ser Thr Asp Ser 70	aurei Gly Asp Glu Asn 55 Ala	Leu Gln Gln Lys Asn	265 Leu Gln Asp Asp	Ala 10 Lys Asp Asp Asn	Leu Asp Lys Ser Gln 75	Ser Gly Lys 60 Gln	Leu Asn Thr 45 Asp Gln	Phe Lys 30 Asn Val Ser	Leu 15 Glu Asp Asn Asn	Ala Lys Ser Lys Ser 80
30 35 40 45	<210 <211 <211 <211 <400 Met 1 Ala Asp Ser Asp 65 Asn)> 1> 2> 3>)> Lys Cys Asp Lys 50 Asn Ala	44 209 PRT Stap 44 Arg Gly Lys 35 Asp Lys Thr	260 Dhylo Leu Gln Ala Lys Asp Asn	Val 5 Asp Lys Lys Asn 85	Thr Ser Thr Asp Ser 70 Asp	aurei Gly Asp Glu Asn 55 Ala Gln	Leu Gln Gln Lys Asn Asn	265 Leu Gln Asp Asp Gln	Ala 10 Lys Asp Asp Asn Thr 90	Leu Asp Lys Ser G]n 75 Asn	Ser Gly Lys 60 Gln Asn	Leu Asn Thr 45 Asp Gln Asn	Phe Lys 30 Asn Val Ser Gln	Leu 15 Glu Asp Asn Asn Ser 95	Ala Lys Ser Lys Ser 80 Ser
30 35 40 45 50	<210 <211 <211 <211 <400 Met 1 Ala Asp Ser Asp 65 Asn Asn)> 1> 2> 3>)> Lys Cys Asp Lys 50 Asn Ala Asn	44 209 PRT Stap 44 Arg Gly Lys 35 Asp Lys Thr Gln	260 Dhylo Leu Gln Ala Lys Asp Asn Ala 100	Val S Asp Lys Lys Asn Asn 85 Asn	cus a Thr Ser Thr Asp Ser 70 Asp Asn	aurei Gly Asp Glu Asn Ala Gln Asn	JS Leu Gln Gln Lys Asn Asn Gln	265 Leu Gln Asp Asp Gln Lys 105	Ala 10 Lys Asp Asp Asn Thr 90 Ser	Leu Asp Lys Ser Gln 75 Asn Ser	Ser Gly Lys 60 Gln Asn Tyr	Leu Asn Thr 45 Asp Gln Asn Val	Phe Lys 30 Asn Val Ser Gln Ala 110	Leu 15 Glu Asp Asn Asn Ser 95 Pro	Ala Lys Ser Lys Ser Ser Ser Tyr
30 35 40 45 50	<210 <211 <211 <211 <400 Met 1 Ala Asp Ser Asp 65 Asn Asn Tyr)> 1> 2> 3>)> Lys Cys Asp Lys 50 Asn Ala Asn Gly	44 209 PRT Stap 44 Arg Gly Lys 35 Asp Lys Thr Gln 115	260 bhylc Leu Gln 20 Ala Lys Asp Asn Ala 100 Asn	Val S Asp Lys Lys Asn Asn Asn Ala	Thr Ser Thr Asp Ser 70 Asp Asn Ala	aurei Gly Asp Glu Asn Ala Gln Asn Pro	JS Leu Gln Gln Lys Asn Asn Gln Val 120	265 Leu Gln Asp Gln Lys 105 Ala	Ala Lys Asp Asp Asn Thr 90 Ser Arg	Leu Asp Lys Ser Gln Ser Gln	Ser Gly Lys Gln Asn Tyr Ile	Leu Asn Thr Asp Gln Asn Val Tyr 125	Phe Lys 30 Asn Val Ser Gln Ala 110 Pro	Leu 15 Glu Asp Asn Asn Ser 95 Pro Phe	Ala Lys Ser Lys Ser Ser Tyr Asn

	Leu 145	Asn	Ala	Ala	Asn	Asn 150	Glu	Ala	Asn	Lys	Phe 155	Gly	Ser	Asn	Asn	Lys 160
5	Val	туr	Asn	Asp	туг 165	Ser	Ile	Glu	Glu	ніs 170	Asn	Gly	Asn	туr	Lys 175	туr
0	Val	Phe	Ser	Phe 180	Lys	Asp	Pro	Asn	Ala 185	Asn	ςΊу	Lys	Туr	Ser 190	Ile	Val
	⊤hr	Val	Asp 195	туг	⊤hr	Gly	Gln	A]a 200	Met	Val	Thr	Asp	Pro 205	Asn	Тyr	Gln
10	Gln															
15	<210 <211 <212 <212)> 1> 2> 3>	45 436 PRT Stap	ohyld	οςοςα	cus a	aurei	12								
	<400 Met 1)> Lys	45 Asn	Lys	Tyr 5	Ile	Ser	Lys	Leu	Leu 10	Val	Gly	Ala	Ala	Thr 15	Ile
20	⊤hr	Leu	Ala	тhr 20	Met	Ile	Ser	Asn	G]y 25	Glu	Ala	Lys	Ala	Ser 30	Glu	Asn
	⊤hr	Gln	Gln 35	тhr	Ser	тhr	Lys	ніs 40	Gln	Thr	Thr	Gln	Asn 45	Asn	туг	Val
25	⊤hr	Asp 50	Gln	Gln	Lys	Ala	Phe 55	Тyr	Gln	Val	Leu	Ніs 60	Leu	Lys	Gly	Ile
	⊤hr 65	Glu	Glu	Gln	Arg	Asn 70	Gln	Туr	Ile	Lys	Thr 75	Leu	Arg	Glu	His	Pro 80
30	Glu	Arg	Ala	Gln	Glu 85	Val	Phe	Ser	Glu	Ser 90	Leu	Lys	Asp	Ser	Lys 95	Asn
	Pro	Asp	Arg	Arg 100	Val	Ala	Gln	Gln	Asn 105	Ala	Phe	⊤yr	Asn	Va] 110	Leu	Lys
35	Asn	Asp	Asn 115	Leu	⊤hr	Glu	Gln	Glu 120	Lys	Asn	Asn	⊤yr	11e 125	Ala	Gln	Ile
	Lys	Glu 130	Asn	Pro	Asp	Arg	Ser 135	G∣n	Gln	Val	тгр	Val 140	Glu	Ser	Val	Gln
40	Ser 145	Ser	Lys	Ala	Lys	Glu 150	Arg	Gln	Asn	Ile	Glu 155	Asn	Ala	Asp	Lys	Ala 160
	Ile	Lys	Asp	Phe	Gln 165	Asp	Asn	Lys	Ala	Pro 170	His	Asp	Lys	Ser	Ala 175	Ala
45	⊤yr	Glu	Ala	Asn 180	Ser	Lys	Leu	Pro	Lys 185	Asp	Leu	Arg	Asp	Lys 190	Asn	Asn
	Arg	Phe	Val 195	Glu	Lys	Val	Ser	I]e 200	Glu	Lys	Ala	Ile	Va] 205	Arg	His	Asp
50	Glu	Arg 210	Val	Lys	Ser	Ala	Asn 215	Asp	Ala	Ile	Ser	Lys 220	Leu	Asn	Glu	Lys
	Asp 225	Ser	Ile	Glu	Asn	Arg 230	Arg	Leu	Ala	Gln	Arg 235	Glu	Val	Asn	Lys	A]a 240
55	Pro	Met	Asp	Val	Lys 245	Glu	His	Leu	Gln	Lys 250	Gln	Leu	Asp	Ala	Leu 255	Val
	Ala	Gln	Lys	Asp	Ala	Glu	Lys	Lys	Val	Ala	Pro	Lys	Val	Glu	Ala	Pro

				260					265					270		
	Gln	Ile	Gln 275	Ser	Pro	Gln	Ile	Glu 280	Lys	Pro	Lys	Val	Glu 285	Ser	Pro	Lys
5	Val	Glu 290	Val	Pro	Gln	Ile	G]n 295	Ser	Pro	Lys	Val	Glu 300	Val	Pro	Gln	Ser
	Lys 305	Leu	Leu	Gly	Туr	Туг 310	Gln	Ser	Leu	Lys	Asp 315	Ser	Phe	Asn	туr	Gly 320
10	Тyr	Lys	⊤yr	Leu	Thr 325	Asp	Тhr	Тyr	Lys	Ser 330	туr	Lys	Glu	Lys	Туг 335	Asp
	Thr	Ala	Lys	туг 340	туr	туr	Asn	Тhr	туг 345	⊤yr	Lys	туr	Lys	Gly 350	Ala	Ile
15	Asp	Gln	⊤hr 355	Val	Leu	Тhr	Val	Leu 360	Gly	Ser	Gly	Ser	Lys 365	Ser	Тyr	Ile
	Gln	Pro 370	Leu	Lys	Val	Asp	Asp 375	Lys	Asn	Gly	Туr	Leu 380	Ala	Lys	Ser	Туг
20	Ala 385	Gln	Val	Arg	Asn	туг 390	Val	Тhr	Glu	Ser	Ile 395	Asn	Тhr	Gly	Lys	Va1 400
	Leu	туr	⊤hr	Phe	туг 405	Gln	Asn	Pro	тhr	Leu 410	Val	Lys	тhr	Ala	I]e 415	Lys
25	Ala	Gln	Glu	тhr 420	Ala	Ser	Ser	Ile	Lys 425	Asn	тhr	Leu	Ser	Asn 430	Leu	Leu
	Ser	Phe	⊤rp 435	Lys												
30	<210 <211 <212 <213)> L> 2> }>	46 233 PRT Stap	ohy1a	ococo	cus a	aurei	ıs								
35	<400 Met 1)> Lys	46 Lys	Thr	Ile 5	Met	Ala	Ser	Ser	Leu 10	Ala	Val	Ala	Leu	G]y 15	Val
35	<400 Met 1 Thr)> Lys Gly	46 Lys ⊤yr	Thr Ala 20	Ile 5 Ala	Met Gly	Ala Thr	Ser Gly	Ser His 25	Leu 10 Gln	Ala Ala	Val His	Ala Ala	Leu Ala 30	Gly 15 Glu	val val
35 40	<400 Met 1 Thr Asn)> Lys Gly Val	46 Lys Tyr Asp 35	Thr Ala 20 Gln	Ile 5 Ala Ala	Met Gly His	Ala Thr Leu	Ser Gly Val 40	Ser His 25 Asp	Leu 10 Gln Leu	Ala Ala Ala	Val His His	Ala Ala Asn 45	Leu Ala 30 His	Gly 15 Glu Gln	Val Val Asp
35 40	<400 Met 1 Thr Asn Gln)> Lys Gly Val Leu 50	46 Lys Tyr Asp 35 Asn	Thr Ala 20 Gln Ala	Ile 5 Ala Ala Ala	Met Gly His Pro	Ala Thr Leu Ile 55	Ser Gly Val 40 Lys	Ser His 25 Asp Asp	Leu 10 Gln Leu Gly	Ala Ala Ala Ala	Val His His Tyr 60	Ala Ala Asn 45 Asp	Leu Ala 30 His Ile	Gly 15 Glu Gln His	Val Val Asp Phe
35 40 45	<400 Met Thr Asn Gln Val 65)> Lys Gly val Leu 50 Lys	46 Lys Tyr Asp 35 Asn Asp	Thr Ala 20 Gln Ala Gly	Ile 5 Ala Ala Ala Phe	Met Gly His Pro Gln 70	Ala Thr Leu Ile 55 Tyr	Ser Gly Val 40 Lys Asn	Ser His 25 Asp Asp Phe	Leu 10 Gln Leu Gly Thr	Ala Ala Ala Ala Ser 75	Val His His Tyr 60 Asn	Ala Ala Asn 45 Asp Gly	Leu Ala 30 His Ile Thr	Gly 15 Glu Gln His Thr	Val Val Asp Phe Trp 80
35 40 45	<400 Met 1 Asn Gln Val 65 Ser)> Lys Gly val Leu 50 Lys Trp	46 Lys Tyr Asp 35 Asn Asp Ser	Thr Ala Gln Ala Gly Tyr	Ile Ala Ala Ala Phe Glu	Met Gly His Pro Gln 70 Ala	Ala Thr Leu Ile 55 Tyr Ala	Ser Gly Val 40 Lys Asn Asn	Ser 25 Asp Asp Phe Gly	Leu Gln Leu Gly Thr Gln	Ala Ala Ala Ser 75 Thr	Val His His Tyr 60 Asn Ala	Ala Ala Asn Asp Gly Gly	Leu Ala JO His Ile Thr Phe	Gly Glu Gln His Thr Ser 95	Val Val Asp Phe Trp 80 Asn
35 40 45 50	<400 Met Thr Asn Gln Val 65 Ser Val)> Lys Gly Val Leu Lys Trp Ala	46 Lys Tyr Asp Asn Asp Ser Gly	Thr Ala Gln Ala Gly Tyr Ala	Ile Ala Ala Ala Phe Glu Asp	Met Gly His Pro Gln 70 Ala Tyr	Ala Thr Leu Ile 55 Tyr Ala Thr	Ser Gly Val Lys Asn Asn Thr	Ser 25 Asp Asp Phe Gly Ser 105	Leu Gln Leu Gly Thr Gln 90 Tyr	Ala Ala Ala Ser 75 Thr Asn	Val His His Tyr 60 Asn Ala Gln	Ala Ala Asn Asp Gly Gly Gly	Leu Ala His Ile Thr Phe Ser 110	Gly Glu Gln His Thr Ser 95 Asn	Val Val Asp Phe Trp 80 Asn Val
35 40 45 50	<400 Met 1 Thr Asn Gln Val 65 Ser Val Gln)> Lys Gly Val Leu Lys Trp Ala Ser	46 Lys Tyr Asp Asn Asp Ser Gly Val	Thr Ala Gln Ala Gly Tyr Ala 100 Ser	Ile Ala Ala Ala Phe Glu Asp Tyr	Met Gly His Pro Gln 70 Ala Tyr Asn	Ala Thr Leu Ile 55 Tyr Ala Thr Ala	Ser Gly Val Lys Asn Asn Thr Gln	Ser 25 Asp Asp Phe Gly Ser 105 Ser	Leu Gln Leu Gly Thr Gln 90 Tyr Ser	Ala Ala Ala Ser 75 Thr Asn Asn	Val His His Tyr 60 Asn Ala Gln Ser	Ala Ala Asn Asp Gly Gly Gly Asn	Leu Ala 30 His Ile Thr Phe Ser 110 Val	Gly Glu Gln His Thr Ser Asn Glu	Val Val Asp Phe Trp 80 Asn Val Ala
35 40 45 50	<400 Met Thr Asn Gln Val 65 Ser Val Gln Val	D> Lys Gly val Leu Lys Trp Ala Ser 130	46 Lys Tyr Asp 35 Asn Asp Ser Gly Val 115 Ala	Thr Ala Gln Ala Gly Tyr Ala Ser Pro	Ile Ala Ala Ala Phe Glu Asp Tyr Thr	Met Gly His Pro Gln Ala Tyr Asn Tyr	Ala Thr Leu Ile 55 Tyr Ala Thr Ala Hiss	Ser Gly Val Lys Asn Asn Thr Gln 120 Asn	Ser His Asp Asp Phe Gly Ser 105 Ser Tyr	Leu Gln Leu Gly ⊤hr Gln Tyr Ser Ser	Ala Ala Ala Ser Thr Asn Asn Thr	Val His His Tyr 60 Asn Ala Gln Ser Ser 140	Ala Ala Asn Asp Gly Gly Asn 125 Thr	Leu Ala 30 His Ile Thr Phe Ser 110 Val Thr	Gly Glu Gln His Thr Ser Asn Glu Ser	Val Val Asp Phe Trp 80 Asn Val Ala Ser

	Ala	Ala	Gln	Ile	Met 165	Ala	Gln	Arg	Thr	Gly 170	Val	Ser	Ala	Ser	Thr 175	Тrр
5	Ala	Ala	Ile	I]e 180	Ala	Arg	Glu	Ser	Asn 185	Gly	Gln	Val	Asn	Ala 190	туr	Asn
	Pro	Ser	Gly 195	Ala	Ser	Gly	Leu	Phe 200	Gln	Тhr	Met	Pro	Gly 205	тгр	Gly	Pro
10	Thr	Asn 210	Thr	Val	Asp	Gln	G]n 215	Ile	Asn	Ala	Ala	Va] 220	Lys	Ala	Тyr	Lys
	A]a 225	Gln	Gly	Leu	Gly	Ala 230	тгр	Gly	Phe							
15	<210 <211 <212 <213)> L> 2> 3>	47 256 PRT Stap	ohyla	ococo	cus a	aurei	ıs								
20	<400 Met 1)> Met	47 Lys	Arg	Leu 5	Asn	Lys	Leu	Val	Leu 10	Gly	Ile	Ile	Phe	Leu 15	Phe
	Leu	Val	Ile	Ser 20	Ile	Тhr	Ala	Gly	Cys 25	Gly	Ile	Gly	Lys	Glu 30	Ala	Glu
25	Val	Lys	Lys 35	Ser	Phe	Glu	Lys	тhr 40	Leu	Ser	Met	Тyr	Pro 45	Ile	Lys	Asn
20	Leu	Glu 50	Asp	Leu	Туr	Asp	Lys 55	Glu	Gly	Туr	Arg	Asp 60	Asp	Gln	Phe	Asp
20	Lys 65	Asn	Asp	Lys	Gly	тhr 70	тгр	Ile	Ile	Asn	Ser 75	Glu	Met	Val	Ile	G]n 80
30	Pro	Asn	Asn	Glu	Asp 85	Met	Val	Ala	Lys	G]y 90	Met	Val	Leu	Тyr	Met 95	Asn
25	Arg	Asn	Thr	Lys 100	Thr	Thr	Asn	Gly	Туг 105	Тyr	Туr	Val	Asp	Val 110	Thr	Lys
30	Asp	Glu	Asp 115	Glu	Gly	Lys	Pro	ніs 120	Asp	Asn	Glu	Lys	Arg 125	туг	Pro	Val
10	Lys	Met 130	Val	Asp	Asn	Lys	I]e 135	Ile	Pro	Thr	Lys	Glu 140	Ile	Lys	Asp	Glu
40	Lys 145	Ile	Lys	Lys	Glu	I]e 150	Glu	Asn	Phe	Lys	Phe 155	Phe	Val	Gln	туг	Gly 160
45	Asp	Phe	Lys	Asn	Leu 165	Lys	Asn	туг	Lys	Asp 170	Gly	Asp	Ile	Ser	Туг 175	Asn
45	Pro	Glu	Val	Pro 180	Ser	Тyr	Ser	Ala	Lys 185	Туr	Gln	Leu	Thr	Asn 190	Asp	Asp
	Туr	Asn	Val 195	Lys	Gln	Leu	Arg	Lys 200	Arg	Туr	Asp	Ile	Pro 205	Thr	Ser	Lys
50	Ala	Pro 210	Lys	Leu	Leu	Leu	Lys 215	Gly	Ser	Gly	Asn	Leu 220	Lys	Gly	Ser	Ser
	Va] 225	Gly	Туr	Lys	Asp	I]e 230	Glu	Phe	Thr	Phe	Va] 235	Glu	Lys	Lys	Glu	Glu 240
55	Asn	Ile	туг	Phe	Ser 245	Asp	Ser	Leu	Asp	туг 250	Lys	Lys	Ser	Gly	Asp 255	Val

	<210 <211 <212 <213)> L> 2> 3>	48 514 PRT Stap	ohyld	ococo	cus a	aurei	ıs								
5	<400 Met 1)> Lys	48 Lys	Ile	⊤yr 5	Lys	Ser	Leu	Thr	Val 10	Ser	Ala	Ile	Val	A]a 15	⊤hr
	Val	Ser	Leu	Ser 20	Ala	Leu	Pro	Gln	Ser 25	Leu	Ala	Ile	Thr	His 30	Glu	Ser
10	Gln	Pro	Thr 35	Lys	Gln	Gln	Arg	тhг 40	Val	Leu	Phe	Asp	Arg 45	Ser	His	Gly
	Gln	Thr 50	Ala	Gly	Ala	Ala	Asp 55	тгр	Val	Ser	Asp	G]y 60	Ala	Phe	Ser	Asp
15	⊤yr 65	Ala	Asp	Ser	Ile	G]n 70	Lys	Gln	Gly	туr	Asp 75	Val	Lys	Ala	Ile	Asp 80
	Gly	His	Ser	Asn	Ile 85	Тhr	Glu	Ala	Ser	Leu 90	Lys	Ser	Ser	Lys	Ile 95	Phe
20	Val	Ile	Pro	Glu 100	Ala	Asn	Ile	Pro	Phe 105	Lys	Glu	Ser	Glu	G]n 110	Ala	Ala
	Ile	Val	Lys 115	туr	Val	Lys	Gln	G]y 120	Gly	Asn	Val	Val	Phe 125	Ile	Ser	Asp
25	ніs	Туг 130	Asn	Ala	Asp	Arg	Asn 135	Leu	Asn	Arg	Ile	Asp 140	Ser	Ser	Glu	Ala
	Met 145	Asn	Gly	Тyr	Arg	Arg 150	Gly	Ala	Туr	Glu	Asp 155	Met	Ser	Lys	Gly	Met 160
30	Asn	Ala	Glu	Glu	Lys 165	Ser	Ser	Thr	Ala	Met 170	Gln	Gly	Val	Lys	Ser 175	Ser
	Asp	тгр	Leu	Ser 180	⊤hr	Asn	Phe	G∣y	Val 185	Arg	Phe	Arg	туr	Asn 190	Ala	Leu
35	Gly	Asp	Leu 195	Asn	⊤hr	Ser	Asn	I]e 200	Val	Ser	Ser	Lys	Glu 205	Ser	Phe	Gly
	Ile	Thr 210	Glu	Gly	Val	Lys	Ser 215	Val	Ser	Met	His	A]a 220	Gly	Ser	Thr	Leu
40	A]a 225	Ile	Thr	Asn	Pro	Glu 230	Lys	Ala	Lys	Gly	I]e 235	Val	Туr	Thr	Pro	G]u 240
	Gln	Leu	Pro	Ala	Lys 245	Ser	Lys	тгр	Ser	His 250	Ala	Val	Asp	Gln	G]y 255	Ile
45	⊤yr	Asn	Gly	Gly 260	Gly	Lys	Ala	Glu	Gly 265	Pro	туг	Val	Ala	Ile 270	Ser	Lys
	Val	Gly	Lys 275	Gly	Lys	Ala	Ala	Phe 280	Ile	Gly	Asp	Ser	Ser 285	Leu	Val	Glu
50	Asp	Ser 290	Ser	Pro	Lys	Туr	Va] 295	Arg	Glu	Asp	Asn	G]y 300	Glu	Lys	Lys	Lys
	⊤hr 305	Туr	Asp	Gly	Phe	Lys 310	Glu	G]n	Asp	Asn	Gly 315	Lys	Leu	Leu	Asn	Asn 320
55	Ile	Thr	Ala	тгр	Met 325	Ser	Lys	Asp	Asn	Asp 330	Gly	Lys	Ser	Leu	Lys 335	Ala
00	Ser	Ser	Leu	⊤hr	Leu	Asp	Thr	Lys	Thr	Lys	Leu	Leu	Asp	Phe	Glu	Arg

				340					345					350		
	Pro	Glu	Arg 355	Ser	Thr	Glu	Pro	Glu 360	Lys	Glu	Pro	тгр	Ser 365	Gln	Pro	Pro
5	Ser	Gly 370	⊤yr	Lys	тгр	Туr	Asp 375	Pro	Thr	⊤hr	Phe	Lys 380	Ala	Gly	Ser	Туr
	Gly 385	Ser	Glu	Lys	Gly	Ala 390	Asp	Pro	Gln	Pro	Asn 395	Thr	Pro	Asp	Asp	His 400
10	Thr	Pro	Pro	Asn	G]n 405	Asn	Glu	Lys	Val	⊤hr 410	Phe	Asp	Ile	Pro	Gln 415	Asn
	Val	Ser	Val	Asn 420	Glu	Pro	Phe	Glu	Met 425	⊤hr	Ile	His	Leu	Lys 430	Gly	Phe
15	Glu	Ala	Asn 435	Gln	Thr	Leu	Glu	Asn 440	Leu	Arg	Val	Gly	11e 445	Тyr	Lys	Glu
	Gly	Gly 450	Arg	Gln	Ile	Gly	G]n 455	Phe	Ser	Ser	Lys	Asp 460	Asn	Asp	туr	Asn
20	Pro 465	Pro	Gly	Тyr	Ser	тhr 470	Leu	Pro	Тhr	Val	Lys 475	Ala	Asp	Glu	Asn	Gly 480
	Asn	Val	⊤hr	Ile	Lys 485	Val	Asn	Ala	Lys	Va] 490	Leu	Glu	Ser	Met	Glu 495	Gly
25	Ser	Lys	Ile	Arg 500	Leu	Lys	Leu	Gly	Asp 505	Lys	тhr	Leu	Ile	тhr 510	тhr	Asp
	Phe	Lys														
30	<210 <212 <212 <212)> L> 2> 3>	49 511 PRT Stap	ohyla		cus a	aurei	ıs								
30 35	<210 <212 <212 <213 <213 <400 Met 1)> L> 2> 3>)> Ser	49 511 PRT Stap 49 Asn	ohyld Ile	ococo Ala 5	cus a Phe	aurei Tyr	ıs Val	Val	Ser 10	Asp	Val	His	Gly	Tyr 15	Ile
30 35	<210 <211 <212 <213 <400 Met 1 Phe)> L> 2> 3>)> Ser Pro	49 511 PRT Stap 49 Asn Thr	ohylo Ile Asp 20	Ala 5 Phe	cus a Phe Thr	aurei Tyr Ser	ıs Val Arg	Val Asn 25	Ser 10 Gln	Asp Tyr	Val Gln	His Pro	Gly Met 30	Tyr 15 Gly	Ile Leu
30 35 40	<210 <211 <212 <213 <400 Met 1 Phe Leu)> L> 2> 3> Ser Pro Leu	49 511 PRT Stap 49 Asn Thr Ala 35	ohyld Ile Asp 20 Asn	Ala 5 Phe His	cus a Phe Thr Val	aureu Tyr Ser Ile	val Arg Glu 40	Val Asn 25 Gln	Ser 10 Gln Asp	Asp Tyr Arg	Val Gln Arg	His Pro Gln 45	Gly Met 30 Tyr	Tyr 15 Gly Asp	Ile Leu Gln
30 35 40	<210 <211 <212 <213 <400 Met 1 Phe Leu Ser)> L> 2> Ser Pro Leu Phe 50	49 511 PRT Stap 49 Asn Thr Ala 35 Lys	ohyld Ile Asp 20 Asn Ile	Ala 5 Phe His Asp	cus a Phe Thr Val Asn	Tyr Ser Ile 55	us Val Arg Glu 40 Asp	val Asn 25 Gln Phe	Ser 10 Gln Asp Leu	Asp Tyr Arg Gln	Val Gln Arg Gly 60	His Pro Gln 45 Ser	Gly Met 30 Tyr Pro	Tyr 15 Gly Asp Phe	Ile Leu Gln Cys
30 35 40 45	<210 <211 <212 <213 <400 Met 1 Phe Leu Ser Asn 65)> L> 2> Ser Pro Leu Phe 50 Tyr	49 511 PRT Stap 49 Asn Thr Ala 35 Lys Leu	ohyld Ile Asp 20 Asn Ile Ile	Ala Phe His Asp Ala	cus a Phe Thr Val Asn His 70	Tyr Ser Ile Gly Ser	JS Val Arg Glu Asp Gly	Val Asn 25 Gln Phe Ser	Ser 10 Gln Asp Leu Ser	Asp Tyr Arg Gln 75	Val Gln Arg Gly 60 Pro	His Pro Gln 45 Ser Leu	Gly Met 30 Tyr Pro Val	Tyr 15 Gly Asp Phe Asp	Ile Leu Gln Cys Phe 80
30 35 40 45	<210 <212 <212 <213 <400 Met 1 Phe Leu Ser Asn 65 Tyr)> L> 2> Ser Pro Leu Phe 50 Tyr Asn	49 511 PRT Stap 49 Asn Thr Ala 35 Lys Leu Arg	ohyld Ile Asp 20 Asn Ile Ile Met	Ala Phe His Asp Ala 85	cus a Phe Thr Val Asn His 70 Phe	Tyr Ser Ile Gly Ser Asp	val Arg Glu Asp Gly Phe	Val Asn Gln Phe Ser Gly	Ser 10 Gln Asp Leu Ser 7hr 90	Asp Tyr Arg Gln Gln 75 Leu	Val Gln Arg Gly Pro Gly	His Pro Gln 45 Ser Leu Asn	Gly Met 30 Tyr Pro Val His	Tyr 15 Gly Asp Phe Asp Glu 95	Ile Leu Gln Cys Phe 80 Phe
30 35 40 45	<210 <212 <212 <212 <400 Met 1 Phe Leu Ser Asn 65 Tyr Asn)> L> 2> Ser Pro Leu Phe 50 Tyr Asn Tyr	49 511 PRT Stap 49 Asn Thr Ala 35 Lys Leu Arg Gly	ohylo Ile Asp 20 Asn Ile Ile Met Leu	Ala Phe His Asp Ala 85 Pro	Cus a Phe Thr Val Asn His 70 Phe Tyr	Tyr Ser Ile Gly Ser Asp Leu	JS Val Arg Glu Asp Gly Phe Lys	val Asn Gln Phe Ser Gly Asp 105	Ser 10 Gln Asp Leu Ser Thr 90 Thr	Asp Tyr Arg Gln 75 Leu Leu	Val Gln Arg Gly Pro Gly Arg	His Pro Gln 45 Ser Leu Asn Arg	Gly Met 30 Tyr Pro Val His Leu	Tyr 15 Gly Asp Phe Asp Glu 95 Asn	Ile Leu Gln Cys Phe 80 Phe Tyr
30 35 40 45 50	<210 <211 <211 <211 <400 Met 1 Phe Leu Ser Asn 65 Tyr Asn Pro)> L> Ser Pro Leu Phe 50 Tyr Asn Tyr Val	49 511 PRT Star 49 Asn Thr Ala 35 Lys Leu Arg Gly Leu 115	ohylo Ile Asp 20 Asn Ile Ile Met Leu 100 Cys	Ala Phe His Asp Ala Ala Pro Ala	Cus a Phe Thr Val Asn His 70 Phe Tyr Asn	Tyr Ser Ile Gly Ser Asp Leu Ile	JS Val Arg Glu Asp Gly Phe Lys Tyr 120	Val Asn Gln Phe Ser Gly Asp 105 Glu	Ser 10 Gln Asp Leu Ser Thr 90 Thr Asn	Asp Tyr Arg Gln 75 Leu Leu Asp	Val Gln Arg Gly Pro Gly Arg Ser	His Pro Gln 45 Ser Leu Asn Arg Thr	Gly Met 30 Tyr Pro Val His Leu 110 Leu	Tyr 15 Gly Asp Phe Asp Glu 95 Asn Thr	Ile Leu Gln Cys Phe 80 Phe Tyr Asp
30 35 40 45 50	<210 <211 <211 <211 <211 <400 Met 1 Phe Leu Ser Asn 65 Tyr Asn Pro Asn)> Ser Pro Leu Phe 50 Tyr Asn Tyr Val Gly 130	49 511 PRT star 49 Asn Thr Ala 35 Lys Leu Arg Gly Leu 115 Val	ohylo Ile Asp 20 Asn Ile Ile Met Leu 100 Cys Lys	Ala Ala Phe His Asp Ala Ala Pro Ala Tyr	Cus a Phe Thr Val Asn His 70 Phe Tyr Asn Phe	Tyr Ser Ile Gly Ser Asp Leu Ile Gln 135	val Arg Glu Asp Gly Phe Lys Tyr 120 Val	Val Asn Gln Phe Ser Gly Asp 105 Glu Gly	Ser Gln Asp Leu Ser Thr Asn Asp	Asp Tyr Arg Gln Gln Leu Leu Asp Gln	Val Gln Arg Gly Pro Gly Arg Ser Thr 140	His Pro Gln 45 Ser Leu Asn Arg Thr 125 Val	Gly Met 30 Tyr Pro Val His Leu 110 Leu Gly	Tyr 15 Gly Asp Phe Asp Glu 95 Asn Thr Val	Ile Leu Gln Cys Phe 7yr Asp Ile

	Gln	Ser	Leu	Thr	Phe 165	His	Ser	Ala	Phe	Glu 170	Ile	Leu	Gln	Gln	Туг 175	Leu
5	Pro	Glu	Met	Lys 180	Arg	His	Ala	Asp	I]e 185	Ile	Val	Val	Cys	Туг 190	His	Gly
	Gly	Phe	Glu 195	Lys	Asp	Leu	Glu	Ser 200	Gly	Thr	Pro	Thr	G]u 205	Val	Leu	Thr
10	Gly	Glu 210	Asn	Glu	Gly	туr	A]a 215	Met	Leu	Glu	Ala	Phe 220	Ser	Lys	Asp	Ile
10	Asp 225	Ile	Phe	Ile	Тhr	G]y 230	His	Gln	His	Arg	G]n 235	Ile	Ala	Glu	Arg	Phe 240
	Lys	Gln	Thr	Ala	Va] 245	Ile	Gln	Pro	Gly	Thr 250	Arg	Gly	Thr	Thr	Va] 255	Gly
15	Arg	Val	Val	Leu 260	Ser	Thr	Asp	Glu	Туг 265	Glu	Asn	Leu	Ser	Va] 270	Glu	Ser
	Cys	Glu	Leu 275	Leu	Pro	Val	Ile	Asp 280	Asp	Ser	Thr	Phe	Thr 285	Ile	Asp	Glu
20	Asp	Asp 290	Gln	His	Leu	Arg	Lys 295	Gln	Leu	Glu	Asp	Тгр 300	Leu	Asp	Тyr	Glu
	Ile 305	Thr	Thr	Leu	Pro	Туг 310	Asp	Met	⊤hr	Ile	Asn 315	His	Ala	Phe	Glu	Ala 320
25	Arg	Val	Ala	Pro	His 325	Pro	Phe	⊤hr	Asn	Phe 330	Met	Asn	Туr	Ala	Leu 335	Leu
	Glu	Lys	Ser	Asp 340	Ala	Asp	Val	Ala	Cys 345	Тhr	Ala	Leu	Phe	Asp 350	Ser	Ala
30	Ser	Gly	Phe 355	Lys	Gln	Val	Val	⊤hr 360	Met	Arg	Asp	Val	11e 365	Asn	Asn	туr
	Pro	Phe 370	Pro	Asn	Thr	Phe	Lys 375	Val	Leu	Ala	Val	Ser 380	Gly	Ala	Lys	Leu
35	Lys 385	Glu	Ala	Ile	Glu	Arg 390	Ser	Ala	Glu	туг	Phe 395	Asp	Val	Lys	Asn	Asp 400
	Glu	Val	Ser	Val	Ser 405	Ala	Asp	Phe	Leu	Glu 410	Pro	Lys	Pro	G]n	His 415	Phe
40	Asn	туг	Asp	I]e 420	туr	Gly	Gly	Val	Ser 425	туг	Тhr	Ile	His	Va] 430	Gly	Arg
	Pro	Lys	G]y 435	Gln	Arg	Val	Ser	Asn 440	Met	Met	Ile	Gln	Gly 445	His	Ala	Val
45	Asp	Leu 450	Lys	Gln	Thr	Тyr	тhr 455	Ile	Cys	Val	Asn	Asn 460	Туг	Arg	Ala	Val
	Gly 465	Gly	Gly	Gln	туr	Asp 470	Met	⊤yr	Ile	Asp	Ala 475	Pro	Val	Val	Lys	Asp 480
50	I]e	Gln	Val	Glu	Gly 485	Ala	Gln	Leu	Leu	I]e 490	Asp	Phe	Leu	Ser	Asn 495	Asn
	Asn	Leu	Met	Arg 500	Ile	Pro	Gln	Val	Va1 505	Asp	Phe	Lys	Val	Glu 510	Lys	
55	<210 <211 <212)> L> ?>	50 324 PRT													

<213> Staphylococcus aureus <400> Met Lys Arg Leu Ser Ile Ile Val Ile Ile Gly Ile Phe Ile Ile Thr 1 5 10 15 Gly Cys Asp Trp Gln Arg Thr Ser Lys Glu Arg Ser Lys Asn Ala Gln 20 25 30 Asn Gln Gln Val Ile Lys Ile Gly Tyr Leu Pro Ile Thr His Ser Ala 35 40 45 Asn Leu Met Met Thr Lys Lys Leu Leu Ser Gln Tyr Asn His Pro Lys 50 55 60 Tyr Lys Leu Glu Leu Val Lys Phe Asn Asn Trp Pro Asp Leu Met Asp 65 70 75 80 Ala Leu Asn Ser Gly Arg Ile Asp Gly Ala Ser Thr Leu Ile Glu Leu 85 90 95 Ala Met Lys Ser Lys Gln Lys Gly Ser Asn Ile Lys Ala Val Ala Leu 100 105 110 Gly His His Glu Gly Asn Val Ile Met Gly Gln Lys Gly Met His Leu 115 120 125 Asn Glu Phe Asn Asn Asn Gly Asp Asp Tyr His Phe Gly Ile Pro His 130 135 140 Arg Tyr Ser Thr His Tyr Leu Leu Clu Glu Glu Leu Arg Lys Gln Leu 145 150 155 160 Lys Ile Lys Pro Gly His Phe Ser Tyr His Glu Met Ser Pro Ala Glu 165 170 175 Met Pro Ala Ala Leu Ser Glu His Arg Ile Thr Gly Tyr Ser Val Ala 180 185 190 Glu Pro Phe Gly Ala Leu Gly Glu Lys Leu Gly Lys Gly Lys Thr Leu 195 200 205 Lys His Gly Asp Asp Val Ile Pro Asp Ala Tyr Cys Cys Val Leu Val 210 215 220 Leu Arg Gly Glu Leu Leu Asp Gln His Lys Asp Val Ala Gln Ala Phe 225 230 235 240 Val Gln Asp Tyr Lys Lys Ser Gly Phe Lys Met Asn Asp Arg Lys Gln 245 250 255 Ser Val Asp Ile Met Thr His His Phe Lys Gln Ser Arg Asp Val Leu 260 265 270 Thr Gln Ser Ala Ala Trp Thr Ser Tyr Gly Asp Leu Thr Ile Lys Pro 275 280 285 Ser Gly Tyr Gln Glu Ile Thr Thr Leu Val Lys Gln His His Leu Phe 290 295 300 Asn Pro Pro Ala Tyr Asp Asp Phe Val Glu Pro Ser Leu Tyr Lys Glu 305 310 315 320

EP 2 510 947 A1

<210> 51 <211> 591 <212> PRT <213> Staphylococcus aureus

Ala Ser Arg Ser

5

10

15

20

25

30

35

40

45

50

<400> 51 Met Lys Lys Ile Ile Ser Ile Ala Ile Ile Val Leu Ala Leu Val Leu 1 5 10 15 Ser Gly Cys Gly Val Pro Thr Lys Ser Glu Val Ala Gln Lys Ser Ser 20 25 30 5 Lys Val Glu Val Lys Gly Glu Arg Pro Thr Ile His Phe Leu Gly Gln 35 40 45 Ala Ser Tyr Glu Asn Asp Met Asn Ile Val Lys Asp Gln Leu Glu Asn 50 55 60 10 Ala Gly Phe Asn Val Lys Met Asn Ile Gln Pro Asp Tyr Gly Ser Tyr 65 70 75 80 Arg Thr Gln Arg Gln Ala Gly Asn Tyr Asp Ile Gln Ile Asp Asp Trp 85 90 95 15 Met Thr Val Phe Gly Asp Pro Asn Tyr Ala Met Thr Ala Leu Phe Ser 100 105 110 Ser Thr Gly Ser Asn Ser Leu Leu Lys Asp Lys His Val Asp Gln Leu 115 120 125 20 Leu Asn Lys Ala Ser Thr Gln Asn Glu Ala Asp Val Lys Gln Thr Tyr 130 135 140 Lys Gln Ile Glu Asp Glu Val Val Phe Asp Lys Gly Tyr Met Ala Pro 145 150 155 160 25 Leu Tyr Gly Ser Lys Lys Asn Leu Val Tyr Asp Asn Lys Val Leu Asp 165 170 175 Lys Asn Ser Val Gly Leu Pro Asn Ser Arg Ala Leu Ile Trp Gln Gln 180 185 190 30 Phe Asp Tyr Asn Asn Ser Arg Glu Arg Asp Thr Arg Pro Leu Val Met 195 200 205 Thr Gln Gln Asp Gly Glu Ile Pro Thr Leu Asp Pro Ile Arg Ser Ile 210 215 220 35 Ala Pro Ser Val Tyr Ser Ile Asn Met Asn Met Tyr Thr Arg Leu Leu 225 230 235 240 225 Leu Leu Asp Glu Asn Asp His Leu Thr Thr Lys Gly Ser Leu Ser His 245 250 255 40 Asp Tyr Ala Val Asn Lys Asp Asn Lys Ala Phe Tyr Phe Leu Leu Arg 260 265 270 Asp Asp Asp Tyr Phe Ala Lys Val Val Asn Gly Gln Ala Arg Asn Thr 275 280 285 45 Gly Glu Arg Val Ser Ala Glu Asp Val Lys Phe Ser Leu Asp Arg Ala 290 295 300 Arg Asp Lys Lys Ser Val Pro Asn Asn Asn Thr Tyr Asn Met His Lys 305 310 315 320 50 His Ile Asn Asp Ile Lys Ile Leu Lys Asp Glu Asp Ile Asp Gln Leu 325 330 335 Arg Lys Glu Lys Asp Lys Asp Asp Lys Ser Ile Tyr Asp Lys Leu Ile 340 345 350 55 Lys Ala Tyr Asn Val Lys Ser Leu Thr Thr Asp Gly Gln Lys Val Asn 355 360 365

	Asn	Lys 370	Asp	Gly	Ile	Туr	Gln 375	Ile	Val	Lys	Ile	Thr 380	Thr	Asp	Gln	Ser
5	Met 385	Pro	Arg	Glu	Val	Asn 390	Тyr	Leu	Thr	His	Ser 395	Ser	Ala	Gly	Ile	Leu 400
	Ser	Lys	Lys	Phe	Val 405	Asn	Gln	Val	Asn	G]n 410	Glu	туr	Pro	Lys	Gly 415	Туr
10	Gly	Asp	Ser	Ser 420	Thr	Ile	Pro	Ala	Asn 425	Ser	Asp	Gly	Lys	Asn 430	Ala	Leu
	Тyr	Ala	Ser 435	Gly	Ala	туr	Ile	Met 440	Тhr	Gln	Lys	Asn	Ala 445	туr	Gln	Ala
15	Thr	Phe 450	Gln	Arg	Asn	Pro	Gly 455	Phe	Asn	Glu	Thr	Glu 460	Lys	Gly	Ser	Tyr
10	Gly 465	Pro	Ala	Lys	Ile	Lys 470	Asn	Ile	Тhr	Leu	Lys 475	Phe	Asn	Gly	Asp	Pro 480
20	Asn	Asn	Ala	Leu	Ser 485	Glu	Leu	Arg	Asn	ніs 490	Ser	Ile	Asp	Met	Leu 495	Ala
20	Asp	Val	Asn	G]n 500	Lys	His	Phe	Asp	Leu 505	Ile	Lys	Ser	Asp	Lys 510	Asn	Leu
05	Ser	Ile	I]e 515	Arg	Lys	Asn	Gly	Arg 520	Lys	Ser	Val	Phe	Leu 525	Met	Leu	Asn
25	Ile	Lys 530	Lys	Gly	Ile	Phe	Lys 535	Thr	His	Pro	Asn	Leu 540	Arg	Gln	Ala	Val
	Va] 545	Asn	Ala	Ile	Asp	G]n 550	Asp	Gln	Phe	Ile	Lys 555	Phe	туг	Arg	Gly	Asp 560
30	Lys	Phe	Lys	Ile	Ala 565	Ser	Pro	Ile	Thr	Pro 570	Leu	Val	Asp	Thr	Gly 575	Asn
	Glu	Gln	Arg	Gln 580	Asp	Leu	Glu	Lys	Va] 585	Glu	Lys	Ala	Ile	Asn 590	Gln	
35	<210 <211 <212 <212)> 1> 2> 3>	52 668 PRT Stap	ohyla	ococo	cus a	aureu	ıs								
40	<400 Met 1)> Val	52 Ile	Asn	Leu 5	Asn	Asp	Lys	Gln	Thr 10	Lys	Thr	Ser	Lys	Glu 15	Gly
	Leu	Ile	Ser	Va] 20	Ser	His	Pro	Leu	A]a 25	Ala	Lys	Ile	Gly	Lys 30	Asp	Val
45	Leu	Asp	Gln 35	Gly	Gly	Asn	Ala	Met 40	Asp	Ala	Val	Ile	Ala 45	Ile	Gln	Leu
	Ala	Leu 50	Asn	Val	Val	Glu	Pro 55	Phe	Ala	Ser	Gly	Ile 60	Gly	Gly	Gly	Gly
50	туr 65	Leu	Leu	туr	туr	Glu 70	Gln	Ser	Thr	Gly	Ser 75	Ile	Thr	Ala	Phe	Asp 80
	Ala	Arg	Glu	Тhr	A]a 85	Pro	Glu	His	Val	Asp 90	Lys	Gln	Phe	Тyr	Leu 95	Asp
55	Asp	Ser	Gly	Glu 100	туr	Lys	Ser	Phe	Phe 105	Asp	Met	Thr	Thr	His 110	Gly	Lys

	⊤hr	Val	Ala 115	Val	Pro	Ala	Ile	Pro 120	Lys	Leu	Phe	Asp	Туг 125	Ile	His	Lys
5	Arg	туг 130	АТа	Lys	Leu	Ser	Leu 135	Glu	Asp	Leu	Ile	Asn 140	Pro	АТа	Ile	Glu
	Leu 145	Ala	Ile	Glu	Gly	His 150	Ala	Ala	Asn	тгр	Ala 155	⊤hr	Glu	Lys	туr	Ser 160
	Arg	Gln	Gln	His	Ala 165	Arg	Leu	Thr	Lys	Tyr 170	His	Glu	Thr	Ala	G]n 175	Val
10	Phe	Thr	His	Glu 180	Asn	Gln	туr	тгр	Arg 185	Glu	Gly	Asp	тгр	Ile 190	Val	Gln
	Pro	Glu	Leu 195	Gly	Lys	Thr	Phe	G]n 200	Ile	Leu	Arg	Glu	Gln 205	Gly	Phe	Asn
15	Ala	Phe 210	Туr	Lys	Gly	Asp	I]e 215	Ala	Lys	Gln	Leu	va1 220	Asn	Val	Val	Lys
	A]a 225	Cys	Gly	Gly	⊤hr	Ile 230	Thr	Leu	Glu	Asp	Leu 235	A]a	Lys	Туr	Asp	Ile 240
20	Gln	Ile	Lys	Ala	Pro 245	Ile	Ser	Ala	Thr	Phe 250	Lys	Asp	Туr	Asp	11e 255	Tyr
	Ser	Met	Gly	Pro 260	Ser	Ser	Ser	Gly	Gly 265	Ile	Thr	Val	Ile	G]n 270	Ile	Leu
25	Lys	Leu	Leu 275	Glu	His	Val	Asp	Leu 280	Pro	Ser	Met	G∣y	Pro 285	Arg	Ser	Val
	Asp	Туг 290	Leu	His	His	Leu	Ile 295	Gln	Ala	Met	His	Leu 300	Ala	туr	Ser	Asp
30	Arg 305	Ala	Gln	туr	Leu	Ala 310	Asp	Asp	Asn	Phe	His 315	Glu	Val	Pro	Val	G]n 320
	Ser	Leu	Ile	Asp	Asp 325	Asp	туr	Leu	Lys	Ala 330	Arg	Ser	Thr	Leu	I]e 335	Asp
35	Ser	Asn	Lys	А]а 340	Asn	Ile	Asp	I]e	Glu 345	His	Gly	Val	Val	Ser 350	Asp	Cys
	Ile	Ser	His 355	Тhr	Asp	Val	Glu	G]u 360	Asn	His	Thr	G]u	Тhr 365	Thr	His	Phe
40	Cys	Val 370	Ile	Asp	Lys	Glu	Gly 375	Asn	Ile	Ala	Ser	Phe 380	Thr	Thr	Ser	Ile
	Gly 385	Met	Ile	Тyr	Gly	Ser 390	Gly	Ile	Thr	Ile	Pro 395	G∣y	туr	Gly	Val	Leu 400
45	Leu	Asn	Thr	Thr	Met 405	Asp	Gly	Phe	Asp	Va] 410	Val	Asp	Gly	Gly	I]e 415	Asn
	Glu	Ile	Ala	Pro 420	Tyr	Lys	Arg	Pro	Leu 425	Ser	Asn	Met	Ala	Pro 430	Thr	Ile
50	Val	Met	Туг 435	His	Gly	Lys	Pro	I]e 440	Leu	Thr	Val	G∣y	Ala 445	Pro	Gly	Ala
	Ile	Ser 450	Ile	Ile	Ala	Ser	Val 455	Ala	Gln	Thr	Leu	I]e 460	Asn	Val	Leu	Val
55	Phe 465	Gly	Met	Asp	Ile	G1n 470	Gln	Ala	Ile	Asp	Glu 475	Pro	Arg	Ile	туr	Ser 480
	Ser	His	Pro	Asn	Arg	Ile	Glu	тгр	Glu	Pro	Gln	Phe	Ser	Gln	Ser	⊤hr

					485					490					495	
	Ile	Leu	Ala	Leu 500	Ile	Ala	His	Gly	ніs 505	Ala	Met	Glu	His	Lys 510	Pro	Asp
5	Ala	Туr	I]e 515	Gly	Asp	Val	His	G]y 520	Leu	Gln	Val	Asp	Pro 525	Тhr	Тhr	туr
	Glu	Ala 530	Ser	Gly	Gly	Ser	Asp 535	Asp	Тhr	Arg	Glu	Gly 540	Тhr	Val	Met	Gly
10	Gly 545	Glu	Val	Leu	Val	Ile 550	Arg	Lys	Gln	Pro	Leu 555	Pro	Тyr	Arg	Gln	Met 560
	Туr	Asp	Ser	Asp	Gly 565	Phe	Arg	Leu	туr	Phe 570	Asn	Asp	Val	Gln	Leu 575	Pro
15	Leu	Leu	Ala	Asp 580	Gln	Val	Arg	тгр	Met 585	His	Asp	Lys	туr	тгр 590	Val	Asp
	Glu	Ser	Va] 595	Val	Arg	Ile	Ile	Phe 600	Pro	Glu	Val	Ser	Ala 605	His	Ile	Glu
20	Asp	Leu 610	Arg	Ser	Туr	Glu	Asn 615	Ala	Gly	Glu	Asn	Туг 620	Ile	Asp	Ile	Ala
	тгр 625	Leu	Ala	Arg	Lys	туг 630	Ala	туr	Gln	Val	тhr 635	Leu	Lys	Asp	Asp	Gly 640
25	Leu	туr	Leu	Тhr	Asp 645	Asp	Тhr	туr	тhr	Ser 650	Val	Lys	Arg	Asn	тhr 655	Asn
	Ala	туr	⊤yr	Arg 660	туr	Asp	Arg	Asp	Ser 665	Ile	тhr	Arg				
30	<210 <211 <212 <212)> L> 2> 3>	53 322 PRT Stap	ohy10	ococo	cus a	aurei	ıs								
30 35	<210 <211 <211 <211 <211 <211 <400 Met 1)> L> 2> 3>)> Lys	53 322 PRT Stap 53 Ser	bhyld Lys	ile	cus a Tyr	aureu Ile	ıs Leu	Leu	Leu 10	Phe	Leu	Ile	Phe	Leu 15	Ser
30 35	<210 <211 <211 <211 <211 <400 Met 1 Ala)> L> 2> 3> D> Lys Cys	53 322 PRT Stap 53 Ser Ala	bhyld Lys Asn 20	Ile 5 Thr	cus a Tyr Arg	aurei Ile His	ıs Leu Ser	Leu Glu 25	Leu 10 Ser	Phe Asp	Leu Lys	Ile Asn	Phe Val 30	Leu 15 Leu	Ser Thr
30 35 40	<210 <211 <211 <211 <400 Met 1 Ala Val)> l> 2> 3>)> Lys Cys Tyr	53 322 PRT Stap 53 Ser Ala Ser 35	Lys Asn 20 Pro	ососо 5 Thr Tyr	cus a Tyr Arg Gln	ureu Ile His Ser	is Leu Ser Asn 40	Leu Glu 25 Leu	Leu 10 Ser Ile	Phe Asp Arg	Leu Lys Pro	Ile Asn Ile 45	Phe Val 30 Leu	Leu 15 Leu Asn	Ser Thr Glu
30 35 40	<210 <212 <212 <212 <213 <400 Met 1 Ala Val Phe	D> L> 2> S> Lys Cys Tyr Glu	53 322 PRT Stap 53 Ser Ala Ser 35 Lys	Dhyld Lys Asn 20 Pro Gln	Ile 5 Thr Tyr Glu	Cus a Tyr Arg Gln His	ureu Ile His Ser Val 55	JS Leu Ser Asn 40 Lys	Leu Glu 25 Leu Ile	Leu 10 Ser Ile Glu	Phe Asp Arg Ile	Leu Lys Pro Lys 60	Ile Asn Ile 45 His	Phe Val 30 Leu Gly	Leu 15 Leu Asn Ser	Ser Thr Glu Thr
30 35 40 45	<210 <211 <212 <213 <400 Met 1 Ala Val Phe Gln 65	D> L> 2> 3> Cys Tyr Glu 50 val	53 322 PRT Stap 53 Ser Ala Ser 35 Lys Leu	Dhyld Lys Asn 20 Pro Gln Leu	лососо Ile Thr Tyr Glu Ser	Cus a Tyr Arg Gln His Asn 70	Ile His Ser Val 55 Leu	Leu Ser Asn 40 Lys His	Leu Glu 25 Leu Ile Asn	Leu 10 Ser Ile Glu Glu	Phe Asp Arg Ile Asp 75	Leu Lys Pro Lys 60 Phe	Ile Asn Ile 45 His Ser	Phe Val 30 Leu Gly Glu	Leu 15 Leu Asn Ser Arg	Ser Thr Glu Thr Gly 80
30 35 40 45	<210 <211 <212 <212 <213 Ala Val Phe Gln 65 Asp	D> L> 2> Lys Cys Tyr Glu 50 val val	53 9RT Star 53 Ser Ala Ser 35 Lys Leu Phe	Dhyld Lys Asn 20 Pro Gln Leu Met	Free Ser Ser Ser Ser Ser Ser Ser Ser Ser	Cus a Tyr Arg Gln His Asn 70 Gly	ureu Ile His Ser Val Leu Val	Leu Ser Asn Lys His Leu	Leu Glu Leu Ile Asn Ser	Leu 10 ser Ile Glu Glu 90	Phe Asp Arg Ile Asp 75 Thr	Leu Lys Pro Lys 60 Phe Ile	Ile Asn Ile 45 His Ser Asp	Phe Val 30 Leu Gly Glu His	Leu 15 Leu Asn Ser Arg 95	Ser Thr Glu Thr Gly 80 Glu
30 35 40 45	<210 <212 <212 <212 <400 Met 1 Ala Val Phe Gln 65 Asp Asp	D> L> 2> 3> Lys Cys Tyr Glu Val Val Phe	53 322 PRT Stap 53 Ser Ala Ser 35 Lys Leu Phe Val	Dhyld Lys Asn 20 Pro Gln Leu Met Pro 100	Thr Tyr Glu Ser Gly 85 Tyr	Cus a Tyr Arg Gln His Asn 70 Gly Gln	ureu Ile His Ser Val Leu Val Asp	Leu Ser Asn Lys His Leu Thr	Leu Glu Leu Ile Asn Ser Ser 105	Leu 10 Ser Ile Glu Glu 90 Val	Phe Asp Arg Ile Asp 75 Thr Thr	Leu Lys Pro Lys 60 Phe Ile Gln	Ile Asn Ile 45 His Ser Asp Gln	Phe Val 30 Leu Gly Glu His Leu 110	Leu 15 Asn Ser Arg 95 Glu	Ser Thr Glu Thr Gly 80 Glu Asp
30 35 40 45 50	<210 <212 <212 <212 <213 Ala Val Phe Gln 65 Asp Asp Tyr	D> L> 2> 3> Cys Tyr Glu Val Val Phe Arg	53 322 PRT Stap 53 Ser Ala Ser Lys Leu Phe Val Ser 115	Dhyld Lys Asn 20 Pro Gln Leu Met Pro 100 Asn	Scoco Ile Thr Tyr Glu Ser Gly Tyr Asn	Tyr Arg Gln His Asn 70 Gly Gln Lys	Ile His Ser Val Leu Val Asp Tyr	Leu Ser Asn Lys His Leu Thr Val	Leu Glu Leu Ile Asn Ser Ser 105 Thr	Leu 10 Ser Ile Glu Glu 90 Val Ser	Phe Asp Arg Ile Asp 75 Thr Thr Phe	Leu Lys Pro Lys Phe Ile Gln Leu	Ile Asn Ile His Ser Asp Gln Leu 125	Phe Val 30 Leu Gly Glu His Leu 110 Met	Leu 15 Leu Asn Ser Arg 95 Glu Pro	Ser Thr Glu Thr Gly 80 Glu Asp Thr
30 35 40 45 50	<pre><210 <211 <211 <211 <211 Ala Val Phe Gln 65 Asp Asp Tyr Val</pre>	D> L> 2> Lys Cys Tyr Glu Val Val Val Phe Arg Ile 130	53 322 PRT Stap 53 Ser Ala Ser 25 Lys Leu Phe Val Ser 115 Val	Lys Asn 20 Pro Gln Leu Met Pro 100 Asn Val	Scoco Ile Thr Tyr Glu Ser Gly Tyr Asn Asn	Tyr Arg Gln His Asn Gly Gln Lys Ser	Ile His Ser Val Leu Val Asp Tyr Asp	Leu Ser Asn Lys His Leu Thr Val 120 Leu	Leu Glu Leu Ile Asn Ser Ser 105 Thr Gln	Leu 10 ser Ile Glu Glu Glu Val Ser Gly	Phe Asp Arg Ile Asp Thr Thr Phe Asp	Leu Lys Pro Lys 60 Phe Ile Gln Leu Ile	Ile Asn Ile 45 Ser Asp Gln Leu 125 Lys	Phe Val JO Leu Gly Glu His Leu 110 Met Ile	Leu 15 Leu Asn Ser Arg 95 Glu Pro Arg	Ser Thr Glu Thr Gly Glu Asp Thr Gly

	Asn	Pro	Asn	Тhr	Thr 165	Тhr	Тhr	Gly	Тyr	Gln 170	His	Met	Arg	Ala	Ile 175	Туr
5	Ser	Met	His	His 180	Arg	Val	Ser	Asp	Va] 185	His	Gln	Phe	Gln	Asn 190	His	Ala
	Met	Gln	Leu 195	Ser	Lys	Thr	Ser	Lys 200	Val	Ile	Glu	Asp	Va] 205	Ala	Lys	Gly
10	Lys	Туг 210	Туr	Ala	Gly	Leu	Ser 215	Туr	Glu	Gln	Asp	Ala 220	Arg	Thr	Тгр	Lys
	Asn 225	Lys	Gly	туг	Pro	Va] 230	Ser	Ile	Val	туг	Pro 235	Ile	Glu	Gly	Thr	Met 240
15	Leu	Asn	Val	Asp	G]y 245	Ile	Ala	Leu	Val	Lys 250	Asn	Ala	His	Pro	His 255	Pro
	Lys	Arg	Lys	Lys 260	Leu	Val	Gln	туr	Leu 265	Тhr	Ser	Arg	Ser	Val 270	Gln	Gln
20	Arg	Leu	Va] 275	Ala	Glu	Phe	Asp	Ala 280	Lys	Ser	Ile	Arg	Lys 285	Asp	Val	Ser
	Glu	G]n 290	Ser	Asp	Gln	Ser	Ile 295	Glu	Asn	Leu	Lys	Asn 300	Ile	Pro	Leu	Ile
25	Pro 305	Lys	Ser	Lys	Leu	Pro 310	Asp	Ile	Pro	His	Ніs 315	Lys	Phe	Leu	Glu	Met 320
20	Ile	Gln														
	.210) .	E /													
30	<210 <211 <212 <212]> L> 2> }>	470 PRT Stap	ohyla	ococo	cus a	aurei	JS								
30	<210 <211 <211 <211 <211 <400 Met 1)> L> 2> 3>)> His	470 PRT Stap 54 Ser	ohyld Ser	ococo Gly 5	cus a Lys	aurei Asp	us Leu	Asn	Ile 10	Ser	Leu	Pro	Leu	Lys 15	Thr
30 35	<210 <211 <212 <212 <400 Met 1 Lys)> L> 2> 3>)> His	470 PRT Stap 54 Ser Ile	ohylo Ser Ala 20	Gly 5 Pro	cus a Lys Tyr	Asp Glu	us Leu Thr	Asn Asp 25	Ile 10 Val	Ser Pro	Leu Val	Pro Lys	Leu Ile 30	Lys 15 Gly	Thr Ala
30 35	<210 <211 <212 <212 <211 <400 Met 1 Lys Ala	J> L> 2> J> His Ser Glu	470 PRT Stap 54 Ser Ile Ser 35	ohylo Ser Ala 20 Leu	Gly 5 Pro Phe	Cus a Lys Tyr Lys	Asp Glu Thr	Leu Thr Asn 40	Asn Asp 25 Asp	Ile 10 Val Gln	Ser Pro Gly	Leu Val Lys	Pro Lys Ile 45	Leu Ile 30 Glu	Lys 15 Gly Lys	Thr Ala Ala
30 35 40	<210 <211 <211 <211 <211 <211 <400 Met 1 Lys Ala Leu	J> L> 2> J> His Ser Glu Val 50	470 PRT Stap 54 Ser Ile Ser 35 Lys	ohylo Ser Ala 20 Leu Ser	Gly 5 Pro Phe Tyr	Cus a Lys Tyr Lys His	Asp Glu Thr Gln 55	Leu Thr Asn 40 Pro	Asn Asp 25 Asp Asn	Ile 10 Val Gln Asp	Ser Pro Gly Thr	Leu Val Lys Thr 60	Pro Lys Ile 45 Leu	Leu Ile 30 Glu Asp	Lys 15 Gly Lys Ile	Thr Ala Ala Glu
30 35 40	<210 <211 <211 <211 <211 <211 1 Lys Ala Leu Leu 65	J> L> 2> His Ser Glu Val 50 Lys	470 PRT Stap 54 Ser Ile Ser 35 Lys Asp	ohyld Ser Ala 20 Leu Ser Asn	Gly Fro Pro Phe Tyr Ile	Lys Tyr Lys His Lys 70	Asp Glu Thr Gln 55 Phe	Leu Thr Asn 40 Pro Gln	Asn 25 Asp Asn Asn	Ile 10 Val Gln Asp Gly	Ser Pro Gly Thr Gln 75	Leu Val Lys Thr 60 Lys	Pro Lys Ile 45 Leu Leu	Leu Ile 30 Glu Asp Thr	Lys 15 Gly Lys Ile Ala	Thr Ala Ala Glu glu
30 35 40 45	<210 <211 <211 <211 <211 <211 1 Lys Ala Leu Leu 65 Lys	J> L> 2> J> His Ser Glu Val 50 Lys Val	470 PRT Stap 54 Ser Ile Ser 35 Lys Asp Lys	ohyld Ser Ala 20 Leu Ser Asn Ser	Gly Fro Phe Tyr Ile Ser 85	Lys Tyr Lys His Lys 70 Leu	Asp Glu Thr Gln 55 Phe Glu	Leu Thr Asn 40 Pro Gln Asn	Asn 25 Asp Asn Asn Ser	Ile Val Gln Asp Gly Met 90	Ser Pro Gly Thr Gln 75 Lys	Leu Val Lys Thr 60 Lys Lys	Pro Lys Ile Leu Leu Ser	Leu Ile 30 Glu Asp Thr Asp	Lys Gly Lys Ile Ala Leu 95	Thr Ala Ala Glu 80 Val
30 35 40 45	<pre><210 <211 <211 <211 <211 <211 <400 Met 1 Lys Ala Leu 65 Lys Lys</pre>	J> L> 2> His Ser Glu Val 50 Lys Val Tyr	470 PRT Stap 54 Ser Ile Ser 35 Lys Asp Lys Ser	Ser Ala 20 Leu Ser Asn Ser Leu 100	Gly Fro Phe Tyr Ile Ser 85 Pro	Lys Tyr Lys His Lys 70 Leu Ile	Asp Glu Thr Gln S5 Phe Glu Ser	Leu Thr Asn 40 Pro Gln Asn Ser	Asn Asp Asp Asn Asn Ser Ile	Ile Val Gln Asp Gly Met 90 Thr	Ser Pro Gly Thr Gln Z5 Lys Ala	Leu Val Lys Thr 60 Lys Lys Lys	Pro Lys Ile Leu Leu Ser Gly	Leu Ile 30 Glu Asp Thr Asp Gln 110	Lys Gly Lys Ile Ala Leu 95 Lys	Thr Ala Ala Glu Glu 80 Val Leu
30 35 40 45 50	<pre><21C <212 <212 <212 <212 <212 Lys Ala Leu Leu 65 Lys Lys Lys Thr</pre>	<pre> Part Part Part Part Part Part Part Part</pre>	470 PRT Stap 54 Ser Ile Ser 35 Lys Asp Lys Ser Lys Ser Lys	Ser Ala 20 Leu Ser Asn Ser Leu 100 Thr	Gly Fro Phe Tyr Ile Ser 85 Pro Asn	Lys Tyr Lys His Lys Z0 Leu Ile Ser	Asp Glu Thr Gln Ser Ala	Leu Thr Asn 40 Pro Gln Asn Ser Tyr 120	Asn Asp Asp Asn Asn Ser Ile 105 Pro	Ile Val Gln Asp Gly Met 90 Thr Glu	Ser Pro Gly Thr Gln Z5 Lys Ala Leu	Leu Val Lys Thr GO Lys Lys Lys Val	Pro Lys Ile Leu Leu Ser Gly Ser 125	Leu Ile 30 Glu Asp Thr Asp Gln 110 Glu	Lys Gly Lys Ile Ala Leu Lys Leu	Thr Ala Ala Glu Solu Val Leu Ala
30 35 40 45 50	<pre><21C <212 <212 <212 <212 <212 <212 <212</pre>	<pre> Part Prop 130 Part Pro 130 Part Pro 130 Part Part Part Part Part Part Part Part</pre>	470 PRT Stap 54 Ser Ile Ser 25 Lys Asp Lys Ser Lys Ser Lys 115 Phe	Ser Ala 20 Leu Ser Asn Ser Leu 100 Thr Met	Gly Pro Phe Tyr Ile Ser Pro Asn Ala	Lys Tyr Lys His Lys Z0 Leu Ile Ser Ile	Asp Glu Thr Gln Gln Glu Ser Ala Tyr 135	Leu Thr Asn 40 Pro Gln Asn Ser Tyr 120 Asp	Asn Asp Asp Asn Asn Ser Ile 105 Pro Thr	Ile Val Gln Asp Gly Met 90 Thr Glu Asp	Ser Pro Gly Thr Gln Z5 Lys Ala Leu Ala	Leu Val Lys Thr GO Lys Lys Val Lys 140	Pro Lys Ile Leu Leu Ser Gly Ser 125 Ser	Leu Ile 30 Glu Asp Thr Asp Gln 110 Glu Asp	Lys Gly Lys Ile Ala Leu Lys Leu Val	Thr Ala Ala Glu Glu Val Leu Ala Asn

	Ser	Arg	Lys	Ile	Ser 165	Leu	Ser	Asn	Phe	Lys 170	Asp	⊤yr	Тгр	Gln	Gly 175	Lys
5	Pro	Lys	Leu	Asp 180	Нis	Ile	Thr	Val	тhr 185	туr	Gln	Glu	Asp	Gly 190	Asn	Asn
	Arg	Val	Arg 195	Asn	Leu	Glu	Ser	G]n 200	Lys	Asp	Asp	Leu	I]e 205	Thr	Asp	Val
	Pro	Val 210	Asn	Lys	Val	Gln	Asp 215	Ile	Glu	Asn	Asn	G]n 220	Asn	Leu	Lys	Val
10	Ser 225	Lys	Glu	Ser	Gly	Phe 230	Arg	Thr	Ser	Leu	Leu 235	Met	Туr	Asn	His	⊤hr 240
	Asn	Lys	Lys	Met	⊤hr 245	Lys	Ser	Val	Arg	G]u 250	Ala	Leu	Asp	His	Ile 255	Ile
15	Asp	Arg	Gln	G]y 260	Ile	Ala	Asp	His	Ile 265	Туr	Gln	Gly	Туr	A]a 270	Lys	Pro
	Ala	Thr	Ser 275	Pro	Phe	Asn	Asp	Lys 280	Ile	Pro	Туг	I]e	Lys 285	Glu	Pro	Lys
20	Leu	Thr 290	Lys	Gln	Asn	Ile	Glu 295	Gln	Ala	Lys	Met	Leu 300	Leu	Ala	Lys	Asp
	G]y 305	туr	Thr	Lys	Glu	ніs 310	Pro	Leu	Lys	Ile	Lys 315	Leu	Ile	Thr	туг	Asp 320
25	Gly	Arg	Pro	Glu	Leu 325	Ser	Lys	Ile	Ala	G]n 330	Val	Leu	Gln	Ser	Asp 335	Ala
	Lys	Lys	Ala	Asn 340	Ile	Glu	Ile	Asp	Ile 345	Lys	Ser	Val	Asp	Asp 350	Ile	Glu
30	Gly	туr	Leu 355	Lys	Asp	Arg	Ser	A]a 360	тгр	Asp	Ala	⊤hr	Met 365	туr	Ser	Phe
	Gly	Thr 370	Ile	Pro	Arg	Gly	Asp 375	Thr	Gly	Туr	Phe	Phe 380	Asn	Gln	Ala	Tyr
35	Lys 385	Lys	Asp	Gly	Ala	11e 390	Asn	Lys	Gly	Asp	туг 395	Asn	Asn	Ser	Asn	Val 400
	Asp	Asp	Leu	I]e	Asn 405	Gln	Leu	Asn	His	Thr 410	Val	Asp	Val	Lys	Glu 415	Arg
40	His	Asn	Ile	Ser 420	Asn	Asp	Ile	Ile	Lys 425	Leu	Ser	Ser	Arg	Asp 430	Val	Pro
	Asn	Ser	Туг 435	Ile	Ala	Туr	Asn	Asp 440	Gln	Ile	Val	Ala	Ala 445	Asn	Ser	Lys
45	Val	Lys 450	Asn	туr	Lys	Val	тhr 455	Pro	Glu	Gly	Ile	⊤yr 460	Leu	Ile	Asp	Tyr
	Arg 465	Тhr	тhr	Ile	Glu	Arg 470										
50	<210 <211 <212 <213)> L> 2> 3>	55 316 PRT Stap	ohyld	ococo	cus a	aurei	ıs								
55	<400 Met 1)> Lys	55 Lys	Leu	⊤hr 5	Ala	Ala	Ala	Ile	Ala 10	Thr	Met	Gly	Phe	Ala 15	⊤hr
	Phe	Thr	Met	Ala	His	Gln	Ala	Asp	Ala	Ala	Glu	⊤hr	Thr	Asn	Thr	Gln

				20					25					30		
	Gln	Ala	His 35	Thr	Gln	Met	Ser	тhr 40	Gln	Ser	Gln	Asp	Val 45	Ser	туг	Gly
5	Thr	туr 50	⊤yr	Thr	Ile	Asp	Ser 55	Asn	Gly	Asp	туr	His 60	His	Тhr	Pro	Asp
	G]y 65	Asn	⊤rp	Asn	Gln	A]a 70	Met	Phe	Asp	Asn	Lys 75	Glu	Туr	Ser	туr	тhr 80
10	Phe	Val	Asp	Ala	Gln 85	Gly	His	Thr	His	туг 90	Phe	Тyr	Asn	Cys	туr 95	Pro
	Lys	Asn	Ala	Asn 100	Ala	Asn	Gly	Ser	Gly 105	Gln	Тhr	Туr	Val	Asn 110	Pro	Ala
15	Тhr	Ala	Gly 115	Asp	Asn	Asn	Asp	Туг 120	тhr	Ala	Ser	Gln	Ser 125	Gln	Gln	His
	Ile	Asn 130	Gln	Туr	Gly	Туr	Gln 135	Ser	Asn	Val	Gly	Pro 140	Asp	Ala	Ser	Туг
20	Туг 145	Ser	His	Ser	Asn	Asn 150	Asn	Gln	Ala	⊤yr	Asn 155	Ser	His	Asp	Gly	Asn 160
	Gly	Lys	Val	Asn	Туг 165	Pro	Asn	Gly	тhr	Ser 170	Asn	Gln	Asn	Gly	Gly 175	Ser
25	Ala	Ser	Lys	Ala 180	тhr	Ala	Ser	Gly	ніs 185	Ala	Lys	Asp	Ala	Ser 190	тгр	Leu
	Тhr	Ser	Arg 195	Lys	Gln	Leu	Gln	Pro 200	туr	Gly	Gln	туr	Ніs 205	Gly	Gly	Gly
30	Ala	ніs 210	⊤yr	Gly	Val	Asp	Туг 215	Ala	Met	Pro	Glu	Asn 220	Ser	Pro	Val	Туr
	Ser 225	Leu	⊤hr	Asp	Gly	Thr 230	Val	Val	Gln	Ala	G]y 235	тгр	Ser	Asn	туr	G]y 240
35	Gly	Gly	Asn	Gln	Va] 245	Тhr	Ile	Lys	Glu	А]а 250	Asn	Ser	Asn	Asn	Туг 255	Gln
	тгр	туr -	Met	ніs 260	Asn -	Asn -	Arg	Leu	Thr 265	Val	Ser	Ala	G]y	Asp 270	Lys	val
40	Lys	Ala	G]y 275	Asp	Gln	Ile	Ala	туг 280	Ser	Gly	Ser	Thr	Gly 285	Asn	Ser	Thr
	Ala	Pro 290	His	Val	His	Phe	G]n 295	Arg	Met	Ser	Gly	G1y 300	Ile	Gly	Asn	Gln
45	туг 305	Ala	Val	Asp	Pro	Thr 310	Ser	туг	Leu	Gln	Ser 315	Arg				
	<210 <212 <212 <213)> L> }> }>	56 507 PRT Stap	ohy1a	ococo	cus a	aurei	ıs								
50	<400 Met 1)> Ser	56 Lys	Lys	Leu 5	Lys	Ile	Ile	Ile	Pro 10	Ile	Ile	Ile	Val	Leu 15	Leu
	Leu	Ile	Gly	G]y 20	Ile	Ala	тгр	Gly	Val 25	⊤yr	Ala	Phe	Phe	A]a 30	Asn	Thr
55	Pro	Lys	Asn 35	Thr	туr	Leu	Lys	Ser 40	Glu	Gln	Gln	Thr	Ala 45	Lys	Met	Туг

Lys Asp Tyr Phe Asn Asp Arg Phe Glu Asn Glu Val Lys Phe Gln Glu 50 55 60 Lys Met Lys Asp Asn Ser Phe Leu Ser Ser Leu Glu Leu Ser Ala Asp 65 70 75 80 5 Ala Ser Asp Glu Ile Val Lys Gly Leu Gly Ile Pro Lys Ser Val Val 85 90 95 Asn Ala Ser Lys Ile Lys Met Ser Tyr Gly His Asp Pro Lys Lys Glu 100 105 110 10 Lys Ser Met Ile Asn Leu Glu Pro Thr Ile Ala Asp Ser Ala Leu Gly 115 120 125 Lys Phe Gln Leu Ala Ala Asp Lys Asp Lys His Tyr Phe Glu Ser Pro 130 135 140 15 Leu Phe Lys Gly Lys Tyr Ser Val Asn Asn Ser Asp Leu Leu Ser Thr 145 150 155 160 Tyr Ser Lys Leu Thr Gly Glu Asp Glu Glu Thr Ala Lys Glu Asn Gly 165 170 175 20 Ile Thr Asn Gln Gln Leu Asn Leu Asn Thr Leu Phe Asn Asn Ala Gln 180 185 190 Ala Gln Gln Ser Asp Tyr Ser Lys Ile Ala Glu Lys Tyr Ser Glu Leu 195 200 205 25 Ile Val Asp Lys Leu Asp Asp Asp Asn Phe Asp Lys Gly Lys Lys Glu 210 220 Glu Ile Lys Val Asn Gly Glu Lys Tyr Lys Val Arg Pro Val Thr Leu 225 230 235 240 30 Thr Leu Ser Arg Ala Asp Thr Lys Lys Ile Thr Leu Ala Val Leu Glu 245 250 255 Glu Ala Lys Lys Asp Lys Asp Leu Lys Lys Leu Met Glu Glu Gln Gly 260 265 270 35 Ala Thr Lys Asp Phe Glu Lys Asp Ile Lys Lys Ala Ile Asp Asp Val 275 280 285 Lys Glu Thr Lys Lys Asp Glu Phe Ala Lys Ile Gln Ser Lys Ile Tyr 290 295 300 40 Thr Glu Lys His Thr Ile Val Lys Arg Glu Ile Thr Ile Thr Asp Lys 305 310 315 320 Glu Asn Asn Lys Thr Lys Ile Lys Gly Thr Asn Thr Leu Glu Asp Asp 325 330 335 45 Lys Leu Lys Leu Asp Tyr Ala Leu Asp Phe Asp Gln Asp Lys Tyr Thr 340 345 350 Tyr Ala Glu Ala Lys Tyr Thr Ile Lys Gly Val Ser Ser Lys Glu Lys 355 360 365 50 Asp Asn Lys Tyr Asn Asp Lys Tyr Glu Phe Gly Lys Lys Thr Glu Tyr 370 375 380 Asp Glu Ser Lys Ile Lys Leu Asp Asn Gln Glu Lys Val Asp Gly Thr 385 390 395 400 55 Lys Arg Gln Asp Lys Gly Lys Ile Thr Val Ala Leu Asp Lys Tyr Ser 405 410 415

	Asp	Glu	Asn	Glu 420	Phe	Thr	Phe	Glu	Asn 425	Asn	Ile	Asp	Ser	Asp 430	Val	Lys
5	Asn	Asn	тhr 435	Gln	Lys	Ser	Thr	Leu 440	Asn	Ile	Gly	Ile	Lys 445	туr	АТа	Glu
	Glu	Pro 450	Ile	Asn	Phe	Ile	Leu 455	Lys	Ser	Ser	Thr	Lys 460	Leu	Lys	Ala	Asp
	Ile 465	Asp	Phe	Asp	Asp	Ser 470	Gly	Ala	Lys	Asp	Phe 475	Asn	Ser	Leu	Ser	Ser 480
10	Lys	Asp	Arg	Glu	Lys 485	Leu	Glu	Lys	Glu	Ile 490	Glu	Lys	Asn	Gly	Gly 495	Lys
	Met	Phe	Glu	Ser 500	Ile	Leu	Lys	Lys	Ala 505	Ser	Lys					
15	<210 <211 <212 <213)> L> 2> 3>	57 297 PRT Stap	ohyld	ococo	cus a	aurei	JS								
20	<400 Met 1)> Lys	57 Lys	Thr	Ile 5	Leu	Leu	Thr	Met	Thr 10	Thr	Leu	Thr	Leu	Phe 15	Ser
	Met	Ser	Pro	Asn 20	Ser	Ala	Gln	Ala	туr 25	тhr	Asn	Asp	Ser	Lys 30	Тhr	Leu
25	Glu	Glu	A]a 35	Lys	Lys	Ala	His	Pro 40	Asn	Ala	Gln	Phe	Lys 45	Val	Asn	Lys
	Asp	Thr 50	Gly	Ala	Тyr	Thr	туr 55	Тhr	Туr	Asp	Lys	Asn 60	Asn	Тhr	Pro	Asn
30	Asn 65	Asn	His	Gln	Asn	G]n 70	Ser	Arg	Thr	Asn	Asp 75	Asn	His	Gln	His	Ala 80
	Asn	Gln	Arg	Asp	Leu 85	Asn	Asn	Asn	Gln	туг 90	His	Ser	Ser	Leu	Ser 95	Gly
35	Gln	туг	Тhr	ніs 100	Ile	Asn	Asp	Ala	Ile 105	Asp	Ser	His	Тhr	Pro 110	Pro	Gln
	⊤hr	Ser	Pro 115	Ser	Asn	Pro	Leu	Thr 120	Pro	Ala	I]e	Pro	Asn 125	Val	Glu	Asp
40	Asn	Asp 130	Asp	Glu	Leu	Asn	Asn 135	Ala	Phe	Ser	Lys	Asp 140	Asn	Lys	Gly	Leu
	Ile 145	Thr	Gly	Ile	Asp	Leu 150	Asp	Glu	Leu	Туr	Asp 155	Glu	Leu	Gln	Ile	Ala 160
45	Glu	Phe	Asn	Asp	Lys 165	Ala	Lys	Thr	Ala	Asp 170	GΊу	Lys	Pro	Leu	A]a 175	Leu
	Gly	Asn	Gly	Lys 180	Ile	Ile	Asp	Gln	Pro 185	Leu	Ile	⊤hr	Ser	Lys 190	Asn	Asn
50	Leu	Туr	Thr 195	Ala	Gly	Gln	Cys	Thr 200	Тгр	Туr	Val	Phe	Asp 205	Lys	Arg	Ala
	Lys	Asp 210	Gly	His	⊤hr	Ile	Ser 215	Тhr	Phe	тгр	Gly	Asp 220	Ala	Lys	Asn	⊤rp
55	A]a 225	Gly	Gln	Ala	Ser	ser 230	Asn	Gly	Phe	Lys	Va] 235	Asp	Arg	His	Pro	⊤hr 240
	Arg	Gly	Ser	Ile	Leu	Gln	Thr	Val	Asn	Gly	Pro	Phe	Gly	His	Val	Ala

					245					250					255	
	Туr	Val	Glu	Lys 260	Val	Asn	Ile	Asp	Gly 265	Ser	Ile	Leu	Ile	Ser 270	Glu	Met
5	Asn	тгр	Ile 275	Gly	Glu	Тyr	Ile	Va] 280	Ser	Ser	Arg	Тhr	Ile 285	Ser	Ala	Ser
	Glu	Va1 290	Ser	Ser	Туr	Asn	Туг 295	Ile	His							
10	<210 <211 <212 <213	> > > >	58 124 PRT Stap	ohy1c	coco	cus a	urei	ıs								
15	<400 Met 1	> Lys	58 Arg	Ile	Leu 5	Val	Val	Phe	Leu	Met 10	Leu	Ala	Ile	Ile	Leu 15	Ala
	Gly	Cys	Ser	Asn 20	Lys	Gly	Glu	Lys	Tyr 25	Gln	Lys	Asp	Ile	Asp 30	Lys	Val
20	Туr	Lys	Glu 35	Gln	Asn	Gln	Met	Asn 40	Lys	Ile	Ala	Ser	Lys 45	Val	Gln	Asn
	Тhr	Ile 50	Lys	Тhr	Asp	Ile	Lys 55	Gln	Glu	Asp	Ser	Asn 60	тhr	His	Val	туr
25	Lys 65	Asp	Gly	Lys	Val	I]e 70	Val	Ile	Gly	Ile	G]n 75	Leu	туr	Lys	Asp	Arg 80
	Glu	Lys	Met	туr	туг 85	Phe	Ala	туr	Glu	⊺]e 90	Lys	Asp	Gly	Lys	A]a 95	Glu
30	Ile	Asn	Arg	Glu 100	Ile	Asp	Pro	Ile	Lys 105	⊤yr	Met	Lys	Asp	Ніs 110	Lys	Ala
	Asp	Tyr	Glu 115	Asp	Glu	Asn	Val	Glu 120	Val	Glu	Lys	Asp				
35	<210 <211 <212 <213	> > > >	59 296 PRT Stap	ohy1c	ococo	cus a	ureu	ıs								
40	<400 Met 1	> Asn	59 Lys	Ile	Ser 5	Lys	Tyr	Ile	Ala	I]e 10	Ala	Ser	Leu	Ser	Val 15	Ala
	Val	Thr	Val	Ser 20	Ala	Pro	Gln	Thr	Thr 25	Asn	Ser	Thr	Ala	Phe 30	Ala	Lys
45	Ser	Ser	а]а 35	Glu	Val	Gln	Gln	тhr 40	Gln	Gln	Ala	Ser	11e 45	Pro	АТа	Ser
	Gln	Lys 50	Ala	Asn	Leu	Gly	Asn 55	Gln	Asn	Ile	Met	Ala 60	Val	Ala	тгр	туr
50	G]n 65	Asn	Ser	Ala	Glu	Ala 70	Lys	Ala	Leu	⊤yr	Leu 75	Gln	Gly	Туr	Asn	Ser 80
50	Ala	Lys	⊤hr	Gln	Leu 85	Asp	Lys	Glu	Ile	Lys 90	Lys	Asn	Lys	Gly	Lys 95	His
	Lys	Leu	Ala	I]e 100	Ala	Leu	Asp	Leu	Asp 105	Glu	Тhr	Val	Leu	Asp 110	Asn	Ser
55	Pro	Tyr	Gln 115	Gly	Туr	Ala	Ser	I]e 120	His	Asn	Lys	Pro	Phe 125	Pro	Glu	Gly

	Тгр	His 130	Glu	тгр	Val	Gln	A]a 135	Ala	Lys	Ala	Lys	Pro 140	Val	Тyr	Gly	Ala
5	Lys 145	Glu	Phe	Leu	Lys	туг 150	Ala	Asp	Lys	Lys	Gly 155	Val	Asp	Ile	Туг	туг 160
	Ile	Ser	Asp	Arg	Asp 165	Lys	Glu	Lys	Asp	Leu 170	Lys	Ala	Thr	Gln	Lys 175	Asn
10	Leu	Lys	Gln	Gln 180	Gly	I]e	Pro	Gln	Ala 185	Lys	Lys	Ser	His	I]e 190	Leu	Leu
	Lys	Gly	Lys 195	Asp	Asp	Lys	Ser	Lys 200	Glu	Ser	Arg	Arg	G]n 205	Met	Val	Gln
15	Lys	Asp 210	His	Lys	Leu	Val	Met 215	Leu	Phe	Gly	Asp	Asn 220	Leu	Leu	Asp	Phe
	Thr 225	Asp	Pro	Lys	Glu	Ala 230	Тhr	Ala	Glu	Ser	Arg 235	Glu	Ala	Leu	Ile	Glu 240
20	Lys	His	Lys	Asp	Asp 245	Phe	Gly	Lys	Lys	Туг 250	Ile	Ile	Phe	Pro	Asn 255	Pro
	Met	туг	Gly	Ser 260	тгр	Glu	Ala	Thr	Ile 265	Туr	Asn	Asn	Asn	Туг 270	Lys	Ala
25	Ser	Asp	Lys 275	Ala	Lys	Asp	Lys	Leu 280	Arg	Lys	Asn	Ala	Ile 285	Lys	Gln	Phe
	Asp	Pro 290	Lys	Тhr	Gly	Glu	Va] 295	Lys								
30	<210 <211 <212 <213)> L> 2> 3>	60 690 PRT Stap	50 590 PRT Staphylococcus aureus												
	<400)>	60													
25	Met 1	Leu	Arg	Gly	Gln 5	Glu	Glu	Arg	Lys	Tyr 10	Ser	Ile	Arg	Lys	Tyr 15	Ser
35	Met 1 Ile	Leu Gly	Arg Val	Gly Val 20	Gln 5 Ser	Glu Val	Glu Leu	Arg Ala	Lys Ala 25	Tyr 10 Thr	Ser Met	Ile Phe	Arg Val	Lys Val 30	Tyr 15 Ser	Ser Ser
35	Met 1 Ile His	Leu Gly Glu	Arg Val Ala 35	Gly Val 20 Gln	Gln 5 Ser Ala	Glu Val Ser	Glu Leu Glu	Arg Ala Lys 40	Lys Ala 25 Thr	Tyr 10 Thr Ser	Ser Met Thr	Ile Phe Asn	Arg Val Ala 45	Lys Val 30 Ala	Tyr 15 Ser Ala	Ser Ser Gln
35 40	Met 1 Ile His Lys	Leu Gly Glu Glu	Arg Val Ala 35 Thr	Gly Val 20 Gln Leu	Gln Ser Ala Asn	Glu Val Ser Gln	Glu Leu Glu Pro 55	Arg Ala Lys 40 Gly	Lys Ala 25 Thr Glu	Tyr 10 Thr Ser Gln	Ser Met Thr Gly	Ile Phe Asn Asn	Arg Val Ala 45 Ala	Lys Val 30 Ala Ile	Tyr 15 Ser Ala Thr	Ser Ser Gln Ser
35 40	Met 1 Ile His Lys His 65	Leu Gly Glu Glu Gln	Arg Val Ala 35 Thr Met	Gly Val 20 Gln Leu Gln	Gln Ser Ala Asn Ser	Glu val Ser Gln Gly 70	Glu Leu Glu Pro 55 Lys	Arg Ala Lys 40 Gly Gln	Lys Ala 25 Thr Glu Leu	Tyr 10 Thr Ser Gln Asp	Ser Met Thr Gly Asp	Ile Phe Asn Asn 60 Met	Arg Val Ala Ala His	Lys Val 30 Ala Ile Lys	Tyr 15 Ser Ala Thr Glu	Ser Ser Gln Ser Asn 80
35 40 45	Met 1 Ile His Lys His 65 Gly	Leu Gly Glu Glu Gln Lys	Arg Val Ala 35 Thr Met Ser	Gly Val 20 Gln Leu Gln Gly	Ser Ala Asn Ser Thr 85	Glu Val Ser Gln Gly 70 Val	Glu Leu Glu Pro 55 Lys Thr	Arg Ala Lys Gly Gln Glu	Lys Ala 25 Thr Glu Leu Gly	Tyr Thr Ser Gln Asp Lys 90	Ser Met Thr Gly Asp Asp	Ile Phe Asn Asn 60 Met Thr	Arg Val Ala Ala His Leu	Lys Val Ala Ile Lys Gln	Tyr Ser Ala Thr Glu Ser 95	Ser Gln Ser Asn 80 Ser
35 40 45	Met 1 Ile His Lys His 65 Gly Lys	Leu Gly Glu Glu Gln Lys His	Arg Val Ala 35 Thr Met Ser Gln	Gly Val Cln Leu Gln Gly Ser 100	Gln Ser Ala Asn Ser Thr 85 Thr	Glu Val Ser Gln Gly 70 Val Gln	Glu Leu Glu Pro 55 Lys Thr Asn	Arg Ala Lys Gly Gln Glu Ser	Lys Ala Thr Glu Leu Gly Lys 105	Tyr 10 Thr Ser Gln Asp Lys 90 Thr	Ser Met Thr Gly Asp Asp Ile	Ile Phe Asn Asn 60 Met Thr Arg	Arg Val Ala Ala His Leu Thr	Lys Val Ala Ile Lys Gln Gln	Tyr 15 Ala Thr Glu Ser 95 Asn	Ser Gln Ser Asn 80 Ser Asp
35 40 45 50	Met 1 Ile His Lys His 65 Gly Lys Asn	Leu Gly Glu Glu Gln Lys His Gln	Arg Val Ala 35 Thr Met Ser Gln Val 115	Gly Val 20 Gln Leu Gln Gly Ser 100 Lys	Gln Ser Ala Asn Ser Thr 85 Thr Gln	Glu Val Ser Gln Gly Val Gln Asp	Glu Leu Glu Pro 55 Lys Thr Asn Ser	Arg Ala Lys Gly Gln Glu Ser Glu 120	Lys Ala 25 Thr Glu Leu Gly Lys 105 Arg	Tyr 10 Thr Ser Gln Asp Lys 90 Thr Gln	Ser Met Thr Gly Asp Ile Gly	Ile Phe Asn Asn 60 Met Thr Arg Ser	Arg Val Ala Ala Leu Thr Lys 125	Lys Val Ala Ile Lys Gln 110 Gln	Tyr 15 Ser Ala Thr Glu Ser Asn Ser	Ser Gln Ser Asn 80 Ser Asp His
35 40 45 50	Met 1 Ile His Lys His 65 Gly Lys Asn Gln	Leu Gly Glu Glu Lys His Gln Asn	Arg Val Ala 35 Thr Met Ser Gln Val 115 Asn	Gly Val 20 Gln Leu Gln Gly Ser 100 Lys Ala	Gln Ser Ala Asn Ser Thr Gln Thr	Glu Val Ser Gln Gly Val Gln Asp Asn	Glu Leu Glu Pro 55 Lys Thr Asn Ser Asn 135	Arg Ala Lys Gly Glu Glu Ser Glu 120 Thr	Lys Ala 25 Thr Glu Leu Gly Lys 105 Arg Glu	Tyr Thr Ser Gln Asp Lys 90 Thr Gln Arg	Ser Met Thr Gly Asp Ile Gly Gln	Ile Phe Asn Asn Go Met Thr Arg Ser Asn	Arg Val Ala Ala Leu Thr Lys 125 Asp	Lys Val 30 Ala Ile Lys Gln Gln Gln Gln	Tyr 15 Ser Ala Thr Glu Ser Ser Val	Ser Gln Ser Asn Ser Asp His Gln

	Ser	Asn	Asp	Val	Asp 165	Lys	Ser	Gln	Pro	Ser 170	Ile	Pro	Ala	Gln	Lys 175	Val
5	Ile	Pro	Asn	ніs 180	Asp	Lys	Ala	Ala	Pro 185	тhr	Ser	⊤hr	Thr	Pro 190	Pro	Ser
0	Asn	Asp	Lys 195	Thr	Ala	Pro	Lys	Ser 200	Thr	Lys	Ala	G∫n	Asp 205	Ala	Thr	⊤hr
	Asp	Lys 210	His	Pro	Asn	Gln	G]n 215	Asp	Thr	His	Gln	Pro 220	Ala	His	Gln	Ile
10	Ile 225	Asp	Ala	Lys	Gln	Asp 230	Asp	Thr	Val	Arg	G]n 235	Ser	Glu	Gln	Lys	Pro 240
	Gln	Val	Gly	Asp	Leu 245	Ser	Lys	His	Ile	Asp 250	Gly	G]n	Asn	Ser	Pro 255	Glu
15	Lys	Pro	Thr	Asp 260	Lys	Asn	Thr	Asp	Asn 265	Lys	Gln	Leu	Ile	Lys 270	Asp	Ala
	Leu	Gln	A]a 275	Pro	Lys	Thr	Arg	Ser 280	Thr	Thr	Asn	A]a	Ala 285	Ala	Asp	Ala
20	Lys	Lys 290	Val	Arg	Pro	Leu	Lys 295	Ala	Asn	Gln	Val	G]n 300	Pro	Leu	Asn	Lys
	⊤yr 305	Pro	Val	Val	Phe	Val 310	нis	Gly	Phe	Leu	Gly 315	Leu	Val	Gly	Asp	Asn 320
25	Ala	Pro	Ala	Leu	Туг 325	Pro	Asn	Тyr	тгр	G]y 330	Gly	Asn	Lys	Phe	Lys 335	Val
	Ile	Glu	Glu	Leu 340	Arg	Lys	Gln	Gly	Туг 345	Asn	Val	His	Gln	A]a 350	Ser	Val
30	Ser	Ala	Phe 355	Gly	Ser	Asn	туг	Asp 360	Arg	Ala	Val	Glu	Leu 365	туг	Тyr	Tyr
	Ile	Lys 370	Gly	Gly	Arg	Val	Asp 375	Тyr	Gly	Ala	Ala	His 380	Ala	Ala	Lys	Tyr
35	Gly 385	His	Glu	Arg	⊤yr	Gly 390	Lys	Thr	Тyr	Lys	G]y 395	Ile	Met	Pro	Asn	⊤rp 400
	Glu	Pro	Gly	Lys	Lys 405	Val	His	Leu	Val	Gly 410	His	Ser	Met	ςΊу	Gly 415	Gln
40	⊤hr	Ile	Arg	Leu 420	Met	Glu	Glu	Phe	Leu 425	Arg	Asn	Gly	Asn	Lys 430	Glu	Glu
	Ile	Ala	туг 435	His	Lys	Ala	His	Gly 440	Gly	Glu	Ile	Ser	Pro 445	Leu	Phe	⊤hr
45	Gly	Gly 450	His	Asn	Asn	Met	Va] 455	Ala	Ser	Ile	Thr	⊤hr 460	Leu	Ala	Тhr	Pro
	ніs 465	Asn	Gly	Ser	Gln	Ala 470	Ala	Asp	Lys	Phe	G]y 475	Asn	Тhr	Glu	Ala	Val 480
50	Arg	Lys	I]e	Met	Phe 485	Ala	Leu	Asn	Arg	Phe 490	Met	Gly	Asn	Lys	туг 495	Ser
	Asn	Ile	Asp	Leu 500	Gly	Leu	Тhr	Gln	Тгр 505	Gly	Phe	Lys	Gln	Leu 510	Pro	Asn
55	Glu	Ser	туг 515	Ile	Asp	туг	IJe	Lys 520	Arg	Val	Ser	Lys	Ser 525	Lys	IJe	⊤rp
	⊤hr	Ser	Asp	Asp	Asn	Ala	Ala	Тyr	Asp	Leu	Thr	Leu	Asp	Gly	Ser	Ala

His Asp Ala Arg Glu Glu Trp Arg Lys Asn Asp Gly Val Val Pro Val 595 600 605 10 Ile Ser Ser Leu His Pro Ser Asn Gln Pro Phe Val Asn Val Thr Asn 610 615 620 Asp Glu Pro Ala Thr Arg Arg Gly Ile Trp Gln Val Lys Pro Ile Ile 625 630 635 640 15 Gln Gly Trp Asp His Val Asp Phe Ile Gly Val Asp Phe Leu Asp Phe 645 650 650 Lys Arg Lys Gly Ala Glu Leu Ala Asn Phe Tyr Thr Gly Ile Ile Asn 660 665 670 20 Asp Leu Leu Arg Val Glu Ala Thr Glu Ser Lys Gly Thr Gln Leu Lys 675 680 685 Ala Ser 690 25 <210> 61 <211> 208 <212> PRT Staphylococcus aureus <213> 30 <400> Met Lys Lys Arg Leu Leu Leu Ser Thr Phe Leu Ala Ser Thr Leu Ile 1 5 10 15 Leu Thr Gly Cys Ala Ser Asp Gln Ser Asp Asn Glu Asp His His Thr 20 25 30 35 Ser Thr Gly Ile His Ala Pro Lys Ser Ala Lys Lys Leu Glu Thr Lys 35 40 45 Asp Ile Phe Asn Ser Asp Lys Lys Asn Ser Asp Ile Ser Asp Ala Glu 50 60 40 Met Lys Gln Ala Ile Glu Lys Tyr Leu Ser Val Asn Ser Asp Ile Leu 65 70 75 80 Asp Asn Lys Tyr Ile Met Gln His Lys Leu Asp Lys Gln Ile Asp Ser $85 \qquad 90 \qquad 95$ 45 Gln Thr Lys Val Thr Glu Lys Gln Ala Glu Thr Leu Ser His Leu Ser 100 105 110 Asn Leu Ala Val Lys Asn Asp Leu His Phe Lys Lys Phe Val Thr Glu 115 120 125 50 Asn Asn Ile Pro Lys Glu Tyr Lys Lys Pro Val Glu Leu Met Met Asn 130 135 140 Tyr Phe Lys Ala Leu Asn Ser Thr Ile Ala Asn Val Asp Glu Asp Ile 145 150 155 160 55 Glu Lys Leu Ser Tyr Gln Pro Gln Asn Lys Ile Asn Val Val Asp Val 165 170 175

EP 2 510 947 A1

Lys Leu Asn Asn Met Thr Ser Met Asn Pro Asn Ile Thr Tyr Thr Thr 545 550 555 560

Tyr Thr Gly Val Ser Ser His Thr Gly Pro Leu Gly Tyr Glu Asn Pro 565 570 575

Asp Leu Gly Thr Phe Phe Leu Met Ala Thr Thr Ser Arg Ile Ile Gly 580 585 590

540

535

530

	Pro	Thr	Lys	Туг 180	Ala	Gly	Asp	Val	Asn 185	Lys	Lys	Gln	Gln	Asp 190	Lys	Ile
5	Lys	Asp	Phe 195	Leu	Lys	Ser	Lys	G]y 200	Ile	Lys	Ser	Asp	Va] 205	I]e	Asp	Lys
	<210 <211 <212 <213)> > > >	62 261 PRT Stap	ohy1c	ococo	cus a	aurei	ıs								
10	<400 Met 1)> Lys	62 Ser	Ile	Lys 5	Arg	Ile	Gly	Leu	Cys 10	Ile	Ser	Leu	Leu	I]e 15	Leu
	I]e	Ile	Phe	Va] 20	Thr	Ser	Cys	Asp	G]y 25	Asp	Asn	Lys	Ile	1]e 30	Gly	Asp
15	Ser	Lys	Glu 35	Glu	Gln	Ile	Lys	Lys 40	Ser	Phe	Ala	Lys	Thr 45	Leu	Asp	Ile
	Туr	Pro 50	Ile	Lys	Asn	Leu	Glu 55	Asp	Leu	Туr	Asp	Lys 60	Glu	Gly	Тyr	Arg
20	Asp 65	Gly	Glu	Phe	Lys	Lys 70	Asp	Asp	Lys	Gly	Thr 75	тгр	Leu	Ile	Arg	Ser 80
	Glu	Met	Lys	Ile	Gln 85	Leu	Lys	Gly	Glu	Asn 90	Leu	Glu	Ser	Arg	G]y 95	Ala
25	Val	Leu	Glu	Ile 100	Asn	Arg	Asn	⊤hr	Arg 105	Тhr	Ala	Lys	Gly	His 110	Тyr	Ile
	Val	Arg	Glu 115	Val	Val	Glu	Asp	Ser 120	Asp	Gly	Met	Тhr	His 125	Asn	His	Thr
30	Lys	Arg 130	туr	Pro	Val	Lys	Met 135	Glu	Asn	Asn	Lys	Met 140	Ile	Pro	Leu	Lys
	Pro 145	Ile	Asp	Asp	Glu	Lys 150	Val	Lys	Lys	Glu	I]e 155	Glu	Glu	Phe	Asn	Phe 160
35	Phe	Val	Gln	туr	Gly 165	Asn	Phe	Lys	Glu	Leu 170	Glu	Asn	Туг	Lys	Glu 175	Asp
	G]u	Val	Ser	Туг 180	Asn	Pro	Glu	Val	Pro 185	Ile	Туr	Ser	Ala	Lys 190	Тyr	Gln
40	Leu	Lys	Asn 195	Ser	Asp	Туr	Asn	Va] 200	Glu	Gln	Leu	Arg	Lys 205	Arg	Тyr	Asn
	Ile	Pro 210	Thr	Gln	Lys	Ala	Pro 215	Lys	Leu	Leu	Leu	Lys 220	Gly	Ser	Gly	Asn
45	Leu 225	Lys	Gly	Ser	Ser	Va1 230	Gly	⊤yr	Lys	Asn	I]e 235	Glu	Phe	Thr	Phe	Ile 240
	Glu	Asn	Lys	Glu	Glu 245	Asn	Ile	⊤yr	Phe	тhr 250	Asp	Ser	Ile	Туг	Phe 255	Asn
50	Pro	Ser	Glu	Asp 260	Lys											
55	<210 <211 <212 <213)> _> _>	63 347 PRT Star	ohyla		cus a	aurei	JS								
	<400)>	63	-												
	Met 1	Asn	Lys	Asp	Asn 5	Lys	Тrр	Thr	Met	Ile 10	Thr	Ala	Leu	Phe	Ile 15	⊤hr
-------------------	------------------------------	----------------------	--------------------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------
5	Val	Ile	Ser	val 20	Leu	Leu	Ala	Phe	His 25	Leu	Lys	Gln	His	туг 30	Asp	Gln
°	Ile	Thr	Asn 35	Glu	Asn	His	Ala	Asn 40	Lys	Asp	Lys	I]e	Asn 45	Ile	Lys	Asn
<i>(</i> 0	Lys	Asn 50	Val	Arg	Ile	туг	Gln 55	Asn	Leu	Thr	туг	Asn 60	Arg	Val	Phe	Pro
10	Asn 65	Ser	Lys	Leu	Asp	Ile 70	Ile	Thr	Pro	Val	Asp 75	Met	Ser	Ser	Asn	Ala 80
	Lys	Leu	Pro	Val	Ile 85	Phe	тгр	Met	His	G]y 90	Gly	Gly	Туr	Ile	A]a 95	Gly
15	Asp	Lys	Gln	Туг 100	Lys	Asn	Pro	Leu	Leu 105	Ala	Lys	Ile	Ala	Glu 110	Gln	Gly
	Tyr	Ile	Va] 115	Val	Asn	Val	Asn	Туг 120	Ala	Leu	Ala	Pro	Gln 125	Туr	Lys	Тyr
20	Pro	Thr 130	Pro	Leu	Ile	Gln	Met 135	Asn	Gln	Ala	Thr	G]n 140	Phe	Ile	Lys	Glu
	Asn 145	Lys	Met	Asn	Leu	Pro 150	Ile	Asp	Phe	Asn	Gln 155	Val	Ile	Ile	Gly	Gly 160
25	Asp	Ser	Ala	Gly	Ala 165	Gln	Leu	Ala	Ser	Gln 170	Phe	⊤hr	Ala	Ile	G]n 175	⊤hr
	Asn	Asp	Arg	Leu 180	Arg	Glu	Ala	Met	Lys 185	Phe	Asp	G]n	Ser	Phe 190	Lys	Pro
30	Ser	Gln	Ile 195	Lys	Gly	Ala	Ile	Leu 200	Phe	Gly	Gly	Phe	туг 205	Asn	Met	Gln
	⊤hr	Val 210	Arg	Glu	⊤hr	Glu	Phe 215	Pro	Arg	Ile	Gln	Leu 220	Phe	Met	Lys	Ser
35	⊤yr 225	Thr	Gly	Glu	Glu	Asp 230	тгр	Glu	Lys	Ser	Phe 235	Lys	Asn	Ile	Ser	G]n 240
	Met	Ser	Thr	Val	Lys 245	Gln	Ser	Thr	Lys	Asn 250	Туг	Pro	Pro	Thr	Phe 255	Leu
40	Ser	Val	Gly	Asp 260	Ser	Asp	Pro	Phe	Glu 265	Ser	Gln	Asn	Ile	Glu 270	Phe	Ser
	Lys	Lys	Leu 275	Gln	Glu	Leu	Asn	Va] 280	Pro	Val	Asp	⊤hr	Leu 285	Phe	Тyr	Asp
45	Gly	Thr 290	His	His	Leu	His	His 295	Gln	туr	Gln	Phe	Ніs 300	Leu	Asn	Lys	Pro
	Glu 305	Ser	Ile	Asp	Asn	I]e 310	Lys	Lys	Val	Leu	Leu 315	Phe	Leu	Ser	Arg	Asn 320
50	⊤hr	Ser	Ser	Ser	Gly 325	Ile	Gln	Thr	Glu	G]u 330	Lys	Pro	Gln	I]e	G]u 335	Asn
	Pro	Ser	Asn	Glu 340	Leu	Pro	Leu	Asn	Pro 345	Leu	Asn					
55	<210 <212 <212 <213)> L> 2> 3>	64 265 PRT Stap	ohyld	ococo	cus a	aurei	ıs								

	<400 Met 1)> Lys	64 Lys	Leu	Ala 5	Phe	Ala	Ile	⊤hr	A]a 10	Тhr	Ser	Gly	Ala	A]a 15	Ala
5	Phe	Leu	Thr	His 20	His	Asp	Ala	Gln	A]a 25	Ser	Тhr	Gln	His	Thr 30	Val	Gln
	Ser	Gly	Glu 35	Ser	Leu	тгр	Ser	I]e 40	Ala	Gln	Lys	туr	Asn 45	Тhr	Ser	Val
10	Glu	Ser 50	Ile	Lys	Gln	Asn	Asn 55	Gln	Leu	Asp	Asn	Asn 60	Leu	Val	Phe	Pro
	G]y 65	Gln	Val	Ile	Ser	Va] 70	Gly	Gly	Ser	Asp	A]a 75	Gln	Asn	Thr	Ser	Asn 80
15	⊤hr	Ser	Pro	Gln	A]a 85	Gly	Ser	Ala	Ser	Ser 90	His	Тhr	Val	Gln	A]a 95	Gly
	Glu	Ser	Leu	Asn 100	Ile	Ile	Ala	Ser	Arg 105	Туr	Gly	Val	Ser	Va] 110	Asp	Gln
20	Leu	Met	A]a 115	Ala	Asn	Asn	Leu	Arg 120	Gly	Тyr	Leu	Ile	Met 125	Pro	Asn	Gln
	Thr	Leu 130	Gln	Ile	Pro	Asn	Gly 135	Gly	Ser	Gly	Gly	Thr 140	Thr	Pro	Thr	Ala
25	Thr 145	Thr	Gly	Ser	Asn	Gly 150	Asn	Ala	Ser	Ser	Phe 155	Asn	His	G]n	Asn	Leu 160
	Тyr	Thr	Ala	Gly	Gln 165	Cys	Thr	⊤rp	Тyr	Va] 170	Phe	Asp	Arg	Arg	A]a 175	Gln
30	Ala	Gly	Ser	Pro 180	Ile	Ser	Тhr	⊤yr	⊤rp 185	Ser	Asp	Ala	Lys	туг 190	тгр	Ala
	Gly	Asn	Ala 195	Ala	Asn	Asp	Gly	туг 200	Gln	Val	Asn	Asn	Thr 205	Pro	Ser	Val
35	Gly	Ser 210	Ile	Met	Gln	Ser	Тhr 215	Pro	Gly	Pro	туг	G]y 220	His	Val	Ala	туr
	Va] 225	Glu	Arg	Val	Asn	G]y 230	Asp	Gly	Ser	Ile	Leu 235	Ile	Ser	Glu	Met	Asn 240
40	туr	Тhr	туг	Gly	Pro 245	туr	Asn	Met	Asn	туг 250	Arg	Тhr	Ile	Pro	A]a 255	Ser
	Glu	Val	Ser	Ser 260	туr	Ala	Phe	Ile	Ніs 265							
45	<210 <211 <212 <213)> L> }> }>	65 292 PRT Stap	ohyla	οςοςα	cus a	aurei	JS								
	<400 Met 1)> Lys	65 Lys	Ile	Val 5	Ile	Ile	Ala	Val	Leu 10	Ala	Ile	Leu	Phe	Va] 15	Val
50	Ile	Ser	Ala	Cys 20	Gly	Asn	Lys	Glu	Lys 25	Glu	Ala	Gln	His	G]n 30	Phe	Thr
	Lys	Gln	Phe 35	Lys	Asp	Val	Glu	Gln 40	Lys	Gln	Lys	Glu	Leu 45	Gln	His	Val
55	Met	Asp 50	Asn	Ile	His	Leu	Lys 55	Glu	Ile	Asp	His	Leu 60	Ser	Lys	Thr	Asp

	Thr 65	Thr	Asp	Lys	Asn	Ser 70	Lys	Glu	Phe	Lys	Ala 75	Leu	Gln	Glu	Asp	Va] 80
5	Lys	Asn	His	Leu	Ile 85	Pro	Lys	Phe	Glu	Ala 90	Тyr	Тyr	Lys	Ser	Ala 95	Lys
	Asn	Leu	Pro	Asp 100	Asp	Thr	Met	Lys	Va] 105	Lys	Lys	Leu	Lys	Lys 110	Glu	Туr
10	Met	Thr	Leu 115	Ala	Asn	Glu	Lys	Lys 120	Asp	Ala	Ile	Туr	G]n 125	Leu	Lys	Lys
	Phe	I]e 130	Gly	Leu	Cys	Asn	Gln 135	Ser	Ile	Lys	туг	Asn 140	Glu	Asp	Ile	Leu
15	Asp 145	Туг	Thr	Lys	Gln	Phe 150	Glu	Lys	Asn	Arg	Туг 155	Lys	Val	Glu	Ser	Glu 160
	Ile	Lys	Leu	Ala	Asp 165	Asn	Lys	Ser	Glu	Ala 170	Thr	Asn	Leu	⊤hr	Thr 175	Lys
20	Leu	Glu	His	Asn 180	Asn	Lys	Ala	Leu	Arg 185	Asp	Thr	Ala	Lys	Lys 190	Asn	Leu
20	Asp	Asp	Ser 195	Lys	Glu	Asn	Glu	Va] 200	Lys	Gly	Ala	Ile	Lys 205	Asn	His	Ile
25	Met	Pro 210	Met	Ile	Glu	Lys	G]n 215	Ile	Thr	Asp	Ile	Asn 220	Gln	Тhr	Asn	Ile
20	Ser 225	Asp	Lys	His	Val	Asn 230	Asn	Ala	Arg	Lys	Asn 235	Ala	Ile	Glu	Met	Tyr 240
20	Тyr	Ser	Leu	Gln	Asn 245	туr	туr	Asn	Тhr	Arg 250	Ile	Glu	Thr	Ile	Lys 255	Val
30	Ser	Glu	Lys	Leu 260	Ser	Lys	Val	Asp	Va] 265	Asp	Lys	Leu	Pro	Lys 270	Lys	Gly
25	Ile	Asp	Ile 275	Тhr	His	Gly	Asp	Lys 280	Ala	Phe	Glu	Lys	Lys 285	Leu	Glu	Lys
35	Leu	Glu 290	Glu	Lys												
40	<210 <211 <212 <213)> L> 2> 3>	66 242 PRT Stap	ohyla	ococo	cus a	aurei	ıs								
	<400 Met 1)> Lys	66 Lys	Val	Met 5	Gly	Ile	Leu	Leu	Ala 10	Ser	Thr	Leu	Ile	Leu 15	Gly
45	Ala	Cys	Gly	ніs 20	His	Gln	Asp	Ser	A]a 25	Lys	Lys	Glu	Ser	Thr 30	Ser	His
	Lys	Lys	Lys 35	Glu	Asn	Asp	Asn	Glu 40	Glu	Leu	Asn	Glu	Glu 45	Leu	Lys	Glu
50	Phe	Lys 50	Ser	Lys	Lys	Asn	Met 55	Asp	Ile	Lys	Ile	Lys 60	Gly	Asp	Thr	Ile
	Va1 65	Ser	Asp	Lys	Phe	Glu 70	Ala	Lys	Ile	Lys	Glu 75	Pro	Phe	Ile	Ile	Asn 80
55	Glu	Lys	Asp	Glu	Lys 85	Lys	Lys	Тyr	Ile	Ala 90	Phe	Lys	Met	Glu	Ile 95	Thr

	Ala	Lys	Lys	Asp 100	Asp	Lys	Asp	Leu	Asn 105	Pro	Ser	Ser	Ile	Ser 110	His	Asp
5	туr	Ile	Asn 115	Ile	⊤hr	Gln	Asp	Asp 120	Lys	Asn	Thr	Val	Asn 125	Lys	Leu	Arg
	Asp	Gly 130	туr	Leu	Leu	Ser	Asp 135	Lys	Lys	туг	Lys	Asp 140	тгр	Тhr	Glu	His
10	Asn 145	Gln	Asp	Gln	Ile	Lys 150	Lys	Gly	Lys	Thr	Ala 155	Gln	Ala	Met	Phe	Ile 160
10	⊤yr	Glu	Leu	Arg	Gly 165	Asp	Gly	Asn	Ile	Asn 170	Leu	Asn	Val	His	Lys 175	Tyr
	Ser	Glu	Asp	Lys 180	⊤hr	Val	Asp	Ser	Lys 185	Ser	Phe	Lys	Phe	Ser 190	Lys	Leu
15	Lys	Thr	Glu 195	Asp	Phe	Ser	His	Arg 200	Ala	Glu	Тhr	Arg	Glu 205	Glu	Val	Glu
	Lys	Lys 210	Glu	Lys	Glu	Phe	Glu 215	Glu	Glu	Туr	Lys	Lys 220	Glu	Gln	Glu	Arg
20	Glu 225	Lys	Glu	Lys	Glu	Lys 230	Gln	Lys	Asp	Asp	Asp 235	His	Ser	Gly	Leu	Asp 240
	Glu	Val														
25	<210 <211 <212 <213)> L> 2> }>	67 439 PRT Stap	ohyld	οςοςα	cus a	aurei	ıs								
30	<400 Met 1)> Arg	67 Leu	Thr	Ile 5	Tyr	His	Thr	Asn	Asp 10	Ile	His	Ser	His	Leu 15	His
	Glu	Тyr	Glu	Arg 20	Ile	Lys	Ala	Тyr	Met 25	Ala	Glu	His	Arg	Pro 30	Arg	Leu
35	Asn	His	Pro 35	Ser	Leu	туг	Val	Asp 40	Leu	Gly	Asp	His	Va1 45	Asp	Leu	Ser
	Ala	Pro 50	Ile	Thr	Glu	Ala	Thr 55	Leu	Gly	Lys	Lys	Asn 60	Val	Ala	Leu	Leu
40	Asn 65	Glu	Ala	Lys	Cys	Asp 70	Val	Ala	Thr	Ile	G]y 75	Asn	Asn	Glu	Gly	Met 80
	⊤hr	Ile	Ser	Тyr	Glu 85	Ala	Leu	Asn	His	Leu 90	туг	Asp	Glu	Ala	Lys 95	Phe
45	Ile	Val	Тhr	Cys 100	Ser	Asn	Val	Ile	Asp 105	Glu	Ser	Gly	His	Leu 110	Pro	Asn
	Asn	Ile	Val 115	Ser	Ser	Тyr	Ile	Lys 120	Asp	Ile	Asp	Gly	Val 125	Lys	Ile	Leu
50	Phe	Val 130	Ala	Ala	⊤hr	Ala	Pro 135	Phe	Thr	Pro	Phe	Туг 140	Arg	Ala	Leu	Asn
	⊤rp 145	Ile	Val	Тhr	Asp	Pro 150	Leu	Glu	Ser	Ile	Lys 155	Glu	Glu	Ile	Glu	Leu 160
55	Gln	Arg	Gly	Lys	Phe 165	Asp	Val	Leu	Ile	Va] 170	Leu	Ser	His	Cys	Gly 175	Ile
	Phe	Phe	Asp	Glu	⊤hr	Leu	Cys	Gln	Glu	Leu	Pro	Glu	Ile	Asp	Val	Ile

				180					185					190		
	Phe	Gly	Ser 195	His	Thr	His	Нis	туг 200	Phe	Glu	His	Gly	Glu 205	Ile	Asn	Asn
5	Gly	Val 210	Leu	Met	Ala	Ala	A]a 215	Gly	Lys	туr	Gly	Asn 220	Тyr	Leu	Gly	Glu
	Va] 225	Asn	Leu	Тhr	Phe	G]u 230	Ala	His	Lys	Val	Va] 235	His	Lys	Thr	Ala	Lys 240
10	Ile	Ile	Pro	Leu	Glu 245	Тhr	Leu	Pro	Glu	Va] 250	Glu	Тhr	Ser	Phe	Glu 255	Glu
	Glu	Gly	Lys	тhr 260	Leu	Met	Ser	Asn	Ser 265	Val	Ile	Gln	His	Pro 270	Val	Val
15	Leu	Lys	Arg 275	Ser	Met	Asn	His	I]e 280	Thr	Glu	Ala	Ala	Туг 285	Leu	Leu	Ala
	Gln	Ser 290	Val	Cys	Glu	Туr	Thr 295	His	Ala	Gln	Cys	Ala 300	Ile	Ile	Asn	Ala
20	Gly 305	Leu	Leu	Val	Lys	Asp 310	Ile	Val	Lys	Asp	Glu 315	Val	Тhr	Glu	Туr	Asp 320
	Ile	His	Gln	Met	Leu 325	Pro	His	Pro	Ile	Asn 330	Met	Val	Arg	Val	Arg 335	Leu
25	Phe	Gly	Val	Lys 340	Leu	Lys	Glu	Ile	Ile 345	Ala	Lys	Ser	Asn	Lys 350	Gln	Glu
	туr	Met	⊤yr 355	Glu	His	Ala	Gln	G]y 360	Leu	Gly	Phe	Arg	Gly 365	Asn	Ile	Phe
30	Gly	Gly 370	⊤yr	Ile	Leu	туг	Asn 375	Leu	Gly	⊤yr	Ile	ніs 380	Ser	Тhr	Gly	Arg
	Туг 385	Туr	Leu	Asn	Gly	GTu 390	Glu	IJe	Glu	Asp	Asp 395	Lys	Glu	туr	Val	Leu 400
35	Gly	Thr	Ile	Asp	Met 405	туг	Тhr	Phe	Gly	Arg 410	туг	Phe	Pro	Тhr	Leu 415	Lys
	Glu	Leu	Pro	Lys 420	Glu	туr	Leu	Met	Pro 425	Glu	Phe	Leu	Arg	Asp 430	Ile	Phe
40	Lys	Glu	Lys 435	Leu	Leu	Glu	туr									
	<210 <212 <212 <213)> L> 2> 3>	68 774 PRT Stap	ohy1a	ососо	cus a	aurei	ıs								
45	<400 Met 1)> Glu	68 ⊤rp	Thr	Leu 5	Val	Asp	Ile	Gly	Lys 10	Lys	His	Val	Ile	Pro 15	Lys
50	Ser	Gln	⊤yr	Arg 20	Arg	Lys	Arg	Arg	Glu 25	Phe	Phe	His	Asn	Glu 30	Asp	Arg
50	Glu	Glu	Asn 35	Leu	Asn	Gln	His	G]n 40	Asp	Lys	Gln	Asn	Ile 45	Asp	Asn	Thr
	Thr	Ser 50	Lys	Lys	Ala	Asp	Lys 55	Gln	Ile	His	Lys	Asp 60	Ser	Ile	Asp	Lys
55	His 65	Glu	Arg	Phe	Lys	Asn 70	Ser	Leu	Ser	Ser	His 75	Leu	Glu	Gln	Arg	Asn 80

Arg Asp Val Asn Glu Asn Lys Ala Glu Glu Ser Lys Ser Asn Gln Asp 85 90 95 Ser Lys Ser Ala Tyr Asn Arg Asp His Tyr Leu Thr Asp Asp Val Ser 100 105 110 5 Lys Lys Gln Asn Ser Leu Asp Ser Val Asp Gln Asp Thr Glu Lys Ser 115 120 125 Lys Tyr Tyr Glu Gln Asn Ser Glu Ala Thr Leu Ser Thr Lys Ser Thr 130 135 140 10 Asp Lys Val Glu Ser Thr Glu Met Arg Lys Leu Ser Ser Asp Lys Asn 145 150 155 160 Lys Val Gly His Glu Glu Gln His Val Leu Ser Lys Pro Ser Glu His 165 170 175 15 Asp Lys Glu Thr Arg Ile Asp Ser Glu Ser Ser Arg Thr Asp Ser Asp 180 185 190 Ser Ser Met Gln Thr Glu Lys Ile Lys Lys Asp Ser Ser Asp Gly Asn 195 200 205 20 Lys Ser Ser Asn Leu Lys Ser Glu Val Ile Ser Asp Lys Ser Asn Thr 210 215 220 Val Pro Lys Leu Ser Glu Ser Asp Asp Glu Val Asn Asn Gln Lys Pro 225 230 235 240 25 Leu Thr Leu Pro Glu Glu Gln Lys Leu Lys Arg Gln Gln Ser Gln Asn 245 250 250 255 Glu Gln Thr Lys Thr Tyr Thr Tyr Gly Asp Ser Glu Gln Asn Asp Lys 260 265 270 30 Ser Asn His Glu Asn Asp Leu Ser His His Ile Pro Ser Ile Ser Asp 275 280 285 Asp Lys Asp Asn Val Met Arg Glu Asn His Ile Val Asp Asp Asn Pro 290 295 300 35 Asp Asn Asp Ile Asn Thr Pro Ser Leu Ser Lys Thr Asp Asp Asp Arg 305 310 315 320 Lys Leu Asp Glu Lys Ile His Val Glu Asp Lys His Lys Gln Asn Ala 325 330 335 40 Asp Ser Ser Glu Thr Val Gly Tyr Gln Ser Gln Ser Thr Ala Ser His 340 345 350 Arg Ser Thr Glu Lys Arg Asn Ile Ser Ile Asn Asp His Asp Lys Leu 355 360 365 45 Asn Gly Gln Lys Thr Asn Thr Lys Thr Ser Ala Asn Asn Asn Gln Lys 370 375 380 Lys Ala Thr Ser Lys Leu Asn Lys Gly Arg Ala Thr Asn Asn Asn Tyr 385 390 395 400 50 Ser Asp Ile Leu Lys Lys Phe Trp Met Met Tyr Trp Pro Lys Leu Val 405 410 415 Ile Leu Met Gly Ile Ile Ile Leu Ile Val Ile Leu Asn Ala Ile Phe 420 425 430 55 Asn Asn Val Asn Lys Asn Asp Arg Met Asn Asp Asn Asn Asp Ala Asp 435 440 445

	Ala	Gln 450	Lys	Туr	⊤hr	Thr	тhr 455	Met	Lys	Asn	Ala	Asn 460	Asn	Тhr	Val	Lys
5	ser 465	Val	Val	тhr	Val	Glu 470	Asn	Glu	тhr	Ser	Lys 475	Asp	Ser	Ser	Leu	Pro 480
	Lys	Asp	Lys	Ala	Ser 485	Gln	Asp	Glu	Val	Gly 490	Ser	G∣y	Val	Val	туг 495	Lys
10	Lys	Ser	Gly	Asp 500	⊤hr	Leu	туr	I]e	Va1 505	Thr	Asn	Ala	His	Val 510	Val	Gly
10	Asp	Lys	Glu 515	Asn	Gln	Lys	Ile	Thr 520	Phe	Ser	Asn	Asn	Lys 525	Ser	Val	Val
	Gly	Lys 530	Val	Leu	Gly	Lys	Asp 535	Lys	тгр	Ser	Asp	Leu 540	Ala	Val	Val	Lys
15	Ala 545	Thr	Ser	Ser	Asp	Ser 550	Ser	Val	Lys	Glu	Ile 555	Ala	Ile	Gly	Asp	Ser 560
	Asn	Asn	Leu	Val	Leu 565	Gly	Glu	Pro	Ile	Leu 570	Val	Val	Gly	Asn	Pro 575	Leu
20	Gly	Val	Asp	Phe 580	Lys	Gly	Thr	Val	Thr 585	Glu	Gly	I]e	Ile	Ser 590	Gly	Leu
	Asn	Arg	Asn 595	Val	Pro	Ile	Asp	Phe 600	Asp	Lys	Asp	Asn	Lys 605	туr	Asp	Met
25	Leu	Met 610	Lys	Ala	Phe	Gln	I]e 615	Asp	Ala	Ser	Val	Asn 620	Pro	Gly	Asn	Ser
	Gly 625	Gly	Ala	Val	Val	Asn 630	Arg	Glu	Gly	Lys	Leu 635	Ile	Gly	Val	Val	Ala 640
30	Ala	Lys	Ile	Ser	Met 645	Pro	Asn	Val	Glu	Asn 650	Met	Ser	Phe	Ala	Ile 655	Pro
	Val	Asn	Glu	Val 660	Gln	Lys	Ile	Val	Lys 665	Asp	Leu	Glu	Thr	Lys 670	Gly	Lys
35	Ile	Asp	туг 675	Pro	Asp	Val	Gly	Va] 680	Lys	Met	Lys	Asn	11e 685	Val	Ser	Leu
	Asn	Ser 690	Phe	Glu	Arg	Gln	Ala 695	Val	Lys	Leu	Pro	G]y 700	Lys	Val	Lys	Asn
40	Gly 705	Val	Val	Val	Asp	Gln 710	Val	Asp	Asn	Asn	Gly 715	Leu	Ala	Asp	Gln	Ser 720
	Gly	Leu	Lys	Lys	Gly 725	Asp	Val	Ile	Thr	Glu 730	Leu	Asp	Gly	Lys	Leu 735	Leu
45	Glu	Asp	Asp	Leu 740	Arg	Phe	Arg	Gln	Ile 745	Ile	Phe	Ser	His	Lys 750	Asp	Asp
	Leu	Lys	Ser 755	Ile	⊤hr	Ala	Lys	Ile 760	Туr	Arg	Asp	Gly	Lys 765	Glu	Lys	Glu
50	Ile	Asn 770	I]e	Lys	Leu	Lys										
	<210 <211 <212 <212)> L> 2> 3>	69 393 PRT Stap	ohy]c	ococo	cus a	aurei	ıs								
55	<400 Met)> Asn	69 Ser	Ser	Cys	Lys	Ser	Arg	Val	Phe	Asn	Ile	Ile	Ser	Ile	Ile

	1				5					10					15	
	Met	Val	Ser	Met 20	Leu	Ile	Leu	Ser	Leu 25	Gly	Ala	Phe	Ala	Asn 30	Asn	Asn
5	Lys	Ala	Lys 35	Ala	Asp	Ser	Ніs	Ser 40	Lys	Gln	Leu	Glu	11e 45	Asn	Val	Lys
	Ser	Asp 50	Lys	Val	Pro	Gln	Lys 55	Val	Lys	Asp	Leu	Ala 60	Gln	Gln	Gln	Phe
10	A]a 65	Gly	Tyr	Ala	Lys	А]а 70	Leu	Asp	Lys	Gln	Ser 75	Asn	Ala	Lys	Thr	Gly 80
	Lys	Tyr	Glu	Leu	Gly 85	Glu	Ala	Phe	Lys	Ile 90	Туr	Lys	Phe	Asn	G]y 95	Glu
15	Glu	Asp	Asn	Ser 100	Туr	Туr	Туr	Pro	Val 105	Ile	Lys	Asp	Gly	Lys 110	Ile	Val
	Туr	Thr	Leu 115	Thr	Leu	Ser	Pro	Lys 120	Asn	Lys	Asp	Asp	Leu 125	Asn	Lys	Ser
20	Lys	Glu 130	Asp	Met	Asn	Tyr	Ser 135	Val	Lys	Ile	Ser	Asn 140	Phe	Ile	Ala	Lys
	Asp 145	Leu	Asp	Gln	Ile	Lys 150	Asp	Lys	Asn	Ser	Asn 155	Ile	Тhr	Val	Leu	тhr 160
25	Asp	Glu	Lys	Gly	Phe 165	туr	Phe	Glu	Glu	Asp 170	Gly	Lys	Val	Arg	Leu 175	Val
	Lys	Ala	⊤hr	Pro 180	Leu	Pro	Gly	Asn	Val 185	Lys	Glu	Lys	Glu	Ser 190	Ala	Lys
30	Thr	Val	Ser 195	Ala	Lys	Leu	Lys	G]n 200	Glu	Leu	Lys	Asn	Thr 205	Val	Thr	Pro
	Thr	Lys 210	Val	Glu	Glu	Asn	Glu 215	Ala	Ile	Gln	Glu	Asp 220	Gln	Val	Gln	Tyr
35	Glu 225	Asn	⊤hr	Leu	Lys	Asn 230	Phe	Lys	Ile	Arg	Glu 235	Gln	Gln	Phe	Asp	Asn 240
	Ser	тгр	Cys	Ala	G1y 245	Phe	Ser	Met	Ala	Ala 250	Leu	Leu	Asn	Ala	Thr 255	Lys
40	Asn	Thr	Asp	⊤hr 260	Туr	Asn	Ala	His	Asp 265	Ile	Met	Arg	Thr	Leu 270	Туг	Pro
	Glu	Val	Ser 275	Glu	Gln	Asp	Leu	Pro 280	Asn	Cys	Ala	Thr	Phe 285	Pro	Asn	Gln
45	Met	11e 290	Glu	туr	Gly	Lys	Ser 295	Gln	Gly	Arg	Asp	11e 300	His	Туr	Gln	Glu
	G1y 305	Val	Pro	Ser	туr	Glu 310	Gln	Val	Asp	Gln	Leu 315	Thr	Lys	Asp	Asn	Va1 320
50	Gly	Ile	Met	Ile	Leu 325	Ala	Gln	Ser	Val	Ser 330	Gln	Asn	Pro	Asn	Asp 335	Pro
	His	Leu	Gly	Ніs 340	Ala	Leu	Ala	Val	Va1 345	Gly	Asn	Ala	Lys	Ile 350	Asn	Asp
55	Gln	Glu	Lys 355	Leu	Ile	туr	Тгр	Asn 360	Pro	⊤rp	Asp	Thr	Glu 365	Leu	Ser	Ile
	Gln	Asp 370	Ala	Asp	Ser	Ser	Leu 375	Leu	His	Leu	Ser	Phe 380	Asn	Arg	Asp	туг

	Asn 385	тгр	туr	Gly	Ser	Met 390	Ile	Gly	Тyr							
5	<210 <211 <212 <213)> L> 2> }>	70 336 PRT Stap	ohyla	ococo	cus a	aureu	ıs								
10	<400 Met 1)> Lys	70 Gly	Lys	Phe 5	Leu	Lys	Val	Ser	Ser 10	Leu	Phe	Val	Ala	Thr 15	Leu
	Thr	Thr	Ala	Thr 20	Leu	Val	Ser	Ser	Pro 25	Ala	Ala	Asn	Ala	Leu 30	Ser	Ser
15	Lys	Ala	Met 35	Asp	Asn	His	Pro	G]n 40	Gln	Thr	Gln	Ser	Ser 45	Lys	Gln	Gln
	⊤hr	Pro 50	Lys	Ile	Gln	Lys	G]y 55	Gly	Asn	Leu	Lys	Pro 60	Leu	Glu	Gln	Arg
20	Glu 65	His	Ala	Asn	Val	Ile 70	Leu	Pro	Asn	Asn	Asp 75	Arg	His	Gln	Ile	Thr 80
	Asp	Thr	Thr	Asn	G]y 85	His	туr	Ala	Pro	Va] 90	Thr	туr	Ile	Gln	Va] 95	Glu
25	Ala	Pro	Thr	Gly 100	Thr	Phe	Ile	Ala	Ser 105	Gly	Val	Val	Val	Gly 110	Lys	Asp
	Thr	Leu	Leu 115	Thr	Asn	Lys	His	Va] 120	Val	Asp	Ala	Thr	His 125	Gly	Asp	Pro
30	His	A]a 130	Leu	Lys	Ala	Phe	Pro 135	Ser	Ala	Ile	Asn	G]n 140	Asp	Asn	Тyr	Pro
	Asn 145	Gly	Gly	Phe	Thr	A]a 150	Glu	Gln	Ile	Thr	Lys 155	Тyr	Ser	Gly	Glu	Gly 160
35	Asp	Leu	Ala	Ile	Va] 165	Lys	Phe	Ser	Pro	Asn 170	Glu	Gln	Asn	Lys	His 175	Ile
	Gly	Glu	Val	Val 180	Lys	Pro	Ala	Thr	Met 185	Ser	Asn	Asn	Ala	Glu 190	Thr	Gln
40	Val	Asn	G]n 195	Asn	Ile	Тhr	Val	Thr 200	Gly	Тyr	Pro	Gly	Asp 205	Lys	Pro	Val
70	Ala	Thr 210	Met	тгр	Glu	Ser	Lys 215	Gly	Lys	Ile	Thr	Туг 220	Leu	Lys	Gly	Glu
45	Ala 225	Met	Gln	туг	Asp	Leu 230	Ser	Thr	Тhr	Gly	Gly 235	Asn	Ser	Gly	Ser	Pro 240
40	Val	Phe	Asn	Glu	Lys 245	Asn	Glu	Val	Ile	G]y 250	Ile	His	Тгр	Gly	Gly 255	Val
50	Pro	Asn	Glu	Phe 260	Asn	Gly	Ala	Val	Phe 265	Ile	Asn	Glu	Asn	Val 270	Arg	Asn
50	Phe	Leu	Lys 275	Gln	Asn	Ile	Glu	Asp 280	Ile	His	Phe	Ala	Asn 285	Asp	Asp	Gln
	Pro	Asn 290	Asn	Pro	Asp	Asn	Pro 295	Asp	Asn	Pro	Asn	Asn 300	Pro	Asp	Asn	Pro
55	Asn 305	Asn	Pro	Asp	Glu	Pro 310	Asn	Asn	Pro	Asp	Asn 315	Pro	Asn	Asn	Pro	Asp 320

Asn Pro Asp Asn Gly Asp Asn Asn Asn Ser Asp Asn Pro Asp Ala Ala 325 330 335 <210> <211> 397 <212> PRT <213> Staphylococcus aureus <400> Met Lys Phe Asn Lys Val Lys Leu Val Ile His Ala Cys Val Leu Leu 1 5 10 15 Phe Ile Ile Ser Ile Ala Leu Ile Phe His Arg Leu Gln Thr Lys 20 25 30 Thr His Ser Ile Asp Pro Ile His Lys Glu Thr Lys Leu Ser Asp Asn 35 40 45 Glu Lys Tyr Leu Val Asp Arg Asn Lys Glu Lys Val Ala Pro Ser Lys 50 55 60 Leu Lys Glu Val Tyr Asn Ser Lys Asp Pro Lys Tyr Lys Lys Ile Asp 65 70 75 80 Lys Tyr Leu Gln Ser Ser Leu Phe Asn Gly Ser Val Ala Ile Tyr Glu 85 90 95 Asn Gly Lys Leu Lys Met Ser Lys Gly Tyr Gly Tyr Gln Asp Phe Glu 100 105 110 Lys Gly Ile Lys Asn Thr Pro Asn Thr Met Phe Leu Ile Gly Ser Ala 115 120 125 Gln Lys Phe Ser Thr Gly Leu Leu Leu Lys Gln Leu Glu Glu Glu His 130 135 140 Lys Ile Asn Ile Asn Asp Pro Val Ser Lys Tyr Leu Pro Trp Phe Lys 145 150 155 160

Thr Ser Lys Pro Ile Pro Leu Lys Asp Leu Met Leu His Gln Ser Gly 165 170 175

Leu Tyr Lys Tyr Lys Ser Ser Lys Asp Tyr Lys Asn Leu Asp Gln Ala 180 185 190

Val Lys Ala Ile Gln Lys Arg Gly Ile Asp Pro Lys Lys Tyr Lys Lys 195 200 205

His Met Tyr Asn Asp Gly Asn Tyr Leu Val Leu Ala Lys Val Ile Glu 210 215 220

Glu Val Thr Gly Lys Ser Tyr Ala Glu Asn Tyr Tyr Thr Lys Ile Gly 225 230 235 240

Asp Pro Leu Lys Leu Gln His Thr Ala Phe Tyr Asp Glu Gln Pro Phe 245 250 255

Lys Lys Tyr Leu Ala Lys Gly Tyr Ala Tyr Asn Ser Thr Gly Leu Ser 260 265 270

Phe Leu Arg Pro Asn Ile Leu Asp Gln Tyr Tyr Gly Ala Gly Asn Leu 275 280 285

Tyr Met Thr Pro Thr Asp Met Gly Lys Leu Ile Thr Gln Ile Gln Gln 290 295 300

Tyr Lys Leu Phe Ser Pro Lys Ile Thr Asn Pro Leu Leu His Glu Phe 305 310 315 320

Gly Thr Lys Lys Tyr Pro Asp Glu Tyr Arg Tyr Gly Phe Tyr Ala Lys

35

30

5

10

15

20

25

45

40

50

55

EP 2 510 947 A1

					325					330					335	
	Pro	Тhr	Leu	Asn 340	Arg	Leu	Asn	Gly	Gly 345	Phe	Phe	Gly	Gln	Val 350	Phe	Thr
5	Val	Туr	⊤yr 355	Asn	Asp	Lys	Туr	Va] 360	Val	Val	Leu	Ala	Leu 365	Asn	Val	Lys
	Gly	Asn 370	Asn	Glu	Val	Arg	Ile 375	Lys	His	Ile	туr	Asn 380	Asp	Ile	Leu	Lys
10	G]n 385	Asn	Lys	Pro	Туr	Asn 390	Thr	Lys	Gly	Val	Ile 395	Val	Gln			
15	<210 <211 <212 <213)> L> 2> }>	72 358 PRT Stap	phylo	ococo	cus a	aurei	ıs								
	<400 Met 1)> Arg	72 Asn	Val	Lys 5	Gln	Ile	Ala	Thr	Lys 10	Ser	Ile	Ile	Ala	Ile 15	Ile
20	Ser	Leu	Gly	Ile 20	Leu	Тhr	Туr	Thr	Thr 25	Met	Ile	Gly	Ser	Val 30	Leu	Ala
	Asp	Glu	I]e 35	Lys	туr	Pro	Ser	Ala 40	Lys	Phe	Asn	Gln	Pro 45	Glu	Ala	Lys
25	Asp	Lys 50	⊤hr	Glu	Leu	тhr	Thr 55	Ser	Ile	Phe	Asp	Glu 60	Lys	Ile	Lys	Glu
	Asn 65	Lys	Ala	Leu	Glu	Leu 70	Leu	Ile	Phe	Asn	G]n 75	Glu	Asn	Lys	Asn	Val 80
30	Тhr	Glu	Glu	Gln	G]n 85	Leu	Val	Asp	Glu	Lys 90	Ala	Gln	Leu	Ile	Ser 95	Asp
	Met	Thr	Gly	Lys 100	Ile	туr	Leu	Gln	Va] 105	Lys	Leu	Lys	Gly	G]n 110	Ile	Asp
35	Lys	Glu	G]n 115	Leu	Val	Phe	Gln	Asn 120	Asp	Lys	Asn	Glu	Glu 125	Phe	Pro	Phe
	Val	Ile 130	Lys	Asp	Glu	Lys	Asp 135	Asp	Тhr	Ile	Val	Arg 140	Ile	Leu	Ile	Glu
40	Gln 145	His	Met	Asp	Lys	1]e 150	Asn	Met	His	Val	Lys 155	Thr	Leu	Ala	Glu	Lys 160
	Lys	Asn	Leu	Asp	Asn 165	Lys	Glu	Met	Val	⊤yr 170	Ser	Ile	His	Phe	Lys 175	Glu
45	Lys	Lys	Val	Gln 180	His	Asp	Asp	А]а	Lys 185	Glu	Val	Pro	Ser	Lys 190	His	Gln
	Asn	Gln	Glu 195	Asn	Asn	Gln	Asp	G]n 200	Leu	Lys	Lys	Asp	11e 205	Asp	Asp	Lys
50	Lys	Asp 210	Ser	Gln	Lys	Ser	Asp 215	Thr	Lys	Glu	Arg	Arg 220	Thr	Ser	Leu	Phe
	Thr 225	Glu	Lys	Gly	Leu	Asn 230	Asp	Ile	Pro	Val	G]n 235	Lys	Asp	Lys	Val	G1n 240
55	Gln	Asp	Ser	Asn	Lys 245	Lys	Ile	Glu	Asn	Glu 250	Arg	Pro	Lys	Ala	Ser 255	Gly
	Thr	Leu	Lys	Val 260	Glu	Asn	Ser	Pro	Pro 265	⊤hr	Ile	Lys	Lys	Val 270	Glu	Asn

	Asn	His	Lys 275	Glu	Gln	Pro	Lys	Ніs 280	Lys	Asp	Glu	Lys	Ser 285	Lys	Lys	Glu
5	Lys	Lys 290	Lys	Val	Val	Glu	Lys 295	Glu	Lys	Ala	Leu	Pro 300	Ala	Phe	Asn	Arg
	Asp 305	Asp	Asp	Ser	Lys	Asn 310	Ser	Ser	Gln	Leu	Ser 315	Ser	Asp	Ile	Lys	Glu 320
10	Leu	Asp	Glu	Pro	Asn 325	His	Lys	Lys	Gln	Туг 330	Met	Leu	Phe	Ala	Ala 335	Gly
	Ile	Val	Leu	Ala 340	Thr	Ile	Leu	Leu	I]e 345	Ser	Ala	His	Leu	туг 350	Ser	Arg
15	Lys	Arg	G]y 355	Asn	Gln	Val										
	<210 <211 <212 <213)> L> 2> 3>	73 282 PRT Stap	ohyla	ococo	cus a	aureu	ıs								
20	<400 Met 1)> Ile	73 Ser	Val	Val 5	Ile	Leu	Thr	Ser	Cys 10	Gln	Ser	Ser	Ser	Ser 15	Gln
25	Glu	Ser	Thr	Lys 20	Ser	Gly	Glu	Phe	Arg 25	Ile	Val	Pro	Thr	тhr 30	Val	Ala
-	Leu	Thr	Met 35	Thr	Leu	Asp	Lys	Leu 40	Asp	Leu	Pro	Ile	Val 45	Gly	Lys	Pro
30	Тhr	Ser 50	Тyr	Lys	Thr	Leu	Pro 55	Asn	Arg	Тyr	Lys	Asp 60	Val	Pro	Glu	Ile
	G]y 65	Gln	Pro	Met	Glu	Pro 70	Asn	Val	Glu	Ala	Va] 75	Lys	Lys	Leu	Lys	Pro 80
35	Тhr	His	Val	Leu	Ser 85	Val	Ser	Thr	Ile	Lys 90	Asp	Glu	Met	Gln	Pro 95	Phe
	туr	Lys	Gln	Leu 100	Asn	Met	Lys	Gly	туг 105	Phe	туr	Asp	Phe	Asp 110	Ser	Leu
40	Lys	Gly	Met 115	Gln	Lys	Ser	Ile	Thr 120	Gln	Leu	Gly	Asp	G]n 125	Phe	Asn	Arg
70	Lys	A]a 130	Gln	Ala	Lys	Glu	Leu 135	Asn	Asp	His	Leu	Asn 140	Ser	Val	Lys	Gln
45	Lys 145	Ile	Glu	Asn	Lys	A]a 150	Ala	Lys	Gln	Lys	Lys 155	His	Pro	Lys	Val	Leu 160
70	Ile	Leu	Met	Gly	Va] 165	Pro	Gly	Ser	туr	Leu 170	Val	Ala	Thr	Asp	Lys 175	Ser
50	Тyr	Ile	Gly	Asp 180	Leu	Val	Lys	Ile	Ala 185	Gly	Gly	Glu	Asn	Val 190	Ile	Lys
50	Val	Lys	Asp 195	Arg	Gln	туг	Ile	Ser 200	Ser	Asn	Тhr	Glu	Asn 205	Leu	Leu	Asn
	Ile	Asn 210	Pro	Asp	Ile	Ile	Leu 215	Arg	Leu	Pro	His	G]y 220	Met	Pro	Glu	Glu
00	Va] 225	Lys	Lys	Met	Phe	G]n 230	Lys	Glu	Phe	Lys	G]n 235	Asn	Asp	Ile	тгр	Lys 240

	His	Phe	Lys	Ala	Val 245	Lys	Asn	Asn	His	Va1 250	Туr	Asp	Leu	Glu	Glu 255	Val
5	Pro	Phe	Gly	Ile 260	⊤hr	Ala	Asn	Val	Asp 265	Ala	Asp	Lys	Ala	Met 270	тhr	Gln
	Leu	туr	Asp 275	Leu	Phe	туr	Lys	Asp 280	Lys	Lys						
10	<210 <211 <212 <213)> L> 2> 3>	74 244 PRT Stap	ohylo	ococo	cus a	aureu	ıs								
	<400 Met 1)> Arg	74 Met	Lys	Arg 5	Phe	Leu	Thr	Ile	Val 10	Gln	Ile	Leu	Leu	Val 15	Val
15	Ile	Ile	Ile	Ile 20	Phe	Gly	Тyr	Lys	Ile 25	Val	Gln	⊤hr	Туr	I]e 30	Glu	Asp
	Lys	Gln	Glu 35	Arg	Ala	Asn	Тyr	G]u 40	Lys	Leu	Gln	G]n	Lys 45	Phe	Gln	Met
20	Leu	Met 50	Ser	Lys	His	Gln	Glu 55	His	Val	Arg	Pro	G]n 60	Phe	Glu	Ser	Leu
	Glu 65	Lys	Ile	Asn	Lys	Asp 70	Ile	Val	Gly	тгр	Ile 75	Lys	Leu	Ser	Gly	⊤hr 80
25	Ser	Leu	Asn	Тyr	Pro 85	Val	Leu	Gln	Gly	Lys 90	Thr	Asn	His	Asp	туr 95	Leu
	Asn	Leu	Asp	Phe 100	Glu	Arg	Glu	His	Arg 105	Arg	Lys	Gly	Ser	I]e 110	Phe	Met
30	Asp	Phe	Arg 115	Asn	Glu	Leu	Lys	Asn 120	Leu	Asn	His	Asn	Thr 125	Ile	Leu	Туr
	Gly	ніs 130	His	Val	Gly	Asp	Asn 135	Thr	Met	Phe	Asp	Val 140	Leu	Glu	Asp	Tyr
35	Leu 145	Lys	Gln	Ser	Phe	туг 150	Glu	Lys	His	Lys	1]e 155	Ile	Glu	Phe	Asp	Asn 160
	Lys	туг	Gly	Lys	Туг 165	Gln	Leu	G]n	Val	Phe 170	Ser	A]a	туг	Lys	Thr 175	⊤hr
40	⊤hr	Lys	Asp	Asn 180	Тyr	Ile	Arg	Thr	Asp 185	Phe	Glu	Asn	Asp	Gln 190	Asp	Tyr
	Gln	Gln	Phe 195	Leu	Asp	Glu	Thr	Lys 200	Arg	Lys	Ser	Val	Ile 205	Asn	Ser	Asp
45	Val	Asn 210	Val	Тhr	Val	Lys	Asp 215	Arg	Ile	Met	Thr	Leu 220	Ser	Тhr	Cys	Glu
	Asp 225	Ala	Туr	Ser	Glu	Thr 230	Thr	Lys	Arg	Ile	Va] 235	Val	Val	Ala	Lys	Ile 240
50	Ile	Lys	Val	Ser												
	<210 <211 <212 <212)> L> }> }>	75 238 PRT Stap	ohyla	ococo	cus a	aurei	ıs								
55	<400 Met)> Ser	75 Lys	Asn	Ile	Thr	Lys	Asn	Ile	Ile	Leu	⊤hr	Thr	Thr	Leu	Leu

	1			5					10					15	
	Leu Le	u Gly	Thr 20	Val	Leu	Pro	Gln	Asn 25	Gln	Lys	Pro	Val	Phe 30	Ser	Phe
5	Tyr Se	r Glu 35	Ala	Lys	Ala	туг	Ser 40	Ile	Gly	Gln	Asp	Glu 45	Тhr	Asn	Ile
	Asn Gl 50	u Leu	Ile	Lys	Туr	туr 55	Thr	Gln	Pro	His	Phe 60	Ser	Phe	Ser	Asn
10	Lys Tr 65	p Leu	Туr	Gln	Tyr 70	Asp	Asn	Gly	Asn	Ile 75	Туr	Val	Glu	Leu	Lys 80
	Arg Ty	r Ser	тгр	Ser 85	Ala	His	Ile	Ser	Leu 90	тгр	Gly	Ala	Glu	Ser 95	тгр
15	Gly As	n Ile	Asn 100	Gln	Leu	Lys	Asp	Arg 105	Туr	Val	Asp	Val	Phe 110	Gly	Leu
	Lys As	p Lys 115	Asp	Тhr	Asp	Gln	Leu 120	тгр	тгр	Ser	Туr	Arg 125	Glu	Тhr	Phe
20	Thr Gl 13	у Gly 0	Val	Thr	Pro	Ala 135	Ala	Lys	Pro	Ser	Asp 140	Lys	Thr	Туr	Asn
	Leu Ph 145	e val	Gln	туr	Lys 150	Asp	Lys	Leu	Gln	Тhr 155	Ile	Ile	Gly	Ala	His 160
25	Lys Il	e ⊤yr	Gln	Gly 165	Asn	Lys	Pro	Val	Leu 170	Тhr	Leu	Lys	Glu	I]e 175	Asp
	Phe Ar	g Ala	Arg 180	Glu	Ala	Leu	Ile	Lys 185	Asn	Lys	Ile	Leu	Туг 190	Asn	Glu
30	Asn Ar	g Asn 195	Lys	Gly	Lys	Leu	Lys 200	Ile	⊤hr	Gly	Gly	Gly 205	Asn	Asn	Туr
	Thr Il 21	e Asp 0	Leu	Ser	Lys	Arg 215	Leu	His	Ser	Asp	Leu 220	Ala	Asn	Val	Tyr
35	Val Ly 225	s Asn	Pro	Asn	Lys 230	Ile	Thr	Val	Asp	Va] 235	Leu	Phe	Asp		
	<210> <211> <212> <213>	76 241 PRT Sta	phyla	ococo	cus a	aurei	JS								
40	<400> Met As 1	76 n Asn	Asn	Ile 5	Thr	Lys	Lys	Ile	I]e 10	Leu	Ser	Thr	Thr	Leu 15	Leu
45	Leu Le	u Gly	⊤hr 20	Ala	Ser	Thr	Gln	Phe 25	Pro	Asn	Тhr	Pro	Ile 30	Asn	Ser
	Ser Se	r Glu 35	Ala	Lys	Ala	туг	туг 40	Ile	Asn	Gln	Asn	Glu 45	Thr	Asn	Val
50	Asn Gl 50	u Leu	Thr	Lys	Туr	Tyr 55	Ser	Gln	Lys	Туr	Leu 60	Thr	Phe	Ser	Asn
50	Ser Th 65	r Leu	тrр	Gln	Lys 70	Asp	Asn	Gly	⊤hr	Ile 75	His	Ala	Thr	Leu	Leu 80
	Gln Ph	e Ser	тгр	Tyr 85	Ser	His	Ile	Gln	Va] 90	туг	Gly	Pro	Glu	Ser 95	тгр
55	Gly As	n Ile	Asn 100	Gln	Leu	Arg	Asn	Lys 105	Ser	Val	Asp	Ile	Phe 110	Gly	Ile

	Lys	Asp	Gln 115	Glu	Thr	Ile	Asp	Ser 120	Phe	Ala	Leu	Ser	G]n 125	Glu	Thr	Phe
5	Thr	Gly 130	Gly	Val	Thr	Pro	Ala 135	Ala	Тhr	Ser	Asn	Asp 140	Lys	His	Туг	Lys
	Leu 145	Asn	Val	Тhr	Тyr	Lys 150	Asp	Lys	Ala	Glu	Thr 155	Phe	Thr	Gly	Gly	Phe 160
10	Pro	Val	Туr	Glu	Gly 165	Asn	Lys	Pro	Val	Leu 170	Thr	Leu	Lys	Glu	Leu 175	Asp
	Phe	Arg	Ile	Arg 180	Gln	Тhr	Leu	Ile	Lys 185	Ser	Lys	Lys	Leu	туг 190	Asn	Asn
15	Ser	Тyr	Asn 195	Lys	Gly	Gln	Ile	Lys 200	Ile	Thr	Gly	Ala	Asp 205	Asn	Asn	Туr
	Thr	I]e 210	Asp	Leu	Ser	Lys	Arg 215	Leu	Pro	Ser	Тhr	Asp 220	Ala	Asn	Arg	Tyr
20	Va] 225	Lys	Lys	Pro	Gln	Asn 230	Ala	Lys	Ile	Glu	Va] 235	Ile	Leu	Glu	Lys	Ser 240
	Asn															
25	<210 <211 <212 <213)> 1> 2> 3>	77 565 PRT Staj	ohyla	ococo	cus a	aurei	JS								
	<400 Met)> Ala	77 Tyr	Asp	G1A	Leu	Phe	Тhr	Lys	Lys 10	Met	Val	Glu	Ser	Leu 15	Gln
30	Phe	Leu	Thr	Thr 20	Gly	Arg	Val	His	Lys 25	Ile	Asn	Gln	Pro	Asp 30	Asn	Asp
	Thr	Ile	Leu 35	Met	Val	Val	Arg	Gln 40	Asn	Arg	Gln	Asn	His 45	Gln	Leu	Leu
35	Leu	Ser 50	Ile	Нis	Pro	Asn	Phe 55	Ser	Arg	Leu	Gln	Leu 60	Thr	тhr	Lys	Lys
	Tyr 65	Asp	Asn	Pro	Phe	Asn 70	Pro	Pro	Met	Phe	A]a 75	Arg	Val	Phe	Arg	Lys 80
40	His	Leu	Glu	Gly	Gly 85	Ile	Ile	Glu	Ser	Ile 90	Lys	Gln	Ile	Gly	Asn 95	Asp
	Arg	Arg	Ile	Glu 100	Ile	Asp	Ile	Lys	Ser 105	Lys	Asp	Glu	Ile	Gly 110	Asp	Thr
45	Ile	Туr	Arg 115	Тhr	Val	Ile	Leu	Glu 120	Ile	Met	Gly	Lys	His 125	Ser	Asn	Leu
	Ile	Leu 130	Val	Asp	Glu	Asn	Arg 135	Lys	Ile	Ile	Glu	Gly 140	Phe	Lys	His	Leu
50	тhr 145	Pro	Asn	Тhr	Asn	ніs 150	Туr	Arg	Thr	Val	Met 155	Pro	Gly	Phe	Asn	Туг 160
	Glu	Ala	Pro	Pro	Thr 165	Gln	His	Lys	Ile	Asn 170	Pro	Тyr	Asp	Ile	Thr 175	Gly
55	Ala	Glu	Val	Leu 180	Lys	туr	Ile	Asp	Phe 185	Asn	Ala	Gly	Asn	I]e 190	Ala	Lys

Gln Leu Asn Gln Phe Glu Gly Phe Ser Pro Leu Ile Thr Asn Glu 195 200 205 Ile Val Ser Arg Arg Gln Phe Met Thr Ser Ser Thr Leu Pro Glu Ala 210 215 220 5 Phe Asp Glu Val Met Ala Glu Thr Lys Leu Pro Pro Thr Pro Ile Phe225230230235240 His Lys Asn His Glu Thr Gly Lys Glu Asp Phe Tyr Phe Ile Lys Leu 245 250 255 10 Asn Gln Phe Asn Asp Asp Thr Val Thr Tyr Asp Ser Leu Asn Asp Leu 260 265 270 Leu Asp Arg Phe Tyr Asp Ala Arg Gly Glu Arg Glu Arg Val Lys Gln 275 280 285 15 Arg Ala Asn Asp Leu Val Arg Phe Val Gln Gln Gln Leu His Lys Tyr 290 295 300 Gln Asn Lys Leu Ala Lys Leu Ile Glu Glu Tyr Glu Gln Ser Lys Asn 305 310 315 320 20 Lys Asp Thr Glu Gln Leu Tyr Gly Glu Leu Ile Thr Ala Asn Ile Tyr 325 330 335 Arg Ile Lys Gln Gly Asp Lys Glu Val Thr Ala Leu Asn Tyr Tyr Thr 340 345 350 25 Asn Glu Glu Val Val Ile Pro Leu Asn Pro Thr Lys Ser Pro Ser Ala 355 360 365 Asn Ala Gln Tyr Tyr Tyr Lys Gln Tyr Asn Arg Met Lys Thr Arg Glu 370 375 380 Arg Glu Leu Gln His Gln Ile Gln Leu Thr Lys Asp Asn Ile Asp Tyr 385 390 395 400 30 Phe Ser Thr Ile Glu Gln Gln Leu His His Ile Ser Val His Asp Ile 405 410 415 Asp Glu Ile Arg Asp Glu Leu Ala Glu Gln Gly Phe Met Lys Gln Arg 420 425 430 35 Lys Asn Gln Thr Lys Lys Lys Ala Gln Ile Gln Leu Gln His Tyr 435 440 445 Val Ser Thr Asp Gly Asp Asp Ile Tyr Val Gly Lys Asn Asn Lys Gln 450 455 460 40 Asn Asp Tyr Leu Thr Asn Lys Lys Ala Lys Lys Thr His Thr Trp Leu 465 470 475 480 480 His Thr Lys Asp Ile Pro Gly Ser His Val Val Ile Phe Asn Asp Ala 485 490 495 45 Pro Ser Asp Thr Thr Ile Lys Glu Ala Ala Met Leu Ala Gly Tyr Phe 500 505 510 Ser Lys Ala Gly Asn Ser Gly Gln Ile Pro Val Asp Tyr Thr Leu Ile 515 520 525 50 Lys Asn Val His Lys Pro Ser Gly Ala Lys Pro Gly Phe Val Thr Tyr 530 535 540 Asp Asn Gln Lys Thr Leu Tyr Ala Thr Pro Asp Tyr Glu Leu Ile Gln 545 550 555 560 55 Lys Met Lys Gln Ser

<210> 78 317 <211> <212> PRT 5 <213> Staphylococcus aureus <400> Met Lys Lys Thr Leu Gly Cys Leu Leu Leu Ile Met Leu Leu Val Val 1 5 10 15 Ala Gly Cys Ser Phe Gly Gly Asn His Lys Leu Ser Ser Lys Lys Ser 20 25 30 10 Glu Glu Ser Lys Gln Glu Thr Val Lys Lys Glu Ser Glu Glu Glu Lys 35 40 45 Asp Pro Asp Leu Glu Lys Tyr Glu Glu Ile Glu Lys Met Lys Gly 50 55 60 15 Ile Lys Asp Ala Pro Ser Leu Asp Lys Leu Asp Pro Leu Met Thr Glu 65 70 75 80 Lys Ser Phe Thr Asn Ser Lys Gly Ile Gln Gly Trp Lys Asp Tyr Lys 85 90 95 20 Glu Leu Met Gly Lys Val Glu Leu Ala Asp Tyr Arg Phe Thr Lys Asp 100 105 110 Ser Lys Gly Ser Ser Ile Lys Asp Val Asp Ala Phe Phe Lys Gly Lys 115 120 125 25 Lys Gly Ile Lys Arg Lys Val Ile Glu Thr His Asp Asp Val Lys Gln 130 135 140 Val Asp Tyr Trp Tyr Val Asp Pro Asp Gly Lys Lys Ile Gly Asn Ser 145 150 155 160 30 Asn Thr Pro Val Phe Tyr Ala Glu Ile Met Thr Lys Tyr Lys Asp Gly 165 170 175 Lys Leu Val Tyr Ala Ser Val Glu Pro Gly Ser Tyr Val Ile His Lys 180 185 190 35 Asp Asp Ala Ile Lys Tyr Asp Asp Tyr Ser Lys Leu Lys Lys Leu Ser 195 200 205 Gln Leu Thr Lys Leu Asp His Pro Lys Pro Val Pro Tyr Ser Val Ala 210 215 220 40 Gln Ile Lys Ser Phe Gly Val Pro Leu Thr Ser Val Ser Phe Met Thr 225 230 235 240 His Gly Ser Lys Asp Thr Lys Asp Glu Val Leu Pro Ala Leu Ala Tyr 245 250 255 45 Phe Thr Phe Ser Pro Lys Asn Tyr Glu Asp Lys Ser Asn Pro Asp Pro 260 265 270 Lys Val Leu Asn Leu Val His Met Asp Phe Leu Asn Ala Ser Ser Asp 275 280 285 50 Phe Gly Asn Ala His Phe Val Val Leu Ser Lys Tyr Ile Lys Glu Tyr 290 295 300 Glu Ser Asn Tyr Glu Thr Ala Ser Asp Asp Ser Leu Lys 305 310 315 55 <210> 79 <211> 372

233

	<212 <213	?> }>	PRT Stap	ohyla	ососо	cus a	aurei	IS								
5	<400 Met 1)> Asn	79 Lys	Gln	Gln 5	Ser	Lys	Val	Arg	Tyr 10	Ser	Ile	Arg	Lys	Val 15	Ser
	I]e	Gly	Ile	Leu 20	Ser	Ile	Ser	Ile	G]y 25	Met	Phe	Leu	Ala	Leu 30	Gly	Met
10	Ser	Asn	Lys 35	Ala	Тyr	Ala	Asp	Glu 40	Ile	Asp	Lys	Ser	Lys 45	Asp	Phe	Thr
	Arg	Gly 50	Тyr	Glu	Gln	Asn	Va] 55	Phe	Ala	Lys	Ser	G]u 60	Leu	Asn	Ala	Asn
15	Lys 65	Asn	Thr	Thr	Lys	Asp 70	Lys	Ile	Lys	Asn	Glu 75	Gly	Ala	Val	Lys	Thr 80
	Ser	Asp	Thr	Ser	Leu 85	Lys	Leu	Asp	Asn	Lys 90	Ser	Ala	Ile	Ser	Asn 95	Gly
20	Asn	Glu	Ile	Asn 100	Gln	Asp	Ile	Lys	I]e 105	Ser	Asn	Thr	Pro	Lys 110	Asn	Ser
	Ser	Gln	Gly 115	Asn	Asn	Leu	Val	Ile 120	Asn	Asn	Asn	Glu	Leu 125	Тhr	Lys	Glu
25	I]e	Lys 130	I]e	Ala	Asn	Leu	Glu 135	Ala	Gln	Asn	Ser	Asn 140	Gln	Lys	Lys	Thr
	Asn 145	Lys	Val	Тhr	Asn	Asn 150	туr	Phe	Gly	туr	Туг 155	Ser	Phe	Arg	Glu	Ala 160
30	Pro	Lys	Thr	Gln	I]e 165	туr	Тhr	Val	Lys	Lys 170	Gly	Asp	Тhr	Leu	Ser 175	Ala
	I]e	Ala	Leu	Lys 180	туr	Lys	Thr	⊤hr	Val 185	Ser	Asn	Ile	Gln	Asn 190	Thr	Asn
35	Asn	Ile	A]a 195	Asn	Pro	Asn	Leu	Ile 200	Phe	Ile	Gly	Gln	Lys 205	Leu	Lys	Val
	Pro	Met 210	Thr	Pro	Leu	Val	Glu 215	Pro	Lys	Pro	Lys	Thr 220	Val	Ser	Ser	Asn
40	Asn 225	Lys	Ser	Asn	Ser	Asn 230	Ser	Ser	⊤hr	Leu	Asn 235	туr	Leu	Lys	⊤hr	Leu 240
	Glu	Asn	Arg	Gly	тгр 245	Asp	Phe	Asp	Gly	Ser 250	Туr	Gly	тгр	Gln	Cys 255	Phe
45	Asp	Leu	Val	Asn 260	Val	Туr	Тгр	Asn	Ніs 265	Leu	Туr	Gly	His	Gly 270	Leu	Lys
	Gly	Туr	Gly 275	Ala	Lys	Asp	Ile	Pro 280	⊤yr	Ala	Asn	Asn	Phe 285	Asn	Ser	Glu
50	Ala	Lys 290	Ile	Туr	His	Asn	Thr 295	Pro	⊤hr	Phe	Lys	Ala 300	Glu	Pro	G]y	Asp
50	Leu 305	Val	Val	Phe	Ser	Gly 310	Arg	Phe	Gly	Gly	Gly 315	Туr	Gly	His	Thr	Ala 320
	I]e	Val	Leu	Asn	G]y 325	Asp	туr	Asp	Gly	Lys 330	Leu	Met	Lys	Phe	G]n 335	Ser
55	Leu	Asp	Gln	Asn 340	тгр	Asn	Asn	Gly	Gly 345	тгр	Arg	Lys	Ala	Glu 350	Val	Ala

	His	Lys	Va] 355	Val	His	Asn	Туr	G]u 360	Asn	Asp	Met	Ile	Phe 365	Ile	Arg	Pro
5	Phe	Lys 370	Lys	Ala												
	<210 <212 <212 <213)> L> 2> 3>	80 304 PRT Stap	ohy10	ococo	cus a	aurei	JS								
10	<400 Met 1)> Leu	80 Lys	Lys	Ala 5	Lys	Phe	Ile	Leu	Met 10	Ala	Thr	Ile	Leu	Leu 15	Ser
	Gly	Cys	Ser	⊤hr 20	⊤hr	Asn	Asn	Glu	Ser 25	Asn	Lys	Glu	Thr	Lys 30	Ser	Val
15	Pro	Glu	Glu 35	Met	Asp	Ala	Ser	Lys 40	туr	Val	Gly	Gln	G]y 45	Phe	Gln	Pro
	Pro	A1a 50	Glu	Lys	Asp	Ala	Ile 55	Glu	Phe	Ala	Lys	Lys 60	His	Lys	Asp	Lys
20	Ile 65	Ala	Lys	Arg	Gly	G]u 70	Gln	Phe	Phe	Met	Asp 75	Asn	Phe	Gly	Leu	Lys 80
	Val	Lys	Ala	Тhr	Asn 85	Val	Ile	Gly	Ser	G]y 90	Asp	Gly	Val	Glu	Val 95	Phe
25	Val	His	Cys	Asp 100	Asp	His	Asp	Ile	Va] 105	Phe	Asn	Ala	Ser	Ile 110	Pro	Phe
	Asp	Lys	Ser 115	Ile	Ile	Asp	Ser	Asp 120	Ser	Ser	Leu	Arg	Ser 125	Lys	Asp	Lys
30	Gly	Asp 130	Asp	Met	Ser	Тhr	Leu 135	Val	Gly	Ala	Val	Leu 140	Ser	Gly	Phe	Glu
	Туг 145	Arg	Ala	Gln	Lys	Glu 150	Lys	Туr	Asp	Lys	Leu 155	Туr	Lys	Phe	Phe	Lys 160
35	Asp	Asn	Glu	Glu	Lys 165	Туr	Gln	Тyr	тhr	Gly 170	Phe	Тhr	Lys	Glu	Ala 175	Ile
	Asn	Lys	⊤hr	Gln 180	Asn	Ser	Gly	туг	Glu 185	Asn	Glu	туг	Phe	туг 190	Ile	Ser
40	Ala	Ile	Pro 195	туr	Asn	Leu	Ala	G]u 200	туг	Arg	Asp	туг	Phe 205	Glu	Pro	Leu
	Leu	Asn 210	Lys	Ser	Asp	Ser	Glu 215	Phe	Ser	Lys	Glu	Leu 220	Ser	Asn	Val	Lys
45	Lys 225	Gln	Leu	Lys	Asp	Lys 230	Ser	Lys	Val	Ser	Va] 235	Thr	Thr	Thr	Leu	Phe 240
	Ser	Lys	Lys	Lys	Asn 245	Туr	Thr	Lys	Lys	Ser 250	Asn	Ser	Glu	Asn	Va] 255	Ile
50	Lys	Met	Ala	Glu 260	Glu	Ile	Lys	Lys	Asp 265	Lys	Glu	Ile	Pro	Asn 270	Gly	Ile
	Glu	Leu	Ser 275	Ile	Lys	Phe	Ser	Asp 280	Asn	Lys	Ile	Asn	Thr 285	Val	Lys	Pro
55	Asn	Phe 290	Asn	Gly	Glu	Ser	Thr 295	Ser	Glu	Туr	Gly	Va] 300	Phe	Asp	Gln	Glu
	<210)>	81													

	<211> <212> <213>	193 PRT Staphylococcus aureus												
5	<400> Met Lys 1	81 Lys Leu	Val 5	Ser	Ile	Val	Gly	Ala 10	Thr	Leu	Leu	Leu	Ala 15	Gly
	Cys Gly	Ser Gln 20	Asn	Leu	Ala	Pro	Leu 25	Glu	Glu	Lys	Тhr	Thr 30	Asp	Leu
10	Arg Glu	Asp Asn 35	His	Gln	Leu	Lys 40	Leu	Asp	Ile	Gln	Glu 45	Leu	Asn	Gln
	Gln Ile 50	Ser Asp	Ser	Lys	Ser 55	Lys	Ile	Lys	Gly	Leu 60	Glu	Lys	Asp	Lys
15	Glu Asn 65	Ser Lys	Lys	Thr 70	Ala	Ser	Asn	Asn	Thr 75	Lys	Ile	Lys	Leu	Met 80
	Asn Val	⊤hr Ser	⊤hr 85	Туr	Tyr	Asp	Lys	Va7 90	Ala	Lys	Ala	Leu	Lys 95	Ser
20	Tyr Asn	Asp Ile 100	Glu	Lys	Asp	Val	Ser 105	Lys	Asn	Lys	Gly	Asp 110	Lys	Asn
	Val Gln	Ser Lys 115	Leu	Asn	Gln	1]e 120	Ser	Asn	Asp	Ile	G]n 125	Ser	Ala	His
25	Thr Ser 130	⊤yr Lys	Asp	Ala	Ile 135	Asp	Gly	Leu	Ser	Leu 140	Ser	Asp	Asp	Asp
	Lys Lys 145	⊤hr Ser	Lys	Asn 150	Ile	Asp	Lys	Leu	Asn 155	Ser	Asp	Leu	Asn	His 160
30	Ala Phe	Asp Asp	I]e 165	Lys	Asn	Gly	туr	G]n 170	Asn	Lys	Asp	Lys	Lys 175	Gln
	Leu Thr	Lys Gly 180	Gln	Gln	Ala	Leu	Ser 185	Lys	Leu	Asn	Leu	Asn 190	Ala	Lys
35	Ser													
	<210> <211> <212> <213>	82 216 PRT Staphyl	οςος	cus a	aurei	JS								
40	<400> Met Lys 1	82 Ile Thr	туr 5	Lys	туr	Arg	Gly	Asp 10	Leu	Pro	Leu	Asn	Thr 15	Glu
	Asn Asn	Lys Asn 20	Gln	Asn	Gln	Ser	Val 25	Lys	Asn	Ser	Glu	Arg 30	Arg	Gly
45	Met Leu	Lys Gly 35	Cys	Gly	Gly	Cys 40	Leu	Ile	Ser	Phe	1]e 45	Leu	Leu	Ile
	Ile Leu 50	Leu Ser	Ala	Cys	Ser 55	Met	Met	Phe	Ser	Asn 60	Asn	Asp	Asn	Ser
50	Thr Asn 65	Asn Gln	Ser	Ser 70	Lys	Thr	Gln	Leu	Thr 75	Gln	Lys	Asp	Glu	Asn 80
	Lys Asn	Glu Asp	Lys 85	Pro	Glu	Glu	Lys	Ser 90	Glu	Thr	Ala	Thr	Asp 95	Glu
55	Asp Leu	Gln Ser 100	Thr	Glu	Glu	Val	Pro 105	Ala	Asn	Glu	Asn	Thr 110	Glu	Asn

EP 2 510 947 A1

	Asn Gln	His Glu 115	Ile	Asp	Glu	I]e 120	⊤hr	Thr	Lys	Asp	Gln 125	Ser	Asp	Asp
5	Asp Ile 130	Asn Thr	Pro	Asn	Va] 135	Ala	Glu	Asp	Lys	Ser 140	Gln	Asp	Asp	Leu
	Lys Asp 145	Asp Leu	Lys	Glu 150	Lys	Gln	Gln	Ser	Ser 155	Asn	His	His	G]n	Ser 160
10	Thr Gln	Pro Lys	Thr 165	Ser	Pro	Ser	⊤hr	Glu 170	Thr	Asn	Тhr	Gln	G]n 175	Ser
	Phe Ala	Asn Cys 180	Lys	Gln	Leu	Arg	G]n 185	Val	туr	Pro	Asn	Gly 190	Val	Thr
15	Ala Asp	His Pro 195	Ala	Туr	Arg	Pro 200	His	Leu	Asp	Arg	Asp 205	Lys	Asp	Lys
13	Arg Ala 210	Cys Glu	Pro	Asp	Lys 215	⊤yr								
20	<210> <211> <212> <213>	83 208 PRT Staphyl	οςοςα	cus a	aureu	ıs								
	<400> Met Lys 1	83 Phe Lys	Ala 5	Ile	Val	Ala	Ile	Thr 10	Leu	Ser	Leu	Ser	Leu 15	Leu
25	Thr Ala	Cys Gly 20	Ala	Asn	Gln	His	Lys 25	Glu	Asn	Ser	Ser	Lys 30	Ser	Asn
	Asp Thr	Asn Lys 35	Lys	Thr	Gln	G]n 40	⊤hr	Asp	Asn	Thr	Thr 45	Gln	Ser	Asn
30	Thr Glu 50	Lys Gln	Met	Thr	Pro 55	Gln	Glu	Ala	Glu	Asp 60	Ile	Val	Arg	Asn
	Asp Tyr 65	Lys Ala	Arg	G]y 70	Val	Asn	Glu	Тyr	Gln 75	Тhr	Leu	Asn	туг	Lys 80
35	Thr Asn	Leu Glu	Arg 85	Ser	Asn	Glu	His	Glu 90	туг	туr	Val	Glu	ніs 95	Leu
	Val Arg	Asp Ala 100	Val	Gly	Thr	Pro	Leu 105	Lys	Arg	Cys	Ala	I]e 110	Val	Asn
40	Arg His	Asn Gly 115	Thr	Ile	Ile	Asn 120	Ile	Phe	Asp	Asp	Met 125	Ser	Glu	Lys
	Asp Lys 130	Glu Glu	Phe	Glu	A]a 135	Phe	Lys	Lys	Arg	Ser 140	Pro	Lys	туг	Asn
45	Pro Gly 145	Met Asn	Asn	Ніs 150	Asp	Glu	Тhr	Asp	Gly 155	Glu	Ser	Glu	Asp	I]e 160
	Gln His	His Asp	I]e 165	Asp	Asn	Asn	Lys	A]a 170	Ile	Gln	Asn	Asp	I]e 175	Pro
50	Asp Gln	Lys Val 180	Asp	Asp	Lys	Asn	Asp 185	Lys	Asn	Ala	Val	Asn 190	Lys	Glu
	Glu Lys	His Asp 195	Asn	Gly	Ala	Asn 200	Asn	Ser	Glu	Glu	Thr 205	Lys	Val	Lys
55	<210> <211> <212>	84 457 PRT												

<213> Staphylococcus aureus <400> Met Lys Ile Ile Lys Arg Ala Ile Ile Ser Leu Ile Ile Leu Ser Leu 1 5 10 15 Leu Ile Ser Ile Thr Met Ser Asn Ala Ser Ala Ser Glu Glu Leu Tyr 20 25 30 Tyr Ser Val Glu Tyr Lys Asn Thr Ala Thr Phe Asn Lys Leu Val Lys 35 40 45 Lys Lys Ser Leu Asn Val Val Tyr Asn Ile Pro Glu Leu His Val Ala 50 55 60 Gln Ile Lys Met Thr Lys Met His Ala Asn Ala Leu Ala Asn Tyr Lys 65 70 75 80 Asn Asp Ile Lys Tyr Ile Asn Ala Thr Cys Ser Thr Cys Ile Thr Ser 85 90 95 Glu Lys Thr Ile Asp Arg Thr Ser Asn Glu Ser Leu Phe Ser Arg Gln 100 105 110 Trp Asp Met Asn Lys Ile Thr Asn Asn Gly Ala Ser Tyr Asp Asp Leu 115 120 125 Pro Lys His Ala Asn Thr Lys Ile Ala Ile Ile Asp Thr Gly Val Met 130 135 140 Lys Asn His Asp Asp Leu Lys Asn Asn Phe Ser Thr Asp Ser Lys Asn 145 150 155 160 Leu Val Pro Leu Asn Gly Phe Arg Gly Thr Glu Pro Glu Glu Thr Gly 165 170 175 Asp Val His Asp Val Asn Asp Arg Lys Gly His Gly Thr Met Val Ser 180 185 190 Gly Gln Thr Ser Ala Asn Gly Lys Leu Ile Gly Val Ala Pro Asn Asn 195 200 205 Lys Phe Thr Met Tyr Arg Val Phe Gly Ser Lys Lys Thr Glu Leu Leu 210 215 220

210215220TrpValSerLysAlaIleAlaIleAspAlaAlaAspAspGlyAsnGlnValIleAsnIleSerValGlySerTyrIleIleAspLysAsp<

55

5

10

15

20

25

30

35

40

45

50

EP 2 510 947 A1

Gly Ser Phe Ala Tyr Leu Asn Gln Phe Gly Val Asp Lys Trp Met Asn

			355					360					365			
	Glu	Gly 370	⊤yr	Met	His	Lys	Glu 375	Asn	Ile	Leu	тhr	Thr 380	Ala	Asn	Asn	Gly
5	Arg 385	Туr	Ile	Туr	Gln	A]a 390	Gly	Тhr	Ser	Leu	Ala 395	Тhr	Pro	Lys	Val	Ser 400
	Gly	Ala	Leu	Ala	Leu 405	Ile	Ile	Asp	Lys	⊤yr 410	His	Leu	Glu	Lys	His 415	Pro
10	Asp	Lys	Ala	Ile 420	Glu	Leu	Leu	Тyr	G]n 425	His	Gly	Тhr	Ser	Lys 430	Asn	Asn
	Lys	Pro	Phe 435	Ser	Arg	Тyr	Gly	ніs 440	Gly	Glu	Leu	Asp	Va] 445	Туr	Lys	Ala
15	Leu	Asn 450	Val	Ala	Asn	Gln	Lys 455	Ala	Ser							
20	<210 <211 <212 <213)> L> 2> 3>	85 320 PRT Stap	ohyla	ococo	cus a	aurei	15								
	<400)>	85 Mot	тlо	Acn	LVC		т]о	V-1	Вио	V-1	тыр	<u>م</u>] م	500	<u>م</u>] م	
	мес 1	Lys	Met	тіе	5	Lys	Leu	тіе	vai	10	vai	1 11 1	ATA	561	15 15	Leu
25	Leu	Leu	Gly	А]а 20	Cys	Gly	Ala	Ser	A]a 25	⊤hr	Asp	Ser	Lys	Glu 30	Asn	Thr
	Leu	Ile	ser 35	Ser	Lys	Ala	Gly	Asp 40	Val	⊤hr	Val	Ala	Asp 45	тhr	Met	Lys
30	Lys	11e 50	Gly	Lys	Asp	Gln	Ile 55	Аlа	Asn	Ala	Ser	Phe 60	Тhr	Glu	Met	Leu
	Asn 65	Lys	Ile	Leu	Ala	Asp 70	Lys	туr	Lys	Asn	Lys 75	Val	Asn	Asp	Lys	Lys 80
35	Ile	Asp	Glu	Gln	Ile 85	Glu	Lys	Met	Gln	Lys 90	Gln	туг	Gly	Gly	Lys 95	Asp
	Lys	Phe	Glu	Lys 100	Ala	Leu	Gln	Gln	G]n 105	Gly	Leu	Тhr	Ala	Asp 110	Lys	Туr
40	Lys	Glu	Asn 115	Leu	Arg	Тhr	Ala	Ala 120	туг	His	Lys	Glu	Leu 125	Leu	Ser	Asp
	Lys	I]e 130	Lys	Ile	Ser	Asp	Ser 135	Glu	Ile	Lys	Glu	Asp 140	Ser	Lys	Lys	Ala
45	Ser 145	His	Ile	Leu	Ile	Lys 150	Val	Lys	Ser	Lys	Lys 155	Ser	Asp	Lys	Glu	Gly 160
	Leu	Asp	Asp	Lys	Glu 165	Ala	Lys	Gln	Lys	Ala 170	Glu	Glu	Ile	Gln	Lys 175	Glu
50	Val	Ser	Lys	Asp 180	Pro	Ser	Lys	Phe	Gly 185	Glu	Ile	Ala	Lys	Lys 190	Glu	Ser
	Met	Asp	⊤hr 195	Gly	Ser	Ala	Lys	Lys 200	Asp	Gly	Glu	Leu	Gly 205	Тyr	Val	Leu
55	Lys	G]y 210	Gln	Thr	Asp	Lys	Asp 215	Phe	Glu	Lys	Ala	Leu 220	Phe	Lys	Leu	Lys
55	Asp 225	Gly	Glu	Val	Ser	Glu 230	Val	Val	Lys	Ser	Ser 235	Phe	Gly	Туr	His	Ile 240

	Ile	Lys	Ala	Asp	Lys 245	Pro	Thr	Asp	Phe	Asn 250	Ser	Glu	Lys	Gln	Ser 255	Leu
5	Lys	Glu	Lys	Leu 260	Val	Asp	Gln	Lys	Va] 265	Gln	Lys	Asn	Pro	Lys 270	Leu	Leu
	Thr	Asp	Ala 275	туг	Lys	Asp	Leu	Leu 280	Lys	Glu	туr	Asp	Val 285	Asp	Phe	Lys
10	Asp	Arg 290	Asp	Ile	Lys	Ser	Val 295	Val	Glu	Asp	Lys	Ile 300	Leu	Asn	Pro	Glu
	Lys 305	Leu	Lys	Gln	Gly	Gly 310	Ala	Gln	Gly	Gly	Gln 315	Ser	Gly	Met	Ser	Gln 320
15	<210 <211 <212 <213)> L> }> }>	86 388 PRT Stap	ohy1c	ососо	cus a	aureu	15								
20	<400 Met 1)> Lys	86 Arg	Asn	Phe 5	Pro	Lys	Leu	Ile	A]a 10	Leu	Ser	Leu	Ile	Phe 15	Ser
	Leu	Ser	Val	Thr 20	Pro	Ile	Ala	Asn	A]a 25	Glu	Ser	Asn	Ser	Asn 30	Ile	Lys
25	Ala	Lys	Asp 35	Lys	Lys	His	Val	G]n 40	Val	Asn	Val	Glu	Asp 45	Lys	Ser	Val
20	Pro	Thr 50	Asp	Val	Arg	Asn	Leu 55	Ala	Gln	Lys	Asp	туг 60	Leu	Ser	туr	Val
30	Thr 65	Ser	Leu	Asp	Lys	I]e 70	туr	Asn	Lys	Glu	Lys 75	Ala	Ser	туr	Thr	Leu 80
	Gly	Glu	Pro	Phe	Lys 85	Ile	Тyr	Lys	Phe	Asn 90	Lys	Lys	Ser	Asp	Gly 95	Asn
35	Туг	Тyr	Phe	Pro 100	Val	Leu	Asn	Thr	Glu 105	Gly	Asn	Ile	Asp	Туг 110	Ile	Val
	Thr	Ile	Ser 115	Pro	Lys	Ile	⊤hr	Lys 120	туr	Ser	Ser	Ser	Ser 125	Ser	Lys	Tyr
10	Тhr	I]e 130	Asn	Val	Ser	Pro	Phe 135	Leu	Ser	Lys	Val	Leu 140	Asn	Gln	Туr	Lys
70	Asp 145	Gln	Gln	Ile	Thr	Ile 150	Leu	Тhr	Asn	Ser	Lys 155	Gly	Туr	Туr	Val	Val 160
45	Тhr	Gln	Asn	His	Lys 165	Ala	Lys	Leu	Val	Leu 170	Lys	Тhr	Pro	Arg	Leu 175	Glu
70	Asp	Lys	Lys	Leu 180	Lys	Lys	Thr	Glu	Ser 185	Ile	Pro	Thr	Gly	Asn 190	Asn	Val
50	Тhr	Gln	Leu 195	Lys	Gln	Lys	Ala	Ser 200	Val	Thr	Met	Pro	тhr 205	Ser	Gln	Phe
50	Lys	Ser 210	Asn	Asn	Тyr	Thr	Туг 215	Asn	Glu	Gln	туr	Ile 220	Asn	Lys	Leu	Glu
	Asn 225	Phe	Lys	Ile	Arg	G]u 230	Thr	Gln	Gly	Asn	Asn 235	Gly	Тrр	Cys	Ala	Gly 240
55	Туr	Thr	Met	Ser	Glu 245	Leu	Leu	Asn	Ala	Thr 250	Тyr	Asn	Thr	Asn	Lys 255	Tyr

	His	Ala	Glu	A]a 260	Val	Met	Arg	Phe	Leu 265	His	Pro	Asn	Leu	G]n 270	Gly	Gln
5	Arg	Phe	G]n 275	Phe	⊤hr	Gly	Leu	тhr 280	Pro	Arg	Glu	Met	Ile 285	тyr	Phe	Gly
0	Gln	Thr 290	Gln	Gly	Arg	Ser	Pro 295	G│n	Leu	Leu	Asn	Arg 300	Met	Thr	Thr	Tyr
	Asn 305	Glu	Val	Asp	Asn	Leu 310	Thr	Lys	Asn	Asn	Lys 315	Gly	Ile	Ala	Val	Leu 320
10	Gly	Ser	Arg	Val	Glu 325	Ser	Arg	Asn	Gly	Met 330	His	Ala	Gly	His	A]a 335	Met
	Ala	Val	Val	G]y 340	Asn	Ala	Lys	Leu	Asp 345	Asn	Gly	G]n	Glu	Va1 350	Ile	Ile
15	Ile	Тгр	Asn 355	Pro	⊤rp	Asp	Asn	G]y 360	Phe	Met	Thr	G]n	Asp 365	Ala	Lys	Asn
	Asn	Va] 370	Ile	Pro	Val	Ser	Asn 375	Gly	Asp	His	туr	Arg 380	Тгр	Тyr	Ser	Ser
20	Ile 385	Туr	Gly	Туг												
25	<210 <212 <212 <213)> L> 2> 3>	87 280 PRT Stap	ohyla	ococo	cus a	aurei	ıs								
	<400 Met 1)> Lys	87 Lys	Phe	Phe 5	Phe	Ile	Gly	Leu	Leu 10	Val	Phe	Val	Val	Phe 15	Phe
30	⊤hr	Ala	Ala	Thr 20	Ile	Ile	тгр	Phe	Ser 25	туг	Asp	Lys	Asn	Lys 30	туг	Gly
	⊤hr	Lys	Gln 35	туг	Asp	Lys	Thr	Phe 40	Lys	Asp	Asp	Ala	Phe 45	Asp	Asn	Val
35	Ser	11e 50	Asn	Leu	Asp	Ser	Thr 55	Glu	Leu	Arg	Ile	Lys 60	Arg	Gly	Asn	Gln
	Phe 65	Arg	Val	Lys	⊤yr	Asp 70	Gly	Asp	Asn	Asp	11e 75	Leu	Ile	Asn	Ile	Va1 80
40	Asp	Lys	Thr	Leu	Lys 85	Ile	Ser	Asp	Lys	Arg 90	Ser	Lys	Thr	Arg	G]y 95	Tyr
	Ala	Ile	Asp	Met 100	Asn	Pro	Phe	His	Glu 105	Asn	Lys	Lys	Thr	Leu 110	Thr	Ile
45	Glu	Met	Pro 115	Asp	Lys	Met	Ile	Lys 120	Arg	Leu	Asn	Leu	Ser 125	Ser	Gly	Ala
	Gly	Ser 130	Val	Arg	Ile	Ser	Asp 135	Val	Asp	Leu	Glu	Asn 140	Thr	Ser	Ile	Gln
50	Ser 145	Ile	Asn	Gly	Glu	Va] 150	Val	I]e	Lys	Asn	Ser 155	Asn	Leu	Asp	Ala	Leu 160
	Asp	Ser	Lys	Тhr	Asn 165	Asn	Ser	Ser	Тhr	Туг 170	Ile	Ser	Lys	Ser	Asn 175	Ile
55	Lys	Asn	Ser	Asn 180	Ile	Lys	Val	Val	Ile 185	Gly	Thr	Leu	Gln	I]e 190	Asp	Lys
	Ser	Gln	Ile	Lys	Gln	Ser	Ile	Phe	Leu	Asn	Asp	His	Gly	Asp	Ile	Glu

			195					200					205			
	Phe	Lys 210	Asn	Met	Pro	Ser	Lys 215	Val	Asp	Ala	Lys	A]a 220	Ser	Thr	Lys	Gln
5	G]y 225	Asp	Ile	Arg	Phe	Lys 230	туr	Asp	Ser	Lys	Pro 235	Glu	Asp	Thr	Ile	Leu 240
	Lys	Leu	Asn	Pro	Gly 245	тhr	Gly	Asp	Ser	Va] 250	Val	Lys	Asn	Lys	тhr 255	Phe
10	Тhr	Asn	Gly	Lys 260	Val	Gly	Lys	Ser	Asp 265	Asn	Val	Leu	Glu	Phe 270	туr	Thr
	Ile	Asp	G]y 275	Asn	Ile	Lys	Val	G]u 280								
15	<210 <211 <212 <213)> L> 2> }>	88 303 PRT Stap	phylo	οςοςα	cus a	aureu	ıs								
20	<400 Met 1)> Lys	88 Arg	Leu	Ile 5	Gly	Ile	Leu	Leu	Cys 10	Asn	Leu	Phe	Ile	Leu 15	Thr
	Ala	Cys	Ser	A]a 20	ser	Val	Asp	Lys	Thr 25	Ser	Asn	Ser	Тhr	Lys 30	тhr	⊤hr
25	Asp	туr	Lys 35	Ile	Glu	Asn	Gly	Glu 40	тhr	Leu	Lys	Val	Pro 45	Glu	Lys	Pro
	Lys	Arg 50	Val	Ala	Val	Leu	Thr 55	Gly	Phe	туr	Val	G]y 60	Asp	Phe	Ile	Lys
30	Leu 65	Gly	Ile	Lys	Pro	11e 70	Ala	Val	Ser	Asp	11e 75	Thr	Lys	Asp	Ser	Ser 80
	Ile	Leu	Lys	Pro	туг 85	Leu	Lys	Gly	Val	Asp 90	Туr	Ile	Gly	Glu	Asn 95	Asp
35	Val	Glu	Arg	Val 100	Ala	Lys	Ala	Lys	Pro 105	Asp	Leu	Ile	Val	Va] 110	Asp	Ala
	Met	Asp	Lys 115	Asn	Ile	Lys	Lys	Туг 120	Gln	Lys	Ile	Ala	Pro 125	Тhr	Ile	Pro
40	туг	тhr 130	⊤yr	Asn	Lys	туг	Asn 135	His	Lys	Glu	Ile	Leu 140	Lys	Glu	Ile	Gly
	Lys 145	Leu	⊤hr	Asn	Asn	Glu 150	Asp	Lys	Ala	Lys	Lys 155	тгр	Ile	Glu	Glu	тгр 160
45	Asp -	Asp -	Lys	Thr	Arg 165	Lys	Asp	Lys	Lys	Glu 170	Ile	Gln	Ser	Lys -	175 175	Gly
	Gln	Ala	⊤hr	Ala 180	Ser	val	Phe	Glu	Pro 185	Asp	Glu	Lys	Gln	Ile 190	туr	Ile
50	туr -	Asn	Ser 195	Thr	тrр	Gly	Arg	G I y 200	Leu	Asp	Ile	Val	His 205	Asp -	Ala	Phe
	Gly	Met 210	Pro	Met	Thr	Lys	GIn 215	Туr	Lys	Asp	Lys	Leu 220	Gln	Glu	Asp	Lys
55	Lys 225	Gly	⊤yr	Ala	Ser	Ile 230	Ser	Lys	Glu	Asn	Ile 235	Ser	Lys	Туr	Ala	GTy 240
	Asp	Туг	Ile	Phe	Leu 245	Ser	Lys	Pro	Ser	Tyr 250	Gly	Lys	Phe	Asp	Phe 255	Glu

	Lys	Thr	His	Thr 260	тгр	Gln	Asn	Ile	Glu 265	Ala	Val	Lys	Lys	Gly 270	His	Val
5	Ile	Ser	Туг 275	Lys	Ala	Glu	Asp	туг 280	тгр	Phe	Thr	Asp	Pro 285	Ile	Thr	Leu
	Glu	His 290	Leu	Arg	Ser	Lys	Leu 295	Lys	Lys	Glu	Ile	Leu 300	Asn	Lys	Lys	
10	<210 <211 <212 <213)> 1> 2> 3>	89 419 PRT Stap	ohy1c	ососо	cus a	aureu	ıs								
15	<400 Met 1)> Ser	89 Туг	His	Trp 5	Phe	Lys	Lys	Met	Leu 10	Leu	Ser	Thr	Ser	Ile 15	Leu
	Ile	Leu	Ser	Ser 20	Ser	Ser	Leu	Gly	Leu 25	Ala	Thr	His	Thr	Va] 30	Glu	Ala
20	Lys	Asp	Asn 35	Leu	Asn	Gly	Glu	Lys 40	Pro	Thr	Thr	Asn	Leu 45	Asn	His	Asn
	Ile	Thr 50	Ser	Pro	Ser	Val	Asn 55	Ser	Glu	Met	Asn	Asn 60	Asn	Glu	Thr	Gly
25	Thr 65	Pro	His	Glu	Ser	Asn 70	Gln	Thr	Gly	Asn	Glu 75	Gly	Thr	Gly	Ser	Asn 80
	Ser	Arg	Asp	Ala	Asn 85	Pro	Asp	Ser	Asn	Asn 90	Val	Lys	Pro	Asp	Ser 95	Asn
30	Asn	Gln	Asn	Pro 100	Ser	Тhr	Asp	Ser	Lys 105	Pro	Asp	Pro	Asn	Asn 110	Gln	Asn
	Ser	Ser	Pro 115	Asn	Pro	Lys	Pro	Asp 120	Pro	Asp	Asn	Pro	Lys 125	Pro	Lys	Pro
35	Asp	Pro 130	Lys	Pro	Asp	Pro	Asp 135	Lys	Pro	Lys	Pro	Asn 140	Pro	Asp	Pro	Lys
	Pro 145	Asp	Pro	Asp	Asn	Pro 150	Lys	Pro	Asn	Pro	Asp 155	Pro	Lys	Pro	Asp	Pro 160
40	Asp	Lys	Pro	Lys	Pro 165	Asn	Pro	Asp	Pro	Lys 170	Pro	Asp	Pro	Asp	Lys 175	Pro
40	Lys	Pro	Asn	Pro 180	Asn	Pro	Lys	Pro	Asp 185	Pro	Asn	Lys	Pro	Asn 190	Pro	Asn
45	Pro	Ser	Pro 195	Asp	Pro	Asp	Gln	Pro 200	Gly	Asp	Ser	Asn	ніs 205	Ser	Gly	Gly
45	Ser	Lys 210	Asn	Gly	Gly	Тhr	Тгр 215	Asn	Pro	Asn	Ala	Ser 220	Asp	Gly	Ser	Asn
	Gln 225	Gly	Gln	тгр	Gln	Pro 230	Asn	Gly	Asn	Gln	G]y 235	Asn	Ser	Gln	Asn	Pro 240
50	Thr	Gly	Asn	Asp	Phe 245	Val	Ser	Gln	Arg	Phe 250	Leu	Ala	Leu	Ala	Asn 255	Gly
	Ala	Туг	Lys	Туг 260	Asn	Pro	Тyr	Ile	Leu 265	Asn	Gln	Ile	Asn	Lys 270	Leu	Gly
55	Lys	Asp	Туг 275	Gly	Glu	Val	Thr	Asp 280	Glu	Asp	Ile	Туr	Asn 285	Ile	Ile	Arg

	Lys Gl 29	n Asn 0	Phe	Ser	Gly	Asn 295	Ala	Туr	Leu	Asn	G]y 300	Leu	Gln	Gln	Gln
5	Ser As 305	n Tyr	Phe	Arg	Phe 310	Gln	туг	Phe	Asn	Pro 315	Leu	Lys	Ser	Glu	Arg 320
·	туг ту	r Arg	Asn	Leu 325	Asp	Glu	G]n	Val	Leu 330	Ala	Leu	Ile	Thr	G]y 335	Glu
	Ile Gl	y Ser	Met 340	Pro	Asp	Leu	Lys	Lys 345	Pro	Glu	Asp	Lys	Pro 350	Asp	Ser
10	Lys Gl	n Arg 355	Ser	Phe	Glu	Pro	Ніs 360	Glu	Lys	Asp	Asp	Phe 365	Тhr	Val	Val
	Lys Ly 37	s Gln 0	Glu	Asp	Asn	Lys 375	Lys	Ser	Ala	Ser	⊤hr 380	Ala	Туr	Ser	Lys
15	Ser Tr 385	p Leu	Ala	Ile	Va] 390	Cys	Ser	Met	Met	Va] 395	Val	Phe	Ser	Ile	Met 400
	Leu Ph	e Leu	Phe	Val 405	Lys	Arg	Asn	Lys	Lys 410	Lys	Asn	Lys	Asn	Glu 415	Ser
20	G]n Ar	g Arg													
25	<210> <211> <212> <213>	90 231 PRT Sta	phylo		cus a	aurei	JS								
	<400> Met Ly 1	90 s Lys	Thr	Leu 5	Leu	Ala	Ser	Ser	Leu 10	Ala	Val	Gly	Leu	Gly 15	Ile
30	Val Al	a Gly	Asn 20	Ala	Gly	His	Glu	Ala 25	His	Ala	Ser	Glu	Ala 30	Asp	Leu
	Asn Ly	s Ala 35	Ser	Leu	Ala	Gln	Met 40	Ala	Gln	Ser	Asn	Asp 45	Gln	Thr	Leu
35	Asn G1 50	n Lys	Pro	Ile	Glu	A]a 55	G∖A	Ala	Tyr	Asn	⊤yr 60	Thr	Phe	Asp	Tyr
	Glu Gl 65	y Phe	Thr	Tyr	His 70	Phe	Glu	Ser	Asp	G]y 75	⊤hr	His	Phe	Ala	⊤rp 80
40	Asn Ty	r His	Ala	⊤hr 85	Gly	Тhr	Asn	Gly	Ala 90	Asp	Met	Ser	Ala	Gln 95	Ala
	Pro Al	a Thr	Asn 100	Asn	Val	Ala	Pro	Ser 105	Ala	Val	G]n	Ala	Asn 110	Gln	Val
45	Gln Se	r Gln 115	Glu	Val	Glu	Ala	Pro 120	Gln	Asn	Ala	G]n	Thr 125	Gln	Gln	Pro
	Gln Al 13	a Ser 0	Тhr	Ser	Asn	Asn 135	Ser	Gln	Val	Thr	A]a 140	Thr	Pro	Thr	Glu
50	Ser Ly 145	s Ser	Ser	Glu	Gly 150	Ser	Ser	Val	Asn	Va] 155	Asn	Ala	His	Leu	Lys 160
	Gln Il	е АТа	Gln	Arg 165	Glu	Ser	Gly	Gly	Asn 170	Ile	His	Ala	Val	Asn 175	Pro
55	⊤hr Se	r Gly	Ala 180	Ala	Gly	Lys	туг	Gln 185	Phe	Leu	Gln	Ser	Тhr 190	тгр	Asp
	Ser Va	l Ala	Pro	Ala	Lys	туr	Lys	Gly	Val	Ser	Pro	Ala	Asn	Ala	Pro

			195					200					205			
	Glu	Ser 210	Val	Gln	Asp	Ala	Ala 215	Ala	Val	Lys	Leu	Туг 220	Asn	Thr	Gly	Gly
5	Ala 225	Gly	His	тгр	Val	Thr 230	Ala									
10	<210 <211 <212 <213	> $>$ $>$ $>$	91 294 PRT Stap	ohy1c	coco	us a	urei	IS								
	<400 Met 1	⊳ Gly	91 Val	Lys	Ser 5	Val	Lys	Lys	Ile	Phe 10	Val	Ile	Ile	Thr	Thr 15	Leu
15	Leu	Ala	Val	A]a 20	Ile	Ile	Ile	Gly	Ser 25	Ile	Ile	Met	Val	Va] 30	Phe	Ser
	Gln	Arg	G]n 35	Ala	Gln	Thr	Phe	Lys 40	Ile	Gln	Gln	Gln	G]n 45	Phe	Val	Lys
20	Lys	Pro 50	Ile	Pro	Thr	Leu	Phe 55	Leu	His	Gly	Phe	G]y 60	Gly	Ser	Ala	Asn
	Ser 65	Glu	Lys	Phe	Met	Va] 70	Lys	Gln	Ala	Glu	Lys 75	Arg	Gly	Val	Тhr	Lys 80
25	Asp	Ile	Ile	Thr	Ala 85	туr	Val	Ser	Lys	Asp 90	Gly	Ala	Val	Thr	Phe 95	Lys
	Gly	Lys	Leu	Arg 100	Lys	Asp	Ala	Val	Asn 105	Pro	Ile	Val	Lys	I]e 110	Glu	Leu
30	Glu	Asn	Asn 115	Arg	Gln	Gly	туr	Leu 120	Asp	Lys	Asn	Ala	Ala 125	тгр	Phe	Lys
	Asn	Val 130	Leu	Thr	Lys	Leu	Gln 135	Ser	Glu	⊤yr	Asn	Phe 140	Asp	Lys	Phe	Asn
35	Phe 145	Val	Gly	His	Ser	Met 150	Gly	Asn	Leu	⊤hr	Phe 155	Ala	Gln	Туr	Met	Met 160
	Thr	Tyr	Gly	Asn	Asp 165	Lys	Ser	Leu	Pro	G]n 170	Leu	Asn	Lys	Gln	Val 175	Asn
40	Ile	Ala	Gly	Thr 180	Phe	Asn	Gly	Val	Leu 185	Asn	Met	Asn	Glu	Asp 190	Val	Asn
	Glu	Ile	⊤hr 195	Val	Asp	Lys	Asp	G]y 200	Lys	Pro	Ser	Arg	Met 205	Asn	Gln	Pro
45	туг	Gln 210	Gln	Leu	Arg	Val	Leu 215	Lys	Asp	I]e	Туr	Lys 220	Gly	Lys	Gly	Ile
	Glu 225	Val	Leu	Asn	Ile	туг 230	Gly	Asp	Leu	Lys	Asp 235	Gly	Thr	His	Ser	Asp 240
50	Gly	Arg	Val	Ser	Asn 245	Ser	Ser	Ser	Lys	Ser 250	Leu	Lys	Туr	Leu	Leu 255	Gly
	Asn	Ser	Pro	Lys 260	Ser	туr	Arg	Glu	Ser 265	Lys	туr	Glu	Gly	Glu 270	Pro	Ala
55	Gln	His	Ser 275	Gln	Leu	His	Glu	Asn 280	Glu	Asn	Val	Ala	Asn 285	Glu	Leu	Ile
	Asp	Phe 290	Leu	тгр	Lys	Lys										

	<210> <211> <212> <213>	92 807 PRT Staphylococcus aureus												
5	<400> Met Thr 1	92 Tyr Ar	g Ile 5	Lys	Lys	Trp	Gln	Lys 10	Leu	Ser	Thr	Ile	Thr 15	Leu
10	Leu Met	Ala Gl 20	y Val	Ile	Thr	Leu	Asn 25	Gly	Gly	Glu	Phe	Arg 30	Ser	Val
10	Asp Lys	His Gl 35	ı Ile	Ala	Val	A]a 40	Asp	Thr	Asn	Val	Gln 45	Thr	Pro	Asp
15	Tyr Glu 50	Lys Le	ı Arg	Asn	Thr 55	Тrр	Leu	Asp	Val	Asn 60	Тyr	Gly	Тyr	Asp
15	Lys Tyr 65	Asp Gl	J ASN	Asn 70	Pro	Asp	Met	Lys	Lys 75	Lys	Phe	Asp	Ala	Thr 80
20	Glu Lys	Glu Al	a Thr 85	Asn	Leu	Leu	Lys	Glu 90	Met	Lys	Тhr	Glu	Ser 95	Gly
20	Arg Lys	Туг Le 10	u Trp)	Ser	Gly	Ala	Glu 105	Thr	Leu	Glu	Thr	Asn 110	Ser	Ser
25	His Met	Thr Ar 115	g Thr	туr	Arg	Asn 120	Ile	Glu	Lys	Ile	Ala 125	Glu	Ala	Met
25	Arg Asn 130	Pro Ly	s Thr	Thr	Leu 135	Asn	Thr	Asp	Glu	Asn 140	Lys	Lys	Lys	Val
20	Lys Asp 145	Ala Le	u Glu	Тгр 150	Leu	His	Lys	Asn	Ala 155	туг	Gly	Lys	Glu	Pro 160
30	Asp Lys	Lys Va	l Lys 165	Glu	Leu	Ser	Glu	Asn 170	Phe	Тhr	Lys	Thr	Thr 175	Gly
25	Lys Asn	Thr As 18	1 Leu)	Asn	тгр	тгр	Asp 185	туr	Glu	Ile	Gly	Thr 190	Pro	Lys
35	Ser Leu	Thr As 195	ı Thr	Leu	Ile	Leu 200	Leu	Asn	Asp	Gln	Phe 205	Ser	Asn	Glu
40	Glu Lys 210	Lys Ly	s Phe	Thr	Ala 215	Pro	Ile	Lys	Тhr	Phe 220	Ala	Pro	Asp	Ser
40	Asp Lys 225	Ile Le	ı Ser	Ser 230	Val	Gly	Lys	Ala	Glu 235	Leu	Ala	Lys	Gly	Gly 240
45	Asn Leu	Val As	o Ile 245	Ser	Lys	Val	Lys	Leu 250	Leu	Glu	Cys	Ile	I]e 255	Glu
45	Glu Asp	Lys As 26	o Met	Met	Lys	Lys	Ser 265	Ile	Asp	Ser	Phe	Asn 270	Lys	Val
50	Phe Thr	Tyr Va 275	l Gln	Asp	Ser	Ala 280	Thr	Gly	Lys	Glu	Arg 285	Asn	Gly	Phe
50	Tyr Lys 290	Asp Gl	y Ser	Тyr	Ile 295	Asp	His	Gln	Asp	Va1 300	Pro	туr	Thr	Gly
	Ala Tyr 305	Gly Va	l Val	Leu 310	Leu	Glu	Gly	Ile	Ser 315	Gln	Met	Met	Pro	Met 320
55	Ile Lys	Glu Th	r Pro 325	Phe	Asn	Asp	Lys	Thr 330	Gln	Asn	Asp	Thr	Thr 335	Leu

	Lys	Ser	тгр	1]e 340	Asp	Asp	Gly	Phe	Met 345	Pro	Leu	I]e	Туr	Lys 350	Gly	Glu
5	Met	Met	Asp 355	Leu	Ser	Arg	Gly	Arg 360	Ala	Ile	Ser	Arg	Glu 365	Asn	Glu	⊤hr
	Ser	His 370	Ser	Ala	Ser	Ala	Тhr 375	Val	Met	Lys	Ser	Leu 380	Leu	Arg	Leu	Ser
	Asp 385	Ala	Met	Asp	Asp	Ser 390	Тhr	Lys	Ala	Lys	туг 395	Lys	Lys	Ile	Val	Lys 400
10	Ser	Ser	Val	Glu	Ser 405	Asp	Ser	Ser	Тyr	Lys 410	Gln	Asn	Asp	туr	Leu 415	Asn
	Ser	туг	Ser	Asp 420	Ile	Asp	Lys	Met	Lys 425	Ser	Leu	Met	Тhr	Asp 430	Asn	Ser
15	Ile	Ser	Lys 435	Asn	Gly	Leu	Тhr	G]n 440	Gln	Leu	Lys	Ile	Туг 445	Asn	Asp	Met
	Asp	Arg 450	Val	Thr	Tyr	His	Asn 455	Lys	Asp	Leu	Asp	Phe 460	Ala	Phe	Gly	Leu
20	Ser 465	Met	Тhr	Ser	Lys	Asn 470	Val	Ala	Arg	туr	Glu 475	Ser	Ile	Asn	Gly	Glu 480
	Asn	Leu	Lys	Gly	⊤rp 485	нis	Тhr	Gly	Ala	Gly 490	Met	Ser	туr	Leu	туг 495	Asn
25	Ser	Asp	Val	Lys 500	His	Тyr	His	Asp	Asn 505	Phe	тгр	Val	Thr	Ala 510	Asp	Met
	Lys	Arg	Leu 515	Ser	Gly	Thr	Тhr	тhr 520	Leu	Asp	Asn	Glu	Ile 525	Leu	Lys	Asp
30	⊤hr	Asp 530	Asp	Lys	Lys	Ser	Ser 535	Lys	Thr	Phe	Val	G]y 540	Gly	Thr	Lys	Val
	Asp 545	Asp	Gln	His	Ala	Ser 550	Ile	Gly	Met	Asp	Phe 555	Glu	Asn	Gln	Asp	Lys 560
35	⊤hr	Leu	Thr	Ala	Lys 565	Lys	Ser	туг	Phe	11e 570	Leu	Asn	Asp	Lys	11e 575	Val
	Phe	Leu	GIJ	Тhr 580	Gly	I]e	Lys	Ser	Thr 585	Asp	Ser	Ser	Lys	Asn 590	Pro	Val
40	⊤hr	Thr	Ile 595	Glu	Asn	Arg	Lys	A]a 600	Asn	Gly	Туr	⊤hr	Leu 605	Туr	Thr	Asp
	Asp	Lys 610	Gln	Thr	⊤hr	Asn	Ser 615	Asp	Asn	Gln	Glu	Asn 620	Asn	Ser	Val	Phe
45	Leu 625	Glu	Ser	Thr	Asp	тhr 630	Lys	Lys	Asn	Ile	G]y 635	⊤yr	His	Phe	Leu	Asn 640
	Lys	Pro	Lys	Ile	⊤hr 645	Val	Lys	Lys	Glu	Ser 650	His	⊤hr	Gly	Lys	тгр 655	Lys
50	Glu	Ile	Asn	Lys 660	Ser	Gln	Lys	Asp	Тhr 665	Gln	Lys	⊤hr	Asp	Glu 670	туг	Tyr
	Glu	Val	тhr 675	Gln	Lys	His	Ser	Asn 680	Ser	Asp	Asn	Lys	туг 685	Gly	туг	Val
55	Leu	туг 690	Pro	Gly	Leu	Ser	Lys 695	Asp	Val	Phe	Lys	⊤hr 700	Lys	Lys	Asp	Glu
	Val	Thr	Val	Val	Lys	Gln	Glu	Asp	Asp	Phe	His	Val	Val	Lys	Asp	Asn

	705		7	10		715	;		720
	Glu Ser	Val Trp	Ala G 725	ly Val	Asn Tyr	Ser Asr 730	Ser Thr	Gln Thr 735	Phe
5	Asp Ile	Asn Asn 740	Thr Ly	ys Val	Glu Val 745	Lys Ala	Lys Gly	Met Phe 750	Ile
	Leu Lys	Lys Lys 755	Asp As	sp Asn	Thr Tyr 760	Glu Cys	Ser Phe 765	Tyr Asn	Pro
10	Glu Ser 770	⊤hr Asn	Ser A	la Ser 775	Asp Ile	Glu Ser	Lys Ile 780	Ser Met	Thr
	Gly Tyr 785	Ser Ile	Thr As	sn Lys 90	Asn Thr	Ser Thr 795	Ser Asn	Glu Ser	Gly 800
15	Val His	Phe Glu	Leu Tl 805	hr ∟ys					
20	<210> <211> <212> <213>	93 166 PRT Staphylo	ococcu	s aureu	15				
	<400> Met Lys	93 Lys Leu	val TI	hr Ala	Thr Thr	Leu Thr	' Ala Gly	Ile Gly	Thr
25	ı Ala Leu	Val Gly 20	s Gln A	la His	His Ala	Asp Ala	Ala Glu	Asn Tyr	Thr
	Asn Tyr	Asn Asn 35	Tyr A	sn Tyr	Asn Thr 40	⊤hr Glr	Thr Thr 45	Thr Thr	Thr
30	Thr Thr 50	⊤hr Thr	Thr T	hr Ser 55	Ser Ile	Ser His	Ser Gly 60	Asn Leu	Tyr
	Thr Ala 65	Gly Gln	Cys T 70	hr Trp O	Tyr Val	⊤yr Asp 75) Lys Val	Gly Gly	Glu 80
35	Ile Gly	Ser Thr	Trp G 85	ly Asn	Ala Asn	Asn Trp 90	Ala Ala	Ala Ala 95	Gln
	Gly Ala	Gly Phe 100	Thr Va	al Asn	His Thr 105	Pro Ser	'∟ys Gly	Ala Ile 110	Leu
40	Gln Ser	Ser Glu 115	Gly P	ro Phe	Gly His 120	Val Ala	Tyr Val 125	Glu Ser	Val
	Asn Ser 130	Asp Gly	Ser Va	al Thr 135	Ile Ser	Glu Met	Asn Tyr 140	Ser Gly	Gly
45	Pro Phe 145	Ser Val	Ser So 1	er Arg 50	Thr Ile	Ser Ala 155	Ser Glu	Ala Gly	Asn 160
	Tyr Asn	⊤yr Ile	His I [°] 165	le					
50	<210> <211> <212> <213>	94 516 PRT Staphylo	ococcu	s aureu	IS				
	<400> Met Lys 1	94 Lys Lys	Leu G [.] 5	ly Met	Leu Leu	Leu Val 10	Pro Ala	Val Thr 15	Leu
55	Ser Leu	Ala Ala 20	Cys G	ly Asn	Asp Asp 25	Gly Lys	Asp Lys	Asp Gly 30	Lys

	Val	Thr	Ile 35	Lys	Thr	Thr	Val	туг 40	Pro	Leu	Gln	Ser	Phe 45	Ala	Glu	Gln
5	Ile	Gly 50	Gly	Lys	His	Val	Lys 55	Val	Ser	Ser	Ile	туг 60	Pro	Ala	Gly	Thr
	Asp 65	Leu	His	Ser	туr	Glu 70	Pro	Тhr	Gln	Lys	Asp 75	Ile	Leu	Ser	Ala	Ser 80
10	Lys	Ser	Asp	Leu	Phe 85	Met	Туr	Thr	Gly	Asp 90	Asn	Leu	Asp	Pro	Va1 95	Ala
	Lys	Lys	Val	Ala 100	Ser	Thr	Ile	Lys	Asp 105	Lys	Asp	Lys	Lys	Leu 110	Ser	Leu
15	Glu	Asp	Lys 115	Leu	Asp	Lys	Ala	Lys 120	Leu	Leu	Тhr	Asp	G]n 125	His	Glu	His
	Gly	Glu 130	Glu	His	Glu	His	Glu 135	Gly	His	Asp	His	Glu 140	Lys	Glu	Glu	His
20	Ніs 145	His	His	Ніs	Gly	Gly 150	Туr	Asp	Pro	His	Val 155	тгр	Leu	Asp	Pro	Lys 160
20	Ile	Asn	Gln	Тhr	Phe 165	Ala	Lys	Glu	Ile	Lys 170	Asp	Glu	Leu	Val	Lys 175	Lys
25	Asp	Pro	Lys	Ніs 180	Lys	Asp	Asp	Туr	Glu 185	Lys	Asn	Тyr	Lys	Lys 190	Leu	Asn
	Asp	Asp	Leu 195	Lys	Lys	Ile	Asp	Asn 200	Asp	Met	Lys	Gln	Va] 205	Тhr	Lys	Asp
30	Lys	G]n 210	Gly	Asn	Ala	Val	Phe 215	Ile	Ser	His	Glu	Ser 220	Ile	Gly	туr	Leu
	A]a 225	Asp	Cys	Тyr	Gly	Phe 230	Val	Gln	Lys	Gly	I]e 235	Gln	Asn	Met	Asn	A]a 240
25	Glu	Asp	Pro	Ser	G]n 245	Lys	Glu	Leu	Thr	Lys 250	Ile	Val	Lys	Glu	Ile 255	Arg
30	Asp	Ser	Asn	Ala 260	Lys	туr	Ile	Leu	туг 265	Glu	Asp	Asn	Val	Ala 270	Asn	Lys
40	Val	Thr	Glu 275	Тhr	Ile	Arg	Lys	Glu 280	Thr	Asp	Ala	Lys	Pro 285	Leu	Lys	Phe
40	Туг	Asn 290	Met	Glu	Ser	Leu	Asn 295	Lys	Glu	Gln	Gln	Lys 300	Lys	Asp	Asn	Ile
45	тhr 305	туr	Gln	Ser	Leu	Met 310	Lys	Ser	Asn	Ile	Glu 315	Asn	Ile	Gly	Lys	Ala 320
40	Leu	Asp	Ser	Gly	Va] 325	Lys	Val	Lys	Asp	Asp 330	Lys	Ala	Glu	Ser	Lys 335	His
	Asp	Lys	Ala	I]e 340	Ser	Asp	Gly	туr	Phe 345	Lys	Asp	Glu	Gln	Va1 350	Lys	Asp
50	Arg	Glu	Leu 355	Ser	Asp	Тyr	Ala	Gly 360	Glu	тгр	Gln	Ser	Va1 365	туr	Pro	Tyr
	Leu	Lys 370	Asp	Gly	Thr	Leu	Asp 375	Glu	Val	Met	Glu	His 380	Lys	Ala	Glu	Asn
55	Asp 385	Pro	Lys	Lys	Ser	Ala 390	Lys	Asp	Leu	Lys	Ala 395	Тyr	Туr	Asp	Lys	Gly 400

	туr	Lys	Thr	Asp	Ile 405	Thr	Asn	Ile	Asp	I]e 410	Lys	Gly	Asn	Glu	1]e 415	⊤hr
5	Phe	Thr	Lys	Asp 420	Gly	Lys	Lys	His	тhr 425	Gly	Lys	⊤yr	Glu	туг 430	Asn	Gly
	Lys	Lys	тhr 435	Leu	Lys	туг	Pro	Lys 440	Gly	Asn	Arg	G∖A	Val 445	Arg	Phe	Met
	Phe	Lys 450	Leu	Val	Asp	Gly	Asn 455	Asp	Lys	Asp	Leu	Pro 460	Lys	Phe	Ile	Gln
10	Phe 465	Ser	Asp	His	Asn	Ile 470	Ala	Pro	Lys	Lys	Ala 475	Glu	His	Phe	His	Ile 480
	Phe	Met	Gly	Asn	Asp 485	Asn	Asp	Ala	Leu	Leu 490	Lys	Glu	Met	Asp	Asn 495	⊤rp
15	Pro	Thr	Туr	туг 500	Pro	Ser	Lys	Leu	Asn 505	Lys	Asp	Gln	Ile	Lys 510	Glu	Glu
	Met	Leu	A]a 515	His												
20	<210 <211 <212 <213)> L> 2> 3>	95 309 PRT Stap	ohyla	ococo	cus a	aurei	JS								
25	<400 Met 1)> Ile	95 Lys	Asn	Lys 5	Ile	Leu	Thr	Ala	Thr 10	Leu	Ala	Val	Gly	Leu 15	Ile
	Ala	Pro	Leu	A]a 20	Asn	Pro	Phe	Ile	Glu 25	Ile	Ser	Lys	Ala	Glu 30	Asn	Lys
30	Ile	Glu	Asp 35	Ile	Gly	Gln	Gly	A]a 40	Glu	Ile	Ile	Lys	Arg 45	Тhr	Gln	Asp
	Ile	Thr 50	Ser	Lys	Arg	Leu	A]a 55	Ile	Thr	Gln	Asn	Ile 60	Gln	Phe	Asp	Phe
35	Va1 65	Lys	Asp	Lys	Lys	туг 70	Asn	Lys	Asp	Ala	Leu 75	Val	Val	Lys	Met	G]n 80
	Gly	Phe	I]e	Ser	Ser 85	Arg	Thr	Thr	туr	Ser 90	Asp	Leu	Lys	Lys	Tyr 95	Pro
40	⊤yr	Ile	Lys	Arg 100	Met	Ile	тгр	Pro	Phe 105	Gln	туг	Asn	Ile	Ser 110	Leu	Lys
	⊤hr	Lys	Asp 115	Ser	Asn	Val	Asp	Leu 120	Ile	Asn	Туг	Leu	Pro 125	Lys	Asn	Lys
45	Ile	Asp 130	Ser	Ala	Asp	Val	Ser 135	Gln	Lys	Leu	Gly	⊤yr 140	Asn	Ile	Gly	Gly
	Asn 145	Phe	Gln	Ser	Ala	Pro 150	Ser	Ile	Gly	Gly	Ser 155	Gly	Ser	Phe	Asn	⊤yr 160
50	Ser	Lys	Thr	I]e	Ser 165	туr	Asn	G]n	Lys	Asn 170	Тyr	Val	Thr	Glu	Va] 175	Glu
	Ser	Gln	Asn	Ser 180	Lys	Gly	Val	Lys	тгр 185	Gly	Val	Lys	Ala	Asn 190	Ser	Phe
55	Val	Тhr	Pro 195	Asn	Gly	Gln	Val	Ser 200	Ala	туr	Asp	Gln	туг 205	Leu	Phe	Ala
	Gln	Asp	Pro	Тhr	Gly	Pro	Ala	Ala	Arg	Asp	туr	Phe	Val	Pro	Asp	Asn

		210					215					220				
	Gln 225	Leu	Pro	Pro	Leu	Ile 230	Gln	Ser	Gly	Phe	Asn 235	Pro	Ser	Phe	Ile	Thr 240
5	Тhr	Leu	Ser	His	Glu 245	Arg	Gly	Lys	Gly	Asp 250	Lys	Ser	Glu	Phe	Glu 255	Ile
	Тhr	Туr	Gly	Arg 260	Asn	Met	Asp	Ala	тhr 265	⊤yr	Ala	Туr	Val	Thr 270	Arg	His
10	Arg	Leu	Ala 275	Val	Asp	Arg	Lys	ніs 280	Asp	Ala	Phe	Lys	Asn 285	Arg	Asn	Val
	Thr	Va1 290	Lys	туr	Glu	Val	Asn 295	тгр	Lys	⊤hr	His	Glu 300	Val	Lys	Ile	Lys
15	Ser 305	Ile	⊤hr	Pro	Lys											
20	<210 <211 <212 <213)> L> 2> 3>	96 532 PRT Stap	ohyla	ococo	cus a	aurei	ıs								
	<400 Met 1)> Arg	96 Lys	Leu	⊤hr 5	Lys	Met	Ser	Ala	Met 10	Leu	Leu	Ala	Ser	Gly 15	Leu
25	Ile	Leu	⊤hr	G]y 20	Cys	Gly	Gly	Asn	Lys 25	Gly	Leu	Glu	Glu	Lys 30	Lys	Glu
	Asn	Lys	Gln 35	Leu	тhr	туr	тhr	тhr 40	Val	Lys	Asp	Ile	G]y 45	Asp	Met	Asn
30	Pro	ніs 50	Val	туr	Gly	Gly	Ser 55	Met	Ser	Ala	Glu	Ser 60	Met	Ile	туг	Glu
	Pro 65	Leu	Val	Arg	Asn	Thr 70	Lys	Asp	Gly	Ile	Lys 75	Pro	Leu	Leu	А]а	Lys 80
35	Lys	тгр	Asp	Val	Ser 85	Glu	Asp	Gly	Lys	⊤hr 90	туr	Тhr	Phe	Ніs	Leu 95	Arg
	Asp	Asp	Val	Lys 100	Phe	His	Asp	Gly	Тhr 105	Pro	Phe	Asp	Ala	Asp 110	Ala	Val
40	Lys	Lys	Asn 115 -	Ile	Asp	Ala	val	G]n 120	Glu	Asn	Lys	Lys	Leu 125	His	Ser	тгр
	Leu	Lys 130	Ile	Ser	Thr	Leu	Ile 135	Asp	Asn	Val	Lys	Va1 140	Lys	Asp	Lys	туr
45	Thr 145	Val	Glu	Leu	Asn	Leu 150	Lys	Glu	Ala	Tyr	GIn 155	Pro	Ala	Leu	Ala	Glu 160
	Leu	Ala	Met	Pro	Arg 165	Pro	Tyr	val	Phe	Va 170	Ser	Pro	Lys	Asp	Phe 175	Lys
50	ASN	GTY	Inr	180	Lys	Asp	GTY	vai	Lys 185	Lys	Phe	ASP	GTY	190	GTY	Pro
	Phe	Lys	Leu 195	GIY	GTU	HIS	Lys	Lys 200	Asp	G I U	ser	АТа	Asp 205	Phe	ASN	Lys
55	ASN	ASP 210	GIN	ıyr	ırp	GIY	215	Lys	ser	LYS	Leu	Asn 220	Lys	va I	G I n	Ala
	Lys 225	Val	Met	Pro	Ala	GTY 230	Glu	Thr	Ala	Phe	Leu 235	Ser	Met	Lys	Lys	GTY 240

	Glu	Thr	Asn	Phe	Ala 245	Phe	Thr	Asp	Asp	Arg 250	Gly	Thr	Asp	Ser	Leu 255	Asp
5	Lys	Asp	Ser	Leu 260	Lys	Gln	Leu	Lys	Asp 265	Тhr	Gly	Asp	Тyr	G]n 270	Val	Lys
	Arg	Ser	G]n 275	Pro	Met	Asn	Thr	Lys 280	Met	Leu	Val	Val	Asn 285	Ser	Gly	Lys
10	Lys	Asp 290	Asn	Ala	Val	Ser	Asp 295	Lys	Thr	Val	Arg	G]n 300	Ala	Ile	Gly	His
	Met 305	Val	Asn	Arg	Asp	Lys 310	Ile	Ala	Lys	Glu	I]e 315	Leu	Asp	Gly	Gln	Glu 320
15	Lys	Pro	Ala	Тhr	G]n 325	Leu	Phe	Ala	Lys	Asn 330	Val	Thr	Asp	Ile	Asn 335	Phe
	Asp	Met	Pro	⊤hr 340	Arg	Lys	Туr	Asp	Leu 345	Lys	Lys	Ala	Glu	Ser 350	Leu	Leu
20	Asp	Glu	Ala 355	Gly	Тrр	Lys	Lys	Gly 360	Lys	Asp	Ser	Asp	Va1 365	Arg	Gln	Lys
	Asp	Gly 370	Lys	Asn	Leu	Glu	Met 375	Ala	Met	Тyr	Тyr	Asp 380	Lys	Gly	Ser	Ser
25	Ser 385	Gln	Lys	Glu	Gln	Ala 390	Glu	Туr	Leu	Gln	Ala 395	Glu	Phe	Lys	Lys	Met 400
	Gly	Ile	Lys	Leu	Asn 405	Ile	Asn	Gly	Glu	Thr 410	Ser	Asp	Lys	Ile	Ala 415	Glu
30	Arg	Arg	Thr	Ser 420	Gly	Asp	Тyr	Asp	Leu 425	Met	Phe	Asn	Gln	тhr 430	тгр	Gly
	Leu	Leu	туг 435	Asp	Pro	Gln	Ser	тhr 440	Ile	Ala	Ala	Phe	Lys 445	Glu	Lys	Asn
35	Gly	туг 450	Glu	Ser	Ala	Thr	Ser 455	Gly	Ile	Glu	Asn	Lys 460	Asp	Lys	Ile	Tyr
	Asn 465	Ser	Ile	Asp	Asp	Ala 470	Phe	Lys	Ile	Gln	Asn 475	Gly	Lys	Glu	Arg	Ser 480
40	Asp	Ala	Туr	Lys	Asn 485	Ile	Leu	Lys	Gln	Ile 490	Asp	Asp	Glu	Gly	Ile 495	Phe
	Ile	Pro	Ile	Ser 500	His	Gly	Ser	Met	тhr 505	Val	Val	Ala	Pro	Lys 510	Asp	Leu
45	Glu	Lys	Va] 515	Ser	Phe	Тhr	Gln	Ser 520	Gln	туг	Glu	Leu	Pro 525	Phe	Asn	Glu
40	Met	G]n 530	Тyr	Lys												
50	<210 <211 <212 <213)> L> 2> 3>	97 264 PRT Stap	ohyla	ococo	cus a	aurei	JS								
	<400 Met 1)> Ile	97 His	Ser	Lys 5	Lys	Leu	Thr	Leu	Gly 10	Ile	Cys	Leu	Val	Leu 15	Leu
55	Ile	Ile	Leu	Ile 20	Val	Gly	Тyr	Val	Ile 25	Met	Thr	Lys	Thr	Asn 30	Gly	Arg
	Asn	Ala	Gln 35	Ile	Lys	Asp	Thr	Phe 40	Asn	Gln	Thr	Leu	Lys 45	Leu	Туг	Pro
----	------------------------------	----------------------	--------------------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	-------------------
5	⊤hr	Lys 50	Asn	Leu	Asp	Asp	Phe 55	тyr	Asp	Lys	Glu	G]y 60	Phe	Arg	Asp	Gln
	Glu 65	Phe	Lys	Lys	Gly	Asp 70	Lys	G∣y	Thr	Тгр	11e 75	Val	Asn	Ser	Glu	Met 80
	Val	Ile	Glu	Pro	Lys 85	Gly	Lys	Asp	Met	Glu 90	Thr	Arg	Gly	Met	Val 95	Leu
10	Tyr	Ile	Asn	Arg 100	Asn	Thr	Arg	Thr	Thr 105	Lys	Gly	Tyr	Туr	Phe 110	Ile	Ser
	Glu	Met	Thr 115	Asp	Asp	Ser	Asn	G]y 120	Arg	Pro	Lys	Asp	Asp 125	Glu	Lys	Arg
15	Tyr	Pro 130	Val	Lys	Met	Glu	His 135	Asn	Lys	Ile	Ile	Pro 140	Thr	Lys	Pro	Leu
	Pro 145	Asn	Asp	Lys	Leu	Lys 150	Lys	Glu	Ile	Glu	Asn 155	Phe	Lys	Phe	Phe	Va] 160
20	Gln	Туг	Gly	Asn	Phe 165	Lys	Asp	Ile	Asn	Asp 170	Туr	Lys	Asp	Gly	Asp 175	Ile
	Ser	туг	Asn	Pro 180	Asn	Val	Pro	Ser	туг 185	Ser	Ala	Lys	туr	Gln 190	Leu	Asn
25	Asn	Asp	Asp 195	Тyr	Asn	Val	Gln	G]n 200	Leu	Arg	Lys	Arg	Туг 205	Asp	Ile	Pro
	⊤hr	Lys 210	Gln	Ala	Pro	Lys	Leu 215	Leu	Leu	Lys	Gly	Asp 220	Gly	Asp	Leu	Lys
30	Gly 225	Ser	Ser	Val	Gly	Ser 230	Arg	Ser	Leu	Glu	Phe 235	⊤hr	Phe	Val	Glu	Asn 240
	Lys	Glu	Glu	Asn	Ile 245	Туr	Phe	Thr	Asp	Ser 250	Val	Gln	Туr	Thr	Pro 255	Ser
35	Glu	Asp	Тhr	Arg 260	⊤yr	Glu	Ser	Asn								
40	<210 <211 <212 <213)> L> 2> 3>	98 261 PRT Stap	ohyld	ococo	cus a	aurei	ıs								
	<400 Met 1)> Ile	98 His	Ser	Lys 5	Lys	Leu	Thr	Leu	Gly 10	Ile	Cys	Leu	Val	Leu 15	Leu
45	Ile	Ile	Leu	Ile 20	Gly	Gly	Cys	Val	Ile 25	Met	Thr	Lys	Thr	Asn 30	Gly	Arg
	Asn	Ala	Gln 35	Ile	Lys	Glu	Asn	Phe 40	Asn	Lys	Thr	Leu	Ser 45	Val	Туr	Leu
50	⊤hr	Lys 50	Asn	Leu	Asp	Asp	Phe 55	Тyr	Asp	Lys	Glu	G]y 60	Phe	Arg	Asp	Gln
	Glu 65	Phe	Asp	Lys	Arg	Asp 70	Lys	Gly	Тhr	тгр	Ile 75	Ile	туr	Ser	Glu	Met 80
55	Val	Ile	Glu	Pro	Lys 85	Gly	Lys	Asn	Met	Glu 90	Ser	Arg	Gly	Met	Val 95	Leu
	⊤yr	Ile	Asn	Arg	Asn	Thr	Arg	Thr	Thr	Lys	Gly	Asn	Phe	Ile	Val	Thr

				100					105					110		
	Glu	Ile	⊤hr 115	Glu	Asp	Ser	Lys	Gly 120	туг	Ser	Arg	Ser	Lys 125	Glu	Lys	Lys
5	Тyr	Pro 130	Val	Lys	Met	Glu	Asn 135	Asn	Arg	Ile	Ile	Pro 140	Thr	Lys	Pro	Ile
	Pro 145	Asp	Asp	Lys	Leu	Lys 150	Lys	Glu	Ile	Glu	Asn 155	Phe	Lys	Phe	Phe	Val 160
10	Gln	Туr	Gly	Asn	Phe 165	Lys	Asp	Phe	Lys	Asp 170	Туr	Lys	Asn	Gly	Asp 175	Ile
	Ser	Туr	Asn	Pro 180	Asn	Val	Pro	Ser	Туг 185	Ser	Ala	Lys	Туr	Gln 190	Leu	Asn
15	Asn	Asp	Asp 195	Тyr	Asn	Val	Gln	G]n 200	Leu	Arg	Lys	Arg	Туг 205	His	Ile	Pro
	Тhr	Lys 210	Gln	Ala	Pro	Glu	Leu 215	Lys	Leu	Lys	Gly	Ser 220	Gly	Asn	Leu	Lys
20	G]y 225	Ser	Ser	Val	Gly	Ser 230	Lys	Asp	Leu	Glu	Phe 235	Тhr	Phe	Val	Glu	Asn 240
	Gln	Glu	Glu	Asn	I]e 245	туr	Phe	Ser	Asp	ser 250	Val	Glu	Phe	Тhr	Pro 255	Ser
25	Glu	Asp	Asp	Lys 260	Ser											
	<21(<212 <212 <213)> L> 2> 3>	99 498 PRT Stap	ohyla	ococo	cus a	ureı	ıs								
30	<400 Met 1)> Ala	99 Ala	Leu	Thr 5	Leu	Leu	Ser	Thr	Leu 10	Ser	Pro	Ala	Ala	Leu 15	Ala
35	<400 Met 1 Ile)> Ala Asp	99 Ala Ser	Leu Lys 20	⊤hr 5 Asn	Leu Lys	Leu Pro	Ser Ala	Thr Asn 25	Leu 10 Ser	Ser Asp	Pro Ile	Ala Lys	Ala Phe 30	Leu 15 Glu	Ala Val
35	<400 Met 1 Ile Thr)> Ala Asp Gln	99 Ala Ser Lys 35	Leu Lys 20 Ser	Thr 5 Asn Asp	Leu Lys Ala	Leu Pro Val	Ser Ala Lys 40	Thr Asn 25 Ala	Leu 10 Ser Leu	Ser Asp Lys	Pro Ile Glu	Ala Lys Leu 45	Ala Phe 30 Pro	Leu 15 Glu Lys	Ala Val Ser
35	<400 Met I Ile Thr Glu)> Ala Asp Gln Asn 50	99 Ala Ser Lys 35 Val	Leu Lys 20 Ser Lys	Thr 5 Asn Asp Asn	Leu Lys Ala Ile	Leu Pro Val Tyr 55	Ser Ala Lys 40 Gln	Thr Asn 25 Ala Asp	Leu 10 Ser Leu ⊤yr	Ser Asp Lys Ala	Pro Ile Glu Val 60	Ala Lys Leu 45 Thr	Ala Phe 30 Pro Asp	Leu 15 Glu Lys Val	Ala Val Ser Lys
35 40	<400 Met I Ile Thr Glu Thr 65	D> Ala Asp Gln Asn 50 Asp	99 Ala Ser Lys 35 Val Lys	Leu 20 Ser Lys Lys	Thr 5 Asn Asp Asn Gly	Leu Lys Ala Ile Phe 70	Leu Pro Val Tyr 55 Thr	Ser Ala Lys 40 Gln His	Thr Asn Ala Asp Tyr	Leu 10 Ser Leu ⊤yr ⊤hr	Ser Asp Lys Ala Leu 75	Pro Ile Glu Val 60 Gln	Ala Lys Leu 45 Thr Pro	Ala Phe 30 Pro Asp Ser	Leu 15 Glu Lys Val Val	Ala Val Ser Lys &Sp
35 40 45	<400 Met I Ile Thr Glu Thr 65 Gly	Ala Asp Gln Asn 50 Asp Val	99 Ala Ser Lys 35 Val Lys His	Leu Lys Ser Lys Lys Ala	Thr Asn Asp Asn Gly Pro 85	Leu Lys Ala Ile Phe 70 Asp	Leu Pro Val Tyr 55 Thr Lys	Ser Ala Lys Gln His Glu	Thr Asn Ala Asp Tyr Val	Leu Ser Leu ⊤yr ⊤hr Lys 90	Ser Asp Lys Ala Leu 75 Val	Pro Ile Glu Val Gln His	Ala Lys Leu 45 Thr Pro Ala	Ala Phe 30 Pro Asp Ser Asp	Leu Glu Lys Val Val Lys 95	Ala Val Ser Lys Asp 80 Ser
35 40 45	<400 Met 1 Thr Glu Thr 65 Gly Gly	Ala Asp Gln Son Asp Val Lys	99 Ala Ser Lys Val Lys His Val	Leu 20 Ser Lys Lys Ala Val	Thr Asn Asp Asn Gly Pro 85 Leu	Leu Lys Ala Ile Phe 70 Asp Ile	Leu Pro Val Tyr 55 Thr Lys Asn	Ser Ala Lys Gln His Glu Gly	Thr Asn Ala Asp Tyr Val Asp 105	Leu Ser Leu ⊤yr ⊤hr Lys 90 ⊤hr	Ser Asp Lys Ala Leu 75 Val Asp	Pro Ile Glu Val Gln His Ala	Ala Lys Leu 45 Thr Pro Ala Lys	Ala Phe 30 Pro Asp Ser Asp Lys 110	Leu Glu Lys Val Val Lys 95 Val	Ala Val Ser Lys Asp 80 Ser Lys
35 40 45 50	<400 Met 1 Ile Thr Glu Thr 65 Gly Gly Pro	Ala Asp Gln Asn Asp Val Lys Thr	99 Ala Ser Lys Val Lys His Val Val Asn	Leu Lys 20 Lys Lys Ala Val 100 Lys	Thr Asn Asp Asn Gly Pro 85 Leu Val	Leu Lys Ala Ile Phe 70 Asp Ile Thr	Leu Pro Val Tyr 55 Thr Lys Asn Leu	Ser Ala Lys Gln His Glu Gly Ser 120	Thr Asn Ala Asp Tyr Val Asp 105 Lys	Leu Ser Leu ⊤yr ⊤hr Lys 90 ⊤hr Asp	Ser Asp Lys Ala Z5 Val Asp Asp	Pro Ile Glu Val Gln His Ala Ala	Ala Lys Leu 45 Thr Pro Ala Lys Ala	Ala Phe 30 Pro Asp Ser Asp Lys 110 Asp	Leu Glu Lys Val Val Lys Val Lys	Ala Val Ser Lys Ser Lys Ala
35 40 45 50	<pre><400 Met 1 Ile Thr Glu Thr 65 Gly Gly Pro Phe</pre>	Ala Asp Gln Asn So Asp Val Lys Thr Lys 130	99 Ala Ser Lys Val Lys His Val Asn 115 Ala	Leu Lys Ser Lys Ala Val 100 Lys Val	Thr Asn Asp Asn Gly Pro 85 Leu Val Lys	Leu Lys Ala Ile Phe Asp Ile Thr Ile	Leu Pro Val Tyr 55 Thr Lys Asn Leu Asp	Ser Ala Lys Gln His Glu Gly Ser 120 Lys	Thr Asn Ala Asp Tyr Val Asp 105 Lys Asn	Leu Ser Leu Tyr Thr Lys Thr Asp Lys	Ser Asp Lys Ala Leu 75 Val Asp Asp Ala	Pro Ile Glu Val Gln His Ala Ala Lys	Ala Lys Leu 45 Thr Pro Ala Lys Ala 125 Asn	Ala Phe 30 Pro Asp Ser Asp Lys 110 Asp Leu	Leu Glu Lys Val Val Lys Lys	Ala Val Ser Lys Ser Lys Ala Asp
35 40 45 50	<pre><400 Met 1 Ile Thr Glu Thr 65 Gly Gly Pro Phe Lys 145</pre>	Ala Asp Gln Asn 50 Asp Val Lys Thr Lys 130 Val	99 Ala Ser Lys Val Lys Val Ala Ile	Leu Lys Ser Lys Lys Ala Val 100 Lys Val Lys	Thr Asn Asp Asn Gly Pro Leu Val Lys Glu	Leu Lys Ala Ile Phe 70 Asp Ile Thr Ile Asn	Leu Pro Val Tyr 55 Thr Lys Asn Leu Asp 135 Lys	Ser Ala Lys Gln His Glu Gly Ser 120 Lys Val	Thr Asn Asp Tyr Val Asp 105 Lys Asn Glu	Leu Ser Leu Tyr Thr Lys Thr Asp Lys Ile	Ser Asp Lys Ala Leu 75 Val Asp Asp Ala Asp	Pro Ile Glu Val Gln His Ala Ala Lys 140 Gly	Ala Lys Leu 45 Thr Pro Ala Lys Ala 125 Asn Asp	Ala Phe 30 Pro Asp Ser Asp Lys 110 Asp Leu Ser	Leu Glu Lys Val Val Lys Lys Lys	Ala Val Ser Lys Asp Ser Lys Ala Asp Lys 160

	тгр	Lys	Val	Lys 180	Ile	Asp	Ala	Gln	⊤hr 185	Gly	Glu	Ile	Leu	Glu 190	Lys	Met
5	Asn	Leu	Val 195	Lys	Glu	Ala	Ala	G]u 200	⊤hr	Gly	Lys	Gly	Lys 205	Gly	Val	Leu
	Gly	Asp 210	Thr	Lys	Asp	I]e	Asn 215	Ile	Asn	Ser	I]e	Asp 220	Gly	Gly	Phe	Ser
10	Leu 225	Glu	Asp	Leu	Thr	His 230	Gln	Gly	Lys	Leu	Ser 235	Ala	Phe	Ser	Phe	Asn 240
10	Asp	Gln	Thr	Gly	G]n 245	Ala	Thr	Leu	Ile	Thr 250	Asn	Glu	Asp	Glu	Asn 255	Phe
45	Val	Lys	Asp	Glu 260	Gln	Arg	Ala	Gly	Va] 265	Asp	Ala	Asn	Туr	Туг 270	Ala	Lys
15	Gln	Тhr	Туг 275	Asp	Тyr	Тyr	Lys	Asp 280	⊤hr	Phe	Gly	Arg	Glu 285	Ser	Тyr	Asp
	Asn	G]n 290	Gly	Ser	Pro	Ile	Va] 295	Ser	Leu	Thr	His	Va1 300	Asn	Asn	Тyr	Gly
20	Gly 305	Gln	Asp	Asn	Arg	Asn 310	Asn	Ala	Ala	тгр	I]e 315	Gly	Asp	Lys	Met	Ile 320
	туг	Gly	Asp	Gly	Asp 325	Gly	Arg	⊤hr	Phe	тhr 330	Ser	Leu	Ser	Gly	A]a 335	Asn
25	Asp	Val	Val	A]a 340	His	Glu	Leu	⊤hr	His 345	Gly	Val	Thr	Gln	G]u 350	Thr	Ala
	Asn	Leu	Glu 355	туг	Lys	Asp	Gln	Ser 360	Gly	Ala	Leu	Asn	Glu 365	Ser	Phe	Ser
30	Asp	Va] 370	Phe	Gly	туr	Phe	Va] 375	Asp	Asp	Glu	Asp	Phe 380	Leu	Met	Gly	Glu
	Asp 385	Val	Тyr	Thr	Pro	G]y 390	Lys	Glu	Gly	Asp	Ala 395	Leu	Arg	Ser	Met	Ser 400
35	Asn	Pro	Glu	Gln	Phe 405	Gly	Gln	Pro	Ala	ніs 410	Met	Lys	Asp	туг	Va] 415	Phe
	Thr	Glu	Lys	Asp 420	Asn	Gly	Gly	Val	His 425	Thr	Asn	Ser	Gly	I]e 430	Pro	Asn
40	Lys	Ala	Ala 435	туr	Asn	Val	Ile	G]n 440	Ala	Ile	Gly	Lys	Ser 445	Lys	Ser	Glu
	Gln	11e 450	туг	туг	Arg	Ala	Leu 455	⊤hr	Glu	туr	Leu	тhr 460	Ser	Asn	Ser	Asn
45	Phe 465	Lys	Asp	Cys	Lys	Asp 470	Ala	Leu	Туr	Gln	Ala 475	Ala	Lys	Asp	Leu	туг 480
	Asp	Glu	Gln	Thr	Ala 485	Glu	Gln	Val	Туr	Glu 490	Ala	тгр	Asn	Glu	Va1 495	Gly
50	Val	Glu														
	<210 <211)> L> 2.5	100 680 PRT													
55	<213	3>	Stap	ohy1c	coco	cus a	aurei	IS								

255

<400> 100

Met Lys Ser Gln Asn Lys Tyr Ser Ile Arg Lys Phe Ser Val Gly Ala 1 5 10 15 Ser Ser Ile Leu Ile Ala Thr Leu Leu Phe Leu Ser Gly Gly Gln Ala 20 25 30 5 Gln Ala Glu Lys Gln Val Asn Met Gly Asn Ser Gln Glu Asp Thr 35 40 45 Val Thr Ala Gln Ser Ile Gly Asp Gln Gln Thr Arg Glu Asn Ala Asn 50 55 60 10 Tyr Gln Arg Glu Asn Gly Val Asp Glu Gln Gln His Thr Glu Asn Leu 65 70 75 80 Thr Lys Asn Leu His Asn Asp Lys Thr Ile Ser Glu Glu Asn His Arg 85 90 95 15 Lys Thr Asp Asp Leu Asn Lys Asp Gln Leu Lys Asp Asp Lys Lys Ser 100 105 110 Ser Leu Asn Asn Lys Asn Ile Gln Arg Asp Thr Thr Lys Asn Asn Asn 115 120 125 20 Ala Asn Pro Ser Asp Val Asn Gln Gly Leu Glu Gln Ala Ile Asn Asp 130 135 140 Gly Lys Gln Ser Lys Val Ala Ser Gln Gln Gln Ser Lys Glu Ala Asp 145 150 155 160 25 Asn Ser Gln Asp Ser Asn Ala Asn Asn Asn Leu Pro Ser Gln Ser Arg 165 170 175 Ile Lys Glu Ala Pro Ser Leu Asn Lys Leu Asp Gln Thr Ser Gln Arg 180 185 190 Glu Ile Val Asn Glu Thr Glu Ile Glu Lys Val Gln Pro Gln Gln Asn 195 200 205 30 Asn Gln Ala Asn Asp Lys Ile Thr Asn Tyr Asn Phe Asn Asn Glu Gln 210 215 220 Glu Val Lys Pro Gln Lys Asp Glu Lys Thr Leu Ser Val Ser Asp Leu 225 230 235 240 35 Lys Asn Asn Gln Lys Ser Pro Val Glu Pro Thr Lys Asp Asn Asp Lys 245 250 255 Lys Asn Gly Leu Asn Leu Leu Lys Ser Ser Ala Val Ala Thr Leu Pro 260 265 270 40 Asn Lys Gly Thr Lys Glu Leu Thr Ala Lys Ala Lys Asp Asp Gln Thr 275 280 285 Asn Lys Val Ala Lys Gln Gly Gln Tyr Lys Asn Gln Asp Pro Ile Val 290 295 300 45 Leu Val His Gly Phe Asn Gly Phe Thr Asp Asp Ile Asn Pro Ser Val 305 310 315 320 Leu Ala His Tyr Trp Gly Gly Asn Lys Met Asn Ile Arg Gln Asp Leu 325 330 335 50 Glu Glu Asn Gly Tyr Lys Ala Tyr Glu Ala Ser Ile Ser Ala Phe Gly 340 345 350 Ser Asn Tyr Asp Arg Ala Val Glu Leu Tyr Tyr Tyr Ile Lys Gly Gly 355 360 365 55 Arg Val Asp Tyr Gly Ala Ala His Ala Ala Lys Tyr Gly His Glu Arg

		370					375					380				
	Туг 385	Gly	Lys	Тhr	Туr	Glu 390	Gly	Ile	туr	Lys	Asp 395	тгр	Lys	Pro	Gly	G]n 400
5	Lys	Val	His	Leu	Va] 405	Gly	His	Ser	Met	G]y 410	Gly	Gln	Thr	Ile	Arg 415	Gln
	Leu	Glu	Glu	Leu 420	Leu	Arg	Asn	Gly	Asn 425	Arg	Glu	Glu	Ile	Glu 430	туг	Gln
10	Lys	Lys	His 435	Gly	Gly	Glu	Ile	Ser 440	Pro	Leu	Phe	Lys	Gly 445	Asn	His	Asp
	Asn	Met 450	Ile	Ser	Ser	Ile	тhr 455	Тhr	Leu	Gly	Тhr	Pro 460	His	Asn	Gly	Thr
15	Ніs 465	Ala	Ser	Asp	Leu	A]a 470	Gly	Asn	Glu	Ala	Leu 475	Val	Arg	Gln	Ile	Val 480
	Phe	Asp	Ile	Gly	Lys 485	Met	Phe	Gly	Asn	Lys 490	Asn	Ser	Arg	Val	Asp 495	Phe
20	Gly	Leu	Ala	G]n 500	тгр	Gly	Leu	Lys	G]n 505	Lys	Pro	Asn	Glu	Ser 510	туr	Ile
	Asp	Туr	Va] 515	Lys	Arg	Val	Lys	G]n 520	Ser	Asn	Leu	тгр	Lys 525	Ser	Lys	Asp
25	Asn	G]y 530	Phe	туr	Asp	Leu	тhr 535	Arg	Glu	Gly	Ala	тhr 540	Asp	Leu	Asn	Arg
	Lys 545	Тhr	Ser	Leu	Asn	Pro 550	Asn	Ile	Val	туr	Lys 555	Тhr	туr	Тhr	Gly	Glu 560
30	Ala	Тhr	His	Lys	Ala 565	Leu	Asn	Ser	Asp	Arg 570	Gln	Lys	Ala	Asp	Leu 575	Asn
	Met	Phe	Phe	Pro 580	Phe	Val	Ile	Thr	G]y 585	Asn	Leu	Ile	Gly	Lys 590	Ala	Thr
35	Glu	Lys	Glu 595	тгр	Arg	Glu	Asn	Asp 600	Gly	Leu	Val	Ser	Va] 605	Ile	Ser	Ser
	Gln	Ніs 610	Pro	Phe	Asn	Gln	A]a 615	Туr	Thr	Lys	Ala	тhr 620	Asp	Lys	Ile	Gln
40	Lys 625	Gly	Ile	тгр	Gln	va1 630	Thr	Pro	Тhr	Lys	Ніs 635	Asp	тгр	Asp	His	va1 640
	Asp	Phe	Val	Gly	G1n 645	Asp	Ser	Ser	Asp	⊤hr 650	Val	Arg	Thr	Arg	Glu 655	Glu
45	Leu	Gln	Asp	Phe 660	тгр	His	His	Leu	А]а 665	Asp	Asp	Leu	Val	Lys 670	Thr	Glu
	Lys	Leu	⊤hr 675	Asp	Thr	Lys	Gln	Ala 680								
50	<21(<21) <21) <21))> 1> 2> 3>	101 328 PRT Stap	ohyla	ococo	cus a	aurei	ıs								
	<400 Met 1)> Lys	101 Lys	Cys	Ile 5	Lys	Thr	Leu	Phe	Leu 10	Ser	Ile	Ile	Leu	Val 15	Val
55	Met	Ser	Gly	Тгр 20	Туг	His	Ser	Ala	His 25	Ala	Ser	Asp	Ser	Leu 30	Ser	Lys

	Ser	Pro	Glu 35	Asn	тгр	Met	Ser	Lys 40	Leu	Asp	Asp	Gly	Lys 45	His	Leu	Thr
5	Glu	11e 50	Asn	Ile	Pro	Gly	Ser 55	His	Asp	Ser	Gly	Ser 60	Phe	Тhr	Leu	Lys
	Asp 65	Pro	Val	Lys	Ser	Va] 70	тгр	Ala	Lys	Тhr	Gln 75	Asp	Lys	Asp	Туr	Leu 80
10	⊤hr	Gln	Met	Lys	Ser 85	Gly	Val	Arg	Phe	Phe 90	Asp	Ile	Arg	Gly	Arg 95	Ala
	Ser	Ala	Asp	Asn 100	Met	Ile	Ser	Val	ніs 105	His	Gly	Met	Val	туг 110	Leu	His
15	His	Glu	Leu 115	Gly	Lys	Phe	Leu	Asp 120	Asp	Ala	Lys	туr	Туг 125	Leu	Ser	Ala
	тyr	Pro 130	Asn	Glu	Тhr	Ile	Va] 135	Met	Ser	Met	Lys	Lys 140	Asp	туr	Asp	Ser
20	Asp 145	Ser	Lys	Val	Thr	Lys 150	Thr	Phe	Glu	Glu	Ile 155	Phe	Arg	Glu	Туr	Туг 160
	Тyr	Asn	Asn	Pro	Gln 165	Тyr	Gln	Asn	Leu	Phe 170	Туг	Thr	Gly	Ser	Asn 175	Ala
25	Asn	Pro	Thr	Leu 180	Lys	Glu	Thr	Lys	Gly 185	Lys	Ile	Val	Leu	Phe 190	Asn	Arg
	Met	Gly	Gly 195	Тhr	Туr	Ile	Lys	Ser 200	Gly	Туr	Gly	Ala	Asp 205	Тhr	Ser	Gly
30	Ile	Gln 210	тгр	Ala	Asp	Asn	Ala 215	Thr	Phe	Glu	Тhr	Lys 220	Ile	Asn	Asn	Gly
	Ser 225	Leu	Asn	Leu	Lys	Va1 230	Gln	Asp	Glu	Тyr	Lys 235	Asp	Тyr	туr	Asp	Lys 240
35	Lys	Val	Glu	Ala	Va] 245	Lys	Asn	Leu	Leu	Ala 250	Lys	Ala	Lys	Тhr	Asp 255	Ser
	Asn	Lys	Asp	Asn 260	Val	туг	Val	Asn	Phe 265	Leu	Ser	Val	Ala	Ser 270	Gly	Gly
40	Ser	Ala	Phe 275	Asn	Ser	Thr	Туr	Asn 280	Туr	Ala	Ser	His	Ile 285	Asn	Pro	Glu
	Ile	Ala 290	Lys	Thr	Ile	Lys	Ala 295	Asn	Gly	Lys	Ala	Arg 300	Thr	Gly	тгр	Leu
45	Ile 305	Val	Asp	туг	Ala	G]y 310	туr	Тhr	тгр	Pro	Gly 315	Туr	Asp	Asp	Ile	Va] 320
	Ser	Glu	Ile	Ile	Asp 325	Ser	Asn	Lys								
50	<210 <211 <211 <211	0> 1> 2> 3>	102 257 PRT Stap	ohyla	ococo	cus a	aurei	ıs								
	<400 Met 1)> Lys	102 Ala	His	Lys 5	Ile	Phe	Тгр	Leu	Asn 10	Leu	Ala	Ala	Ile	Ile 15	Ile
55	Ile	Ser	Ile	Va] 20	Val	Ser	Gly	Asp	Met 25	Phe	Leu	Ala	Met	Lys 30	тгр	Glu

	Gln	Ile	His 35	Leu	Lys	Asp	Gly	Leu 40	Lys	Lys	Val	Leu	Ser 45	Thr	туг	Pro
5	Ile	Lys 50	Asn	Leu	Glu	тhr	Leu 55	туr	Glu	Ile	Asp	G]y 60	His	Asp	Asn	Pro
	His 65	Туr	Glu	Asn	Asn	Asp 70	Gln	Asp	Thr	Тгр	Tyr 75	I]e	Glu	Ser	Ser	Tyr 80
	Ser	Val	Val	Gly	Ser 85	Asp	Glu	Leu	Leu	Lys 90	Glu	Asp	Arg	Met	Leu 95	Leu
10	Lys	Val	Asp	Lys 100	Asn	Thr	His	Lys	Ile 105	Thr	Gly	Glu	Туr	Asp 110	Thr	⊤hr
	⊤hr	Asn	Asp 115	Arg	Lys	Asn	Ala	Thr 120	Asp	Ser	Thr	Тyr	Lys 125	Ser	туr	Pro
15	Val	Lys 130	Val	Val	Asn	Asn	Lys 135	Ile	Val	Phe	Thr	Lys 140	Asp	Val	Lys	Asp
	Pro 145	Ala	Leu	Lys	Gln	Lys 150	Ile	Glu	Asn	Asn	G]n 155	Phe	Leu	Ile	Gln	Ser 160
20	Gly	Asp	Leu	⊤hr	Ser 165	Ile	Leu	Asn	Ser	Asn 170	Asp	Leu	Lys	Val	Thr 175	His
	Asp	Pro	Thr	⊤hr 180	Asp	Туr	туr	Asn	Leu 185	Ser	Gly	Lys	Leu	Ser 190	Asn	Asp
25	Asn	Pro	Asn 195	Val	Lys	Gln	Leu	Lys 200	Arg	Arg	Туr	Asn	Ile 205	Pro	Lys	Asn
	Ala	Ser 210	Тhr	Lys	Val	Glu	Leu 215	Lys	Gly	Met	Ser	Asp 220	Leu	Lys	Gly	Asn
30	Asn 225	His	Gln	Asp	Gln	Lys 230	Leu	Тyr	Phe	туг	Phe 235	Ser	Ser	Pro	Gly	Lys 240
	Asp	Gln	Ile	Ile	Туг 245	Lys	Glu	Ser	Leu	Thr 250	Тyr	Asn	Lys	Ile	Ser 255	Glu
35	His															
40	<210 <211 <212 <212)> 1> 2> 3>	103 423 PRT Stap	ohy]c	ococo	cus a	aurei	JS								
	<400 Met 1)> Ser	103 Lys	Ile	Leu 5	Lys	Cys	Ile	Thr	Leu 10	Ala	Val	Val	Met	Leu 15	Leu
45	Ile	Val	Тhr	A]a 20	Cys	Gly	Pro	Asn	Arg 25	Ser	Lys	Glu	Asp	Ile 30	Asp	Lys
	Ala	Leu	Asn 35	Lys	Asp	Asn	Ser	Lys 40	Asp	Lys	Pro	Asn	Gln 45	Leu	Тhr	Met
50	⊤rp	Va1 50	Asp	Gly	Asp	Lys	Gln 55	Met	Ala	Phe	Тyr	Lys 60	Lys	Ile	Thr	Asp
	Gln 65	Туr	Тhr	Lys	Lys	Thr 70	Gly	Ile	Lys	Val	Lys 75	Leu	Val	Asn	Ile	Gly 80
55	Gln	Asn	Asp	Gln	Leu 85	Glu	Asn	Ile	Ser	Leu 90	Asp	Ala	Pro	Ala	G]y 95	Lys
	Gly	Pro	Asp	Ile	Phe	Phe	Leu	Ala	Нis	Asp	Asn	⊤hr	Gly	Ser	Ala	Тyr

				100					105					110		
	Leu	Gln	Gly 115	Leu	Ala	Ala	Glu	I]e 120	Lys	Leu	Ser	Lys	Asp 125	Glu	Leu	Lys
5	Gly	Phe 130	Asn	Lys	Gln	Ala	Leu 135	Lys	Ala	Met	Asn	Туг 140	Asp	Asn	Lys	Gln
	Leu 145	Ala	Leu	Pro	Ala	I]e 150	Val	Glu	тhr	⊤hr	Ala 155	Leu	Phe	Туr	Asn	Lys 160
10	Lys	Leu	Val	Lys	Asn 165	Ala	Pro	Gln	Thr	Leu 170	Glu	Glu	Val	Glu	Ala 175	Asn
	Ala	Ala	Lys	Leu 180	Тhr	Asp	Ser	Lys	Lys 185	Lys	Gln	Туr	Gly	Met 190	Leu	Phe
15	Asp	Ala	Lys 195	Asn	Phe	туr	Phe	Asn 200	Тyr	Pro	Phe	Leu	Phe 205	Gly	Asn	Asp
	Asp	Туг 210	Ile	Phe	Lys	Lys	Asn 215	Gly	Ser	Glu	Тyr	Asp 220	Ile	His	Gln	Leu
20	G]y 225	Leu	Asn	Ser	Lys	ніs 230	Val	Val	Lys	Asn	Ala 235	Glu	Arg	Leu	Gln	Lys 240
	тгр	туr	Asp	Lys	G]y 245	туr	Leu	Pro	Lys	A]a 250	Ala	тhr	His	Asp	Va] 255	Met
25	Ile	Gly	Leu	Phe 260	Lys	Glu	Gly	Lys	Va] 265	Gly	Gln	Phe	Val	тhr 270	Gly	Pro
	тгр	Asn	Ile 275	Asn	Glu	туr	Gln	G]u 280	тhr	Phe	Gly	Lys	Asp 285	Leu	Gly	Val
30	Thr	тhr 290	Leu	Pro	Тhr	Asp	Gly 295	Gly	Lys	Pro	Met	Lys 300	Pro	Phe	Leu	Gly
	Va1 305	Arg	Gly	тгр	Туr	Leu 310	Ser	Glu	Туr	Ser	Lys 315	His	Lys	Туr	тгр	Ala 320
35	Lys	Asp	Leu	Met	Leu 325	туr	Ile	Тhr	Ser	Lys 330	Asp	Тhr	Leu	Gln	Lys 335	туг
	Тhr	Asp	Glu	Met 340	Ser	Glu	Ile	Тhr	G]y 345	Arg	Val	Asp	Val	Lys 350	Ser	Ser
40	Asn	Pro	Asn 355	Leu	Lys	Val	Phe	Glu 360	Lys	Gln	Ala	Arg	ніs 365	Ala	Glu	Pro
	Met	Pro 370	Asn	Ile	Pro	Glu	Met 375	Arg	Gln	Val	тгр	Glu 380	Pro	Met	Gly	Asn
45	А]а 385	Ser	Ile	Phe	Ile	Ser 390	Asn	Gly	Lys	Asn	Pro 395	Lys	Gln	Ala	Leu	Asp 400
	Glu	Ala	⊤hr	Asn	Asp 405	Ile	Thr	Gln	Asn	I]e 410	Lys	Ile	Leu	His	Pro 415	Ser
50	Gln	Asn	Asp	Lys 420	Lys	Gly	Asp									
	<210 <212 <212 <212)> L> 2> }>	104 560 PRT Stap	ohy10	ococo	cus a	aureu	ıs								
55	<400 Met 1)> Leu	104 Ile	Thr	Ala 5	Ala	Met	Val	Cys	Ser 10	Phe	Gly	Leu	Leu	Lys 15	Ser

	Gln	Ala	Ala	Glu 20	Gln	Gln	Ser	Ile	Ser 25	Asp	Val	Туr	Ser	Val 30	Ile	Thr
5	Asp	Ala	Lys 35	Ser	Ala	Leu	Ser	Asn 40	Asn	Ser	Ile	Ser	Asn 45	Asp	Asn	Lys
	Gln	Lys 50	Ala	Ile	Glu	Gln	Val 55	Val	Ser	Ala	Val	Lys 60	Lys	Leu	Ser	Leu
10	Glu 65	Asp	Asn	Ser	Glu	Ser 70	Asn	Ala	Val	Lys	Ser 75	Asp	Val	Arg	Lys	Leu 80
	Glu	Asp	Ala	Lys	Ala 85	Asn	Asp	Asn	Gln	Lys 90	Asp	Thr	Leu	Ser	Gln 95	Leu
15	Thr	Lys	Ser	Leu 100	Ile	Ala	Туr	Glu	Glu 105	Lys	Leu	Ala	Ser	Lys 110	Asp	Ala
	Gly	Ser	Lys 115	Ile	Lys	Leu	Leu	Gln 120	Gln	Gln	Val	Asp	Ala 125	Lys	Asp	Ala
20	Ala	Met 130	Thr	Lys	Ala	Ile	Lys 135	Asp	Lys	Asn	Lys	Ala 140	Glu	Leu	Glu	Ser
20	Leu 145	Asn	Asn	Ser	Leu	Asn 150	Gln	Ile	тгр	Thr	Ser 155	Asn	Glu	Thr	Val	I]e 160
25	Arg	Asn	Туr	Asp	Ala 165	Asn	Gln	Туr	Gly	Gln 170	Ile	Glu	Val	Ala	Leu 175	Leu
20	Gln	Leu	Arg	Ile 180	Ala	Ile	His	Lys	Ser 185	Pro	Leu	Asp	Thr	Ala 190	Lys	Val
20	Ser	His	Ala 195	тгр	Thr	Thr	Phe	Lys 200	Ser	Asn	Ile	Asp	Ніs 205	Val	Asp	Lys
	Lys	Ser 210	Asn	Thr	Ser	Ala	Asn 215	Asp	Gln	Туr	His	Va1 220	Ser	Gln	Leu	Asn
25	Asp 225	Ala	Leu	Glu	Lys	Ala 230	Ile	Lys	Ala	Ile	Asp 235	Asp	Asn	Gln	Leu	Ser 240
30	Asp	Ala	Asp	Ala	Ala 245	Leu	Thr	нis	Phe	11e 250	Glu	Thr	тгр	Pro	туг 255	Val
40	Glu	Gly	Gln	Ile 260	Gln	Thr	Lys	Asp	Gly 265	Ala	Leu	Туr	Thr	Lys 270	Ile	Glu
40	Asp	Lys	Ile 275	Pro	Туr	Туr	Gln	Ser 280	Val	Leu	Asp	Glu	His 285	Asn	Lys	Ala
45	His	Val 290	Lys	Asp	Gly	Leu	Va1 295	Asp	Leu	Asn	Asn	G]n 300	Ile	Lys	Glu	Val
40	Val 305	Gly	His	Ser	Tyr	Ser 310	Phe	Val	Asp	Val	Met 315	Ile	Ile	Phe	Leu	Arg 320
	Glu	Gly	Leu	Glu	Va] 325	Leu	Leu	Ile	Val	Met 330	Thr	Leu	Thr	Thr	Met 335	Thr
50	Arg	Asn	Val	Lys 340	Asp	Lys	Lys	Gly	Thr 345	Ala	Ser	Val	Ile	Gly 350	Gly	Ala
	Ile	Ala	G]y 355	Leu	Val	Leu	Ser	Ile 360	Ile	Leu	Ala	Ile	Thr 365	Phe	Val	Glu
55	Thr	Leu 370	Gly	Asn	Ser	Gly	Ile 375	Leu	Arg	Glu	Ser	Met 380	Glu	Ala	Gly	Leu

	Gly 385	Ile	Val	Ala	Val	Ile 390	Leu	Met	Phe	Ile	Va] 395	Gly	Val	Тrр	Met	Ніs 400
5	Lys	Arg	Ser	Asn	Ala 405	Lys	Arg	тгр	Asn	Asp 410	Met	Ile	Lys	Asn	Met 415	туr
-	Ala	Asn	Ala	1]e 420	Ser	Asn	Gly	Asn	Leu 425	Val	Leu	Leu	Ala	тhr 430	Ile	Gly
	Leu	Ile	Ser 435	Val	Leu	Arg	Glu	Gly 440	Val	Glu	Val	Ile	Ile 445	Phe	Туг	Met
10	Gly	Met 450	Ile	Gly	Glu	Leu	Ala 455	Thr	Lys	Asp	Phe	I]e 460	Ile	Gly	Ile	Ala
	Leu 465	Ala	Ile	Val	Ile	Leu 470	Ile	Ile	Phe	Ala	Leu 475	Leu	Phe	Arg	Phe	Ile 480
15	Val	Lys	Leu	Ile	Pro 485	Ile	Phe	Туr	Ile	Phe 490	Arg	Val	Leu	Ser	Ile 495	Phe
	Ile	Phe	Ile	Met 500	Gly	Phe	Lys	Met	Leu 505	Gly	Val	Ser	Ile	G]n 510	Lys	Leu
20	Gln	Leu	Leu 515	Gly	Ala	Met	Pro	Arg 520	His	Val	Ile	Glu	Gly 525	Phe	Pro	⊤hr
	Ile	Asn 530	тгр	Leu	Gly	Phe	туг 535	Pro	Ser	туr	Glu	Pro 540	Leu	Ile	Ala	Gln
25	Gly 545	Ala	Туr	Ile	Met	Va1 550	Val	Ala	Ile	Leu	I]e 555	Phe	Lys	Phe	Lys	Lys 560
	<21()> 1>	105 334													
30	<212 <212	2> 3>	PRT Stap	ohy]c	ococo	cus a	aurei	JS								
30	<212 <212 <400 Met 1	2> 3> 0> Gln	PRT Stap 105 Lys	bhyld Lys	val	cus a Ile	aurei Ala	us Ala	Ile	Ile 10	Gly	Thr	Ser	Ala	Ile 15	Ser
30 35	<212 <212 <400 Met 1 Ala	2> 3> Gln Val	PRT Stap 105 Lys Ala	bhyld Lys Ala 20	val 5 Thr	cus a Ile Gln	Ala Ala Ala	us Ala Asn	Ile Ala 25	Ile 10 Ala	Gly Thr	⊤hr ⊤hr	Ser His	Ala Thr 30	Ile 15 Val	Ser Lys
30 35	<212 <212 <400 Met 1 Ala Pro	2> 3> Gln Val Gly	PRT Star 105 Lys Ala Glu 35	bhyld Lys Ala 20 Ser	val 5 ⊤hr Val	Ile Gln Trp	Ala Ala Ala Ala	Ala Asn Ile 40	Ile Ala 25 Ser	Ile 10 Ala Asn	Gly Thr Lys	⊤hr ⊤hr ⊤yr	Ser His Gly 45	Ala Thr 30 Ile	Ile 15 Val Ser	Ser Lys Ile
30 35 40	<212 <212 <400 Met 1 Ala Pro Ala	2 3 Gln Val Gly Lys 50	PRT Stap 105 Lys Ala Glu 35 Leu	Lys Ala 20 Ser Lys	val 5 ⊤hr Val Ser	Ile Gln Trp Leu	Ala Ala Ala Ala Asn 55	Ala Asn Ile 40 Asn	Ile Ala 25 Ser Leu	Ile 10 Ala Asn Thr	Gly Thr Lys Ser	⊤hr ⊤hr ⊤yr Asn 60	Ser His Gly 45 Leu	Ala Thr 30 Ile Ile	Ile 15 Val Ser Phe	Ser Lys Ile Pro
30 35 40	<212 <212 <213 <400 Met 1 Ala Pro Ala Asn 65	Solution Sol	PRT Star 105 Lys Ala Glu 35 Leu Val	Lys Ala 20 Ser Lys Leu	val Thr Val Ser Lys	Ile Gln Trp Leu Val 70	Ala Ala Ala Ala Asn 55 Ser	Ala Asn Ile Asn Asn Gly	Ile Ala 25 Ser Leu Ser	Ile 10 Ala Asn Thr Ser	Gly Thr Lys Ser Asn 75	⊤hr ⊤hr ⊤yr Asn 60 ser	Ser His Gly Leu Thr	Ala Thr 30 Ile Ile Ser	Ile 15 Val Ser Phe Asn	Ser Lys Ile Pro Ser 80
30 35 40	<212 <212 <212 Ala Pro Ala Asn 65 Ser	Gln Val Gly Lys Gln Arg	PRT Star 105 Lys Ala Glu 35 Leu Val Pro	Lys Ala 20 Ser Lys Leu Ser	Val Thr Val Ser Lys Thr 85	Ile Gln Trp Leu Val 70 Asn	Ala Ala Ala Ala Ssr Ser Ser	Ala Asn Ile Asn Gly Gly	Ile Ala 25 Ser Leu Ser Gly	Ile Ala Asn Thr Ser Gly 90	Gly Thr Lys Ser Asn 75 Ser	⊤hr ⊤hr ⊤yr Asn 60 Ser ⊤yr	Ser His Gly 45 Leu Thr Tyr	Ala Thr 30 Ile Ile Ser Thr	Ile Val Ser Phe Asn Val 95	Ser Lys Ile Pro Ser 80 Gln
30 35 40 45	<212 <212 <212 <400 Met 1 Ala Pro Ala Asn 65 Ser Ala	2 3 Gln Val Gly Lys 50 Gln Arg Gly	PRT Star 105 Lys Ala Glu 35 Leu Val Pro Asp	Lys Ala 20 Ser Lys Leu Ser Ser 100	Val Thr Val Ser Lys Thr 85 Leu	Ile Gln Trp Leu Val 70 Asn Ser	Ala Ala Ala Ala Ser Ser Leu	Ala Asn Ile Asn Gly Gly Ile	Ile Ala Ser Leu Ser Gly Ala	Ile 10 Ala Asn Thr Ser Gly 90 Ser	Gly Thr Lys Ser Asn 75 Ser Lys	Thr Thr Tyr Asn 60 Ser Tyr Tyr	Ser His Gly Leu Thr Tyr Gly	Ala Thr 30 Ile Ile Ser Thr Thr	Ile Val Ser Phe Asn Val 95 Thr	Ser Lys Ile Pro Ser 80 Gln Tyr
30 35 40 45 50	<212 <212 <213 <400 Met 1 Ala Pro Ala Asn 65 Ser Ala Gln	Gln Val Gly Lys Gln Arg Gly Asn	PRT Star 105 Lys Ala Glu 35 Leu Val Pro Asp Ile 115	Lys Ala 20 Ser Lys Leu Ser 100 Met	Val Thr Val Ser Lys Thr 85 Leu Arg	Ile Gln Trp Leu Val 70 Asn Ser Leu	Ala Ala Ala Ala Ser Ser Leu Asn	Ala Asn Jle Asn Gly Gly Ile Gly 120	Ile Ala Ser Leu Ser Gly Ala 105 Leu	Ile 10 Ala Asn Thr Ser Gly 90 Ser Asn	Gly Thr Lys Ser Asn Zsr Lys Asn	Thr Thr Tyr Asn 60 Ser Tyr Tyr Tyr Phe	Ser His Gly Leu Thr Tyr Gly Phe 125	Ala Thr 30 Ile Ile Ser Thr Thr 110 Ile	Ile Val Ser Phe Asn Val 95 Thr Tyr	Ser Lys Ile Pro Ser Gln Tyr Pro
30 35 40 45 50	<212 <212 <212 <212 Ala Pro Ala Asn 65 Ser Ala Gln Gly	Gln Val Gly Lys Gln Arg Gly Asn Gln Sln 130	PRT Star 105 Lys Ala Glu 35 Leu Val Pro Asp Ile 115 Lys	Lys Ala 20 Ser Lys Leu Ser 100 Met Leu	Val Thr Val Ser Lys Thr 85 Leu Arg Lys	Ile Gln Trp Leu Val Asn Ser Leu Val	Ala Ala Ala Ala Asn Ser Leu Asn Ser 135	Ala Asn Jle Asn Gly Gly Ile Gly 120 Gly	Ile Ala Ser Leu Ser Gly Ala 105 Leu Thr	Ile Ala Asn Thr Ser Gly 90 Ser Asn Ala	Gly Thr Lys Ser Asn Zsr Lys Asn Ser	Thr Thr Tyr Asn 60 Ser Tyr Tyr Tyr Phe Ser 140	Ser His Gly Leu Thr Tyr Gly Phe 125 Ser	Ala Thr 30 Ile Ile Ser Thr Thr 110 Ile Asn	Ile Val Ser Phe Asn Val 95 Thr Tyr Ala	Ser Lys Ile Pro Ser Gln Tyr Pro Ala
30 35 40 45 50 55	<pre><212 <212 <213 <213 Ala Ala Ala Asn 65 Ser Ala Gln Gly Ser 145</pre>	Gln Val Gly Lys Gln Arg Gly Asn Gln 130 Asn	PRT Star 105 Lys Ala Glu 35 Leu Val Pro Asp Ile 115 Lys Ser	Lys Ala 20 Ser Lys Leu Ser 100 Met Leu Ser	Val Thr Val Ser Lys Thr 85 Leu Arg Lys Arg	Ile Gln Trp Leu Val Asn Ser Leu Val Pro 150	Ala Ala Ala Asn Ser Leu Asn Ser 135 Ser	Ala Asn Ile Asn Gly Gly Ile Gly 120 Gly Thr	Ile Ala Ser Leu Ser Gly Ala 105 Leu Thr Asn	Ile Ala Asn Thr Ser Gly 90 Ser Asn Ala Ser	Gly Thr Lys Ser Asn Ser Lys Asn Ser Gly 155	Thr Tyr Asn 60 Ser Tyr Tyr Phe Ser 140 Gly	Ser His Gly Leu Thr Tyr Gly Phe 125 Ser Gly	Ala Thr 30 Ile Ile Ser Thr Thr 110 Ile Asn Ser	Ile Val Ser Phe Asn Val Thr Tyr Ala Tyr	Ser Lys Ile Pro Ser Gln Tyr Pro Ala Tyr 160

					165					170					175	
	Thr	Тhr	⊤yr	Gln 180	Lys	Ile	Met	Ser	Leu 185	Asn	Gly	Leu	Asn	Asn 190	Phe	Phe
5	Ile	Туr	Pro 195	Gly	Gln	Lys	Leu	Lys 200	Val	⊤hr	Gly	Asn	Ala 205	Ser	Тhr	Asn
	Ser	G]y 210	Ser	Ala	тhr	Тhr	Thr 215	Asn	Arg	Gly	туr	Asn 220	Thr	Pro	Val	Phe
10	Ser 225	His	Gln	Asn	Leu	Туг 230	Thr	тгр	Gly	Gln	Cys 235	Тhr	Туr	His	Val	Phe 240
	Asn	Arg	Arg	Ala	Glu 245	Ile	Gly	Lys	Gly	Ile 250	Ser	Тhr	Туr	Тгр	Тгр 255	Asn
15	Ala	Asn	Asn	Тгр 260	Asp	Asn	Ala	Ala	A]a 265	Ala	Asp	Gly	Туr	Thr 270	Ile	Asp
	Asn	Arg	Pro 275	Тhr	Val	Gly	Ser	I]e 280	Ala	Gln	Тhr	Asp	Va] 285	Gly	Туr	Tyr
20	Gly	His 290	Val	Met	Phe	Val	Glu 295	Arg	Val	Asn	Asn	Asp 300	Gly	Ser	Ile	Leu
	Va1 305	Ser	Glu	Met	Asn	туг 310	Ser	Ala	Ala	Pro	G]y 315	Ile	Leu	Тhr	туг	Arg 320
25	Тhr	Val	Pro	Ala	туг 325	Gln	Val	Asn	Asn	туr 330	Arg	туr	Ile	His		
	<21(<21))> 1>	106 279													
20	<213	2> 3>	Stap	ohy10	coco	cus a	aurei	IS								
30	<212 <213 <400 Met 1	2> 3>)> Lys	Stap 106 Lys	ohylo Ser	Leu 5	cus a Thr	aurei Val	ıs Thr	Val	Ser 10	Ser	Val	Leu	Ala	Phe 15	Leu
30 35	<212 <213 <400 Met 1 Ala	2> 3> D> Lys Leu	Star 106 Lys Asn	Ser Asn 20	Leu 5 Ala	cus a Thr Ala	ureu Val His	ıs Thr Ala	Val Gln 25	Ser 10 Gln	Ser His	Val Gly	Leu Thr	Ala Gln 30	Phe 15 Val	Leu Lys
30 35	<212 <213 <400 Met 1 Ala Thr	2> 3> D> Lys Leu Pro	Asn Val	Ser Asn 20 Gln	Leu 5 Ala His	cus a Thr Ala Asn	val His Tyr	JS Thr Ala Val 40	val Gln 25 Ser	Ser 10 Gln Asn	Ser His Val	val Gly Gln	Leu Thr Ala 45	Ala Gln 30 Gln	Phe 15 Val Thr	Leu Lys Gln
30 35 40	<212 <213 <400 Met 1 Ala Thr Ser	2> 3> Lys Leu Pro 50	Asn Val Thr	ser Asn 20 Gln Thr	Leu 5 Ala His Tyr	cus a Thr Ala Asn Thr	val His Tyr Val	IS Thr Ala Val 40 Val	Val Gln 25 Ser Ala	Ser 10 Gln Asn Gly	Ser His Val Asp	val Gly Gln Ser 60	Leu Thr Ala 45 Leu	Ala Gln 30 Gln Tyr	Phe 15 Val Thr Lys	Leu Lys Gln Ile
30 35 40	<212 <213 <400 Met 1 Ala Thr Ser Ala 65	223 3> Lys Leu Pro 50 Leu	Star 106 Lys Asn Val 35 Thr Glu	Ser Asn 20 Gln Thr His	Leu 5 Ala His Tyr His	Thr Ala Asn Thr Leu 70	val His Tyr Val 55 Thr	Thr Ala Val Val Val Leu	Val Gln 25 Ser Ala Asn	Ser 10 Gln Asn Gly Gln	Ser His Val Asp Leu 75	Val Gly Gln Ser 60 Tyr	Leu Thr Ala 45 Leu Ser	Ala Gln Gln Tyr Tyr	Phe 15 Val Thr Lys Asn	Leu Lys Gln Ile 80
30 35 40	<212 <213 <400 Met 1 Ala Thr Ser Ala 65 Gly	23> D> Lys Leu Pro 50 Leu Val	Star 106 Lys Asn Val 35 Thr Glu Thr	Ser Asn 20 Gln Thr His Pro	Leu Ala His Tyr His Leu 85	Thr Ala Asn Thr Leu 70 Ile	val His Tyr Val 55 Thr Phe	IS Thr Ala Val Val Leu Pro	val Gln Ser Ala Asn Gly	Ser 10 Asn Gly Gln Asp 90	Ser His Val Asp Leu 75 Val	val Gly Gln Ser 60 Tyr Ile	Leu Thr Ala 45 Leu Ser Ser	Ala Gln Gln Tyr Tyr Leu	Phe 15 Val Thr Lys Asn Val 95	Leu Lys Gln Ile Pro 80 Pro
30 35 40 45	<212 <213 <400 Met 1 Ala Thr Ser Ala 65 Gly Gln	23> D> Lys Leu Pro Pro 50 Leu Val Asn	Star 106 Lys Asn Val 35 Thr Glu Thr Lys	Ser Asn 20 Gln Thr His Pro Val 100	Leu Ala His Tyr His Leu 85	Thr Ala Asn Thr Leu 70 Ile Gln	val His Tyr Val 55 Thr Phe Thr	Thr Ala Val Val Leu Pro Lys	val G]n Ser Ala Asn Gly Ala	Ser 10 Gln Asn Gly Gln Asp 90 Val	Ser His Val Asp Leu 75 Val Lys	val Gly Gln Ser Tyr Ile Ser	Leu Thr Ala Leu Ser Ser Pro	Ala Gln Gln Tyr Tyr Leu Val	Phe 15 Val Thr Lys Asn Val 95 Arg	Leu Lys Gln Ile Pro 80 Pro Lys
30 35 40 45	<212 <213 <400 Met 1 Ala Thr Ser Ala 65 Gly Gln Ala	23> D> Lys Leu Pro 50 Leu Val Asn Ser	Star 106 Lys Asn Val 35 Thr Glu Thr Lys Gln 115	Ser Asn 20 Gln Thr His Pro Val 100 Ala	Leu Leu Ala His Tyr His Leu Lys	Thr Ala Asn Thr Leu Gln Lys	val His Tyr Val Thr Phe Thr Val	Thr Ala Val Val Leu Pro Lys Val 120	val Gln Ser Ala Gly Ala 105 Lys	Ser 10 Gln Asn Gly Gln Asp 90 Val Gln	Ser His Val Asp Leu 75 Val Lys Pro	Val Gly Gln Ser Tyr Ile Ser Val	Leu Thr Ala Leu Ser Ser Pro Gln 125	Ala Gln Gln Tyr Tyr Leu Val 110 Gln	Phe 15 Val Thr Lys Asn Val 95 Arg Ala	Leu Lys Gln Ile Pro 80 Pro Lys Ser
30 35 40 45 50	<pre><21 <21 <400 Met 1 Ala Thr Ser Ala 65 Gly Gln Ala Lys</pre>	23> Lys Lys Leu Pro Pro 50 Leu Val Asn Ser Lys 130	Star 106 Lys Asn Val 35 Thr Glu Thr Lys Gln 115 Val	Ser Asn 20 Gln Thr His Pro Val 100 Ala Val	Leu Leu Ala His Tyr His Leu Lys Lys Val	Thr Ala Asn Thr Leu Gln Lys Lys	val His Tyr Val 55 Thr Phe Thr Val Gln 135	Thr Ala Val Val Leu Pro Lys Val 120 Ala	Val G]n Ser Ala Asn Gly Ala 105 Lys Pro	Ser 10 Gln Asn Gly Gln Asp 90 Val Gln Lys	Ser His Val Asp Leu Val Lys Pro Gln	Val Gly Gln Ser Tyr Ile Ser Val Ala 140	Leu Thr Ala 45 Leu Ser Ser Pro Gln 125 Val	Ala Gln Gln Tyr Leu Val 110 Gln Thr	Phe 15 Val Thr Lys Asn Val 95 Arg Ala Lys	Leu Lys Gln Ile Pro Pro Lys Ser Thr
30 35 40 45 50	<pre><212 <211 <211 <400 Met 1 Ala Thr Ser Ala 65 Gly Gln Ala Lys Val 145</pre>	23> Lys Lys Leu Pro 50 Leu Val Asn Ser Lys 130 Asn	Star 106 Lys Asn Val 35 Thr Glu Thr Lys Gln 115 Val Val	ohylo Ser Asn 20 Gln Thr His Pro Val 100 Ala Val Ala	Leu Leu Ala His Tyr His Leu Lys Lys Val Tyr	Thr Ala Asn Thr Leu Ile Gln Lys Lys Lys	val His Tyr Val 55 Thr Phe Thr Val Gln 135 Pro	Thr Ala Val Val Leu Pro Lys Val 120 Ala Ala	Val Gln Ser Ala Asn Gly Ala Lys Pro Gln	Ser 10 Gln Asn Gly Gln Val Gln Lys Val	Ser His Val Asp Leu Val Lys Pro Gln 155	Val Gly Gln Ser Gl Tyr Ile Ser Val Ala 140 Lys	Leu Thr Ala 45 Leu Ser Ser Pro Gln 125 Val Ser	Ala Gln Gln Tyr Leu Val 110 Gln Thr Val	Phe 15 Val Thr Lys Asn Val 95 Arg Ala Lys Pro	Leu Lys Gln Ile Pro Pro Lys Ser Thr Thr 160

	Leu	Тyr	Ala	Туг 180	Gly	Asn	Cys	Thr	Tyr 185	Tyr	Ala	Phe	Asp	Arg 190	Arg	Ala
5	Gln	Leu	Gly 195	Arg	Ser	Ile	Gly	Ser 200	Leu	тгр	Gly	Asn	Ala 205	Asn	Asn	тгр
	Asn	Туг 210	Ala	Ala	Lys	Val	A]a 215	Gly	Phe	Lys	Val	Asp 220	Lys	Thr	Pro	Glu
10	Va] 225	Gly	Ala	I]e	Phe	G]n 230	Thr	Ala	Ala	Gly	Pro 235	Тyr	Gly	His	Val	G]y 240
	Val	Val	Glu	Ser	Va1 245	Asn	Pro	Asn	Gly	Thr 250	Ile	Thr	Val	Ser	Glu 255	Met
15	Asn	Тyr	Ala	G]y 260	Phe	Asn	Val	Lys	Ser 265	Ser	Arg	Thr	Ile	Leu 270	Asn	Pro
	Gly	Lys	Туг 275	Asn	Тyr	Ile	His									
20	<210 <211 <212 <213)> L> 2> }>	107 346 PRT Stap	ohy1c	ococo	cus a	aurei	ıs								
25	<400 Met 1)> Ile	107 Ile	Ala	Ile 5	Ile	Ile	Leu	Ile	Phe 10	Ile	Ser	Phe	Phe	Phe 15	Ser
20	Gly	Ser	Glu	Thr 20	Ala	Leu	Тhr	Ala	Ala 25	Asn	Lys	Тhr	Lys	Phe 30	Lys	Thr
30	Glu	Ala	Asp 35	Lys	Gly	Asp	Lys	Lys 40	Ala	Lys	Gly	Ile	Va] 45	Lys	Leu	Leu
	Glu	Lys 50	Pro	Ser	Glu	Phe	Ile 55	Thr	Thr	Ile	Leu	Ile 60	Gly	Asn	Asn	Val
35	A]a 65	Asn	Ile	Leu	Leu	Pro 70	Thr	Leu	Val	Thr	Ile 75	Met	Ala	Leu	Arg	Тгр 80
	Gly	Ile	Ser	Val	Gly 85	Ile	Ala	Ser	Ala	val 90	Leu	⊤hr	Val	Val	11e 95	Ile
10	Leu	Ile	Ser	Glu 100	Val	Ile	Pro	Lys	Ser 105	Val	Ala	Ala	Thr	Phe 110	Pro	Asp
	Lys	Ile	Thr 115	Arg	Leu	Val	туr	Pro 120	Ile	Ile	Asn	Ile	Cys 125	Val	Ile	Val
45	Phe	Arg 130	Pro	Ile	Тhr	Leu	Leu 135	Leu	Asn	Lys	Leu	тhr 140	Asp	Ser	Ile	Asn
	Arg 145	Ser	Leu	Ser	Lys	Gly 150	Gln	Pro	Gln	Glu	His 155	Gln	Phe	Ser	Lys	Glu 160
50	Glu	Phe	Lys	Тhr	Met 165	Leu	Ala	Ile	Ala	Gly 170	His	Glu	Gly	Ala	Leu 175	Asn
	Glu	Ile	Glu	Thr 180	Ser	Arg	Leu	Glu	Gly 185	Val	Ile	Asn	Phe	Glu 190	Asn	Leu
55	Lys	Val	Lys 195	Asp	Val	Asp	Thr	Thr 200	Pro	Arg	Ile	Asn	Va] 205	Thr	Ala	Phe
55	Ala	Ser 210	Asn	Ala	Thr	Тyr	Glu 215	Glu	Val	туr	Glu	Thr 220	Val	Met	Asn	Lys

	Pro 225	Туr	Тhr	Arg	Tyr	Pro 230	Val	туг	Glu	Gly	Asp 235	I]e	Asp	Asn	Ile	Ile 240
5	Gly	Val	Phe	His	Ser 245	Lys	туr	Leu	Leu	A]a 250	тгр	Ser	Asn	Lys	Lys 255	Glu
Ŭ	Asn	Gln	IJe	Thr 260	Asn	туг	Ser	Ala	Lys 265	Pro	Leu	Phe	Val	Asn 270	Glu	His
	Asn	Lys	Ala 275	Glu	⊤rp	Val	Leu	Arg 280	Lys	Met	Thr	Ile	Ser 285	Arg	Lys	His
10	Leu	Ala 290	Ile	Val	Leu	Asp	Glu 295	Phe	Gly	Gly	Thr	G]u 300	Ala	Ile	Val	Ser
	Ніs 305	Glu	Asp	Leu	Ile	Glu 310	Glu	Leu	Leu	Gly	Met 315	Glu	Ile	Glu	Asp	G]u 320
15	Met	Asp	Lys	Lys	Glu 325	Lys	Glu	Lys	Leu	Ser 330	Gln	Gln	Gln	Ile	G]n 335	Phe
	Gln	Gln	Arg	Lys 340	Asn	Arg	Asn	Val	Ser 345	Ile						
20	<21(<21) <21))> 1> 2>	108 391 PRT	- h 7 .												
	<21:	3>).	stap	onyic		cus a	aurei	JS								
25	2400 Met 1	Lys	Leu	Lys	Pro 5	Phe	Leu	Pro	Ile	Leu 10	Ile	Ser	Gly	Ala	Val 15	Phe
	Ile	Val	Phe	Leu 20	Leu	Leu	Pro	Ala	Ser 25	тгр	Phe	⊤hr	Gly	Leu 30	Val	Asn
30	Glu	Lys	Thr 35	Val	Glu	Asp	Asn	Arg 40	Thr	Ser	Leu	⊤hr	Asp 45	Gln	Val	Leu
	Lys	Gly 50	Thr	Leu	Ile	Gln	Asp 55	Lys	Leu	туr	Glu	Ser 60	Asn	Lys	туг	Tyr
35	Pro 65	Ile	туг	Gly	Ser	Ser 70	Glu	Leu	Gly	Lys	Asp 75	Asp	Pro	Phe	Asn	Pro 80
	Ala	Ile	Ala	Leu	Asn 85	Lys	His	Asn	Ala	Asn 90	Lys	Lys	Ala	Phe	Leu 95	Leu
40	Gly	Ala	Gly	Gly 100	Ser	Thr	Asp	Leu	I]e 105	Asn	Ala	Val	Glu	Leu 110	Ala	Ser
	Gln	Туr	Asp 115	Lys	Leu	Lys	Gly	Lys 120	Lys	Leu	Thr	Phe	I]e 125	Ile	Ser	Pro
45	Gln	Trp 130	Phe	Thr	Asn	His	Gly 135	Leu	Thr	Asn	Gln	Asn 140	Phe	Asp	Ala	Arg
	Met 145	Ser	Gln	Thr	Gln	I]e 150	Asn	Gln	Met	Phe	G]n 155	G]n	Lys	Asn	Met	Ser 160
50	⊤hr	Glu	Leu	Lys	Arg 165	Arg	туr	Ala	Gln	Arg 170	Leu	Leu	Gln	Phe	Pro 175	His
	Val	His	Asn	Lys 180	Glu	туг	Leu	Lys	Ser 185	туr	Ala	Lys	Asn	Pro 190	Lys	Glu
55	⊤hr	Lys	Asp 195	Ser	⊤yr	Ile	Ser	G]y 200	Phe	Lys	Glu	Asn	G]n 205	Leu	Ile	Lys
-	Ile	Glu	Ala	Ile	Lys	Ser	Leu	Phe	Ala	Met	Asp	Lys	Ser	Pro	Leu	Glu

		210					215					220				
	Ніs 225	Val	Lys	Pro	Ala	тhr 230	Lys	Pro	Asp	Ala	Ser 235	тгр	Asp	Glu	Met	Lys 240
5	Gln	Lys	Ala	Val	Glu 245	Ile	Gly	Lys	Ala	Asp 250	Thr	Thr	Ser	Asn	Lys 255	Phe
	Gly	Ile	Arg	Asp 260	Gln	туr	тгр	Lys	Leu 265	Ile	Gln	Glu	Ser	Lys 270	Arg	Lys
10	Val	Arg	Arg 275	Asp	Тyr	Glu	Phe	Asn 280	Val	Asn	Ser	Pro	Glu 285	Phe	Gln	Asp
	Leu	Glu 290	Leu	Leu	Val	Lys	Thr 295	Met	Arg	Ala	Ala	Gly 300	Ala	Asp	Val	Gln
15	Туг 305	Val	Ser	Ile	Pro	Ser 310	Asn	Gly	Val	⊤rp	Туг 315	Asp	His	Ile	Gly	Ile 320
	Asp	Lys	Glu	Arg	Arg 325	Gln	Ala	Val	туr	Lys 330	Lys	Ile	His	Ser	Thr 335	Val
20	Val	Asp	Asn	Gly 340	Gly	Lys	Ile	Тyr	Asp 345	Met	Тhr	Asp	Lys	Asp 350	Тyr	Glu
	Lys	Туr	Va] 355	Ile	Ser	Asp	Ala	Va] 360	His	Ile	Gly	тгр	Lys 365	Gly	тгр	Val
25	тyr	Met 370	Asp	Glu	Gln	Ile	Ala 375	Lys	нis	Met	Lys	Gly 380	Glu	Pro	Gln	Pro
	Glu 385	Va]	Asp	Lys	Pro	Lys 390	Asn									
30	<210 <211 <211 <211)> 1> 2> 3>	109 1256 PRT Stap	5 phylo	ococo	cus a	aurei	ıs								
30 35	<210 <212 <212 <212 <212 <400 Met 1	0> 1> 2> 3> 0> Ala	109 1250 PRT Stap 109 Lys	5 ohyld Lys	Phe 5	cus a Asn	aureı Tyr	is Lys	Leu	Pro 10	Ser	Met	Val	Ala	Leu 15	Thr
30 35	<210 <211 <211 <211 <211 <400 Met 1 Leu	D> 1> 2> 3> D> Ala Val	109 1256 PRT Stap 109 Lys Gly	5 bhyld Lys Ser 20	Phe 5 Ala	cus a Asn Val	aureu Tyr Thr	ıs Lys Ala	Leu His 25	Pro 10 Gln	Ser Val	Met Gln	Val Ala	Ala Ala 30	Leu 15 Glu	Thr Thr
30 35 40	<210 <211 <211 <211 <211 <400 Met 1 Leu Thr)> 1> 2> 3> 0> Ala Val Gln	109 1256 PRT Stap 109 Lys Gly Asp 35	5 bhyld Lys Ser 20 Gln	Phe 5 Ala Thr	cus a Asn Val Thr	aureu Tyr Thr Asn	Lys Ala Lys 40	Leu His 25 Asn	Pro 10 Gln Val	Ser Val Leu	Met Gln Asp	Val Ala Ser 45	Ala Ala 30 Asn	Leu 15 Glu Lys	Thr Thr Val
30 35 40	<210 <211 <211 <211 <211 <400 Met 1 Leu Thr Lys	0> 1> 2> 3> 0> Ala Gln Ala 50	109 1256 PRT Stap 109 Lys Gly Asp 35 Thr	5 Dhyld Lys Ser 20 Gln Thr	Phe 5 Ala Thr Glu	cus a Asn Val Thr Gln	Tyr Thr Asn Ala 55	Lys Ala Lys 40 Lys	Leu His 25 Asn Ala	Pro 10 Gln Val Glu	Ser Val Leu Val	Met Gln Asp Lys 60	Val Ala Ser 45 Asn	Ala Ala 30 Asn Pro	Leu 15 Glu Lys Thr	Thr Thr Val Gln
30 35 40	<210 <211 <211 <211 <211 <400 Met 1 Leu Thr Lys Asn 65	D> 1> 2> 3> D> Ala Gln Ala 50 Ile	109 1256 PRT Stap 109 Lys Gly Asp 35 Thr Ser	5 Lys Ser 20 Gln Thr Gly	Phe Phe Ala Thr Glu Thr	Cus a Asn Val Thr Gln Gln 70	Tyr Thr Asn Ala 55 Val	IS Lys Ala Lys Lys Lys Tyr	Leu His 25 Asn Ala Gln	Pro 10 Gln Val Glu Asp	Ser Val Leu Val Pro 75	Met Gln Asp Lys 60 Ala	Val Ala Ser 45 Asn Ile	Ala Ala 30 Asn Pro Val	Leu 15 Glu Lys Thr Gln	Thr Thr Val Gln 80
30 35 40 45	<210 <211 <211 <211 <211 <400 Met 1 Leu Thr Lys Asn 65 Lys	D> 1> 2> 3> D> Ala Gln Ala 50 Ile Thr	109 1256 PRT Stap 109 Lys Gly Asp 35 Thr Ser Ala	5 Lys Ser 20 Gln Thr Gly Asn	Phe 5 Ala Thr Glu Thr Asn 85	Cus a Asn Val Thr Gln Gln 70 Lys	Tyr Thr Asn Ala Val Thr	IS Lys Ala Lys Lys Tyr Gly	Leu His Asn Ala Gln Asn	Pro Gln Val Glu Asp Ala 90	Ser Val Leu Val Pro 75 Gln	Met Gln Asp Lys 60 Ala Val	Val Ala Ser 45 Asn Ile Ser	Ala Ala 30 Asn Pro Val Gln	Leu Glu Lys Thr Gln Lys 95	Thr Thr Val Gln Pro 80 Val
30 35 40 45	<210 <211 <211 <211 <211 <400 Met 1 Leu Thr Lys Asn 65 Lys Asp	D> 1> 2> 3> D> Ala Gln Ala 50 Ile Thr Thr	109 1256 PRT Star 109 Lys Gly Asp 35 Thr Ser Ala Ala	5 Lys Ser Gln Thr Gly Asn Gln	Phe 5 Ala Thr Glu Thr Asn 85 Val	Cus a Asn Val Thr Gln Gln ZUS Asn	Tyr Thr Asn Ala Val Thr Gly	Lys Ala Lys Lys Lys Tyr Gly Asp	Leu His Asn Ala Gln Asn Thr 105	Pro 10 Gln Val Glu Asp Ala 90 Arg	Ser Val Leu Val Pro 75 Gln Ala	Met Gln Asp Lys 60 Ala Val Asn	Val Ala Ser 45 Asn Ile Ser Gln	Ala Ala Asn Pro Val Gln Ser 110	Leu Glu Lys Thr Gln Lys 95 Ala	Thr Thr Val Gln Pro 80 Val Thr
30 35 40 45 50	<210 <211 <211 <211 <211 <400 Met 1 Leu Thr Lys Asn 65 Lys Asp Thr	D> 1> 2> 3> Ala Val Gln Ala 50 Ile Thr Thr Asn	109 1256 PRT Stap 109 Lys Gly Asp 35 Thr Ser Ala Ala Ala Asn 115	5 Lys Ser 20 Gln Thr Gly Asn Gln 100 Thr	Phe Sha Ala Thr Glu Thr Asn Val Gln	Cus a Asn Val Thr Gln Gln ZO Lys Asn Pro	Tyr Thr Asn Ala Val Thr Gly Val	Lys Ala Lys Lys Lys Tyr Gly Asp Ala	Leu His 25 Asn Ala Gln Asn Thr 105 Lys	Pro 10 Gln Val Glu Asp Ala 90 Arg Ser	Ser Val Leu Val Pro Gln Ala Thr	Met Gln Asp Lys 60 Ala Val Asn Ser	Val Ala Ser Asn Ile Ser Gln Thr 125	Ala Ala 30 Asn Pro Val Gln Ser 110 Thr	Leu Glu Lys Thr Gln Lys Ala Ala	Thr Thr Val Gln Pro 80 Val Thr Pro
30 35 40 45 50	<pre><210 <221 <221 <221 <221 <221 <221 <2400 Met 1 Leu Thr Lys Asn 65 Lys Asp Thr Lys</pre>	D> 1> 2> 3> Ala Val Gln Ala 50 Ile Thr Thr Asn Thr 130	109 1256 PRT Star 109 Lys Gly Asp 35 Thr Ser Ala Ala Asn 115 Asn	5 Lys Ser 20 Gln Thr Gly Asn Gln 100 Thr Thr	Phe 5 Ala Thr Glu Thr Asn Val Gln Asn	Cus a Asn Val Thr Gln Gln ZO Lys Asn Pro Val	Tyr Thr Asn Ala Val Thr Gly Val Thr 135	Lys Ala Lys Lys Lys Tyr Gly Asp Ala 120 Asn	Leu His 25 Asn Ala Gln Asn Thr 105 Lys Ala	Pro 10 Gln Val Glu Asp Ala 90 Arg Ser Gly	Ser Val Leu Val Pro Gln Ala Thr Tyr	Met Gln Asp Lys 60 Ala Val Asn Ser 140	Val Ala Ser 45 Asn Ile Ser Gln Thr 125 Leu	Ala Ala 30 Asn Pro Val Gln Ser 110 Thr Val	Leu Glu Lys Thr Gln Lys Ala Ala Asp	Thr Thr Val Gln Pro 80 Val Thr Pro Asp

	Ala	Ala	Lys	Pro	Ala 165	Ala	Leu	Glu	Thr	Gln 170	Туr	Lys	Thr	Ala	Ala 175	Pro
5	Lys	Ala	Ala	Thr 180	Thr	Ser	Ala	Pro	Lys 185	Ala	Lys	Thr	Glu	Ala 190	Thr	Pro
	Lys	Val	Thr 195	Thr	Phe	Ser	Ala	Ser 200	Ala	Gln	Pro	Arg	Ser 205	Val	Ala	Ala
10	Thr	Pro 210	Lys	Thr	Ser	Leu	Pro 215	Lys	Туr	Lys	Pro	G]n 220	Val	Asn	Ser	Ser
	Ile 225	Asn	Asp	Туr	Ile	Cys 230	Lys	Asn	Asn	Leu	Lys 235	Ala	Pro	Lys	Ile	Glu 240
15	Glu	Asp	туr	Thr	Ser 245	Туr	Phe	Pro	Lys	Туг 250	Ala	Туr	Arg	Asn	Gly 255	Val
	Gly	Arg	Pro	Glu 260	Gly	Ile	Val	Val	ніs 265	Asp	Thr	Ala	Asn	Asp 270	Arg	Ser
20	Thr	Ile	Asn 275	Gly	Glu	Ile	Ser	Tyr 280	Met	Lys	Asn	Asn	Туг 285	Gln	Asn	Ala
20	Phe	Va] 290	His	Ala	Phe	Val	Asp 295	Gly	Asp	Arg	Ile	Ile 300	Glu	Thr	Ala	Pro
25	тhr 305	Asp	Туr	Leu	Ser	Тгр 310	Gly	Val	Gly	Ala	Val 315	Gly	Asn	Pro	Arg	Phe 320
20	Ile	Asn	Val	Glu	Ile 325	Val	His	Thr	His	Asp 330	Туr	Ala	Ser	Phe	Ala 335	Arg
20	Ser	Met	Asn	Asn 340	Туr	Ala	Asp	Туr	Ala 345	Ala	Thr	Gln	Leu	Gln 350	Туr	Туr
30	Gly	Leu	Lys 355	Pro	Asp	Ser	Ala	Glu 360	Туr	Asp	Gly	Asn	Gly 365	Thr	Val	тгр
25	Тhr	ніs 370	туr	Ala	Val	Ser	Lys 375	туr	Leu	Gly	Gly	Thr 380	Asp	His	Ala	Asp
35	Pro 385	His	Gly	туr	Leu	Arg 390	Ser	His	Asn	туr	Ser 395	туr	Asp	Gln	Leu	туг 400
40	Asp	Leu	Ile	Asn	Glu 405	Lys	Туr	Leu	Ile	Lys 410	Met	Gly	Lys	Val	Ala 415	Pro
40	тгр	Gly	Thr	G]n 420	Ser	Thr	Thr	Thr	Pro 425	Thr	Thr	Pro	Ser	Lys 430	Pro	Thr
45	Тhr	Pro	Ser 435	Lys	Pro	Ser	Thr	Gly 440	Lys	Leu	Thr	Val	Ala 445	Ala	Asn	Asn
45	Gly	Va1 450	Ala	Gln	Ile	Lys	Pro 455	Thr	Asn	Ser	Gly	Leu 460	Тyr	Thr	Thr	Val
	туг 465	Asp	Lys	Thr	Gly	Lys 470	Ala	Thr	Asn	Glu	Va1 475	Gln	Lys	Thr	Phe	Ala 480
50	Val	Ser	Lys	Thr	Ala 485	Thr	Leu	Gly	Asn	Gln 490	Lys	Phe	туr	Leu	Val 495	Gln
	Asp	Туr	Asn	Ser 500	Gly	Asn	Lys	Phe	G1y 505	тгр	Val	Lys	Glu	Gly 510	Asp	Val
55	Val	Туr	Asn 515	Thr	Ala	Lys	Ser	Pro 520	Val	Asn	Val	Asn	G]n 525	Ser	туr	Ser

Ile Lys Pro Gly Thr Lys Leu Tyr Thr Val Pro Trp Gly Thr Ser Lys 530 540 Gln Val Ala Gly Ser Val Ser Gly Ser Gly Asn Gln Thr Phe Lys Ala 545 550 555 560 5 Ser Lys Gln Gln Gln Ile Asp Lys Ser Ile Tyr Leu Tyr Gly Ser Val 565 570 575 Asn Gly Lys Ser Gly Trp Val Ser Lys Ala Tyr Leu Val Asp Thr Ala 580 585 590 10 Lys Pro Thr Pro Thr Pro Thr Pro Lys Pro Ser Thr Pro Thr Asn 595 600 605 Asn Lys Leu Thr Val Ser Ser Leu Asn Gly Val Ala Gln Ile Asn Ala 610 615 620 15 Lys Asn Asn Gly Leu Phe Thr Thr Val Tyr Asp Lys Thr Gly Lys Pro 625 630 635 640 Thr Lys Glu Val Gln Lys Thr Phe Ala Val Thr Lys Glu Ala Ser Leu 645 650 655 20 Gly Gly Asn Lys Phe Tyr Leu Val Lys Asp Tyr Asn Ser Pro Thr Leu 660 665 670 Ile Gly Trp Val Lys Gln Gly Asp Val Ile Tyr Asn Asn Ala Lys Ser 675 680 685 25 Pro Val Asn Val Met Gln Thr Tyr Thr Val Lys Pro Gly Thr Lys Leu 690 695 700 Tyr Ser Val Pro Trp Gly Thr Tyr Lys Gln Glu Ala Gly Ala Val Ser 705 710 715 720 Gly Thr Gly Asn Gln Thr Phe Lys Ala Thr Lys Gln Gln Gln Ile Asp 725 730 735 30 Lys Ser Ile Tyr Leu Phe Gly Thr Val Asn Gly Lys Ser Gly Trp Val 740 745 750 Ser Lys Ala Tyr Leu Ala Val Pro Ala Ala Pro Lys Lys Ala Val Ala 755 760 765 35 Gln Pro Lys Thr Ala Val Lys Ala Tyr Thr Val Thr Lys Pro Gln Thr 770 775 780 Thr Gln Thr Val Ser Lys Ile Ala Gln Val Lys Pro Asn Asn Thr Gly 785 790 795 800 40 Ile Arg Ala Ser Val Tyr Glu Lys Thr Ala Lys Asn Gly Ala Lys Tyr 805 810 815 Ala Asp Arg Thr Phe Tyr Val Thr Lys Glu Arg Ala His Gly Asn Glu 820 825 830 45 Thr Tyr Val Leu Leu Asn Asn Thr Ser His Asn Ile Pro Leu Gly Trp 835 840 845 Phe Asn Val Lys Asp Leu Asn Val Gln Asn Leu Gly Lys Glu Val Lys 850 855 860 50 Thr Thr Gln Lys Tyr Thr Val Asn Lys Ser Asn Asn Gly Leu Ser Met 865 870 875 880 Val Pro Trp Gly Thr Lys Asn Gln Val Ile Leu Thr Gly Asn Asn Ile 885 890 895 55 Ala Gln Gly Thr Phe Asn Ala Thr Lys Gln Val Ser Val Gly Lys Asp

				900					905					910		
	Val	Туr	Leu 915	Туr	Gly	Thr	Ile	Asn 920	Asn	Arg	⊤hr	Gly	Тгр 925	Val	Asn	Ala
5	Lys	Asp 930	Leu	Thr	Ala	Pro	⊤hr 935	Ala	Val	Lys	Pro	Thr 940	Thr	Ser	Ala	Ala
	Lys 945	Asp	туr	Asn	туг	Thr 950	⊤yr	Val	Ile	Lys	Asn 955	Gly	Asn	Gly	Туr	Туг 960
10	Туr	Val	Thr	Pro	Asn 965	Ser	Asp	Thr	Ala	Lys 970	Tyr	Ser	Leu	Lys	Ala 975	Phe
	Asn	Glu	Gln	Pro 980	Phe	Ala	Val	Val	Lys 985	Glu	Gln	Val	I]e	Asn 990	Gly	Gln
15	Thr	тгр	Туг 995	Туr	Gly	Lys	Leu	Ser 1000	Asn)	Gly	Lys	Leu	Ala 1005	Trp	Ile	Lys
	Ser	Thr 1010	Asp)	Leu	Ala	Lys	Glu 1015	Leu	Ile	Lys	Tyr	Asn 1020	G]n)	Thr	Gly	Met
20	Thr 1025	Leu	Asn	Gln	Val	Ala 1030	Gln)	Ile	Gln	Ala	Gly 1035	Leu	G]n	Туr	Lys	Pro 1040
	Gln	Val	Gln	Arg	Va] 1045	Pro 5	Gly	Lys	⊤rp	Thr 1050	Asp	Ala	Lys	Phe	Asn 1055	Asp
25	Val	Lys	His	Ala 1060	Met)	Asp	⊤hr	Lys	Arg 1065	Leu	Ala	Gln	Asp	Pro 1070	Ala)	Leu
	Lys	Туr	Gln 1075	Phe	Leu	Arg	Leu	Asp 1080	Gln)	Pro	Gln	Asn	I]e 1085	Ser	Ile	Asp
30	Lys	Ile 1090	Asn)	Gln	Phe	Leu	Lys 1095	Gly	Lys	Gly	Val	Leu 1100	Glu)	Asn	Gln	Gly
	Ala 1105	Ala 5	Phe	Asn	Lys	Ala 1110	Ala)	Gln	Met	Туr	G]y 1115	Ile	Asn	Glu	Val	Туг 1120
35	Leu	Ile	Ser	His	Ala 1125	Leu 5	Leu	Glu	⊤hr	Gly 1130	Asn)	Gly	Тhr	Ser	G]n 1135	Leu
	Ala	Lys	Gly	Ala 1140	Asp)	Val	Val	Asn	Asn 1145	Lys	Val	Val	Thr	Asn 1150	Ser)	Asn
40	Thr	Lys	Туг 1155	His	Asn	Val	Phe	Gly 1160	Ile)	Ala	Ala	Туr	Asp 1165	Asn	Asp	Pro
	Leu	Arg 117(Glu)	Gly	Ile	Lys	Tyr 1175	Ala 5	Lys	Gln	Ala	Gly 1180	Trp)	Asp	Thr	Val
45	Ser 1185	Lys	Ala	Ile	Val	Gly 1190	Gly)	Ala	Lys	Phe	I]e 1195	Gly	Asn	Ser	Туr	Va] 1200
	Lys	Ala	Gly	Gln	Asn 1205	Thr 5	Leu	Туr	Lys	Met 1210	Arg)	Тгр	Asn	Pro	Ala 1215	His
50	Pro	Gly	Thr	His 1220	G]n)	Tyr	Ala	Thr	Asp 1225	Val 5	Asp	Тгр	Ala	Asn 1230	Ile)	Asn
	Ala	Lys	I]e 1235	Ile 5	Lys	Gly	⊤yr	Туг 124(Asp)	Lys	Ile	Gly	G]u 1245	Val ;	Gly	Lys
55	Туr	Phe 1250	Asp)	Ile	Pro	Gln	⊤yr 1255	Lys 5								
	<210 <211)> L>	$\begin{array}{c} 110 \\ 414 \end{array}$													

	<212 <213	2> }>	PRT Stap	ohy1c	сосо	cus a	ureu	IS								
5	<400 Met 1)> Lys	110 Phe	Ser	Thr 5	Leu	Ser	Glu	Glu	Glu 10	Phe	Thr	Asn	Tyr	Thr 15	Lys
	Lys	His	Phe	Lys 20	His	туr	Thr	Gln	Ser 25	Ile	Glu	Leu	туr	Asn 30	туr	Arg
10	Asn	Lys	Ile 35	Asn	His	Glu	Ala	His 40	Ile	Val	Gly	Val	Lys 45	Asn	Asp	Lys
	Asn	Glu 50	Val	Ile	Ala	Ala	Cys 55	Leu	Leu	Thr	Glu	A]a 60	Arg	Ile	Phe	Lys
15	Phe 65	Тyr	Lys	Тyr	Phe	Туг 70	Ser	His	Arg	Gly	Pro 75	Leu	Leu	Asp	Тyr	Phe 80
	Asp	Ala	Lys	Leu	Val 85	Cys	Туr	Phe	Phe	Lys 90	Glu	Leu	Ser	Lys	Phe 95	Ile
20	Туr	Lys	Asn	Arg 100	Gly	Val	Phe	Ile	Leu 105	Val	Asp	Pro	Туг	Leu 110	I]e	Glu
	Asn	Leu	Arg 115	Asp	Ala	Asn	Gly	Arg 120	Ile	Ile	Lys	Asn	Туг 125	Asn	Asn	Ser
25	Val	I]e 130	Val	Lys	Met	Leu	Gly 135	Lys	Ile	Gly	Туr	Leu 140	His	G]n	G∣y	Tyr
	Thr 145	Thr	Gly	туr	Ser	Asn 150	Lys	Ser	Gln	Ile	Arg 155	тгр	Ile	Ser	Val	Leu 160
30	Asp	Leu	Lys	Asp	Lys 165	Asp	Glu	Asn	Gln	Leu 170	Leu	Lys	Glu	Met	Glu 175	Tyr
	G]n	Thr	Arg	Arg 180	Asn	Ile	Lys	Lys	⊤hr 185	Ile	Glu	Ile	Gly	Va] 190	Lys	Val
35	G]u	Asp	Leu 195	Ser	Ile	Glu	Glu	⊤hr 200	Asn	Arg	Phe	туr	Lys 205	Leu	Phe	Gln
	Met	Ala 210	Glu	Glu	Lys	His	Gly 215	Phe	His	Phe	Met	Asn 220	Glu	Asp	Тyr	Phe
40	Lys 225	Arg	Met	Gln	Glu	11e 230	туr	Lys	Asp	Lys	Ala 235	Met	Leu	Lys	Ile	Ala 240
	Cys	Ile	Asn	Leu	Asn 245	Glu	Туr	Gln	Asp	Lys 250	Leu	Lys	Ile	Gln	Leu 255	Leu
45	Lys	Ile	Glu	Asn 260	Glu	Met	Met	⊤hr	Val 265	Asn	Arg	Ala	Leu	Asn 270	Glu	Asn
	Pro	Asn	Ser 275	Lys	Lys	Asn	Lys	Ser 280	Lys	Leu	Asn	Gln	Leu 285	Asn	Met	Gln
50	Leu	Ser 290	Ser	Ile	Asn	Asn	Arg 295	Ile	Ser	Lys	Thr	Glu 300	Glu	Leu	I]e	Phe
30	Glu 305	Asp	Gly	Pro	Val	Leu 310	Asp	Leu	Ala	Ala	Ala 315	Leu	Phe	Ile	Cys	Thr 320
	Asp	Asp	Glu	Val	Туг 325	Туr	Leu	Ser	Ser	G]y 330	Ser	Asn	Pro	Lys	Туг 335	Asn
00	G]n	Тyr	Met	G]y 340	Ala	Туг	His	Leu	Gln 345	тгр	His	Met	Ile	Lys 350	Туг	Ala

	Lys	Ser	His 355	Asn	Ile	Asn	Arg	Туг 360	Asn	Phe	Туr	Gly	Ile 365	Thr	Gly	Val
5	Phe	ser 370	Asn	Glu	Ala	Asp	Asp 375	Phe	Gly	Val	Gln	G]n 380	Phe	Lys	Lys	Gly
	Phe 385	Asn	Ala	His	Val	Glu 390	Glu	Leu	Ile	Gly	Asp 395	Phe	Ile	Lys	Pro	Va1 400
10	Arg	Pro	Ile	Leu	⊤yr 405	Lys	Phe	Ala	Lys	Leu 410	Ile	Туr	Lys	Val		
	<210 <211 <212 <213)> L> ?> }>	111 428 PRT Stap	ohylo	ococo	cus a	aurei	JS								
15	<400 Met 1)> Lys	111 Glu	Arg	⊤yr 5	Tyr	Glu	Leu	Ile	Asp 10	Glu	Arg	Val	Phe	Glu 15	Gln
	Glu	Leu	Glu	Asn 20	Gly	Leu	Arg	Leu	Phe 25	I]e	Ile	Pro	Lys	Pro 30	Gly	Phe
20	Gln	Lys	Thr 35	Phe	Val	Thr	Туr	Thr 40	Thr	Gln	Phe	Gly	Ser 45	Leu	Asp	Asn
	Gln	Phe 50	Lys	Pro	Leu	Gly	Gln 55	Asp	Gln	Phe	Val	⊤hr 60	Val	Pro	Asp	Gly
25	Va1 65	Ala	His	Phe	Leu	Glu 70	His	Lys	Leu	Phe	Glu 75	Lys	Glu	Glu	Glu	Asp 80
	Leu	Phe	Thr	Ala	Phe 85	Ala	Glu	Asp	Asn	Ala 90	Gln	Ala	Asn	Ala	Phe 95	⊤hr
30	Ser	Phe	Asp	Arg 100	⊤hr	Ser	Тyr	Leu	Phe 105	Ser	Ala	⊤hr	Asp	Asn 110	Ile	Glu
	Asn	Asn	I]e 115	Lys	Arg	Leu	Leu	Thr 120	Met	Val	Glu	⊤hr	Pro 125	Туr	Phe	⊤hr
35	Lys	Glu 130	Thr	Val	Asp	Lys	Glu 135	Lys	Gly	Ile	Ile	A]a 140	Glu	Glu	Ile	Lys
	Met 145	туr	Gln	Glu	Gln	Pro 150	Gly	Туr	Lys	Leu	Met 155	Phe	Asn	Thr	Leu	Arg 160
40	Ala	Met	Туr	Gln	Gln 165	His	Pro	Ile	Arg	Va] 170	Asp	Ile	Ala	Gly	Ser 175	Val
	Glu	Ser	Ile	Туг 180	Asp	Ile	Thr	Lys	Asp 185	Asp	Leu	Tyr	Leu	Cys 190	Тyr	Glu
45	⊤hr	Phe	Туг 195	His	Pro	Ser	Asn	Met 200	Val	Leu	Phe	Val	Va] 205	Gly	Asp	Val
	Asp	Pro 210	Glu	Ala	Ile	Cys	Arg 215	Ile	Val	Lys	Gln	His 220	Glu	Asp	Ala	Arg
50	Asn 225	Lys	Val	Asn	Gln	Pro 230	Lys	Ile	Glu	Arg	G]y 235	Leu	Val	Asp	Glu	Pro 240
	Glu	Asp	Val	Lys	Glu 245	Ala	Phe	Val	Тhr	G]u 250	Ser	Met	Lys	Ile	G]n 255	Ser
55	Pro	Arg	Leu	Met 260	Leu	Gly	Phe	Lys	Asn 265	Lys	Pro	Leu	Gln	Glu 270	Ala	Pro
	Gln	Lys	туr	Val	Gln	Arg	Asp	Leu	Glu	Met	Ser	Leu	Phe	Phe	Glu	Leu

			275					280					285			
	Ile	Phe 290	Gly	Glu	Glu	Thr	Asp 295	Phe	туr	Gln	Asn	Leu 300	Leu	Asn	Glu	Gly
5	Leu 305	Ile	Asp	Asp	Thr	Phe 310	Gly	туr	Gln	Phe	Va] 315	Leu	Glu	Pro	Тhr	Tyr 320
	Ser	Phe	Ser	Ile	Va] 325	тhr	Ser	Ala	тhr	Glu 330	Glu	Pro	Asp	Lys	Leu 335	Lys
10	Lys	Leu	Leu	Leu 340	Asp	Glu	Leu	Arg	Asp 345	Lys	Lys	Gly	Asn	Phe 350	Gln	Asp
	Ala	Glu	Ala 355	Phe	Glu	Leu	Leu	Lys 360	Lys	Gln	Phe	Ile	Gly 365	Glu	Phe	Ile
15	Ser	Ser 370	Leu	Asn	Ser	Pro	Glu 375	Тyr	Ile	Ala	Asn	Gln 380	Тyr	Тhr	Lys	Leu
	Туг 385	Phe	Glu	Gly	Val	Ser 390	Val	Phe	Asp	Met	Leu 395	Asp	Ile	Val	Glu	Asn 400
20	Ile	Тhr	Leu	Asp	Ser 405	Ile	Asn	Glu	Тhr	Ser 410	Ser	Leu	Туr	Leu	Asn 415	Leu
	Asp	Gln	Gln	Va1 420	Asp	Ser	Arg	Leu	Glu 425	Ile	Lys	Lys				
25	<210 <211 <212 <213)> L> 2> 3>	112 519 PRT Stap	ohy1c	ococo	cus a	aurei	ıs								
30	<400 Met 1)> Asn	112 Leu	Leu	Ser 5	Leu	Leu	Leu	Ile	Leu 10	Leu	Gly	Ile	Ile	Leu 15	Gly
	Val	Val	Gly	G]y 20	туr	Val	Val	Ala	Arg 25	Asn	Leu	Leu	Leu	G]n 30	Lys	Gln
35	Ser	Gln	Ala 35	Arg	Gln	⊤hr	Ala	G]u 40	Asp	Ile	Val	Asn	G]n 45	Ala	His	Lys
	Glu	Ala 50	Asp	Asn	Ile	Lys	Lys 55	Glu	Lys	Leu	Leu	Glu 60	Ala	Lys	Glu	Glu
40	Asn 65	Gln	Ile	Leu	Arg	Glu 70	Gln	Thr	Glu	А]а	Glu 75	Leu	Arg	Glu	Arg	Arg 80
	Ser	Glu	Leu	Gln	Arg 85	Gln	Glu	Тhr	Arg	Leu 90	Leu	Gln	Lys	Glu	Glu 95	Asn
45	Leu	Glu	Arg	Lys 100	Ser	Asp	Leu	Leu	Asp 105	Lys	Lys	Asp	Glu	I]e 110	Leu	Glu
	Gln	Lys	Glu 115	Ser	Lys	Ile	Glu	Glu 120	Lys	Gln	Gln	Gln	Va] 125	Asp	Ala	Lys
50	Glu	Ser 130	Ser	Val	Gln	Thr	Leu 135	Ile	Met	Lys	His	Glu 140	Gln	Glu	Leu	Glu
	Arg 145	Ile	Ser	Gly	Leu	тhr 150	Gln	Glu	Glu	Ala	I]e 155	Asn	Glu	Gln	Leu	Gln 160
55	Arg	Val	Glu	Glu	Glu 165	Leu	Ser	Gln	Asp	I]e 170	Ala	Val	Leu	Val	Lys 175	Glu
	Lys	Glu	Lys	Glu 180	Ala	Lys	Glu	Lys	Val 185	Asp	Lys	Тhr	Ala	Lys 190	Glu	Leu

	Leu	Ala	Thr 195	Ala	Val	Gln	Arg	Leu 200	Ala	Ala	Asp	His	Thr 205	Ser	Glu	Ser
5	Thr	Va] 210	Ser	Val	Val	Asn	Leu 215	Pro	Asn	Asp	Glu	Met 220	Lys	Gly	Arg	Ile
	I]e 225	Gly	Arg	Glu	Gly	Arg 230	Asn	Ile	Arg	Thr	Leu 235	Glu	Thr	Leu	Thr	Gly 240
10	Ile	Asp	Leu	Ile	Ile 245	Asp	Asp	⊤hr	Pro	Glu 250	Ala	Val	Ile	Leu	Ser 255	Gly
	Phe	Asp	Pro	Ile 260	Arg	Arg	Glu	Ile	Ala 265	Arg	⊤hr	Ala	Leu	Va] 270	Asn	Leu
15	Val	Ser	Asp 275	Gly	Arg	Ile	His	Pro 280	Gly	Arg	Ile	Glu	Asp 285	Met	Val	Glu
15	Lys	Ala 290	Arg	Lys	Glu	Val	Asp 295	Asp	Ile	Ile	Arg	G]u 300	Ala	Gly	Glu	Gln
	Ala 305	Thr	Phe	Glu	Val	Asn 310	Ala	His	Asn	Met	His 315	Pro	Asp	Leu	Val	Lys 320
20	Ile	Val	Gly	Arg	Leu 325	Asn	Тyr	Arg	⊤hr	Ser 330	Тyr	Gly	Gln	Asn	Va] 335	Leu
	Lys	His	Ser	Ile 340	Glu	Val	Ala	His	Leu 345	Ala	Ser	Met	Leu	A]a 350	Ala	Glu
25	Leu	Gly	Glu 355	Asp	Glu	Тhr	Leu	Ala 360	Lys	Arg	Ala	Gly	Leu 365	Leu	His	Asp
	Val	Gly 370	Lys	Ala	Ile	Asp	ніs 375	Glu	Val	Glu	Gly	Ser 380	His	Val	Glu	Ile
30	Gly 385	Val	Glu	Leu	Ala	Lys 390	Lys	⊤yr	Gly	Glu	Asn 395	Glu	Тhr	Val	I]e	Asn 400
	Ala	Ile	His	Ser	ніs 405	His	Gly	Asp	Val	Glu 410	Pro	Тhr	Ser	Ile	I]e 415	Ser
35	Ile	Leu	Val	Ala 420	Ala	Ala	Asp	Ala	Leu 425	Ser	Ala	Ala	Arg	Pro 430	Gly	Ala
	Arg	Lys	Glu 435	Thr	Leu	Glu	Asn	⊤yr 440	Ile	Arg	Arg	Leu	Glu 445	Arg	Leu	Glu
40	Тhr	Leu 450	Ser	Glu	Ser	Тyr	Asp 455	Gly	Val	Glu	Lys	Ala 460	Phe	Ala	I]e	Gln
	Ala 465	Gly	Arg	Glu	Ile	Arg 470	Val	Ile	Val	Ser	Pro 475	Glu	Glu	Ile	Asp	Asp 480
45	Leu	Lys	Ser	туr	Arg 485	Leu	Ala	Arg	Asp	Ile 490	Lys	Asn	Gln	I]e	Glu 495	Asp
	Glu	Leu	Gln	туг 500	Pro	Gly	His	Ile	Lys 505	Val	Тhr	Val	Val	Arg 510	Glu	Thr
50	Arg	Ala	Va] 515	Glu	Туr	Ala	Lys									
	<210 <211 <212)> L> 2>	113 284 PRT													
55	<213	3>)>	Stap 113	ohyld	сосо	cus a	aurei	IS								

	Met 1	Ser	Phe	Туr	Val 5	Val	Leu	Ile	Ile	Ile 10	Ile	Val	Ala	Leu	Ile 15	Gly
5	Ile	Leu	Val	Leu 20	Asn	Gln	Arg	туr	ser 25	Asn	Ser	Lys	Ile	Asp 30	Тhr	Glu
	Val	туr	А]а 35	Arg	Lys	Gln	Leu	1]e 40	Lys	Lys	Asn	Lys	A]a 45	Leu	Ser	Ala
10	Glu	Asn 50	Ala	Glu	Leu	Arg	Ser 55	Gln	Met	Leu	Ser	Ser 60	Asn	Asn	Asp	Val
10	Gly 65	His	His	Ala	Tyr	Lys 70	Asn	Ala	Lys	Arg	Glu 75	Leu	Arg	Lys	Ile	Leu 80
	Asp	Ser	туr	Leu	Glu 85	Asn	Gly	Lys	Leu	Lys 90	туг	⊤yr	Asp	Ile	Ile 95	Val
15	⊤hr	Ser	Asn	Leu 100	Ala	Thr	Lys	His	Pro 105	Phe	Phe	Glu	Туr	A]a 110	Arg	Ser
	Phe	Asp	Phe 115	I]e	Ile	Val	Ser	Asp 120	Ile	Gly	Leu	I]e	Asn 125	Val	Asp	Val
20	Lys	Ser 130	тгр	Gly	Glu	Lys	Тhr 135	Phe	Туr	His	Phe	Asp 140	Val	Pro	Asp	Glu
	ніs 145	Asp	Тhr	Glu	Ile	Ser 150	Asn	Ser	Asn	Ile	Glu 155	Lys	Val	Val	Gly	ніs 160
25	⊤yr	Ile	Ser	Gln	Gln 165	Тyr	His	Asp	Gln	Phe 170	Asn	Ser	Ser	Arg	Lys 175	Ser
	Ile	Тyr	Тhr	Phe 180	⊤hr	Glu	тhr	Val	Gln 185	Pro	Asn	Arg	Val	I]e 190	Туr	Asp
30	Phe	туr	Asp 195	туr	Asp	Pro	туr	G]n 200	Leu	Ala	Ala	Asn	Asn 205	Ala	Lys	Ala
	Leu	Lys 210	Asp	His	Ile	Glu	G]n 215	Asn	Phe	Asn	Phe	Lys 220	Val	Gln	Ser	⊤hr
35	Gly 225	Val	Ile	туг	Phe	Ser 230	Asp	Gly	Тhr	Val	Asn 235	Ile	Ile	Gln	Gly	Ser 240
	Glu	Glu	Arg	Asp	Lys 245	туr	Val	Asp	Thr	Va1 250	Ser	⊤hr	Lys	Ser	Ser 255	Leu
40	Arg	Arg	Ile	I]e 260	Ser	Glu	Ala	Ile	Glu 265	Leu	Ser	Lys	His	Pro 270	Leu	Asn
	Lys	Glu	Gln 275	Val	Asp	Gln	Ile	Thr 280	Ala	Ile	Phe	Lys				
45	<210 <211 <212 <213)> L> 2> }>	114 1274 PRT Stap	¶ ohylo	οςοςα	cus a	aurei	15								
50	<400 Met 1)> Ser	114 Тгр	Phe	Asp 5	Lys	Leu	Phe	Gly	Glu 10	Asp	Asn	Asp	Ser	Asn 15	Asp
	Asp	Leu	Ile	His 20	Arg	Lys	Lys	Lys	Arg 25	Arg	Gln	Glu	Ser	G]n 30	Asn	Ile
55	Asp	Asn	Asp 35	ніs	Asp	Ser	Leu	Leu 40	Pro	Gln	Asn	Asn	Asp 45	IJe	туг	Ser
	Arg	Pro	Arg	Gly	Lys	Phe	Arg	Phe	Pro	Met	Ser	Val	Ala	туг	Glu	Asn

		50					55					60				
	Glu 65	Asn	Val	Glu	Gln	Ser 70	Ala	Asp	Thr	Ile	Ser 75	Asp	Glu	Lys	Glu	Gln 80
5	туr	His	Arg	Asp	туr 85	Arg	Lys	Gln	Ser	His 90	Asp	Ser	Arg	Ser	Gln 95	Lys
	Arg	His	Arg	Arg 100	Arg	Arg	Asn	Gln	тhr 105	⊤hr	Glu	Glu	Gln	Asn 110	туr	Ser
10	Glu	Gln	Arg 115	Gly	Asn	Ser	Lys	I]e 120	Ser	Gln	Gln	Ser	I]e 125	Lys	Туr	Lys
	Asp	His 130	Ser	His	Туr	His	Thr 135	Asn	Lys	Pro	Gly	тhr 140	Туr	Val	Ser	Ala
15	I]e 145	Asn	Gly	Ile	Glu	Lys 150	Glu	Тhr	His	Lys	Pro 155	Lys	Тhr	His	Asn	Met 160
	туr	Ser	Asn	Asn	Тhr 165	Asn	His	Arg	Ala	Lys 170	Asp	Ser	Тhr	Pro	Asp 175	Tyr
20	His	Lys	Glu	Ser 180	Phe	Lys	Thr	Ser	Glu 185	Val	Pro	Ser	Ala	Ile 190	Phe	Gly
	Тhr	Met	Lys 195	Pro	Lys	Lys	Leu	G]u 200	Asn	Gly	Arg	Ile	Pro 205	Val	Ser	Lys
25	Pro	Ser 210	Glu	Lys	Val	Glu	Ser 215	Asp	Lys	Gln	Lys	туг 220	Asp	Lys	туг	Val
	A]a 225	Lys	⊤hr	Gln	Тhr	Ser 230	Gln	Asn	Lys	Gln	Leu 235	Glu	Gln	Glu	Lys	G]n 240
30	Asn	Asp	Ser	Val	Va] 245	Lys	Gln	Gly	Thr	Ala 250	Ser	Lys	Ser	Ser	Asp 255	Glu
	Asn	Val	Ser	ser 260	Thr	Thr	Lys	Ser	Met 265	Pro	Asn	туr	Ser	Lys 270	Val	Asp
35	Asn	Тhr	Ile 275	Lys	Ile	Glu	Asn	11e 280	туr	Ala	Ser	Gln	11e 285	Val	Glu	Glu
	Ile	Arg 290	Arg	Glu	Arg	Glu	Arg 295	Lys	Val	Leu	Gln	Lys 300	Arg	Arg	Phe	Lys
40	Lys 305	Ala	Leu	Gln	Gln	Lys 310	Arg	Glu	Glu	His	Lys 315	Asn	Glu	Glu	Gln	Asp 320
	Ala	Ile	Gln	Arg	Ala 325	Ile	Asp	Glu	Met	⊤yr 330	Ala	Lys	Gln	Ala	Glu 335	Arg
45	туг	Val	Gly	Asp 340	Ser	Ser	Leu	Asn	Asp 345	Asp	Ser	Asp	Leu	тhr 350	Asp	Asn
	Ser	Тhr	Asp 355	Ala	Ser	Gln	Leu	ніs 360	Тhr	Asn	Gly	Ile	Glu 365	Asn	Glu	тhr
50	Val	Ser 370	Asn	Asp	Glu	Asn	Lys 375	Gln	Ala	Ser	Ile	G]n 380	Asn	Glu	Asp	Thr
	Asn 385	Asp	⊤hr	His	Val	Asp 390	Glu	Ser	Pro	⊤yr	Asn 395	Тyr	Glu	Glu	Val	Ser 400
55	Leu	Asn	Gln	Val	Ser 405	Thr	Thr	Lys	Gln	Leu 410	Ser	Asp	Asp	Glu	Va] 415	Thr
	Val	Ser	Asn	Va1 420	Thr	Ser	Gln	His	Gln 425	Ser	Ala	Leu	Gln	Ніs 430	Asn	Val

	Glu	Val	Asn 435	Asp	Lys	Asp	Glu	Leu 440	Lys	Asn	Gln	Ser	Arg 445	Leu	Ile	Ala
5	Asp	Ser 450	Glu	Glu	Asp	Gly	Ala 455	Thr	Asn	Lys	Glu	Glu 460	Тyr	Ser	Gly	Ser
	G]n 465	Ile	Asp	Asp	Ala	Glu 470	Phe	туr	Glu	Leu	Asn 475	Asp	Thr	Glu	Val	Asp 480
10	Glu	Asp	Thr	Thr	Ser 485	Asn	Ile	Glu	Asp	Asn 490	Thr	Asn	Arg	Asn	Ala 495	Ser
	Glu	Met	His	Va1 500	Asp	Ala	Pro	Lys	тhr 505	Gln	Glu	Тyr	Ala	Val 510	Thr	Glu
15	Ser	Gln	Val 515	Asn	Asn	Ile	Asp	Lys 520	Thr	Val	Asp	Asn	Glu 525	Ile	Glu	Leu
	Ala	Pro 530	Arg	His	Lys	Lys	Asp 535	Asp	Gln	Thr	Asn	Leu 540	Ser	Val	Asn	Ser
20	Leu 545	Lys	Thr	Asn	Asp	Va1 550	Asn	Asp	Asn	His	Va1 555	Val	Glu	Asp	Ser	Ser 560
20	Met	Asn	Glu	Ile	Glu 565	Lys	Asn	Asn	Ala	Glu 570	Ile	Thr	Glu	Asn	Va] 575	Gln
25	Asn	Glu	Ala	Ala 580	Glu	Ser	Glu	Gln	Asn 585	Val	Glu	Glu	Lys	тhr 590	Ile	Glu
20	Asn	Val	Asn 595	Pro	Lys	Lys	Gln	тhr 600	Glu	Lys	Val	Ser	тhr 605	Leu	Ser	Lys
20	Arg	Pro 610	Phe	Asn	Val	Val	Met 615	Тhr	Pro	Ser	Asp	Lys 620	Lys	Arg	Met	Met
30	Asp 625	Arg	Lys	Lys	His	Ser 630	Lys	Val	Asn	Val	Pro 635	Glu	Leu	Lys	Pro	Va] 640
25	Gln	Ser	Lys	Gln	Ala 645	Val	Ser	Glu	Arg	Met 650	Pro	Ala	Ser	Gln	Ala 655	Thr
35	Pro	Ser	Ser	Arg 660	Ser	Asp	Ser	Gln	Glu 665	Ser	Asn	Тhr	Asn	Ala 670	туг	Lys
10	Thr	Asn	Asn 675	Met	Thr	Ser	Asn	Asn 680	Val	Glu	Asn	Asn	G]n 685	Leu	Ile	Gly
40	His	Ala 690	Glu	Тhr	Glu	Asn	Asp 695	туr	Gln	Asn	Ala	G]n 700	Gln	туr	Ser	Glu
45	G]n 705	Lys	Pro	Ser	Val	Asp 710	Ser	Тhr	Gln	Тhr	Glu 715	Ile	Phe	Glu	Glu	Ser 720
45	Gln	Asp	Asp	Asn	Gln 725	Leu	Glu	Asn	Glu	G]n 730	Val	Asp	Gln	Ser	Thr 735	Ser
	Ser	Ser	Val	Ser 740	Glu	Val	Ser	Asp	Ile 745	Thr	Glu	Glu	Ser	Glu 750	Glu	Thr
50	Тhr	His	Pro 755	Asn	Asn	Тhr	Ser	Gly 760	Gln	Gln	Asp	Asn	Asp 765	Asp	Gln	Gln
	Lys	Asp 770	Leu	Gln	Ser	Ser	Phe 775	Ser	Asn	Lys	Asn	Glu 780	Asp	Тhr	Ala	Asn
55	Glu 785	Asn	Arg	Pro	Arg	Thr 790	Asn	Gln	Gln	Asp	Va] 795	Ala	Thr	Asn	Gln	Ala 800

	Val	Gln	Тhr	Ser	Lys 805	Pro	Met	I]e	Arg	Lys 810	Gly	Pro	Asn	Ile	Lys 815	Leu
5	Pro	Ser	Val	Ser 820	Leu	Leu	Glu	Glu	Pro 825	Gln	Val	Ile	Glu	Ser 830	Asp	Glu
	Asp	тгр	I]e 835	Thr	Asp	Lys	Lys	Lys 840	Glu	Leu	Asn	Asp	Ala 845	Leu	Phe	туr
	Phe	Asn 850	Val	Pro	Ala	Glu	Va] 855	G]n	Asp	Val	Thr	G]u 860	Gly	Pro	Ser	Val
10	⊤hr 865	Arg	Phe	Glu	Leu	Ser 870	Val	Glu	Lys	Gly	Va] 875	Lys	Val	Ser	Arg	Ile 880
	⊤hr	Ala	Leu	Gln	Asp 885	Asp	Ile	Lys	Met	Ala 890	Leu	Ala	Ala	Lys	Asp 895	Ile
15	Arg	Ile	Glu	A]a 900	Pro	Ile	Pro	Gly	тhr 905	Ser	Arg	Val	Gly	I]e 910	Glu	Val
	Pro	Asn	G]n 915	Asn	Pro	Thr	Thr	Va7 920	Asn	Leu	Arg	Ser	Ile 925	I]e	Glu	Ser
20	Pro	Ser 930	Phe	Lys	Asn	Ala	Glu 935	Ser	Lys	Leu	Thr	Val 940	Ala	Met	Gly	Туr
	Arg 945	Ile	Asn	Asn	Glu	Pro 950	Leu	Leu	Met	Asp	11e 955	Ala	Lys	Тhr	Pro	ніs 960
25	Ala	Leu	Ile	Ala	Gly 965	Ala	Thr	Gly	Ser	Gly 970	Lys	Ser	Val	Cys	Ile 975	Asn
	Ser	Ile	Leu	Met 980	Ser	Leu	Leu	Туr	Lys 985	Asn	His	Pro	Glu	Glu 990	Leu	Arg
30	Leu	Leu	Leu 995	Ile	Asp	Pro	Lys	Met 1000	Val)	Glu	Leu	Ala	Pro 1005	Туr 5	Asn	Gly
	Leu	Pro 1010	His)	Leu	Val	Ala	Pro 1015	Val 5	Ile	Thr	Asp	Val 1020	Lys)	Ala	Ala	⊤hr
35	Gln 1025	ser	Leu	Lys	тгр	Ala 1030	val)	Glu	Glu	Met	Glu 1035	Arg	Arg	туг	Lys	Leu 1040
	Phe	Ala	His	туг	ніs 1045	Val 5	Arg	Asn	Ile	Thr 1050	Ala)	Phe	Asn	Lys	Lys 105	Ala 5
40	Pro	Туr	Asp	Glu 1060	Arg)	Met	Pro	Lys	Ile 1065	Val 5	Ile	Val	Ile	Asp 107(Glu)	Leu
	Ala	Asp	Leu 1075	Met	Met	Met	Ala	Pro 1080	Gln)	Glu	Val	Glu	Gln 1085	Ser	Ile	Ala
45	Arg	I]e 1090	Ala)	Gln	Lys	Ala	Arg 1095	Ala	Cys	Gly	Ile	His 110(Met)	Leu	Val	Ala
	⊤hr 1105	Gln 5	Arg	Pro	Ser	Va] 111(Asn)	Val	Ile	Thr	G]y 1115	Leu	Ile	Lys	Ala	Asn 1120
50	Ile	Pro	Thr	Arg	I]e 1125	Ala 5	Phe	Met	Val	Ser 1130	Ser)	Ser	Val	Asp	Ser 113	Arg 5
	⊤hr	Ile	Leu	Asp 114(Ser)	Gly	Gly	Ala	Glu 1145	Arg	Leu	Leu	Gly	Туг 115(Gly)	Asp
55	Met	Leu	туг 1155	Leu	Gly	Ser	Gly	Met 1160	Asn)	Lys	Pro	IJe	Arg 1165	Val 5	Gln	Gly
	⊤hr	Phe	Val	Ser	Asp	Asp	Glu	I]e	Asp	Asp	Val	Val	Asp	Phe	Ile	Lys

	117	0		1175	5		1180		
	Gln Gln 1185	Arg Glu	Pro As 1	sp ⊤yr 190	Leu Phe	Glu Glu 1195	Lys Glu	Leu Leu Lys 120	;)0
5	Lys Thr	Gln Thr	Gln Se 1205	er Gln	Asp Glu	Leu Phe 1210	Asp Asp	Val Cys Ala 1215	1
	Phe Met	val Asn 122	Glu G 0	ly His	Ile Ser 122	Thr Ser 5	Leu Ile	Gln Arg His 1230	5
10	Phe Gln	Ile Gly 1235	Tyr As	sn Arg	Ala Ala 1240	Arg Ile	Ile Asp 1245	Gln ∟eu Glu >	I
	Gln Leu 125	Gly Tyr 0	Val Se	er Ser 1255	Ala Asn	Gly Ser	Lys Pro 1260	Arg Asp Val	i
15	Tyr Val 1265	Thr Glu	Ala As 17	sp Leu 270	Asn Lys	Glu			
20	<210> <211> <212> <213>	115 239 PRT Staphyl	ococcus	s aureı	15				
	<400> Met Asn 1	115 Lys Asn	Ile I 5	le Ile	Lys Ser	Ile Ala 10	Ala Leu	Thr Ile Leu 15	ł
25	тhr ser	Ile Thr 20	Gly Va	al Gly	Thr Thr 25	Met Val	Glu Gly	Ile Gln Gln 30	1
	Thr Ala	Lys Ala 35	Glu As	sn ⊤hr	Val Lys 40	Gln Ile	Thr Asn 45	Thr Asn Val	ł
30	Ala Pro 50) Tyr Ser	Gly Va	al ⊤hr 55	Trp Met	Gly Ala	Gly Thr 60	Gly Phe Val	ł
	Val Gly 65	′Asn His	Thr I 7(le Ile O	Thr Asn	Lys His 75	Val Thr	Tyr His Met 80	-
35	Lys Val	Gly Asp	Glu I ⁻ 85	le Lys	Ala His	Pro Asn 90	Gly Phe	Tyr Asn Asn 95	1
	Gly Gly	Gly Leu 100	Tyr Ly	ys Val	Thr Lys 105	Ile Val	Asp Tyr	Pro Gly Lys 110	;
40	Glu Asp	11e Ala 115	Val Va	al Gln	Val Glu 120	Glu Lys	Ser Thr 125	Gln Pro Lys	;
	Gly Arg 130	Lys Phe	Lys As	sp Phe 135	Thr Ser	Lys Phe	Asn Ile 140	Ala Ser Glu	1
45	Ala Lys 145 -	Glu Asn	Glu Pi 1:	ro Ile 50	Ser Val	Ile Gly 155	Tyr Pro	Asn Pro Asn 160	1)
	Gly Asn	Lys Leu	Gln Me 165 -	et ⊤yr	Glu Ser	Thr Gly 170	Lys Val	Leu Ser Val 175	
50	Asn Gly	Asn Ile 180	Val Se	er Ser	Asp Ala 185	Ile Ile	Gln Pro	Gly Ser Ser 190	•
	Gly Ser	Pro Ile 195	Leu As	sn Ser	Lys His 200	Glu Ala	Ile Gly 205	Val Ile Tyr	•
55	Ala Gly 210	Asn Lys	Pro Se	er Gly 215	Glu Ser	Thr Arg	Gly Phe 220	Ala Val Tyr	•
	Phe Ser 225	Pro Glu	Ile Ly 23	ys Lys 30	Phe Ile	Ala Asp 235	Asn Leu	Asp Lys	

	<210 <211 <212 <213)> L> 2> }>	116 238 PRT Stap	ohy]c	ococo	cus a	ureı	ıs								
5	<400 Met 1)> Asn	116 Lys	Asn	Ile 5	Ile	Ile	Lys	Ser	Ile 10	Ala	Ala	Leu	Thr	Ile 15	Leu
10	Тhr	Ser	Val	Thr 20	Gly	Val	Gly	Тhr	Thr 25	Val	Val	Glu	Gly	Ile 30	Gln	Gln
	Thr	Ala	Lys 35	Ala	Glu	His	Asn	Va] 40	Lys	Leu	Ile	Lys	Asn 45	Thr	Asn	Val
15	Ala	Pro 50	Туr	Asn	Gly	Val	Val 55	Ser	Ile	Gly	Ser	Gly 60	Thr	Gly	Phe	Ile
	Val 65	Gly	Lys	Asn	Thr	Ile 70	Val	Thr	Asn	Lys	His 75	Val	Val	Ala	Gly	Met 80
20	Glu	Ile	Gly	Ala	His 85	Ile	Ile	Ala	His	Pro 90	Asn	Gly	Glu	туr	Asn 95	Asn
	Gly	Gly	Phe	Туг 100	Lys	Val	Lys	Lys	I]e 105	Val	Arg	Туr	Ser	G]y 110	Gln	Glu
25	Asp	Ile	Ala 115	Ile	Leu	His	Val	Glu 120	Asp	Lys	Ala	Val	His 125	Pro	Lys	Asn
	Arg	Asn 130	Phe	Lys	Asp	Туr	Thr 135	Gly	Ile	Leu	Lys	I]e 140	Ala	Ser	Glu	Ala
30	Lys 145	Glu	Asn	Glu	Arg	Ile 150	Ser	Ile	Val	Gly	Туг 155	Pro	Glu	Pro	Туr	I]e 160
	Asn	Lys	Phe	Gln	Met 165	Туr	Glu	Ser	Thr	Gly 170	Lys	Val	Leu	Ser	Val 175	Lys
35	Gly	Asn	Met	Ile 180	Ile	Тhr	Asp	Ala	Phe 185	Val	Glu	Pro	Gly	Asn 190	Ser	Gly
	Ser	Ala	Val 195	Phe	Asn	Ser	Lys	туг 200	Glu	Val	Val	Gly	Va] 205	His	Phe	Gly
40	Gly	Asn 210	Gly	Pro	Gly	Asn	Lys 215	Ser	Thr	Lys	Gly	Туг 220	Gly	Val	туr	Phe
	Ser 225	Pro	Glu	Ile	Lys	Lys 230	Phe	Ile	Ala	Asp	Asn 235	Thr	Asp	Lys		
45	<210 <211 <212 <213)> L> 2> }>	117 239 PRT Stap	ohylo		cus a	ureu	ıs								
	<400 Met 1)> Asn	117 Lys	Asn	Ile 5	Val	Ile	Lys	Ser	Met 10	Ala	Ala	Leu	Ala	Ile 15	Leu
50	Thr	Ser	Val	Thr 20	Gly	Ile	Asn	Ala	A]a 25	Val	Val	Glu	Glu	Thr 30	Gln	Gln
	Ile	Ala	Asn 35	Ala	Glu	Lys	Asn	Va] 40	Thr	Gln	Val	Lys	Asp 45	Thr	Asn	Ile
55	Phe	Pro 50	туr	Asn	Gly	Val	Val 55	Ser	Phe	Lys	Asp	Ala 60	Thr	Gly	Phe	Val

	Ile 65	Gly	Lys	Asn	⊤hr	Ile 70	Ile	Тhr	Asn	Lys	His 75	Val	Ser	Lys	Asp	⊤yr 80
5	Lys	Val	Gly	Asp	Arg 85	Ile	Thr	Ala	His	Pro 90	Asn	Gly	Asp	Lys	G]y 95	Asn
°	Gly	Gly	Ile	Туг 100	Lys	Ile	Lys	Ser	I]e 105	Ser	Asp	⊤yr	Pro	G]y 110	Asp	Glu
	Asp	Ile	Ser 115	Val	Met	Asn	Ile	Glu 120	Glu	Gln	Ala	Val	Glu 125	Arg	Gly	Pro
10	Lys	Gly 130	Phe	Asn	Phe	Asn	Glu 135	Asn	Val	Gln	Ala	Phe 140	Asn	Phe	Ala	Lys
	Asp 145	Ala	Lys	Val	Asp	Asp 150	Lys	I]e	Lys	Val	I]e 155	Gly	туг	Pro	Leu	Pro 160
15	Ala	Gln	Asn	Ser	Phe 165	Lys	Gln	Phe	Glu	Ser 170	Thr	Gly	Thr	Ile	Lys 175	Arg
	Ile	Lys	Asp	Asn 180	Ile	Leu	Asn	Phe	Asp 185	Ala	Туг	I]e	Glu	Pro 190	Gly	Asn
20	Ser	Gly	Ser 195	Pro	Val	Leu	Asn	Ser 200	Asn	Asn	Glu	Val	Ile 205	Gly	Val	Val
	⊤yr	G]y 210	Gly	Ile	Gly	Lys	1]e 215	Gly	Ser	Glu	туг	Asn 220	Gly	Ala	Val	⊤yr
25	Phe 225	Thr	Pro	Gln	Ile	Lys 230	Asp	Phe	Ile	Gln	Lys 235	His	Ile	Glu	Gln	
	<21(<21))> 1>	118 240													
30	<212 <213	2> 3>	PRT Stap	ohyld	ococo	cus a	aurei	JS								
30	<212 <213 <400 Met 1	2> 3>)> Asn	PRT Stap 118 Lys	ohyld Asn	val	cus a Val	aurei Ile	is Lys	Ser	Leu 10	Ala	Ala	Leu	Thr	Ile 15	Leu
30 35	<212 <213 <400 Met 1 Thr	2> 3>)> Asn Ser	PRT Stap 118 Lys Val	ohyld Asn Thr 20	val 5 Gly	cus a Val Ile	ureu Ile Gly	us Lys Thr	Ser Thr 25	Leu 10 Leu	Ala Val	Ala Glu	Leu Glu	Thr Val 30	Ile 15 Gln	Leu Gln
30 35	<212 <213 <400 Met 1 Thr Thr	2> 3>)> Asn Ser Ala	PRT Stap 118 Lys Val Lys 35	Asn Thr 20 Ala	Val 5 Gly Glu	val Ile Asn	Ile Gly Asn	us Lys Thr Val 40	Ser Thr 25 Thr	Leu 10 Leu Lys	Ala Val Val	Ala Glu Lys	Leu Glu Asp 45	Thr Val 30 Thr	Ile 15 Gln Asn	Leu Gln Ile
30 35 40	<212 <213 <400 Met 1 Thr Thr Phe	2> 3> Asn Ser Ala Pro 50	PRT Star 118 Lys Val Lys 35 Tyr	Asn Thr 20 Ala Thr	val 5 Gly Glu Gly	val Ile Asn Val	Ile Gly Asn Val	Lys Thr Val 40 Ala	Ser Thr 25 Thr Phe	Leu 10 Leu Lys Lys	Ala Val Val Ser	Ala Glu Lys Ala 60	Leu Glu Asp 45 Thr	Thr Val 30 Thr Gly	Ile 15 Gln Asn Phe	Leu Gln Ile Val
30 35 40	<212 <212 <400 Met 1 Thr Thr Phe Val 65	2> 3> Asn Ser Ala Pro 50 Gly	PRT Stap 118 Lys Val Lys Tyr Lys	Asn Thr 20 Ala Thr Asn	val 5 Gly Glu Gly Thr	val Ile Asn Val Ile 70	Ile Gly Asn Val Leu	Lys Thr Val Ala Thr	Ser Thr 25 Thr Phe Asn	Leu 10 Leu Lys Lys Lys	Ala Val Val Ser His 75	Ala Glu Lys Ala 60 Val	Leu Glu Asp 45 Thr Ser	Thr Val 30 Thr Gly Lys	Ile 15 Gln Asn Phe Asn	Leu Gln Ile Val Tyr 80
30 35 40 45	<212 <212 <400 Met 1 Thr Thr Phe Val 65 Lys	2> 3> Asn Ser Ala Pro 50 Gly Val	PRT Stap 118 Lys Val Lys Tyr Lys Gly	Asn Thr 20 Ala Thr Asn Asp	val Gly Glu Gly Thr Arg 85	val Ile Asn Val Ile 70 Ile	Ile Gly Asn Val Leu Thr	Lys Thr Val Ala Thr Ala	Ser Thr 25 Thr Phe Asn His	Leu Leu Lys Lys Lys Pro 90	Ala Val Val Ser His 75 Asn	Ala Glu Lys Ala 60 Val Ser	Leu Glu Asp Thr Ser Asp	Thr Val 30 Thr Gly Lys Lys	Ile Gln Asn Phe Asn Gly 95	Leu Gln Ile Val Tyr 80 Asn
30 35 40 45	<212 <211 <400 Met 1 Thr Thr Phe Val 65 Lys Gly	2> 3> D> Asn Ser Ala Pro 50 Gly Val Gly	PRT Stap 118 Lys val Lys 35 Tyr Lys Gly Ile	Asn Thr 20 Ala Thr Asn Asp Tyr 100	Val 5 Gly Glu Gly Thr Arg 85 Ser	val Ile Asn Val Ile Ile Ile	Ile Gly Asn Val 55 Leu Thr Lys	Lys Thr Val Ala Thr Ala Lys	Ser Thr Thr Phe Asn His Ile	Leu Lys Lys Lys Pro 90 Ile	Ala Val Val Ser His 75 Asn Asn	Ala Glu Lys Ala 60 Val Ser Tyr	Leu Glu Asp 45 Thr Ser Asp Pro	Thr Val 30 Thr Gly Lys Lys Gly 110	Ile Gln Asn Phe Asn Gly 95 Lys	Leu Gln Ile Val Tyr 80 Asn Glu
30 35 40 45 50	<212 <211 <400 Met 1 Thr Thr Phe Val 65 Lys Gly Asp	2> 3> Asn Ser Ala Pro 50 Gly Val Gly Val	PRT Stap 118 Lys val Lys Gly Ile Ser 115	Asn Thr 20 Ala Thr Asn Asp Tyr 100 Val	Val 5 Gly Glu Gly Thr Arg 85 Ser Ile	val Ile Asn Val Ile Ile Gln	Ile Gly Asn Val Leu Thr Lys Val	Lys Thr Val Ala Thr Ala Lys Glu	Ser Thr Phe Asn His Ile 105 Glu	Leu Lys Lys Lys Pro 90 Ile Arg	Ala Val Val Ser His 75 Asn Asn Ala	Ala Glu Lys Ala 60 Val Ser Tyr Ile	Leu Glu Asp Thr Ser Asp Pro Glu	Thr Val 30 Thr Gly Lys Lys Gly 110 Arg	Ile Gln Asn Phe Asn Gly Lys Gly	Leu Gln Ile Val Tyr 80 Asn Glu Pro
30 35 40 45 50	<pre><212 <212 <400 Met 1 Thr Thr Phe Val 65 Lys Gly Asp Lys</pre>	2> 3> Asn ser Ala Pro 50 Gly Val Gly Val Gly 130	PRT Stap 118 Lys Val Lys Gly Ile Ser 115 Phe	Asn Thr 20 Ala Thr Asn Asp Tyr 100 Val Asn	Val 5 Gly Glu Gly Thr Arg 85 Ser Ile Phe	val Ile Asn Val Ile Ile Gln Asn	Ile Gly Asn Val Leu Thr Lys Val Asp 135	Lys Thr Val Ala Thr Ala Lys Glu 120 Asn	Ser Thr Phe Asn His Ile 105 Glu Val	Leu Lys Lys Lys Pro 90 Ile Arg Thr	Ala Val Val Ser His Asn Asn Ala Pro	Ala Glu Lys Ala Val Ser Tyr Ile Phe 140	Leu Glu Asp Thr Ser Asp Pro Glu 125 Lys	Thr Val Thr Gly Lys Lys Gly 110 Arg Tyr	Ile Gln Asn Phe Asn Gly Lys Gly Ala	Leu Gln Ile Val Tyr 80 Asn Glu Pro Ala
30 35 40 45 50	<pre><212 <211 <400 Met 1 Thr Thr Phe Val 65 Lys Gly Lys Gly 145</pre>	2> 3> Asn ser Ala Pro 50 Gly Val Gly Val Gly 130 Ala	PRT Stap 118 Lys Val Lys Gly Ile Ser 115 Phe Lys	Asn Thr 20 Ala Thr Asn Asp Tyr 100 Val Asn Ala	Val Gly Glu Gly Thr Arg Ser Ile Phe Gly	val Ile Asn Val Ile Ile Gln Asn Glu 150	Ile Gly Asn Val Leu Thr Lys Val Asp 135 Arg	Lys Thr Val Ala Thr Ala Lys Glu 120 Asn Ile	Ser Thr Phe Asn His Ile Glu Val Lys	Leu Lys Lys Lys Pro 90 Ile Arg Thr val	Ala Val Val Ser His Asn Ala Pro Ile 5	Ala Glu Lys Ala 60 Val Ser Tyr Ile Phe 140 Gly	Leu Glu Asp Thr Ser Asp Pro Glu 125 Lys Tyr	Thr Val 30 Thr Gly Lys Lys Gly 110 Arg Tyr Pro	Ile Gln Asn Phe Asn Gly Lys Gly Ala His	Leu Gln Ile Val Tyr 80 Asn Glu Pro Ala Pro 160

					165					170					175	
	Val	Glu	Gly	Ser 180	Ser	Ile	Val	туг	Ser 185	Ala	His	Тhr	Glu	Ser 190	Gly	Asn
5	Ser	Gly	Ser 195	Pro	Val	Leu	Asn	Ser 200	Asn	Asn	Glu	Leu	Va1 205	Gly	Ile	His
	Phe	Ala 210	Ser	Asp	Val	Lys	Asn 215	Asp	Asp	Asn	Arg	Asn 220	Ala	Тyr	Gly	Val
10	Туг 225	Phe	Тhr	Pro	Glu	Ile 230	Lys	Lys	Phe	Ile	Ala 235	Glu	Asn	Ile	Asp	Lys 240
15	<210 <211 <212 <213)> L> 2> }>	119 235 PRT Stap	ohyla	ococo	cus a	aurei	JS								
	<400 Met 1)> Asn	119 Lys	Asn	Val 5	Met	Val	Lys	Gly	Leu 10	Thr	Ala	Leu	Thr	Ile 15	Leu
20	Тhr	Ser	Leu	G]y 20	Phe	Ala	Glu	Asn	Ile 25	Ser	Asn	Gln	Pro	His 30	Ser	Ile
	Ala	Lys	A]a 35	Glu	Lys	Asn	Val	Lys 40	Glu	Ile	Thr	Asp	A]a 45	Thr	Lys	Glu
25	Pro	туr 50	Asn	Ser	Val	Val	Ala 55	Phe	Val	Gly	Gly	Thr 60	Gly	Val	Val	Val
	Gly 65	Lys	Asn	Тhr	Ile	Val 70	Тhr	Asn	Lys	His	Ile 75	Ala	Lys	Ser	Asn	Asp 80
30	Ile	Phe	Lys	Asn	Arg 85	Val	Ser	Ala	His	ніs 90	Ser	Ser	Lys	Gly	Lys 95	Gly
	Gly	Gly	Asn	туг 100	Asp	Val	Lys	Asp	I]e 105	Val	Glu	Тyr	Pro	Gly 110	Lys	Glu
35	Asp	Leu	A]a 115	Ile	Val	His	Val	His 120	Glu	Тhr	Ser	Тhr	Glu 125	Gly	Leu	Asn
	Phe	Asn 130	Lys	Asn	Val	Ser	Туг 135	Thr	Lys	Phe	Ala	Asp 140	Gly	Ala	Lys	Val
40	Lys 145	Asp	Arg	Ile	Ser	Val 150	Ile	Gly	Туr	Pro	Lys 155	Gly	Ala	Gln	Thr	Lys 160
	Туr	Lys	Met	Phe	Glu 165	Ser	Тhr	Gly	Thr	I]e 170	Asn	His	Ile	Ser	Gly 175	⊤hr
45	Phe	Met	Glu	Phe 180	Asp	Ala	Туr	Ala	G]n 185	Pro	Gly	Asn	Ser	Gly 190	Ser	Pro
	Val	Leu	Asn 195	Ser	Lys	His	Glu	Leu 200	I]e	Gly	Ile	Leu	Туг 205	Ala	Gly	Ser
50	Gly	Lys 210	Asp	Glu	Ser	Glu	Lys 215	Asn	Phe	Gly	Val	Туг 220	Phe	Thr	Pro	Gln
	Leu 225	Lys	Glu	Phe	Ile	G]n 230	Asn	Asn	Ile	Glu	Lys 235					
55	<210 <211 <212 <213)> L> 2> }>	120 163 PRT Stap	ohyla		cus a	aurei	JS								

<400> 120 Met Leu Lys Arg Ser Leu Leu Phe Leu Thr Val Leu Leu Leu Leu Phe 1 5 10 15 Ser Phe Ser Ser Ile Thr Asn Glu Val Ser Ala Ser Ser Ser Phe Asp 20 25 30 5 Lys Gly Lys Tyr Lys Lys Gly Asp Asp Ala Ser Tyr Phe Glu Pro Thr 35 40 45 Gly Pro Tyr Leu Met Val Asn Val Thr Gly Val Asp Gly Lys Gly Asn 50 55 60 10 Glu Leu Leu Ser Pro His Tyr Val Glu Phe Pro Ile Lys Pro Gly Thr 65 70 75 80 Thr Leu Thr Lys Glu Lys Ile Glu Tyr Tyr Val Glu Trp Ala Leu Asp 85 90 95 15 Ala Thr Ala Tyr Lys Glu Phe Arg Val Val Glu Leu Asp Pro Ser Ala 100 105 110 Lys Ile Glu Val Thr Tyr Tyr Asp Lys Asn Lys Lys Lys Glu Glu Thr 115 120 125 20 Lys Ser Phe Pro Ile Thr Glu Lys Gly Phe Val Val Pro Asp Leu Ser 130 135 140 Glu His Ile Lys Asn Pro Gly Phe Asn Leu Ile Thr Lys Val Ile Ile 145 150 155 160 160 25 Glu Lys Lys <210> 121 <211> 290 30 <212> PRT <213> Staphylococcus aureus <400> Met Lys Lys Lys Ala Leu Leu Pro Leu Phe Leu Gly Ile Met Val Phe 1 5 10 15 35 Leu Ala Gly Cys Asp Tyr Ser Lys Pro Glu Lys Arg Ser Gly Phe Phe 20 25 30 Tyr Asn Thr Phe Val Asp Pro Met Lys Asn Val Leu Asp Trp Leu Gly 35 40 45 40 Asn Asn Leu Leu Asn Asp Asn Tyr Gly Leu Ala Ile Ile Ile Leu Val Leu Val Ile Arg Ile Ile Leu Leu Pro Phe Met Leu Ser Asn Tyr Lys 65 70 75 80 65 45 Asn Ser His Met Met Arg Gln Lys Met Lys Val Ala Lys Pro Glu Val 85 90 95 Glu Lys Ile Gln Glu Lys Val Lys Arg Ala Arg Thr Gln Glu Glu Lys 100 105 110 50 Met Ala Ala Asn Gln Glu Leu Met Gln Val Tyr Lys Lys Tyr Asp Met 115 120 125 Asn Pro Ile Lys Ser Met Leu Gly Cys Leu Pro Met Leu Ile Gln Leu 130 135 140 130 55 Pro Ile Ile Met Gly Leu Tyr Phe Val Leu Lys Asp Gln Leu Val Asp 145 150 155 160 145

	Gly	Leu	Phe	Lys	⊤yr 165	Pro	His	Phe	Leu	Тгр 170	Phe	Asp	Leu	Gly	Arg 175	Pro
5	Asp	Ile	тгр	I]e 180	⊤hr	Ile	Ile	Ala	Gly 185	Val	Leu	туr	Phe	I]e 190	Gln	Ala
	Туr	Val	Ser 195	Ser	Lys	Thr	Met	Pro 200	Asp	Glu	Gln	Arg	Gln 205	Met	Gly	Tyr
10	Met	Met 210	Met	Val	Ile	Ser	Pro 215	Ile	Met	Ile	Ile	⊤rp 220	Ile	Ser	Leu	Ser
10	Ser 225	Ala	Ser	Ala	Leu	Gly 230	Leu	Тyr	Тгр	Ser	Va] 235	Ser	Ala	Ala	Phe	Leu 240
	Val	Val	Gln	Тhr	His 245	Phe	Ala	Asn	Ile	туг 250	туг	Glu	Lys	Val	A]a 255	Lys
15	Lys	Glu	Val	G]n 260	Pro	Phe	Ile	Glu	Ala 265	Туr	Glu	Arg	Glu	ніs 270	Asn	Gly
	Gly	Ser	Asn 275	Lys	Lys	Gly	Lys	Asn 280	Thr	Gln	Val	Val	Ser 285	Lys	Lys	Lys
20	Lys	Lys 290														
25	<210 <212 <212 <213)> 1> 2> 3>	122 460 PRT Stap	ohyld	ococo	cus a	aurei	ıs								
	<400 Met 1)> Lys	122 Ser	Cys	Pro 5	Lys	Cys	Gly	Gln	Gln 10	Ala	Gln	Asp	Asp	Val 15	Gln
30	Ile	Cys	Тhr	G]n 20	Cys	Gly	His	Lys	Phe 25	Asp	Ser	Arg	Gln	A]a 30	Leu	Tyr
	Arg	Lys	Ser 35	Тhr	Asp	Glu	Asp	1]e 40	Gln	Thr	Asn	Asn	Ile 45	Lys	Met	Arg
35	Lys	Met 50	Val	Pro	⊤rp	Ala	Ile 55	Gly	Phe	Phe	Ile	Leu 60	Ile	Leu	Ile	Ile
	Ile 65	Leu	Phe	Phe	Leu	Leu 70	Arg	Asn	Phe	Asn	Ser 75	Pro	Glu	Ala	Gln	⊤hr 80
40	Lys	Ile	Leu	Val	Asn 85	Ala	Ile	Glu	Asn	Asn 90	Asp	Lys	Gln	Lys	Val 95	Ala
	⊤hr	Leu	Leu	Ser 100	⊤hr	Lys	Asp	Asn	Lys 105	Val	Asp	Ser	Glu	Glu 110	Ala	Lys
45	Val	Туr	I]e 115	Asn	⊤yr	Ile	Lys	Asp 120	Glu	Val	Gly	Leu	Lys 125	Gln	Phe	Val
	Ser	Asp 130	Leu	Lys	Asn	Thr	Val 135	His	Lys	Leu	Asn	Lys 140	Ser	Lys	Thr	Ser
50	Va] 145	Ala	Ser	Тyr	Ile	Gln 150	Thr	Arg	Ser	Gly	G]n 155	Asn	Ile	Leu	Arg	Va1 160
	Ser	Lys	Asn	Gly	⊤hr 165	Arg	туr	Ile	Phe	Phe 170	Asp	Asn	Met	Ser	Phe 175	⊤hr
55	Ala	Pro	тhr	Lys 180	Gln	Pro	Ile	Val	Lys 185	Pro	Lys	Glu	Lys	⊤hr 190	Lys	⊤yr
	Glu	Phe	Lys	Ser	Gly	Gly	Lys	Lys	Lys	Met	Val	Ile	Ala	Glu	Ala	Asn

			195					200					205			
	Lys	Val 210	⊤hr	Pro	Ile	Gly	Asn 215	Phe	Ile	Pro	Gly	Thr 220	туr	Arg	Ile	Pro
5	A]a 225	Met	Lys	Ser	Thr	G]u 230	Asn	Gly	Asp	Phe	A]a 235	Gly	His	Leu	Lys	Phe 240
	Asp	Phe	Arg	Gln	Ser 245	Asn	Ser	Glu	Тhr	Va] 250	Asp	Val	Тhr	Glu	Asp 255	Phe
10	Glu	Glu	Ala	Asn 260	Ile	Ser	Val	Тhr	Leu 265	Lys	Gly	Asp	Тhr	Lys 270	Leu	Asn
	Asp	Ser	Ser 275	Lys	Lys	Val	Thr	I]e 280	Asn	Asp	His	Glu	Met 285	Ala	Phe	Ser
15	Ser	Ser 290	Lys	Тhr	Туr	Gly	Pro 295	Тyr	Pro	Gln	Asn	Lys 300	Asp	Ile	Тhr	Ile
	Ser 305	Ala	Ser	Gly	Lys	A]a 310	Lys	Asp	Lys	⊤hr	Phe 315	Тhr	тhr	Gln	Тhr	Lys 320
20	Тhr	Ile	Lys	Ala	Ser 325	Asp	Leu	Lys	Тyr	Asn 330	Thr	Glu	Ile	Thr	Leu 335	Asn
	Phe	Asp	Ser	G]u 340	Asp	Ile	Glu	Asp	туг 345	Val	Glu	Lys	Lys	Glu 350	Lys	Glu
25	Glu	Asn	Ser 355	Leu	Lys	Asn	Lys	Leu 360	Ile	Glu	Phe	Phe	Ala 365	Gly	туr	Ser
	Leu	A]a 370	Asn	Asn	Ala	Ala	Phe 375	Asn	Gln	Ser	Asp	Phe 380	Asp	Phe	Val	Ser
30	ser 385	Туr	Ile	Lys	Lys	G]y 390	Ser	Ser	Phe	⊤yr	Asp 395	Asp	Val	Lys	Lys	Arg 400
	Val	Ser	Lys	Gly	ser 405	Leu	Met	Met	Ile	Ser 410	Ser	Pro	Gln	Ile	I]e 415	Asp
35	Ala	Glu	Lys	ніs 420	Gly	Asp	Lys	Ile	⊤hr 425	Ala	Тhr	Val	Arg	Leu 430	Ile	Asn
	Glu	Asn	G]y 435	Lys	Gln	Val	Asp	Lys 440	Glu	⊤yr	Glu	Leu	Glu 445	Gln	Gly	Ser
40	Gln	Asp 450	Arg	Leu	Gln	Leu	11e 455	Lys	Тhr	Ser	Glu	Lys 460				
	<210 <212 <212 <213)> L> 2> 3>	123 322 PRT Stap	bhyla	ососо	cus a	aurei	ıs								
45	<400 Met 1)> Arg	123 Lys	Lys	Trp 5	Ser	Thr	Leu	Ala	Phe 10	Gly	Phe	Leu	Val	Ala 15	Ala
50	туr	Ala	His	Ile 20	Arg	Ile	Lys	Glu	Lys 25	Arg	Ser	Val	Lys	Ser 30	туr	Met
50	Leu	Glu	Gln 35	Gly	Ile	Arg	Leu	Ser 40	Arg	Ala	Lys	Arg	Arg 45	Phe	Met	туг
	Lys	Glu 50	Glu	Ala	Met	Lys	A]a 55	Leu	Glu	Lys	Met	Ala 60	Pro	Gln	Thr	Ala
55	G]y 65	Glu	⊤yr	Glu	Gly	Thr 70	Asn	Тyr	Gln	Phe	Lys 75	Met	Pro	Val	Lys	Val 80

	Asp	Lys	His	Phe	Gly 85	Ser	Thr	Val	Туr	Thr 90	Val	Asn	Asp	Lys	Gln 95	Asp
5	Lys	His	Gln	Arg 100	Val	Val	Leu	Тyr	Ala 105	His	Gly	Gly	Ala	Trp 110	Phe	Gln
	Asp	Pro	Leu 115	Lys	Ile	His	Phe	Glu 120	Phe	Ile	Asp	Glu	Leu 125	Ala	Glu	Thr
10	Leu	Asn 130	Ala	Lys	Val	I]e	Met 135	Pro	Val	Туr	Pro	Lys 140	Ile	Pro	His	Gln
	Asp 145	туг	Gln	Ala	Thr	туг 150	Val	Leu	Phe	Glu	Lys 155	Leu	Туг	His	Asp	Leu 160
15	Leu	Asn	Gln	Val	A]a 165	Asp	Ser	Lys	Gln	I]e 170	Val	Val	Met	Gly	Asp 175	Ser
	Ala	Gly	Gly	Gln 180	Ile	Ala	Leu	Ser	Phe 185	Ala	Gln	Leu	Leu	Lys 190	Glu	Lys
20	His	Ile	Va] 195	Gln	Pro	Gly	His	I]e 200	Val	Leu	Ile	Ser	Pro 205	Val	Leu	Asp
	Ala	Thr 210	Met	Gln	His	Pro	Glu 215	Ile	Pro	Asp	туг	Leu 220	Lys	Lys	Asp	Pro
25	Met 225	Val	Gly	Val	Asp	G]y 230	Ser	Val	Phe	Leu	A]a 235	Glu	Gln	Тгр	Ala	Gly 240
	Asp	Thr	Pro	Leu	Asp 245	Asn	Туr	Lys	Val	Ser 250	Pro	Ile	Asn	Gly	Asp 255	Leu
30	Asp	Gly	Leu	G]y 260	Arg	Ile	Thr	Leu	Thr 265	Val	Gly	Thr	Lys	Glu 270	Val	Leu
	Туr	Pro	Asp 275	Ala	Leu	Asn	Leu	Ser 280	Gln	Leu	Leu	Ser	Ala 285	Lys	Gly	Ile
35	Glu	His 290	Asp	Phe	Ile	Pro	G]y 295	Туr	Туr	Gln	Phe	His 300	Ile	Туr	Pro	Val
	Phe 305	Pro	Ile	Pro	Glu	Arg 310	Arg	Arg	Phe	Leu	туг 315	Gln	Val	Lys	Asn	11e 320
	Ile	Asn														
40	<210 <211 <212 <213)> L> 2> 3>	124 143 PRT Stap	ohyla	ococo	cus a	aurei	ıs								
45	<400 Met 1)> Glu	124 Tyr	Lys	Lys 5	Ile	Leu	Ile	Arg	Leu 10	Leu	Ile	Ala	Phe	A]a 15	Val
	Leu	Phe	Ser	A]a 20	Asp	Phe	Thr	Туг	Gln 25	Ser	Val	Glu	Gln	Thr 30	His	Gln
50	Ser	His	A]a 35	Ala	Val	Asn	туr	туг 40	Ser	Lys	Asn	Gln	Cys 45	Тhr	тгр	тгр
	Ala	Phe 50	Lys	Arg	Arg	Ala	Gln 55	Val	Gly	Lys	Pro	Va] 60	Ser	Asn	Arg	тгр
55	G]y 65	Asn	Ala	Lys	Asn	тгр 70	Тyr	туr	Asn	Ala	Arg 75	Lys	Ser	Lys	туr	Ala 80

	⊤hr	Gly	Arg	Thr	Pro 85	Arg	Lys	Phe	Ala	Va] 90	Met	G]n	Ser	Тhr	A]a 95	Gly
5	туr	туr	Gly	ніs 100	Val	Ala	Val	Val	Glu 105	Gln	Val	туr	Lys	Asn 110	Gly	Ser
	Ile	Lys	Va] 115	Ser	Glu	туr	Asn	Phe 120	Тyr	Arg	Pro	Leu	Lys 125	Туr	Asn	Thr
	Arg	Val 130	Leu	Ser	Lys	Lys	Ala 135	Ala	Arg	Asn	Phe	Asn 140	Туr	Ile	Туг	
10	<210 <211 <212 <213)> 1> 2> 3>	125 255 PRT Stap	ohy]c	ococo	cus a	aurei	JS								
15	<400 Met 1)> Lys	125 Lys	Ile	Val 5	Thr	Ala	Thr	Ile	A]a 10	Thr	Ala	Gly	Leu	A]a 15	⊤hr
	Ile	Ala	Phe	A]a 20	Gly	His	Asp	Ala	Gln 25	Ala	Ala	Glu	Gln	Asn 30	Asn	Asn
20	Gly	Туr	Asn 35	Ser	Asn	Asp	Ala	Gln 40	Ser	туг	Ser	Туr	Thr 45	Туr	Thr	Ile
	Asp	Ala 50	Gln	Gly	Asn	туг	ніs 55	туг	Thr	тгр	Тhr	G]y 60	Asn	тгр	Asn	Pro
25	Ser 65	Gln	Leu	Thr	Gln	Asn 70	Asn	Thr	Тyr	Туr	Tyr 75	Asn	Asn	Туr	Asn	⊤hr 80
	⊤yr	Ser	туr	Asn	Asn 85	Ala	Ser	туr	Asn	Asn 90	туr	⊤yr	Asn	His	Ser 95	Тyr
30	Gln	Туr	Asn	Asn 100	⊤yr	Thr	Asn	Asn	Ser 105	Gln	Thr	Ala	Thr	Asn 110	Asn	Tyr
	Tyr	Thr	G]y 115	Gly	Ser	Gly	Ala	Ser 120	Тyr	Ser	Thr	⊤hr	Ser 125	Asn	Asn	Val
35	His	Val 130	тhr	⊤hr	⊤hr	Ala	A]a 135	Pro	Ser	Ser	Asn	Gly 140	Arg	Ser	Ile	Ser
	Asn 145	Gly	Туr	Ala	Ser	Gly 150	Ser	Asn	Leu	туr	Thr 155	Ser	Gly	Gln	Cys	⊤hr 160
40	Tyr	Tyr	Val	Phe	Asp 165	Arg	Val	Gly	Gly	Lys 170	Ile	Gly	Ser	Thr	Trp 175	Gly
	Asn	Ala	Ser	Asn 180	⊤rp	Ala	Asn	Ala	Ala 185	Ala	Ser	Ser	Gly	Tyr 190	Thr	Val
45	Asn	Asn	Thr 195	Pro	Lys	Val	Gly	A]a 200	Ile	Met	Gln	⊤hr	Thr 205	Gln	Gly	Tyr
	Tyr	G]y 210	His	Val	Ala	Туr	Va] 215	Glu	Gly	Val	Asn	Ser 220	Asn	Gly	Ser	Val
50	Arg 225	Val	Ser	Glu	Met	Asn 230	туг	Gly	His	Gly	Ala 235	G∖A	Val	Val	Thr	Ser 240
	Arg	Thr	Ile	Ser	A]a 245	Asn	Gln	Ala	Gly	Ser 250	Туг	Asn	Phe	Ile	His 255	
55	<210 <211 <212 <213)> 1> 2> 3>	126 131 PRT Stap	ohyla		cus a	aurei	JS								

<400> 126 Met Lys Lys Leu Ile Ile Ser Ile Met Ala Val Met Leu Phe Leu Thr 1 10 15 Gly Cys Gly Lys Ser Gln Glu Lys Ala Thr Leu Glu Lys Asp Ile Asp 20 25 30 5 Asn Leu Gln Lys Glu Asn Lys Glu Leu Lys Asp Lys Lys Glu Lys Leu 35 40 45 Gln Glu Lys Glu Lys Leu Ala Asp Lys Gln Lys Asp Leu Glu Lys 50 55 60 10 Glu Val Lys Asp Leu Lys Pro Ser Lys Glu Asp Asn Lys Asp Asp Lys 65 70 75 80 Lys Asp Glu Asp Lys Asn Lys Asp Lys Asp Lys Asp Lys Glu Ala Ser 85 90 95 15 Gln Asp Lys Gln Ser Lys Asp Gln Thr Lys Ser Ser Asp Lys Asp Asn 100 105 110 His Lys Lys Pro Thr Ser Ala Asp Lys Asp Gln Lys Ala Asn Asp Lys 115 120 125 20 His Gln Ser 130 <210> 127 <211> 192 25 <212> PRT Staphylococcus aureus <213> <400> Met Thr Lys Arg Pro Lys Arg Ile Leu Ala Thr Ile Ile Ile Phe Leu 1 5 10 15 30 Ser Leu Leu Phe Thr Ile Ile Tyr Ile Asp Asp Ile Gln Lys Trp Phe 20 25 30 Asn Gln Tyr Thr Asp Lys Leu Thr Gln Asn His Lys Gly Gln Gly His 35 40 45 35 Ser Lys Trp Glu Asp Phe Phe Arg Gly Ser Arg Ile Thr Glu Thr Phe 50 55 60 Gly Lys Tyr Gln His Ser Pro Phe Asp Gly Lys His Tyr Gly Ile Asp 65 70 75 80 40 Phe Ala Leu Pro Lys Gly Thr Pro Ile Lys Ala Pro Thr Asn Gly Lys 85 90 95 Val Thr Arg Ile Phe Asn Asn Glu Leu Gly Gly Lys Val Leu Gln Ile 100 105 110 45 Ala Glu Asp Asn Gly Glu Tyr His Gln Trp Tyr Leu His Leu Asp Lys 115 120 125 Tyr Asn Val Lys Val Gly Asp Arg Val Lys Ala Gly Asp Ile Ile Ala 130 135 140 50 Tyr Ser Gly Asn Thr Gly Ile Gln Thr Thr Gly Ala His Leu His Phe 145 150 155 160 Gln Arg Met Lys Gly Gly Val Gly Asn Ala Tyr Ala Glu Asp Pro Lys 165 170 175 55 Pro Phe Ile Asp Gln Leu Pro Asp Gly Glu Arg Ser Leu Tyr Asp Leu 180 185 190

EP 2 510 947 A1

	<210 <211 <212 <213	> > > >	128 505 PRT Stap	ohy]c	ococo	cus a	aurei	ıs								
5	<400 Met 1	> Thr	128 Gln	Gln	Gln 5	Asn	Asp	Lys	Arg	Thr 10	Leu	Lys	Asn	Lys	His 15	Thr
10	Туr	Gln	Asn	Glu 20	Pro	Leu	Pro	Asn	Arg 25	Lys	Asp	Phe	Val	Va] 30	Ser	Phe
	Ile	Thr	G]y 35	Ala	Leu	Val	Gly	Ser 40	Ala	Leu	Gly	Leu	Tyr 45	Phe	Lys	Asn
15	Lys	∨a1 50	Тyr	Gln	Lys	Ala	Asp 55	Asp	Leu	Lys	Val	Lys 60	Glu	Gln	Glu	Leu
10	Ser 65	Gln	Lys	Phe	Glu	Glu 70	Arg	Lys	Thr	Gln	Leu 75	Glu	Glu	Thr	Val	Ala 80
20	Tyr	Thr	Lys	Glu	Arg 85	Val	Glu	Gly	Phe	Leu 90	Asn	Lys	Ser	Lys	Asn 95	Glu
20	Gln	Ala	Ala	Leu 100	Lys	Ala	Gln	Gln	A]a 105	Ala	Ile	Lys	Glu	Glu 110	Ala	Ser
25	Ala	Asn	Asn 115	Leu	Ser	Asp	Thr	Ser 120	Gln	Glu	Ala	Gln	Glu 125	Ile	Gln	Glu
20	Ala	Lys 130	Arg	Glu	Ala	Gln	A]a 135	Glu	Ala	Asp	Lys	Ser 140	Val	Ala	Val	Ser
20	Asn 145	Lys	Glu	Ser	Lys	Ala 150	Val	Ala	Leu	Lys	Ala 155	Gln	Gln	Ala	Ala	Ile 160
30	Lys	Glu	Glu	Ala	Ser 165	Ala	Asn	Asn	Leu	Ser 170	Asp	Тhr	Ser	Gln	Glu 175	Ala
25	Gln	Glu	Ile	Gln 180	Glu	Ala	Lys	Lys	Glu 185	Ala	Gln	Ala	Glu	Thr 190	Asp	Lys
30	Ser	Ala	Ala 195	Val	Ser	Asn	Glu	Glu 200	Pro	Lys	Ala	Val	Ala 205	Leu	Lys	Ala
10	Gln	G]n 210	Ala	Ala	Ile	Lys	Glu 215	Glu	Ala	Ser	Ala	Asn 220	Asn	Leu	Ser	Asp
40	Thr 225	Ser	Gln	Glu	Ala	G]n 230	Glu	Val	Gln	Glu	Ala 235	Lys	Lys	Glu	Ala	G]n 240
45	Ala	Glu	Thr	Asp	Lys 245	Ser	Ala	Ala	Val	Ser 250	Asn	Glu	Glu	Pro	Lys 255	Ala
45	Val	Ala	Leu	Lys 260	Ala	Gln	Gln	Ala	Ala 265	Ile	Lys	Glu	Glu	A]a 270	Ser	Ala
	Asn	Asn	Leu 275	Ser	Asp	Ile	Ser	G]n 280	Glu	Ala	Gln	Glu	Va] 285	Gln	Glu	Ala
50	Lys	Lys 290	Glu	Ala	Gln	Ala	Glu 295	Lys	Asp	Ser	Asp	Thr 300	Leu	Thr	Lys	Asp
	Ala 305	Ser	Ala	Ala	Lys	Val 310	Glu	Val	Ser	Lys	Pro 315	Glu	Ser	Gln	Ala	Glu 320
55	Arg	Leu	Ala	Asn	Ala 325	Ala	Lys	Gln	Lys	G]n 330	Ala	Lys	Leu	Thr	Pro 335	Gly
	Ser	Lys	Glu	Ser 340	Gln	Leu	Thr	Glu	Ala 345	Leu	Phe	Ala	Glu	Lys 350	Pro	Val
--	---	--	---	---	--	---	---	---	--	--	---	---	---	---	---	--
5	Ala	Lys	Asn 355	Asp	Leu	Lys	Glu	I]e 360	Pro	Gln	Leu	Val	Thr 365	Lys	Lys	Asn
	Asp	Va1 370	Ser	Glu	⊤hr	Glu	Тhr 375	Val	Asn	Ile	Asp	Asn 380	Lys	Asp	Thr	Val
	Lys 385	Gln	Lys	Glu	Ala	Lys 390	Phe	Glu	Asn	Gly	Va] 395	Ile	Thr	Arg	Lys	Ala 400
10	Asp	Glu	Lys	тhr	⊤hr 405	Asn	Asn	тhr	Ala	Val 410	Asp	Lys	Lys	Ser	G]y 415	Lys
	Gln	Ser	Lys	Lys 420	⊤hr	Thr	Pro	Ser	Asn 425	Lys	Arg	Asn	Ala	Ser 430	Lys	Ala
15	Ser	Thr	Asn 435	Lys	⊤hr	Ser	Gly	G]n 440	Lys	Lys	Gln	His	Asn 445	Lys	Lys	Ser
	Ser	Gln 450	Gly	Ala	Lys	Lys	Gln 455	Ser	Ser	Ser	Ser	Lys 460	Ser	Thr	Gln	Lys
20	Asn 465	Asn	Gln	Thr	Ser	Asn 470	Lys	Asn	Ser	Lys	Thr 475	⊤hr	Asn	Ala	Lys	Ser 480
	Ser	Asn	А]а	Ser	Lys 485	Thr	Pro	Asn	Ala	Lys 490	Val	Glu	Lys	Ala	Lys 495	Ser
25	Lys	Ile	Glu	Lys 500	Arg	тhr	Phe	Asn	Asp 505							
30	<21(<21) <21) <21))> L> 2>	129 305 PRT Star	obv]c		-115 2	ura									
			Jun	JIIYIC		.45 0	ureu	IS								
	<400 Met 1)> Phe	129 Lys	Arg	⊤hr 5	Lys	Leu	Ile	Leu	I]e 10	Ala	⊤hr	Leu	Leu	Leu 15	Ser
35	<40(Met 1 Gly)> Phe Cys	129 Lys Ser	Arg Thr 20	⊤hr 5 ⊤hr	Lys Asn	Leu Asn	Ile Glu	Leu Ser 25	Ile 10 Asn	Ala Lys	Thr Glu	Leu Thr	Leu Lys 30	Leu 15 Ser	Ser Val
35	<40(Met 1 Gly Pro)> Phe Cys Glu	129 Lys Ser Glu 35	Arg Thr 20 Met	Thr 5 ⊤hr Glu	Lys Asn Ala	Leu Asn Ser	Ile Glu Lys 40	Leu Ser 25 Tyr	Ile 10 Asn Val	Ala Lys Gly	⊤hr Glu Gln	Leu Thr Gly 45	Leu Lys 30 Phe	Leu 15 Ser Gln	Ser Val Pro
35	<400 Met 1 Gly Pro Pro)> Phe Cys Glu Ala 50	129 Lys Ser Glu 35 Glu	Arg Thr 20 Met Lys	Thr 5 Thr Glu Asp	Lys Asn Ala Val	Leu Asn Ser Val 55	Ile Glu Lys 40 Glu	Leu Ser 25 Tyr Phe	Ile 10 Asn Val Ala	Ala Lys Gly Lys	⊤hr Glu Gln Lys 60	Leu Thr Gly 45 His	Leu Lys 30 Phe Lys	Leu 15 Ser Gln Asp	Ser Val Pro Lys
35	<400 Met 1 Gly Pro Pro Ile 65	Phe Cys Glu Ala 50 Ala	129 Lys Ser Glu 35 Glu Lys	Arg Thr 20 Met Lys Arg	Thr 5 Thr Glu Asp Gly	Lys Asn Ala Val Glu 70	Leu Asn Ser Val 55 Gln	Ile Glu Lys 40 Glu Phe	Leu Ser 25 Tyr Phe Phe	Ile 10 Asn Val Ala Met	Ala Lys Gly Lys Asp 75	⊤hr Glu Gln Lys 60 Asn	Leu Thr Gly 45 His Phe	Leu Lys 30 Phe Lys Gly	Leu 15 Ser Gln Asp Leu	Ser Val Pro Lys 80
35 40 45	<400 Met Gly Pro Pro Ile 65 Val	Phe Cys Glu Ala 50 Ala Lys	129 Lys Ser Glu 35 Glu Lys Ala	Arg Thr 20 Met Lys Arg Thr	Thr 5 Thr Glu Asp Gly Asn 85	Lys Asn Ala Val Glu 70 Val	Leu Asn Ser Val 55 Gln Val	Ile Glu Lys 40 Glu Phe Gly	Leu Ser Tyr Phe Phe Ser	Ile Asn Val Ala Met Gly 90	Ala Lys Gly Lys Asp Z5	⊤hr Glu Gln Lys 60 Asn Gly	Leu Thr Gly 45 His Phe Val	Leu Lys 30 Phe Lys Gly Glu	Leu Ser Gln Asp Leu Val 95	Ser Val Pro Lys &0 Phe
35 40 45	<400 Met Gly Pro Pro Ile 65 Val Val	Phe Cys Glu Ala 50 Ala Lys His	129 Lys Ser Glu 35 Glu Lys Ala Cys	Arg Thr 20 Met Lys Arg Thr Asp 100	Thr 5 Thr Glu Asp Gly Asn 85 Asp	Lys Asn Ala Val Glu 70 Val His	Leu Asn Ser Val Gln Val Asp	Ile Glu Lys 40 Glu Phe Gly Ile	Leu Ser Tyr Phe Phe Ser Val 105	Ile Asn Val Ala Met Gly Phe	Ala Lys Gly Lys Asp Lys Asn	Thr Glu Gln Lys 60 Asn Gly Ala	Leu Thr Gly 45 His Phe Val Ser	Leu Lys Ohe Lys Gly Glu Ile	Leu Ser Gln Asp Leu Val 95 Pro	Ser Val Pro Lys 80 Phe Phe
 35 40 45 50 	<400 Met Gly Pro Pro Ile 65 Val Val Asp	Phe Cys Glu Ala 50 Ala Lys His Lys	129 Lys Ser Glu 35 Glu Lys Ala Cys Ser 115	Arg Thr 20 Met Lys Arg Thr Asp 100 Ile	Thr 5 Thr Glu Asp Gly Asn 85 Asp Ile	Lys Asn Ala Val Glu Val His Glu	Leu Asn Ser Val Gln Val Asp Ser	Ile Glu Lys Glu Phe Gly Ile Asp 120	Leu Ser Tyr Phe Phe Ser Val 105 Ser	Ile Asn Val Ala Met Gly 90 Phe Ser	Ala Lys Gly Lys Asp Lys Asn Leu	Thr Glu Gln Lys 60 Asn Gly Ala Arg	Leu Thr Gly His Phe Val Ser 125	Leu Lys Ohe Lys Gly Glu Ile 110 Glu	Leu Gln Asp Leu Val 95 Pro Asp	Ser Val Pro Lys &0 Phe Phe Lys
 35 40 45 50 	<400 Met Gly Pro Pro Ile 65 Val Val Asp Gly	Phe Cys Glu Ala Lys His Lys Asp 130	129 Lys Ser Glu Cys Ala Cys Ser 115 Asp	Arg Thr 20 Met Lys Arg Thr Asp 100 Ile Met	Thr 5 Thr Glu Asp Gly Asn 85 Asp Ile Ser	Lys Asn Ala Val Glu Val His Glu Thr	Leu Asn Ser Val Gln Val Asp Ser Leu 135	Ile Glu Lys 40 Glu Phe Gly Ile Asp 120 Val	Leu Ser Tyr Phe Ser Val 105 Ser Gly	Ile Asn Val Ala Met Gly Phe Ser Thr	Ala Lys Gly Lys Asp Lys Asn Leu Val	Thr Glu Gln Lys 60 Asn Gly Ala Arg Leu	Leu Thr Gly 45 His Phe Val Ser Ser Ser	Leu Lys Ohe Lys Gly Glu Ile 110 Glu Gly	Leu Gln Asp Leu Val 95 Pro Asp Phe	Ser Val Pro Lys Lys Phe Phe Lys Glu
 35 40 45 50 55 	<400 Met Gly Pro Pro Ile 65 Val Val Asp Gly Tyr 145	Phe Cys Glu Ala Lys Lys Lys Asp 130 Arg	129 Lys Ser Glu Sglu Lys Ala Cys Ser 115 Asp Thr	Arg Thr 20 Met Lys Arg Thr Asp 100 Ile Met Gln	Thr 5 Thr Glu Asp Gly Asp Ile Ser Lys	Lys Asn Ala Val Glu Glu Thr Glu 150	Leu Asn Ser Val Gln Val Asp Ser Leu 135 Lys	Ile Glu Lys Glu Phe Gly Ile Asp 120 Val Tyr	Leu Ser Tyr Phe Ser Val 105 Ser Gly Asp	Ile Asn Val Ala Met Gly Phe Ser Thr Asn	Ala Lys Gly Lys Asp Lys Asn Leu Val	Thr Glu Gln Lys 60 Asn Gly Ala Arg Leu 140 Tyr	Leu Thr Gly His Phe Val Ser Ser Lys	Leu Lys Ohe Lys Gly Glu Ile 110 Glu Gly Phe	Leu Gln Asp Leu Val Pro Asp Phe Phe	Ser Val Pro Lys Lys Phe Lys Glu Lys 160

					165					170					175	
	Asn	Lys	⊤hr	Gln 180	Asn	Val	Gly	туг	Lys 185	Asn	Glu	туг	Phe	Туг 190	Ile	Thr
5	Туr	Ser	Ser 195	Arg	Ser	Leu	Lys	G]u 200	Туr	Arg	Lys	Туr	Туг 205	Glu	Pro	Leu
	Ile	Ніs 210	Lys	Asn	Asp	Lys	Glu 215	Phe	Lys	Glu	Gly	Met 220	Glu	Gln	Ala	Arg
10	Lys 225	Glu	Val	Asn	Тyr	Ala 230	Ala	Asn	Тhr	Asp	Thr 235	Val	Thr	Thr	Leu	Phe 240
	Ser	Тhr	Lys	Glu	Asn 245	Phe	тhr	Lys	Asp	Asn 250	тhr	Val	Asp	Asp	Va] 255	Ile
15	Glu	Leu	Ser	Asp 260	Lys	Leu	Туr	Asn	Phe 265	Lys	Asn	Lys	Pro	Glu 270	Lys	Ser
	Thr	Ile	⊤hr 275	Ile	Gln	Ile	Gly	Lys 280	Pro	⊤hr	Ile	Asn	Thr 285	Lys	Lys	Ala
20	Phe	Туг 290	Asp	Asp	Asn	Asp	Pro 295	Ile	Glu	Туr	Gly	Va] 300	Туr	Arg	Lys	Asp
	GTu 305															
25	<210 <211 <212 <213)> L> 2> }>	130 226 PRT Stap	ohy10	ococo	cus a	aureu	ıs								
30	<400 Met 1)> Lys	130 Phe	Lys	Ala 5	Ile	Ala	Lys	Ala	Ser 10	Leu	Ala	Leu	Gly	Met 15	Leu
	Ala	Thr	Gly	Va] 20	Ile	Тhr	Ser	Asn	Va] 25	Gln	Ser	Val	Gln	Ala 30	Lys	Ala
35	Glu	Val	Lys 35	Gln	Gln	Ser	Glu	ser 40	Glu	Leu	Lys	His	туr 45	туr	Asn	Lys
	Pro	Ile 50	Leu	Glu	Arg	Lys	Asn 55	Val	Thr	Gly	Phe	Lys 60	туr	Thr	Asp	Glu
40	G]y 65	Lys	His	туr	Leu	Glu 70	Val	Тhr	Val	Gly	G]n 75	Gln	His	Ser	Arg	Ile 80
	Тhr	Leu	Leu	Gly	Ser 85	Asp	Lys	Asp	Lys	Phe 90	Lys	Asp	Gly	Glu	Asn 95	Ser
45	Asn	Ile	Asp	Val 100	Phe	Ile	Leu	Arg	Glu 105	Gly	Asp	Ser	Arg	G]n 110	Ala	Thr
	Asn	туг	Ser 115	Ile	Gly	Gly	Val	тhr 120	Lys	Ser	Asn	Ser	Val 125	Gln	туг	Ile
50	Asp	Туг 130	Ile	Asn	Thr	Pro	I]e 135	Leu	Glu	Ile	Lys	Lys 140	Asp	Asn	Glu	Asp
	Val 145	Leu	Lys	Asp	Phe	туг 150	туr	Ile	Ser	Lys	Glu 155	Asp	Ile	Ser	Leu	Lys 160
55	Glu	Leu	Asp	Туr	Arg 165	Leu	Arg	Glu	Arg	Ala 170	Ile	Lys	Gln	His	Gly 175	Leu
	туг	Ser	Asn	Gly 180	Leu	Lys	Gln	Gly	Gln 185	Ile	Thr	Ile	Thr	Met 190	Asn	Asp

Gly Thr Thr His Thr Ile Asp Leu Ser Gln Lys Leu Glu Lys Glu Arg 195 200 205 Met Gly Glu Ser Ile Asp Gly Thr Lys Ile Asn Lys Ile Leu Val Glu 210 215 220 5 Met Lys 225 <210> 131 <211> 231 10 <212> PRT <213> Staphylococcus aureus <400> Met Lys Met Lys Asn Ile Ala Lys Ile Ser Leu Leu Leu Gly Ile Leu 1 5 10 15 15 Ala Thr Gly Val Asn Thr Thr Glu Lys Pro Val His Ala Glu Lys 20 25 30 Lys Pro Ile Val Ile Ser Glu Asn Ser Lys Lys Leu Lys Ala Tyr Tyr 35 40 45 20 Asn Gln Pro Ser Ile Glu Tyr Lys Asn Val Thr Gly Tyr Ile Ser Phe 50 55 60 Ile Gln Pro Ser Ile Lys Phe Met Asn Ile Ile Asp Gly Asn Ser Val 65 70 75 80 25 Asn Asn Ile Ala Leu Ile Gly Lys Asp Lys Gln His Tyr His Thr Gly 85 90 95 Val His Arg Asn Leu Asn Ile Phe Tyr Val Asn Glu Asp Lys Arg Phe 100 105 110 30 Glu Gly Ala Lys Tyr Ser Ile Gly Gly Ile Thr Ser Ala Asn Asp Lys 115 120 125 Ala Val Asp Leu Ile Ala Glu Ala Arg Val Ile Lys Glu Asp His Thr 130 135 140 35 Gly Glu Tyr Asp Tyr Asp Phe Phe Pro Phe Lys Ile Asp Lys Glu Ala 145 150 155 160 Met Ser Leu Lys Glu Ile Asp Phe Lys Leu Arg Lys Tyr Leu Ile Asp 165 170 175 40 Asn Tyr Gly Leu Tyr Gly Glu Met Ser Thr Gly Lys Ile Thr Val Lys 180 185 190 Lys Lys Tyr Tyr Gly Lys Tyr Thr Phe Glu Leu Asp Lys Lys Leu Gln 195 200 205 45 Glu Asp Arg Met Ser Asp Val Ile Asn Val Thr Asp Ile Asp Arg Ile 210 215 220 Glu Ile Lys Val Ile Lys Ala 225 230 225 50 <210> 132 356 <211> <212> PRT <213> Staphylococcus aureus <400> 55 Met Lys Met Arg Thr Ile Ala Lys Thr Ser Leu Ala Leu Gly Leu Leu 1 5 10 15

EP 2 510 947 A1

	⊤hr	Thr	Gly	A]a 20	Ile	Thr	Val	Thr	Thr 25	Gln	Ser	Val	Lys	Ala 30	Glu	Lys
5	Ile	Gln	Ser 35	тhr	Lys	Val	Asp	Lys 40	Val	Pro	Тhr	Leu	Lys 45	Ala	Glu	Arg
5	Leu	Ala 50	Met	I]e	Asn	Ile	Thr 55	Ala	Gly	Ala	Asn	Ser 60	Ala	Thr	Thr	Gln
	Ala 65	Ala	Asn	Тhr	Arg	G]n 70	Glu	Arg	Тhr	Pro	Lys 75	Leu	Glu	Lys	Ala	Pro 80
10	Asn	Thr	Asn	Glu	Glu 85	Lys	Thr	Ser	Ala	Ser 90	Lys	Ile	Glu	Lys	Ile 95	Ser
	Gln	Pro	Lys	G]n 100	Glu	Glu	Gln	Lys	Thr 105	Leu	Asn	Ile	Ser	Ala 110	Thr	Pro
15	Ala	Pro	Lys 115	Gln	Glu	Gln	Ser	G]n 120	Thr	Thr	Thr	Glu	Ser 125	Тhr	Thr	Pro
	Lys	Thr 130	Lys	Val	⊤hr	Thr	Pro 135	Pro	Ser	Thr	Asn	Thr 140	Pro	Gln	Pro	Met
20	Gln 145	Ser	Thr	Lys	Ser	Asp 150	Thr	Pro	Gln	Ser	Pro 155	⊤hr	Ile	Lys	Gln	Ala 160
	Gln	Thr	Asp	Met	⊤hr 165	Pro	Lys	туг	Glu	Asp 170	Leu	Arg	Ala	туг	Туг 175	⊤hr
25	Lys	Pro	Ser	Phe 180	Glu	Phe	Glu	Lys	Gln 185	Phe	Gly	Phe	Met	Leu 190	Lys	Pro
	⊤rp	Тhr	Thr 195	Val	Arg	Phe	Met	Asn 200	Val	Ile	Pro	Asn	Arg 205	Phe	Ile	Туr
30	Lys	I]e 210	Ala	Leu	Val	Gly	Lys 215	Asp	Glu	Lys	Lys	Tyr 220	Lys	Asp	Gly	Pro
	Tyr 225	Asp	Asn	Ile	Asp	Va] 230	Phe	Ile	Val	Leu	G]u 235	Asp	Asn	Lys	Тyr	Gln 240
35	Leu	Lys	Lys	туг	Ser 245	Val	Gly	Gly	Ile	тhr 250	Lys	⊤hr	Asn	Ser	Lys 255	Lys
	Val	Asn	His	Lys 260	Val	Glu	Leu	Ser	Ile 265	Thr	Lys	Lys	Asp	Asn 270	Gln	Gly
40	Met	Ile	Ser 275	Arg	Asp	Val	Ser	G]u 280	Туr	Met	Ile	⊤hr	Lys 285	Glu	Glu	Ile
	Ser	Leu 290	Lys	Glu	Leu	Asp	Phe 295	Lys	Leu	Arg	Lys	G]n 300	Leu	Ile	Glu	Lys
45	His 305	Asn	Leu	туг	Gly	Asn 310	Met	Gly	Ser	Gly	Thr 315	Ile	Val	Ile	Lys	Met 320
	Lys	Asn	Gly	Gly	Lys 325	Туr	Thr	Phe	Glu	Leu 330	His	Lys	Lys	Leu	G]n 335	Glu
50	His	Arg	Met	A]a 340	Asp	Val	Ile	Asp	Gly 345	Thr	Asn	I]e	Asp	Asn 350	Ile	Glu
	Val	Asn	Ile 355	Lys												
55	<210 <211 <211 <211)> 1> 2> 3>	133 308 PRT Stap	ohyld	ococo	cus a	aurei	JS								

	<400 Met 1)> Lys	133 Ile	Thr	Thr 5	Ile	Ala	Lys	⊤hr	Ser 10	Leu	Ala	Leu	Gly	Leu 15	Leu
5	Thr	Thr	Gly	Va] 20	Ile	Thr	Thr	⊤hr	⊤hr 25	Gln	Ala	Ala	Asn	A]a 30	Thr	Thr
	Leu	Ser	Ser 35	Тhr	Lys	Val	Glu	Ala 40	Pro	Gln	Ser	Тhr	Pro 45	Pro	Ser	Thr
10	Lys	Ile 50	Glu	Ala	Pro	Gln	Ser 55	Lys	Pro	Asn	Ala	тhr 60	Thr	Pro	Pro	Ser
	Thr 65	Lys	Val	Glu	Ala	Pro 70	Gln	Gln	⊤hr	Ala	Asn 75	Ala	Thr	Thr	Pro	Pro 80
15	Ser	Thr	Lys	Val	Thr 85	Thr	Pro	Pro	Ser	Thr 90	Asn	Thr	Pro	G]n	Pro 95	Met
	Gln	Ser	Thr	Lys 100	Ser	Asp	Thr	Pro	G]n 105	Ser	Pro	Thr	Thr	Lys 110	G]n	Val
20	Pro	Thr	Glu 115	Ile	Asn	Pro	Lys	Phe 120	Lys	Asp	Leu	Arg	Ala 125	Туr	Тyr	Thr
	Lys	Pro 130	Ser	Leu	Glu	Phe	Lys 135	Asn	Glu	Ile	Gly	I]e 140	Ile	Leu	Lys	Lys
25	Trp 145	Thr	Thr	I]e	Arg	Phe 150	Met	Asn	Val	Val	Pro 155	Asp	туr	Phe	I]e	Tyr 160
	Lys	Ile	Ala	Leu	Va] 165	Gly	Lys	Asp	Asp	Lys 170	Lys	туr	Gly	Glu	G]y 175	Val
30	His	Arg	Asn	Val 180	Asp	Val	Phe	Val	Val 185	Leu	Glu	Glu	Asn	Asn 190	Туr	Asn
	Leu	Glu	Lys 195	Тyr	Ser	Val	Gly	Gly 200	Ile	Thr	Lys	Ser	Asn 205	Ser	Lys	Lys
35	Val	Asp 210	His	Lys	Ala	Gly	Va] 215	Arg	Ile	Thr	Lys	Glu 220	Asp	Asn	Lys	Gly
	Thr 225	Ile	Ser	His	Asp	Va1 230	Ser	Glu	Phe	Lys	Ile 235	Thr	Lys	Glu	G]n	Ile 240
40	Ser	Leu	Lys	Glu	Leu 245	Asp	Phe	Lys	Leu	Arg 250	Lys	Gln	Leu	I]e	Glu 255	Lys
	Asn	Asn	Leu	туг 260	Gly	Asn	Val	Gly	Ser 265	Gly	Lys	Ile	Val	I]e 270	Lys	Met
45	Lys	Asn	Gly 275	Gly	Lys	Тyr	Thr	Phe 280	Glu	Leu	His	Lys	Lys 285	Leu	Gln	Glu
	Asn	Arg 290	Met	Ala	Asp	Val	Ile 295	Asp	Gly	Thr	Asn	Ile 300	Asp	Asn	Ile	Glu
50	Va1 305	Asn	Ile	Lys												
50	<210 <211 <212 <213)> > !> }>	134 234 PRT Stap	ohy1c	ococo	cus a	aureu	IS								
55	<400 Met 1)> Lys	134 Met	Thr	Ala 5	Ile	Ala	Lys	Ala	Ser 10	Leu	Ala	Leu	G]y	I]e 15	Leu

	Ala	Thr	Gly	Thr 20	Ile	Thr	Ser	Leu	His 25	Gln	Thr	Val	Asn	A]a 30	Ser	Glu
5	His	Lys	A]a 35	Lys	Тyr	Glu	Asn	Va] 40	Тhr	Lys	Asp	Ile	Phe 45	Asp	Leu	Arg
	Asp	туг 50	Туr	Ser	Gly	Ala	Ser 55	Lys	Glu	Leu	Lys	Asn 60	Val	Тhr	Gly	Туr
10	Arg 65	туг	Ser	Lys	Gly	G]y 70	Lys	His	Тyr	Leu	Ile 75	Phe	Asp	Lys	Asn	Arg 80
10	Lys	Phe	Thr	Arg	Va1 85	Gln	Ile	Phe	Gly	Lys 90	Asp	Ile	Glu	Arg	Phe 95	Lys
15	Ala	Arg	Lys	Asn 100	Pro	Gly	Leu	Asp	I]e 105	Phe	Val	Val	Lys	Glu 110	Ala	Glu
15	Asn	Arg	Asn 115	Gly	Thr	Val	Phe	Ser 120	туr	Gly	Gly	Val	Thr 125	Lys	Lys	Asn
20	Gln	Asp 130	Ala	Туr	Туr	Asp	Туг 135	Ile	Asn	Ala	Pro	Arg 140	Phe	Gln	Ile	Lys
20	Arg 145	Asp	Glu	Gly	Asp	Gly 150	Ile	Ala	Thr	туr	Gly 155	Arg	Val	His	Тyr	I]e 160
95	туr	Lys	Glu	Glu	I]e 165	Ser	Leu	Lys	Glu	Leu 170	Asp	Phe	Lys	Leu	Arg 175	Gln
25	Туr	Leu	Ile	Gln 180	Asn	Phe	Asp	Leu	Туг 185	Lys	Lys	Phe	Pro	Lys 190	Asp	Ser
	Lys	Ile	Lys 195	Val	Ile	Met	Lys	Asp 200	Gly	Gly	туr	туr	тhr 205	Phe	Glu	Leu
30	Asn	Lys 210	Lys	Leu	Gln	Thr	Asn 215	Arg	Met	Ser	Asp	Va] 220	Ile	Asp	Gly	Arg
	Asn 225	Ile	Glu	Lys	Ile	G]u 230	Ala	Asn	Ile	Arg						
35	<210 <212 <212 <213)> L> 2> 3>	135 231 PRT Stap	ohyla	ococo	cus a	aureu	JS								
40	<400 Met 1)> Lys	135 Leu	Lys	Thr 5	Leu	Ala	Lys	Ala	Thr 10	Leu	Val	Leu	Gly	Leu 15	Leu
	Ala	Тhr	Gly	Va] 20	Ile	Тhr	Тhr	Glu	Ser 25	Gln	Тhr	Val	Lys	A]a 30	Ala	Glu
45	Ser	Thr	G]n 35	Gly	Gln	His	Asn	туг 40	Lys	Ser	Leu	Lys	Tyr 45	Тyr	Тyr	Ser
	Lys	Pro 50	Ser	Ile	Glu	Leu	Lys 55	Asn	Leu	Asp	Gly	Leu 60	туг	Arg	Gln	Lys
50	Val 65	Thr	Asp	Lys	Gly	Va] 70	туr	Val	тгр	Lys	Asp 75	Arg	Lys	Asp	туr	Phe 80
	Val	Gly	Leu	Leu	G]y 85	Lys	Asp	Ile	Glu	Lys 90	Тyr	Pro	Gln	Gly	Glu 95	His
55	Asp	Lys	Gln	Asp 100	Ala	Phe	Leu	Val	1]e 105	Glu	Glu	Glu	Thr	Val 110	Asn	Gly

	Arg	Gln	Туг 115	Ser	Ile	Gly	Gly	Leu 120	Ser	Lys	Thr	Asn	Ser 125	Lys	Glu	Phe
5	Ser	Lys 130	Glu	Val	Asp	Val	Lys 135	Val	тhr	Arg	Lys	I]e 140	Asp	Glu	Ser	Ser
	Glu 145	Lys	Ser	Lys	Asp	Ser 150	Lys	Phe	Lys	Ile	Thr 155	Lys	Glu	Glu	Ile	Ser 160
	Leu	Lys	Glu	Leu	Asp 165	Phe	Lys	Leu	Arg	Lys 170	Lys	Leu	Met	Glu	Glu 175	Glu
10	Lys	Leu	туr	Gly 180	Ala	Val	Asn	Asn	Arg 185	Lys	Gly	Lys	Ile	Val 190	Val	Lys
	Met	Glu	Asp 195	Asp	Lys	Phe	туr	Thr 200	Phe	Glu	Leu	⊤hr	Lys 205	Lys	Leu	Gln
15	Pro	ніs 210	Arg	Met	Gly	Asp	Тhr 215	Ile	Asp	Gly	Тhr	Lys 220	Ile	Lys	Glu	Ile
	Asn 225	Val	Glu	Leu	Glu	Туг 230	Lys									
20	<210 <212 <212 <212)> 1> 2> 3>	136 231 PRT Stap	ohyla	ococo	cus a	aurei	JS								
25	<400 Met 1)> Lys	136 Leu	Lys	⊤hr 5	Leu	Ala	Lys	Ala	Thr 10	Leu	Ala	Leu	Gly	Leu 15	Leu
	⊤hr	Thr	Gly	Val 20	Ile	тhr	Ser	Glu	G]y 25	Gln	Ala	Val	Gln	A]a 30	Lys	Glu
30	Lys	Gln	Glu 35	Arg	Val	Gln	His	Leu 40	Тyr	Asp	Ile	Lys	Asp 45	Leu	His	Arg
	Tyr	туr 50	Ser	Ser	Glu	Ser	Phe 55	Glu	Phe	Ser	Asn	Ile 60	Ser	Gly	Lys	Val
35	Glu 65	Asn	туг	Asn	Gly	Ser 70	Asn	Val	Val	Arg	Phe 75	Asn	Gln	Gไน	Asn	Gln 80
	Asn	His	Gln	Leu	Phe 85	Leu	Leu	G∣y	Lys	Asp 90	Lys	Glu	Lys	туг	Lys 95	Glu
40	Gly	Ile	Glu	Gly 100	Lys	Asp	Val	Phe	Val 105	Val	Lys	Glu	Leu	I]e 110	Asp	Pro
	Asn	Gly	Arg 115	Leu	Ser	Thr	Val	Gly 120	Gly	Val	Thr	Lys	Lys 125	Asn	Asn	Lys
45	Ser	Ser 130	Glu	Thr	Asn	Thr	His 135	Leu	Phe	Val	Asn	Lys 140	Val	туг	Gly	Gly
	Asn 145	Leu	Asp	Ala	Ser	Ile 150	Asp	Ser	Phe	Ser	I]e 155	Asn	Lys	Glu	Glu	Val 160
50	Ser	Leu	Lys	Glu	Leu 165	Asp	Phe	Lys	Ile	Arg 170	Gln	His	Leu	Val	Lys 175	Asn
	Туr	Gly	Leu	Туг 180	Lys	Gly	Тhr	Тhr	Lys 185	туr	Gly	Lys	Ile	Тhr 190	Ile	Asn
55	Leu	Lys	Asp 195	Gly	Glu	Lys	Gln	G]u 200	Ile	Asp	Leu	Gly	Asp 205	Lys	Leu	Gln
	Phe	Glu	Arg	Met	Gly	Asp	Val	Leu	Asn	Ser	Lys	Asp	Ile	Asn	Lys	Ile

	210			215		220	
	Glu Val 225	⊤hr Leu	Lys Gln 230	Ile			
5	<210> <211> <212> <213>	137 232 PRT Staphylo	coccus a	aureus			
10	<400> Met Lys 1	137 Phe Thr	Val Ile 5	Ala Lys	Ala Ile Phe 10	Ile Leu Gly	Ile Leu 15
	Thr Thr	Ser Val 20	Met Ile	Thr Glu	Asn Gln Ser 25	Val Asn Ala 30	Lys Gly
15	Lys Tyr	Glu Lys 35	Met Asn	Arg Leu 40	Tyr Asp Thr	Asn Lys Leu 45	His Gln
	Tyr Tyr 50	Ser Gly	Pro Ser	Tyr Glu 55	Leu Thr Asn	Val Ser Gly 60	Gln Ser
20	Gln Gly 65	Tyr Tyr	Asp Ser 70	Asn Val	Leu Leu Phe 75	Asn Gln Gln	Asn Gln 80
	Lys Phe	Gln Val	Phe Leu 85	Leu Gly	Lys Asp Glu 90	Asn Lys Tyr	Lys Glu 95
25	Lys Thr	ніs Gly 100	Leu Asp	Val Phe	Ala Val Pro 105	Glu Leu Val 110	Asp Leu
	Asp Gly	Arg Ile 115	Phe Ser	val ser 120	Gly Val Thr	Lys Lys Asn 125	Val Lys
30	Ser Ile 130	Phe Glu	Ser Leu	Arg Thr 135	Pro Asn Leu	Leu Val Lys 140	Lys Ile
	Asp Asp 145	Lys Asp	Gly Phe 150	Ser Ile	Asp Glu Phe 155	Phe Phe Ile	Gln Lys 160
35	Glu Glu	Val Ser	Leu Lys 165	Glu Leu	Asp Phe Lys 170	Ile Arg Lys	Leu Leu 175
	Ile Lys	Lys Tyr 180	Lys Leu	Tyr Glu	Gly Ser Ala 185	Asp Lys Gly 190	Arg Ile
40	val Ile	Asn Met 195	Lys Asp	Glu Asn 200	Lys ⊤yr Glu	Ile Asp Leu 205	Ser Asp
	Lys Leu 210	Asp Phe	Glu Arg	Met Ala 215	Asp Val Ile	Asn Ser Glu 220	Gln Ile
45	Lys Asn 225	Ile Glu	val Asn 230	Leu Lys			
	<210> <211> <212> <213>	138 232 PRT Staphylo	coccus a	aureus			
50	<400> Met Lys 1	138 Leu Thr	Thr Ile 5	Ala Lys	Ala Thr Leu 10	Ala Leu Gly	Ile Leu 15
	Thr Thr	Gly Val 20	Phe Thr	Ala Glu	Ser Gln Thr 25	Gly His Ala 30	Lys Val
55	Glu Leu	Asp Glu 35	Thr Gln	Arg Lys 40	Tyr ⊤yr Ile	Asn Met Leu 45	His Gln

	туг	Tyr 50	Ser	Glu	Glu	Ser	Phe 55	Glu	Pro	Thr	Asn	Ile 60	Ser	Val	Lys	Ser
5	Glu 65	Asp	Тyr	Тyr	Gly	Ser 70	Asn	Val	Leu	Asn	Phe 75	Lys	Gln	Arg	Asn	Lys 80
	Ala	Phe	Lys	Val	Phe 85	Leu	Leu	Gly	Asp	Asp 90	Lys	Asn	Lys	туr	Lys 95	Glu
10	Lys	Thr	His	Gly 100	Leu	Asp	Val	Phe	Ala 105	Val	Pro	Glu	Leu	I]e 110	Asp	I]e
	Lys	Gly	Gly 115	Ile	Тyr	Ser	Val	Gly 120	Gly	Ile	Thr	Lys	Lys 125	Asn	Val	Arg
15	Ser	Va] 130	Phe	Gly	Phe	Val	Ser 135	Asn	Pro	Ser	Leu	G]n 140	Val	Lys	Lys	Val
	Asp 145	Ala	Lys	Asn	Gly	Phe 150	Ser	Ile	Asn	Glu	Leu 155	Phe	Phe	Ile	Gln	Lys 160
20	Glu	Glu	Val	Ser	Leu 165	Lys	Glu	Leu	Asp	Phe 170	Lys	Ile	Arg	Lys	Leu 175	Leu
	Ile	Glu	Lys	Туг 180	Arg	Leu	Туr	Lys	Gly 185	Thr	Ser	Asp	Lys	Gly 190	Arg	Ile
25	Val	Ile	Asn 195	Met	Lys	Asp	Glu	Lys 200	Lys	His	Glu	Ile	Asp 205	Leu	Ser	Glu
	Lys	Leu 210	Ser	Phe	Glu	Arg	Met 215	Phe	Asp	Val	Met	Asp 220	Ser	Lys	Gln	Ile
30	Lys 225	Asn	Ile	Glu	Val	Asn 230	Leu	Asn								
	<210 <211 <212 <213)> L> 2> 3>	139 227 PRT Stap	ohy1c	ococo	cus a	aureu	ıs								
35	<400 Met)>	139													
	1	Lys	Phe	Тhr	Ala 5	Leu	Ala	Lys	Ala	Thr 10	Leu	Ala	Leu	Gly	Ile 15	Leu
10	1 Thr	Lys Thr	Phe Gly	Thr Thr 20	Ala 5 Leu	Leu Thr	Ala Thr	Lys Glu	Ala Val 25	⊤hr 10 His	Leu Ser	Ala Gly	Leu His	Gly Ala 30	Ile 15 Lys	Leu Gln
40	1 Thr Asn	Lys Thr Gln	Phe Gly Lys 35	⊤hr Thr 20 Ser	Ala 5 Leu Val	Leu Thr Asn	Ala Thr Lys	Lys Glu His 40	Ala Val 25 Asp	Thr 10 His Lys	Leu Ser Glu	Ala Gly Ala	Leu His Leu 45	Gly Ala 30 Tyr	Ile 15 Lys Arg	Leu Gln Tyr
40	1 Thr Asn Tyr	Lys Thr Gln Thr 50	Phe Gly Lys 35 Gly	Thr Thr 20 Ser Lys	Ala Leu Val Thr	Leu Thr Asn Met	Ala Thr Lys Glu 55	Lys Glu His 40 Met	Ala Val 25 Asp Lys	Thr 10 His Lys Asn	Leu Ser Glu Ile	Ala Gly Ala Ser 60	Leu His Leu 45 Ala	Gly Ala 30 Tyr Leu	Ile 15 Lys Arg Lys	Leu Gln Tyr His
40 45	1 Thr Asn Tyr Gly 65	Lys Thr Gln Thr 50 Lys	Phe Gly Lys 35 Gly Asn	Thr Thr 20 Ser Lys Asn	Ala Leu Val Thr Leu	Leu Thr Asn Met Arg 70	Ala Thr Lys Glu 55 Phe	Lys Glu His 40 Met Lys	Ala Val 25 Asp Lys Phe	Thr 10 His Lys Asn Arg	Leu Ser Glu Ile Gly 75	Ala Gly Ala Ser 60 Ile	Leu His Leu 45 Ala Lys	Gly Ala 30 Tyr Leu Ile	Ile 15 Lys Arg Lys Gln	Leu Gln Tyr His Val
40 45	1 Thr Asn Tyr Gly 65 Leu	Lys Thr Gln Thr 50 Lys Leu	Phe Gly Lys 35 Gly Asn Pro	Thr 20 Ser Lys Asn Gly	Ala Leu Val Thr Leu Asn	Leu Thr Asn Met Arg 70 Asp	Ala Thr Lys Glu 55 Phe Lys	Lys Glu His 40 Met Lys Ser	Ala Val Asp Lys Phe Lys	Thr 10 His Lys Asn Arg Phe 90	Leu Ser Glu Ile Gly 75 Gln	Ala Gly Ala Ser 60 Ile Gln	Leu His Leu 45 Ala Lys Arg	Gly Ala 30 Tyr Leu Ile Ser	Ile Lys Arg Lys Gln Tyr 95	Leu Gln Tyr His Val 80 Glu
40 45 50	1 Thr Asn Tyr Gly 65 Leu Gly	Lys Thr Gln Thr 50 Lys Leu Leu	Phe Gly Lys 35 Gly Asn Pro Asp	Thr 20 Ser Lys Asn Gly Val	Ala Leu Val Thr Leu Asn 85 Phe	Leu Thr Asn Met Arg 70 Asp Phe	Ala Thr Lys Glu 55 Phe Lys Val	Lys Glu His 40 Met Lys Ser Gln	Ala Val Asp Lys Phe Lys Glu	Thr 10 His Lys Asn Arg Phe 90 Lys	Leu Ser Glu Ile Gly 75 Gln Arg	Ala Gly Ala Ser Gln Asp	Leu His Leu Ala Lys Arg Lys	Gly Ala Jyr Leu Ile Ser His 110	Ile Lys Arg Lys Gln Tyr 95 Asp	Leu Gln Tyr His Val Glu Ile
40 45 50	1 Thr Asn Tyr Gly 65 Leu Gly Phe	Lys Thr Gln Thr 50 Lys Leu Leu Leu	Phe Gly Lys 35 Gly Asn Pro Asp Thr 115	Thr 20 Ser Lys Asn Gly Val 100 Val	Ala Leu Val Thr Leu Asn 85 Phe Gly	Leu Thr Asn Met Arg Asp Phe Gly	Ala Thr Lys Glu 55 Phe Lys Val Val	Lys Glu His Met Lys Ser Gln Ile	Ala Val 25 Lys Phe Lys Glu 105 Gln	Thr 10 His Lys Asn Arg Phe 90 Lys Asn	Leu Ser Glu Ile Gly 75 Gln Arg Asn	Ala Gly Ala Ser Ile Gln Asp Lys	Leu His Leu Ala Lys Arg Lys Thr 125	Gly Ala 30 Tyr Leu Ile Ser His 110 Ser	Ile Lys Arg Lys Gln Tyr 95 Asp Gly	Leu Gln Tyr His Val Glu Ile Val

	Phe 145	Val	Lys	Gly	Тyr	Pro 150	Туr	Тyr	Ile	Lys	Lys 155	Glu	Lys	Ile	Тhr	Leu 160
5	Lys	Glu	Leu	Asp	Туг 165	Lys	Leu	Arg	Lys	His 170	Leu	Ile	Glu	Lys	Туг 175	Gly
	Leu	Туr	Lys	Thr 180	Ile	Ser	Lys	Asp	Gly 185	Arg	Val	Lys	Ile	Ser 190	Leu	Lys
	Asp	Gly	Ser 195	Phe	туг	Asn	Leu	Asp 200	Leu	Arg	Ser	Lys	Leu 205	Lys	Phe	Lys
10	туr	Met 210	Gly	Glu	Val	Ile	Glu 215	Ser	Lys	Gln	Ile	Lys 220	Asp	Ile	Glu	Val
	Asn 225	Leu	Lys													
15	<210 <212 <212 <213)> L> 2> 3>	140 225 PRT Stap	ohy]a	ococo	cus a	aurei	ıs								
20	<400 Met 1)> Lys	140 Leu	Lys	Asn 5	I]e	Ala	Lys	Ala	Ser 10	Leu	Ala	Leu	Gly	Ile 15	Leu
	Thr	Thr	Gly	Met 20	Ile	Thr	Thr	Thr	A]a 25	Gln	Pro	Val	Lys	A]a 30	Ser	Thr
25	Leu	Glu	Va] 35	Arg	Ser	Gln	Ala	Thr 40	Gln	Asp	Leu	Ser	Glu 45	Тyr	Тyr	Asn
	Arg	Pro 50	Phe	Phe	Glu	туr	Thr 55	Asn	Gln	Ser	Gly	туг 60	Lys	Glu	Glu	Gly
30	Lys 65	Val	⊤hr	Phe	Thr	Pro 70	Asn	Туr	Gln	Leu	Ile 75	Asp	Val	Thr	Leu	Thr 80
	Gly	Asn	Glu	Lys	Gln 85	Asn	Phe	Gly	Glu	Asp 90	Ile	Ser	Asn	Val	Asp 95	Ile
35	Phe	Val	Val	Arg 100	Glu	Asn	Ser	Asp	Arg 105	Ser	Gly	Asn	Thr	A]a 110	Ser	Ile
	Gly	Gly	I]e 115	Thr	Lys	Thr	Asn	Gly 120	Ser	Asn	туr	Ile	Asp 125	Lys	Val	Lys
40	Asp	Val 130	Asn	Leu	Ile	Ile	Thr 135	Lys	Asn	Ile	Asp	Ser 140	Val	Thr	Ser	Thr
	Ser 145	Thr	Ser	Ser	Thr	Туг 150	Thr	Ile	Asn	Lys	Glu 155	Glu	Ile	Ser	Leu	Lys 160
45	Glu	Leu	Asp	Phe	Lys 165	Leu	Arg	Lys	His	Leu 170	Ile	Asp	Lys	His	Asn 175	Leu
	туг	Lys	⊤hr	Glu 180	Pro	Lys	Asp	Ser	Lys 185	I]e	Arg	Ile	Тhr	Met 190	Lys	Asp
50	Gly	Gly	Phe 195	Туr	Thr	Phe	Glu	Leu 200	Asn	Lys	Lys	Leu	G]n 205	Thr	His	Arg
	Met	G]y 210	Asp	Val	Ile	Asp	G]y 215	Arg	Asn	Ile	Glu	Lys 220	Ile	Glu	Val	Asn
55	Leu 225															
	<210)>	141													

<211> 116 PRT <212> <213> Staphylococcus aureus <400> 141 5 Met Lys Phe Lys Lys Tyr Ile Leu Thr Gly Thr Leu Ala Leu Leu Leu 1 5 10 15 Ser Ser Thr Gly Ile Ala Thr Ile Glu Gly Asn Lys Ala Asp Ala Ser 20 25 30 Ser Leu Asp Lys Tyr Leu Thr Glu Ser Gln Phe His Asp Lys Arg Ile 35 40 45 10 Ala Glu Glu Leu Arg Thr Leu Leu Asn Lys Ser Asn Val Tyr Ala Leu 50 55 60 Ala Ala Gly Ser Leu Asn Pro Tyr Tyr Lys Arg Thr Ile Met Met Asn 65 70 75 80 15 Glu Tyr Arg Ala Lys Ala Ala Leu Lys Lys Asn Asp Phe Val Ser Met 85 90 95 Ala Asp Ala Lys Val Ala Leu Glu Lys Ile Tyr Lys Glu Ile Asp Glu 100 105 110 20 Ile Ile Asn Arg 115 <210> 142 25 <211> 508 <212> PRT <213> Staphylococcus aureus <400> Met Lys Asn Lys Leu Leu Val Leu Ser Leu Gly Ala Leu Cys Val Ser 1 5 10 15 30 Gln Ile Trp Glu Ser Asn Arg Ala Ser Ala Val Val Ser Gly Glu Lys 20 25 30 Asn Pro Tyr Val Ser Glu Ser Leu Lys Leu Thr Asn Asn Lys Asn Lys 35 40 45 35 Ser Arg Thr Val Glu Glu Tyr Lys Lys Ser Leu Asp Asp Leu Ile Trp 50 55 60 Ser Phe Pro Asn Leu Asp Asn Glu Arg Phe Asp Asn Pro Glu Tyr Lys 65 70 75 80 65 40 Glu Ala Met Lys Lys Tyr Gln Gln Arg Phe Met Ala Glu Asp Glu Ala 85 90 95 Leu Lys Lys Phe Phe Ser Glu Glu Lys Lys Ile Lys Asn Gly Asn Thr 100 105 110 45 Asp Asn Leu Asp Tyr Leu Gly Leu Ser His Glu Arg Tyr Glu Ser Val 115 120 125 Phe Asn Thr Leu Lys Lys Gln Ser Glu Glu Phe Leu Lys Glu Ile Glu 130 135 140 50 Asp Ile Lys Lys Asp Asn Pro Glu Leu Lys Asp Phe Asn Glu Glu Glu 145 150 155 160 Gln Leu Lys Cys Asp Leu Glu Leu Asn Lys Leu Glu Asn Gln Ile Leu 165 170 175 55 Met Leu Gly Lys Thr Phe Tyr Gln Asn Tyr Arg Asp Asp Val Glu Ser 180 185 190

299

EP 2 510 947 A1

	Leu	Туr	Ser 195	Lys	Leu	Asp	Leu	I]e 200	Met	Gly	Туr	Lys	Asp 205	Glu	Glu	Arg
5	Ala	Asn 210	Lys	Lys	Ala	Val	Asn 215	Lys	Arg	Met	Leu	Glu 220	Asn	Lys	Lys	Glu
	Asp 225	Leu	Glu	Thr	Ile	I]e 230	Asp	Glu	Phe	Phe	Ser 235	Asp	Ile	Asp	Lys	Thr 240
10	Arg	Pro	Asn	Asn	I]e 245	Pro	Val	Leu	Glu	Asp 250	Glu	Lys	Gln	Glu	Glu 255	Lys
	Asn	His	Lys	Asn 260	Met	Ala	Gln	Leu	Lys 265	Ser	Asp	Thr	Glu	Ala 270	Ala	Lys
15	Ser	Asp	Glu 275	Ser	Lys	Arg	Ser	Lys 280	Arg	Ser	Lys	Arg	Ser 285	Leu	Asn	Thr
	Gln	Asn 290	His	Lys	Pro	Ala	Ser 295	Gln	Glu	Val	Ser	Glu 300	Gln	Gln	Lys	Ala
20	Glu 305	Туr	Asp	Lys	Arg	A]a 310	Glu	Glu	Arg	Lys	A]a 315	Arg	Phe	Leu	Asp	Asn 320
	Gln	Lys	Ile	Lys	Lys 325	Thr	Pro	Val	Val	Ser 330	Leu	Glu	Тyr	Asp	Phe 335	Glu
25	His	Lys	Gln	Arg 340	Ile	Asp	Asn	Glu	Asn 345	Asp	Lys	Lys	Leu	Va] 350	Val	Ser
	Ala	Pro	Thr 355	Lys	Lys	Pro	Thr	Ser 360	Pro	Thr	Thr	Туr	Thr 365	Glu	Thr	Thr
30	Тhr	G]n 370	Val	Pro	Met	Pro	тhr 375	Val	Glu	Arg	Gln	Thr 380	Gln	Gln	Gln	Ile
30	Ile 385	туг	Asn	Ala	Pro	Lys 390	Gln	Leu	Ala	Gly	Leu 395	Asn	Gly	Glu	Ser	ніs 400
25	Asp	Phe	Thr	Тhr	Thr 405	His	Gln	Ser	Pro	Thr 410	Thr	Ser	Asn	His	Thr 415	His
35	Asn	Asn	Val	Va1 420	Glu	Phe	Glu	Glu	⊤hr 425	Ser	Ala	Leu	Pro	Gly 430	Arg	Lys
40	Ser	Gly	Ser 435	Leu	Val	Gly	Ile	Ser 440	Gln	Ile	Asp	Ser	Ser 445	His	Leu	Thr
40	Glu	Arg 450	Glu	Lys	Arg	Val	I]e 455	Lys	Arg	Glu	His	Va] 460	Arg	Glu	Ala	Gln
	Lys 465	Leu	Val	Asp	Asn	туг 470	Lys	Asp	Thr	His	Ser 475	туr	Lys	Asp	Arg	Ile 480
45	Asn	Ala	Gln	Gln	Lys 485	Val	Asn	Thr	Leu	Ser 490	Glu	Gly	His	Gln	Lys 495	Arg
	Phe	Asn	Lys	G]n 500	Ile	Asn	Lys	Val	туг 505	Asn	Gly	Lys				
50	<210 <211 <212 <213)> L> 2> 3>	143 208 PRT Stap	ohy10	ococo	cus a	aurei	ıs								
55	<400 Met 1)> Lys	143 Phe	Gly	Lys 5	Thr	Ile	Ala	Val	Val 10	Leu	Ala	Ser	Ser	Val 15	Leu

	Leu	Ala	Gly	Cys 20	⊤hr	Thr	Asp	Lys	Lys 25	Glu	Ile	Lys	Ala	туг 30	Leu	Lys
5	Gln	Val	Asp 35	Lys	Ile	Lys	Asp	Asp 40	Glu	Glu	Pro	Ile	Lys 45	тhr	Val	Gly
	Lys	Lys 50	Ile	Ala	Glu	Leu	Asp 55	Glu	Lys	Lys	Lys	Lys 60	Leu	Тhr	Glu	Asp
10	Va] 65	Asn	Ser	Lys	Asp	Thr 70	Ala	Val	Arg	Gly	Lys 75	Ala	Val	Lys	Asp	Leu 80
10	Ile	Lys	Asn	Ala	Asp 85	Asp	Arg	Leu	Lys	Glu 90	Phe	Glu	Lys	Glu	Glu 95	Asp
45	Ala	Ile	Lys	Lys 100	Ser	Glu	Gln	Asp	Phe 105	Lys	Lys	Ala	Lys	Ser 110	His	Val
15	Asp	Asn	Ile 115	Asp	Asn	Asp	Val	Lys 120	Arg	Lys	Glu	Val	Lys 125	Gln	Leu	Asp
	Asp	Val 130	Leu	Lys	Glu	Lys	Туг 135	Lys	Leu	His	Ser	Asp 140	Туг	Ala	Lys	Ala
20	туг 145	Lys	Lys	Ala	Val	Asn 150	Ser	Glu	Lys	Тhr	Leu 155	Phe	Lys	туr	Leu	Asn 160
	Gln	Asn	Asp	Ala	⊤hr 165	Gln	Gln	Gly	Val	Asn 170	Glu	Lys	Ser	Lys	A]a 175	Ile
25	Glu	Gln	Asn	Туг 180	Lys	Lys	Leu	Lys	Glu 185	Val	Ser	Asp	Lys	Туг 190	Thr	Lys
	Val	Leu	Asn 195	Lys	Val	Gly	Lys	G]u 200	Lys	Gln	Asp	Val	Asp 205	Gln	Phe	Lys
30	<210 <211 <212 <213)> L> 2> }>	144 109 PRT Stap	ohyld	ococo	cus a	aurei	ıs								
30 35	<210 <211 <212 <212 <213 <400 Met 1)> L> 2> }> }> Lys	144 109 PRT Stap 144 Lys	ohyld Asn	Phe 5	cus a Ile	aurei Gly	is Lys	Ser	Ile 10	Leu	Ser	Ile	Ala	A]a 15	Ile
30 35	<210 <211 <212 <213 <400 Met 1 Ser)> L> 2> 3> D> Lys	144 109 PRT Stap 144 Lys Thr	ohyld Asn Val 20	Phe 5 Ser	cus a Ile Thr	aurei Gly Phe	us Lys Ala	Ser Gly 25	Ile 10 Glu	Leu Ser	Ser His	Ile Ala	Ala Gln 30	Ala 15 Thr	Ile Lys
30 35 40	<210 <211 <212 <213 <400 Met 1 Ser Asn)> L> 2> 3> Lys Leu Val	144 109 PRT Stap 144 Lys Thr Glu 35	Asn Val 20 Ala	Phe 5 Ser Ala	Ile Thr Lys	aurea Gly Phe Lys	us Lys Ala Tyr 40	Ser Gly 25 Asp	Ile 10 Glu Gln	Leu Ser Tyr	Ser His Gln	Ile Ala Thr 45	Ala Gln 30 Asn	Ala 15 Thr Phe	Ile Lys Lys
30 35 40	<210 <211 <212 <213 <400 Met 1 Ser Asn Lys)> L> 2> Lys Lys Leu Val Gln 50	144 109 PRT Stap 144 Lys Thr Glu 35 Val	ohyld Asn Val 20 Ala Asn	Phe 5 Ser Ala Lys	Ile Thr Lys Lys	aurei Gly Phe Lys Val 55	JS Lys Ala Tyr 40 Val	Ser Gly 25 Asp Asp	Ile 10 Glu Gln Ala	Leu Ser Tyr Gln	Ser His Gln Lys 60	Ile Ala Thr 45 Ala	Ala Gln 30 Asn Val	Ala 15 Thr Phe Asn	Ile Lys Lys Phe
30 35 40 45	<210 <211 <212 <213 <400 Met 1 Ser Asn Lys Phe 65)> L> 2> Lys Lys Leu Val Gln 50 Lys	144 109 PRT Stap 144 Lys Thr Glu 35 Val Arg	ohylc Asn Val 20 Ala Asn Thr	Phe Ser Ala Lys Arg	Ile Thr Lys Lys Thr 70	Gly Phe Lys Val Val	Lys Ala Tyr 40 Val Ala	Ser Gly 25 Asp Asp Thr	Ile 10 Glu Gln Ala His	Leu Ser Tyr Gln Arg 75	Ser His Gln Lys 60 Lys	Ile Ala Thr 45 Ala Ala	Ala Gln 30 Asn Val Gln	Ala 15 Thr Phe Asn Arg	Ile Lys Lys Phe Ala 80
30 35 40 45	<210 <211 <212 <213 <400 Met 1 Ser Asn Lys Phe 65 Val)> L> 2> Lys Leu Val Gln 50 Lys Asn	144 109 PRT Stap 144 Lys Thr Glu 35 Val Arg Leu	ohylo Asn Val 20 Ala Asn Thr Ile	Phe 5 Ser Ala Lys Arg His 85	Ile Thr Lys Lys Thr 70 Phe	ureu Gly Phe Lys Val Val Gln	JS Lys Ala Tyr 40 Val Ala His	Ser Gly 25 Asp Asp Thr Ser	Ile Glu Gln Ala His Tyr 90	Leu Ser Tyr Gln Arg 75 Glu	Ser His Gln Lys Lys Lys	Ile Ala Thr 45 Ala Ala Lys	Ala Gln 30 Asn Val Gln Lys	Ala 15 Thr Phe Asn Arg Leu 95	Ile Lys Lys Phe Ala 80 Gln
30 35 40 45 50	<210 <211 <212 <213 <400 Met 1 Ser Asn Lys Phe 65 Val Arg)> L> 2> Lys Leu Val Gln Lys Asn Gln	144 109 PRT Stap 144 Lys Thr Glu 35 Val Arg Leu Ile	Asn Val 20 Ala Asn Thr Ile Asp 100	Phe 5 Ser Ala Lys Arg His 85 Leu	Ile Thr Lys Lys Thr 70 Phe Val	aurei Gly Phe Lys Val Gln Leu	Lys Ala Tyr 40 Val Ala His Lys	Ser Gly Asp Asp Thr Ser Tyr 105	Ile 10 Glu Gln Ala His Tyr 90 Asn	Leu Ser Tyr Gln Arg Glu Thr	Ser His Gln Lys GU Lys Lys Lys	Ile Ala Thr Ala Ala Lys Lys	Ala Gln 30 Val Gln Lys	Ala 15 Thr Phe Asn Arg Leu 95	Ile Lys Lys Phe Ala 80 Gln
30 35 40 45 50	<210 <211 <212 <213 <400 Met 1 Ser Asn Lys Phe 65 Val Arg <210 <211 <212 <213)> L> 2> Lys Leu Val Gln Lys Asn Gln)> L> 2>	144 109 PRT Stap 144 Lys Thr Glu 35 Val Arg Leu Ile 145 116 PRT Stap	Asn Val 20 Ala Asn Thr Ile Asp 100	Phe 5 Ser Ala Lys Arg His 85 Leu	Ile Thr Lys Lys Thr 70 Phe Val	Gly Phe Lys Val Gln Leu	JS Lys Ala Tyr 40 Val Ala His Lys	Ser Gly Asp Asp Thr Ser Tyr 105	Ile Glu Gln Ala His Tyr 90 Asn	Leu Ser Tyr Gln Arg Glu Thr	Ser His Gln Lys Lys Lys Leu	Ile Ala Thr Ala Lys Lys	Ala Gln Asn Val Gln Lys	Ala 15 Thr Phe Asn Arg Leu 95	Ile Lys Phe Ala Gln

5 15 1 10 Ala Ser Pro Leu Val Thr Asn Leu Asp Lys Asn Glu Ala Gln Ala Ser 20 25 30 5 Thr Ser Leu Pro Thr Ser Asn Glu Tyr Gln Asn Glu Lys Leu Ala Asn 35 40 45 Glu Leu Lys Ser Leu Leu Asp Glu Leu Asn Val Asn Glu Leu Ala Thr 50 55 60 Gly Ser Leu Asn Thr Tyr Tyr Lys Arg Thr Ile Lys Ile Ser Gly Gln 65 70 75 80 10 Lys Ala Met Tyr Ala Leu Lys Ser Lys Asp Phe Lys Lys Met Ser Glu 85 90 95 Ala Lys Tyr Gln Leu Gln Lys Ile Tyr Asn Glu Ile Asp Glu Ala Leu 100 105 110 15 Lys Ser Lys Tyr 115 146 <210> 20 <211> 149 <212> PRT <213> Staphylococcus aureus <400>Met Lys Lys Lys Leu Ala Thr Thr Val Leu Ala Leu Ser Phe Leu Thr 1 5 10 15 25 Ala Gly Ile Ser Thr His His His Ser Ala Lys Ala Phe Thr Phe Glu 20 25 30 Pro Phe Pro Thr Asn Glu Glu Ile Glu Ser Asn Lys Lys Met Leu Glu 35 40 45 30 Lys Glu Lys Ala Tyr Lys Glu Ser Phe Lys Asn Ser Gly Leu Pro Thr 50 55 60 Thr Leu Gly Lys Leu Asp Glu Arg Leu Arg Asn Tyr Leu Lys Lys Gly 65 70 75 80 65 35 Thr Lys Asn Ser Ala Gln Phe Glu Lys Met Val Ile Leu Thr Glu Asn 85 90 95 Lys Gly Tyr Tyr Thr Val Tyr Leu Asn Thr Pro Leu Ala Glu Asp Arg 100 105 110 40 Lys Asn Val Glu Leu Leu Gly Lys Met Tyr Lys Thr Tyr Phe Phe Lys 115 120 125 Lys Gly Glu Ser Lys Ser Ser Tyr Val Ile Asn Gly Pro Gly Lys Thr 130 135 140 45 Asn Glu ⊤yr Ala ⊤yr 145 <210> 147 <211> 257 50 <212> PRT <213> Staphylococcus aureus <400> 147 Met Lys Lys Thr Ala Phe Ile Leu Leu Leu Phe Ile Ala Leu Thr Trp 1 5 10 15 15 55 Thr Thr Ser Pro Leu Val Asn Gly Ser Glu Lys Ser Glu Glu Ile Asn 20 25 30

	Glu	Lys	Asp 35	Leu	Arg	Lys	Lys	Ser 40	Glu	Leu	Gln	Gly	A]a 45	Ala	Leu	Gly
5	Asn	Leu 50	Lys	Gln	Ile	туr	туr 55	Тyr	Asn	Glu	Lys	Ala 60	Lys	Тhr	Glu	Asn
	Lys 65	Glu	Ser	His	Asp	G]n 70	Phe	Leu	Gln	His	Thr 75	Ile	Leu	Phe	Lys	Gly 80
10	Phe	Phe	Thr	Asn	His 85	Ser	тгр	Туr	Asn	Asp 90	Leu	Leu	Val	Asp	Phe 95	Asp
	Ser	Lys	Asp	I]e 100	Val	Asp	Lys	Тyr	Lys 105	Gly	Lys	Lys	Val	Asp 110	Leu	Туr
15	Gly	Ala	Туг 115	туг	Gly	туг	Gln	Cys 120	Ala	Gly	Gly	Thr	Pro 125	Asn	Lys	Thr
15	Ala	Cys 130	Met	туr	Gly	Gly	Val 135	Тhr	Leu	His	Asp	Asn 140	Asn	Arg	Leu	Thr
20	Glu 145	Glu	Lys	Lys	Val	Pro 150	Ile	Asn	Leu	Тгр	Leu 155	Asp	Gly	Lys	Gln	Asn 160
20	Thr	Val	Pro	Leu	Glu 165	Thr	Val	Lys	Тhr	Asn 170	Lys	Lys	Asn	Val	Thr 175	Val
05	Gln	Glu	Leu	Asp 180	Leu	Gln	Ala	Arg	Arg 185	Тyr	Leu	Gln	Glu	Lys 190	Тyr	Asn
25	Leu	Туг	Asn 195	Ser	Asp	Val	Phe	Asp 200	Gly	Lys	Val	Gln	Arg 205	Gly	Leu	Ile
	Val	Phe 210	His	Тhr	Ser	Thr	Glu 215	Pro	Ser	Val	Asn	Туг 220	Asp	Leu	Phe	Gly
30	Ala 225	Gln	Gly	Gln	Asn	Ser 230	Asn	Thr	Leu	Leu	Arg 235	Ile	Туг	Arg	Asp	Asn 240
	Lys	Thr	Ile	Asn	Ser 245	Glu	Asn	Met	Нis	Ile 250	Asp	Ile	Туr	Leu	Туг 255	Thr
35	Ser															
40	<210 <211 <211 <211)> 1> 2> 3>	148 154 PRT Stap	ohy10	ococo	cus a	aurei	ıs								
	<400 Met 1)> Lys	148 Arg	Leu	Leu 5	Gly	Leu	Leu	Leu	Val 10	Ser	Thr	Leu	Val	Leu 15	Ser
45	Ala	Cys	Gly	Asn 20	Asp	Glu	Asn	Gln	Glu 25	Glu	Ser	Lys	Lys	Glu 30	Val	Lys
	Ser	Lys	Glu 35	Lys	Lys	Ile	Glu	Lys 40	Glu	Lys	Glu	Asn	Lys 45	Ser	Lys	Lys
50	Asp	Lys 50	Glu	Lys	Glu	Val	A]a 55	Thr	Gln	Gln	Gln	Pro 60	Asp	Asn	Gln	Thr
	Va] 65	Glu	Gln	Pro	Gln	Ser 70	Gln	Glu	Gln	Ser	Val 75	Gln	Gln	Pro	Gln	G]n 80
55	Gln	Ile	Pro	Gln	Asn 85	Ser	Val	Pro	Gln	G]n 90	Asn	Val	Gln	Val	Gln 95	Gln

	Asn	Lys	Lys	G]n 100	Lys	Val	Asp	Leu	Asn 105	Asn	Met	Pro	Pro	Thr 110	Asp	Phe
5	Ser	Thr	Glu 115	Gly	Met	Ser	Glu	G]n 120	Ala	Gln	Lys	G]n	I]e 125	Glu	Glu	Leu
	Ser	Met 130	Gln	Lys	Asp	туг	His 135	Gly	Leu	Ser	Gln	Arg 140	Glu	туг	Asn	Asp
10	Arg 145	Val	Ser	Glu	Ile	Ile 150	Asn	Asn	Asp	Asn						
	<210 <211 <212 <213)> L> 2> 3>	149 1501 PRT Stap	L phylo	ococo	cus a	aurei	JS								
15	<400 Met 1)> Gln	149 Met	Arg	Asp 5	Lys	Lys	Gly	Pro	Va] 10	Asn	Lys	Arg	Val	Asp 15	Phe
	Leu	Ser	Asn	Lys 20	Leu	Asn	Lys	Туr	Ser 25	Ile	Arg	Lys	Phe	Thr 30	Val	Gly
20	⊤hr	Ala	Ser 35	Ile	Leu	Ile	Gly	Ser 40	Leu	Met	Туr	Leu	Gly 45	Тhr	Gln	Gln
	Glu	Ala 50	Glu	Ala	Ala	Glu	Asn 55	Asn	Ile	Glu	Asn	Pro 60	Thr	тhr	Leu	Lys
25	Asp 65	Asn	Val	Gln	Ser	Lys 70	Glu	Val	Lys	Ile	Glu 75	Glu	Val	Thr	Asn	Lys 80
	Asp	Thr	Ala	Pro	Gln 85	Gly	Val	Glu	Ala	Lys 90	Ser	Glu	Val	Thr	Ser 95	Asn
30	Lys	Asp	Тhr	I]e 100	Glu	His	Glu	Pro	Ser 105	Val	Lys	Ala	Glu	Asp 110	Ile	Ser
	Lys	Lys	Glu 115	Asp	⊤hr	Pro	Lys	Glu 120	Val	Ala	Asp	Val	Ala 125	Glu	Val	Gln
35	Pro	Lys 130	Ser	Ser	Val	тhr	ніs 135	Asn	Ala	Glu	Тhr	Pro 140	Lys	Val	Arg	Lys
	Ala 145	Arg	Ser	Val	Asp	Glu 150	Gly	Ser	Phe	Asp	I]e 155	⊤hr	Arg	Asp	Ser	Lys 160
40	Asn	Val	Val	Glu	Ser 165	Thr	Pro	Ile	Thr	I]e 170	Gln	Gly	Lys	Glu	Ніs 175	Phe
	Glu	Gly	туг	Gly 180	Ser	Val	Asp	Ile	Gln 185	Lys	Lys	Pro	Thr	Asp 190	Leu	Gly
45	Val	Ser	Glu 195	Val	⊤hr	Arg	Phe	Asn 200	Val	Gly	Asn	Glu	Ser 205	Asn	Gly	Leu
	Ile	G]y 210	Ala	Leu	Gln	Leu	Lys 215	Asn	Lys	Ile	Asp	Phe 220	Ser	Lys	Asp	Phe
50	Asn 225	Phe	Lys	Val	Arg	Va] 230	Ala	Asn	Asn	His	G]n 235	Ser	Asn	Тhr	Thr	Gly 240
	Ala	Asp	Gly	тгр	Gly 245	Phe	Leu	Phe	Ser	Lys 250	Gly	Asn	Ala	Glu	G]u 255	Tyr
55	Leu	Тhr	Asn	Gly 260	Gly	Ile	Leu	Gly	Asp 265	Lys	Gly	Leu	Val	Asn 270	Ser	Gly
	Gly	Phe	Lys	Ile	Asp	Thr	Gly	туr	Ile	Туr	Тhr	Ser	Ser	Met	Asp	Lys

			275					280					285			
	Тhr	Glu 290	Lys	Gln	Ala	Gly	Gln 295	Gly	Туr	Arg	Gly	туг 300	Gly	Ala	Phe	Val
5	Lys 305	Asn	Asp	Ser	Ser	Gly 310	Asn	Ser	Gln	Met	Val 315	Gly	Glu	Asn	Ile	Asp 320
	Lys	Ser	Lys	тhr	Asn 325	Phe	Leu	Asn	туr	Ala 330	Asp	Asn	Ser	Тhr	Asn 335	Thr
10	Ser	Asp	Gly	Lys 340	Phe	His	Gly	Gln	Arg 345	Leu	Asn	Asp	Val	Ile 350	Leu	Thr
	туr	Val	Ala 355	Ser	Тhr	Gly	Lys	Met 360	Arg	Ala	Glu	туr	Ala 365	Gly	Lys	Thr
15	тгр	Glu 370	⊤hr	Ser	Ile	Тhr	Asp 375	Leu	Gly	Leu	Ser	Lys 380	Asn	Gln	Ala	Tyr
	Asn 385	Phe	Leu	Ile	Thr	Ser 390	Ser	Gln	Arg	⊤rp	G]y 395	Leu	Asn	Gln	Gly	Ile 400
20	Asn	Ala	Asn	Gly	Тгр 405	Met	Arg	Thr	Asp	Leu 410	Lys	Gly	Ser	Glu	Phe 415	Thr
	Phe	Тhr	Pro	Glu 420	Ala	Pro	Lys	Тhr	Ile 425	⊤hr	Glu	Leu	Glu	Lys 430	Lys	Val
25	Glu	Glu	Ile 435	Pro	Phe	Lys	Lys	G]u 440	Arg	Lys	Phe	Asn	Pro 445	Asp	Leu	Ala
	Pro	Gly 450	⊤hr	Glu	Lys	Val	Thr 455	Arg	Glu	G∣y	Gln	Lys 460	Gly	Glu	Lys	Thr
30	11e 465	Thr	⊤hr	Pro	Thr	Leu 470	Lys	Asn	Pro	Leu	⊤hr 475	Gly	Val	Ile	Ile	Ser 480
	Lys	Gly	Glu	Pro	Lys 485	Glu	Glu	Ile	Thr	Lys 490	Asp	Pro	Ile	Asn	Glu 495	Leu
35	Thr	Glu	⊤yr	Gly 500	Pro	Glu	Thr	Ile	Ala 505	Pro	Gly	His	Arg	Asp 510	Glu	Phe
	Asp	Pro	Lys 515	Leu	Pro	Thr	Gly	Lys 520	Lys	Glu	Glu	Val	Pro 525	Gly	Lys	Pro
40	Gly	11e 530	Lys	Asn	Pro	Glu	Thr 535	Gly	Asp	Val	Val	Arg 540	Pro	Pro	Val	Asp
	Ser 545	Val	⊤hr	Lys	туг	G1y 550	Pro	Val	Lys	Gly	Asp 555	Ser	Ile	Val	Glu	Lys 560
45	Glu	Glu	Ile	Pro	Phe 565	Glu	Lys	Glu	Arg	Lys 570	Phe	Asn	Pro	Asp	Leu 575	Ala
	Pro	Gly	⊤hr	Glu 580	Lys	Val	Thr	Arg	Glu 585	Gly	Gln	Lys	Gly	Glu 590	Lys	Thr
50	Ile	Thr	⊤hr 595	Pro	Thr	Leu	Lys	Asn 600	Pro	Leu	Thr	Gly	Glu 605	Ile	Ile	Ser
	Lys	Gly 610	Glu	Ser	Lys	Glu	Glu 615	Ile	Thr	Lys	Asp	Pro 620	Ile	Asn	Glu	Leu
55	Thr 625	Glu	⊤yr	Gly	Pro	G]u 630	Thr	Ile	Thr	Pro	GTy 635	His	Arg	Asp	Glu	Phe 640
	Asp	Pro	Lys	Leu	Pro 645	Thr	Gly	Glu	Lys	Glu 650	Glu	Val	Pro	Gly	Lys 655	Pro

Gly Ile Lys Asn Pro Glu Thr Gly Asp Val Val Arg Pro Pro Val Asp 660 665 670 Ser Val Thr Lys Tyr Gly Pro Val Lys Gly Asp Ser Ile Val Glu Lys 675 680 685 5 Glu Glu Ile Pro Phe Glu Lys Glu Arg Lys Phe Asn Pro Asp Leu Ala 690 695 700 Pro Gly Thr Glu Lys Val Thr Arg Glu Gly Gln Lys Gly Glu Lys Thr 705 710 715 720 10 Ile Thr Thr Pro Thr Leu Lys Asn Pro Leu Thr Gly Val Ile Ile Ser 725 730 735 Lys Gly Glu Pro Lys Glu Glu Ile Thr Lys Asp Pro Ile Asn Glu Leu 740 745 750 15 Thr Glu Tyr Gly Pro Glu Thr Ile Thr Pro Gly His Arg Asp Glu Phe 755 760 765 Asp Pro Lys Leu Pro Thr Gly Glu Lys Glu Glu Val Pro Gly Lys Pro 770 775 780 20 Gly Ile Lys Asn Pro Glu Thr Gly Asp Val Val Arg Pro Pro Val Asp 785 790 795 800 Ser Val Thr Lys Tyr Gly Pro Val Lys Gly Asp Ser Ile Val Glu Lys 805 810 815 25 Glu Glu Ile Pro Phe Lys Lys Glu Arg Lys Phe Asn Pro Asp Leu Ala 820 825 830 Pro Gly Thr Glu Lys Val Thr Arg Glu Gly Gln Lys Gly Glu Lys Thr 835 840 845 30 Ile Thr Thr Pro Thr Leu Lys Asn Pro Leu Thr Gly Glu Ile Ile Ser 850 855 860 Lys Gly Glu Ser Lys Glu Glu Ile Thr Lys Asp Pro Ile Asn Glu Leu 865 870 875 880 35 Thr Glu Tyr Gly Pro Glu Thr Ile Thr Pro Gly His Arg Asp Glu Phe 885 890 895 Asp Pro Lys Leu Pro Thr Gly Glu Lys Glu Glu Val Pro Gly Lys Pro 900 905 910 40 Gly Ile Lys Asn Pro Glu Thr Gly Asp Val Val Arg Pro Pro Val Asp 915 920 925 Val Thr Lys Tyr Gly Pro Val Lys Gly Asp Ser Ile Val Glu Lys 930 935 940 Ser 45 Glu Glu Ile Pro Phe Lys Lys Glu Arg Lys Phe Asn Pro Asp Leu Ala 945 950 955 960 Pro Gly Thr Glu Lys Val Thr Arg Glu Gly Gln Lys Gly Glu Lys Thr 965 970 975 50 Ile Thr Thr Pro Thr Leu Lys Asn Pro Leu Thr Gly Glu Ile Ile Ser 980 985 990 Lys Gly Glu Ser Lys Glu Glu Ile Thr Lys Asp Pro Ile Asn Glu Leu 995 1000 1005 55 Thr Glu Tyr Gly Pro Glu Thr Ile Thr Pro Gly His Arg Asp Glu Phe 1015 1020 1010

Asp Pro Lys Leu Pro Thr Gly Glu Lys Glu Glu Val Pro Gly Lys Pro 1025 1030 1035 1044 1040 Gly Ile Lys Asn Pro Glu Thr Gly Asp Val Val Arg Pro Pro Val Asp 1045 1050 1055 5 Ser Val Thr Lys Tyr Gly Pro Val Lys Gly Asp Ser Ile Val Glu Lys 1060 1065 1070 Glu Glu Ile Pro Phe Glu Lys Glu Arg Lys Phe Asn Pro Asp Leu Ala 1075 1080 1085 10 Pro Gly Thr Glu Lys Val Thr Arg Glu Gly Gln Lys Gly Glu Lys Thr 1090 1095 1100 Ile Thr Thr Pro Thr Leu Lys Asn Pro Leu Thr Gly Glu Ile Ile Ser1105111011201115 1105 15 Lys Gly Glu Ser Lys Glu Glu Ile Thr Lys Asp Pro Ile Asn Glu Leu 1125 1130 1135 Thr Glu Tyr Gly Pro Glu Thr Ile Thr Pro Gly His Arg Asp Glu Phe 1140 1145 1150 20 Asp Pro Lys Leu Pro Thr Gly Glu Lys Glu Glu Val Pro Gly Lys Pro 1155 1160 1165 Gly Ile Lys Asn Pro Glu Thr Gly Asp Val Val Arg Pro Pro Val Asp 1170 1175 1180 25 Ser Val Thr Lys Tyr Gly Pro Val Lys Gly Asp Ser Ile Val Glu Lys 1185 1190 1195 1200 Glu Glu Ile Pro Phe Glu Lys Glu Arg Lys Phe Asn Pro Asp Leu Ala 1205 1210 1215 Pro Gly Thr Glu Lys Val Thr Arg Glu Gly Gln Lys Gly Glu Lys Thr 1220 1225 1230 30 Ile Thr Thr Pro Thr Leu Lys Asn Pro Leu Thr Gly Glu Ile Ile Ser 1235 1240 1245 Gly Glu Ser Lys Glu Glu Ile Thr Lys Asp Pro Val Asn Glu Leu 1250 1255 1260 Lys 35 Thr Glu Phe Gly Gly Glu Lys Ile Pro Gln Gly His Lys Asp Ile Phe1265127012751280 1265 1280 Asp Pro Asn Leu Pro Thr Asp Gln Thr Glu Lys Val Pro Gly Lys Pro 1285 1290 1295 40 Gly Ile Lys Asn Pro Asp Thr Gly Lys Val Ile Glu Glu Pro Val Asp 1300 1305 1310 Val Ile Lys His Gly Pro Lys Thr Gly Thr Pro Glu Thr Lys Thr 1315 1320 1325 45 Val Glu Ile Pro Phe Glu Thr Lys Arg Glu Phe Asn Pro Lys Leu Gln 1330 1335 1340 Pro Gly Glu Glu Arg Val Lys Gln Glu Gly Gln Pro Gly Ser Lys Thr 1345 1350 1355 1360 50 Ile Thr Thr Pro Ile Thr Val Asn Pro Leu Thr Gly Glu Lys Val Gly 1365 1370 1375 Glu Gly Gln Pro Thr Glu Glu Ile Thr Lys Gln Pro Val Asp Lys Ile 1380 1385 1390 55 Val Glu Phe Gly Gly Glu Lys Pro Lys Asp Pro Lys Gly Pro Glu Asn

			1395	5				1400)				1405	5		
	Pro	Glu 1410	Lys)	Pro	Ser	Arg	Pro 1415	Thr	His	Pro	Ser	Gly 1420	Pro)	Val	Asn	Pro
5	Asn 1425	Asn	Pro	Gly	Leu	Ser 1430	Lys)	Asp	Arg	Ala	Lys 1435	Pro 5	Asn	Gly	Pro	Va] 1440
	His	Ser	Met	Asp	Lys 1445	Asn 5	Asp	Lys	Val	Lys 1450	Lys)	Ser	Lys	Ile	Ala 1455	Lys
10	Glu	Ser	Val	Ala 1460	Asn)	Gln	Glu	Lys	Lys 1465	Arg	Ala	Glu	Leu	Pro 1470	Lys)	Thr
	Gly	Leu	Glu 1475	Ser	Thr	Gln	Lys	Gly 1480	Leu)	Ile	Phe	Ser	Ser 1485	Ile	Ile	Gly
15	Ile	Ala 1490	Gly)	Leu	Met	Leu	Leu 1495	Ala 5	Arg	Arg	Arg	Lys 1500	Asn)			
20	<210 <211 <212 <213)> _> _>	150 293 PRT Stap	ohylc	coco	cus a	ureu	15								
	<400 Ala 1)> Asp	150 Ser	Asp	Ile 5	Asn	Ile	Lys	⊤hr	G]y 10	⊤hr	Thr	Asp	Ile	Gly 15	Ser
25	Asn	Thr	тhr	Val 20	Lys	Тhr	Gly	Asp	Leu 25	Val	⊤hr	туr	Asp	Lys 30	Glu	Asn
	Gly	Met	Leu 35	Lys	Lys	Val	Phe	туг 40	Ser	Phe	I]e	Asp	Asp 45	Lys	Asn	His
30	Asn	Lys 50	Lys	Leu	Leu	Val	11e 55	Arg	⊤hr	Lys	G∣y	тhr 60	I]e	Ala	Gly	Gln
	туr 65	Arg	Val	Туr	Ser	Glu 70	Glu	Gly	Ala	Asn	Lys 75	Ser	Gly	Leu	Ala	тгр 80
35	Pro	Ser	Ala	Phe	Lys 85	Val	Gln	Leu	Gln	Leu 90	Pro	Asp	Asn	Glu	Val 95	Ala
	Gln	Ile	Ser	Asp 100	Туr	Tyr	Pro	Arg	Asn 105	Ser	I]e	Asp	Thr	Lys 110	Glu	Tyr
40	Met	Ser	тhr 115	Leu	Thr	Tyr	Gly	Phe 120	Asn	Gly	Asn	Val	⊤hr 125	Gly	Asp	Asp
	тhr	Gly 130	Lys	Ile	Gly	Gly	Leu 135	Ile	G∣y	Ala	Asn	Val 140	Ser	Ile	Gly	His
45	⊤hr 145	Leu	Lys	Туr	Val	Gln 150	Pro	Asp	Phe	Lys	⊤hr 155	Ile	Leu	Glu	Ser	Pro 160
	Thr	Asp	Lys	Lys	Va] 165	Gly	⊤rp	Lys	Val	Ile 170	Phe	Asn	Asn	Met	Va] 175	Asn
50	Gln	Asn	тгр	Gly 180	Pro	Туr	Asp	Arg	Asp 185	Ser	⊤rp	Asn	Pro	Val 190	Туr	Gly
	Asn	Gln	Leu 195	Phe	Met	Lys	Thr	Arg 200	Asn	Gly	Ser	Met	Lys 205	Ala	Ala	Asp
55	Asn	Phe 210	Leu	Asp	Pro	Asn	Lys 215	Ala	Ser	Ser	Leu	Leu 220	Ser	Ser	Gly	Phe
00	Ser 225	Pro	Asp	Phe	Ala	Thr 230	Val	Ile	⊤hr	Met	Asp 235	Arg	Lys	Ala	Ser	Lys 240

	Gln	Gln	Thr	Asn	I]e 245	Asp	Val	Ile	Тyr	G]u 250	Arg	Val	Arg	Asp	Asp 255	Tyr
5	Gln	Leu	His	тгр 260	Тhr	Ser	Тhr	Asn	тгр 265	Lys	Gly	Тhr	Asn	тhr 270	Lys	Asp
	Lys	тгр	Ile 275	Asp	Arg	Ser	Ser	Glu 280	Arg	Туr	Lys	Ile	Asp 285	тгр	Glu	Lys
10	Glu	Glu 290	Met	Thr	Asn											
	<210 <211 <212 <213)> L> }> }>	151 207 PRT Stap	ohyla	ococo	cus a	aureu	ıs								
15	<400 Met 1)> Ala	151 Met	Ile	Lys 5	Met	Ser	Pro	Glu	Glu 10	Ile	Arg	Ala	Lys	Ser 15	Gln
20	Ser	Туr	Gly	Gln 20	Gly	Ser	Asp	Gln	Ile 25	Arg	Gln	Ile	Leu	Ser 30	Asp	Leu
	Thr	Arg	A]a 35	Gln	Gly	Glu	Ile	A]a 40	Ala	Asn	тгр	Glu	Gly 45	Gln	Ala	Phe
25	Ser	Arg 50	Phe	Glu	Glu	Gln	Phe 55	Gln	Gln	Leu	Ser	Pro 60	Lys	Val	Glu	Lys
	Phe 65	Ala	Gln	Leu	Leu	Glu 70	Glu	Ile	Lys	Gln	Gln 75	Leu	Asn	Ser	Тhr	Ala 80
30	Asp	Ala	Val	Gln	Glu 85	Gln	Asp	Gln	Gln	Leu 90	Ser	Asn	Asn	Phe	G]y 95	Leu
	Gln	Ala	Ser	Gly 100	Gly	Gly	Ser	Met	Gly 105	Gly	Тyr	Lys	Gly	Ile 110	Lys	Ala
35	Asp	Gly	Gly 115	Lys	Val	Asp	Gln	A]a 120	Lys	Gln	Leu	Ala	A]a 125	Lys	Thr	Ala
55	Lys	Asp 130	Ile	Glu	Ala	Cys	Gln 135	Lys	Gln	Thr	Gln	Gln 140	Leu	Ala	Glu	Туr
40	I]e 145	Glu	Gly	Ser	Asp	Тгр 150	Glu	Gly	Gln	Phe	A]a 155	Asn	Lys	Val	Lys	Asp 160
40	Val	Leu	Leu	Ile	Met 165	Ala	Lys	Phe	Gln	Glu 170	Glu	Leu	Val	Gln	Pro 175	Met
45	Ala	Asp	His	Gln 180	Lys	Ala	Ile	Asp	Asn 185	Leu	Ser	Gln	Asn	Leu 190	Ala	Lys
45	Туr	Asp	Thr 195	Leu	Ser	Ile	Lys	G]n 200	Gly	Leu	Asp	Arg	Va1 205	Asn	Pro	
50	<210 <211 <212 <213)> L> 2> }>	152 207 PRT Stap	ohyla	ococo	cus a	aureu	ıs								
	<400 Met 1)> Gly	152 Gly	Tyr	Lys 5	Gly	Ile	Lys	Ala	Asp 10	Gly	Gly	Lys	Val	Asp 15	Gln
55	Ala	Lys	Gln	Leu 20	Ala	Ala	Lys	Thr	A]a 25	Lys	Asp	Ile	Glu	Ala 30	Cys	Gln

	Lys	Gln	Thr 35	Gln	Gln	Leu	Ala	Glu 40	Тyr	Ile	Glu	Gly	Ser 45	Asp	тгр	Glu
5	Gly	Gln 50	Phe	Ala	Asn	Lys	val 55	Lys	Asp	Val	Leu	Leu 60	Ile	Met	Ala	Lys
-	Phe 65	Gln	Glu	Glu	Leu	Va] 70	Gln	Pro	Met	Ala	Asp 75	His	Gln	Lys	Ala	Ile 80
10	Asp	Asn	Leu	Ser	G]n 85	Asn	Leu	Ala	Lys	туг 90	Asp	⊤hr	Leu	Ser	Ile 95	Lys
10	Gln	Gly	Leu	Asp 100	Arg	Val	Asn	Pro	Ala 105	Ser	Gly	Gly	Gly	Ser 110	Met	Ala
	Met	Ile	Lys 115	Met	Ser	Pro	Glu	G]u 120	Ile	Arg	Ala	Lys	Ser 125	Gln	Ser	Tyr
15	Gly	Gln 130	Gly	Ser	Asp	Gln	I]e 135	Arg	Gln	Ile	Leu	Ser 140	Asp	Leu	Thr	Arg
	Ala 145	Gln	Gly	Glu	Ile	Ala 150	Ala	Asn	тгр	Glu	Gly 155	G]n	Ala	Phe	Ser	Arg 160
20	Phe	Glu	Glu	Gln	Phe 165	Gln	Gln	Leu	Ser	Pro 170	Lys	Val	Glu	Lys	Phe 175	Ala
	Gln	Leu	Leu	Glu 180	Glu	Ile	Lys	Gln	Gln 185	Leu	Asn	Ser	Thr	Ala 190	Asp	Ala
25	Val	Gln	Glu 195	Gln	Asp	Gln	Gln	Leu 200	Ser	Asn	Asn	Phe	Gly 205	Leu	Gln	
	<210 <212 <212)> 1> 2>	153 169 PRT													
30	<21	3>	Stap	bhyld	ococo	cus a	aureu	IS								
30	<213 <400 Cys 1	3>)> Gly	Stap 153 Asn	ohyld Asp	⊤hr 5	cus a Pro	aurei Lys	ıs Asp	Glu	Thr 10	Lys	Ser	Thr	Glu	Ser 15	Asn
30 35	<213 <400 Cys 1 Thr	3> D> Gly Asn	Stap 153 Asn Gln	Asp Asp 20	Thr 5 ⊤hr	eus a Pro Asn	Lys Thr	us Asp Thr	Glu Lys 25	Thr 10 Asp	Lys Val	Ser Ile	Thr Ala	Glu Leu 30	Ser 15 Lys	Asn Asp
30 35	<21: <400 Cys 1 Thr Val	3> Gly Asn Lys	Star 153 Asn Gln Thr 35	Asp Asp 20 Ser	Thr 5 Thr Pro	Cus a Pro Asn Glu	Lys Thr Asp	Asp Thr Ala 40	Glu Lys 25 Val	Thr 10 Asp Lys	Lys Val Lys	Ser Ile Ala	Thr Ala Glu 45	Glu Leu 30 Glu	Ser 15 Lys Thr	Asn Asp Tyr
30 35 40	<21 <400 Cys 1 Thr Val Lys	Gly Asn Lys Gly 50	Star 153 Asn Gln Thr 35 Gln	Asp Asp 20 Ser Lys	Thr 5 Thr Pro Leu	Cus a Pro Asn Glu Lys	Lys Thr Asp Gly 55	Asp Thr Ala 40 Ile	Glu Lys 25 Val Ser	Thr 10 Asp Lys Phe	Lys Val Lys Glu	Ser Ile Ala Asn 60	Thr Ala Glu 45 Ser	Glu Leu 30 Glu Asn	Ser 15 Lys Thr Gly	Asn Asp Tyr Glu
30 35 40	<213 <400 Cys 1 Thr Val Lys Trp 65	Gly Asn Lys Gly 50 Ala	Star 153 Asn Gln Thr 35 Gln Tyr	Asp Asp 20 Ser Lys Lys	Thr 5 Thr Pro Leu Val	Cus a Pro Asn Glu Lys Thr 70	Lys Thr Asp Gly Gln	ASP Thr Ala 40 Ile Gln	Glu Lys 25 Val Ser Lys	Thr 10 Asp Lys Phe Ser	Lys Val Lys Glu Gly 75	Ser Ile Ala Asn 60 Glu	Thr Ala Glu 45 Ser Glu	Glu Leu 30 Glu Asn Ser	Ser 15 Lys Thr Gly Glu	Asn Asp Tyr Glu Val 80
30 35 40 45	<213 <400 Cys 1 Thr Val Lys Trp 65 Leu	Gly Asn Lys Gly Ala Val	Star 153 Asn Gln Thr 35 Gln Tyr Ala	Asp Asp 20 Ser Lys Lys Asp	Thr Thr Pro Leu Val	Cus a Pro Asn Glu Lys Thr 70 Asn	Lys Thr Asp Gly Gln Lys	Asp Thr Ala 40 Ile Gln Lys	Glu Lys 25 Val Ser Lys Val	Thr 10 Asp Lys Phe Ser Ile 90	Lys Val Lys Glu Gly 75 Asn	Ser Ile Ala Asn Glu Lys	Thr Ala Glu 45 Ser Glu Lys	Glu Leu 30 Glu Asn Ser Thr	Ser Lys Thr Gly Glu 95	Asn Asp Tyr Glu Val 80 Lys
30 35 40 45	<213 <400 Cys 1 Thr Val Lys Trp 65 Leu Glu	Gly Asn Lys Gly Ala Val Asp	Star 153 Asn Gln Thr 35 Gln Tyr Ala Thr	Asp Asp 20 Ser Lys Lys Asp Met 100	Thr Thr Pro Leu Val Lys 85 Asn	Cus a Pro Asn Glu Lys Thr 70 Asn Glu	Lys Thr Asp Gly Gln Lys Asn	Asp Thr Ala Ile Gln Lys Asp	Glu Lys 25 Val Ser Lys Val Asn 105	Thr 10 Asp Lys Phe Ser Ile 90 Phe	Lys Val Lys Glu Gly Asn Lys	Ser Ile Ala Asn Glu Lys Tyr	Thr Ala Glu 45 Ser Glu Lys Ser	Glu Leu 30 Glu Asn Ser Thr Asp 110	Ser 15 Lys Thr Gly Glu Glu 95 Ala	Asn Asp Tyr Glu Val &0 Lys Ile
30 35 40 45 50	<213 <400 Cys 1 Thr Val Lys Trp 65 Leu Glu Asp	3> Gly Asn Lys Gly 50 Ala Val Asp Tyr	Star 153 Asn Gln Thr 35 Gln Tyr Ala Thr Lys 115	Asp Asp 20 Ser Lys Lys Asp Met 100 Lys	Thr Thr Pro Leu Val Lys 85 Asn Ala	Cus a Pro Asn Glu Lys Thr 70 Asn Glu Ile	Lys Thr Asp Gly Gln Lys Asn Lys	Asp Thr Ala Ile Gln Lys Asp Glu 120	Glu Lys 25 Val Ser Lys Val Asn 105 Gly	Thr 10 Asp Lys Phe Ser Ile 90 Phe Gln	Lys Val Lys Glu Gly Asn Lys Lys	Ser Ile Ala Asn Glu Lys Tyr Glu	Thr Ala Glu Ser Glu Lys Ser Phe 125	Glu Leu 30 Asn Ser Thr Asp 110 Asp	Ser Lys Thr Gly Glu Glu Ala Gly	Asn Asp Tyr Glu Val &0 Lys Ile Asp
30 35 40 45 50	<213 <400 Cys 1 Thr Val Lys Trp 65 Leu Glu Asp Ile	3> Gly Asn Lys Gly 50 Ala Val Asp Tyr Lys 130	Star 153 Asn Gln Thr 35 Gln Tyr Ala Thr Lys 115 Glu	Asp Asp 20 Ser Lys Lys Asp Met 100 Lys Trp	Thr Thr Pro Leu Val Lys 85 Asn Ala Ser	Cus a Pro Asn Glu Lys Thr 70 Asn Glu Ile Leu	Lys Thr Asp Gly Gln Lys Asn Lys Glu 135	Asp Thr Ala Ala Ile Gln Lys Asp Glu 120 Lys	Glu Lys Z5 Val Ser Lys Val Asn 105 Gly Asp	Thr 10 Asp Lys Phe Ser Ile 90 Phe Gln Asp	Lys Val Glu Gly 75 Asn Lys Lys Gly	Ser Ile Ala Asn Glu Lys Tyr Glu Lys 140	Thr Ala Glu Ser Glu Lys Ser Phe 125 Leu	Glu Leu 30 Asn Ser Thr Asp 110 Asp Val	Ser Lys Thr Gly Glu Glu Glu Gly Tyr	Asn Asp Tyr Glu Val Lys Ile Asp Asn
30 35 40 45 50	<213 <400 Cys 1 Thr Val Lys Trp 65 Leu Glu Asp Ile 145	Asn Lys Gly Lys Gly Ala Val Asp Tyr Lys 130 Asp	Star 153 Asn Gln Thr 35 Gln Tyr Ala Thr Lys 115 Glu Leu	Asp Asp 20 Ser Lys Lys Asp Met 100 Lys Trp Lys	Thr Thr Pro Leu Val Lys Asn Ala Ser Lys	Cus a Pro Asn Glu Lys Thr 70 Asn Glu Ile Leu Gly 150	Lys Thr Asp Gly Gln Lys Asn Lys Glu 135 Asn	Asp Thr Ala Ala Ile Gln Lys Asp Glu Lys Lys	Glu Lys Val Ser Lys Val Asn Gly Asp Lys	Thr 10 Asp Lys Phe Ser Jle 90 Phe Gln Asp Gln	Lys Val Glu Gly Asn Lys Gly Gly Sly	Ser Ile Ala Asn Glu Lys Tyr Glu Lys 140 val	Thr Ala Glu Ser Glu Lys Ser Phe 125 Leu Thr	Glu Leu 30 Asn Ser Thr Asp 110 Asp Val Val	Ser Lys Thr Gly Glu Glu Glu Glu Gly Tyr Asp	Asn Asp Tyr Glu Val Uys Ile Asp Asn Ala 160

<213> Staphylococcus aureus <400> 154Cys Gly Asn Asp Thr Pro Lys Asp Glu Thr Lys Ser Thr Glu Ser Asn 1 5 10 15 10 Thr Asn Gln Asp Thr Asn Thr Thr Lys Asp Val Ile Ala Leu Lys Asp 20 25 30 Val Lys Thr Ser Pro Glu Asp Ala Val Lys Lys Ala Glu Glu Thr Tyr 35 40 45 Lys Gly Gln Lys Leu Lys Gly Ile Ser Phe Glu Asn Ser Asn Gly Glu 50 55 60 15 Trp Ala Tyr Lys Val Thr Gln Gln Lys Ser Gly Glu Glu Ser Glu Val 65 70 75 80 Leu Val Ala Asp Lys Asn Lys Lys Val Ile Asn Lys Lys Thr Glu Lys 85 90 95 20 Glu Asp Thr Met Asn Glu Asn Asp Asn Phe 100 105 <210> 155 25 580 <211> <212> PRT <213> Staphylococcus aureus <400> Ala Glu Asn Thr Ser Thr Glu Asn Ala Lys Gln Asp Asp Ala Thr Thr 1 10 15 30 Ser Asp Asn Lys Glu Val Val Ser Glu Thr Glu Asn Asn Ser Thr Thr 20 25 30 Glu Asn Asn Ser Thr Asn Pro Ile Lys Lys Glu Thr Asn Thr Asp Ser 35 40 45 35 Gln Pro Glu Ala Lys Lys Glu Ser Thr Ser Ser Ser Thr Gln Lys Gln 50 55 60 Gln Asn Asn Val Thr Ala Thr Thr Glu Thr Lys Pro Gln Asn Ile Glu 65 70 75 80 65 40 Lys Glu Asn Val Lys Pro Ser Thr Asp Lys Thr Ala Thr Glu Asp Thr 85 90 95 Ser Val Ile Leu Glu Glu Lys Lys Ala Pro Asn Asn Thr Asn Asn Asp 100 105 110 45 Val Thr Thr Lys Pro Ser Thr Ser Glu Pro Ser Thr Ser Glu Ile Gln 115 120 125 Thr Lys Pro Thr Thr Pro Gln Glu Ser Thr Asn Ile Glu Asn Ser Gln 130 135 140 50 Pro Gln Pro Thr Pro Ser Lys Val Asp Asn Gln Val Thr Asp Ala Thr 145 150 155 160 Asn Pro Lys Glu Pro Val Asn Val Ser Lys Glu Glu Leu Lys Asn Asn 165 170 175 55 Pro Glu Lys Leu Lys Glu Leu Val Arg Asn Asp Ser Asn Thr Asp His 180 185 190

165

<210>

<211> <212>

5

154 106

PRT

EP 2 510 947 A1

	Ser	Thr	Lys 195	Pro	Val	Ala	Thr	Ala 200	Pro	Thr	Ser	Val	Ala 205	Pro	Lys	Arg
5	Val	Asn 210	Ala	Lys	Met	Arg	Phe 215	Ala	Val	Ala	Gln	Pro 220	Ala	Ala	Val	Ala
	Ser 225	Asn	Asn	Val	Asn	Asp 230	Leu	Ile	Lys	Val	Thr 235	Lys	Gln	Thr	Ile	Lys 240
10	Val	Gly	Asp	Gly	Lys 245	Asp	Asn	Val	Ala	Ala 250	Ala	His	Asp	Gly	Lys 255	Asp
	Ile	Glu	туr	Asp 260	Thr	Glu	Phe	Thr	Ile 265	Asp	Asn	Lys	Val	Lys 270	Lys	Gly
15	Asp	Thr	Met 275	Thr	Ile	Asn	Туr	Asp 280	Lys	Asn	Val	Ile	Pro 285	Ser	Asp	Leu
	⊤hr	Asp 290	Lys	Asn	Asp	Pro	Ile 295	Asp	Ile	Thr	Asp	Pro 300	Ser	Gly	Glu	Val
20	Ile 305	Ala	Lys	Gly	Thr	Phe 310	Asp	Lys	Ala	Тhr	Lys 315	Gln	Ile	Thr	Туr	Thr 320
	Phe	Thr	Asp	туr	Val 325	Asp	Lys	туr	Glu	Asp 330	Ile	Lys	Ser	Arg	Leu 335	Thr
25	Leu	туr	Ser	туг 340	Ile	Asp	Lys	Lys	тhr 345	Val	Pro	Asn	Glu	тhr 350	Ser	Leu
	Asn	Leu	Thr 355	Phe	Ala	Thr	Ala	Gly 360	Lys	Glu	Thr	Ser	Gln 365	Asn	Val	Thr
30	Val	Asp 370	туr	Gln	Asp	Pro	Met 375	Val	His	Gly	Asp	Ser 380	Asn	Ile	Gln	Ser
	Ile 385	Phe	Thr	Lys	Leu	Asp 390	Glu	Asp	Lys	Gln	Thr 395	Ile	Glu	Gln	Gln	I]e 400
35	туr	Val	Asn	Pro	Leu 405	Lys	Lys	Ser	Ala	Thr 410	Asn	Thr	Lys	Val	Asp 415	Ile
	Ala	Gly	Ser	G]n 420	Val	Asp	Asp	туг	Gly 425	Asn	Ile	Lys	Leu	Gly 430	Asn	Gly
40	Ser	Thr	Ile 435	Ile	Asp	Gln	Asn	Thr 440	Glu	Ile	Lys	Val	Туг 445	Lys	Val	Asn
	Ser	Asp 450	Gln	Gln	Leu	Pro	Gln 455	Ser	Asn	Arg	Ile	туг 460	Asp	Phe	Ser	Gln
45	туг 465	Glu	Asp	Val	Тhr	Ser 470	Gln	Phe	Asp	Asn	Lys 475	Lys	Ser	Phe	Ser	Asn 480
	Asn	Val	Ala	Thr	Leu 485	Asp	Phe	Gly	Asp	I]e 490	Asn	Ser	Ala	Туr	Ile 495	Ile
50	Lys	Val	Val	Ser 500	Lys	туr	Thr	Pro	Thr 505	Ser	Asp	Gly	Glu	Leu 510	Asp	Ile
50	Ala	Gln	Gly 515	Thr	Ser	Met	Arg	тhr 520	Thr	Asp	Lys	туr	Gly 525	туr	туr	Asn
	Тyr	Ala 530	Gly	Туr	Ser	Asn	Phe 535	Ile	Val	Thr	Ser	Asn 540	Asp	Thr	Gly	Gly
00	G]y 545	Asp	Gly	Thr	Val	Lys 550	Pro	Glu	Glu	Lys	Leu 555	туr	Lys	Ile	Gly	Asp 560

	⊤yr	Val	тгр	Glu	Asp 565	Val	Asp	Lys	Asp	Gly 570	Val	G]n	Gly	Thr	Asp 575	Ser
5	Lys	Glu	Lys	Pro 580												
	<210 <211 <212 <213)> L> 2> }>	156 540 PRT Stap	ohylo	ococo	cus a	aureu	ıs								
10	<40(Ala 1)> Glu	156 Ser	Thr	Asn 5	Lys	Glu	Leu	Asn	Glu 10	Ala	⊤hr	Thr	Ser	A]a 15	Ser
	Asp	Asn	Gln	Ser 20	Ser	Asp	Lys	Val	Asp 25	Met	Gln	G]n	Leu	Asn 30	Gln	Glu
15	Asp	Asn	Thr 35	Lys	Asn	Asp	Asn	G]n 40	Lys	Glu	Met	Val	Ser 45	Ser	Gln	Gly
	Asn	Glu 50	Thr	Thr	Ser	Asn	G]y 55	Asn	Lys	Leu	Ile	G]u 60	Lys	Glu	Ser	Val
20	Gln 65	Ser	Тhr	Тhr	Gly	Asn 70	Lys	Val	Glu	Val	Ser 75	⊤hr	Ala	Lys	Ser	Asp 80
	Glu	Gln	Ala	Ser	Pro 85	Lys	Ser	⊤hr	Asn	Glu 90	Asp	Leu	Asn	Thr	Lys 95	Gln
25	⊤hr	Ile	Ser	Asn 100	Gln	Glu	Ala	Leu	Gln 105	Pro	Asp	Leu	Gln	Glu 110	Asn	Lys
	Ser	Val	Va] 115	Asn	Val	Gln	Pro	тhr 120	Asn	Glu	Glu	Asn	Lys 125	Lys	Val	Asp
30	Ala	Lys 130	Thr	Glu	Ser	Thr	Тhr 135	Leu	Asn	Val	Lys	Ser 140	Asp	Ala	Ile	Lys
	Ser 145	Asn	Asp	Glu	⊤hr	Leu 150	Val	Asp	Asn	Asn	Ser 155	Asn	Ser	Asn	Asn	Glu 160
35	Asn	Asn	А]а	Asp	1]e 165	Ile	Leu	Pro	Lys	Ser 170	Thr	Ala	Pro	Lys	Arg 175	Leu
	Asn	Thr	Arg	Met 180	Arg	I]e	Ala	Ala	Va] 185	Gln	Pro	Ser	Ser	Thr 190	Glu	Ala
40	Lys	Asn	Va] 195	Asn	Asp	Leu	Ile	Thr 200	Ser	Asn	Thr	⊤hr	Leu 205	Thr	Val	Val
	Asp	Ala 210	Asp	Lys	Asn	Asn	Lys 215	Ile	Val	Pro	Ala	G]n 220	Asp	Туr	Leu	Ser
45	Leu 225	Lys	Ser	Gln	Ile	Thr 230	Val	Asp	Asp	Lys	Va] 235	Lys	Ser	Gly	Asp	⊤yr 240
	Phe	Тhr	Ile	Lys	Туг 245	Ser	Asp	Тhr	Val	G]n 250	Val	⊤yr	Gly	Leu	Asn 255	Pro
50	Glu	Asp	Ile	Lys 260	Asn	Ile	Gly	Asp	Ile 265	Lys	Asp	Pro	Asn	Asn 270	Gly	Glu
	⊤hr	Ile	Ala 275	Тhr	Ala	Lys	His	Asp 280	Тhr	Ala	Asn	Asn	Leu 285	Ile	Тhr	Туr
55	⊤hr	Phe 290	Thr	Asp	⊤yr	Val	Asp 295	Arg	Phe	Asn	Ser	Va] 300	Gln	Met	Gly	I]e
	Asn	Туr	Ser	Ile	Tyr	Met	Asp	Ala	Asp	Thr	Ile	Pro	Val	Ser	Lys	Asn

	305		310		315	3	20
	Asp Val	Glu Phe A	Asn Val 325	Thr Ile Gl	y Asn Thr Thr 330	Thr Lys Thr T 335	hr
5	Ala Asn	Ile Gln T 340	Tyr Pro	Asp Tyr Va 34	l Val Asn Glu 5	Lys Asn Ser I 350	le
	Gly Ser	Ala Phe T 355	Thr Glu	Thr Val Se 360	er His Val Gly	Asn Lys Glu A 365	sn
10	Pro Gly 370	⊤yr Tyr L	Lys Gln	Thr Ile Ty 375	r Val Asn Pro 380	Ser Glu Asn S	er
	Leu Thr 385	Asn Ala L	Lys Leu 390	Lys Val Gl	n Ala Tyr His 395	Ser Ser Tyr P 4	ro 00
15	Asn Asn	Ile Gly G	Gln Ile 405	Asn Lys As	p Val Thr Asp 410	Ile Lys Ile T 415	yr
	Gln Val	Pro Lys 0 420	Gly Tyr	Thr Leu As 42	n Lys Gly Tyr 5	Asp Val Asn T 430	hr
20	Lys Glu	Leu Thr A 435	Asp Val	Thr Asn Gl 440	n Tyr Leu Gln	Lys Ile Thr T 445	yr
	Gly Asp 450	Asn Asn S	Ser Ala	val Ile As 455	p Phe Gly Asn 460	Ala Asp Ser A	la
25	туr Val 465	val Met N	val Asn 470	Thr Lys Ph	ie Gln Tyr Thr 475	Asn Ser Glu S 4	er 80
	Pro Thr	Leu Val G 4	Gln Met 485	Ala Thr Le	u Ser Ser Thr 490	Gly Asn Lys S 495	er
30	val ser	⊤hr Gly A 500	Asn Ala	Leu Gly Ph 50	ie ⊤hr Asn Asn 95	Gln Ser Gly G 510	ily
	Ala Gly	Gln Glu V 515	val Tyr	Lys Ile Gl 520	y Asn Tyr Val	Trp Glu Asp T 525	hr
35	Asn Lys 530	Asn Gly N	val Gln	Glu Leu Gl 535	y Glu Lys Gly 540		
	<210> <211> <212> <213>	157 145 PRT Staphyloc	coccus a	ureus			
40	<400> Asp Ser 1	157 Gln Gln V	val Asn 5	Ala Ala Th	nr Glu Ala Thr 10	Asn Ala Thr A 15	sn
45	Asn Gln	Ser Thr 0 20	Gln Val	Ser Gln Al 25	a ⊤hr Ser Gln	Pro Ile Asn P 30	he
	Gln Val	Gln Lys A 35	Asp Gly	Ser Ser Gl 40	u Lys Ser His	Met Asp Asp T 45	yr
50	Met Gln 50	His Pro (Gly Lys	Val Ile Ly 55	rs Gln Asn Asn 60	Lys Tyr Tyr P	he
50	Gln Thr 65	Val Leu A	Asn Asn 70	Ala Ser Ph	ie Trp Lys Glu 75	Tyr Lys Phe T 8	∵yr 80
	Asn Ala	Asn Asn G 8	Gln Glu 85	Leu Ala Th	ır Thr Val Val 90	Asn Asp Asn L 95	ys
55	Lys Ala	Asp Thr A 100	Arg Thr	Ile Asn Va 10	al Ala Val Glu 95	Pro Gly Tyr L 110	.ys

	Ser Leu	Thr Thr 115	Lys Val	His Ile 120	val val	Pro Gln	Ile Asn 125	Tyr Asn
5	His Arg 130	Tyr Thr	Thr His	Leu Glu 135	Phe Glu	Lys Ala 140	Ile Pro	Thr Leu
	Ala 145							
10	<210> <211> <212> <213>	158 50 PRT Staphylo	ococcus a	aureus				
15	<400> Ala Asp 1	158 Ser Asp	Ile Asn 5	I]e Lys	Thr Gly 10	Thr ⊤hr	Asp Ile	Gly Ser 15
15	Asn Thr	Thr Val 20	Lys Thr	Gly Asp	Leu Val 25	Thr ⊤yr	Asp Lys 30	Glu Asn
	Gly Met	Leu Lys 35	Lys Val	Phe Tyr 40	Ser Phe	Ile Asp	Asp Lys 45	Asn His
20	Asn Lys 50							
25	<210> <211> <212> <213>	159 63 PRT Staphylo	ococcus a	aureus				
	<400> Ala Asp 1	159 Ser Asp	Ile Asn 5	Ile Lys	Thr Gly 10	Thr ⊤hr	Asp Ile	Gly Ser 15
30	Asn Thr	Thr Val 20	Lys Thr	Gly Asp	Leu Val 25	Thr ⊤yr	Asp Lys 30	Glu Asn
	Gly Met	Leu Lys 35	Lys Val	Phe Tyr 40	Ser Phe	Ile Asp	Asp Lys 45	Asn His
35	Asn Lys 50	Lys Leu	Leu Val	Ile Arg 55	Thr Lys	Gly Thr 60	Ile Ala	Gly
40	<210> <211> <212> <213>	160 50 PRT Staphylo	ococcus a	aureus				
	<400> Ala Asp 1	160 Ser Asp	Ile Asn 5	I]e Lys	Thr Gly 10	Thr ⊤hr	Asp Ile	Gly Ser 15
45	Asn Thr	Thr Val 20	Lys Thr	Gly Asp	Leu Val 25	Thr ⊤yr	Asp Lys 30	Glu Asn
	Gly Met	His Lys 35	Lys Val	Phe Tyr 40	Ser Phe	Ile Asp	Asp Lys 45	Asn His
50	Asn Lys 50							
55	<210> <211> <212> <213>	161 63 PRT Staphyle	ococcus a	aureus				
	<400>	161						

	Ala 1	Asp	Ser	Asp	Ile 5	Asn	Ile	Lys	Тhr	Gly 10	Thr	⊤hr	Asp	Ile	G]y 15	Ser
5	Asn	Thr	тhr	val 20	Lys	тhr	Gly	Asp	Leu 25	Val	Thr	туr	Asp	Lys 30	Glu	Asn
C C	Gly	Met	His 35	Lys	Lys	Val	Phe	туг 40	Ser	Phe	Ile	Asp	Asp 45	Lys	Asn	His
	Asn	Lys 50	Lys	Leu	Leu	Val	Ile 55	Arg	Thr	Lys	Gly	⊤hr 60	Ile	Ala	Gly	
10	<210 <211 <212 <213)> L> 2> 3>	162 289 PRT Stap	ohyld	ococo	cus a	aurei	JS								
15	<400 Ala 1)> Gln	162 His	Asp	Glu 5	Ala	Gln	Gln	Asn	A]a 10	Phe	⊤yr	Gln	Val	Leu 15	Asn
	Met	Pro	Asn	Leu 20	Asn	Ala	Asp	G]n	Arg 25	Asn	Gly	Phe	Ile	G]n 30	Ser	Leu
20	Lys	Asp	Asp 35	Pro	Ser	Gln	Ser	A]a 40	Asn	Val	Leu	Gly	Glu 45	Ala	Gln	Lys
	Leu	Asn 50	Asp	Ser	Gln	Ala	Pro 55	Lys	Ala	Asp	Ala	G]n 60	Gln	Asn	Asn	Phe
25	Asn 65	Lys	Asp	Gln	Gln	Ser 70	Ala	Phe	Тyr	Glu	Ile 75	Leu	Asn	Met	Pro	Asn 80
	Leu	Asn	Glu	Ala	Gln 85	Arg	Asn	Gly	Phe	Ile 90	Gln	Ser	Leu	Lys	Asp 95	Asp
30	Pro	Ser	Gln	Ser 100	⊤hr	Asn	Val	Leu	Gly 105	Glu	Ala	Lys	Lys	Leu 110	Asn	Glu
	Ser	Gln	Ala 115	Pro	Lys	Ala	Asp	Asn 120	Asn	Phe	Asn	Lys	Glu 125	Gln	Gln	Asn
35	Ala	Phe 130	туг	Glu	Ile	Leu	Asn 135	Met	Pro	Asn	Leu	Asn 140	Glu	Glu	Gln	Arg
	Asn 145	Gly	Phe	I]e	Gln	Ser 150	Leu	Lys	Asp	Asp	Pro 155	Ser	Gln	Ser	Ala	Asn 160
40	Leu	Leu	Ser	Glu	Ala 165	Lys	Lys	Leu	Asn	Glu 170	Ser	Gln	Ala	Pro	Lys 175	Ala
	Asp	Asn	Lys	Phe 180	Asn	Lys	Glu	Gln	Gln 185	Asn	Ala	Phe	Туr	Glu 190	Ile	Leu
45	His	Leu	Pro 195	Asn	Leu	Asn	Glu	G]u 200	Gln	Arg	Asn	Gly	Phe 205	Ile	Gln	Ser
	Leu	Lys 210	Asp	Asp	Pro	Ser	G]n 215	Ser	Ala	Asn	Leu	Leu 220	Ala	Glu	Ala	Lys
50	Lys 225	Leu	Asn	Asp	Ala	G]n 230	Ala	Pro	Lys	Ala	Asp 235	Asn	Lys	Phe	Asn	Lys 240
	Glu	Gln	Gln	Asn	A]a 245	Phe	туr	Glu	Ile	Leu 250	His	Leu	Pro	Asn	Leu 255	⊤hr
55	Glu	Glu	Gln	Arg 260	Asn	Gly	Phe	Ile	Gln 265	Ser	Leu	Lys	Asp	Asp 270	Pro	Ser
	Val	Ser	Lys	Glu	Ile	Leu	Ala	Glu	Ala	Lys	Lys	Leu	Asn	Asp	Ala	Gln

Ala

5	<210 <211 <212 <213)> L> 2> 3>	163 508 PRT Stap	ohyla	οςοςα	cus a	aurei	JS								
10	<400 Ser 1)> Glu	163 Gln	Ser	Asn 5	Asp	Thr	Thr	Gln	Ser 10	Ser	Lys	Asn	Asn	Ala 15	Ser
	Ala	Asp	Ser	G]u 20	Lys	Asn	Asn	Met	Ile 25	Glu	тhr	Pro	Gln	Leu 30	Asn	Thr
15	Тhr	Ala	Asn 35	Asp	Thr	Ser	Asp	Ile 40	Ser	Ala	Asn	Thr	Asn 45	Ser	Ala	Asn
	Val	Asp 50	Ser	Тhr	Thr	Lys	Pro 55	Met	Ser	⊤hr	Gln	тhr 60	Ser	Asn	Тhr	Тhr
20	Thr 65	Thr	Glu	Pro	Ala	Ser 70	Thr	Asn	Glu	⊤hr	Pro 75	Gln	Pro	Thr	Ala	Ile 80
	Lys	Asn	Gln	Ala	⊤hr 85	Ala	Ala	Lys	Met	Gln 90	Asp	Gln	тhr	Val	Pro 95	Gln
25	Glu	Ala	Asn	Ser 100	Gln	Val	Asp	Asn	Lys 105	⊤hr	тhr	Asn	Asp	A]a 110	Asn	Ser
	Ile	Ala	⊤hr 115	Asn	Ser	Glu	Leu	Lys 120	Asn	Ser	Gln	тhr	Leu 125	Asp	Leu	Pro
30	Gln	Ser 130	Ser	Pro	Gln	Тhr	I]e 135	Ser	Asn	Ala	Gln	Gly 140	Тhr	Ser	Lys	Pro
	Ser 145	Val	Arg	Thr	Arg	A]a 150	Val	Arg	Ser	Leu	A]a 155	Val	Ala	Glu	Pro	Va] 160
35	Val	Asn	Ala	Ala	Asp 165	Ala	Lys	Gly	Тhr	Asn 170	Val	Asn	Asp	Lys	Va] 175	Тhr
	Ala	Ser	Asn	Phe 180	Lys	Leu	Glu	Lys	Thr 185	⊤hr	Phe	Asp	Pro	Asn 190	Gln	Ser
40	Gly	Asn	⊤hr 195	Phe	Met	Ala	Ala	Asn 200	Phe	⊤hr	Val	Тhr	Asp 205	Lys	Val	Lys
	Ser	G]y 210	Asp	туг	Phe	тhr	A]a 215	Lys	Leu	Pro	Asp	Ser 220	Leu	Тhr	Gly	Asn
45	Gly 225	Asp	Val	Asp	туг	Ser 230	Asn	Ser	Asn	Asn	тhr 235	Met	Pro	Ile	АТа	Asp 240
	Ile	Lys	Ser	Тhr	Asn 245	Gly	Asp	Val	Val	Ala 250	Lys	Ala	Тhr	туr	Asp 255	Ile
50	Leu	Thr	Lys	Thr 260	туг	Thr	Phe	Val	Phe 265	⊤hr	Asp	туг	Val	Asn 270	Asn	Lys
	Glu	Asn	Ile 275	Asn	Gly	Gln	Phe	Ser 280	Leu	Pro	Leu	Phe	Thr 285	Asp	Arg	Ala
55	Lys	Ala 290	Pro	Lys	Ser	Gly	Thr 295	Тyr	Asp	Ala	Asn	Ile 300	Asn	Ile	Ala	Asp
00	Glu 305	Met	Phe	Asn	Asn	Lys 310	Ile	Thr	туг	Asn	Туг 315	Ser	Ser	Pro	Ile	Ala 320

	Gly	Ile	Asp	Lys	Pro 325	Asn	Gly	Ala	Asn	I]e 330	Ser	Ser	Gln	Ile	Ile 335	Gly
5	Val	Asp	Thr	A]a 340	Ser	Gly	Gln	Asn	тhr 345	Тyr	Lys	Gln	Thr	Val 350	Phe	Val
	Asn	Pro	Lys 355	Gln	Arg	Val	Leu	G1y 360	Asn	Thr	тгр	Val	Туг 365	Ile	Lys	Gly
10	Туr	G]n 370	Asp	Lys	Ile	Glu	Glu 375	Ser	Ser	Gly	Lys	Va] 380	Ser	Ala	Thr	Asp
	Thr 385	Lys	Leu	Arg	Ile	Phe 390	Glu	Val	Asn	Asp	тhr 395	Ser	Lys	Leu	Ser	Asp 400
15	Ser	туг	Туr	Ala	Asp 405	Pro	Asn	Asp	Ser	Asn 410	Leu	Lys	Glu	Val	Thr 415	Asp
	Gln	Phe	Lys	Asn 420	Arg	Ile	Туr	Туr	Glu 425	His	Pro	Asn	Val	A]a 430	Ser	Ile
20	Lys	Phe	Gly 435	Asp	Ile	Thr	Lys	Thr 440	Туr	Val	Val	Leu	Va] 445	Glu	Gly	His
20	Тyr	Asp 450	Asn	Тhr	Gly	Lys	Asn 455	Leu	Lys	Тhr	Gln	Va1 460	Ile	Gln	Glu	Asn
25	Va1 465	Asp	Pro	Val	Thr	Asn 470	Arg	Asp	туr	Ser	11e 475	Phe	Gly	тгр	Asn	Asn 480
20	Glu	Asn	Val	Val	Arg 485	Туr	Gly	Gly	Gly	Ser 490	Ala	Asp	Gly	Asp	Ser 495	Ala
	Val	Asn	Pro	Lys	Asp	Pro	Thr	Pro	Gly	Pro	Pro	Val				
20				500	-				505							
30	<210 <211 <212 <213)> L> 2> 3>	164 468 PRT Staj	500 ohyla		cus a	aurei	JS	505							
30 35	<210 <212 <212 <213 <213 <400 Ala 1)> L> 2> 3>)> Glu	164 468 PRT Stau 164 His	500 phylo Thr	Asn 5	cus a Gly	aurei Glu	us Leu	505 Asn	Gln 10	Ser	Lys	Asn	Glu	Thr 15	Thr
30 35	<21(<212 <212 <212 <40(Ala 1 Ala)> L> 2> 3> Glu Pro	164 468 PRT Stau 164 His Ser	500 Dhylo Thr Glu 20	Asn Asn	cus a Gly Lys	aurei Glu Thr	ıs Leu Thr	S05 Asn Lys 25	Gln 10 Lys	ser val	Lys Asp	Asn Ser	Glu Arg 30	Thr 15 Gln	Thr Leu
30 35 40	<210 <211 <212 <213 <400 Ala 1 Ala Lys)> L> 2> 3> Glu Pro Asp	164 468 PRT Stap 164 His Ser Asn 35	500 Dhylo Thr Glu 20 Thr	Asn 5 Asn Gln	cus a Gly Lys Thr	Glu Glu Thr Ala	JS Leu Thr Thr 40	S05 Asn Lys 25 Ala	Gln 10 Lys Asp	Ser Val Gln	Lys Asp Pro	Asn Ser Lys 45	Glu Arg 30 Val	Thr 15 Gln Thr	Thr Leu Met
30 35 40	<210 <211 <212 <213 <400 Ala 1 Ala Lys Ser)> L> 2> Glu Pro Asp 50	164 468 PRT Stau 164 His Ser Asn 35 Ser	500 Dhylo Thr Glu 20 Thr Ala	Asn Asn Gln Thr	Gly Lys Thr Val	Glu Glu Thr Ala Lys 55	us Leu Thr Thr 40 Glu	505 Asn Lys 25 Ala Thr	Gln 10 Lys Asp Ser	Ser Val Gln Ser	Lys Asp Pro Asn 60	Asn Ser Lys 45 Met	Glu Arg 30 Val Gln	Thr 15 Gln Thr Ser	Thr Leu Met Pro
30 35 40 45	<210 <212 <212 <213 <400 Ala 1 Ala Lys Ser Gln 65)> L> 2> Glu Pro Asp 50 Asn	164 468 PRT Stau 164 His Ser Asn 35 Ser Ala	500 Thr Glu Thr Ala Thr	Asn Asn Gln Thr Ala	Gly Lys Thr Val Asn 70	Glu Glu Thr Ala Lys S5 Gln	JS Leu Thr Thr 40 Glu Ser	505 Asn Lys Ala Thr Thr	Gln 10 Lys Asp Ser Thr	Ser Val Gln Ser Lys 75	Lys Asp Pro Asn 60 Thr	Asn Ser Lys 45 Met Ser	Glu Arg 30 Val Gln Asn	Thr 15 Gln Thr Ser Val	Thr Leu Met Pro Thr 80
30 35 40 45	<21(<212 <212 <213 <40(Ala 1 Ala Lys Ser Gln 65 Thr)> L> 2> Glu Pro Asp 50 Asn Asn	164 468 PRT Stau 164 His Ser Asn 35 Ser Ala Asp	500 Thr Glu Thr Ala Thr Lys	Asn Asn Gln Thr Ala Ser 85	Gly Lys Thr Val Asn 70 Ser	Glu Glu Thr Ala Lys Gln Thr	Leu Thr Thr 40 Glu Ser Thr	505 Asn Lys 25 Ala Thr Thr Tyr	Gln Lys Asp Ser Thr Ser 90	Ser Val Gln Ser Lys 75 Asn	Lys Asp Pro Asn 60 Thr Glu	Asn Ser Lys 45 Met Ser Thr	Glu Arg 30 Val Gln Asn Asp	Thr 15 Gln Thr Ser Val Lys 95	Thr Leu Met Pro Thr 80 Ser
30 35 40 45 50	<21(<212 <212 <213 <40(Ala 1 Ala Lys Ser Gln 65 Thr Asn)> L> 2> 3>)> Glu Pro Asp 50 Asn Asn Leu	164 468 PRT Stau 164 His Ser Asn 35 Ser Ala Asp Thr	500 Thr Glu Thr Ala Thr Lys Gln	Asn Asn Gln Thr Ala Ser 85 Ala	Gly Lys Thr Val Asn 70 Ser Lys	Glu Glu Thr Ala Lys Gln Thr Asp	IS Leu Thr Thr 40 Glu Ser Thr Val	505 Asn Lys Ala Thr Thr Tyr Ser 105	Gln Lys Asp Ser Thr Ser 90 Thr	Ser Val Gln Ser Lys 75 Asn Thr	Lys Asp Pro Asn 60 Thr Glu Pro	Asn Ser Lys Met Ser Thr Lys	Glu Arg Val Gln Asn Asp Thr 110	Thr 15 Gln Thr Ser Val Lys 95 Thr	Thr Leu Met Pro Thr 80 Ser Thr
30 35 40 45 50	<21(<212 <212 <213 <40(Ala 1 Ala Lys Ser Gln 65 Thr Asn Ile)> L> 2> 3>)> Glu Pro Asp 50 Asn Asn Leu Lys	164 468 PRT Stau 164 His Ser Asn 35 Ser Ala Asp Thr Pro 115	500 Thr Glu Thr Ala Thr Lys Gln 100 Arg	Asn 5 Asn Gln Thr Ala Ser 85 Ala Thr	Gly Lys Thr Val Asn 70 Ser Lys Leu	aurei Glu Thr Ala Lys Gln Thr Asp Asn	Leu Thr Thr 40 Glu Ser Thr Val Arg 120	505 Asn Lys 25 Ala Thr Thr Tyr Ser 105 Met	Gln Lys Asp Ser Thr Ser 90 Thr Ala	Ser Val Gln Ser Lys 75 Asn Thr Val	Lys Asp Pro Asn Glu Pro Asn	Asn Ser Lys Met Ser Thr Lys Thr 125	Glu Arg 30 Val Gln Asn Asp Thr 110 Val	Thr 15 Gln Thr Ser Val Lys 95 Thr Ala	Thr Leu Met Pro Thr 80 Ser Thr Ala

	Asp 145	Ile	Ala	Ile	Asp	Lys 150	Gly	His	Val	Asn	G]n 155	⊤hr	Thr	Gly	Lys	⊤hr 160
5	Glu	Phe	тгр	Ala	⊤hr 165	Ser	Ser	Asp	Val	Leu 170	Lys	Leu	Lys	Ala	Asn 175	туr
5	⊤hr	Ile	Asp	Asp 180	Ser	Val	Lys	Glu	Gly 185	Asp	Thr	Phe	Thr	Phe 190	Lys	Tyr
	Gly	Gln	Туг 195	Phe	Arg	Pro	Gly	Ser 200	Val	Arg	Leu	Pro	Ser 205	Gln	Thr	Gln
10	Asn	Leu 210	Туr	Asn	Ala	Gln	Gly 215	Asn	Ile	Ile	Ala	Lys 220	Gly	Ile	Тyr	Asp
	Ser 225	Thr	Thr	Asn	⊤hr	тhr 230	Thr	Тyr	Thr	Phe	Thr 235	Asn	туr	Val	Asp	G]n 240
15	⊤yr	Thr	Asn	Val	Arg 245	Gly	Ser	Phe	Glu	G]n 250	Val	Ala	Phe	Ala	Lys 255	Arg
	Lys	Asn	Ala	Thr 260	⊤hr	Asp	Lys	Thr	Ala 265	Тyr	Lys	Met	Glu	Va] 270	Thr	Leu
20	Gly	Asn	Asp 275	Тhr	Tyr	Ser	Glu	G]u 280	Ile	Ile	Val	Asp	туг 285	Gly	Asn	Lys
	Lys	Ala 290	Gln	Pro	Leu	Ile	Ser 295	Ser	Thr	Asn	туr	1]e 300	Asn	Asn	Glu	Asp
25	Leu 305	Ser	Arg	Asn	Met	Thr 310	Ala	Тyr	Val	Asn	Gln 315	Pro	Lys	Asn	Thr	Tyr 320
	⊤hr	Lys	Gln	Thr	Phe 325	Val	Thr	Asn	Leu	Thr 330	Gly	⊤yr	Lys	Phe	Asn 335	Pro
30	Asn	Ala	Lys	Asn 340	Phe	Lys	Ile	туr	Glu 345	Val	Thr	Asp	Gln	Asn 350	Gln	Phe
	Val	Asp	Ser 355	Phe	⊤hr	Pro	Asp	Тhr 360	Ser	Lys	Leu	Lys	Asp 365	Val	Тhr	Asp
35	Gln	Phe 370	Asp	Val	Ile	туг	Ser 375	Asn	Asp	Asn	Lys	⊤hr 380	Ala	тhr	Val	Asp
	Leu 385	Met	Lys	ςΊу	Gln	Thr 390	Ser	Ser	Asn	Lys	G]n 395	⊤yr	Ile	I]e	Gln	G]n 400
40	Val	Ala	Туr	Pro	Asp 405	Asn	Ser	Ser	Thr	Asp 410	Asn	Gly	Lys	Ile	Asp 415	Tyr
	⊤hr	Leu	Asp	Thr 420	Asp	Lys	Thr	Lys	Туг 425	Ser	тrр	Ser	Asn	Ser 430	Тyr	Ser
45	Asn	Val	Asn 435	Gly	Ser	Ser	Thr	A]a 440	Asn	Gly	Asp	G]n	Lys 445	Lys	Тyr	Asn
	Leu	Gly 450	Asp	Тyr	Val	тгр	Glu 455	Asp	Thr	Asn	Lys	Asp 460	Gly	Lys	Gln	Asp
50	Ala 465	Asn	Glu	Lys												
	<210 <211 <212 <212)> L> 2> }>	165 198 PRT Stap	ohyla	ococo	cus a	aurei	JS								
55	<400 Met)> Ser	165 Asn	Asn	Phe	Lys	Asp	Asp	Phe	Glu	Lys	Asn	Arg	Gln	Ser	Ile

	1				5					10					15	
	Asp	Thr	Asn	Ser 20	His	Gln	Asp	His	Thr 25	Glu	Asp	Val	Glu	Lys 30	Asp	Gln
5	Ser	Glu	Leu 35	Glu	His	Gln	Asp	Thr 40	Ile	Glu	Asn	Тhr	Glu 45	Gln	Gln	Phe
	Pro	Pro 50	Arg	Asn	Ala	Gln	Arg 55	Arg	Lys	Arg	Arg	Arg 60	Asp	Leu	Ala	Thr
10	Asn 65	His	Asn	Lys	Gln	Va] 70	His	Asn	Glu	Ser	Gln 75	Thr	Ser	Glu	Asp	Asn 80
	Val	Gln	Asn	Glu	Ala 85	Gly	Тhr	Ile	Asp	Asp 90	Arg	Gln	Val	Glu	Ser 95	Ser
15	His	Ser	⊤hr	Glu 100	Ser	Gln	Glu	Pro	Ser 105	His	Gln	Asp	Ser	Thr 110	Pro	Gln
	His	Glu	Glu 115	Glu	туr	Туr	Asn	Lys 120	Asn	Ala	Phe	Ala	Met 125	Asp	Lys	Ser
20	His	Pro 130	Glu	Pro	Ile	Glu	Asp 135	Asn	Asp	Lys	His	Asp 140	Тhr	Ile	Lys	Asn
	Ala 145	Glu	Asn	Asn	Тhr	Glu 150	ніs	Ser	тhr	Val	Ser 155	Asp	Lys	Ser	Glu	Ala 160
25	Glu	Gln	Ser	Gln	G]n 165	Pro	Lys	Pro	туr	Рһе 170	тhr	Тhr	Gly	Ala	Asn 175	Gln
	Ser	Glu	⊤hr	Ser 180	Lys	Asn	Glu	His	Asp 185	Asn	Asp	Ser	Val	Lys 190	Gln	Asp
30	Gln	Asp	Glu 195	Pro	Lys	Glu										
	<210 <211 <212 <213)> L> 2> 3>	166 511 PRT Stap	bhyla	ococo	cus a	aurei	ıs								
35	<400 Met 1)> Gly	166 Gln	Asp	Lys 5	Glu	Ala	Ala	Ala	Ser 10	Glu	Gln	Lys	Thr	Thr 15	Thr
40	Val	Glu	Glu	Asn 20	Gly	Asn	Ser	АТа	Thr 25	Asp	Asn	Lys	Тhr	Ser 30	Glu	Thr
	Gln	Thr	⊤hr 35	АТа	Тhr	Asn	Val	Asn 40	нis	Ile	Glu	Glu	тhr 45	Gln	Ser	туг
45	Asn	А]а 50	⊤hr	Val	Thr	Glu	G]n 55	Pro	Ser	Asn	Ala	тhr 60	Gln	Val	Тhr	Thr
	Glu 65	Glu	Ala	Pro	Lys	А]а 70	Val	Gln	Ala	Pro	G]n 75	Тhr	Ala	Gln	Pro	Ala 80
50	Asn	Ile	Glu	Thr	Va] 85	Lys	Glu	Glu	Val	Va] 90	Lys	Glu	Glu	Ala	Lys 95	Pro
	Gln	Val	Lys	Glu 100	Thr	Thr	Gln	Ser	Gln 105	Asp	Asn	Ser	Gly	Asp 110	Gln	Arg
55	Gln	Val	Asp 115	Leu	Thr	Pro	Lys	Lys 120	Ala	⊤hr	Gln	Asn	G]n 125	Val	Ala	Glu
00	Thr	Gln 130	Val	Glu	Val	Ala	G]n 135	Pro	Arg	⊤hr	Ala	Ser 140	Glu	Ser	Lys	Pro

Arg Val Thr Arg Ser Ala Asp Val Ala Glu Ala Lys Glu Ala Ser Asn 145 150 155 160 Ala Lys Val Glu Thr Gly Thr Asp Val Thr Ser Lys Val Thr Val Glu 165 170 175 5 Ile Gly Ser Ile Glu Gly His Asn Asn Thr Asn Lys Val Glu Pro His 180 185 190 Ala Gly Gln Arg Ala Val Leu Lys Tyr Lys Leu Lys Phe Glu Asn Gly 195 200 205 10 Leu His Gln Gly Asp Tyr Phe Asp Phe Thr Leu Ser Asn Asn Val Asn 210 215 220 Thr His Gly Val Ser Thr Ala Arg Lys Val Pro Glu Ile Lys Asn Gly 225 230 235 240 15 Ser Val Val Met Ala Thr Gly Glu Val Leu Glu Gly Gly Lys Ile Arg 245 250 255 Tyr Thr Phe Thr Asn Asp Ile Glu Asp Lys Val Asp Val Thr Ala Glu 260 265 270 20 Leu Glu Ile Asn Leu Phe Ile Asp Pro Lys Thr Val Gln Thr Asn Gly 275 280 285 Asn Gln Thr Ile Thr Ser Thr Leu Asn Glu Glu Gln Thr Ser Lys Glu 290 295 300 25 Leu Asp Val Lys Tyr Lys Asp Gly Ile Gly Asn Tyr Tyr Ala Asn Leu 305 310 315 320 Asn Gly Ser Ile Glu Thr Phe Asn Lys Ala Asn Asn Arg Phe Ser His 325 330 335 30 Val Ala Phe Ile Lys Pro Asn Asn Gly Lys Thr Thr Ser Val Thr Val 340 345 350 Thr Gly Thr Leu Met Lys Gly Ser Asn Gln Asn Gly Asn Gln Pro Lys 355 360 365 35 Val Arg Ile Phe Glu Tyr Leu Gly Asn Asn Glu Asp Ile Ala Lys Ser 370 375 380 Val Tyr Ala Asn Thr Thr Asp Thr Ser Lys Phe Lys Glu Val Thr Ser 385 390 395 400 40 Asn Met Ser Gly Asn Leu Asn Leu Gln Asn Asn Gly Ser Tyr Ser Leu 405 410 415 Asn Ile Glu Asn Leu Asp Lys Thr Tyr Val Val His Tyr Asp Gly Glu 420 425 430 45 Tyr Leu Asn Gly Thr Asp Glu Val Asp Phe Arg Thr Gln Met Val Gly 435 440 445 His Pro Glu Gln Leu Tyr Lys Tyr Tyr Asp Arg Gly Tyr Thr Leu 450 455 460 50 Thr Trp Asp Asn Gly Leu Val Leu Tyr Ser Asn Lys Ala Asn Gly Asn 465 470 475 480 Glu Lys Asn Gly Pro Ile Ile Gln Asn Asn Lys Phe Glu Tyr Lys Glu 485 490 495 55 Asp Thr Ile Lys Glu Thr Leu Thr Gly Gln Tyr Asp Lys Asn Leu 500 505 510

	<210 <211 <212 <212)> L> 2> }>	167 442 PRT Stap	phylo	ococo	cus a	aureu	ıs								
5	<400 Val 1)> Thr	167 ⊤hr	Val	Glu 5	Glu	Glu	Tyr	Asp	Ser 10	Ser	Thr	Leu	Asp	Ile 15	Asp
	туг	His	⊤hr	A]a 20	Ile	Asp	Gly	Gly	G]y 25	Gly	туr	Val	Asp	G]y 30	туr	Ile
10	Glu	Thr	Ile 35	Glu	Glu	Thr	Asp	Ser 40	Ser	Ala	Ile	Asp	Ile 45	Asp	туr	His
	Thr	Ala 50	Val	Asp	Ser	Glu	A]a 55	Gly	His	Val	Gly	G]y 60	Туr	Thr	Glu	Ser
15	Ser 65	Glu	Glu	Ser	Asn	Pro 70	Ile	Asp	Phe	Glu	Glu 75	Ser	Thr	His	Glu	Asn 80
	Ser	Lys	His	His	Ala 85	Asp	Val	Val	Glu	⊤yr 90	Glu	Glu	Asp	Thr	Asn 95	Pro
20	Gly	Gly	Gly	Gln 100	Val	Тhr	Thr	Glu	Ser 105	Asn	Leu	Val	Glu	Phe 110	Asp	Glu
	Glu	Ser	⊤hr 115	Lys	Gly	Ile	Val	Thr 120	Gly	Ala	Val	Ser	Asp 125	His	Thr	Thr
25	Val	Glu 130	Asp	Thr	Lys	Glu	Туг 135	Thr	Thr	Glu	Ser	Asn 140	Leu	Ile	Glu	Leu
	Va] 145	Asp	Glu	Leu	Pro	Glu 150	Glu	His	Gly	Gln	A]a 155	Gln	Gly	Pro	Val	Glu 160
30	Glu	Ile	⊤hr	Lys	Asn 165	Asn	His	His	Ile	Ser 170	His	Ser	Gly	Leu	Gly 175	Thr
	Glu	Asn	Gly	His 180	Gly	Asn	Туr	Asp	Val 185	Ile	Glu	Glu	Ile	Glu 190	Glu	Asn
35	Ser	His	Va] 195	Asp	Ile	Lys	Ser	G]u 200	Leu	Gly	туr	Glu	G]y 205	Gly	Gln	Asn
	Ser	G]y 210	Asn	Gln	Ser	Phe	Glu 215	Glu	Asp	⊤hr	Glu	Glu 220	Asp	Lys	Pro	Lys
40	Туг 225	Glu	Gln	Gly	Gly	Asn 230	Ile	Val	Asp	Ile	Asp 235	Phe	Asp	Ser	Val	Pro 240
	Gln	Ile	His	Gly	Gln 245	Asn	Lys	Gly	Asn	G]n 250	Ser	Phe	Glu	Glu	Asp 255	Thr
45	Glu	Lys	Asp	Lys 260	Pro	Lys	туг	Glu	Ніs 265	Gly	Gly	Asn	Ile	Ile 270	Asp	Ile
	Asp	Phe	Asp 275	Ser	Val	Pro	His	I]e 280	His	Gly	Phe	Asn	Lys 285	His	Тhr	Glu
50	Ile	Ile 290	Glu	Glu	Asp	Тhr	Asn 295	Lys	Asp	Lys	Pro	Ser 300	туг	Gln	Phe	Gly
	Gly 305	Нis	Asn	Ser	Val	Asp 310	Phe	Glu	Glu	Asp	Тhr 315	Leu	Pro	Lys	Val	Ser 320
55	Gly	Gln	Asn	Glu	Gly 325	Gln	Gln	Thr	Ile	Glu 330	Glu	Asp	Thr	Тhr	Pro 335	Pro
	Ile	Val	Pro	Pro	Thr	Pro	Pro	Thr	Pro	Glu	Val	Pro	Ser	Glu	Pro	Glu

				340					345					350		
	Тhr	Pro	⊤hr 355	Pro	Pro	Тhr	Pro	Glu 360	Val	Pro	Ser	Glu	Pro 365	Glu	Тhr	Pro
5	Тhr	Pro 370	Pro	Тhr	Pro	Glu	Va] 375	Pro	Ser	Glu	Pro	Glu 380	тhr	Pro	Тhr	Pro
	Pro 385	Тhr	Pro	Glu	Val	Pro 390	Ala	Glu	Pro	Gly	Lys 395	Pro	Val	Pro	Pro	Ala 400
10	Lys	Glu	Glu	Pro	Lys 405	Lys	Pro	Ser	Lys	Pro 410	Val	Glu	Gln	Gly	Lys 415	Val
	Val	Thr	Pro	Va] 420	Ile	Glu	Ile	Asn	Glu 425	Lys	Val	Lys	Ala	Val 430	Ala	Pro
15	Thr	Lys	Lys 435	Pro	Gln	Ser	Lys	Lys 440	Ser	Glu						
20	<210 <211 <212 <213)> L> 2> 3>	168 1120 PRT Stap	5 phylo	coco	cus a	aurei	15								
	<400 Ala 1)> Glu	168 Asn	Thr	ser 5	Thr	Glu	Asn	Ala	Lys 10	Gln	Asp	Asp	Ala	Thr 15	Thr
25	Ser	Asp	Asn	Lys 20	Glu	Val	Val	Ser	Glu 25	⊤hr	Glu	Asn	Asn	Ser 30	тhr	Thr
	Glu	Asn	Asn 35	Ser	Тhr	Asn	Pro	I]e 40	Lys	Lys	Glu	тhr	Asn 45	тhr	Asp	Ser
30	Gln	Pro 50	Glu	Ala	Lys	Lys	Glu 55	Ser	тhr	Ser	Ser	Ser 60	тhr	Gln	Lys	Gln
	G]n 65	Asn	Asn	Val	Thr	А]а 70	Thr	Thr	Glu	⊤hr	Lys 75	Pro	Gln	Asn	Ile	Glu 80
35	Lys	Glu	Asn	Val	Lys 85	Pro	Ser	Thr	Asp	Lys 90	Тhr	Ala	Thr	Glu	Asp 95	Thr
	Ser	Val	I]e	Leu 100	Glu	Glu	Lys	Lys	Ala 105	Pro	Asn	Asn	Thr	Asn 110	Asn -	Asp -
40	va l	Thr	⊤hr 115	Lys	Pro	Ser	Thr	Ser 120	Glu	Pro	Ser	Thr	Ser 125	Glu	Ile	Gln
	Thr	Lys 130	Pro	Thr	Thr	Pro	GIn 135	Glu	Ser	Thr	Asn	140	Glu	Asn	Ser	GIn
45	Pro 145	Gln	Pro	Thr	Pro	Ser 150	Lys	val	Asp	Asn	GIn 155	val	Thr	Asp	Ala	Thr 160
	Asn	Pro	Lys	Glu	Pro 165	Val	Asn	Val	Ser	Lys 170	Glu	Glu	Leu	Lys	Asn 175	Asn
50	Pro	Glu	Lys	Leu 180	Lys	G lu	Leu	Va I	Arg 185	Asn	Asp	Ser	Asn -	Thr 190	Asp	His
	Ser	Thr	Lys 195	Pro	Val	Ala	Thr	A1a 200	Pro	Thr	Ser	Val	Ala 205	Pro	Lys	Arg
55	Val	Asn 210	Ala	Lys	Met	Arg	Phe 215	Ala	Val	Ala	Gln	Pro 220	Ala	Ala	Val	Ala
	Ser 225	Asn	Asn	Val	Asn	Asp 230	Leu	Ile	Lys	Val	Thr 235	Lys	Gln	Thr	Ile	Lys 240

	Val	Gly	Asp	Gly	Lys 245	Asp	Asn	Val	Ala	Ala 250	Ala	His	Asp	Gly	Lys 255	Asp
5	Ile	Glu	Туr	Asp 260	Thr	Glu	Phe	Thr	Ile 265	Asp	Asn	Lys	Val	Lys 270	Lys	Gly
	Asp	Thr	Met 275	Thr	Ile	Asn	туr	Asp 280	Lys	Asn	Val	Ile	Pro 285	Ser	Asp	Leu
10	Thr	Asp 290	Lys	Asn	Asp	Pro	Ile 295	Asp	I]e	Thr	Asp	Pro 300	Ser	Gly	Glu	Val
	Ile 305	Ala	Lys	Gly	Thr	Phe 310	Asp	Lys	Ala	Thr	Lys 315	Gln	Ile	Thr	туr	Thr 320
15	Phe	Thr	Asp	туr	Va] 325	Asp	Lys	туr	Glu	Asp 330	Ile	Lys	Ser	Arg	Leu 335	Thr
	Leu	Туr	Ser	туг 340	Ile	Asp	Lys	Lys	Thr 345	Val	Pro	Asn	Glu	Thr 350	Ser	Leu
20	Asn	Leu	Thr 355	Phe	Ala	Thr	Ala	Gly 360	Lys	Glu	Thr	Ser	Gln 365	Asn	Val	Thr
	Val	Asp 370	туr	Gln	Asp	Pro	Met 375	Val	His	Gly	Asp	Ser 380	Asn	Ile	Gln	Ser
25	Ile 385	Phe	Thr	Lys	Leu	Asp 390	Glu	Asp	Lys	Gln	Thr 395	Ile	Glu	Gln	Gln	Ile 400
20	туr	Val	Asn	Pro	Leu 405	Lys	Lys	Ser	Ala	Thr 410	Asn	Thr	Lys	Val	Asp 415	Ile
30	Ala	Gly	Ser	G]n 420	Val	Asp	Asp	туr	Gly 425	Asn	Ile	Lys	Leu	Gly 430	Asn	Gly
	Ser	Thr	Ile 435	Ile	Asp	Gln	Asn	⊤hr 440	Glu	Ile	Lys	Val	туг 445	Lys	Val	Asn
35	Ser	Asp 450	Gln	Gln	Leu	Pro	G]n 455	Ser	Asn	Arg	Ile	туг 460	Asp	Phe	Ser	Gln
	туг 465	Glu	Asp	Val	Thr	Ser 470	Gln	Phe	Asp	Asn	Lys 475	Lys	Ser	Phe	Ser	Asn 480
40	Asn	Val	Ala	Thr	Leu 485	Asp	Phe	Gly	Asp	Ile 490	Asn	Ser	Ala	Туr	Ile 495	Ile
-0	Lys	Val	Val	Ser 500	Lys	Туr	Thr	Pro	Thr 505	Ser	Asp	Gly	Glu	Leu 510	Asp	Ile
45	Ala	Gln	Gly 515	Тhr	Ser	Met	Arg	тhr 520	Тhr	Asp	Lys	туr	Gly 525	туr	туr	Asn
40	туr	Ala 530	Gly	Туr	Ser	Asn	Phe 535	Ile	Val	Thr	Ser	Asn 540	Asp	Thr	Gly	Gly
50	Gly 545	Asp	Gly	Thr	Val	Lys 550	Pro	Glu	Glu	Lys	Leu 555	Туr	Lys	Ile	Gly	Asp 560
50	Туr	Val	тгр	Glu	Asp 565	Val	Asp	Lys	Asp	Gly 570	Val	Gln	Gly	Thr	Asp 575	Ser
	Lys	Glu	Lys	Pro 580	Ala	Ser	Gly	Gly	Gly 585	Ser	Ala	Glu	Ser	Thr 590	Asn	Lys
55	Glu	Leu	Asn 595	Glu	Ala	Thr	Thr	Ser 600	Ala	Ser	Asp	Asn	G]n 605	Ser	Ser	Asp
Lys Val Asp Met Gln Gln Leu Asn Gln Glu Asp Asn Thr Lys Asn Asp 610 615 620 Asn Gln Lys Glu Met Val Ser Ser Gln Gly Asn Glu Thr Thr Ser Asn 625 630 635 640 5 Gly Asn Lys Leu Ile Glu Lys Glu Ser Val Gln Ser Thr Thr Gly Asn 645 650 655 Lys Val Glu Val Ser Thr Ala Lys Ser Asp Glu Gln Ala Ser Pro Lys 660 665 670 10 Ser Thr Asn Glu Asp Leu Asn Thr Lys Gln Thr Ile Ser Asn Gln Glu 675 680 685 Ala Leu Gln Pro Asp Leu Gln Glu Asn Lys Ser Val Val Asn Val Gln 690 695 700 15 Pro Thr Asn Glu Glu Asn Lys Lys Val Asp Ala Lys Thr Glu Ser Thr 705 710 715 720 Thr Leu Asn Val Lys Ser Asp Ala Ile Lys Ser Asn Asp Glu Thr Leu 725 730 735 20 Val Asp Asn Asn Ser Asn Ser Asn Asn Glu Asn Asn Ala Asp Ile Ile 740 745 750 Leu Pro Lys Ser Thr Ala Pro Lys Arg Leu Asn Thr Arg Met Arg Ile 755 760 765 Ala Ala Val Gln Pro Ser Ser Thr Glu Ala Lys Asn Val Asn Asp Leu 770 775 780 25 Ile Thr Ser Asn Thr Thr Leu Thr Val Val Asp Ala Asp Lys Asn Asn 785 790 795 800 Lys Ile Val Pro Ala Gln Asp Tyr Leu Ser Leu Lys Ser Gln Ile Thr 805 810 815 30 Asp Thr Val Gln Val Tyr Gly Leu Asn Pro Glu Asp Ile Lys Asn Ile 835 840 845 35 Gly Asp Ile Lys Asp Pro Asn Asn Gly Glu Thr Ile Ala Thr Ala Lys 850 855 860 His Asp Thr Ala Asn Asn Leu Ile Thr Tyr Thr Phe Thr Asp Tyr Val 865 870 875 880 40 Asp Arg Phe Asn Ser Val Gln Met Gly Ile Asn Tyr Ser Ile Tyr Met 885 890 895 Asp Ala Asp Thr Ile Pro Val Ser Lys Asn Asp Val Glu Phe Asn Val 900 905 910 45 Thr Ile Gly Asn Thr Thr Thr Lys Thr Thr Ala Asn Ile Gln Tyr Pro 915 920 925 Asp Tyr Val Val Asn Glu Lys Asn Ser Ile Gly Ser Ala Phe Thr Glu 930 935 940 50 Thr Val Ser His Val Gly Asn Lys Glu Asn Pro Gly Tyr Tyr Lys Gln 945 950 955 960 Thr Ile Tyr Val Asn Pro Ser Glu Asn Ser Leu Thr Asn Ala Lys Leu 965 970 975 55 Lys Val Gln Ala Tyr His Ser Ser Tyr Pro Asn Asn Ile Gly Gln Ile

		980		985	990
	Asn Lys	Asp Val Thr 995	Asp Ile Lys 1000	Ile Tyr Gln Val)	Pro Lys Gly Tyr 1005
5	Thr Leu 1010	Asn Lys Gly)	Tyr Asp Val 1015	Asn Thr Lys Glu 1020	Leu Thr Asp Val
	Thr Asn 1025	Gln Tyr Leu	Gln Lys Ile 1030	Thr Tyr Gly Asp 1035	Asn Asn Ser Ala 1040
10	Val Ile	Asp Phe Gly 1045	Asn Ala Asp	Ser Ala Tyr Val 1050	Val Met Val Asn 1055
	Thr Lys	Phe Gln Tyr 1060	Thr Asn Ser	Glu Ser Pro Thr 1065	Leu Val Gln Met 1070
15	Ala Thr	Leu Ser Ser 1075	Thr Gly Asn 1080	Lys Ser Val Ser)	Thr Gly Asn Ala 1085
	Leu Gly 1090	Phe Thr Asn)	Asn Gln Ser 1095	Gly Gly Ala Gly 1100	Gln Glu Val Tyr
20	Lys Ile 1105	Gly Asn Tyr	Val Trp Glu 1110	Asp Thr Asn Lys 1115	Asn Gly Val Gln 1120
	Glu Leu	Gly Glu Lys 1125	Gly		
25	<210> <211> <212> <213>	169 618 DNA Staphylococo	cus aureus		
30	<400> atggcaat ggttcaga gcgaactg aaagtaga gatgccgt	169 ga ttaagatga acc aaatccgto ggg aaggtcaag aaa aatttgcaa tc aagaacaag	ag tccagaggaa ca aattttatct gc tttcagccgt ca attattagaa ga ccaacaactt	a atcagagcaa aatc gatttaacac gtgc ttcgaagagc aatt gaaattaaac aaca tctaataatt tcgg	gcaatc ttacgggcaa 60 acaagg tgaaattgca 120 ccaaca acttagtcct 180 attgaa tagcactgct 240 tttgca agctagcggt 300 gattga tcaagcgaaa 360
35	gctgagta gctgagta ttactcat gcaattga cttgatag	cgg caaaaacag tta tcgaaggta tta tggcaaagt tta acttaagto ggg tgaaccca	gc taaagatatt ag tgattgggaa ct tcaagaagaa ca aaatctagco	gaagcatgtc aaaa ggacagttcg ccaa ttagtacaac cgat a aatacgata catt	gcaaac gcaacagctc 420 taaggt gaaagatgtg 480 ggctga ccatcaaaaa 540 atcaat taagcaaggg 600 618
40	<210> <211> <212> <213>	170 239 PRT Staphylococo	cus aureus		
45	<400> Met Asn 1	170 Lys Asn Ile 5	Ile Ile Lys	Ser Ile Ala Ala 10	Leu Thr Ile Leu 15
45	Thr Ser	Ile Thr Gly 20	Val Gly Thr	Thr Val Val Asp 25	Gly Ile Gln Gln 30
	Thr Ala	Lys Ala Glu 35	Asn Ser Val 40	Lys Leu Ile Thr	Asn Thr Asn Val 45
50	Ala Pro 50	Tyr Ser Gly	Val Thr Trp 55	Met Gly Ala Gly 60	Thr Gly Phe Val
	Val Gly 65	Asn His Thr	Ile Ile Thr 70	Asn Lys His Val 75	Thr Tyr His Met 80
55	Lys Val	Gly Asp Glu 85	Ile Lys Ala	His Pro Asn Gly 90	Phe Tyr Asn Asn 95

	Gly Gly	Gly Leu 100	Туr	Lys	Val	Thr	Lys 105	Ile	Val	Asp	Туr	Pro 110	Gly	Lys
5	Glu Asp	Ile Ala 115	Val	Val	Gln	Va] 120	Glu	Glu	Lys	Ser	Thr 125	Gln	Pro	Lys
	Gly Arg 130	Lys Phe	Lys	Asp	Phe 135	⊤hr	Ser	Lys	Phe	Asn 140	Ile	Ala	Ser	Glu
10	Ala Lys 145	Glu Asn	Glu	Pro 150	I]e	Ser	Val	Ile	G]y 155	⊤yr	Pro	Asn	Pro	Asn 160
10	Gly Asn	Lys Leu	Gln 165	Met	туг	Glu	Ser	Thr 170	Gly	Lys	Val	Leu	Ser 175	Val
	Asn Gly	Asn Ile 180	Val	Thr	Ser	Asp	A]a 185	Val	Val	Gln	Pro	Gly 190	Ser	Ser
15	Gly Ser	Pro Ile 195	Leu	Asn	Ser	Lys 200	Arg	Glu	Ala	Ile	G]y 205	Val	Met	Туг
	Ala Ser 210	Asp Lys	Pro	Thr	G]y 215	Glu	Ser	Thr	Arg	Ser 220	Phe	Ala	Val	Туг
20	Phe Ser 225	Pro Glu	Ile	Lys 230	Lys	Phe	Ile	Ala	Asp 235	Asn	Leu	Asp	Lys	
25	<210> <211> <212> <213>	171 6 PRT Artific	ial s	Geque	ence									
	<220> <223>	Peptide	link	ker										
30	<400> Gly Ser 1	171 Gly Gly	Gly 5	Gly										
35	<210> <211> <212> <213>	172 8 PRT Artific	ial s	Geque	ence									
	<220> <223>	Peptide	link	ker										
40	<400> Gly Ser 1	172 Gly Ser	Gly 5	Gly	Gly	Gly								
45	<210> <211> <212> <213>	173 6 PRT Artific	ial S	Seque	ence									
	<220> <223>	Peptide	link	er										
50	<400> Ala Ser 1	173 Gly Gly	Gly 5	Ser										
55	<210> <211> <212> <213>	174 18 DNA Artific	ial s	seque	ence									
	<220>													

26

<223> Sequence encoding SEQ ID NO: 173 <400> 174 gctagcggtg gcggatcc 5 <210> 175 <211> 26 <212> DNA <213> Artificial Sequence <220> 10 <223> immunostimulatory oligonucleotide <220> misc_feature 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25 'n' is INOSINE <221> <222> <223> 15 <400> 175 ncncncncn ncncncncn ncncnc <210> 176 <211> 11 <212> PRT 20 Artificial Sequence <213> <220> <223> polycationic oligopeptide <400> 17625 Lys Leu Lys Leu Leu Leu Leu Lys Leu Lys 1 5 10 <210> 177 <211> 203 <212> PRT 30 <213> Staphylococcus aureus <400> 177Met Phe Lys Lys Tyr Asp Ser Lys Asn Ser Ile Val Leu Lys Ser Ile 1 5 10 15 Leu Ser Leu Gly Ile Ile Tyr Gly Gly Thr Phe Gly Ile Tyr Pro Lys 20 25 30 35 Ala Asp Ala Ser Thr Gln Asn Ser Ser Val Gln Asp Lys Gln Leu 35 40 45 Gln Lys Val Glu Glu Val Pro Asn Asn Ser Glu Lys Ala Leu Val Lys 50 55 60 40 Lys Leu Tyr Asp Arg Tyr Ser Lys Asp Thr Ile Asn Gly Lys Ser Asn 65 70 75 80 Lys Ser Arg Asn Trp Val Tyr Ser Glu Arg Pro Leu Asn Glu Asn Gln 85 90 95 45 Val Arg Ile His Leu Glu Gly Thr Tyr Thr Val Ala Gly Arg Val Tyr 100 105 110 Thr Pro Lys Arg Asn Ile Thr Leu Asn Lys Glu Val Val Thr Leu Lys 120 50 Glu Leu Asp His Ile Ile Arg Phe Ala His Ile Ser Tyr Gly Leu Tyr 130 135 140 Met Gly Glu His Leu Pro Lys Gly Asn Ile Val Ile Asn Thr Lys Asp 145 150 155 160 55 Gly Gly Lys Tyr Thr Leu Glu Ser His Lys Glu Leu Gln Lys Asp Arg

					165					170					175	
	Glu	Asn	Val	Lys 180	Ile	Asn	Тhr	Ala	Asp 185	Ile	Lys	Asn	Val	Thr 190	Phe	Lys
5	Leu	Val	Lys 195	Ser	Val	Asn	Asp	Ile 200	Glu	Gln	Val					
10	<210 <211 <212 <213	> > > >	178 146 PRT Stap	ohy1c	οςοςα	cus a	aurei	ıs								
	<400 Met 1	> Asn	178 Thr	Lys	Tyr 5	Phe	Leu	Ala	Ala	G]y 10	Ala	Val	Ile	Thr	Thr 15	Leu
15	Ala	Leu	Gly	Ala 20	Cys	Gly	Asn	Ser	Asn 25	Ser	Gln	Asp	Gln	Gly 30	Asn	Lys
	Thr	Glu	Gln 35	Lys	Тhr	Lys	Ser	Glu 40	Asp	Ser	Asn	Val	Lys 45	Thr	Asp	Lys
20	Thr	Lys 50	His	Leu	Тhr	Gly	Thr 55	Phe	Ser	Ser	Lys	Asn 60	Gly	Glu	Тhr	Val
	Glu 65	Gly	Lys	Ala	Glu	I]e 70	Lys	Asn	Gly	Lys	Leu 75	Met	Leu	Тhr	Asn	туг 80
25	Lys	Ser	Ser	Lys	Gly 85	Pro	Asp	Leu	туr	Va] 90	туr	Leu	тhr	Lys	Asn 95	Gly
	Asp	Ile	Lys	Asn 100	Gly	Lys	Glu	Ile	A]a 105	Met	Val	Asp	туr	Asp 110	Lys	Glu
30	Lys	Gln	⊤hr 115	Phe	Asp	Leu	Lys	Asn 120	Val	Asp	Leu	Ser	Lys 125	Туr	Asp	Glu
	Val	Thr 130	Ile	туr	Cys	Lys	Lys 135	Ala	нis	Val	Ile	Phe 140	Gly	Gly	Ala	Lys
35	Leu 145	Lys														
	<210 <211 <212 <213	> > > >	179 619 PRT Stap	ohy1c	ococo	cus a	aurei	ıs								
40	<400 Met 1	> Pro	179 Lys	Asn	Lys 5	Ile	Leu	Ile	Tyr	Leu 10	Leu	Ser	Thr	Thr	Leu 15	Val
45	Leu	Pro	⊤hr	Leu 20	Val	Ser	Pro	Thr	A]a 25	⊤yr	Ala	Asp	Тhr	Pro 30	Gln	Lys
	Asp	Thr	⊤hr 35	Ala	Lys	Тhr	Тhr	Ser 40	нis	Asp	Ser	Lys	Lys 45	Ser	Asn	Asp
50	Asp	Glu 50	⊤hr	Ser	Lys	Asp	Thr 55	Thr	Ser	Lys	Asp	Ile 60	Asp	Lys	Ala	Asp
	Lys 65	Asn	Asn	Thr	Ser	Asn 70	Gln	Asp	Asn	Asn	Asp 75	Lys	Lys	Phe	Lys	Thr 80
55	Ile	Asp	Asp	Ser	Thr 85	Ser	Asp	Ser	Asn	Asn 90	Ile	Ile	Asp	Phe	Ile 95	Tyr
00	Lys	Asn	Leu	Pro 100	Gln	Thr	Asn	Ile	Asn 105	Gln	Leu	Leu	Thr	Lys 110	Asn	Lys

	Туr	Asp	Asp 115	Asn	Туr	Ser	Leu	Thr 120	Thr	Leu	Ile	Gln	Asn 125	Leu	Phe	Asn
5	Leu	Asn 130	Ser	Asp	Ile	Ser	Asp 135	Туr	Glu	Gln	Pro	Arg 140	Asn	Gly	Glu	Lys
	Ser 145	Thr	Asn	Asp	Ser	Asn 150	Lys	Asn	Ser	Asp	Asn 155	Ser	Ile	Lys	Asn	Asp 160
10	Thr	Asp	Thr	Gln	Ser 165	Ser	Lys	Gln	Asp	Lys 170	Ala	Asp	Asn	Gln	Lys 175	Ala
	Pro	Lys	Ser	Asn 180	Asn	Thr	Lys	Pro	Ser 185	Thr	Ser	Asn	Lys	Gln 190	Pro	Asn
15	Ser	Pro	Lys 195	Pro	Thr	Gln	Pro	Asn 200	Gln	Ser	Asn	Ser	G]n 205	Pro	Ala	Ser
	Asp	Asp 210	Lys	Ala	Asn	Gln	Lys 215	Ser	Ser	Ser	Lys	Asp 220	Asn	Gln	Ser	Met
20	Ser 225	Asp	Ser	Ala	Leu	Asp 230	Ser	Ile	Leu	Asp	G]n 235	Туr	Ser	Glu	Asp	Ala 240
20	Lys	Lys	Thr	Gln	Lys 245	Asp	туr	Ala	Ser	G]n 250	Ser	Lys	Lys	Asp	Lys 255	Asn
25	Glu	Lys	Ser	Asn 260	Thr	Lys	Asn	Pro	G]n 265	Leu	Pro	Thr	Gln	Asp 270	Glu	Leu
25	Lys	His	Lys 275	Ser	Lys	Pro	Ala	G]n 280	Ser	Phe	Asn	Asn	Asp 285	Val	Asn	Gln
20	Lys	Asp 290	Thr	Arg	Ala	Thr	Ser 295	Leu	Phe	Glu	Thr	Asp 300	Pro	Ser	Ile	Ser
30	Asn 305	Asn	Asp	Asp	Ser	Gly 310	Gln	Phe	Asn	Val	Va] 315	Asp	Ser	Lys	Asp	Thr 320
~~	Arg	Gln	Phe	Val	Lys 325	Ser	Ile	Ala	Lys	Asp 330	Ala	His	Arg	Ile	G]y 335	Gln
35	Asp	Asn	Asp	11e 340	туr	Ala	Ser	Val	Met 345	Ile	Ala	Gln	Ala	11e 350	Leu	Glu
	Ser	Asp	Ser 355	Gly	Arg	Ser	Ala	Leu 360	Ala	Lys	Ser	Pro	Asn 365	His	Asn	Leu
40	Phe	G]y 370	Ile	Lys	Gly	Ala	Phe 375	Glu	Gly	Asn	Ser	Va1 380	Pro	Phe	Asn	Thr
	Leu 385	Glu	Ala	Asp	Gly	Asn 390	Gln	Leu	Туr	Ser	Ile 395	Asn	Ala	Gly	Phe	Arg 400
45	Lys	Туr	Pro	Ser	Thr 405	Lys	Glu	Ser	Leu	Lys 410	Asp	Туr	Ser	Asp	Leu 415	Ile
	Lys	Asn	Gly	Ile 420	Asp	Gly	Asn	Arg	Thr 425	Ile	туr	Lys	Pro	тhr 430	тгр	Lys
50	Ser	Glu	Ala 435	Asp	Ser	Тyr	Lys	Asp 440	Ala	Thr	Ser	His	Leu 445	Ser	Lys	Thr
	Туг	Ala 450	Thr	Asp	Pro	Asn	Туг 455	Ala	Lys	Lys	Leu	Asn 460	Ser	Ile	Ile	Lys
55	ніs 465	туr	Gln	Leu	Thr	G]n 470	Phe	Asp	Asp	Glu	Arg 475	Met	Pro	Asp	Leu	Asp 480

	Lys	Туr	Glu	Arg	Ser 485	Ile	Lys	Asp	Туr	Asp 490	Asp	Ser	Ser	Asp	Glu 495	Phe
5	Lys	Pro	Phe	Arg 500	Glu	Val	Ser	Asp	Ser 505	Met	Pro	туr	Pro	ніs 510	Gly	Gln
	Cys	Thr	тгр 515	туr	Val	туг	Asn	Arg 520	Met	Lys	Gln	Phe	Gly 525	Thr	Ser	Ile
	Ser	G]y 530	Asp	Leu	Gly	Asp	Ala 535	His	Asn	тгр	Asn	Asn 540	Arg	Ala	Gln	Tyr
10	Arg 545	Asp	туг	Gln	Val	Ser 550	His	Thr	Pro	Lys	Arg 555	His	Ala	Ala	Val	Va1 560
	Phe	Glu	Ala	Gly	Gln 565	Phe	Gly	Ala	Asp	G]n 570	His	⊤yr	Gly	His	Va] 575	Ala
15	Phe	Val	Glu	Lys 580	Val	Asn	Ser	Asp	Gly 585	Ser	Ile	Val	Ile	Ser 590	Glu	Ser
	Asn	Val	Lys 595	Gly	Leu	Gly	Ile	I]e 600	Ser	His	Arg	⊤hr	Ile 605	Asn	Ala	Ala
20	Ala	Ala 610	Glu	Glu	Leu	Ser	туг 615	Ile	Thr	Gly	Lys					
25	<210 <211 <212 <213)> 1> 2> 3>	180 208 PRT Stap	ohyld	ococo	cus a	aurei	JS								
	<400 Met 1)> Lys	180 Phe	Gly	Lys 5	Thr	Ile	Ala	Val	Va] 10	Leu	Ala	Ser	Ser	Val 15	Leu
30	Leu	Ala	Gly	Cys 20	⊤hr	Thr	Asp	Lys	Lys 25	Glu	Ile	Lys	Ala	туг 30	Leu	Lys
	Gln	Val	Asp 35	Lys	Ile	Lys	Asp	Asp 40	Glu	Glu	Pro	Ile	Lys 45	Тhr	Val	Gly
35	Lys	Lys 50	Ile	АТа	Glu	Leu	Asp 55	Glu	Lys	Lys	Lys	Lys 60	Leu	Тhr	Glu	Asp
	Va1 65	Asn	Ser	Lys	Asp	Thr 70	Ala	Val	Arg	Gly	Lys 75	Ala	Val	Lys	Asp	Leu 80
40	Ile	Lys	Asn	Ala	Asp 85	Asp	Arg	Leu	Lys	Glu 90	Phe	Glu	Lys	Glu	Glu 95	Asp
	Ala	Ile	Lys	Lys 100	Ser	Glu	Gln	Asp	Phe 105	Lys	Lys	Ala	Lys	Ser 110	His	Val
45	Asp	Asn	I]e 115	Asp	Asn	Asp	Val	Lys 120	Arg	Lys	Glu	Val	Lys 125	Gln	Leu	Asp
	Asp	Val 130	Leu	Lys	Glu	Lys	Туг 135	Lys	Leu	His	Ser	Asp 140	Туr	Ala	Lys	Ala
50	Tyr 145	Lys	Lys	Ala	Val	Asn 150	Ser	Glu	Lys	Thr	Leu 155	Phe	Lys	Туr	Leu	Asn 160
	Gln	Asn	Asp	Ala	⊤hr 165	Gln	Gln	Gly	Val	Asn 170	Glu	Lys	Ser	Lys	Ala 175	Ile
55	Glu	Gln	Asn	туг 180	Lys	Lys	Leu	Lys	Glu 185	Val	Ser	Asp	Lys	Туг 190	Thr	Lys
	Val	Leu	Asn	Lys	Val	Gly	Lys	Glu	Lys	Gln	Asp	Val	Asp	Gln	Phe	Lys

195 200 205 181 <210> 105 <211> <212> PRT 5 <213> Staphylococcus aureus <400> 181Met Asn Lys Leu Leu Gln Ser Leu Ser Ala Leu Gly Val Ser Ala Thr 1 10 15 Leu Val Thr Pro Asn Leu Asn Ala Asp Ala Thr Thr Asn Thr Thr Pro 20 25 30 10 Gln Ile Lys Gly Ala Asn Asp Ile Val Ile Lys Lys Gly Gln Asp Tyr 35 40 45 Asn Leu Leu Asn Gly Ile Ser Ala Phe Asp Lys Glu Asp Gly Asp Leu 50 60 15 Thr Asp Lys Ile Lys Val Asp Gly Gln Ile Asp Thr Ser Lys Ser Gly 65 70 75 80 Lys Tyr Gln Ile Lys Tyr His Val Thr Asp Ser Asp Gly Ala Ile Lys 90 95 20 Ile Ser Thr Arg Tyr Ile Glu Val Lys 100 105 <210> 182 25 <211> 312 <212> PRT <213> Staphylococcus aureus <400> Met Lys Lys Leu Val Pro Leu Leu Leu Ala Leu Leu Leu Val Ala 1 5 10 15 30 Ala Cys Gly Thr Gly Gly Lys Gln Ser Asp Lys Ser Asn Gly Lys 20 25 30 Leu Lys Val Val Thr Thr Asn Ser Ile Leu Tyr Asp Met Ala Lys Asn 35 40 45 35 Val Gly Gly Asp Asn Val Asp Ile His Ser Ile Val Pro Val Gly Gln 50 55 60 Asp Pro His Glu Tyr Glu Val Lys Pro Lys Asp Ile Lys Lys Leu Thr 65 70 75 80 40 Asp Ala Asp Val Ile Leu Tyr Asn Gly Leu Asn Leu Glu Thr Gly Asn 85 90 95 Gly Trp Phe Glu Lys Ala Leu Glu Gln Ala Gly Lys Ser Leu Lys Asp 100 105 110 45 Lys Lys Val Ile Ala Val Ser Lys Asp Val Lys Pro Ile Tyr Leu Asn 115 120 125 Gly Glu Glu Gly Asn Lys Asp Lys Gln Asp Pro His Ala Trp Leu Ser 130 135 140 50 Leu Asp Asn Gly Ile Lys Tyr Val Lys Thr Ile Gln Gln Thr Phe Ile 145 150 155 160 Asp Asn Asp Lys Lys His Lys Ala Asp Tyr Glu Lys Gln Gly Asn Lys 165 170 175 55 Tyr Ile Ala Gln Leu Glu Lys Leu Asn Asn Asp Ser Lys Asp Ser Lys 180 185 190 180

EP 2 510 947 A1

	Asp	Lys	Phe 195	Asn	Asp	Ile	Pro	Lys 200	Glu	Gln	Arg	Ala	Met 205	Ile	Thr	Ser
5	Glu	Gly 210	Ala	Phe	Lys	Туr	Phe 215	Ser	Lys	Gln	Туr	G]y 220	Ile	Thr	Pro	Gly
	Туг 225	Ile	тгр	Glu	Ile	Asn 230	Тhr	Glu	Lys	Gln	G]y 235	Тhr	Pro	Glu	Gln	Met 240
10	Arg	Gln	Ala	Ile	G]u 245	Phe	Val	Lys	Lys	Ніs 250	Lys	Leu	Lys	His	Leu 255	Leu
	Val	Glu	Thr	Ser 260	Val	Asp	Lys	Lys	Ala 265	Met	Glu	Ser	Leu	Ser 270	Glu	Glu
15	Thr	Lys	Lys 275	Asp	Ile	Phe	Gly	Glu 280	Val	туr	Тhr	Asp	Ser 285	Ile	Gly	Lys
	Glu	Gly 290	Тhr	Lys	Gly	Asp	Ser 295	Туr	туr	Lys	Met	Met 300	Lys	Ser	Asn	Ile
20	Glu 305	Thr	Val	His	Gly	Ser 310	Met	Lys								
	<210 <211 <212 <212)> 1> 2> 3>	183 646 PRT Stap	ohyla	ococo	cus a	aureu	ıs								
25	<400 Met 1)> Ser	183 Ser	Gln	Lys 5	Lys	Lys	Ile	Ser	Leu 10	Phe	Ala	Phe	Phe	Leu 15	Leu
	Thr	Val	Ile	Thr 20	Ile	Thr	Leu	Lys	Thr 25	туr	Phe	Ser	туг	туг 30	Val	Asp
30	Phe	Ser	Leu 35	Gly	Val	Lys	Gly	Leu 40	Val	Gln	Asn	Leu	I]e 45	Leu	Leu	Met
	Asn	Pro 50	Туr	Ser	Leu	Val	Ala 55	Leu	Val	Leu	Ser	Va] 60	Phe	Leu	Phe	Phe
35	Lys 65	Gly	Lys	Lys	Ala	Phe 70	тгр	Phe	Met	Phe	Ile 75	Gly	Gly	Phe	Leu	Leu 80
10	Thr	Phe	Leu	Leu	туг 85	Ala	Asn	Val	Val	туг 90	Phe	Arg	Phe	Phe	Ser 95	Asp
40	Phe	Leu	Thr	Phe 100	Ser	Тhr	Leu	Asn	Gln 105	Val	Gly	Asn	Val	Glu 110	Ser	Met
45	Gly	Gly	Ala 115	Val	Ser	Ala	Ser	Phe 120	Lys	тгр	туr	Asp	Phe 125	Val	туг	Phe
40	Ile	Asp 130	Thr	Leu	Val	Туr	Leu 135	Phe	Ile	Leu	Ile	Phe 140	Lys	⊤hr	Lys	Тгр
50	Leu 145	Asp	Тhr	Lys	Ala	Phe 150	Ser	Lys	Lys	Phe	Val 155	Pro	Val	Val	Met	Ala 160
υU	Ala	Ser	Val	Ala	Leu 165	Phe	Phe	Leu	Asn	Leu 170	Ala	Phe	Ala	Glu	Тhr 175	Asp
55	Arg	Pro	Glu	Leu 180	Leu	Thr	Arg	Thr	Phe 185	Asp	His	Lys	Тyr	Leu 190	Val	Lys
00	Тyr	Leu	Gly 195	Pro	туr	Asn	Phe	Thr 200	Val	Тyr	Asp	Gly	Va1 205	Lys	Thr	Ile

Glu Asn Asn Gln Gln Lys Ala Leu Ala Ser Glu Asp Asp Leu Thr Lys 210 215 220 Val Leu Asn Tyr Thr Lys Gln Arg Gln Thr Glu Pro Asn Pro Glu Tyr 225 230 235 240 5 Tyr Gly Val Ala Lys Lys Lys Asn Ile Ile Lys Ile His Leu Glu Ser 245 250 255 Phe Gln Thr Phe Leu Ile Asn Lys Lys Val Asn Gly Lys Glu Val Thr 260 265 270 10 Pro Phe Leu Asn Lys Leu Ser Ser Gly Lys Glu Gln Phe Thr Tyr Phe 275 280 285 Pro Asn Phe Phe His Gln Thr Gly Gln Gly Lys Thr Ser Asp Ser Glu 290 295 300 15 Phe Thr Met Asp Asn Ser Leu Tyr Gly Leu Pro Gln Gly Ser Ala Phe 305 310 315 320 Ser Leu Lys Gly Asp Asn Thr Tyr Gln Ser Leu Pro Ala Ile Leu Asp 325 330 335 20 Gln Lys Gln Gly Tyr Lys Ser Asp Val Met His Gly Asp Tyr Lys Thr 340 345 350 Phe Trp Asn Arg Asp Gln Val Tyr Lys His Phe Gly Ile Asp Lys Phe 355 360 365 25 Tyr Asp Ala Thr Tyr Tyr Asp Met Ser Asp Lys Asn Val Val Asn Leu 370 375 380 Gly Leu Lys Asp Lys Ile Phe Phe Lys Asp Ser Ala Asn Tyr Gln Ala 385 390 395 400 Lys Met Lys Ser Pro Phe Tyr Ser His Leu Ile Thr Leu Thr Asn His $\begin{array}{c} 405 \\ 410 \end{array}$ 30 Tyr Pro Phe Thr Leu Asp Glu Lys Asp Ala Thr Ile Glu Lys Ser Asn 420 425 430 Thr Gly Asp Ala Thr Val Asp Gly Tyr Ile Gln Thr Ala Arg Tyr Leu 435 440 445 35 Asp Glu Ala Leu Glu Glu Tyr Ile Asn Asp Leu Lys Lys Gly Leu 450 455 460 Tyr Asp Asn Ser Val Ile Met Ile Tyr Gly Asp His Tyr Gly Ile Ser 465 470 475 480 40 Glu Asn His Asn Asn Ala Met Glu Lys Leu Leu Gly Glu Lys Ile Thr 485 490 495 Pro Ala Lys Phe Thr Asp Leu Asn Arg Thr Gly Phe Trp Ile Lys Ile 500 505 510 45 Pro Gly Lys Ser Gly Gly Ile Asn Asn Glu Tyr Ala Gly Gln Val Asp 515 520 525 Val Met Pro Thr Ile Leu His Leu Ala Gly Ile Asp Thr Lys Asn Tyr 530 535 540 50 Leu Met Phe Gly Thr Asp Leu Phe Ser Lys Gly His Asn Gln Val Val 545 550 555 560 560 Pro Phe Arg Asn Gly Asp Phe Ile Thr Lys Asp Tyr Lys Tyr Val Asn 565 570 575 55 Gly Lys Ile Tyr Ser Asn Lys Asn Asn Glu Leu Ile Thr Thr Gln Pro

				580					585					590		
	Ala	Asp	Phe 595	Glu	Lys	Asn	Lys	Lys 600	Gln	Val	Glu	Lys	Asp 605	Leu	Glu	Met
5	Ser	Asp 610	Asn	Val	Leu	Asn	Gly 615	Asp	Leu	Phe	Arg	Phe 620	Тyr	Lys	Asn	Pro
	Asp 625	Phe	Lys	Lys	Val	Asn 630	Pro	Ser	Lys	⊤yr	Lys 635	Туr	Glu	Thr	Gly	Pro 640
10	Lys	Ala	Asn	Ser	Lys 645	Lys										
15	<210 <211 <212 <213)> L> 2> }>	184 173 PRT Stap	phylo	οςοςα	cus a	aurei	ıs								
	<400 Met 1)> Ile	184 Asn	Ile	Ile 5	Ser	Ala	Ile	Gly	Ser 10	Ile	Gly	Thr	Phe	Ile 15	Met
20	Ala	Leu	Phe	Tyr 20	Phe	Val	Ser	Val	Ser 25	Val	Gln	Leu	Тyr	Gln 30	Met	Lys
	Ile	Ser	Phe 35	Leu	Pro	Ala	Leu	Gly 40	Phe	Asn	Gln	Ile	Leu 45	Leu	Glu	Arg
25	Glu	Glu 50	Asp	Gln	Leu	Asn	Ile 55	Met	Asn	Ser	Ala	тhr 60	Glu	Glu	His	His
	ніs 65	Lys	Asp	туr	Ile	Lys 70	Leu	туr	Asn	Leu	G]y 75	Gly	Gly	Ala	Ala	Lys 80
30	Lys	Ile	Ala	Ile	Glu 85	Val	Leu	Leu	Gly	Lys 90	Asp	Lys	Val	Ile	G]n 95	Lys
	Lys	Туr	Val	ніs 100	Ile	Leu	Pro	Ser	Lys 105	Glu	Gly	Туr	Met	Leu 110	Pro	Ile
35	Asn	Lys	Asn 115	Val	туr	Glu	Glu	Leu 120	Glu	Arg	Тhr	Ile	Glu 125	Asn	Asn	Gly
	His	Glu 130	Ala	Asp	Leu	Asn	Val 135	Arg	Met	⊤hr	туr	Туг 140	His	Asn	Val	Ser
40	Arg 145	Lys	Gln	Gln	Glu	Val 150	Ile	Leu	Lys	Gly	Gln 155	Ile	Asp	Arg	Phe	Asn 160
	Тhr	туг	Asn	Asn	Lys 165	Glu	Ile	туг	Asp	Leu 170	Gln	Phe	Ile			
45	<210 <211 <212 <213)> L> 2> }>	185 156 PRT Stap	ohy1c	ococo	cus a	aurei	ıs								
50	<400 Met 1)> Lys	185 Arg	Lys	Val 5	Leu	Val	Leu	Thr	Met 10	Gly	Val	Ile	Cys	A]a 15	Thr
50	Gln	Leu	⊤rp	His 20	Ser	Asn	His	Ala	Asn 25	Ala	Leu	Val	Thr	Glu 30	Ser	Gly
	Ala	Asn	Asp 35	Thr	Lys	Gln	Phe	тhr 40	Glu	Ile	Val	Ser	Glu 45	Glu	Lys	Val
55	Ile	Thr 50	Val	Glu	His	Ala	Gln 55	Ile	Asn	Ile	Phe	G]n 60	Ser	Asn	Ser	Asn

	Ser 65	Asn	Leu	Met	Glu	Phe 70	Asn	Ile	Leu	Тhr	Met 75	Gly	Gly	Lys	Ser	Gly 80
5	Ala	Met	Val	Gly	туг 85	Ser	Glu	Ile	Asp	Ser 90	Ser	His	Phe	Thr	Asp 95	Arg
	Asp	Lys	Arg	Val 100	Ile	Arg	Arg	Asp	His 105	Val	Lys	Glu	Ala	G]n 110	Ser	Leu
10	Val	Glu	Asn 115	туr	Lys	Asp	Thr	G]n 120	Ser	Ala	Asp	Ala	Arg 125	Met	Lys	Ala
	Lys	Gln 130	Lys	Val	Asn	Тhr	Leu 135	Ser	Lys	Pro	His	Gln 140	Asn	Тyr	Phe	Asn
15	Lys 145	Gln	Ile	Asp	Lys	Val 150	туr	Asn	Gly	Leu	G]n 155	Arg				
	<210 <212 <212 <213)> L> 2> 3>	186 133 PRT Stap	ohyla	ococo	cus a	aurei	ıs								
20	<400 Met 1)> Lys	186 Lys	Asn	Ile 5	Thr	Lys	Thr	Ile	Ile 10	Ala	Ser	Thr	Val	Ile 15	Ala
25	Ala	Gly	Leu	Leu 20	Thr	Gln	Тhr	Asn	Asp 25	Ala	Lys	Ala	Phe	Рhе 30	Ser	Туr
20	Glu	тгр	Lys 35	Gly	Leu	Glu	Ile	Ala 40	Lys	Asn	Leu	Ala	Asp 45	Gln	Ala	Lys
30	Lys	Asp 50	Asp	Glu	Arg	Ile	Asp 55	Lys	Leu	Met	Lys	Glu 60	Ser	Asp	Lys	Asn
30	Leu 65	Thr	Pro	Тyr	Lys	А]а 70	Glu	Thr	Val	Asn	Asp 75	Leu	туг	Leu	Ile	Va] 80
25	Lys	Lys	Leu	Ser	G]n 85	Gly	Asp	Val	Lys	Lys 90	Ala	Val	Val	Arg	Ile 95	Lys
33	Asp	Gly	Gly	Pro 100	Arg	Asp	туr	туr	⊤hr 105	Phe	Asp	Leu	Thr	Arg 110	Pro	Leu
40	Glu	Glu	Asn 115	Arg	Lys	Asn	Ile	Lys 120	Val	Val	Lys	Asn	Gly 125	Glu	Ile	Asp
70	Ser	I]e 130	Thr	тгр	Тyr											
45	<210 <211 <212 <213)> L> 2> }>	187 274 PRT Stap	ohyla	ococo	cus a	aureu	ıs								
	<400 Met 1)> Tyr	187 Pro	Asn	Trp 5	Gly	Gln	Tyr	Lys	Arg 10	Ala	Asp	Leu	Ile	Gly 15	Gln
50	Ser	Ser	Тyr	Ile 20	Lys	Asn	Asn	Asp	Va] 25	Val	Ile	Phe	Asn	Glu 30	Ala	Phe
	Asp	Asn	G]y 35	Ala	Ser	Asp	Lys	Leu 40	Leu	Ser	Asn	Val	Lys 45	Lys	Glu	Tyr
55	Pro	туг 50	Gln	Тhr	Pro	Val	Leu 55	Gly	Arg	Ser	Gln	Ser 60	Gly	тгр	Asp	Lys

	⊤hr 65	Glu	Gly	Ser	Tyr	Ser 70	Ser	Thr	Val	Ala	Glu 75	Asp	Gly	Gly	Val	Ala 80
5	Ile	Val	Ser	Lys	⊤yr 85	Pro	Ile	Lys	Glu	Lys 90	Ile	Gln	His	Val	Phe 95	Lys
5	Ser	Gly	Cys	Gly 100	Phe	Asp	Asn	Asp	Ser 105	Asn	Lys	Gly	Phe	Va] 110	туг	⊤hr
	Lys	Ile	Glu 115	Lys	Asn	Gly	Lys	Asn 120	Val	His	Val	I]e	Gly 125	Тhr	His	⊤hr
10	Gln	Ser 130	Glu	Asp	Ser	Arg	Cys 135	Gly	Ala	Gly	His	Asp 140	Arg	Lys	Ile	Arg
	Ala 145	Glu	Gln	Met	Lys	Glu 150	Ile	Ser	Asp	Phe	Va] 155	Lys	Lys	Lys	Asn	Ile 160
15	Pro	Lys	Asp	Glu	⊤hr 165	Val	Туr	Ile	Gly	Gly 170	Asp	Leu	Asn	Val	Asn 175	Lys
	Gly	Thr	Pro	Glu 180	Phe	Lys	Asp	Met	Leu 185	Lys	Asn	Leu	Asn	Va] 190	Asn	Asp
20	Val	Leu	Tyr 195	Ala	Gly	His	Asn	Ser 200	Thr	тгр	Asp	Pro	Gln 205	Ser	Asn	Ser
	Ile	Ala 210	Lys	туг	Asn	туr	Pro 215	Asn	Gly	Lys	Pro	G]u 220	ніs	Leu	Asp	⊤yr
25	Ile 225	Phe	Тhr	Asp	Lys	Asp 230	His	Lys	Gln	Pro	Lys 235	Gln	Leu	Val	Asn	Glu 240
	Val	Val	тhr	Glu	Lys 245	Pro	Lys	Pro	Тгр	Asp 250	Val	Tyr	Ala	Phe	Pro 255	Tyr
30	Tyr	туr	Val	Туг 260	Asn	Asp	Phe	Ser	Asp 265	His	туr	Pro	Ile	Lys 270	Ala	Tyr
	Ser	Lys														
35	<21(<21) <21) <21))> L> 2> 3>	188 390 PRT Stap	ohyla	ococo	cus a	aurei	JS								
40	<400 Met 1)> Leu	188 Glu	Phe	Glu	Gln	Gly	Phe	Asn	His 10	Leu	Ala	Thr	Leu	Lys 15	Val
	- Ile	Gly	Val	G]y 20	Gly	Gly	Gly	Asn	Asn 25	Ala	Val	Asn	Arg	Met 30	Ile	Asp
45	His	Gly	Met 35	Asn	Asn	Val	Glu	Phe 40	Ile	Ala	Ile	Asn	Thr 45	Asp	Gly	Gln
	Ala	Leu 50	Asn	Leu	Ser	Lys	A]a 55	Glu	Ser	Lys	Ile	Gln 60	Ile	Gly	Glu	Lys
50	Leu 65	Thr	Arg	Gly	Leu	Gly 70	Ala	Gly	Ala	Asn	Pro 75	Glu	Ile	Gly	Lys	Lys 80
	Ala	Ala	Glu	Glu	Ser 85	Arg	Glu	Gln	Ile	G]u 90	Asp	Ala	Ile	Gln	G]y 95	Ala
55	Asp	Met	Val	Phe 100	Val	Тhr	Ser	Gly	Met 105	Gly	Gly	Gly	Thr	Gly 110	Thr	Gly
	Ala	Ala	Pro	Val	Val	Ala	Lys	Ile	Ala	Lys	Glu	Met	Gly	Ala	Leu	⊤hr

			115					120					125			
	Val	Gly 130	Val	Val	⊤hr	Arg	Pro 135	Phe	Ser	Phe	Glu	G∖y 140	Arg	Lys	Arg	Gln
5	⊤hr 145	Gln	Ala	Ala	Ala	Gly 150	Val	Glu	Ala	Met	Lys 155	Ala	Ala	Val	Asp	⊤hr 160
	Leu	Ile	Val	Ile	Pro 165	Asn	Asp	Arg	Leu	Leu 170	Asp	Ile	Val	Asp	Lys 175	Ser
10	⊤hr	Pro	Met	Met 180	Glu	Ala	Phe	Lys	Glu 185	Ala	Asp	Asn	Val	Leu 190	Arg	Gln
	Gly	Val	Gln 195	Gly	Ile	Ser	Asp	Leu 200	Ile	Ala	Val	Ser	Gly 205	Glu	Val	Asn
15	Leu	Asp 210	Phe	Ala	Asp	Val	Lys 215	Thr	Ile	Met	Ser	Asn 220	Gln	Gly	Ser	Ala
	Leu 225	Met	Gly	Ile	Gly	Va] 230	Ser	Ser	Gly	Glu	Asn 235	Arg	Ala	Val	Glu	Ala 240
20	Ala	Lys	Lys	Ala	Ile 245	Ser	Ser	Pro	Leu	Leu 250	Glu	⊤hr	Ser	Ile	Va] 255	Gly
	Ala	Gln	Gly	Va] 260	Leu	Met	Asn	I]e	Thr 265	Gly	Gly	Glu	Ser	Leu 270	Ser	Leu
25	Phe	Glu	Ala 275	Gln	Glu	Ala	Ala	Asp 280	Ile	Val	Gln	Asp	Ala 285	Ala	Asp	Glu
	Asp	Va] 290	Asn	Met	Ile	Phe	G]y 295	Тhr	Val	Ile	Asn	Pro 300	Glu	Leu	Gln	Asp
30	Glu 305	Ile	Val	Val	⊤hr	Val 310	Ile	Ala	Тhr	Gly	Phe 315	Asp	Asp	Lys	Pro	⊤hr 320
	Ser	His	Gly	Arg	Lys 325	Ser	Gly	Ser	Thr	G]y 330	Phe	Gly	Thr	Ser	Va] 335	Asn
35	⊤hr	Ser	Ser	Asn 340	Ala	Тhr	Ser	Lys	Asp 345	Glu	Ser	Phe	Thr	Ser 350	Asn	Ser
	Ser	Asn	Ala 355	Gln	Ala	Тhr	Asp	Ser 360	Val	Ser	Glu	Arg	тhr 365	His	Тhr	⊤hr
40	Lys	Glu 370	Asp	Asp	Ile	Pro	Ser 375	Phe	Ile	Arg	Asn	Arg 380	Glu	Glu	Arg	Arg
	Ser 385	Arg	Arg	Thr	Arg	Arg 390										
45	<210 <211 <212 <212)> L> 2> }>	189 258 PRT Stap	ohyla	οςοςα	cus a	aureu	JS								
	<400 Ala 1)> Asp	189 Ser	Asp	Ile 5	Asn	Ile	Lys	Thr	Gly 10	Thr	⊤hr	Asp	Ile	Gly 15	Ser
50	Asn	Thr	Thr	Va] 20	Lys	Thr	Gly	Asp	Leu 25	Val	Thr	⊤yr	Asp	Lys 30	Glu	Asn
	Gly	Met	Leu 35	Lys	Lys	Val	Phe	туг 40	Ser	Phe	Ile	Asp	Asp 45	Lys	Asn	His
55	Asn	Lys 50	Lys	Leu	Leu	Val	Ile 55	Arg	Тhr	Lys	Gly	⊤hr 60	Ile	Ala	Gly	Gln

	Tyr 65	Arg	Val	Туr	Ser	Glu 70	Glu	Gly	Ala	Asn	Lys 75	Ser	Gly	Leu	Ala	Тгр 80
5	Pro	Ser	Ala	Phe	Lys 85	Val	Gln	Leu	Gln	Leu 90	Pro	Asp	Asn	Glu	Va1 95	Ala
	Gln	Ile	Ser	Asp 100	туг	Туr	Pro	Arg	Asn 105	Ser	Ile	Asp	Thr	Pro 110	Ser	Gly
10	Ser	Val	G]n 115	Pro	Asp	Phe	Lys	Thr 120	Ile	Leu	Glu	Ser	Pro 125	Thr	Asp	Lys
	Lys	Va] 130	Gly	Тгр	Lys	Val	Ile 135	Phe	Asn	Asn	Met	Va] 140	Asn	Gln	Asn	Тгр
15	Gly 145	Pro	Туr	Asp	Arg	Asp 150	Ser	тгр	Asn	Pro	Va] 155	Туr	Gly	Asn	Gln	Leu 160
	Phe	Met	Lys	Тhr	Arg 165	Asn	Gly	Ser	Met	Lys 170	Ala	Ala	Asp	Asn	Phe 175	Leu
20	Asp	Pro	Asn	Lys 180	Ala	Ser	Ser	Leu	Leu 185	Ser	Ser	Gly	Phe	Ser 190	Pro	Asp
	Phe	Ala	Thr 195	Val	Ile	Тhr	Met	Asp 200	Arg	Lys	Ala	Ser	Lys 205	Gln	Gln	Thr
25	Asn	I]e 210	Asp	Val	Ile	Туr	Glu 215	Arg	Val	Arg	Asp	Asp 220	Туr	Gln	Leu	His
	Trp 225	Thr	Ser	Thr	Asn	Trp 230	Lys	Gly	Thr	Asn	Thr 235	Lys	Asp	Lys	тгр	I]e 240
30	Asp	Arg	Ser	Ser	Glu 245	Arg	Туr	Lys	Ile	Asp 250	тгр	Glu	Lys	Glu	Glu 255	Met
	Thr	Asn														
35	<210 <211 <212 <213)> 1> 2> 3>	190 306 PRT Stap	ohyla	ococo	cus a	aurei	JS								
	<400 Lys 1)> Phe	190 Val	Val	Pro 5	Glu	Ser	Gly	Ile	Asn 10	Lys	Ile	Ile	Pro	A]a 15	Tyr
40	Asp	Glu	Phe	Lys 20	Asn	Ser	Pro	Lys	Val 25	Asn	Val	Ser	Asn	Leu 30	Thr	Asp
	Asn	Lys	Asn 35	Phe	Val	Ala	Ser	Glu 40	Asp	Lys	Leu	Asn	Lys 45	Ile	Ala	Asp
45	Ser	Ser 50	Ala	Ala	Ser	Lys	Ile 55	Val	Asp	Lys	Asn	Phe 60	Val	Val	Pro	Glu
	Ser 65	Lys	Leu	Gly	Asn	Ile 70	Val	Pro	Glu	Туr	Lys 75	Glu	Ile	Asn	Asn	Arg 80
50	Val	Asn	Val	Ala	тhr 85	Asn	Asn	Pro	Ala	Ser 90	Gln	Gln	Val	Asp	Lys 95	His
	Phe	Val	Ala	Lys 100	Gly	Pro	Glu	Val	Asn 105	Arg	Phe	Ile	Thr	G]n 110	Asn	Lys
55	Val	Asn	Ніs 115	His	Phe	Ile	Thr	Thr 120	Gln	Thr	His	туr	Lys 125	Lys	Val	I]e

	⊤hr	Ser 130	Туr	Lys	Ser	Thr	His 135	Val	His	Lys	His	Va] 140	Asn	His	Ala	Lys
5	Asp 145	Ser	Ile	Asn	Lys	His 150	Phe	Ile	Val	Lys	Pro 155	Ser	Glu	Ser	Pro	Arg 160
	⊤yr	Thr	His	Pro	Ser 165	Gln	Ser	Leu	Ile	I]e 170	Lys	His	His	Phe	Ala 175	Val
	Pro	Gly	туг	His 180	Ala	His	Lys	Phe	Va] 185	Thr	Pro	Gly	His	Ala 190	Ser	Ile
10	Lys	Ile	Asn 195	His	Phe	Cys	Val	Va] 200	Pro	Gln	Ile	Asn	Ser 205	Phe	Lys	Val
	Ile	Pro 210	Pro	туr	Gly	His	Asn 215	Ser	His	Arg	Met	ніs 220	Val	Pro	Ser	Phe
15	G]n 225	Asn	Asn	⊤hr	⊤hr	Ala 230	Thr	His	Gln	Asn	A]a 235	Lys	Val	Asn	Lys	Ala 240
	Tyr	Asp	Туr	Lys	⊤yr 245	Phe	Тyr	Ser	Туr	Lys 250	Val	Val	Lys	Gly	Va] 255	Lys
20	Lys	Туг	Phe	Ser 260	Phe	Ser	Gln	Ser	Asn 265	Gly	туr	Lys	Ile	G]y 270	Lys	Pro
	Ser	Leu	Asn 275	Ile	Lys	Asn	Val	Asn 280	туr	Gln	туг	Ala	Va] 285	Pro	Ser	⊤yr
25	Ser	Pro 290	тhr	His	туr	Val	Pro 295	Glu	Phe	Lys	Gly	Ser 300	Leu	Pro	Ala	Pro
	Arg 305	Val														
30	<210 <211 <212 <212)> 1> 2> 3>	191 308 PRT Stap	ohyld	ococo	cus a	aureu	ıs								
30 35	<210 <212 <212 <213 <400 Ser 1)> 1> 2> 3>)> Val	191 308 PRT Stap 191 Thr	ohyld Glu	ser 5	cus a Val	aureu Asp	is Lys	Lys	Phe 10	Val	Val	Pro	Glu	Ser 15	Gly
30 35	<210 <212 <212 <213 <213 <400 Ser 1 Ile)> 1> 2> 3>)> Val	191 308 PRT Stap 191 Thr Lys	ohyld Glu Ile 20	Ser 5 Ile	cus a Val Pro	Aureu Asp Ala	ıs Lys Tyr	Lys Asp 25	Phe 10 Glu	Val Phe	Val Lys	Pro Asn	Glu Ser 30	Ser 15 Pro	G]y Lys
30 35 40	<210 <211 <212 <212 <213 <400 Ser 1 Ile Val)> 1> 2> 3> Val Asn Asn	191 308 PRT Stap 191 Thr Lys Val 35	ohylo Glu Ile 20 Ser	Ser 5 Ile Asn	cus a Val Pro Leu	Aureu Asp Ala Thr	JS Lys Tyr Asp 40	Lys Asp 25 Asn	Phe 10 Glu Lys	Val Phe Asn	Val Lys Phe	Pro Asn Val 45	Glu Ser 30 Ala	Ser 15 Pro Ser	Gly Lys Glu
30 35 40	<210 <211 <211 <211 <400 Ser 1 Ile Val Asp)> 1> 2> 3> Val Asn Asn Lys 50	191 308 PRT Stap 191 Thr Lys Val 35 Leu	ohyld Glu Ile 20 Ser Asn	Ser 5 Ile Asn Lys	val Val Pro Leu Ile	Aureu Asp Ala Thr Ala 55	Lys Tyr Asp Asp Asp	Lys Asp 25 Asn Ser	Phe 10 Glu Lys Ser	Val Phe Asn Ala	Val Lys Phe Ala 60	Pro Asn Val 45 Ser	Glu Ser 30 Ala Lys	Ser 15 Pro Ser Ile	Gly Lys Glu Val
30 35 40 45	<210 <211 <211 <211 <211 <211 <211 Ser 1 Ile Val Asp 65)> 1> 2> Val Asn Asn Lys 50 Lys	191 308 PRT Stap 191 Thr Lys val 35 Leu Asn	ohyld Glu Ile Ser Asn Phe	Ser 5 Ile Asn Lys Val	val Pro Leu Ile Val 70	Asp Ala Thr Ala 55 Pro	Lys Tyr Asp Asp Glu	Lys Asp 25 Asn Ser Ser	Phe 10 Glu Lys Ser Lys	Val Phe Asn Ala Leu 75	Val Lys Phe Ala 60 Gly	Pro Asn Val 45 Ser Asn	Glu Ser 30 Ala Lys Ile	Ser 15 Pro Ser Ile Val	Gly Lys Glu Val Pro 80
30 35 40 45	<210 <211 <211 <211 <211 <211 Ser 1 Ile Val Asp 65 Glu)> 1> 2> 3> Val Asn Asn Lys 50 Lys Tyr	191 308 PRT Stap 191 Thr Lys Val 35 Leu Asn Lys	ohyld Glu Ile 20 Ser Asn Phe Glu	Ser 5 Ile Asn Lys Val Ile 85	val Pro Leu Ile Val 70 Asn	Ala Ala Thr Ala 55 Pro Asn	Lys Tyr Asp Asp Glu Arg	Lys Asp 25 Asn Ser Ser Val	Phe 10 Glu Lys Ser Lys Asn 90	Val Phe Asn Ala Leu 75 Val	Val Lys Phe Ala Gly Ala	Pro Asn Val 45 Ser Asn Thr	Glu Ser 30 Ala Lys Ile Asn	Ser Pro Ser Ile Val Asn 95	Gly Lys Glu Val Pro Pro
30 35 40 45	<210 <211 <211 <211 <211 Ser 1 Ile Val Asp 65 Glu Ala)> 1> 2> 3> Val Asn Asn Lys 50 Lys Tyr Ser	191 308 PRT Stap 191 Thr Lys Val 35 Leu Asn Lys Gln	Glu Glu Ile 20 Ser Asn Phe Glu Gln 100	Ser 5 Ile Asn Lys Val Ile 85 Val	val Pro Leu Ile Val 70 Asn Asp	Ala Ala Thr Ala Pro Asn Lys	Lys Tyr Asp Asp Glu Arg His	Lys Asp 25 Asn Ser Ser Val Phe 105	Phe 10 Glu Lys Ser Lys Asn 90 Val	Val Phe Asn Ala Leu 75 Val Ala	Val Lys Phe Ala Gly Ala Lys	Pro Asn Val Ser Asn Thr Gly	Glu Ser 30 Ala Lys Ile Asn Pro 110	Ser 15 Pro Ser Ile Val Asn 95 Glu	Gly Lys Glu Val Pro 80 Pro Val
30 35 40 45 50	<210 <211 <211 <211 <211 <211 Ser 1 Ile Val Asp 65 Glu Ala Asn)> 1> 2> Val Asn Asn Lys 50 Lys Tyr Ser Arg	191 308 PRT Stap 191 Thr Lys Val 35 Leu Asn Lys Gln Phe 115	Glu Glu Ile Ser Asn Phe Glu Gln 100 Ile	Ser 5 Ile Asn Lys Val Ile 85 Val Thr	Val Pro Leu Ile Val 70 Asn Asp Gln	Asp Ala Thr Ala Pro Asn Lys Asn	Lys Tyr Asp Glu Arg His Lys 120	Lys Asp Asn Ser Val Phe 105 Val	Phe 10 Glu Lys Ser Lys Asn 90 Val Asn	Val Phe Asn Ala Leu 75 Val Ala His	Val Lys Phe Ala Gly Ala Lys His	Pro Asn Val Ser Asn Thr Gly Phe 125	Glu Ser Ala Lys Ile Asn Pro 110 Ile	Ser 15 Pro Ser Ile Val Asn 95 Glu Thr	Gly Lys Glu Val Pro Pro Val Thr
 30 35 40 45 50 55 	<210 <211 <211 <211 <211 <211 Ser 1 Ile Val Asp 65 Glu Ala Asn Gln)> L> 2> 3> Val Asn Asn Lys 50 Lys Tyr Ser Arg Thr 130	191 308 PRT Stap 191 Thr Lys Val 35 Leu Asn Lys Gln Phe 115 His	ohylo Glu Ile 20 Ser Asn Phe Glu Gln 100 Ile Tyr	Ser 5 Ile Asn Lys Val Ile 85 Val Thr Lys	val Pro Leu Ile Val 70 Asn Asp Gln Lys	Ala Ala Thr Ala Pro Asn Lys Asn Val 135	Lys Tyr Asp Asp Glu Arg His Lys 120 Ile	Lys Asp 25 Asn Ser Val Phe 105 Val Thr	Phe Glu Lys Ser Lys Asn Val Asn Ser	Val Phe Asn Ala Leu 75 Val Ala His Tyr	Val Lys Phe Ala Gly Ala Lys His Lys 140	Pro Asn Val Ser Asn Thr Gly Phe 125 Ser	Glu Ser 30 Ala Lys Ile Asn Pro 110 Ile Thr	Ser Pro Ser Ile Val Asn 95 Glu Thr His	Gly Lys Glu Val Pro Val Thr Val

	145				150					155					160
	Val Lys	Pro	Ser	Glu 165	Ser	Pro	Arg	Туr	⊤hr 170	His	Pro	Ser	Gln	Ser 175	Leu
5	Ile Ile	Lys	His 180	His	Phe	Ala	Val	Pro 185	Gly	туr	His	Ala	Ніs 190	Lys	Phe
	Val Thr	Pro 195	Gly	His	Ala	Ser	I]e 200	Lys	Ile	Asn	His	Phe 205	Cys	Val	Val
10	Pro Gln 210	Ile	Asn	Ser	Phe	Lys 215	Val	Ile	Pro	Pro	Туг 220	Gly	His	Asn	Ser
	His Arg 225	Met	His	Val	Pro 230	Ser	Phe	Gln	Asn	Asn 235	Тhr	Тhr	Ala	Тhr	His 240
15	Gln Asn	Ala	Lys	Va] 245	Asn	Lys	Ala	Туr	Asp 250	Тyr	Lys	Тyr	Phe	Туг 255	Ser
	Tyr Lys	Val	Va] 260	Lys	Gly	Val	Lys	Lys 265	⊤yr	Phe	Ser	Phe	Ser 270	Gln	Ser
20	Asn Gly	⊤yr 275	Lys	Ile	Gly	Lys	Pro 280	Ser	Leu	Asn	Ile	Lys 285	Asn	Val	Asn
	туr Gln 290	⊤yr	Ala	Val	Pro	Ser 295	туr	Ser	Pro	тhr	Ніs 300	туr	Val	Pro	Glu
25	Phe Lys 305	Gly	Ser												
	<210> <211>	192 300													
20	<212> <213>	PRT Stap	ohy]c	ococo	cus a	aurei	IS								
30	<212> <213> <400> Lys Phe 1	PRT Stap 192 Val	val	Pro 5	cus a Glu	aurei Ser	ıs Gly	Ile	Asn 10	Lys	Ile	Ile	Pro	A]a 15	Tyr
30 35	<212> <213> <400> Lys Phe 1 Asp Glu	PRT Stap 192 Val Phe	val Val Lys 20	Pro 5 Asn	cus a Glu Ser	aureı Ser Pro	ıs Gly Lys	Ile Val 25	Asn 10 Asn	Lys Val	Ile Ser	Ile Asn	Pro Leu 30	Ala 15 Thr	Tyr Asp
30 35	<212> <213> <400> Lys Phe 1 Asp Glu Asn Lys	PRT Stap 192 Val Phe Asn 35	val Val Lys 20 Phe	Pro 5 Asn Val	Glu Glu Ser Ala	Ser Pro Ser	us Gly Lys Glu 40	Ile Val 25 Asp	Asn 10 Asn Lys	Lys Val Leu	Ile Ser Asn	Ile Asn Lys 45	Pro Leu 30 Ile	Ala 15 Thr Ala	Tyr Asp Asp
30 35 40	<212> <213> <400> Lys Phe 1 Asp Glu Asn Lys Ser Ser 50	PRT Stap 192 Val Phe Asn 35 Ala	val Val Lys 20 Phe Ala	Pro 5 Asn Val Ser	Glu Glu Ser Ala Lys	Ser Pro Ser Jle	us Gly Lys Glu 40 Val	Ile Val 25 Asp Asp	Asn 10 Asn Lys Lys	Lys Val Leu Asn	Ile Ser Asn Phe 60	Ile Asn Lys 45 Val	Pro Leu 30 Ile val	Ala 15 Thr Ala Pro	Tyr Asp Asp Glu
30 35 40	<212> <213> <400> Lys Phe 1 Asp Glu Asn Lys Ser Ser 50 Ser Lys 65	PRT Stap 192 Val Phe Asn 35 Ala Leu	ohylc Val Lys 20 Phe Ala Gly	Pro 5 Asn Val Ser Asn	Glu Glu Ser Ala Lys Ile 70	ser Pro Ser Ile 55 Val	us Gly Lys Glu 40 Val Pro	Ile Val 25 Asp Asp Glu	Asn 10 Asn Lys Lys Tyr	Lys Val Leu Asn Lys 75	Ile Ser Asn Phe 60 Glu	Ile Asn Lys 45 Val Ile	Pro Leu 30 Ile Val Asn	Ala 15 Thr Ala Pro Asn	Tyr Asp Asp Glu Arg 80
30 35 40	<212> <213> <400> Lys Phe 1 Asp Glu Asn Lys Ser Ser Ser Lys 65 Val Asn	PRT Stap 192 Val Phe Asn 35 Ala Leu Val	val Lys 20 Phe Ala Gly Ala	Pro 5 Asn Val Ser Asn Thr 85	Glu Ser Ala Lys Ile 70 Asn	Ser Pro Ser Ile 55 Val Asn	us Gly Lys Glu 40 Val Pro Pro	Ile Val 25 Asp Asp Glu Ala	Asn Asn Lys Lys Tyr Ser 90	Lys Val Leu Asn Lys 75 Gln	Ile Ser Asn Phe 60 Glu Gln	Ile Asn Lys 45 Val Ile Val	Pro Leu 30 Ile Val Asn Asp	Ala Thr Ala Pro Asn Lys 95	Tyr Asp Asp Glu Arg 80 His
30 35 40 45	<212> <213> <400> Lys Phe 1 Asp Glu Asn Lys Ser Ser Ser Lys 65 Val Asn Phe Val	PRT Stap 192 Val Phe Asn 35 Ala Leu Val Ala	val Val Lys Phe Ala Gly Ala Lys 100	Pro 5 Asn Val Ser Asn Thr 85 Gly	Glu Glu Ser Ala Lys Ile 70 Asn Pro	Ser Pro Ser Ile 55 Val Asn Glu	us Gly Lys Glu Val Pro Pro Val	Ile Val Asp Asp Glu Ala Asn 105	Asn 10 Asn Lys Lys Tyr Ser 90 Arg	Lys Val Leu Asn Lys 75 Gln Phe	Ile Ser Asn Phe Glu Gln Ile	Ile Asn Lys Val Ile Val Thr	Pro Leu Jle Val Asn Asp Gln	Ala Thr Ala Pro Asn Lys 95 Asn	Tyr Asp Asp Glu Arg 80 His Lys
30 35 40 45 50	<212> <213> <400> Lys Phe 1 Asp Glu Asn Lys Ser Ser Ser Lys 65 Val Asn Phe Val Val Asn	PRT Stap 192 Val Phe Asn 35 Ala Leu Val Ala His 115	val Lys 20 Phe Ala Gly Ala Lys 100 His	Pro 5 Asn Val Ser Asn Thr 85 Gly Phe	Glu Ser Ala Lys Ile Asn Pro Ile	Ser Pro Ser Ile 55 Val Asn Glu Thr	us Gly Lys Glu Val Pro Pro Val Thr 120	Ile Val Asp Glu Ala Asn 105 Gln	Asn Asn Lys Lys Tyr Ser 90 Arg Thr	Lys Val Leu Asn Lys Gln Phe His	Ile Ser Asn Phe 60 Glu Gln Ile Tyr	Ile Asn Lys Val Ile Val Thr Lys 125	Pro Leu 30 Ile Val Asn Asp Gln 110 Lys	Ala Thr Ala Pro Asn Lys 95 Asn Val	Tyr Asp Asp Glu Arg His Lys Ile
30 35 40 45 50	<212> <213> <400> Lys Phe 1 Asp Glu Asn Lys Ser Ser Ser Lys 65 Val Asn Phe Val Val Asn Thr Ser 130	PRT Stap 192 Val Phe Asn 35 Ala Leu Val Ala His 115 Tyr	val Lys 20 Phe Ala Gly Ala Lys 100 His Lys	Pro 5 Asn Val Ser Asn Thr 85 Gly Phe Ser	Glu Ser Ala Lys Ile Asn Pro Ile Thr	Ser Pro Ser Ile 55 Val Asn Glu Thr Hiss 135	us Gly Lys Glu Val Pro Val Thr 120 Val	Ile Val Asp Asp Glu Ala Asn 105 Gln His	Asn Asn Lys Lys ⊤yr Ser 90 Arg Thr Lys	Lys Val Leu Asn Lys Gln Phe His His	Ile Ser Asn Phe 60 Glu Gln Ile Tyr Val	Ile Asn Lys Val Ile Val Thr Lys 125 Asn	Pro Leu 30 Ile val Asn Asp Gln 110 Lys His	Ala Thr Ala Pro Asn Lys Asn Val Ala	Tyr Asp Asp Glu Arg His Lys Ile Lys
30 35 40 45 50	<212> <213> <400> Lys Phe 1 Asp Glu Asn Lys Ser Ser Ser Lys 65 Val Asn Phe Val Val Asn Thr Ser 130 Asp Ser	PRT Stap 192 Val Phe Asn 35 Ala Leu Val Ala His 115 Tyr Ile	ohylc Val Lys Phe Ala Gly Ala Lys 100 His Lys Asn	Pro 5 Asn Val Ser Asn Thr 85 Gly Phe Ser Lys	Glu Ser Ala Lys Ile Asn Pro Ile Thr His 150	Ser Pro Ser Ile 55 Val Asn Glu Thr Hiss 135 Phe	us Gly Lys Glu Val Pro Val Thr 120 Val Ile	Ile Val Asp Asp Glu Ala Asn 105 Gln His Val	Asn Lys Lys Tyr Ser Arg Thr Lys Lys	Lys Val Leu Asn Lys Gln Phe His His Pro	Ile Ser Asn Phe Glu Glu Ile Tyr Val 140 Ser	Ile Asn Lys Val Ile Val Thr Lys 125 Asn Glu	Pro Jeu Jle Val Asn Asp Gln 110 Lys His Ser	Ala Thr Ala Pro Asn Lys 95 Asn Val Ala Pro	Tyr Asp Glu Arg His Lys Ile Lys Arg 160

	Pro G	1у ту	r His 180	Ala	His	Lys	Phe	Val 185	Thr	Pro	Gly	His	Ala 190	Ser	Ile
5	Lys I	le As 19	n His 5	Phe	Cys	Val	Va] 200	Pro	Gln	Ile	Asn	Ser 205	Phe	Lys	Val
	Ile P 2	ro Pr 10	о Tyr	Gly	His	Asn 215	Ser	His	Arg	Met	His 220	Val	Pro	Ser	Phe
10	Gln A 225	sn As	n Thr	Thr	Ala 230	Thr	His	Gln	Asn	A]a 235	Lys	Val	Asn	Lys	A]a 240
	Tyr A	sp ту	r Lys	туг 245	Phe	Тyr	Ser	туг	Lys 250	Val	Val	Lys	Gly	Va] 255	Lys
15	Lys T	yr Ph	e Ser 260	Phe	Ser	Gln	Ser	Asn 265	Gly	туг	Lys	Ile	G]y 270	Lys	Pro
	Ser L	eu As 27	n Ile 5	Lys	Asn	Val	Asn 280	Туr	Gln	Туr	Ala	Va] 285	Pro	Ser	Tyr
20	Ser P 2	ro Th 90	r His	Тyr	Val	Pro 295	Glu	Phe	Lys	Gly	Ser 300				
	<210> <211> <212> <213>	19 12 PR St	3 1 T aphyl	0000	cus a	aurei	JS								
25	<400> Ser V 1	19 al Th	3 r Glu	Ser 5	Val	Asp	Lys	Lys	Phe 10	Val	Val	Pro	Glu	Ser 15	Gly
22	Ile A	sn Ly	s Ile 20	Ile	Pro	Ala	Туг	Asp 25	Glu	Phe	Lys	Asn	Ser 30	Pro	Lys
30	Val A	sn Va 35	l Ser	Asn	Leu	Thr	Asp 40	Asn	Lys	Asn	Phe	Va1 45	Ala	Ser	Glu
25	Asp L 5	ys Le 0	u Asn	Lys	Ile	Ala 55	Asp	Ser	Ser	Ala	Ala 60	Ser	Lys	Ile	Val
30	Asp L 65	ys As	n Phe	Val	Va] 70	Pro	Glu	Ser	Lys	Leu 75	Gly	Asn	Ile	Val	Pro 80
40	Glu T	yr Ly	s Glu	Ile 85	Asn	Asn	Arg	Val	Asn 90	Val	Ala	Thr	Asn	Asn 95	Pro
70	Ala S	er Gl	n Gln 100	Val	Asp	Lys	His	Phe 105	Val	Ala	Lys	Gly	Pro 110	Glu	Val
45	Asn A	rg Ph 11	e Ile 5	Тhr	Gln	Asn	Lys 120	Val							
	<210> <211> <212> <213>	19 53 PR St	4 T aphyl	0000	cus a	aurei	JS								
50	<400> Ala A 1	19 sp Se	4 r Asp	Ile 5	Asn	Ile	Lys	Thr	Gly 10	Thr	Thr	Asp	Ile	Gly 15	Ser
	Asn T	hr Th	r Val 20	Lys	Thr	Gly	Asp	Leu 25	Val	Thr	Тyr	Asp	Lys 30	Glu	Asn
55	Glу М	et Hi 35	s Lys	Lys	Val	Phe	Tyr 40	Ser	Phe	Ile	Asp	Asp 45	Lys	Asn	His

	Asn	Lys 50	Lys	Leu	Leu											
5	<21(<21 <212 <212)> L> 2> 3>	195 53 PRT Stap	ohyla	οςοςα	cus a	aurei	JS								
	<400 Ala 1)> Asp	195 Ser	Asp	Ile 5	Asn	Ile	Lys	Thr	G]y 10	Thr	Thr	Asp	Ile	Gly 15	Ser
10	Asn	Thr	⊤hr	Va] 20	Lys	тhr	Gly	Asp	Leu 25	Val	Тhr	Туr	Asp	Lys 30	Glu	Asn
	Gly	Met	Leu 35	Lys	Lys	Val	Phe	туг 40	Ser	Phe	Ile	Asp	Asp 45	Lys	Asn	His
15	Asn	Lys 50	Lys	Leu	Leu											
20	<210 <212 <212 <213)> L> 2> 3>	196 316 PRT Stap	ohy1a	ococo	cus a	aurei	ıs								
	<400 Ser 1)> Glu	196 Gln	Ser	Asn 5	Asp	Thr	Thr	Gln	Ser 10	Ser	Lys	Asn	Asn	A]a 15	Ser
25	Ala	Asp	Ser	Glu 20	Lys	Asn	Asn	Met	Ile 25	Glu	Thr	Pro	Gln	Leu 30	Asn	Thr
	Thr	Ala	Asn 35	Asp	Thr	Ser	Asp	Ile 40	Ser	Ala	Asn	Thr	Asn 45	Ser	Ala	Asn
30	Val	Asp 50	Ser	Тhr	Thr	Lys	Pro 55	Met	Ser	⊤hr	Gln	тhr 60	Ser	Asn	Тhr	Тhr
	Thr 65	Thr	Glu	Pro	Ala	Ser 70	Thr	Asn	Glu	⊤hr	Pro 75	Gln	Pro	Thr	Ala	Ile 80
35	Lys	Asn	Gln	Ala	Thr 85	Ala	Ala	Lys	Met	G]n 90	Asp	Gln	Thr	Val	Pro 95	Gln
	Glu	Ala	Asn	Ser 100	Gln	Val	Asp	Asn	Lys 105	⊤hr	Thr	Asn	Asp	Ala 110	Asn	Ser
40	Ile	Ala	⊤hr 115	Asn	Ser	Glu	Leu	Lys 120	Asn	Ser	Gln	Тhr	Leu 125	Asp	Leu	Pro
	Gln	Ser 130	Ser	Pro	Gln	Тhr	Ile 135	Ser	Asn	Ala	Gln	Gly 140	Тhr	Ser	Lys	Pro
45	Ser 145	Val	Arg	Тhr	Arg	Ala 150	Val	Arg	Ser	Leu	A]a 155	Val	Ala	Glu	Pro	Val 160
	Val	Asn	Ala	Ala	Asp 165	Ala	Lys	Gly	тhr	Asn 170	Val	Asn	Asp	Lys	Va] 175	тhr
50	Ala	Ser	Asn	Phe 180	Lys	Leu	Glu	Lys	Thr 185	⊤hr	Phe	Asp	Pro	Asn 190	Gln	Ser
	Gly	Asn	⊤hr 195	Phe	Met	Ala	Ala	Asn 200	Phe	⊤hr	Val	Thr	Asp 205	Lys	Val	Lys
55	Ser	G]y 210	Asp	Туr	Phe	Тhr	Ala 215	Lys	Leu	Pro	Asp	Ser 220	Leu	Thr	Gly	Asn
	Gly	Asp	Val	Asp	туг	Ser	Asn	Ser	Asn	Asn	тhr	Met	Pro	Ile	Ala	Asp

	225					230					235					240
	Ile	Lys	Ser	Thr	Asn 245	Gly	Asp	Val	Val	A]a 250	Lys	Ala	Thr	Туr	Asp 255	Ile
5	Leu	Thr	Lys	тhr 260	туr	тhr	Phe	Val	Phe 265	⊤hr	Asp	Туr	Val	Asn 270	Asn	Lys
	Glu	Asn	Ile 275	Asn	Gly	Gln	Phe	Ser 280	Leu	Pro	Leu	Phe	тhr 285	Asp	Arg	Ala
10	Lys	A]a 290	Pro	Lys	Ser	Gly	Thr 295	Тyr	Asp	Ala	Asn	Ile 300	Asn	Ile	Ala	Asp
	Glu 305	Met	Phe	Asn	Asn	Lys 310	Ile	Тhr	туr	Asn	Туг 315	Ser				
15	<210 <211 <211 <213)> L> 2> 3>	197 331 PRT Stap	ohy]a	οςοςα	cus a	aurei	JS								
20	<400 Gly 1)> Thr	197 Asn	Val	Asn 5	Asp	Lys	Val	Thr	Ala 10	Ser	Asn	Phe	Lys	Leu 15	Glu
	Lys	Тhr	⊤hr	Phe 20	Asp	Pro	Asn	Gln	Ser 25	Gly	Asn	тhr	Phe	Met 30	Ala	Ala
25	Asn	Phe	⊤hr 35	Val	Тhr	Asp	Lys	Va] 40	Lys	Ser	Gly	Asp	туг 45	Phe	Тhr	Ala
	Lys	Leu 50	Pro	Asp	Ser	Leu	Thr 55	Gly	Asn	Gly	Asp	Va7 60	Asp	туr	Ser	Asn
30	Ser 65	Asn	Asn	тhr	Met	Pro 70	Ile	Ala	Asp	Ile	Lys 75	Ser	Тhr	Asn	Gly	Asp 80
	Val	Val	Ala	Lys	A]a 85	Thr	Туr	Asp	Ile	Leu 90	Thr	Lys	Thr	Туr	Thr 95	Phe
35	Val	Phe	⊤hr	Asp 100	туr	Val	Asn	Asn	Lys 105 -	Glu	Asn -	Ile	Asn	G]y 110	G]n	Phe
	Ser	Leu	Pro 115	Leu	Phe	Thr	Asp	Arg 120	Ala	Lys	Ala	Pro	Lys 125	Ser	Gly	Thr
40	туr	Asp 130	Ala	Asn	Ile	Asn	Ile 135	Ala	Asp	Glu	Met	Phe 140	Asn	Asn	Lys	Ile
	Thr 145	туr	Asn	туr -	ser	Ser 150	Pro	Ile		Gly	155	Asp	Lys	Pro	Asn	GTY 160
45	Ala	Asn	Ile	Ser	Ser 165	GIn	Ile	Ile	GIY	Va I 170	Asp	Thr		Ser	G I y 175	GIn
	Asn	Thr	⊤yr	Lys 180	GIN	Thr	va i	Phe	va 1 185	Asn	Pro	Lys	G I n	Arg 190	val	Leu
50	GIY	Asn	Thr 195	тгр	Val	туr	Ile	Lys 200	GIY	⊤yr 	GIn	Asp	Lys 205	Ile	Glu	Glu
	Ser	Ser 210	GIY	Lys	Val	ser	ATA 215	Thr	Asp	Thr	Lys	Leu 220	Arg	Ile	Phe	GIU
55	va I 225	Asn	Asp	Thr	Ser	Lys 230	Leu	Ser	Asp	ser	Tyr 235	туr	Ala	Asp	Pro	Asn 240 _
	Asp	Ser	Asn	Leu	Lys 245	Glu	Val	Thr	Asp	G I n 250	Phe	Lys	Asn	Arg	11e 255	Гуr

	Tyr	Glu	His	Pro 260	Asn	Val	Ala	Ser	Ile 265	Lys	Phe	Gly	Asp	Ile 270	Thr	Lys
5	Thr	Тyr	Va] 275	Val	Leu	Val	Glu	G]y 280	His	Туr	Asp	Asn	Thr 285	Gly	Lys	Asn
	Leu	Lys 290	Thr	Gln	Val	Ile	G]n 295	Glu	Asn	Val	Asp	Pro 300	Val	Тhr	Asn	Arg
10	Asp 305	Тyr	Ser	Ile	Phe	G]y 310	тгр	Asn	Asn	Glu	Asn 315	Val	Val	Arg	Туr	G]y 320
	Gly	Gly	Ser	Ala	Asp 325	Gly	Asp	Ser	Ala	Va1 330	Asn					
15	<210 <211 <212 <213	0> 1> 2> 3>	198 183 PRT Stap	ohyla	ococo	cus a	aurei	JS								
20	<400 Ser 1)> Ser	198 Pro	Ile	Ala 5	Gly	Ile	Asp	Lys	Pro 10	Asn	Gly	Ala	Asn	Ile 15	Ser
20	Ser	Gln	Ile	Ile 20	Gly	Val	Asp	Тhr	A]a 25	Ser	Gly	Gln	Asn	тhr 30	Туr	Lys
25	Gln	Thr	Val 35	Phe	Val	Asn	Pro	Lys 40	Gln	Arg	Val	Leu	G]y 45	Asn	Thr	тгр
20	Val	туr 50	Ile	Lys	Gly	Туr	Gln 55	Asp	Lys	Ile	Glu	G]u 60	Ser	Ser	Gly	Lys
30	Va] 65	Ser	Ala	Тhr	Asp	Thr 70	Lys	Leu	Arg	Ile	Phe 75	Glu	Val	Asn	Asp	Thr 80
	Ser	Lys	Leu	Ser	Asp 85	Ser	Тyr	Тyr	Ala	Asp 90	Pro	Asn	Asp	Ser	Asn 95	Leu
25	Lys	Glu	Val	Thr 100	Asp	Gln	Phe	Lys	Asn 105	Arg	Ile	Туr	Туr	Glu 110	His	Pro
55	Asn	Val	Ala 115	Ser	Ile	Lys	Phe	Gly 120	Asp	Ile	Thr	Lys	Thr 125	туr	Val	Val
40	Leu	Va] 130	Glu	Gly	His	Tyr	Asp 135	Asn	Thr	Gly	Lys	Asn 140	Leu	Lys	Thr	Gln
40	Va] 145	Ile	Gln	Glu	Asn	Val 150	Asp	Pro	Val	Тhr	Asn 155	Arg	Asp	туr	Ser	I]e 160
45	Phe	Gly	тгр	Asn	Asn 165	Glu	Asn	Val	Val	Arg 170	туг	Gly	Gly	Gly	Ser 175	Ala
70	Asp	Gly	Asp	Ser 180	Ala	Val	Asn									
50	<210 <211 <211 <213	0> 1> 2> 3>	199 199 PRT Stap	ohyla	ococo	cus a	aurei	ıs								
	<400 Pro 1)> Asp	199 Туг	Val	Val 5	Asn	Glu	Lys	Asn	Ser 10	Ile	Gly	Ser	Ala	Phe 15	Thr
55	Glu	Thr	Val	Ser 20	His	Val	Gly	Asn	Lys 25	Glu	Asn	Pro	Gly	туг 30	туг	Lys

	Gln	Thr	Ile 35	Туr	Val	Asn	Pro	Ser 40	Glu	Asn	Ser	Leu	Thr 45	Asn	Ala	Lys
5	Leu	Lys 50	Val	Gln	Ala	туr	His 55	Ser	Ser	туr	Pro	Asn 60	Asn	Ile	Gly	Gln
	Ile 65	Asn	Lys	Asp	Val	Thr 70	Asp	I]e	Lys	Ile	Tyr 75	G]n	Val	Pro	Lys	Gly 80
10	⊤yr	Thr	Leu	Asn	Lys 85	Gly	туr	Asp	Val	Asn 90	Thr	Lys	Glu	Leu	Thr 95	Asp
10	Val	Thr	Asn	Gln 100	Тyr	Leu	Gln	Lys	Ile 105	Thr	Туr	Gly	Asp	Asn 110	Asn	Ser
	Ala	Val	I]e 115	Asp	Phe	Gly	Asn	A]a 120	Asp	Ser	Ala	⊤yr	Val 125	Val	Met	Val
15	Asn	Thr 130	Lys	Phe	Gln	Туr	Thr 135	Asn	Ser	Glu	Ser	Pro 140	Thr	Leu	Val	Gln
	Met 145	Ala	Thr	Leu	Ser	Ser 150	Thr	Gly	Asn	Lys	Ser 155	Val	Ser	Thr	Gly	Asn 160
20	Ala	Leu	Gly	Phe	⊤hr 165	Asn	Asn	Gln	Ser	Gly 170	Gly	Ala	Gly	Gln	Glu 175	Val
	⊤yr	Lys	Ile	Gly 180	Asn	туг	Val	тгр	Glu 185	Asp	Thr	Asn	Lys	Asn 190	Gly	Val
25	Gln	Glu	Leu 195	Gly	Glu	Lys	Gly									
30	<210 <211 <212 <213)> L> 2> }>	200 104 PRT Stap	ohyld	ococo	cus a	aureu	ıs								
	<400 Met 1)> Ala	200 Ile	Val	Lys 5	Val	Thr	Asp	Ala	Asp 10	Phe	Asp	Ser	Lys	Val 15	Glu
35	Ser	Gly	Val	G]n 20	Leu	Val	Asp	Phe	тгр 25	Ala	Thr	⊤rp	Cys	Gly 30	Pro	Cys
	Lys	Met	Ile 35	Ala	Pro	Val	Leu	G]u 40	Glu	Leu	Ala	A]a	Asp 45	туг	Glu	Gly
40	LVC															
	Lys	Ala 50	Asp	Ile	Leu	Lys	Leu 55	Asp	Val	Asp	Glu	Asn 60	Pro	Ser	Thr	Ala
	Ala 65	Ala 50 Lys	Asp Tyr	Ile Glu	Leu Val	Lys Met 70	Leu 55 Ser	Asp Ile	Val Pro	Asp Thr	Glu Leu 75	Asn 60 Ile	Pro Val	Ser Phe	Thr Lys	Ala Asp 80
45	Ala 65 Gly	Ala 50 Lys Gln	Asp Tyr Pro	Ile Glu Val	Leu Val Asp 85	Lys Met 70 Lys	Leu 55 Ser Val	Asp Ile Val	Val Pro Gly	Asp Thr Phe 90	Glu Leu 75 Gln	Asn 60 Ile Pro	Pro Val Lys	Ser Phe Glu	Thr Lys Asn 95	Ala Asp 80 Leu
45	Ala 65 Gly Ala	Ala 50 Lys Gln Glu	Asp Tyr Pro Val	Ile Glu Val Leu 100	Leu Val Asp 85 Asp	Lys Met 70 Lys Lys	Leu 55 Ser Val His	Asp Ile Val Leu	Val Pro Gly	Asp Thr Phe 90	Glu Leu 75 Gln	Asn 60 Ile Pro	Pro Val Lys	Ser Phe Glu	Thr Lys Asn 95	Ala Asp 80 Leu
<i>45</i> <i>50</i>	Ala 65 Gly Ala <210 <211 <212 <213	Ala 50 Lys Gln Glu	Asp Tyr Pro Val 201 189 PRT Stap	Ile Glu Val Leu 100	Leu Val Asp Asp Asp	Lys Met 70 Lys Lys	Leu 55 Val His	Asp Ile Val Leu	Val Pro Gly	Asp Thr Phe 90	Glu Leu 75 Gln	Asn 60 Ile Pro	Pro Val Lys	Ser Phe Glu	Thr Lys Asn 95	Ala Asp 80 Leu
45 50 55	Ala 65 Gly Ala <210 <211 <212 <212 <212 <213 <400 Met 1	Ala 50 Lys Gln Glu)> L> 2> 3> Ser	Asp Tyr Pro Val 201 189 PRT Stap 201 Leu	Ile Glu Val Leu 100 phylc Ile	Leu Val Asp Asp Ococc Asn 5	Lys Met 70 Lys Lys Cus a	Leu 55 Val His ureu	Asp Ile Val Leu Is Ile	Val Pro Gly Leu	Asp Thr Phe 90	Glu Leu 75 Gln Phe	Asn 60 Ile Pro	Pro Val Lys Ala	Ser Phe Glu Gln	Thr Lys Asn 95	Ala Asp 80 Leu Phe

					20					25					30		
		Gly	Ser	⊤rp 35	Ser	Val	Val	Cys	Phe 40	туr	Pro	Ala	Asp	Phe 45	Ser	Phe	Val
;	5	Cys	Pro 50	⊤hr	Glu	Leu	Glu	Asp 55	Leu	Gln	Asn	Gln	туг 60	Glu	Glu	Leu	Gln
		Lys 65	Leu	Gly	Val	Asn	Va] 70	Phe	Ser	Val	Ser	тhr 75	Asp	Thr	His	Phe	Val 80
1	0	His	Lys	Ala	тгр	His 85	Asp	His	Ser	Asp	А]а 90	Ile	Ser	Lys	Ile	Thr 95	Туr
		Тhr	Met	Ile	Gly 100	Asp	Pro	Ser	Gln	тhr 105	Ile	тhr	Arg	Asn	Phe 110	Asp	Val
1	5	Leu	Asp	Glu 115	Ala	Тhr	Gly	Leu	A]a 120	Gln	Arg	Gly	Тhr	Phe 125	Ile	Ile	Asp
		Pro	Asp 130	Gly	Val	Val	Gln	Ala 135	Ser	Glu	Ile	Asn	Ala 140	Asp	Gly	Ile	Gly
2	20	Arg 145	Asp	Ala	Ser	Thr	Leu 150	Ala	His	Lys	Ile	Lys 155	Ala	Ala	Gln	Туr	Val 160
		Arg	Lys	Asn	Pro	Gly 165	Glu	Val	Cys	Pro	A]a 170	Lys	тгр	Glu	Glu	Gly 175	Ala
2	25	Lys	Тhr	Leu	Gln 180	Pro	Gly	Leu	Asp	Leu 185	Val	Gly	Lys	Ile			
	00	<210 <211 <212 <213)> L> }> }>	202 1054 PRT Stap	↓ phylo	ococo	cus a	ureı	ıs								
3	0	<400 Ser 1)> Glu	202 Gln	Ser	Asn 5	Asp	Thr	Thr	Gln	Ser 10	Ser	Lys	Asn	Asn	A]a 15	Ser
3	5	Ala	Asp	Ser	G]u 20	Lys	Asn	Asn	Met	Ile 25	Glu	тhr	Pro	Gln	Leu 30	Asn	Thr
		Тhr	Ala	Asn 35	Asp	Thr	Ser	Asp	11e 40	Ser	Ala	Asn	Thr	Asn 45	Ser	Ala	Asn
4	0	Val	Asp 50	Ser	⊤hr	Thr	Lys	Pro 55	Met	Ser	⊤hr	Gln	⊤hr 60	Ser	Asn	Thr	Thr
		тhr 65	Тhr	Glu	Pro	Ala	Ser 70	Thr	Asn	Glu	⊤hr	Pro 75	Gln	Pro	Тhr	А]а	Ile 80
4	5	Lys	Asn	Gln	Ala	⊤hr 85	Ala	Ala	Lys	Met	Gln 90	Asp	Gln	Thr	Val	Pro 95	Gln
		Glu	Ala	Asn	Ser 100	Gln	Val	Asp	Asn	Lys 105	⊤hr	тhr	Asn	Asp	Ala 110	Asn	Ser
5	50	Ile	Ala	⊤hr 115	Asn	Ser	Glu	Leu	Lys 120	Asn	Ser	Gln	Thr	Leu 125	Asp	Leu	Pro
		Gln	Ser 130	Ser	Pro	Gln	Тhr	Ile 135	Ser	Asn	Ala	Gln	Gly 140	Тhr	Ser	Lys	Pro
5	55	Ser 145	Val	Arg	Thr	Arg	А]а 150	Val	Arg	Ser	Leu	Ala 155	Val	Ala	Glu	Pro	Val 160
	~	Val	Asn	Ala	Ala	Asp	Ala	Lys	Gly	Thr	Asn	Val	Asn	Asp	Lys	Va]	Thr

	Ļ	۹la	Ser	Asn	Phe 180	Lys	Leu	Glu	Lys	Thr 185	Thr	Phe	Asp	Pro	Asn 190	Gln	Ser
5	C	зlу	Asn	Thr 195	Phe	Met	Ala	Ala	Asn 200	Phe	Thr	Val	Thr	Asp 205	Lys	Val	Lys
	S	Ser	G]y 210	Asp	туr	Phe	Thr	Ala 215	Lys	Leu	Pro	Asp	Ser 220	Leu	Thr	Gly	Asn
10		G]y 225	Asp	Val	Asp	туr	Ser 230	Asn	Ser	Asn	Asn	Thr 235	Met	Pro	Ile	Ala	Asp 240
]	Cle	Lys	Ser	Thr	Asn 245	Gly	Asp	Val	Val	Ala 250	Lys	Ala	Тhr	туr	Asp 255	Ile
15	L	_eu	Thr	Lys	Thr 260	туr	Thr	Phe	Val	Phe 265	Thr	Asp	туr	Val	Asn 270	Asn	Lys
	C	Glu	Asn	Ile 275	Asn	Gly	Gln	Phe	Ser 280	Leu	Pro	Leu	Phe	Thr 285	Asp	Arg	Ala
20	L	_ys	Ala 290	Pro	Lys	Ser	Gly	Thr 295	Туr	Asp	Ala	Asn	Ile 300	Asn	Ile	Ala	Asp
	C E	GTU 305	Met	Phe	Asn	Asn	Lys 310	Ile	Thr	туr	Asn	Туг 315	Ser	Ser	Pro	Ile	Ala 320
25	C	51y	Ile	Asp	Lys	Pro 325	Asn	Gly	Ala	Asn	Ile 330	Ser	Ser	Gln	Ile	I]e 335	Gly
	١	/al	Asp	Thr	Ala 340	Ser	Gly	Gln	Asn	Thr 345	Туr	Lys	Gln	Thr	Va1 350	Phe	Val
30	A	Asn	Pro	Lys 355	Gln	Arg	Val	Leu	Gly 360	Asn	Thr	тгр	Val	Туг 365	Ile	Lys	Gly
	٦	Гуr	Gln 370	Asp	Lys	Ile	Glu	Glu 375	Ser	Ser	Gly	Lys	Va1 380	Ser	Ala	Thr	Asp
35	1	Гhr 385	Lys	Leu	Arg	Ile	Phe 390	Glu	Val	Asn	Asp	Thr 395	Ser	Lys	Leu	Ser	Asp 400
00	S	Ser	туr	туr	Ala	Asp 405	Pro	Asn	Asp	Ser	Asn 410	Leu	Lys	Glu	Val	тhr 415	Asp
40	C	Gln	Phe	Lys	Asn 420	Arg	Ile	Туr	Туr	Glu 425	His	Pro	Asn	Val	Ala 430	Ser	Ile
40	L	_ys	Phe	Gly 435	Asp	Ile	Thr	Lys	тhr 440	туr	Val	Val	Leu	Val 445	Glu	Gly	His
45	Г	Гуr	Asp 450	Asn	Тhr	Gly	Lys	Asn 455	Leu	Lys	Thr	Gln	Val 460	Ile	Gln	Glu	Asn
40	N Z	/a] 165	Asp	Pro	Val	Thr	Asn 470	Arg	Asp	туr	Ser	Ile 475	Phe	Gly	тгр	Asn	Asn 480
50	C	Glu	Asn	Val	Val	Arg 485	туr	Gly	Gly	Gly	Ser 490	Ala	Asp	Gly	Asp	Ser 495	Ala
50	۷	/al	Asn	Pro	Lys 500	Asp	Pro	Тhr	Pro	Gly 505	Pro	Pro	Val	Ala	Ser 510	Gly	Gly
~~	C	зlу	Ser	Ala 515	Glu	Ser	Thr	Asn	Lys 520	Glu	Leu	Asn	Glu	Ala 525	Thr	Thr	Ser
55	Ļ	A]a	Ser 530	Asp	Asn	Gln	Ser	Ser 535	Asp	Lys	Val	Asp	Met 540	Gln	Gln	Leu	Asn

Gln Glu Asp Asn Thr Lys Asn Asp Asn Gln Lys Glu Met Val Ser Ser 545 550 555 560 Gln Gly Asn Glu Thr Thr Ser Asn Gly Asn Lys Leu Ile Glu Lys Glu 565 570 575 5 Ser Val Gln Ser Thr Thr Gly Asn Lys Val Glu Val Ser Thr Ala Lys 580 585 590 Ser Asp Glu Gln Ala Ser Pro Lys Ser Thr Asn Glu Asp Leu Asn Thr 595 600 605 10 Lys Gln Thr Ile Ser Asn Gln Glu Ala Leu Gln Pro Asp Leu Gln Glu 610 615 620 Asn Lys Ser Val Val Asn Val Gln Pro Thr Asn Glu Glu Asn Lys Lys 625 630 635 640 15 Val Asp Ala Lys Thr Glu Ser Thr Thr Leu Asn Val Lys Ser Asp Ala 645 650 655 Ile Lys Ser Asn Asp Glu Thr Leu Val Asp Asn Asn Ser Asn Ser Asn 660 665 670 20 Asn Glu Asn Asn Ala Asp Ile Ile Leu Pro Lys Ser Thr Ala Pro Lys 675 680 685 Arg Leu Asn Thr Arg Met Arg Ile Ala Ala Val Gln Pro Ser Ser Thr 690 695 700 25 Glu Ala Lys Asn Val Asn Asp Leu Ile Thr Ser Asn Thr Thr Leu Thr 705 710 715 720 Val Val Asp Ala Asp Lys Asn Asn Lys Ile Val Pro Ala Gln Asp Tyr 725 730 735 Leu Ser Leu Lys Ser Gln Ile Thr Val Asp Asp Lys Val Lys Ser Gly 740 745 750 30 Asp Tyr Phe Thr Ile Lys Tyr Ser Asp Thr Val Gln Val Tyr Gly Leu 755 760 765 Asn Pro Glu Asp Ile Lys Asn Ile Gly Asp Ile Lys Asp Pro Asn Asn 770 775 780 35 Gly Glu Thr Ile Ala Thr Ala Lys His Asp Thr Ala Asn Asn Leu Ile 785 790 795 800 Thr Tyr Thr Phe Thr Asp Tyr Val Asp Arg Phe Asn Ser Val Gln Met 805 810 815 40 Gly Ile Asn Tyr Ser Ile Tyr Met Asp Ala Asp Thr Ile Pro Val Ser 820 825 830 Lys Asn Asp Val Glu Phe Asn Val Thr Ile Gly Asn Thr Thr Lys 835 840 845 45 Thr Thr Ala Asn Ile Gln Tyr Pro Asp Tyr Val Val Asn Glu Lys Asn 850 855 860 Ser Ile Gly Ser Ala Phe Thr Glu Thr Val Ser His Val Gly Asn Lys 865 870 875 880 50 Glu Asn Pro Gly Tyr Tyr Lys Gln Thr Ile Tyr Val Asn Pro Ser Glu 885 890 895 Asn Ser Leu Thr Asn Ala Lys Leu Lys Val Gln Ala Tyr His Ser Ser 900 905 910 55 Tyr Pro Asn Asn Ile Gly Gln Ile Asn Lys Asp Val Thr Asp Ile Lys

		915		ç	920			925		
	Ile Tyr 930	Gln Val	Pro Lys	Glу 1 935	Tyr ⊤hr	Leu Asn	Lys 940	Gly Tyr	Asp	Val
5	Asn Thr 945	Lys Glu	Leu Thr 950	Asp ۱	Val ⊤hr	Asn Gln 955	Tyr	Leu Gln	Lys	Ile 960
	Thr Tyr	Gly Asp	Asn Asn 965	Ser A	Ala Val	Ile Asp 970	Phe	Gly Asn	Ala 975	Asp
10	Ser Ala	Tyr Val 980	Val Met	Val A	Asn ⊤hr 985	Lys Phe	Gln	туг Thr 990	Asn	Ser
	Glu Ser	Pro Thr 995	Leu Val	Gln M 1	Met Ala 1000	Thr Leu	Ser	Ser Thr 1005	Gly	Asn
15	Lys Ser 101	Val Ser 0	Thr Gly	Asn A 1015	Ala Leu	Gly Phe	Thr 1020	Asn Asn	Gln	Ser
	Gly Gly 1025	Ala Gly	Gln Glu 1030	Val 1 D	Tyr Lys	Ile Gly 103	Asn 5	Tyr Val	тгр	Glu 1040
20	Asp Thr	Asn Lys	Asn Gly 1045	Val (Gln Glu	Leu Gly 1050	Glu	Lys Gly		
25	<210> <211> <212> <213>	203 1054 PRT Staphylo	ococcus	aureus	s					
	<400> Ala Glu 1	203 Ser Thr	Asn Lys 5	Glu L	Leu Asn	Glu Ala 10	Thr	Thr Ser	A]a 15	Ser
30	Asp Asn	Gln Ser 20	Ser Asp	Lys \	val Asp 25	Met Gln	Gln	Leu Asn 30	Gln	Glu
	Asp Asn	Thr Lys 35	Asn Asp	Asn C	Gln Lys 40	Glu Met	Val	Ser Ser 45	Gln	Gly
35	Asn Glu 50	Thr Thr	Ser Asn	G]y 4 55	Asn Lys	Leu Ile	G]u 60	Lys Glu	Ser	Val
	Gln Ser 65	Thr Thr	Gly Asn 70	Lys \	Val Glu	Val Ser 75	Тhr	Ala Lys	Ser	Asp 80
40	Glu Gln	Ala Ser	Pro Lys 85	Ser ٦	Thr Asn	Glu Asp 90	Leu	Asn Thr	Lys 95	Gln
	Thr Ile	Ser Asn 100	Gln Glu	Ala L	Leu Gln 105	Pro Asp	Leu	Gln Glu 110	Asn	Lys
45	Ser Val	Val Asn 115	Val Gln	Pro T 1	Thr Asn 120	Glu Glu	Asn	Lys Lys 125	Val	Asp
	Ala Lys 130	Thr Glu	Ser Thr	⊤hr L 135	Leu Asn	Val Lys	Ser 140	Asp Ala	Ile	Lys
50	Ser Asn 145	Asp Glu	Thr Leu 150	Val A	Asp Asn	Asn Ser 155	Asn	Ser Asn	Asn	Glu 160
	Asn Asn	Ala Asp	Ile Ile 165	Leu F	Pro Lys	Ser ⊤hr 170	Ala	Pro Lys	Arg 175	Leu
55	Asn Thr	Arg Met 180	Arg Ile	Ala A	Ala Val 185	Gln Pro	Ser	Ser Thr 190	Glu	Ala
00	Lys Asn	Val Asn 195	Asp Leu	Ile 1 2	Thr Ser 200	Asn Thr	Thr	Leu Thr 205	Val	Val

Asp Ala Asp Lys Asn Asn Lys Ile Val Pro Ala Gln Asp Tyr Leu Ser 210 215 220 Leu Lys Ser Gln Ile Thr Val Asp Asp Lys Val Lys Ser Gly Asp Tyr 225 230 235 240 5 Phe Thr Ile Lys Tyr Ser Asp Thr Val Gln Val Tyr Gly Leu Asn Pro 245 250 250 255 Glu Asp Ile Lys Asn Ile Gly Asp Ile Lys Asp Pro Asn Asn Gly Glu 260 265 270 10 Thr Ile Ala Thr Ala Lys His Asp Thr Ala Asn Asn Leu Ile Thr Tyr 275 280 285 Thr Phe Thr Asp Tyr Val Asp Arg Phe Asn Ser Val Gln Met Gly Ile 290 295 300 15 Asn Tyr Ser Ile Tyr Met Asp Ala Asp Thr Ile Pro Val Ser Lys Asn 305 310 315 320 Asp Val Glu Phe Asn Val Thr Ile Gly Asn Thr Thr Thr Lys Thr Thr 325 330 335 20 Ala Asn Ile Gln Tyr Pro Asp Tyr Val Val Asn Glu Lys Asn Ser Ile 340 345 350 Gly Ser Ala Phe Thr Glu Thr Val Ser His Val Gly Asn Lys Glu Asn 355 360 365 25 Pro Gly Tyr Tyr Lys Gln Thr Ile Tyr Val Asn Pro Ser Glu Asn Ser 370 375 380 Leu Thr Asn Ala Lys Leu Lys Val Gln Ala Tyr His Ser Ser Tyr Pro 385 390 395 400 30 Asn Asn Ile Gly Gln Ile Asn Lys Asp Val Thr Asp Ile Lys Ile Tyr 405 410 415 Gln Val Pro Lys Gly Tyr Thr Leu Asn Lys Gly Tyr Asp Val Asn Thr 420 425 430 35 Lys Glu Leu Thr Asp Val Thr Asn Gln Tyr Leu Gln Lys Ile Thr Tyr 435 440 445 Gly Asp Asn Asn Ser Ala Val Ile Asp Phe Gly Asn Ala Asp Ser Ala 450 455 460 40 Tyr Val Val Met Val Asn Thr Lys Phe Gln Tyr Thr Asn Ser Glu Ser 465 470 475 480 Pro Thr Leu Val Gln Met Ala Thr Leu Ser Ser Thr Gly Asn Lys Ser 485 490 495 45 Val Ser Thr Gly Asn Ala Leu Gly Phe Thr Asn Asn Gln Ser Gly Gly 500 505 510 Ala Gly Gln Glu Val Tyr Lys Ile Gly Asn Tyr Val Trp Glu Asp Thr 515 520 525 50 Asn Lys Asn Gly Val Gln Glu Leu Gly Glu Lys Gly Ala Ser Gly Gly 530 540 Gly Ser Ser Glu Gln Ser Asn Asp Thr Thr Gln Ser Ser Lys Asn Asn 545 550 555 560 55 Ala Ser Ala Asp Ser Glu Lys Asn Asn Met Ile Glu Thr Pro Gln Leu 565 570 575

	Asn	Thr	Thr	Ala 580	Asn	Asp	Thr	Ser	Asp 585	Ile	Ser	Ala	Asn	тhr 590	Asn	Ser
5	Ala	Asn	Va1 595	Asp	Ser	тhr	Thr	Lys 600	Pro	Met	Ser	⊤hr	Gln 605	тhr	Ser	Asn
	⊤hr	Тhr 610	Тhr	Тhr	Glu	Pro	Ala 615	Ser	Thr	Asn	Glu	⊤hr 620	Pro	Gln	Pro	⊤hr
10	Ala 625	Ile	Lys	Asn	Gln	Ala 630	Thr	Ala	Ala	Lys	Met 635	G]n	Asp	Gln	Тhr	Va1 640
10	Pro	Gln	Glu	Ala	Asn 645	Ser	Gln	Val	Asp	Asn 650	Lys	⊤hr	Thr	Asn	Asp 655	Ala
	Asn	Ser	Ile	A]a 660	⊤hr	Asn	Ser	Glu	Leu 665	Lys	Asn	Ser	Gln	тhr 670	Leu	Asp
15	Leu	Pro	G]n 675	Ser	Ser	Pro	Gln	тhr 680	Ile	Ser	Asn	Ala	Gln 685	Gly	Тhr	Ser
	Lys	Pro 690	Ser	Val	Arg	Thr	Arg 695	Ala	Val	Arg	Ser	Leu 700	Ala	Val	Ala	Glu
20	Pro 705	Val	Val	Asn	Ala	A]a 710	Asp	Ala	Lys	Gly	Тhr 715	Asn	Val	Asn	Asp	Lys 720
	Val	Тhr	Ala	Ser	Asn 725	Phe	Lys	Leu	Glu	Lys 730	Thr	⊤hr	Phe	Asp	Pro 735	Asn
25	Gln	Ser	Gly	Asn 740	⊤hr	Phe	Met	Ala	Ala 745	Asn	Phe	⊤hr	Val	тhr 750	Asp	Lys
	Val	Lys	Ser 755	Gly	Asp	Тyr	Phe	тhr 760	Ala	Lys	Leu	Pro	Asp 765	Ser	Leu	⊤hr
30	Gly	Asn 770	Gly	Asp	Val	Asp	туг 775	Ser	Asn	Ser	Asn	Asn 780	Thr	Met	Pro	Ile
	Ala 785	Asp	Ile	Lys	Ser	Thr 790	Asn	Gly	Asp	Val	Va] 795	Ala	Lys	Ala	Тhr	⊤yr 800
35	Asp	Ile	Leu	Тhr	Lys 805	Thr	туr	⊤hr	Phe	Val 810	Phe	⊤hr	Asp	туг	Val 815	Asn
	Asn	Lys	Glu	Asn 820	Ile	Asn	ςΊу	G]n	Phe 825	Ser	Leu	Pro	Leu	Phe 830	Thr	Asp
40	Arg	Ala	Lys 835	Ala	Pro	Lys	Ser	Gly 840	Thr	Туr	Asp	Ala	Asn 845	Ile	Asn	Ile
	Ala	Asp 850	Glu	Met	Phe	Asn	Asn 855	Lys	Ile	Thr	Тyr	Asn 860	Туr	Ser	Ser	Pro
45	Ile 865	Ala	Gly	Ile	Asp	Lys 870	Pro	Asn	Gly	Ala	Asn 875	Ile	Ser	Ser	Gln	Ile 880
	Ile	Gly	Val	Asp	⊤hr 885	Ala	Ser	Gly	Gln	Asn 890	Thr	⊤yr	Lys	Gln	Thr 895	Val
50	Phe	Val	Asn	Pro 900	Lys	Gln	Arg	Val	Leu 905	Gly	Asn	⊤hr	тгр	Va] 910	Тyr	Ile
	Lys	Gly	Туг 915	Gln	Asp	Lys	Ile	Glu 920	Glu	Ser	Ser	Gly	Lys 925	Val	Ser	Ala
55	⊤hr	Asp 930	тhr	Lys	Leu	Arg	11e 935	Phe	Glu	Val	Asn	Asp 940	Thr	Ser	Lys	Leu
	Ser	Asp	Ser	туг	Tyr	Ala	Asp	Pro	Asn	Asp	Ser	Asn	Leu	Lys	Glu	Val

	945		9	950		95	5		960
	Thr Asp	Gln Phe	Lys A 965	Asn Arg	Ile ⊤yr	Tyr Gl 970	u His Pro	Asn Val 975	Ala
5	Ser Ile	Lys Phe 980	Gly A	Asp Ile	Thr Lys 985	Thr ⊤y	r Val Val	Leu Val 990	Glu
	Gly His	Tyr Asp 995	Asn T	Thr Gly	Lys Asn 1000	Leu Ly	s Thr Gln 100	Val Ile 5	Gln
10	Glu Asn 101	Val Asp 0	Pro V	/al Thr 1015	Asn Arg	Asp Ту	r Ser Ile 1020	Phe Gly	Тгр
	Asn Asn 1025	Glu Asn	Val v 1	/al Arg L030	Tyr Gly	Gly Gl 10	y Ser Ala 35	Asp Gly	Asp 1040
15	Ser Ala	Val Asn	Pro L 1045	_ys Asp	Pro ⊤hr	Pro Gl 1050	y Pro Pro	Val	
20	<210> <211> <212> <213>	204 376 PRT Staphyle	ососси	ıs aureı	15				
	<400> Asp Ser 1	204 Gln Gln	Val A 5	Asn Ala	Ala Thr	Glu Al 10	a Thr Asn	Ala Thr 15	Asn
25	Asn Gln	Ser Thr 20	Gln V	/al Ser	Gln Ala 25	тhr Se	r Gln Pro	Ile Asn 30	Phe
	Gln Val	Gln Lys 35	Asp G	Gly Ser	ser Glu 40	Lys Se	r His Met 45	Asp Asp	туг
30	Met Gln 50	His Pro	Gly L	ys Val	Ile Lys	Gln As	n Asn Lys 60	Tyr Tyr	Phe
	Gln Thr 65	Val Leu	Asn A 7	Asn Ala 70	Ser Phe	Trp Ly 75	s Glu Tyr	Lys Phe	Туг 80
35	Asn Ala	Asn Asn	Gln 6 85	Glu Leu	Ala ⊤hr	Thr Va 90	l Val Asn	Asp Asn 95	Lys
	Lys Ala	Asp Thr 100	Arg T	「hr Ile	Asn Val 105	Ala Va	l Glu Pro	Gly Tyr 110	Lys
40	Ser Leu	Thr Thr 115	Lys V	/al His	Ile Val 120	Val Pr	o Gln Ile 125	Asn Tyr	Asn
	His Arg 130	Tyr Thr	Thr н	is Leu 135	Glu Phe	Glu Ly	s Ala Ile 140	Pro Thr	Leu
45	Ala Asp 145	Ala Ala	Lys P 1	Pro Asn L50	Asn Val	Lys Pr 15	o Val Gln 5	Pro Lys	Pro 160
	Ala Gln	Pro Lys	Thr P 165	Pro ⊤hr	Glu Gln	Thr Ly 170	s Pro Val	Gln Pro 175	Lys
50	Val Glu	Lys Val 180	Lys P	Pro Thr	Val Thr 185	Thr ⊤h	r Ser Lys	Val Glu 190	Asp
	Asn His	Ser Thr 195	Lys ∖	/al Val	Ser ⊤hr 200	Asp Th	r Thr Lys 205	Asp Gln	Thr
55	Lys Thr 210	Gln Thr	А]а н	is Thr 215	Val Lys	Thr Al	a Gln Thr 220	Ala Gln	Glu
	Gln Asn 225	Lys Val	Gln T 2	Thr Pro 230	Val Lys	Asp Va 23	l Ala Thr 5	Ala Lys	Ser 240

	Glu	Ser	Asn	Asn	G]n 245	Ala	Val	Ser	Asp	Asn 250	Lys	Ser	Gln	Gln	Thr 255	Asn
5	Lys	Val	Thr	Lys 260	His	Asn	Glu	Thr	Pro 265	Lys	Gln	Ala	Ser	Lys 270	Ala	Lys
	Glu	Ala	Ser 275	Gly	Gly	Gly	Ser	Met 280	Ala	Met	Ile	Lys	Met 285	Ser	Pro	Glu
10	Glu	I]e 290	Arg	Ala	Lys	Ser	G]n 295	Ser	туr	Gly	Gln	G]y 300	Ser	Asp	Gln	I]e
	Arg 305	Gln	Ile	Leu	Ser	Asp 310	Leu	Тhr	Arg	Ala	Gln 315	Gly	Glu	Ile	Ala	Ala 320
15	Asn	тгр	Glu	Gly	G]n 325	Ala	Phe	Ser	Arg	Phe 330	Glu	Glu	Gln	Phe	Gln 335	Gln
	Leu	Ser	Pro	Lys 340	Val	Glu	Lys	Phe	Ala 345	Gln	Leu	Leu	Glu	Glu 350	Ile	Lys
20	Gln	Gln	Leu 355	Asn	Ser	Тhr	Ala	Asp 360	Ala	Val	Gln	Glu	Gln 365	Asp	Gln	Gln
20	Leu	Ser 370	Asn	Asn	Phe	Gly	Leu 375	Gln								
25	<210 <211 <212 <213)> L> 2> }>	205 613 PRT Stap	ohyla	ococo	cus a	aurei	JS								
	<400 Ala 1)> Asp	205 Ser	Asp	Ile 5	Asn	Ile	Lys	Thr	Gly 10	Thr	Thr	Asp	Ile	Gly 15	Ser
30	Asn	Thr	Thr	Va] 20	Lys	Thr	Gly	Asp	Leu 25	Val	Thr	Тyr	Asp	Lys 30	Glu	Asn
6 5	Gly	Met	Leu 35	Lys	Lys	Val	Phe	Tyr 40	Ser	Phe	Ile	Asp	Asp 45	Lys	Asn	His
35	Asn	Lys 50	Lys	Leu	Leu	Val	Ile 55	Arg	Thr	Lys	Gly	⊤hr 60	Ile	Ala	Gly	Gln
10	Туг 65	Arg	Val	Туr	Ser	Glu 70	Glu	Gly	Ala	Asn	Lys 75	Ser	Gly	Leu	Ala	Тгр 80
40	Pro	Ser	Ala	Phe	Lys 85	Val	Gln	Leu	Gln	Leu 90	Pro	Asp	Asn	Glu	Val 95	Ala
45	Gln	Ile	Ser	Asp 100	туг	туг	Pro	Arg	Asn 105	Ser	Ile	Asp	Thr	Lys 110	Glu	Туr
45	Met	Ser	Thr 115	Leu	Thr	Туr	Gly	Phe 120	Asn	Gly	Asn	Val	Thr 125	Gly	Asp	Asp
50	Тhr	Gly 130	Lys	Ile	Gly	Gly	Leu 135	Ile	Gly	Ala	Asn	Val 140	Ser	Ile	Gly	His
อบ	Тhr 145	Leu	Lys	Туr	Val	Gln 150	Pro	Asp	Phe	Lys	Thr 155	Ile	Leu	Glu	Ser	Pro 160
	Thr	Asp	Lys	Lys	Va] 165	Gly	Тrр	Lys	Val	I]e 170	Phe	Asn	Asn	Met	Va] 175	Asn
55	Gln	Asn	Тгр	Gly 180	Pro	Туr	Asp	Arg	Asp 185	Ser	Тrр	Asn	Pro	Val 190	Туr	Gly

	Asn	Gln	Leu 195	Phe	Met	Lys	Thr	Arg 200	Asn	Gly	Ser	Met	Lys 205	Ala	Ala	Asp
5	Asn	Phe 210	Leu	Asp	Pro	Asn	Lys 215	Ala	Ser	Ser	Leu	Leu 220	Ser	Ser	Gly	Phe
	Ser 225	Pro	Asp	Phe	Ala	Thr 230	Val	I]e	Thr	Met	Asp 235	Arg	Lys	Ala	Ser	Lys 240
	Gln	Gln	Thr	Asn	Ile 245	Asp	Val	I]e	Туr	Glu 250	Arg	Val	Arg	Asp	Asp 255	Tyr
10	Gln	Leu	His	тгр 260	⊤hr	Ser	Thr	Asn	Тгр 265	Lys	Gly	⊤hr	Asn	Thr 270	Lys	Asp
	Lys	тгр	Ile 275	Asp	Arg	Ser	Ser	Glu 280	Arg	туr	Lys	Ile	Asp 285	тгр	Glu	Lys
15	Glu	Glu 290	Met	Thr	Asn	Ala	Ser 295	G∣y	Gly	Gly	Ser	Ser 300	Val	Thr	Glu	Ser
	Va] 305	Asp	Lys	Lys	Phe	Va] 310	Val	Pro	Glu	Ser	Gly 315	I]e	Asn	Lys	Ile	Ile 320
20	Pro	Ala	Туr	Asp	Glu 325	Phe	Lys	Asn	Ser	Pro 330	Lys	Val	Asn	Val	Ser 335	Asn
	Leu	Thr	Asp	Asn 340	Lys	Asn	Phe	Val	Ala 345	Ser	Glu	Asp	Lys	Leu 350	Asn	Lys
25	Ile	Ala	Asp 355	Ser	Ser	Ala	Ala	Ser 360	Lys	Ile	Val	Asp	Lys 365	Asn	Phe	Val
	Val	Pro 370	Glu	Ser	Lys	Leu	Gly 375	Asn	Ile	Val	Pro	G]u 380	туr	Lys	Glu	Ile
30	Asn 385	Asn	Arg	Val	Asn	Val 390	Ala	Thr	Asn	Asn	Pro 395	Ala	Ser	Gln	Gln	Val 400
	Asp	Lys	His	Phe	Val 405	Ala	Lys	G∖y	Pro	Glu 410	Val	Asn	Arg	Phe	I]e 415	⊤hr
35	Gln	Asn	Lys	Va] 420	Asn	His	His	Phe	11e 425	Thr	Thr	G]n	Thr	ніs 430	туr	Lys
	Lys	Val	Ile 435	Thr	Ser	Туr	Lys	Ser 440	Thr	His	Val	His	Lys 445	His	Val	Asn
40	His	Ala 450	Lys	Asp	Ser	Ile	Asn 455	Lys	His	Phe	Ile	Va1 460	Lys	Pro	Ser	Glu
	Ser 465	Pro	Arg	Тyr	⊤hr	ніs 470	Pro	Ser	Gln	Ser	Leu 475	I]e	Ile	Lys	His	His 480
45	Phe	Ala	Val	Pro	Gly 485	Туr	His	Ala	His	Lys 490	Phe	Val	Тhr	Pro	Gly 495	His
	Ala	Ser	Ile	Lys 500	Ile	Asn	His	Phe	Cys 505	Val	Val	Pro	Gln	I]e 510	Asn	Ser
50	Phe	Lys	Va] 515	Ile	Pro	Pro	туr	G]y 520	His	Asn	Ser	His	Arg 525	Met	His	Val
	Pro	Ser 530	Phe	Gln	Asn	Asn	Thr 535	Тhr	Ala	Thr	His	G]n 540	Asn	Ala	Lys	Val
55	Asn 545	Lys	Ala	туr	Asp	туг 550	Lys	туr	Phe	туr	Ser 555	⊤yr	Lys	Val	Val	Lys 560
	Gly	Val	Lys	Lys	Tyr	Phe	Ser	Phe	Ser	Gln	Ser	Asn	Gly	Туr	Lys	Ile

					565					570					575	
	Gly	Lys	Pro	Ser 580	Leu	Asn	Ile	Lys	Asn 585	Val	Asn	туг	Gln	туг 590	Ala	Val
5	Pro	Ser	⊤yr 595	Ser	Pro	Thr	His	туг 600	Val	Pro	Glu	Phe	Lys 605	Gly	Ser	Leu
	Pro	A]a 610	Pro	Arg	Val											
10	<210 <212 <212 <213)> L> 2> 3>	206 370 PRT Stap	ohyla	οςοςα	cus a	aurei	ıs								
15	<400 Ala 1)> Asp	206 Ser	Asp	Ile 5	Asn	Ile	Lys	Thr	G]y 10	Thr	Thr	Asp	Ile	G]y 15	Ser
	Asn	Thr	⊤hr	Va] 20	Lys	тhr	Gly	Asp	Leu 25	Val	Thr	Туr	Asp	Lys 30	Glu	Asn
20	Gly	Met	His 35	Lys	Lys	Val	Phe	туг 40	Ser	Phe	Ile	Asp	Asp 45	Lys	Asn	His
	Asn	Lys 50	Ala	Ser	Gly	Gly	G]y 55	Ser	Ser	Val	тhr	Glu 60	Ser	Val	Asp	Lys
25	Lys 65	Phe	Val	Val	Pro	Glu 70	Ser	Gly	Ile	Asn	Lys 75	Ile	Ile	Pro	Ala	туг 80
	Asp	Glu	Phe	Lys	Asn 85	Ser	Pro	Lys	Val	Asn 90	Val	Ser	Asn	Leu	тhr 95	Asp
30	Asn	Lys	Asn	Phe 100	Val	Ala	Ser	Glu	Asp 105	Lys	Leu	Asn	Lys	Ile 110	Ala	Asp
	Ser	Ser	A]a 115	Ala	ser	Lys	Ile	Va] 120	Asp	Lys	Asn	Phe	Va] 125	Val	Pro	Glu
35	Ser	Lys 130	Leu	Gly	Asn	Ile	Val 135	Pro	Glu	⊤yr	Lys	Glu 140	Ile	Asn	Asn	Arg
	Val 145	Asn	Val	Ala	Thr	Asn 150	Asn	Pro	Ala	Ser	G]n 155	Gln	Val	Asp	Lys	ніs 160
40	Phe	Val	Аlа	Lys	Gly 165	Pro	Glu	Val	Asn	Arg 170	Phe	Ile	Тhr	Gln	Asn 175	Lys
	Val	Asn	His	ніs 180	Phe	Ile	Тhr	Тhr	Gln 185	⊤hr	His	туг	Lys	Lys 190	Val	Ile
45	Thr	Ser	⊤yr 195	Lys	Ser	Тhr	ніs	Va] 200	Ніs	Lys	His	Val	Asn 205	His	Ala	Lys
	Asp	Ser 210	Ile	Asn	Lys	His	Phe 215	Ile	Val	Lys	Pro	Ser 220	Glu	Ser	Pro	Arg
50	Туг 225	Thr	His	Pro	Ser	G]n 230	Ser	Leu	Ile	Ile	Lys 235	His	His	Phe	Ala	Va1 240
	Pro	Gly	⊤yr	His	Ala 245	His	Lys	Phe	Val	⊤hr 250	Pro	Gly	His	Ala	Ser 255	Ile
55	Lys	Ile	Asn	His 260	Phe	Cys	Val	Val	Pro 265	Gln	Ile	Asn	Ser	Phe 270	Lys	Val
	Ile	Pro	Pro 275	туr	Gly	His	Asn	Ser 280	His	Arg	Met	His	Va] 285	Pro	Ser	Phe

	Gln	Asn 290	Asn	⊤hr	Thr	Ala	Thr 295	His	Gln	Asn	Ala	Lys 300	Val	Asn	Lys	Ala
5	Туг 305	Asp	Туr	Lys	Тyr	Phe 310	Тyr	Ser	Туr	Lys	Val 315	Val	Lys	Gly	Val	Lys 320
	Lys	Тyr	Phe	Ser	Phe 325	Ser	Gln	Ser	Asn	G]y 330	Туr	Lys	Ile	Gly	Lys 335	Pro
10	Ser	Leu	Asn	I]e 340	Lys	Asn	Val	Asn	туг 345	Gln	туr	Ala	Val	Pro 350	Ser	Tyr
	Ser	Pro	Thr 355	His	Тyr	Val	Pro	Glu 360	Phe	Lys	Gly	Ser	Leu 365	Pro	Ala	Pro
15	Arg	Va] 370														
	<210 <211 <212 <213)> L> 2> }>	207 370 PRT Stap	7 0 T aphylococcus aureus												
20	<400 Ala 1)> Asp	207 Ser	Asp	Ile 5	Asn	Ile	Lys	Thr	Gly 10	Thr	Thr	Asp	Ile	Gly 15	Ser
25	Asn	Thr	Thr	Va] 20	Lys	Тhr	Gly	Asp	Leu 25	Val	Thr	Тyr	Asp	Lys 30	Glu	Asn
20	Gly	Met	Leu 35	Lys	Lys	Val	Phe	туг 40	Ser	Phe	Ile	Asp	Asp 45	Lys	Asn	His
20	Asn	Lys 50	Ala	Ser	Gly	Gly	G]y 55	Ser	Ser	Val	Thr	Glu 60	Ser	Val	Asp	Lys
	Lys 65	Phe	Val	Val	Pro	Glu 70	Ser	Gly	Ile	Asn	Lys 75	Ile	Ile	Pro	Ala	туг 80
25	Asp	Glu	Phe	Lys	Asn 85	Ser	Pro	Lys	Val	Asn 90	Val	Ser	Asn	Leu	Thr 95	Asp
55	Asn	Lys	Asn	Phe 100	Val	Ala	Ser	Glu	Asp 105	Lys	Leu	Asn	Lys	I]e 110	Ala	Asp
40	Ser	Ser	A]a 115	Ala	Ser	Lys	Ile	Va] 120	Asp	Lys	Asn	Phe	Va] 125	Val	Pro	Glu
	Ser	Lys 130	Leu	Gly	Asn	Ile	Val 135	Pro	Glu	Туr	Lys	Glu 140	Ile	Asn	Asn	Arg
45	Va] 145	Asn	Val	Ala	Тhr	Asn 150	Asn	Pro	Ala	Ser	Gln 155	Gln	Val	Asp	Lys	ніs 160
70	Phe	Val	Ala	Lys	Gly 165	Pro	Glu	Val	Asn	Arg 170	Phe	Ile	Thr	Gln	Asn 175	Lys
50	Val	Asn	His	His 180	Phe	Ile	Тhr	Тhr	Gln 185	Thr	His	туr	Lys	Lys 190	Val	Ile
50	Тhr	Ser	туг 195	Lys	Ser	Тhr	His	Va1 200	His	Lys	His	Val	Asn 205	His	Ala	Lys
	Asp	Ser 210	Ile	Asn	Lys	His	Phe 215	Ile	Val	Lys	Pro	Ser 220	Glu	Ser	Pro	Arg
00	Туг 225	Thr	His	Pro	Ser	G]n 230	Ser	Leu	Ile	Ile	Lys 235	His	His	Phe	Ala	Va1 240

	Pro	Gly	Туr	His	A]a 245	His	Lys	Phe	Val	Thr 250	Pro	Gly	His	Ala	Ser 255	Ile
5	Lys	Ile	Asn	Ніs 260	Phe	Cys	Val	Val	Pro 265	Gln	Ile	Asn	Ser	Phe 270	Lys	Val
	Ile	Pro	Pro 275	Туr	Gly	His	Asn	Ser 280	His	Arg	Met	His	Val 285	Pro	Ser	Phe
	Gln	Asn 290	Asn	Thr	⊤hr	Ala	Thr 295	His	Gln	Asn	Ala	Lys 300	Val	Asn	Lys	Ala
10	⊤yr 305	Asp	тyr	Lys	туr	Phe 310	тyr	Ser	тyr	Lys	Val 315	Val	Lys	Gly	Val	Lys 320
	Lys	Туr	Phe	Ser	Phe 325	Ser	Gln	Ser	Asn	G]y 330	Тyr	Lys	Ile	Gly	Lys 335	Pro
15	Ser	Leu	Asn	I]e 340	Lys	Asn	Val	Asn	Туг 345	Gln	Тyr	Ala	Val	Pro 350	Ser	Tyr
	Ser	Pro	Тhr 355	His	⊤yr	Val	Pro	G]u 360	Phe	Lys	Gly	Ser	Leu 365	Pro	Ala	Pro
20	Arg	Va1 370														
25	<210 <212 <212 <213)> 1> 2> 3>	208 578 PRT Stap	ohyld	ococo	cus a	aurei	JS								
	<40(Ala 1)> Asp	208 Ser	Asp	Ile 5	Asn	Ile	Lys	Thr	Gly 10	Thr	⊤hr	Asp	Ile	Gly 15	Ser
30	Asn	Thr	Тhr	Val 20	Lys	Thr	Gly	Asp	Leu 25	Val	Тhr	Tyr	Asp	Lys 30	Glu	Asn
	Gly	Met	Leu 35	Lys	Lys	Val	Phe	туг 40	Ser	Phe	Ile	Asp	Asp 45	Lys	Asn	His
35	Asn	Lys 50	Lys	Leu	Leu	Val	Ile 55	Arg	Thr	Lys	Gly	⊤hr 60	Ile	Ala	Gly	Gln
	⊤yr 65	Arg	Val	Тyr	Ser	Glu 70	Glu	Gly	Ala	Asn	Lys 75	Ser	Gly	Leu	Ala	⊤rp 80
40	Pro	Ser	Ala	Phe	Lys 85	Val	Gln	Leu	Gln	Leu 90	Pro	Asp	Asn	Glu	val 95	Ala
	Gln	Ile	Ser	Asp 100	⊤yr	туг	Pro	Arg	Asn 105	Ser	Ile	Asp	Thr	Pro 110	Ser	Gly
45	Ser	Val	Gln 115	Pro	Asp	Phe	Lys	Thr 120	Ile	Leu	Glu	Ser	Pro 125	Thr	Asp	Lys
	Lys	Val 130	Gly	тгр	Lys	Val	Ile 135	Phe	Asn	Asn	Met	Val 140	Asn	Gln	Asn	⊤rp
50	Gly 145	Pro	Туr	Asp	Arg	Asp 150	Ser	Тгр	Asn	Pro	Va] 155	Tyr	Gly	Asn	Gln	Leu 160
	Phe	Met	Lys	Thr	Arg 165	Asn	Gly	Ser	Met	Lys 170	Ala	Ala	Asp	Asn	Phe 175	Leu
55	Asp	Pro	Asn	Lys 180	Ala	Ser	Ser	Leu	Leu 185	Ser	Ser	Gly	Phe	Ser 190	Pro	Asp
	Phe	Ala	тhr	Val	Ile	тhr	Met	Asp	Arg	Lys	Ala	Ser	Lys	Gln	Gln	⊤hr

			195					200					205			
	Asn	Ile 210	Asp	Val	Ile	туr	Glu 215	Arg	Val	Arg	Asp	Asp 220	туr	Gln	Leu	His
5	Тгр 225	Тhr	Ser	Тhr	Asn	Тгр 230	Lys	Gly	Thr	Asn	Thr 235	Lys	Asp	Lys	тгр	I]e 240
	Asp	Arg	Ser	Ser	Glu 245	Arg	Туr	Lys	Ile	Asp 250	тгр	Glu	Lys	Glu	Glu 255	Met
10	Тhr	Asn	Ala	Ser 260	Gly	Gly	Gly	Ser	Ser 265	Val	Тhr	Glu	Ser	Val 270	Asp	Lys
	Lys	Phe	Va] 275	Val	Pro	Glu	Ser	Gly 280	Ile	Asn	Lys	Ile	Ile 285	Pro	Ala	Tyr
15	Asp	Glu 290	Phe	Lys	Asn	Ser	Pro 295	Lys	Val	Asn	Val	Ser 300	Asn	Leu	Thr	Asp
	Asn 305	Lys	Asn	Phe	Val	Ala 310	Ser	Glu	Asp	Lys	Leu 315	Asn	Lys	Ile	Ala	Asp 320
20	Ser	Ser	Ala	Ala	Ser 325	Lys	Ile	Val	Asp	Lys 330	Asn	Phe	Val	Val	Pro 335	Glu
	Ser	Lys	Leu	G]y 340	Asn	Ile	Val	Pro	Glu 345	⊤yr	Lys	Glu	Ile	Asn 350	Asn	Arg
25	Val	Asn	Val 355	Ala	тhr	Asn	Asn	Pro 360	Ala	Ser	Gln	Gln	Va] 365	Asp	Lys	His
	Phe	Va] 370	Ala	Lys	Gly	Pro	Glu 375	Val	Asn	Arg	Phe	I]e 380	тhr	Gln	Asn	Lys
30	Val 385	Asn	His	His	Phe	11e 390	Thr	Thr	Gln	⊤hr	ніs 395	туr	Lys	Lys	Val	I]e 400
	Thr	Ser	⊤yr	Lys	ser 405	Thr	His	Val	His	Lys 410	His	Val	Asn	His	Ala 415	Lys
35	Asp	Ser	Ile	Asn 420	Lys	His	Phe	Ile	Va] 425	Lys	Pro	Ser	Glu	Ser 430	Pro	Arg
	туr	Тhr	ніs 435	Pro	Ser	Gln	Ser	Leu 440	Ile	Ile	Lys	His	ніs 445	Phe	Ala	Val
40	Pro	G1y 450	⊤yr	ніs	Ala	His	Lys 455	Phe	Val	⊤hr	Pro	Gly 460	нis	Ala	Ser	Ile
	Lys 465	Ile	Asn	ніs	Phe	Cys 470	Val	Val	Pro	Gln	Ile 475	Asn	Ser	Phe	Lys	Val 480
45	Ile	Pro	Pro	туг	Gly 485	His	Asn	Ser	Нis	Arg 490	Met	His	Val	Pro	Ser 495	Phe
	Gln	Asn	Asn	тhr 500	Thr	Ala	Thr	His	Gln 505	Asn	Ala	Lys	Val	Asn 510	Lys	Ala
50	Тyr	Asp	⊤yr 515	Lys	Туr	Phe	Туr	Ser 520	Тyr	Lys	Val	Val	Lys 525	Gly	Val	Lys
	Lys	Туг 530	Phe	Ser	Phe	Ser	G]n 535	Ser	Asn	Gly	туr	Lys 540	Ile	Gly	Lys	Pro
55	Ser 545	Leu	Asn	Ile	Lys	Asn 550	Val	Asn	Тyr	Gln	туг 555	Ala	Val	Pro	Ser	туг 560
00	Ser	Pro	⊤hr	His	Туг 565	Val	Pro	Glu	Phe	Lys 570	Gly	Ser	Leu	Pro	Ala 575	Pro

Arg Val

5	<210> <211> <212> <213>	209 248 PRT Stap	ohy]c	ococo	cus a	aureu	ıs									
10	<400> Asp Ser 1	209 Gln	Gln	Val 5	Asn	Ala	Ala	Thr	Glu 10	Ala	Thr	Asn	Ala	Thr 15	Asn	
	Asn Gln	Ser	Thr 20	Gln	Val	Ser	Gln	Ala 25	Thr	Ser	Gln	Pro	Ile 30	Asn	Phe	
15	Gln Val	G]n 35	Lys	Asp	Gly	Ser	Ser 40	Glu	Lys	Ser	His	Met 45	Asp	Asp	Туг	
	Met Gln 50	His	Pro	Gly	Lys	Va1 55	Ile	Lys	Gln	Asn	Asn 60	Lys	туr	туr	Phe	
20	Gln Thr 65	Val	Leu	Asn	Asn 70	Ala	Ser	Phe	тгр	Lys 75	Glu	Туr	Lys	Phe	туг 80	
	Asn Ala	Asn	Asn	G]n 85	Glu	Leu	Ala	Thr	тhr 90	Val	Val	Asn	Asp	Asn 95	Lys	
25	Lys Ala	Asp	Thr 100	Arg	Thr	Ile	Asn	Val 105	Ala	Val	Glu	Pro	Gly 110	Туг	Lys	
	Ser Leu	Thr 115	Thr	Lys	Val	His	I]e 120	Val	Val	Pro	Gln	I]e 125	Asn	туr	Asn	
30	His Arg 130	Туr	Thr	Thr	His	Leu 135	Glu	Phe	Glu	Lys	Ala 140	Ile	Pro	Thr	Leu	
	Ala Ala 145	Ser	Gly	Gly	Gly 150	Ser	Met	Ala	Met	I]e 155	Lys	Met	Ser	Pro	Glu 160	
35	Glu Ile	Arg	Ala	Lys 165	Ser	Gln	Ser	туr	Gly 170	Gln	Gly	Ser	Asp	Gln 175	Ile	
	Arg Gln	Ile	Leu 180	Ser	Asp	Leu	тhr	Arg 185	Ala	Gln	Gly	Glu	I]e 190	Ala	Ala	
40	Asn Trp	Glu 195	Gly	Gln	Ala	Phe	Ser 200	Arg	Phe	Glu	Glu	G]n 205	Phe	Gln	Gln	
	Leu Ser 210	Pro	Lys	Val	Glu	Lys 215	Phe	Ala	Gln	Leu	Leu 220	Glu	Glu	Ile	Lys	
45	Gln Gln 225	Leu	Asn	Ser	тhr 230	Ala	Asp	Ala	Val	G]n 235	Glu	Gln	Asp	Gln	G]n 240	
	Leu Ser	Asn	Asn	Phe 245	Gly	Leu	Gln									
50	<210> <211> <212> <213>	210 358 PRT Stap) hylc	ococo	cus a	aurei	ıs									
	<400> Asp Ser 1	210 Gln	Gln	Val 5	Asn	Ala	Ala	Thr	Glu 10	Ala	Thr	Asn	Ala	Thr 15	Asn	
55	Asn Gln	Ser	Thr 20	Gln	Val	Ser	Gln	A]a 25	Thr	Ser	Gln	Pro	I]e 30	Asn	Phe	
	Gln	Val	Gln 35	Lys	Asp	Gly	Ser	Ser 40	Glu	Lys	Ser	His	Met 45	Asp	Asp	Tyr
----	------------------------------	----------------------	---------------------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------
5	Met	Gln 50	ніs	Pro	Gly	Lys	Val 55	Ile	Lys	Gln	Asn	Asn 60	Lys	тyr	тyr	Phe
	Gln 65	Thr	Val	Leu	Asn	Asn 70	Ala	Ser	Phe	тгр	Lys 75	Glu	туr	Lys	Phe	Tyr 80
10	Asn	Ala	Asn	Asn	G]n 85	Glu	Leu	Ala	Thr	тhr 90	Val	Val	Asn	Asp	Asn 95	Lys
10	Lys	Ala	Asp	Thr 100	Arg	Thr	Ile	Asn	Val 105	Ala	Val	Glu	Pro	Gly 110	Тyr	Lys
	Ser	Leu	Тhr 115	Тhr	Lys	Val	His	I]e 120	Val	Val	Pro	G]n	I]e 125	Asn	туr	Asn
15	His	Arg 130	Туr	Тhr	⊤hr	His	Leu 135	Glu	Phe	Glu	Lys	A]a 140	Ile	Pro	Тhr	Leu
	Ala 145	Ala	Ser	Gly	Gly	Gly 150	Ser	Met	Ala	Met	I]e 155	Lys	Met	Ser	Pro	Glu 160
20	Glu	Ile	Arg	Ala	Lys 165	Ser	Gln	Ser	Туr	Gly 170	Gln	Gly	Ser	Asp	G]n 175	Ile
	Arg	Gln	Ile	Leu 180	Ser	Asp	Leu	Тhr	Arg 185	Ala	Gln	Gly	Glu	I]e 190	Ala	Ala
25	Asn	Trp	Glu 195	Gly	Gln	Ala	Phe	Ser 200	Arg	Phe	Glu	Glu	G]n 205	Phe	Gln	Gln
	Leu	Ser 210	Pro	Lys	Val	Glu	Lys 215	Phe	Ala	Gln	Leu	Leu 220	Glu	Glu	Ile	Lys
30	Gln 225	Gln	Leu	Asn	Ser	Thr 230	Ala	Asp	Ala	Val	G]n 235	Glu	Gln	Asp	Gln	G]n 240
	Leu	Ser	Asn	Asn	Phe 245	Gly	Leu	Gln	Ala	Ser 250	Gly	Gly	Gly	Ser	Met 255	Gly
35	Gly	туг	Lys	Gly 260	Ile	Lys	Ala	Asp	Gly 265	Gly	Lys	Val	Asp	G]n 270	Ala	Lys
	Gln	Leu	Ala 275	Ala	Lys	Thr	Ala	Lys 280	Asp	I]e	Glu	Ala	Cys 285	Gln	Lys	Gln
40	⊤hr	Gln 290	Gln	Leu	Ala	Glu	Туг 295	I]e	Glu	Gly	Ser	Asp 300	Тгр	Glu	Gly	Gln
	Phe 305	Ala	Asn	Lys	Val	Lys 310	Asp	Val	Leu	Leu	I]e 315	Met	Ala	Lys	Phe	G]n 320
45	Glu	Glu	Leu	Val	G]n 325	Pro	Met	Ala	Asp	His 330	Gln	Lys	Ala	Ile	Asp 335	Asn
	Leu	Ser	Gln	Asn 340	Leu	Ala	Lys	Туr	Asp 345	Thr	Leu	Ser	Ile	Lys 350	Gln	Gly
50	Leu	Asp	Arg 355	Val	Asn	Pro										
	<210 <212 <212 <212)> 1> 2> 3>	211 388 PRT Stap	ohyla	ococo	cus a	aurei	JS								
55	<40(Ser)> Ser	211 Pro	Ile	Ala	Gly	Ile	Asp	Lys	Pro	Asn	Gly	Ala	Asn	Ile	Ser

	1				5					10					15	
	Ser	Gln	Ile	Ile 20	Gly	Val	Asp	Thr	A]a 25	Ser	Gly	Gln	Asn	Thr 30	туr	Lys
5	Gln	Thr	Va] 35	Phe	Val	Asn	Pro	Lys 40	Gln	Arg	Val	Leu	G]y 45	Asn	Тhr	тгр
	Val	туr 50	Ile	Lys	Gly	туr	Gln 55	Asp	Lys	Ile	Glu	Glu 60	Ser	Ser	Gly	Lys
10	Va1 65	Ser	Ala	Thr	Asp	Thr 70	Lys	Leu	Arg	Ile	Phe 75	Glu	Val	Asn	Asp	Thr 80
	Ser	Lys	Leu	Ser	Asp 85	Ser	туr	туr	Ala	Asp 90	Pro	Asn	Asp	Ser	Asn 95	Leu
15	Lys	Glu	Val	Thr 100	Asp	Gln	Phe	Lys	Asn 105	Arg	Ile	Тyr	Тyr	Glu 110	His	Pro
	Asn	Val	Ala 115	Ser	Ile	Lys	Phe	Gly 120	Asp	Ile	Тhr	Lys	Тhr 125	Туr	Val	Val
20	Leu	Val 130	Glu	Gly	His	Туr	Asp 135	Asn	Thr	Gly	Lys	Asn 140	Leu	Lys	Тhr	Gln
	Val 145	Ile	Gln	Glu	Asn	Val 150	Asp	Pro	Val	⊤hr	Asn 155	Arg	Asp	туr	Ser	I]e 160
25	Phe	Gly	⊤rp	Asn	Asn 165	Glu	Asn	Val	Val	Arg 170	туr	Gly	Gly	Gly	Ser 175	Ala
	Asp	Gly	Asp	Ser 180	Ala	Val	Asn	Ala	Ser 185	Gly	Gly	Gly	Ser	Pro 190	Asp	туr
30	Val	Val	Asn 195	Glu	Lys	Asn	Ser	11e 200	Gly	Ser	Ala	Phe	тhr 205	Glu	Thr	Val
	Ser	Ніs 210	Val	Gly	Asn	Lys	Glu 215	Asn	Pro	Gly	Туr	Туг 220	Lys	Gln	Thr	Ile
35	Туг 225	Val	Asn	Pro	Ser	G]u 230	Asn	Ser	Leu	⊤hr	Asn 235	Ala	Lys	Leu	Lys	Val 240
	Gln	Ala -	⊤yr	His	ser 245	Ser	Tyr	Pro	Asn	Asn 250	Ile	Gly	Gln	Ile	Asn 255	Lys
40	Asp	Val	⊤hr	Asp 260	Ile	Lys	Ile	туr	G1n 265	Val	Pro	Lys	Gly	туr 270	Thr	Leu
	Asn	Lys	G I y 275	туr	Asp	val	Asn	Thr 280	Lys	Glu	Leu	Thr	Asp 285	Va I	Thr	Asn
45	GIn	Tyr 290	Leu	Gln	Lys	Ile	Thr 295	Tyr	GIY	Asp	Asn	Asn 300	Ser	Ala	va I	Ile
	Asp 305	Phe	GIY	Asn	Ala	Asp 310	Ser	Ala	туr	Va I	Va I 315	Met	Val	Asn	Thr	Lys 320
50	Phe	GIn	⊤yr	Thr	Asn 325	Ser	Glu	Ser	Pro	⊤hr 330	Leu	Val	GIn	Met	ATA 335	Thr
	Leu	Ser	Ser	Thr 340	Gly	Asn	Lys	Ser	Va I 345 -	Ser	Thr	Gly	Asn	Ala 350	Leu	Gly -
55	Phe	Thr	Asn 355	Asn	GIn	Ser	Gly	GTY 360	Ala	Gly	GIn	Glu	Va I 365	туr	Lys	Ile
	Gly	Asn 370	⊤yr	Val	тгр	Glu	Asp 375	Thr	Asn	Lys	Asn	Gly 380	Val	Gln	Glu	Leu

	Gly 385	Glu	Lys	Gly												
5	<210 <211 <212 <213)> 1> 2> 3>	212 486 PRT Stap	ohyla	ococo	cus a	aurei	ıs								
10	<400 Asp 1)> Ser	212 Gln	Gln	Val 5	Asn	Ala	Ala	Thr	Glu 10	Ala	Thr	Asn	Ala	Thr 15	Asn
	Asn	Gln	Ser	тhr 20	Gln	Val	Ser	Gln	A]a 25	Тhr	Ser	Gln	Pro	Ile 30	Asn	Phe
15	Gln	Val	G]n 35	Lys	Asp	Gly	Ser	Ser 40	Glu	Lys	Ser	His	Met 45	Asp	Asp	Туr
	Met	G]n 50	His	Pro	Gly	Lys	Va] 55	Ile	Lys	Gln	Asn	Asn 60	Lys	туг	Туr	Phe
20	Gln 65	Thr	Val	Leu	Asn	Asn 70	Ala	Ser	Phe	Тгр	Lys 75	Glu	Туr	Lys	Phe	Tyr 80
	Asn	Ala	Asn	Asn	Gln 85	Glu	Leu	Ala	Тhr	Thr 90	Val	Val	Asn	Asp	Asn 95	Lys
25	Lys	Ala	Asp	тhr 100	Arg	Тhr	Ile	Asn	Va] 105	Ala	Val	Glu	Pro	Gly 110	Туr	Lys
	Ser	Leu	Thr 115	Тhr	Lys	Val	His	I]e 120	Val	Val	Pro	Gln	I]e 125	Asn	Туг	Asn
30	His	Arg 130	туг	Тhr	Thr	His	Leu 135	Glu	Phe	Glu	Lys	Ala 140	Ile	Pro	Thr	Leu
	Ala 145	Asp	Ala	Ala	Lys	Pro 150	Asn	Asn	Val	Lys	Pro 155	Val	Gln	Pro	Lys	Pro 160
35	Ala	Gln	Pro	Lys	Тhr 165	Pro	Thr	Glu	Gln	Thr 170	Lys	Pro	Val	Gln	Pro 175	Lys
	Val	Glu	Lys	Val 180	Lys	Pro	Тhr	Val	Thr 185	Тhr	тhr	Ser	Lys	Val 190	Glu	Asp
40	Asn	His	Ser 195	Тhr	Lys	Val	Val	Ser 200	Thr	Asp	Thr	Thr	Lys 205	Asp	Gln	Thr
	Lys	Thr 210	Gln	Тhr	Ala	His	Thr 215	Val	Lys	Thr	Ala	G]n 220	Thr	Ala	Gln	Glu
45	G]n 225	Asn	Lys	Val	Gln	Thr 230	Pro	Val	Lys	Asp	Va] 235	Ala	Тhr	Ala	Lys	Ser 240
40	Glu	Ser	Asn	Asn	G]n 245	Ala	Val	Ser	Asp	Asn 250	Lys	Ser	Gln	Gln	Thr 255	Asn
50	Lys	Val	Thr	Lys 260	His	Asn	Glu	Thr	Pro 265	Lys	Gln	Ala	Ser	Lys 270	Ala	Lys
50	Glu	Ala	Ser 275	Gly	Gly	Gly	Ser	Met 280	Ala	Met	Ile	Lys	Met 285	Ser	Pro	Glu
55	Glu	Ile 290	Arg	Ala	Lys	Ser	G]n 295	Ser	Туr	Gly	Gln	G]y 300	Ser	Asp	Gln	Ile
55	Arg 305	Gln	Ile	Leu	Ser	Asp 310	Leu	Thr	Arg	Ala	G]n 315	Gly	Glu	Ile	Ala	Ala 320

	Asn	Тгр	Glu	Gly	G]n 325	Ala	Phe	Ser	Arg	Phe 330	Glu	Glu	Gln	Phe	G]n 335	Gln
5	Leu	Ser	Pro	Lys 340	Val	Glu	Lys	Phe	Ala 345	Gln	Leu	Leu	Glu	Glu 350	Ile	Lys
	Gln	Gln	Leu 355	Asn	Ser	Thr	Ala	Asp 360	Ala	Val	Gln	Glu	Gln 365	Asp	Gln	Gln
40	Leu	Ser 370	Asn	Asn	Phe	Gly	Leu 375	Gln	Ala	Ser	Gly	Gly 380	Gly	Ser	Met	Gly
10	Gly 385	Туr	Lys	Gly	Ile	Lys 390	Ala	Asp	Gly	Gly	Lys 395	Val	Asp	Gln	Ala	Lys 400
	Gln	Leu	Ala	Ala	Lys 405	Thr	Ala	Lys	Asp	I]e 410	Glu	Ala	Cys	Gln	Lys 415	Gln
15	⊤hr	Gln	Gln	Leu 420	Ala	Glu	Туr	Ile	Glu 425	Gly	Ser	Asp	Тгр	Glu 430	Gly	Gln
	Phe	Ala	Asn 435	Lys	Val	Lys	Asp	Va] 440	Leu	Leu	I]e	Met	Ala 445	Lys	Phe	Gln
20	Glu	Glu 450	Leu	Val	Gln	Pro	Met 455	Ala	Asp	His	Gln	Lys 460	Ala	Ile	Asp	Asn
	Leu 465	Ser	Gln	Asn	Leu	Ala 470	Lys	туг	Asp	Thr	Leu 475	Ser	Ile	Lys	Gln	Gly 480
25	Leu	Asp	Arg	Val	Asn 485	Pro										
	<21)>	213													
30	<21 <21 <21	L> 2> 3>	256 PRT Stap	ohy]o	ococo	cus a	aurei	JS								
30	<212 <212 <212 <400 Met	L> 2> 3>)> Met	256 PRT Stap 213 Lys	ohyld Arg	Leu	cus a Asn	aurei Lys	us Leu	Val	Leu 10	Gly	Ile	Ile	Phe	Leu 15	Phe
30 35	<21 <21 <21 <400 Met 1 Leu	L> 2> 3> D> Met Val	256 PRT Stap 213 Lys Ile	ohyld Arg Ser 20	Leu 5 Ile	cus a Asn Thr	aureu Lys Ala	us Leu Gly	Val Cys 25	Leu 10 Gly	Gly Ile	Ile Gly	I]e ∟ys	Phe Glu 30	Leu 15 Ala	Phe Glu
30 35	<211 <211 <211 <400 Met 1 Leu Val	L> 2> 3> D> Met Val	256 PRT Star 213 Lys Ile Lys 35	Arg Ser 20 Ser	Leu 5 Ile Phe	Cus a Asn Thr Glu	Lys Ala Lys	us Leu Gly Thr 40	Val Cys 25 Leu	Leu 10 Gly Ser	Gly Ile Met	Ile Gly Tyr	Ile Lys Pro 45	Phe Glu 30 Ile	Leu 15 Ala Lys	Phe Glu Asn
30 35 40	<211 <211 <211 <400 Met 1 Leu Val	L> 2> 3> D> Met Val Lys Glu 50	256 PRT Star 213 Lys Ile Lys 35 Asp	Arg Ser 20 Ser Leu	Leu 5 Ile Phe Tyr	Cus a Asn Thr Glu Asp	Lys Ala Lys Lys 55	us Leu Gly Thr 40 Glu	Val Cys 25 Leu Gly	Leu 10 Gly Ser Tyr	Gly Ile Met Arg	Ile Gly Tyr Asp 60	Ile Lys Pro 45 Asp	Phe Glu 30 Ile Gln	Leu 15 Ala Lys Phe	Phe Glu Asn Asp
30 35 40	<21: <21: <21: <400 Met 1 Leu Val Leu Lys 65	L> 2> 3> Net Val Lys Glu 50 Asn	256 PRT Star 213 Lys Ile Lys 35 Asp Asp	Arg Ser 20 Ser Leu Lys	Leu 5 Ile Phe Tyr Gly	Asn Thr Glu Asp Thr 70	Lys Ala Lys Lys 55 Trp	Leu Gly Thr 40 Glu Ile	Val Cys 25 Leu Gly Ile	Leu 10 Gly Ser Tyr Asn	Gly Ile Met Arg Ser 75	Ile Gly Tyr Asp Glu	Ile Lys Pro 45 Asp Met	Phe Glu 30 Ile Gln Val	Leu 15 Ala Lys Phe Ile	Phe Glu Asn Asp Gln 80
30 35 40	<21 <21 <21 <21 <400 Met 1 Leu Val Leu Lys 65 Pro	L> 2> Met Val Lys Glu 50 Asn Asn	256 PRT Star 213 Lys Ile Lys 35 Asp Asp Asn	Arg Ser 20 Ser Leu Lys Glu	Leu 5 Ile Phe Tyr Gly Asp	Cus a Asn Thr Glu Asp Thr 70 Met	Lys Ala Lys Lys 55 Trp Val	Leu Gly Thr 40 Glu Ile Ala	Val Cys 25 Leu Gly Ile Lys	Leu 10 Gly Ser Tyr Asn Gly 90	Gly Ile Met Arg Ser 75 Met	Ile Gly Tyr Asp Glu Val	Ile Lys Pro 45 Asp Met Leu	Phe Glu 30 Ile Gln Val Tyr	Leu 15 Ala Lys Phe Ile Met 95	Phe Glu Asn Asp Gln 80 Asn
30 35 40 45	<21 <21 <21 <21 <400 Met 1 Leu Val Leu Lys 65 Pro Arg	L> 2> Met Val Lys Glu 50 Asn Asn	256 PRT Star 213 Lys Ile Lys 35 Asp Asp Asp Asn Thr	Arg Ser 20 Ser Leu Lys Glu Lys 100	Leu 5 Ile Phe Tyr Gly Asp 85 Thr	Asn Thr Glu Asp Thr 70 Met Thr	Lys Ala Lys Lys Trp Val Asn	Leu Gly Thr Glu Ile Ala Gly	val Cys Leu Gly Ile Lys Tyr 105	Leu 10 Gly Ser Tyr Asn Gly 90 Tyr	Gly Ile Met Arg Ser 75 Met Tyr	Ile Gly Tyr Asp Glu Val Val	Ile Lys Pro 45 Asp Met Leu Asp	Phe Glu 30 Ile Gln Val Tyr Val 110	Leu Ala Lys Phe Ile Met 95 Thr	Phe Glu Asn Asp Gln 80 Asn Lys
30 35 40 45	<pre><21: <21: <21: <21: <400 Met 1 Leu Val Leu Lys 65 Pro Arg Asp</pre>	L> 2> Met Val Lys Glu 50 Asn Asn Asn Glu	256 PRT Star 213 Lys Ile Lys 35 Asp Asp Asn Thr Asp 115	Arg Ser 20 Ser Leu Lys Glu Lys 100 Glu	Leu Ile Phe Tyr Gly Asp Thr Gly	Asn Thr Glu Asp Thr 70 Met Thr Lys	Lys Ala Lys Lys Trp Val Asn Pro	Leu Gly Thr 40 Glu Ile Ala Gly His 120	Val Cys Leu Gly Ile Lys Tyr 105 Asp	Leu Gly Ser Tyr Asn Gly 90 Tyr Asn	Gly Ile Met Arg Ser 75 Met Tyr Glu	Ile Gly Tyr Asp Glu Val Val Lys	Ile Lys Pro Asp Met Leu Asp Arg 125	Phe Glu 30 Ile Gln Val Tyr Val 110 Tyr	Leu 15 Ala Lys Phe Ile Met 95 Thr Pro	Phe Glu Asn Asp Gln 80 Asn Lys Val
30 35 40 45 50	<pre><21; <21; <21; <21; <21; Leu Leu Val Leu Lys 65 Pro Arg Asp Lys</pre>	Asn Glu Met Lys Asn Asn Glu Met 130	213 Lys Ile Lys Asp Asp Asn Thr Asp 115 Val	Arg Ser 20 Ser Leu Lys Glu Lys 100 Glu Asp	Leu Ile Phe Tyr Gly Asp Thr Gly Asn	Asn Thr Glu Asp Thr 70 Met Thr Lys Lys	Lys Ala Lys Lys Trp Val Asn Pro Ile	Leu Gly Thr 40 Glu Ile Ala Gly His 120 Ile	Val Cys 25 Leu Gly Ile Lys Tyr 105 Asp Pro	Leu Gly Ser Tyr Asn Gly 90 Tyr Asn Thr	Gly Ile Met Arg Ser 75 Met Tyr Glu Lys	Ile Gly Tyr Asp Glu Val Val Lys Glu 140	Ile Lys Pro 45 Asp Met Leu Asp Arg 125 Ile	Phe Glu 30 Ile Gln Val Tyr Val 110 Tyr Lys	Leu Ala Lys Phe Ile Met 95 Thr Pro Asp	Phe Glu Asn Asp Gln S0 Asn Lys Val Glu
30 35 40 45 50	<pre><21: <21: <21: <21: <21: <400 Met 1 Leu Val Leu Lys 65 Pro Arg Asp Lys Lys 145</pre>	L> 2> Met Val Lys Glu So Asn Asn Asn Glu Met 130 Leu	213 Lys 1le Lys 35 Asp Asp Asn Thr Asp 115 val Lys	Arg Ser Ser Leu Lys Glu Lys Glu Asp Lys	Leu 5 Ile Phe Tyr Gly Asp Thr Gly Asn Glu	Asn Thr Glu Asp Thr 70 Met Thr Lys Lys Ile 150	Lys Ala Lys Lys Trp Val Asn Pro Ile 135 Glu	Leu Gly Thr Glu Ile Ala Gly His 120 Ile Asn	Val Cys Leu Gly Ile Lys Tyr 105 Asp Pro Phe	Leu Gly Ser Tyr Asn Gly 90 Tyr Asn Thr Lys	Gly Ile Met Arg Ser 75 Met Tyr Glu Lys Phe 155	Ile Gly Tyr Asp Glu Val Val Lys Glu 140 Phe	Ile Lys Pro Asp Met Leu Asp Arg 125 Ile val	Phe Glu Jle Gln Val Tyr Val 110 Tyr Lys Gln	Leu Ala Lys Phe Ile Met Pro Asp Tyr	Phe Glu Asn Asp Gln Asn Lys Val Glu Glu Gly 160

Ala Pro Lys Leu Leu Lys Gly Ser Gly Asn Leu Lys Gly Ser Ser 210 215 220 Val Gly Tyr Lys Asp Ile Glu Phe Thr Phe Val Glu Lys Lys Glu Glu 225 230 235 240 10 Asn Ile Tyr Phe Ser Asp Ser Leu Asp Tyr Lys Lys Ser Gly Asp Val 245 250 255 214 256 <210> 15 <211> <212> PRT <213> Staphylococcus aureus <400> Met Met Lys Arg Leu Asn Lys Leu Val Leu Gly Ile Ile Phe Leu Phe 1 5 10 15 20 Leu Val Ile Ser Ile Thr Ala Gly Cys Gly Ile Gly Lys Glu Ala Glu 20 25 30 Val Lys Lys Ser Phe Glu Lys Thr Leu Ser Met Tyr Pro Ile Lys Asn $\begin{array}{c} 35 \\ 40 \end{array}$ 25 Leu Glu Asp Leu Tyr Asp Lys Glu Gly Tyr Arg Asp Asp Gln Phe Asp 50 55 60 Lys Asn Asp Lys Gly Thr Trp Ile Ile Asn Ser Glu Met Val Ile Gln 65 70 75 80 30 Pro Asn Asn Glu Asp Met Val Ala Lys Gly Met Val Leu Tyr Met Asn 85 90 95 Arg Asn Thr Lys Thr Thr Asn Gly Tyr Tyr Tyr Val Asp Val Thr Lys 100 105 110 Asp Glu Asp Glu Gly Lys Pro His Asp Asn Glu Lys Arg Tyr Pro Val 115 120 125 Lys Met Val Asp Asn Lys Ile Ile Pro Thr Lys Glu Ile Lys Asp Glu 130 135 140 40 Lys Val Lys Lys Glu Ile Glu Asn Phe Lys Phe Phe Val Gln Tyr Gly 145 150 155 160 Asp Phe Lys Asn Ile Lys Asn Tyr Lys Asp Gly Asp Ile Ser Tyr Asn 165 170 175 45 Pro Glu Val Pro Ser Tyr Ser Ala Lys Tyr Gln Leu Thr Asn Asp Asp 180 185 190 Tyr Asn Val Lys Gln Leu Arg Lys Arg Tyr Asp Ile Pro Thr Ser Lys 195 200 205 Ala Pro Lys Leu Leu Lys Gly Ser Gly Asn Leu Lys Gly Ser Ser 210 215 220 Val Gly Tyr Lys Asp Ile Glu Phe Thr Phe Val Glu Lys Lys Glu Glu 225 230 235 240 Asn Ile Tyr Phe Ser Asp Ser Leu Asp Tyr Lys Lys Ser Gly Asp Val 245 250 250

EP 2 510 947 A1

Pro Glu Val Pro Ser Tyr Ser Ala Lys Tyr Gln Leu Thr Asn Asp Asp 180 185 190

Tyr Asn Val Lys Gln Leu Arg Lys Arg Tyr Asp Ile Pro Thr Ser Lys 195 200 205

170

175

165

5

35

50

55

	<210> <211> <212> <213>	> > >	215 256 PRT Stap	ohyld	ococo	cus a	aurei	ıs								
5	<400> Met M 1	> Met	215 Lys	Arg	Leu 5	Asn	Lys	Leu	Val	Leu 10	Gly	Ile	Ile	Phe	Leu 15	Phe
10	Leu V	/al	Ile	Ser 20	Ile	Тhr	Ala	Gly	Cys 25	Gly	Ile	Gly	Lys	Glu 30	Ala	Glu
	Val L	_ys	Lys 35	Ser	Phe	Glu	Lys	⊤hr 40	Leu	Ser	Met	Тyr	Pro 45	Ile	Lys	Asn
15	Leu 6	slu 50	Asp	Leu	Туr	Asp	Lys 55	Glu	Gly	Туr	Arg	Asp 60	Asp	Gln	Phe	Asp
	Lys A 65	Asn	Asp	Lys	Gly	тhr 70	тгр	Ile	Ile	Asn	Ser 75	Glu	Met	Val	Ile	Gln 80
20	Pro A	Asn	Asn	Glu	Asp 85	Met	Val	Ala	Lys	Gly 90	Met	Val	Leu	Тyr	Met 95	Asn
	Arg A	Asn	Thr	Lys 100	Thr	Thr	Asn	Gly	Туг 105	Тyr	туr	Val	Asp	Va] 110	Thr	Lys
25	Asp G	Glu	Asp 115	Glu	Gly	Lys	Pro	His 120	Asp	Asn	Glu	Lys	Arg 125	Тyr	Pro	Val
	Lys M 1	Met 130	Val	Asp	Asn	Lys	I]e 135	Ile	Pro	Thr	Lys	Glu 140	Ile	Lys	Asp	Glu
30	Lys L 145	_eu	Lys	Lys	Glu	Ile 150	Glu	Asn	Phe	Lys	Phe 155	Phe	Val	Gln	Туr	Gly 160
	Asp F	Phe	Lys	Asn	Val 165	Lys	Asn	Туr	Lys	Asp 170	Gly	Asp	Ile	Ser	Туг 175	Asn
35	Pro G	Glu	Val	Pro 180	Ser	туr	Ser	Ala	Lys 185	туr	Gln	Leu	Тhr	Asn 190	Asp	Asp
	Tyr A	Asn	Val 195	Lys	Gln	Leu	Arg	Lys 200	Arg	Тyr	Asp	Ile	Pro 205	Thr	Ser	Lys
40	Ala F 2	Pro 210	Lys	Leu	Leu	Leu	Lys 215	Gly	Ser	Gly	Asn	Leu 220	Lys	Gly	Ser	Ser
	Val 6 225	Gly	туr	Lys	Asp	Ile 230	Glu	Phe	Тhr	Phe	Va] 235	Glu	Lys	Lys	Glu	Glu 240
45	Asn I	[]e	Туr	Phe	Ser 245	Asp	Ser	Leu	Asp	Туг 250	Lys	Lys	Ser	Gly	Asp 255	Val
+5	<210> <211> <212> <213>	> > >	216 258 PRT Stap	ohylo	ococo	cus a	aurei	ıs								
50	<400> Ala A 1	> Asp	216 Ser	Asp	Ile 5	Asn	Ile	Lys	Thr	Gly 10	Thr	Thr	Asp	Ile	G]y 15	Ser
	Asn T	Γhr	Thr	Va1 20	Lys	Thr	Gly	Asp	Leu 25	Val	Тhr	Тyr	Asp	Lys 30	Glu	Asn
55	Gly M	Met	His 35	Lys	Lys	Val	Phe	туг 40	Ser	Phe	Ile	Asp	Asp 45	Lys	Asn	His

	Asn	Lys 50	Lys	Leu	Leu	Val	Ile 55	Arg	Thr	Lys	Gly	⊤hr 60	Ile	Ala	Gly	Gln
5	⊤yr 65	Arg	Val	тyr	Ser	Glu 70	Glu	Gly	Ala	Asn	Lys 75	Ser	Gly	Leu	Ala	⊤rp 80
	Pro	Ser	Ala	Phe	Lys 85	Val	Gln	Leu	Gln	Leu 90	Pro	Asp	Asn	Glu	Val 95	Ala
10	Gln	Ile	Ser	Asp 100	Туr	туr	Pro	Arg	Asn 105	Ser	Ile	Asp	Thr	Pro 110	Ser	Gly
10	Ser	Val	Gln 115	Pro	Asp	Phe	Lys	Thr 120	Ile	Leu	Glu	Ser	Pro 125	Thr	Asp	Lys
	Lys	Val 130	Gly	тгр	Lys	Val	I]e 135	Phe	Asn	Asn	Met	Va] 140	Asn	Gln	Asn	⊤rp
15	Gly 145	Pro	Туr	Asp	Arg	Asp 150	Ser	тгр	Asn	Pro	Va] 155	Tyr	Gly	Asn	Gln	Leu 160
	Phe	Met	Lys	⊤hr	Arg 165	Asn	Gly	Ser	Met	Lys 170	Ala	Ala	Asp	Asn	Phe 175	Leu
20	Asp	Pro	Asn	Lys 180	Ala	Ser	Ser	Leu	Leu 185	Ser	Ser	Gly	Phe	Ser 190	Pro	Asp
	Phe	Ala	⊤hr 195	Val	Ile	Thr	Met	Asp 200	Arg	Lys	Ala	Ser	Lys 205	Gln	Gln	⊤hr
25	Asn	Ile 210	Asp	Val	Ile	Туr	Glu 215	Arg	Val	Arg	Asp	Asp 220	Туr	Gln	Leu	His
	⊤rp 225	Thr	Ser	Тhr	Asn	Тгр 230	Lys	Gly	Тhr	Asn	Thr 235	Lys	Asp	Lys	тгр	Ile 240
30	Asp	Arg	Ser	Ser	Glu 245	Arg	туr	Lys	Ile	Asp 250	тгр	Glu	Lys	Glu	Glu 255	Met
	⊤hr	Asn														
35	<210 <211 <212 <213)> L> }> }>	217 40 PRT Stap	ohyld	ococo	cus a	aurei	ıs								
40	<400 Lys 1)> Glu	217 Туг	Met	Ser 5	Thr	Leu	Thr	Туr	Gly 10	Phe	Asn	Gly	Asn	Val 15	⊤hr
	Gly	Asp	Asp	Thr 20	Gly	Lys	Ile	Gly	G]y 25	Leu	Ile	Gly	Ala	Asn 30	Val	Ser
45	Ile	Gly	His 35	Thr	Leu	Lys	туr	Val 40								
	<210 <211 <212 <213)> L> 2> }>	218 109 PRT Stap	ohyld	ococo	cus a	aurei	ıs								
50	<400 Ala 1)> Asp	218 Ser	Asp	Ile 5	Asn	Ile	Lys	Thr	Gly 10	Thr	⊤hr	Asp	Ile	Gly 15	Ser
55	Asn	Thr	тhr	Val 20	Lys	Тhr	Gly	Asp	Leu 25	Val	Тhr	⊤yr	Asp	Lys 30	Glu	Asn
	Gly	Met	His	Lys	Lys	Val	Phe	Тyr	Ser	Phe	Ile	Asp	Asp	Lys	Asn	His

35 45 40 Asn Lys Lys Leu Leu Val Ile Arg Thr Lys Gly Thr Ile Ala Gly Gln 50 60 5 Tyr Arg Val Tyr Ser Glu Glu Gly Ala Asn Lys Ser Gly Leu Ala Trp 65 70 75 80 Pro Ser Ala Phe Lys Val Gln Leu Gln Leu Pro Asp Asn Glu Val Ala 85 90 95 10 Gln Ile Ser Asp Tyr Tyr Pro Arg Asn Ser Ile Asp Thr 100 105 <210> <211> 219 145 <212> PRT <213> Staphylococcus aureus 15 <400> Val Gln Pro Asp Phe Lys Thr Ile Leu Glu Ser Pro Thr Asp Lys Lys 1 5 10 15 Val Gly Trp Lys Val Ile Phe Asn Asn Met Val Asn Gln Asn Trp Gly 20 25 30 20 Pro Tyr Asp Arg Asp Ser Trp Asn Pro Val Tyr Gly Asn Gln Leu Phe $\begin{array}{c} 35 \\ 40 \end{array}$ Met Lys Thr Arg Asn Gly Ser Met Lys Ala Ala Asp Asn Phe Leu Asp 50 55 60 25 Pro Asn Lys Ala Ser Ser Leu Leu Ser Ser Gly Phe Ser Pro Asp Phe 65 70 75 80 65 Ala Thr Val Ile Thr Met Asp Arg Lys Ala Ser Lys Gln Gln Thr Asn 85 90 95 30 Ile Asp Val Ile Tyr Glu Arg Val Arg Asp Asp Tyr Gln Leu His Trp 100 105 110 Thr Ser Thr Asn Trp Lys Gly Thr Asn Thr Lys Asp Lys Trp Ile Asp 115 120 125 35 Arg Ser Ser Glu Arg Tyr Lys Ile Asp Trp Glu Lys Glu Glu Met Thr 130 135 140 Asn 145 40 <210> 220 <211> 506 <212> PRT Staphylococcus aureus <213> 45 <400> Ala Asp Ser Asp Ile Asn Ile Lys Thr Gly Thr Thr Asp Ile Gly Ser 1 5 10 15 Asn Thr Thr Val Lys Thr Gly Asp Leu Val Thr Tyr Asp Lys Glu Asn 20 25 30 50 Gly Met Leu Lys Lys Val Phe Tyr Ser Phe Ile Asp Asp Lys Asn His 35 40 45 Asn Lys Lys Leu Leu Val Ile Arg Thr Lys Gly Thr Ile Ala Gly Gln 50 55 60 55 Tyr Arg Val Tyr Ser Glu Glu Gly Ala Asn Lys Ser Gly Leu Ala Trp 65 70 75 80

EP 2 510 947 A1

	Pro	Ser	Ala	Phe	Lys 85	Val	Gln	Leu	Gln	Leu 90	Pro	Asp	Asn	Glu	Va] 95	Ala
5	Gln	Ile	Ser	Asp 100	туг	Туr	Pro	Arg	Asn 105	Ser	Ile	Asp	Thr	Lys 110	Glu	Туr
	Met	Ser	Thr 115	Leu	Thr	Тyr	Gly	Phe 120	Asn	Gly	Asn	Val	Thr 125	Gly	Asp	Asp
10	Thr	Gly 130	Lys	Ile	Gly	Gly	Leu 135	I]e	Gly	Ala	Asn	Va] 140	Ser	Ile	Gly	His
	Thr 145	Leu	Lys	туr	Val	G]n 150	Pro	Asp	Phe	Lys	тhr 155	Ile	Leu	Glu	Ser	Pro 160
15	Thr	Asp	Lys	Lys	Va] 165	Gly	тгр	Lys	Val	I]e 170	Phe	Asn	Asn	Met	Va] 175	Asn
10	Gln	Asn	тгр	Gly 180	Pro	Тyr	Asp	Arg	Asp 185	Ser	тгр	Asn	Pro	Val 190	Тyr	Gly
20	Asn	Gln	Leu 195	Phe	Met	Lys	Thr	Arg 200	Asn	Gly	Ser	Met	Lys 205	Ala	Ala	Asp
20	Asn	Phe 210	Leu	Asp	Pro	Asn	Lys 215	Ala	Ser	Ser	Leu	Leu 220	Ser	Ser	Gly	Phe
25	Ser 225	Pro	Asp	Phe	Ala	Thr 230	Val	Ile	Тhr	Met	Asp 235	Arg	Lys	Ala	Ser	Lys 240
20	Gln	Gln	Thr	Asn	I]e 245	Asp	Val	Ile	Тyr	Glu 250	Arg	Val	Arg	Asp	Asp 255	Туr
30	Gln	Leu	His	тгр 260	Thr	Ser	Thr	Asn	Тгр 265	Lys	Gly	Thr	Asn	Тhr 270	Lys	Asp
00	Lys	тгр	Ile 275	Asp	Arg	Ser	Ser	Glu 280	Arg	Тyr	Lys	Ile	Asp 285	тгр	Glu	Lys
25	Glu	Glu 290	Met	Тhr	Asn	Ala	Ser 295	Gly	Gly	Gly	Ser	Met 300	Ala	Met	Ile	Lys
55	Met 305	Ser	Pro	Glu	Glu	I]e 310	Arg	Ala	Lys	Ser	Gln 315	Ser	туr	Gly	Gln	Gly 320
40	Ser	Asp	Gln	Ile	Arg 325	Gln	Ile	Leu	Ser	Asp 330	Leu	Тhr	Arg	Ala	G]n 335	Gly
40	Glu	Ile	Ala	Ala 340	Asn	тгр	Glu	Gly	G]n 345	Ala	Phe	Ser	Arg	Phe 350	Glu	Glu
45	Gln	Phe	G]n 355	Gln	Leu	Ser	Pro	Lys 360	Val	Glu	Lys	Phe	Ala 365	Gln	Leu	Leu
40	Glu	Glu 370	Ile	Lys	Gln	Gln	Leu 375	Asn	Ser	Thr	Ala	Asp 380	Ala	Val	Gln	Glu
50	Gln 385	Asp	Gln	Gln	Leu	Ser 390	Asn	Asn	Phe	Gly	Leu 395	Gln	Ala	Ser	Gly	Gly 400
50	Gly	Ser	Met	Gly	Gly 405	Тyr	Lys	Gly	Ile	Lys 410	Ala	Asp	Gly	Gly	Lys 415	Val
	Asp	Gln	Ala	Lys 420	Gln	Leu	Ala	Ala	Lys 425	Thr	Ala	Lys	Asp	Ile 430	Glu	Ala
55	Cys	Gln	Lys 435	Gln	Thr	Gln	Gln	Leu 440	Ala	Glu	Тyr	Ile	G]u 445	Gly	Ser	Asp

	⊤rp	Glu 450	Gly	Gln	Phe	Ala	Asn 455	Lys	Val	Lys	Asp	Val 460	Leu	Leu	Ile	Met
5	Ala 465	Lys	Phe	Gln	Glu	Glu 470	Leu	Val	Gln	Pro	Met 475	Ala	Asp	His	Gln	Lys 480
	Ala	Ile	Asp	Asn	Leu 485	Ser	Gln	Asn	Leu	A]a 490	Lys	Туr	Asp	Thr	Leu 495	Ser
10	Ile	Lys	Gln	G]y 500	Leu	Asp	Arg	Val	Asn 505	Pro						
	<210 <211 <212 <213)> 1> 2> 3>	221 436 PRT Stap	ohyld	ococo	cus a	aurei	JS								
15	<400 Asp 1)> Ser	221 Gln	Gln	Val 5	Asn	Ala	Ala	Thr	Glu 10	Ala	⊤hr	Asn	Ala	Thr 15	Asn
	Asn	Gln	Ser	Thr 20	Gln	Val	Ser	G]n	A]a 25	Thr	Ser	G]n	Pro	Ile 30	Asn	Phe
20	Gln	Val	Gln 35	Lys	Asp	Gly	Ser	Ser 40	Glu	Lys	Ser	His	Met 45	Asp	Asp	Tyr
	Met	Gln 50	His	Pro	Gly	Lys	va1 55	Ile	Lys	Gln	Asn	Asn 60	Lys	Туr	туг	Phe
25	Gln 65	Thr	Val	Leu	Asn	Asn 70	Ala	Ser	Phe	Тгр	Lys 75	Glu	Туr	Lys	Phe	⊤yr 80
	Asn	Ala	Asn	Asn	Gln 85	Glu	Leu	Ala	Тhr	тhr 90	Val	Val	Asn	Asp	Asn 95	Lys
30	Lys	Ala	Asp	Thr 100	Arg	Thr	Ile	Asn	Val 105	Ala	Val	Glu	Pro	Gly 110	туг	Lys
	Ser	Leu	Thr 115	Тhr	Lys	Val	His	I]e 120	Val	Val	Pro	Gln	Ile 125	Asn	Туг	Asn
35	Нis	Arg 130	туг	Тhr	⊤hr	ніs	Leu 135	Glu	Phe	Glu	Lys	A]a 140	Ile	Pro	Тhr	Leu
	Ala 145	Ala	Ser	Gly	Gly	Gly 150	Ser	Cys	Gly	Asn	G]n 155	G∖A	Glu	Lys	Asn	Asn 160
40	Lys	Ala	Glu	Тhr	Lys 165	Ser	туr	Lys	Met	Asp 170	Asp	Gly	Lys	Тhr	Val 175	Asp
	Ile	Pro	Lys	Asp 180	Pro	Lys	Arg	Ile	Ala 185	Val	Val	Ala	Pro	Thr 190	туг	Ala
45	Gly	Gly	Leu 195	Lys	Lys	Leu	Gly	A]a 200	Asn	Ile	Val	Ala	Va] 205	Asn	Gln	Gln
	Val	Asp 210	Gln	Ser	Lys	Val	Leu 215	Lys	Asp	Lys	Phe	Lys 220	Gly	Val	Тhr	Lys
50	Ile 225	Gly	Asp	Gly	Asp	Va] 230	Glu	Lys	Val	Ala	Lys 235	Glu	Lys	Pro	Asp	Leu 240
	Ile	Ile	Val	туг	Ser 245	Тhr	Asp	Lys	Asp	I]e 250	Lys	Lys	туr	Gln	Lys 255	Val
55	Ala	Pro	тhr	Va] 260	Val	Val	Asp	туг	Asn 265	Lys	НİS	Lys	туr	Leu 270	Glu	Gln
	Gln	Glu	Met	Leu	Gly	Lys	Ile	Val	Gly	Lys	Glu	Asp	Lys	Val	Lys	Ala

			275					280					285			
	тгр	Lys 290	Lys	Asp	тгр	Glu	Glu 295	Thr	Thr	Ala	Lys	Asp 300	Gly	Lys	Glu	Ile
5	Lys 305	Lys	Ala	Ile	Gly	G]n 310	Asp	Ala	Тhr	Val	Ser 315	Leu	Phe	Asp	Glu	Phe 320
	Asp	Lys	Lys	Leu	Туг 325	Thr	Туr	Gly	Asp	Asn 330	тгр	Gly	Arg	Gly	G]y 335	Glu
10	Val	Leu	⊤yr	G]n 340	Ala	Phe	Gly	Leu	Lys 345	Met	Gln	Pro	Glu	G]n 350	Gln	Lys
	Leu	Тhr	Ala 355	Lys	Ala	Gly	тгр	Ala 360	Glu	Val	Lys	Gln	Glu 365	Glu	Ile	Glu
15	Lys	Туг 370	Ala	Gly	Asp	Тyr	Ile 375	Val	Ser	⊤hr	Ser	Glu 380	Gly	Lys	Pro	Thr
	Pro 385	Gly	⊤yr	Glu	Ser	Thr 390	Asn	Met	тгр	Lys	Asn 395	Leu	Lys	Ala	Тhr	Lys 400
20	Glu	Gly	His	Ile	Va] 405	Lys	Val	Asp	Ala	G∣y 410	Thr	Туr	Тгр	Туr	Asn 415	Asp
	Pro	Туr	⊤hr	Leu 420	Asp	Phe	Met	Arg	Lys 425	Asp	Leu	Lys	Glu	Lys 430	Leu	Ile
25	Lys	Ala	Ala 435	Lys												
	<210)> L>	222 584													
20	<212 <213	2> 3>	PRT Stap	bhy1c	сосо	cus a	aurei	ıs								
30	<212 <213 <400 Ala 1	2> 3>)> Asp	PRT Stap 222 Ser	ohyld Asp	Ile 5	cus a Asn	aureu Ile	is Lys	Thr	G]y 10	Thr	Thr	Asp	Ile	G]y 15	Ser
30 35	<212 <213 <400 Ala 1 Asn	2> 3> D> Asp Thr	PRT Stap 222 Ser Thr	ohyld Asp Val 20	Ile 5 Lys	cus a Asn Thr	ureu Ile Gly	ıs Lys Asp	Thr Leu 25	Gly 10 Val	Thr Thr	Thr Tyr	Asp Asp	Ile Lys 30	Gly 15 Glu	Ser Asn
30 35	<212 <213 <400 Ala 1 Asn Gly	2> 3> O> Thr Met	PRT Star 222 Ser Thr Leu 35	Asp Val 20 Lys	Ile 5 Lys Lys	cus a Asn Thr Val	ureu Ile Gly Phe	Lys Asp Tyr 40	Thr Leu 25 Ser	Gly 10 Val Phe	Thr Thr Ile	Thr Tyr Asp	Asp Asp Asp 45	Ile Lys 30 Lys	Gly 15 Glu Asn	Ser Asn His
30 35 40	<212 <213 <400 ATa 1 Asn GTy Asn	2> 3> Asp Thr Met Lys 50	PRT Star 222 Ser Thr Leu 35 Lys	Asp Val 20 Lys Leu	Ile 5 Lys Lys Leu	cus a Asn Thr Val Val	Ile Gly Phe 1le 55	Lys Asp Tyr 40 Arg	Thr Leu 25 Ser Thr	Gly 10 Val Phe Lys	Thr Thr Ile Gly	Thr Tyr Asp Thr 60	Asp Asp Asp 45 Ile	Ile Lys 30 Lys Ala	Gly 15 Glu Asn Gly	Ser Asn His Gln
30 35 40	<212 <213 <400 Ala 1 Asn Gly Asn Tyr 65	2> 3> D> Asp Thr Met Lys 50 Arg	PRT Star 222 Ser Thr Leu 35 Lys val	Asp Val 20 Lys Leu Tyr	Ile Lys Lys Leu Ser	Cus a Asn Thr Val Val Glu 70	Ile Gly Phe Ile 55 Glu	Lys Asp Tyr 40 Arg Gly	Thr Leu 25 Ser Thr Ala	Gly 10 Val Phe Lys Asn	Thr Thr Ile Gly Lys 75	Thr Tyr Asp Thr 60 Ser	Asp Asp Asp 45 Ile Gly	Ile Lys 30 Lys Ala Leu	Gly Glu Asn Gly Ala	Ser Asn His Gln Trp 80
30 35 40	<212 <213 <400 Ala 1 Asn Gly Asn Tyr 65 Pro	2> 3> Asp Thr Met Lys 50 Arg Ser	PRT Star 222 Ser Thr Leu 35 Lys val Ala	Asp Val 20 Lys Leu Tyr Phe	Ile Lys Lys Leu Ser Lys 85	Cus a Asn Thr Val Val Glu 70 Val	Ile Gly Phe Ile Glu Gln	Lys Asp Tyr 40 Arg Gly Leu	Thr Leu 25 Ser Thr Ala Gln	Gly 10 Val Phe Lys Asn Leu 90	Thr Thr Ile Gly Lys 75 Pro	Thr Tyr Asp Thr 60 Ser Asp	Asp Asp 45 Ile Gly Asn	Ile Lys Lys Ala Leu Glu	Gly Glu Asn Gly Ala Yal 95	Ser Asn His Gln Trp 80 Ala
30 35 40	<212 <213 <400 Ala 1 Asn Gly Asn Tyr 65 Pro Gln	2> Asp Thr Met Lys So Arg Ser Ile	PRT Star 222 Ser Thr Leu 35 Lys val Ala Ser	Asp Val Lys Leu Tyr Phe Asp	Ile Lys Lys Leu Ser Lys 85 Tyr	Cus a Asn Thr Val Val Glu 70 Val Tyr	Ile Gly Phe Ile Glu Gln Pro	Lys Asp Tyr Arg Gly Leu Arg	Thr Leu Ser Thr Ala Gln Asn 105	Gly 10 Val Phe Lys Asn Leu 90 Ser	Thr Thr Ile Gly Lys 75 Pro Ile	Thr Tyr Asp Thr 60 Ser Asp Asp	Asp Asp 45 Ile Gly Asn Thr	Ile Lys Ala Leu Glu Lys 110	Gly Glu Asn Gly Ala Val 95 Glu	Ser Asn His Gln Trp 80 Ala Tyr
30 35 40 45	<pre><212 <213 <400 Ala 1 Asn Gly Asn Tyr 65 Pro Gln Met</pre>	2> Asp Thr Met Lys So Arg Ser Ile Ser	PRT Star 222 Ser Thr Leu 35 Lys val Ala Ser Thr 115	Asp Val 20 Lys Leu Tyr Phe Asp 100 Leu	Ile Lys Lys Leu Ser Lys Tyr Thr	Cus a Asn Thr Val Val Glu Val Tyr Tyr	Ile Gly Phe Ile Glu Gln Pro Gly	Lys Asp Tyr 40 Arg Gly Leu Arg Phe 120	Thr Leu Ser Thr Ala Gln Asn 105 Asn	Gly Val Phe Lys Asn Leu 90 Ser Gly	Thr Thr Ile Gly Lys Pro Ile Asn	Thr Tyr Asp Thr 60 Ser Asp Asp Val	Asp Asp 45 Ile Gly Asn Thr Thr	Ile Lys Ala Leu Glu Lys 110 Gly	Gly Glu Asn Gly Ala Val 95 Glu Asp	Ser Asn His Gln Trp Ala Tyr Asp
30 35 40 45 50	<pre><212 <213 <400 Ala 1 Asn Gly Asn Tyr 65 Pro Gln Met Thr</pre>	2> 3> Dasp Thr Met Lys So Arg Ser Ile Ser Gly 130	PRT Star 222 Ser Thr Leu 35 Lys Val Ala Ser Thr 115 Lys	Asp Val 20 Lys Leu Tyr Phe Asp 100 Leu Ile	Ile Lys Lys Leu Ser Lys Tyr Thr Gly	Cus a Asn Thr Val Val Glu Val Tyr Tyr Gly	Ile Gly Phe Ile Glu Gln Pro Gly Leu	Lys Asp Tyr 40 Arg Gly Leu Arg Phe 120 Ile	Thr Leu Ser Thr Ala Gln Asn 105 Asn Gly	Gly Val Phe Lys Asn Leu 90 Ser Gly Ala	Thr Thr Ile Gly Lys Pro Ile Asn Asn	Thr Tyr Asp Thr 60 Ser Asp Asp Val Val 140	Asp Asp 45 Ile Gly Asn Thr 125 Ser	Ile Lys Ala Leu Glu Lys 110 Gly Ile	Gly Glu Asn Gly Ala Val 95 Glu Asp Gly	Ser Asn His Gln Trp &0 Ala Tyr Asp His
30 35 40 45 50	<pre><212 <213 <400 Ala 1 Asn Gly Asn Tyr 65 Pro Gln Met Thr 145</pre>	2> 3> Dasp Thr Met Lys 50 Arg Ser Ile Ser Gly 130 Leu	PRT Stap 222 Ser Thr Leu 35 Lys Val Ala Ser Thr 115 Lys Lys	Asp Val 20 Lys Leu Tyr Phe Asp 100 Leu Ile Tyr	Ile Lys Lys Leu Ser Lys Tyr Thr Gly Val	Cus a Asn Thr Val Val Glu Val Tyr Tyr Gly Gly Sln	Ile Gly Phe Jle Glu Gln Pro Gly Leu 135 Pro	Lys Asp Tyr 40 Arg Gly Leu Arg Phe 120 Ile Asp	Thr Leu Ser Thr Ala Gln Asn 105 Asn Gly Phe	Gly Val Phe Lys Asn Leu 90 Ser Gly Ala Lys	Thr Thr Ile Gly Lys Pro Ile Asn Asn Thr	Thr Tyr Asp Thr 60 Ser Asp Val Val 140 Ile	Asp Asp 45 Ile Gly Asn Thr 125 Ser Leu	Ile Jys Lys Ala Leu Glu Lys 110 Gly Ile Glu	Gly Glu Asn Gly Ala Val Glu Asp Gly Ser	Ser Asn His Gln Trp Ala Tyr Asp His Pro

	Gln	Asn	тгр	Gly 180	Pro	Туr	Asp	Arg	Asp 185	Ser	тгр	Asn	Pro	Val 190	Туr	Gly
5	Asn	Gln	Leu 195	Phe	Met	Lys	Thr	Arg 200	Asn	Gly	Ser	Met	Lys 205	Ala	Ala	Asp
	Asn	Phe 210	Leu	Asp	Pro	Asn	Lys 215	Ala	Ser	Ser	Leu	Leu 220	Ser	Ser	Gly	Phe
10	Ser 225	Pro	Asp	Phe	Ala	Thr 230	Val	I]e	Thr	Met	Asp 235	Arg	Lys	Ala	Ser	Lys 240
	Gln	Gln	Thr	Asn	I]e 245	Asp	Val	Ile	Тyr	Glu 250	Arg	Val	Arg	Asp	Asp 255	Tyr
15	Gln	Leu	His	Тгр 260	Thr	Ser	⊤hr	Asn	Тгр 265	Lys	Gly	Thr	Asn	тhr 270	Lys	Asp
10	Lys	Тгр	11e 275	Asp	Arg	Ser	Ser	Glu 280	Arg	Тyr	Lys	Ile	Asp 285	тгр	Glu	Lys
20	Glu	Glu 290	Met	Thr	Asn	Ala	Ser 295	Gly	Gly	Gly	Ser	Cys 300	Gly	Asn	Gln	Gly
20	Glu 305	Lys	Asn	Asn	Lys	Ala 310	Glu	Тhr	Lys	Ser	Туг 315	Lys	Met	Asp	Asp	G]y 320
25	Lys	Тhr	Val	Asp	Ile 325	Pro	Lys	Asp	Pro	Lys 330	Arg	Ile	Ala	Val	Va] 335	Ala
20	Pro	Thr	Туr	A]a 340	Gly	Gly	Leu	Lys	Lys 345	Leu	Gly	Ala	Asn	Ile 350	Val	Ala
30	Val	Asn	G]n 355	Gln	Val	Asp	Gln	Ser 360	Lys	Val	Leu	Lys	Asp 365	Lys	Phe	Lys
50	Gly	Va] 370	Thr	Lys	Ile	Gly	Asp 375	Gly	Asp	Val	Glu	Lys 380	Val	Ala	Lys	Glu
25	Lys 385	Pro	Asp	Leu	Ile	Ile 390	Val	туг	Ser	Thr	Asp 395	Lys	Asp	Ile	Lys	Lys 400
30	туг	Gln	Lys	Val	Ala 405	Pro	Тhr	Val	Val	Val 410	Asp	туг	Asn	Lys	ніs 415	Lys
10	Тyr	Leu	Glu	G]n 420	Gln	Glu	Met	Leu	G]y 425	Lys	Ile	Val	Gly	Lys 430	Glu	Asp
40	Lys	Val	Lys 435	Ala	тгр	Lys	Lys	Asp 440	тгр	Glu	Glu	Thr	Thr 445	Ala	Lys	Asp
15	Gly	Lys 450	Glu	Ile	Lys	Lys	Ala 455	Ile	Gly	Gln	Asp	Ala 460	Thr	Val	Ser	Leu
40	Phe 465	Asp	Glu	Phe	Asp	Lys 470	Lys	Leu	Туr	Thr	Туг 475	Gly	Asp	Asn	тгр	Gly 480
	Arg	Gly	Gly	Glu	Val 485	Leu	Туr	Gln	Ala	Phe 490	Gly	Leu	Lys	Met	Gln 495	Pro
50	Glu	Gln	Gln	Lys 500	Leu	Thr	Ala	Lys	Ala 505	Gly	тгр	Ala	Glu	Val 510	Lys	Gln
	Glu	Glu	I]e 515	Glu	Lys	Тyr	Ala	G]y 520	Asp	Тyr	Ile	Val	Ser 525	Thr	Ser	Glu
55	Gly	Lys 530	Pro	Thr	Pro	Gly	туг 535	Glu	Ser	Thr	Asn	Met 540	тгр	Lys	Asn	Leu

	Lys 545	Ala	Тhr	Lys	Glu	Gly 550	His	Ile	Val	Lys	Va] 555	Asp	Ala	Gly	Thr	⊤yr 560
5	⊤rp	туr	Asn	Asp	Pro 565	туr	Тhr	Leu	Asp	Рһе 570	Met	Arg	Lys	Asp	Leu 575	Lys
°	Glu	Lys	Leu	I]e 580	Lys	Ala	Ala	Lys								
10	<210 <211 <212 <213	> > > >	223 498 PRT Stap	ohyld	ococo	cus a	aurei	JS								
	<400 Cys 1)> Gly	223 Asn	Gln	Gly 5	Glu	Lys	Asn	Asn	Lys 10	Ala	Glu	Thr	Lys	Ser 15	Tyr
15	Lys	Met	Asp	Asp 20	Gly	Lys	Thr	Val	Asp 25	Ile	Pro	Lys	Asp	Pro 30	Lys	Arg
	Ile	Ala	Va] 35	Val	Ala	Pro	Thr	Tyr 40	Ala	Gly	Gly	Leu	Lys 45	Lys	Leu	Gly
20	Ala	Asn 50	Ile	Val	Ala	Val	Asn 55	Gln	Gln	Val	Asp	Gln 60	Ser	Lys	Val	Leu
	Lys 65	Asp	Lys	Phe	Lys	Gly 70	Val	Тhr	Lys	Ile	G]y 75	Asp	Gly	Asp	Val	Glu 80
25	Lys	Val	Ala	Lys	Glu 85	Lys	Pro	Asp	Leu	Ile 90	Ile	Val	Туr	Ser	Thr 95	Asp
	Lys	Asp	Ile	Lys 100	Lys	Туr	Gln	Lys	Va] 105	Ala	Pro	Thr	Val	Va] 110	Val	Asp
30	⊤yr	Asn	Lys 115	His	Lys	туr	Leu	Glu 120	Gln	Gln	Glu	Met	Leu 125	Gly	Lys	Ile
	Val	Gly 130	Lys	Glu	Asp	Lys	Va] 135	Lys	Ala	Тrр	Lys	Lys 140	Asp	тгр	Glu	Glu
35	⊤hr 145	Thr	Ala	Lys	Asp	Gly 150	Lys	Glu	Ile	Lys	Lys 155	Ala	Ile	Gly	Gln	Asp 160
	Ala	Thr	Val	Ser	Leu 165	Phe	Asp	Glu	Phe	Asp 170	Lys	Lys	Leu	туr	Thr 175	Тyr
40	Gly	Asp	Asn	Тгр 180	Gly	Arg	Gly	Gly	Glu 185	Val	Leu	Tyr	Gln	Ala 190	Phe	Gly
	Leu	Lys	Met 195	Gln	Pro	Glu	Gln	G]n 200	Lys	Leu	Thr	Ala	Lys 205	Ala	Gly	⊤rp
45	Ala	Glu 210	Val	Lys	Gln	Glu	Glu 215	Ile	Glu	Lys	Туr	A]a 220	Gly	Asp	Туr	Ile
	Va1 225	Ser	Тhr	Ser	Glu	G]y 230	Lys	Pro	Thr	Pro	G]y 235	Tyr	Glu	Ser	Thr	Asn 240
50	Met	Trp	Lys	Asn	Leu 245	Lys	Ala	Thr	Lys	G]u 250	Gly	His	Ile	Val	Lys 255	Val
	Asp	Ala	Gly	Тhr 260	⊤yr	Тгр	туr	Asn	Asp 265	Pro	Туг	⊤hr	Leu	Asp 270	Phe	Met
55	Arg	Lys	Asp 275	Leu	Lys	Glu	Lys	Leu 280	Ile	Lys	Ala	Ala	Lys 285	Ala	Ser	Gly
	Gly	Gly	Ser	Met	Ala	Met	Ile	Lys	Met	Ser	Pro	Glu	Glu	Ile	Arg	Ala

	290)		295			300		
	Lys Ser 305	Gln Ser	Tyr Gly 310	y Gln C D	Gly Ser	Asp Gln 315	Ile Arg	Gln Ile	Leu 320
5	Ser Asp) Leu Thr	Arg Ala 325	a Gln (Gly Glu	Ile Ala 330	Ala Asn	Trp Glu 335	g]y
	Gln Ala	Phe Ser 340	Arg Phe	e Glu (Glu Gln 345	Phe Gln	Gln Leu	Ser Pro 350) Lys
10	Val Glu	I Lys Phe 355	Ala Glı	n Leu L	_eu Glu 360	Glu Ile	Lys Gln 365	Gln Leu	I Asn
	Ser Thr 370	· Ala Asp	Ala Va	l Gln (375	Glu Gln	Asp Gln	Gln Leu 380	Ser Asn	I Asn
15	Phe Gly 385	′Leu Gln	Ala Sei 390	r Gly ()	Gly Gly	Ser Met 395	Gly Gly	Tyr Lys	Gly 400
	Ile Lys	s Ala Asp	Gly Gly 405	y Lys ∖	/al Asp	Gln Ala 410	Lys Gln	Leu Ala 415	Ala
20	Lys Thr	Ala Lys 420	Asp Ile	e Glu A	Ala Cys 425	Gln Lys	Gln Thr	Gln Gln 430	Leu
	Ala Glı	ITyr Ile 435	Glu Gly	y Ser A	Asp Trp 440	Glu Gly	Gln Phe 445	Ala Asn	I Lys
25	val Lys 450	Asp Val	Leu Lei	u Ile № 455	Met Ala	Lys Phe	Gln Glu 460	Glu Leu	val
	Gln Pro 465) Met Ala	Asp His 470	s Gln L D	_ys Ala	Ile Asp 475	Asn Leu	ser Gln	Asn 480
30	Leu Ala	ı Lys Tyr	Asp Thi 485	r Leu S	Ser Ile	Lys Gln 490	Gly Leu	Asp Arc 495	Val
	Asn Pro)							
35	<210> <211> <212> <213>	224 520 PRT Staphyl	ococcus	aureus	5				
	<400> Ser Glu 1	224 I Asn Ser	Val Thi	r Gln s	Ser Asp	Ser Ala	Ser Asn	Glu Ser	' Lys
40	- Ser Asr	i Asp Ser 20	Ser Sei	r Val s	Ser Ala 25	Ala Pro	Lys Thr	Asp Asp 30) Thr
45	Asn Val	Ser Asp 35	Thr Lys	s Thr S	Ser Ser 40	Asn Thr	Asn Asn 45	Gly Glu	Thr
40	Ser Val 50	Ala Gln	Asn Pro	o Ala C 55	Gln Gln	Glu Thr	⊤hr Gln 60	Ser Ser	Ser
50	Thr Asr 65	ı Ala Thr	Thr Glu 70	u Glu I	Thr Pro	Val Thr 75	Gly Glu	Ala Thr	Thr 80
50	Thr Thr	Thr Asn	Gln Ala 85	a Asn T	Thr Pro	Ala Thr 90	Thr Gln	Ser Ser 95	Asn
	Thr Asr	ı Ala Glu 100	Glu Lei	u Val A	Asn Gln 105	⊤hr Ser	Asn Glu	Thr Thr 110	Ser
55	Asn Asp	Thr Asn 115	Thr Va	l Ser S	Ser Val 120	Asn Ser	Pro Gln 125	Asn Ser	Thr

	Asn	Ala 130	Glu	Asn	Val	Ser	Тhr 135	Thr	Gln	Asp	Thr	Ser 140	Thr	Glu	Ala	Thr
5	Pro 145	Ser	Asn	Asn	Glu	Ser 150	Ala	Pro	Gln	Ser	тhr 155	Asp	Ala	Ser	Asn	Lys 160
	Asp	Val	Val	Asn	G]n 165	Ala	Val	Asn	Thr	Ser 170	Ala	Pro	Arg	Met	Arg 175	Ala
10	Phe	Ser	Leu	Ala 180	Ala	Val	Ala	Ala	Asp 185	Ala	Pro	Val	Ala	Gly 190	Thr	Asp
	Ile	Thr	Asn 195	Gln	Leu	Thr	Asn	Va1 200	Thr	Val	Gly	Ile	Asp 205	Ser	Gly	Thr
15	Thr	Va] 210	Тyr	Pro	His	Gln	A]a 215	Gly	туr	Val	Lys	Leu 220	Asn	туr	Gly	Phe
	Ser 225	Val	Pro	Asn	Ser	Ala 230	Val	Lys	Gly	Asp	Thr 235	Phe	Lys	Ile	Thr	Va] 240
22	Pro	Lys	Glu	Leu	Asn 245	Leu	Asn	Gly	Val	Thr 250	Ser	Thr	Ala	Lys	Va1 255	Pro
20	Pro	Ile	Met	Ala 260	Gly	Asp	Gln	Val	Leu 265	Ala	Asn	Gly	Val	Ile 270	Asp	Ser
25	Asp	Gly	Asn 275	Val	Ile	Тyr	Thr	Phe 280	Thr	Asp	туr	Val	Asn 285	Thr	Lys	Asp
20	Asp	Val 290	Lys	Ala	Thr	Leu	Thr 295	Met	Pro	Ala	туr	Ile 300	Asp	Pro	Glu	Asn
	Va] 305	Lys	Lys	Тhr	Gly	Asn 310	Val	Thr	Leu	Ala	Thr 315	Gly	Ile	Gly	Ser	Thr 320
30	Thr	Ala	Asn	Lys	Thr 325	Val	Leu	Val	Asp	туг 330	Glu	Lys	Тyr	Gly	Lys 335	Phe
	туr	Asn	Leu	Ser 340	Ile	Lys	Gly	Thr	Ile 345	Asp	Gln	Ile	Asp	Lys 350	Thr	Asn
35	Asn	Thr	туг 355	Arg	Gln	Thr	Ile	туг 360	Val	Asn	Pro	Ser	Gly 365	Asp	Asn	Val
	Ile	Ala 370	Pro	Val	Leu	Thr	G]y 375	Asn	Leu	Lys	Pro	Asn 380	Thr	Asp	Ser	Asn
40	Ala 385	Leu	Ile	Asp	Gln	G]n 390	Asn	Thr	Ser	Ile	Lys 395	Val	Туг	Lys	Val	Asp 400
	Asn	Ala	Ala	Asp	Leu 405	Ser	Glu	Ser	туr	Phe 410	Val	Asn	Pro	Glu	Asn 415	Phe
45	Glu	Asp	Val	Thr 420	Asn	Ser	Val	Asn	I]e 425	Thr	Phe	Pro	Asn	Pro 430	Asn	Gln
	Тyr	Lys	Va] 435	Glu	Phe	Asn	Thr	Pro 440	Asp	Asp	Gln	Ile	Thr 445	Thr	Pro	Туг
50	Ile	Va1 450	Val	Val	Asn	Gly	ніs 455	Ile	Asp	Pro	Asn	Ser 460	Lys	Gly	Asp	Leu
	Ala 465	Leu	Arg	Ser	Thr	Leu 470	Тyr	Gly	туr	Asn	Ser 475	Asn	Ile	Ile	тгр	Arg 480
55	Ser	Met	Ser	тгр	Asp 485	Asn	Glu	Val	Ala	Phe 490	Asn	Asn	Gly	Ser	Gly 495	Ser

	Gly Asp	Gly Ile Asp Lys Pro Val Val Pro Glu Gln Pro Asp Glu Pro 500 505 510
5	Gly Glu	Ile Glu Pro Ile Pro Glu 515 520
	<210> <211> <212> <213>	225 4 PRT Artificial Sequence
10	<220> <223>	Peptide linker
	<400> Pro Ser 1	225 Gly Ser
15	<210> <211> <212> <213>	226 6 PRT Artificial Sequence
20	<220> <223>	Hexahistidine tag
	<400> His His 1	226 His His His 5
25	<210> <211> <212> <213>	227 4 PRT Artificial Sequence
30	<220> <223>	Poly-glycine linker
	<400> Gly Gly 1	227 Gly Gly
35	<210> <211> <212> <213>	228 20 PRT Staphylococcus aureus
40	<400> Met Ser 1	228 Gly Gly Ile Gly Asn Gln Tyr Ala Val Asp Pro Thr Ser Tyr 5 10 15
	Leu Gln	Ser Arg 20
45	<210> <211> <212> <213>	229 23 PRT Staphylococcus aureus
50	<400> Ala Gly 1	229 Asp Gln Ile Ala Tyr Ser Gly Ser Thr Gly Asn Ser Thr Ala 5 10 15
	Pro His	Val His Phe Gln Arg 20
55	<210> <211> <212> <213>	230 4 PRT Artificial Sequence

	<220 <223)> >	tetrapeptide fragment of SEQ ID NO: 172													
5	<400 Gly 1)> Ser	230 Gly	Ser												
10	<210 <211 <212 <213		231 293 PRT Stap	ohyla	ococo	cus a	aurei	ıs								
	<400 Ala 1)> Asp	231 Ser	Asp	Ile 5	Asn	Ile	Lys	⊤hr	Gly 10	Thr	Thr	Asp	Ile	Gly 15	Ser
15	Asn	Thr	Тhr	Va] 20	Lys	Тhr	Gly	Asp	Leu 25	Val	Тhr	Тyr	Asp	Lys 30	Glu	Asn
	Gly	Met	His 35	Lys	Lys	Val	Phe	⊤yr 40	Ser	Phe	Ile	Asp	Asp 45	Lys	Asn	His
20	Asn	Lys 50	Lys	Leu	Leu	Val	Ile 55	Arg	⊤hr	Lys	Gly	тhr 60	Ile	Ala	Gly	Gln
	туг 65	Arg	Val	туг	Ser	Glu 70	Glu	Gly	Ala	Asn	Lys 75	Ser	Gly	Leu	Ala	тгр 80
25	Pro	Ser	Ala	Phe	Lys 85	Val	Gln	Leu	Gln	Leu 90	Pro	Asp	Asn	Glu	Va] 95	Ala
	Gln	Ile	Ser	Asp 100	Тyr	туг	Pro	Arg	Asn 105	Ser	Ile	Asp	Thr	Lys 110	Glu	Туг
30	Met	Ser	Thr 115	Leu	Thr	Туr	Gly	Phe 120	Asn	Gly	Asn	Val	Thr 125	Gly	Asp	Asp
	Thr	Gly 130	Lys	Ile	Gly	Gly	Leu 135	Ile	Gly	Ala	Asn	Val 140	Ser	Ile	Gly	His
35	Тhr 145	Leu	Lys	туr	Val	Gln 150	Pro	Asp	Phe	Lys	Thr 155	Ile	Leu	Glu	Ser	Pro 160
	Тhr	Asp	Lys	Lys	Va] 165	Gly	тгр	Lys	Val	I]e 170	Phe	Asn	Asn	Met	Va] 175	Asn
40	Gln	Asn	тгр	Gly 180	Pro	туг	Asp	Arg	Asp 185	Ser	тгр	Asn	Pro	Val 190	туг	Gly
	Asn	Gln	Leu 195	Phe	Met	Lys	Thr	Arg 200	Asn	Gly	Ser	Met	Lys 205	Ala	Ala	Asp
45	Asn	Phe 210	Leu	Asp	Pro	Asn	Lys 215	Ala	Ser	Ser	Leu	Leu 220	Ser	Ser	Gly	Phe
	Ser 225	Pro	Asp	Phe	Ala	Thr 230	Val	Ile	тhr	Met	Asp 235	Arg	Lys	Ala	Ser	Lys 240
50	G]n	Gln	Thr	Asn	I]e 245	Asp	Val	Ile	Туr	Glu 250	Arg	Val	Arg	Asp	Asp 255	Туr
	Gln	Leu	His	тгр 260	Thr	Ser	Thr	Asn	⊤rp 265	Lys	Gly	Тhr	Asn	Тhr 270	Lys	Asp
55	Lys	тгр	Ile 275	Asp	Arg	Ser	Ser	Glu 280	Arg	Туr	Lys	Ile	Asp 285	тгр	Glu	Lys
	Glu	Glu 290	Met	Thr	Asn											

	<210 <211 <212 <213)> L> <u>?</u> > }>	232 296 PRT Stap	ohy1c	ococo	cus a	aurei	ıs								
5	<400 Met 1)> Ala	232 Ser	Ala	Asp 5	Ser	Asp	Ile	Asn	Ile 10	Lys	Thr	Gly	Thr	Thr 15	Asp
	I]e	Gly	Ser	Asn 20	Thr	Thr	Val	Lys	Thr 25	Gly	Asp	Leu	Val	Thr 30	Тyr	Asp
10	Lys	Glu	Asn 35	Gly	Met	Leu	Lys	Lys 40	Val	Phe	туr	Ser	Phe 45	Ile	Asp	Asp
	Lys	Asn 50	His	Asn	Lys	Lys	Leu 55	Leu	Val	Ile	Arg	тhr 60	Lys	Gly	Тhr	Ile
15	A]a 65	Gly	Gln	туr	Arg	Va] 70	туr	Ser	Glu	Glu	Gly 75	Ala	Asn	Lys	Ser	Gly 80
	Leu	Ala	Тгр	Pro	Ser 85	Ala	Phe	Lys	Val	G]n 90	Leu	Gln	Leu	Pro	Asp 95	Asn
20	Glu	Val	Ala	Gln 100	Ile	Ser	Asp	⊤yr	⊤yr 105	Pro	Arg	Asn	Ser	I]e 110	Asp	Thr
	Lys	Glu	Туг 115	Met	Ser	Thr	Leu	⊤hr 120	туr	Gly	Phe	Asn	Gly 125	Asn	Val	⊤hr
25	Gly	Asp 130	Asp	Thr	Gly	Lys	I]e 135	Gly	Gly	Leu	Ile	Gly 140	Ala	Asn	Val	Ser
	I]e 145	Gly	His	Thr	Leu	Lys 150	Туr	Val	Gln	Pro	Asp 155	Phe	Lys	Thr	I]e	Leu 160
30	Glu	Ser	Pro	Тhr	Asp 165	Lys	Lys	Val	Gly	Тгр 170	Lys	Val	Ile	Phe	Asn 175	Asn
	Met	Val	Asn	Gln 180	Asn	тгр	Gly	Pro	⊤yr 185	Asp	Arg	Asp	Ser	Тгр 190	Asn	Pro
35	Val	Тyr	Gly 195	Asn	Gln	Leu	Phe	Met 200	Lys	Thr	Arg	Asn	G]y 205	Ser	Met	Lys
	Ala	A]a 210	Asp	Asn	Phe	Leu	Asp 215	Pro	Asn	Lys	Ala	Ser 220	Ser	Leu	Leu	Ser
40	Ser 225	Gly	Phe	Ser	Pro	Asp 230	Phe	Ala	⊤hr	Val	I]e 235	Thr	Met	Asp	Arg	Lys 240
	Ala	Ser	Lys	Gln	G]n 245	Thr	Asn	Ile	Asp	Val 250	Ile	Тyr	Glu	Arg	Va] 255	Arg
45	Asp	Asp	Туr	G]n 260	Leu	His	тгр	⊤hr	Ser 265	Thr	Asn	тгр	Lys	Gly 270	Тhr	Asn
	Thr	Lys	Asp 275	Lys	тгр	Ile	Asp	Arg 280	Ser	Ser	Glu	Arg	туг 285	Lys	I]e	Asp
50	тгр	Glu 290	Lys	Glu	Glu	Met	тhr 295	Asn								
55	<210 <211 <212 <213)> L> 2> 3>	233 888 DNA Stap	ohylo	ococo	cus a	ureu	ıs								
	<400)>	233													

atggctagcg cagattetga tattaatatt aaaaceggta etacagatat tggaageaat actacagtaa aaacaggtga tttagtcact tatgataaag aaaatggcat gttaaaaaaa gtatttťata gttttáťcga tgatáaaaat catáataaaá aactgčťagt ťattagaacg aaaggtacca ttgctggtca atatagagtt tatagcgaag aaggtgctaa caaaagtggt ttagcctggc cttcagcctt taaggtacag ttgcaactac ctgataatga agtagctcaa 5 atatctgatt actatccaag aaattcgatt gatacaaaag agtatatgag tactttaact tatggattca acggtaatgt tactggtgat gatacaggaa aaattggcgg ccttattggt gcaaatgttt cgattggtca tacactgaaa tatgttcaac ctgatttcaa aacaatttta gagagcccaa ctgataaaaa agtaggctgg aaagtgatat ttaacaatat ggtgaatcaa aattggggac catatgatag agattcttgg aacccggtat atggcaatca acttttcatg aaaactagaa atggctctat gaaagcagca gataacttcc ttgatcctaa caaagcaagt 10 tetetattat etteagggtt tteaceagae ttegetaeag ttattaetat ggatagaaaa gcatccaaac aacaaacaaa tatagatgta atatacgaac gagttcgtga tgactaccaa ttgcactgga cttcaacaaa ttggaaaggt accaatacta aagataaatg gatagatcgt tcttcagaaa gatataaaat cgattgggaa aaagaagaaa tgacaaat <210> 234 <211> 306 15 <212> PRT <213> Staphylococcus epidermidis <400> Met Lys Lys Leu Leu Leu Pro Leu Ile Ala Leu Ile Leu Val Leu Ala 1 5 10 15 20 Ala Cys Gly Asn Asn Ser Asp Ser Gly Ser Lys Asp Ser Asp Lys Lys 20 25 30 Ala Glu Thr Lys Ser Tyr Lys Thr Asp Asp Gly Lys Thr Ile Lys Val 35 40 45 25 Pro Lys Asn Pro Lys Arg Ile Ala Val Val Ala Pro Ser Tyr Ala Gly 50 60 Gly Ile Lys Lys Leu Gly Gly Asn Val Val Ala Val Ser Asn Gln Val 65 70 75 80 30 Asp Gln Ser Ser Ile Leu Lys Asp Lys Phe Lys Gly Val Thr Lys Val 85 90 95 Gly Asp Asp Asp Val Glu Lys Val Ala Lys Gln Lys Pro Asp Leu Ile 100 105 110 35 Ile Val Leu Asp Gln Asn Lys Asn Ile Lys Lys Tyr Lys Lys Ile Ala 115 120 125 Ala Thr Val Pro Phe Asn Tyr Gln Lys His Lys Tyr Leu Glu Gln Gln 130 135 140 40 Glu Glu Leu Gly Lys Leu Leu Gly Lys Glu Asp Glu Val Lys Lys Trp 145 150 155 160 Glu Lys Gln Trp Lys Asp Gln Thr Ala Lys Asp Gly Lys Glu Ile Lys 165 170 175 45 Asn Lys Ile Gly Ala Asp Ser Thr Val Ser Ile Phe Asp Glu Phe Asp 180 185 190 Lys Lys Leu Tyr Thr Tyr Gly Asp Asn Trp Gly Arg Gly Gly Glu Val 195 200 205 50 Leu Tyr Gln Ala Phe Gly Leu Lys Met Ser Lys Gly Gln His Asp Leu 210 215 220 Thr Lys Lys Ala Gly Trp Ala Glu Val Asn Gln Glu Gln Ile Glu Lys 225 230 240 55 Val Ala Gly Asp Tyr Ile Val Ser Thr Ser Ala Gly Lys Ser Thr Pro 245 250 255

60 120

180 240

300

600 660

720

780 840

888

	Gly	Туr	Glu	Lys 260	⊤hr	Asn	Ile	Тгр	Lys 265	Asn	Leu	Pro	Ala	Va1 270	Lys	Lys
5	Gly	His	Va1 275	Ile	Lys	Val	Lys	а1а 280	Glu	Thr	Phe	⊤rp	туг 285	Asn	Asp	Pro
	Туr	Thr 290	Leu	Asp	Phe	Met	Arg 295	Lys	Asp	Leu	Lys	Lys 300	Lys	Leu	Met	Asp
40	Ala 305	Lys														
10	<210 <211 <211 <211	0> 1> 2> 3>	235 253 PRT Stap	ohyld	ococo	cus e	epide	ermid	dis							
15	<400 Met 1)> Arg	235 Tyr	Leu	Lys 5	Lys	Val	Thr	Ile	Tyr 10	Ile	Ser	Leu	Leu	Ile 15	Leu
	Val	Ser	Gly	Cys 20	Gly	Asn	Gly	Lys	Glu 25	Thr	Glu	I]e	Lys	G]n 30	Asn	Phe
20	Asn	Lys	Met 35	Leu	Asp	Met	туг	Pro 40	Thr	Lys	Asn	Leu	Glu 45	Asp	Phe	⊤yr
	Asp	Lys 50	Glu	Gly	⊤yr	Arg	Asp 55	Glu	Glu	Phe	Asp	Lys 60	Lys	Asp	Lys	Gly
25	⊤hr 65	Trp	Ile	Val	Gly	Ser 70	Thr	Met	Thr	Ile	Glu 75	Pro	Lys	Gly	Lys	⊤yr 80
	Met	Glu	Ser	Arg	G]y 85	Met	Phe	Leu	Туr	Ile 90	Asn	Arg	Asn	Тhr	Arg 95	⊤hr
30	⊤hr	Lys	Gly	туг 100	⊤yr	туr	Val	Arg	Lys 105	Thr	Thr	Asp	Asp	Ser 110	Lys	Gly
	Arg	Leu	Lys 115	Asp	Asp	Glu	Lys	Arg 120	Тyr	Pro	Val	Lys	Met 125	Glu	His	Asn
35	Lys	I]e 130	Ile	Pro	⊤hr	Lys	Pro 135	Ile	Pro	Asn	Asp	Lys 140	Leu	Lys	Lys	Glu
	I]e 145	Glu	Asn	Phe	Lys	Phe 150	Phe	Val	Gln	туr	Gly 155	Asp	Phe	Lys	Asn	Leu 160
40	Lys	Asp	Туr	Lys	Asp 165	Gly	Asp	Ile	Ser	Tyr 170	Asn	Pro	Asn	Val	Pro 175	Ser
	⊤yr	Ser	Ala	Lys 180	Tyr	Gln	Leu	Ser	Asn 185	Asn	Asp	Tyr	Asn	Val 190	Lys	Gln
45	Leu	Arg	Lys 195	Arg	Tyr	Asp	Ile	Pro 200	Thr	Asn	Gln	Ala	Pro 205	Lys	Leu	Leu
	Leu	Lys 210	Gly	Asp	Gly	Asp	Leu 215	Lys	Gly	Ser	Ser	I]e 220	Gly	Ser	Lys	Ser
50	Leu 225	Glu	Phe	Thr	Phe	Ile 230	Glu	Asn	Lys	Glu	G]u 235	Asn	Ile	Phe	Phe	Ser 240
	Asp	Gly	Val	Gln	Phe 245	Тhr	Pro	Ser	Glu	Asp 250	Ser	Glu	Ser			
55	<210 <211 <211 <211)> 1> 2> 3>	236 531 PRT Stap	ohyld	ococo	cus a	aurei	JS								

<400> 236 Val Gly Asn Val Thr Val Thr Val Phe Asp Asn Asn Thr Asn Thr Lys 1 10 15 Val Gly Glu Ala Val Thr Lys Glu Asp Gly Ser Tyr Leu Ile Pro Asn 20 25 30 5 Leu Pro Asn Gly Asp Tyr Arg Val Glu Phe Ser Asn Leu Pro Lys Gly 35 40 45 Tyr Glu Val Thr Pro Ser Lys Gln Gly Asn Asn Glu Glu Leu Asp Ser 50 55 60 10 Asn Gly Leu Ser Ser Val Ile Thr Val Asn Gly Lys Asp Asn Leu Ser 65 70 75 80 Ala Asp Leu Gly Ile Tyr Lys Pro Lys Tyr Asn Leu Gly Asp Tyr Val 85 90 95 15 Trp Glu Asp Thr Asn Lys Asn Gly Ile Gln Asp Gln Asp Glu Lys Gly 100 105 110 Ile Ser Gly Val Thr Val Thr Leu Lys Asp Glu Asn Gly Asn Val Leu 115 120 125 20 Lys Thr Val Thr Thr Asp Ala Asp Gly Lys Tyr Lys Phe Thr Asp Leu 130 135 140 Asp Asn Gly Asn Tyr Lys Val Glu Phe Thr Thr Pro Glu Gly Tyr Thr 145 150 155 160 25 Pro Thr Thr Val Thr Ser Gly Ser Asp Ile Glu Lys Asp Ser Asn Gly 165 170 175 Leu Thr Thr Gly Val Ile Asn Gly Ala Asp Asn Met Thr Leu Asp 180 185 190 30 Ser Gly Phe Tyr Lys Thr Pro Lys Tyr Asn Leu Gly Asn Tyr Val Trp 195 200 205 Glu Asp Thr Asn Lys Asp Gly Lys Gln Asp Ser Thr Glu Lys Gly Ile 210 215 220 35 Ser Gly Val Thr Val Thr Leu Lys Asn Glu Asn Gly Glu Val Leu Gln 225 230 235 240 Thr Thr Lys Thr Asp Lys Asp Gly Lys Tyr Gln Phe Thr Gly Leu Glu 245 250 255 40 Asn Gly Thr Tyr Lys Val Glu Phe Glu Thr Pro Ser Gly Tyr Thr Pro 260 265 270 Thr Gln Val Gly Ser Gly Thr Asp Glu Gly Ile Asp Ser Asn Gly Thr 275 280 285 45 Ser Thr Thr Gly Val Ile Lys Asp Lys Asp Asn Asp Thr Ile Asp Ser 290 295 300 Gly Phe Tyr Lys Pro Thr Tyr Asn Leu Gly Asp Tyr Val Trp Glu Asp 305 310 315 320 50 Thr Asn Lys Asn Gly Val Gln Asp Lys Asp Glu Lys Gly Ile Ser Gly 325 330 335 Val Thr Val Thr Leu Lys Asp Glu Asn Asp Lys Val Leu Lys Thr Val 340 345 350 55 Thr Thr Asp Glu Asn Gly Lys Tyr Gln Phe Thr Asp Leu Asn Asn Gly 355 360 365

	⊤hr	Tyr 370	Lys	Val	Glu	Phe	Glu 375	Тhr	Pro	Ser	Gly	Tyr 380	Thr	Pro	Thr	Ser
5	Va] 385	Thr	Ser	Gly	Asn	Asp 390	Thr	Glu	Lys	Asp	Ser 395	Asn	Gly	Leu	Thr	Thr 400
	Тhr	Gly	Val	Ile	Lys 405	Asp	Ala	Asp	Asn	Met 410	Тhr	Leu	Asp	Ser	Gly 415	Phe
10	Тyr	Lys	Thr	Pro 420	Lys	Туr	Ser	Leu	G]y 425	Asp	туr	Val	тгр	туг 430	Asp	Ser
	Asn	Lys	Asp 435	Gly	Lys	Gln	Asp	Ser 440	Thr	Glu	Lys	Gly	11e 445	Lys	Asp	Val
15	Lys	Va1 450	Thr	Leu	Leu	Asn	Glu 455	Lys	Gly	Glu	Val	I]e 460	Gly	Тhr	Thr	Lys
	тhr 465	Asp	Glu	Asn	Gly	Lys 470	Туr	Cys	Phe	Asp	Asn 475	Leu	Asp	Ser	Gly	Lys 480
20	туr	Lys	Val	Ile	Phe 485	Glu	Lys	Pro	Ala	Gly 490	Leu	Thr	Gln	Тhr	Va] 495	Тhr
	Asn	Thr	Thr	Glu 500	Asp	Asp	Lys	Asp	Ala 505	Asp	Gly	Gly	Glu	Val 510	Asp	Val
25	Тhr	Ile	Тhr 515	Asp	His	Asp	Asp	Phe 520	Тhr	Leu	Asp	Asn	G]y 525	туг	Phe	Glu
	Glu	Asp 530	Thr													
	21/		~ ~ -													
30	<210 <211 <211 <211)> 1> 2> 3>	237 504 PRT Stap	ohyla	ococo	cus a	aureı	JS								
30	<210 <211 <211 <211 <211 <400 Ala 1)> 1> 2> 3> 0> Asp	237 504 PRT Stap 237 Ser	ohyld Asp	DCOCO Ile 5	cus a Asn	aureu Ile	ıs Lys	Thr	G]y 10	Thr	Thr	Asp	Ile	G]y 15	Ser
30 35	<210 <211 <211 <211 <211 <211 Ala 1 Asn)> L> 2> 3>)> Asp Thr	237 504 PRT Stap 237 Ser Thr	ohyld Asp Val 20	Ile 5 Lys	cus a Asn Thr	aureu Ile Gly	ıs Lys Asp	Thr Leu 25	Gly 10 Val	Thr Thr	Thr Tyr	Asp Asp	Ile Lys 30	Gly 15 Glu	Ser Asn
30 35	<210 <211 <211 <211 <211 <211 Ala 1 Asn Gly)> L> 2> 3> D> Asp Thr Met	237 504 PRT Star 237 Ser Thr Leu 35	ohyld Asp Val 20 Lys	Ile 5 Lys Lys	cus a Asn Thr Val	Ile Gly Phe	Lys Asp Tyr 40	Thr Leu 25 Ser	Gly 10 Val Phe	Thr Thr Ile	Thr Tyr Asp	Asp Asp Asp 45	Ile Lys 30 Lys	Gly 15 Glu Asn	Ser Asn His
30 35 40	<210 <211 <211 <211 <211 <400 Ala 1 Asn Gly Asn)> 1> 2> 3> D> Asp Thr Met Lys 50	237 504 PRT Star 237 Ser Thr Leu 35 Lys	ohyld Asp Val 20 Lys Leu	Lys Leu	cus a Asn Thr Val Val	Ile Gly Phe Ile 55	Lys Asp Tyr 40 Arg	Thr Leu 25 Ser Thr	Gly 10 Val Phe Lys	Thr Thr Ile Gly	Thr Tyr Asp Thr 60	Asp Asp Asp 45 Ile	Ile Lys 30 Lys Ala	Gly 15 Glu Asn Gly	Ser Asn His Gln
30 35 40	<210 <211 <211 <211 <211 <211 Ala 1 Asn Gly Asn Tyr 65)> L> 2> Asp Thr Met Lys 50 Arg	237 504 PRT Star 237 Ser Thr Leu 35 Lys val	ohyld Asp Val 20 Lys Leu Tyr	Lys Lys Lys Leu Ser	cus a Asn Thr Val Val Glu 70	Ile Gly Phe Ile 55 Glu	JS Lys Asp Tyr 40 Arg Gly	Thr Leu 25 Ser Thr Ala	Gly 10 Val Phe Lys Asn	Thr Thr Ile Gly Z5	Thr Tyr Asp Thr 60 Ser	Asp Asp Asp 45 Ile Gly	Ile Lys 30 Lys Ala Leu	Gly J5 Glu Asn Gly Ala	Ser Asn His Gln Trp 80
30 35 40 45	<210 <211 <211 <211 <211 <211 Ala 1 Asn Gly Asn Tyr 65 Pro)> L> 2> Asp Thr Met Lys 50 Arg Ser	237 504 PRT Stap 237 Ser Thr Leu 35 Lys Val Ala	ohyld Asp Val 20 Lys Leu Tyr Phe	Lys Lys Lys Leu Ser Lys 85	cus a Asn Thr Val Val Glu 70 Val	Ile Gly Phe Ile Glu Gln	Lys Asp Tyr 40 Arg Gly Leu	Thr Leu 25 Ser Thr Ala Gln	Gly Val Phe Lys Asn Leu 90	Thr Thr Ile Gly Lys 75 Pro	Thr Tyr Asp Thr 60 Ser Asp	Asp Asp Asp Ile Gly Asn	Ile Lys 30 Lys Ala Leu Glu	Gly Glu Asn Gly Ala Val 95	Ser Asn His Gln Trp 80 Ala
30 35 40 45	<pre><210 <211 <211 <211 <211 <211 Ala 1 Asn Gly Asn Tyr 65 Pro Gln</pre>)> l> 2> 3>)> Asp Thr Met Lys 50 Arg Ser Ile	237 504 PRT Star 237 Ser Thr Leu 35 Lys Val Ala Ser	Asp Val 20 Lys Leu Tyr Phe Asp 100	Lys Lys Lys Leu Ser Lys 85 Tyr	cus a Asn Thr Val Val Glu 70 Val Tyr	Ile Gly Phe Ile Glu Gln Pro	Lys Asp Tyr 40 Arg Gly Leu Arg	Thr Leu Ser Thr Ala Gln Asn 105	Gly Val Phe Lys Asn Leu 90 Ser	Thr Thr Ile Gly Lys 75 Pro Ile	Thr Tyr Asp Thr 60 Ser Asp Asp	Asp Asp 45 Ile Gly Asn Thr	Ile Lys Ala Leu Glu Lys 110	Gly Glu Asn Gly Ala Val 95 Glu	Ser Asn His Gln Trp 80 Ala Tyr
30 35 40 45 50	<pre><210 <211 <211 <211 <211 <211 an Asn Gly Asn Gly Asn Tyr 65 Pro Gln Met</pre>)> L> 2> Asp Thr Met Lys So Arg Ser Ile Ser	237 504 PRT Stap 237 Ser Thr Leu 35 Lys Val Ala Ser Thr 115	Asp Val 20 Lys Leu Tyr Phe Asp 100 Leu	Lys Lys Lys Leu Ser Lys Tyr Thr	Cus a Asn Thr Val Val Glu Val Tyr Tyr	Ile Gly Phe Ile Glu Gln Pro Gly	Lys Asp Tyr 40 Arg Gly Leu Arg Phe 120	Thr Leu 25 Ser Thr Ala Gln Asn 105 Asn	Gly 10 Val Phe Lys Asn Leu 90 Ser Gly	Thr Thr Ile Gly Lys Pro Ile Asn	Thr Tyr Asp Thr 60 Ser Asp Asp Val	Asp Asp 45 Ile Gly Asn Thr 125	Ile Lys 30 Lys Ala Leu Glu Lys 110 Gly	Gly Glu Asn Gly Ala Val 95 Glu Asp	Ser Asn His Gln Trp Ala Tyr Asp
30 35 40 45 50	<pre><210 <211 <211 <211 <211 <211 an Asn Gly Asn Gly Asn Tyr 65 Pro Gln Met Thr</pre>)> 1> 2> 3> Asp Thr Met Lys 50 Arg Ser Ile Ser Gly 130	237 504 PRT Star 237 Ser Thr Leu 35 Lys Val Ala Ser Thr 115 Lys	Asp Val 20 Lys Leu Tyr Phe Asp 100 Leu Ile	Lys Lys Lys Leu Ser Lys Tyr Thr Gly	Cus a Asn Thr Val Val Glu Val Tyr Tyr Gly	Ile Gly Phe Ile Glu Gln Pro Gly Leu 135	JS LyS ASP Tyr 40 Arg Gly Leu Arg Phe 120 Ile	Thr Leu Ser Thr Ala Gln Asn 105 Asn Gly	Gly Val Phe Lys Asn Leu 90 Ser Gly Ala	Thr Thr Ile Gly Lys Pro Ile Asn Asn	Thr Tyr Asp Thr 60 Ser Asp Asp Val Val 140	Asp Asp 45 Ile Gly Asn Thr 125 Ser	Ile Lys 30 Lys Ala Leu Glu Lys 110 Gly Ile	Gly Glu Asn Gly Ala Val 95 Glu Asp Gly	Ser Asn His Gln Trp 80 Ala Tyr Asp His

55	<210 <212 <212 <213)> L> 2> 3>	238 496 PRT Stap	ohylo	ococo	cus a	aurei	JS								
	Gln	Gly	Leu	Asp 500	Arg	Val	Asn	Pro								
50	Asp	Asn	Leu	Ser	G]n 485	Asn	Leu	Ala	Lys	туг 490	Asp	⊤hr	Leu	Ser	11e 495	Lys
	Phe 465	Gln	Glu	Glu	Leu	Va1 470	Gln	Pro	Met	Ala	Asp 475	His	Gln	Lys	Ala	Ile 480
45	Gly	Gln 450	Phe	Ala	Asn	Lys	∨a1 455	Lys	Asp	Val	Leu	Leu 460	Ile	Met	Ala	Lys
	Lys	Gln	Thr 435	Gln	Gln	Leu	Ala	G]u 440	Тyr	Ile	Glu	Gly	Ser 445	Asp	Тгр	Glu
40	Ala	Lys	Gln	Leu 420	Ala	Ala	Lys	Thr	Ala 425	Lys	Asp	Ile	Glu	Ala 430	Cys	Gln
	Ser	Gly	GIJ	туr	Lys 405	Gly	Ile	Lys	Ala	Asp 410	ςΊу	G∖A	Lys	Val	Asp 415	Gln
35	Asp 385	Gln	Gln	Leu	Ser	Asn 390	Asn	Phe	Gly	Leu	Gln 395	Ala	Ser	Gly	Gly	Gly 400
	Glu	Ile 370	Lys	Gln	Gln	Leu	Asn 375	Ser	Thr	Ala	Asp	Ala 380	Val	Gln	Glu	Gln
30	Phe	Gln	G]n 355	Leu	Ser	Pro	Lys	Va] 360	Glu	Lys	Phe	Ala	Gln 365	Leu	Leu	Glu
	Ile	Ala	Ala	Asn 340	⊤rp	Glu	Gly	Gln	Ala 345	Phe	Ser	Arg	Phe	Glu 350	Glu	Gln
25	Asp	Gln	Ile	Arg	Gln 325	Ile	Leu	Ser	Asp	Leu 330	Thr	Arg	Ala	Gln	G]y 335	Glu
	Ser 305	Pro	Glu	Glu	Ile	Arg 310	Ala	Lys	Ser	Gln	Ser 315	⊤yr	Gly	Gln	Gly	Ser 320
20	Glu	Glu 290	Met	Тhr	Asn	Ala	Pro 295	Тhr	Ala	Arg	Gly	A]a 300	Met	Ile	Lys	Met
	Lys	тгр	Ile 275	Asp	Arg	Ser	Ser	G]u 280	Arg	Тyr	Lys	I]e	Asp 285	тгр	Glu	Lys
15	Gln	Leu	His	Тгр 260	⊤hr	Ser	Thr	Asn	Тгр 265	Lys	Gly	⊤hr	Asn	Тhr 270	Lys	Asp
	Gln	Gln	Thr	Asn	I]e 245	Asp	Val	Ile	туг	G]u 250	Arg	Val	Arg	Asp	Asp 255	Тyr
10	Ser 225	Pro	Asp	Phe	Ala	Thr 230	Val	Ile	Thr	Met	Asp 235	Arg	Lys	Ala	Ser	Lys 240
	Asn	Phe 210	Leu	Asp	Pro	Asn	Lys 215	Ala	Ser	Ser	Leu	Leu 220	Ser	Ser	Gly	Phe
•	Asn	Gln	Leu 195	Phe	Met	Lys	Thr	Arg 200	Asn	Gly	Ser	Met	Lys 205	Ala	Ala	Asp
5	Gln	Asn	тгр	Gly 180	Pro	туг	Asp	Arg	Asp 185	Ser	тгр	Asn	Pro	Val 190	туг	Gly
	⊤hr	Asp	Lys	Lys	Val 165	Gly	Тrр	Lys	Val	I]e 170	Phe	Asn	Asn	Met	Val 175	Asn

<400> 238 Cys Gly Asn Gln Gly Glu Lys Asn Asn Lys Ala Glu Thr Lys Ser Tyr 1 5 10 15 Lys Met Asp Asp Gly Lys Thr Val Asp Ile Pro Lys Asp Pro Lys Arg 20 30 Ile Ala Val Val Ala Pro Thr Tyr Ala Gly Gly Leu Lys Lys Leu Gly 35 40 45 Ala Asn Ile Val Ala Val Asn Gln Gln Val Asp Gln Ser Lys Val Leu 50 55 60 10 Lys Asp Lys Phe Lys Gly Val Thr Lys Ile Gly Asp Gly Asp Val Glu 65 70 75 80 Lys Val Ala Lys Glu Lys Pro Asp Leu Ile Ile Val Tyr Ser Thr Asp 85 90 95 15 Lys Asp Ile Lys Lys Tyr Gln Lys Val Ala Pro Thr Val Val Asp 100 105 110 Tyr Asn Lys His Lys Tyr Leu Glu Gln Gln Glu Met Leu Gly Lys Ile 115 120 125 20 Val Gly Lys Glu Asp Lys Val Lys Ala Trp Lys Lys Asp Trp Glu Glu 130 135 140 Thr Thr Ala Lys Asp Gly Lys Glu Ile Lys Lys Ala Ile Gly Gln Asp 145 150 155 160 25 Ala Thr Val Ser Leu Phe Asp Glu Phe Asp Lys Lys Leu Tyr Thr Tyr 165 170 175 Gly Asp Asn Trp Gly Arg Gly Gly Glu Val Leu Tyr Gln Ala Phe Gly 180 185 190 30 Leu Lys Met Gln Pro Glu Gln Gln Lys Leu Thr Ala Lys Ala Gly Trp 195 200 205 Ala Glu Val Lys Gln Glu Glu Ile Glu Lys Tyr Ala Gly Asp Tyr Ile 210 215 220 35 Val Ser Thr Ser Glu Gly Lys Pro Thr Pro Gly Tyr Glu Ser Thr Asn 225 230 235 240 225 Met Trp Lys Asn Leu Lys Ala Thr Lys Glu Gly His Ile Val Lys Val 245 250 255 40 Asp Ala Gly Thr Tyr Trp Tyr Asn Asp Pro Tyr Thr Leu Asp Phe Met 260 270 Arg Lys Asp Leu Lys Glu Lys Leu Ile Lys Ala Ala Lys Ala Pro Thr 275 280 285 45 Ala Arg Gly Ala Met Ile Lys Met Ser Pro Glu Glu Ile Arg Ala Lys 290 295 300 Ser Gln Ser Tyr Gly Gln Gly Ser Asp Gln Ile Arg Gln Ile Leu Ser 305 310 315 320 50 Asp Leu Thr Arg Ala Gln Gly Glu Ile Ala Ala Asn Trp Glu Gly Gln 325 330 335 Ala Phe Ser Arg Phe Glu Glu Gln Phe Gln Gln Leu Ser Pro Lys Val 340 345 350

EP 2 510 947 A1

55

5

384

Glu Lys Phe Ala Gln Leu Leu Glu Glu Ile Lys Gln Gln Leu Asn Ser 355 360 365

	Thr Ala 370	Asp Ala	Val Gl	n Glu 375	Gln	Asp	Gln	Gln	Leu 380	Ser	Asn	Asn	Phe
5	Gly Leu 385	Gln Ala	Ser Gl 39	y Gly 0	Gly	Ser	Gly	Gly 395	Тyr	Lys	Gly	Ile	Lys 400
	Ala Asp	Gly Gly	Lys Va 405	l Asp	Gln	Ala	Lys 410	Gln	Leu	Ala	Ala	Lys 415	Thr
10	Ala Lys	Asp Ile 420	Glu Al	a Cys	Gln	Lys 425	Gln	Thr	Gln	Gln	Leu 430	Ala	Glu
	Tyr Ile	Glu Gly 435	Ser As	р Тгр	Glu 440	Gly	Gln	Phe	Ala	Asn 445	Lys	Val	Lys
15	Asp Val 450	Leu Leu	Ile Me	t Ala 455	Lys	Phe	Gln	Glu	Glu 460	Leu	Val	Gln	Pro
	Met Ala 465	Asp His	Gln Ly 47	s Ala 0	Ile	Asp	Asn	Leu 475	Ser	Gln	Asn	Leu	Ala 480
20	Lys Tyr	Asp Thr	Leu Se 485	r Ile	Lys	Gln	Gly 490	Leu	Asp	Arg	Val	Asn 495	Pro
20	<210> <211> <212> <213>	239 6 PRT Peptide	linker										
25	<400> Ala Pro 1	239 Thr Ala	Arg Gl 5	У									
30	<210> <211> <212> <213>	240 17 PRT Artific	ial Seq	uence									
	<220> <223>	N-termi	nal seq	uence									
35	<400> Met Gly 1	240 Ser Ser	ніs ні 5	s ніs	His	Нis	ніs 10	Glu	Asn	Leu	туr	Phe 15	Gln
40	Gly												
40	<210> <211> <212> <213>	241 205 PRT Staphylo	ococcus	aure	us								
45	<400> Ala Met 1	241 Ile Lys	Met Se 5	r Pro	Glu	Glu	Ile 10	Arg	Ala	Lys	Ser	Gln 15	Ser
	Tyr Gly	Gln Gly 20	Ser As	p Gln	Ile	Arg 25	Gln	Ile	Leu	Ser	Asp 30	Leu	Thr
50	Arg Ala	Gln Gly 35	Glu Il	e Ala	А]а 40	Asn	Тгр	Glu	Gly	Gln 45	Ala	Phe	Ser
	Arg Phe 50	Glu Glu	Gln Ph	e Gln 55	Gln	Leu	Ser	Pro	Lys 60	Val	Glu	Lys	Phe
55	Ala Gln 65	Leu Leu	Glu Gl 70	u Ile	Lys	Gln	Gln	Leu 75	Asn	Ser	Thr	Ala	Asp 80

	Ala	Val	Gln	Glu	Gln 85	Asp	Gln	Gln	Leu	Ser 90	Asn	Asn	Phe	Gly	Leu 95	Gln
5	Ala	Ser	GЈу	Gly 100	Gly	Ser	Gly	Gly	туг 105	Lys	Gly	Ile	Lys	A]a 110	Asp	Gly
	Gly	Lys	Va] 115	Asp	Gln	Ala	Lys	G]n 120	Leu	Ala	Ala	Lys	Thr 125	Ala	Lys	Asp
	Ile	Glu 130	Ala	Cys	Gln	Lys	Gln 135	Тhr	Gln	Gln	Leu	A]a 140	Glu	туr	Ile	Glu
10	Gly 145	Ser	Asp	тгр	Glu	Gly 150	Gln	Phe	Ala	Asn	Lys 155	Val	Lys	Asp	Val	Leu 160
	Leu	Ile	Met	Ala	Lys 165	Phe	Gln	Glu	Glu	Leu 170	Val	G]n	Pro	Met	Ala 175	Asp
15	His	Gln	Lys	Ala 180	Ile	Asp	Asn	Leu	Ser 185	Gln	Asn	Leu	Ala	Lys 190	Туr	Asp
	⊤hr	Leu	Ser 195	I]e	Lys	Gln	Gly	Leu 200	Asp	Arg	Val	Asn	Pro 205			
20	<210 <211 <211 <211	0> 1> 2> 3>	242 293 PRT Stap	ohyla	ococo	cus a	aurei	JS								
25	<400 Ala 1)> Asp	242 Ser	Asp	Ile 5	Asn	Ile	Lys	Thr	Gly 10	Thr	⊤hr	Asp	Ile	G]y 15	Ser
	Asn	Thr	Тhr	Val 20	Lys	Тhr	Gly	Asp	Leu 25	Val	Thr	⊤yr	Asp	Lys 30	Glu	Asn
30	Gly	Met	His 35	Lys	Lys	Val	Phe	туг 40	Ser	Phe	Ile	Asp	Asp 45	Lys	Asn	His
	Asn	Lys 50	Lys	Leu	Leu	Val	Ile 55	Arg	Thr	Lys	Gly	⊤hr 60	Ile	Ala	Gly	Gln
35	⊤yr 65	Arg	Val	туг	Ser	Glu 70	Glu	Gly	Ala	Asn	Lys 75	Ser	Gly	Leu	Ala	⊤rp 80
	Pro	Ser	Ala	Phe	Lys 85	Val	Gln	Leu	Gln	Leu 90	Pro	Asp	Asn	Glu	Va1 95	Ala
40	Gln	Ile	Ser	Asp 100	Leu	Туr	Pro	Arg	Asn 105	Ser	Ile	Asp	Thr	Lys 110	Glu	⊤yr
	Met	Ser	Thr 115	Leu	⊤hr	туг	Gly	Phe 120	Asn	Gly	Asn	Val	Thr 125	Gly	Asp	Asp
45	⊤hr	Gly 130	Lys	Ile	Gly	Gly	Leu 135	Ile	Gly	Ala	Asn	Val 140	Ser	Ile	Gly	His
	⊤hr 145	Leu	Lys	Тyr	Val	Gln 150	Pro	Asp	Phe	Lys	Thr 155	Ile	Leu	Glu	Ser	Pro 160
50	⊤hr	Asp	Lys	Lys	Va] 165	Gly	тгр	Lys	Val	I]e 170	Phe	Asn	Asn	Met	Va] 175	Asn
	Gln	Asn	тгр	Gly 180	Pro	туг	Asp	Arg	Asp 185	Ser	тгр	Asn	Pro	Val 190	туг	Gly
55	Asn	Gln	Leu 195	Phe	Met	Lys	Тhr	Arg 200	Asn	Gly	Ser	Met	Lys 205	Ala	Ala	Asp
	Asn	Phe	Leu	Asp	Pro	Asn	Lys	Ala	Ser	Ser	Leu	Leu	Ser	Ser	Gly	Phe

		210					215					220				
	Ser 225	Pro	Asp	Phe	Ala	Thr 230	Val	Ile	Thr	Met	Asp 235	Arg	Lys	Ala	Ser	Lys 240
5	Gln	Gln	⊤hr	Asn	Ile 245	Asp	Val	Ile	туr	Glu 250	Arg	Val	Arg	Asp	Asp 255	туr
	Gln	Leu	His	тгр 260	Thr	Ser	Тhr	Asn	тгр 265	Lys	Gly	Тhr	Asn	Thr 270	Lys	Asp
10	Lys	тгр	Ile 275	Asp	Arg	Ser	Ser	Glu 280	Arg	Туr	Lys	Ile	Asp 285	Тгр	Glu	Lys
	Glu	Glu 290	Met	Thr	Asn											
15	<210 <211 <211 <211	0> 1> 2> 3>	243 293 PRT Stap	phylo	ococo	cus a	aurei	ıs								
20	<400 Ala 1)> Asp	243 Ser	Asp	Ile 5	Asn	Ile	Lys	Thr	Gly 10	Thr	Thr	Asp	Ile	Gly 15	Ser
	Asn	Тhr	⊤hr	Va] 20	Lys	тhr	Gly	Asp	Leu 25	Val	тhr	туr	Asp	Lys 30	Glu	Asn
25	Gly	Met	ніs 35	Lys	Lys	Val	Phe	туг 40	Ser	Phe	Ile	Asp	Asp 45	Lys	Asn	His
	Asn	Lys 50	Lys	Leu	Leu	Val	Ile 55	Arg	тhr	Lys	Gly	тhr 60	Ile	Ala	Gly	Gln
30	туr 65	Arg	Val	туr	Ser	Glu 70	Glu	Gly	Ala	Asn	Lys 75	Ser	Gly	Leu	Ala	тгр 80
	Pro	Ser	Ala	Phe	Lys 85	Val	Gln	Leu	Gln	Leu 90	Pro	Asp	Asn	Glu	Val 95	Ala
35	Gln	Ile	Ser	Asp 100	туr	туr	Pro	Arg	Asn 105	Ser	Ile	Asp	Тhr	Lys 110	Glu	туr
	Met	Ser	⊤hr 115	Leu	Thr	туr	Gly	Phe 120	Asn	Gly	Asn	Val	Thr 125	Gly	Asp	Asp
40	Thr	Gly 130	Lys	Ile	Gly	Gly	Leu 135	Ile	Gly	Ala	Asn	∨a٦ 140	Ser	Ile	Gly	His
	тhr 145	Leu	Lys	туr	Val	Gln 150	Pro	Leu	Phe	Lys	тhr 155	Ile	Leu	Glu	Ser	Pro 160
45	Thr	Asp	Lys	Lys	Va] 165	Gly	тгр	Lys	Val	I]e 170	Phe	Asn	Asn	Met	Va] 175	Asn
	Gln	Asn	тrр	Gly 180	Pro	туг	Asp	Arg	Asp 185	Ser	тгр	Asn	Pro	Val 190	туг	Gly
50	Asn	Gln	Leu 195	Phe	Met	Lys	Thr	Arg 200	Asn	Gly	Ser	Met	Lys 205	Ala	Ala	Asp
	Asn	Phe 210	Leu	Asp	Pro	Asn	Lys 215	Ala	Ser	Ser	Leu	Leu 220	Ser	Ser	Gly	Phe
55	Ser 225	Pro	Asp	Phe	Ala	Thr 230	Val	Ile	Thr	Met	Asp 235	Arg	Lys	Ala	Ser	Lys 240
	Gln	Gln	⊤hr	Asn	Ile 245	Asp	Val	Ile	Туг	Glu 250	Arg	Val	Arg	Asp	Asp 255	Туг

	Gln	Leu	His	Тгр 260	Thr	Ser	Thr	Asn	Тгр 265	Lys	Gly	Thr	Asn	Thr 270	Lys	Asp
5	Lys	тгр	Ile 275	Asp	Arg	Ser	Ser	Glu 280	Arg	Тyr	Lys	Ile	Asp 285	тгр	Glu	Lys
	Glu	Glu 290	Met	Thr	Asn											
10	<210 <211 <212 <213)> _> _>	244 293 PRT Stap	ohylo	ococo	cus a	ureu	15								
15	<400 Ala 1)> Asp	244 Ser	Asp	Ile 5	Asn	Ile	Lys	Thr	Gly 10	Thr	Thr	Asp	Ile	Gly 15	Ser
	Asn	Thr	Тhr	va1 20	Lys	Thr	Gly	Asp	Leu 25	Val	Thr	Туr	Asp	Lys 30	Glu	Asn
20	Gly	Met	Leu 35	Lys	Lys	Val	Phe	туг 40	Ser	Phe	Ile	Asp	Asp 45	Lys	Asn	His
20	Asn	Lys 50	Lys	Leu	Leu	Val	Ile 55	Arg	Thr	Lys	Gly	Thr 60	Ile	Ala	Gly	Gln
25	туг 65	Arg	Val	туr	Ser	Glu 70	Glu	Gly	Ala	Asn	Lys 75	Ser	Gly	Leu	Ala	тгр 80
20	Pro	Ser	Ala	Phe	Lys 85	Val	Gln	Leu	Gln	Leu 90	Pro	Asp	Asn	Glu	Val 95	Ala
30	Gln	Ile	Ser	Asp 100	Leu	Туr	Pro	Arg	Asn 105	Ser	Ile	Asp	Thr	Lys 110	Glu	туг
	Met	Ser	Thr 115	Leu	Thr	Туr	Gly	Phe 120	Asn	Gly	Asn	Val	Thr 125	Gly	Asp	Asp
25	Тhr	Gly 130	Lys	Ile	Gly	Gly	Leu 135	Ile	Gly	Ala	Asn	Val 140	Ser	Ile	Gly	His
35	⊤hr 145	Leu	Lys	туr	Val	Gln 150	Pro	Asp	Phe	Lys	Thr 155	Ile	Leu	Glu	Ser	Pro 160
40	⊤hr	Asp	Lys	Lys	Va] 165	Gly	тгр	Lys	Val	I]e 170	Phe	Asn	Asn	Met	Va] 175	Asn
40	Gln	Asn	тгр	Gly 180	Pro	Tyr	Asp	Arg	Asp 185	Ser	тгр	Asn	Pro	Val 190	Туr	Gly
45	Asn	Gln	Leu 195	Phe	Met	Lys	Thr	Arg 200	Asn	Gly	Ser	Met	Lys 205	Ala	Ala	Asp
45	Asn	Phe 210	Leu	Asp	Pro	Asn	Lys 215	Ala	Ser	Ser	Leu	Leu 220	Ser	Ser	Gly	Phe
	Ser 225	Pro	Asp	Phe	Ala	Thr 230	Val	Ile	Thr	Met	Asp 235	Arg	Lys	Ala	Ser	Lys 240
50	Gln	Gln	Thr	Asn	Ile 245	Asp	Val	Ile	туr	Glu 250	Arg	Val	Arg	Asp	Asp 255	Туr
	Gln	Leu	His	Тгр 260	Thr	Ser	Thr	Asn	Тгр 265	Lys	Gly	Thr	Asn	Thr 270	Lys	Asp
55	Lys	тгр	Ile 275	Asp	Arg	Ser	Ser	Glu 280	Arg	туr	Lys	I]e	Asp 285	тгр	Glu	Lys

	Glu	Glu 290	Met	Thr	Asn											
5	<210 <211 <212 <213)> _> _> _>	245 293 PRT Stap	ohy⊺c	ococc	cus a	aureu	ıs								
	<400 Ala 1)> Asp	245 Ser	Asp	Ile 5	Asn	Ile	Lys	Thr	Gly 10	Thr	Thr	Asp	Ile	Gly 15	Ser
10	Asn	Thr	Thr	Val 20	Lys	Thr	Gly	Asp	Leu 25	Val	Thr	⊤yr	Asp	Lys 30	Glu	Asn
	Gly	Met	Leu 35	Lys	Lys	Val	Phe	туг 40	Ser	Phe	Ile	Asp	Asp 45	Lys	Asn	His
15	Asn	Lys 50	Lys	Leu	Leu	Val	Ile 55	Arg	Thr	Lys	Gly	⊤hr 60	Ile	Ala	Gly	Gln
	⊤yr 65	Arg	Val	туr	Ser	Glu 70	Glu	G∣y	Ala	Asn	Lys 75	Ser	Gly	Leu	Ala	⊤rp 80
20	Pro	Ser	Ala	Phe	Lys 85	Val	Gln	Leu	Gln	Leu 90	Pro	Asp	Asn	Glu	Val 95	Ala
	Gln	Ile	Ser	Asp 100	⊤yr	туr	Pro	Arg	Asn 105	Ser	Ile	Asp	Thr	Lys 110	Glu	Tyr
25	Met	Ser	Thr 115	Leu	⊤hr	Туr	Gly	Phe 120	Asn	Gly	Asn	Val	Thr 125	Gly	Asp	Asp
	⊤hr	Gly 130	Lys	Ile	Gly	Gly	Leu 135	I]e	Gly	Ala	Asn	Val 140	Ser	Ile	Gly	His
30	⊤hr 145	Leu	Lys	Туr	Val	Gln 150	Pro	Leu	Phe	Lys	Thr 155	I]e	Leu	Glu	Ser	Pro 160
	⊤hr	Asp	Lys	Lys	Val 165	Gly	Тrр	Lys	Val	I]e 170	Phe	Asn	Asn	Met	Va] 175	Asn
35	Gln	Asn	тгр	Gly 180	Pro	Туr	Asp	Arg	Asp 185	Ser	тгр	Asn	Pro	val 190	Туr	Gly
	Asn	Gln	Leu 195	Phe	Met	Lys	Thr	Arg 200	Asn	Gly	Ser	Met	Lys 205	Ala	Ala	Asp
40	Asn	Phe 210	Leu	Asp	Pro	Asn	Lys 215	Ala	Ser	Ser	Leu	Leu 220	Ser	Ser	Gly	Phe
	Ser 225	Pro	Asp	Phe	Ala	Thr 230	Val	Ile	Thr	Met	Asp 235	Arg	Lys	Ala	Ser	Lys 240
45	Gln	Gln	Thr	Asn	Ile 245	Asp	Val	I]e	Туr	Glu 250	Arg	Val	Arg	Asp	Asp 255	Tyr
	Gln	Leu	His	Тгр 260	⊤hr	Ser	Thr	Asn	Тгр 265	Lys	Gly	⊤hr	Asn	Thr 270	Lys	Asp
50	Lys	тгр	Ile 275	Asp	Arg	Ser	Ser	G]u 280	Arg	туr	Lys	I]e	Asp 285	тгр	Glu	Lys
	Glu	Glu 290	Met	Тhr	Asn											
55	<210 <211 <212 <213)> _> _> _>	246 285 PRT Stap	ohy]c	ococo	cus a	aureu	ıs								

<400> 246 Cys Gly Asn Gln Gly Glu Lys Asn Asn Lys Ala Glu Thr Lys Ser Tyr 1 5 10 15 Lys Met Asp Asp Gly Lys Thr Val Asp Ile Pro Lys Asp Pro Lys Arg 20 25 30 5 Ile Ala Val Val Ala Pro Thr Tyr Ala Gly Gly Leu Lys Lys Leu Gly 35 40 45 Ala Asn Ile Val Ala Val Asn Gln Gln Val Asp Gln Ser Lys Val Leu 50 55 60 10 Lys Asp Lys Phe Lys Gly Val Thr Lys Ile Gly Asp Gly Asp Val Glu 65 70 75 80 Lys Val Ala Lys Glu Lys Pro Asp Leu Ile Ile Val Tyr Ser Thr Asp 85 90 95 15 Lys Asp Ile Lys Lys Tyr Gln Lys Val Ala Pro Thr Val Val Asp 100 105 110 Tyr Asn Lys His Lys Tyr Leu Glu Gln Gln Glu Met Leu Gly Lys Ile 115 120 125 20 Val Gly Lys Glu Asp Lys Val Lys Ala Trp Lys Lys Asp Trp Glu Glu 130 135 140 Thr Thr Ala Lys Asp Gly Lys Glu Ile Lys Lys Ala Ile Gly Gln Asp 145 150 155 160 25 Ala Thr Val Ser Leu Phe Asp Glu Phe Asp Lys Lys Leu Tyr Thr Tyr 165 170 175 Gly Asp Asn Trp Gly Arg Gly Gly Glu Val Leu Tyr Gln Ala Phe Gly 180 185 190 30 Leu Lys Met Gln Pro Glu Gln Gln Lys Leu Thr Ala Lys Ala Gly Trp 195 200 205 Ala Glu Val Lys Gln Glu Glu Ile Glu Lys Tyr Ala Gly Asp Tyr Ile 210 215 220 35 Val Ser Thr Ser Glu Gly Lys Pro Thr Pro Gly Tyr Glu Ser Thr Asn 225 230 235 240 225 Met Trp Lys Asn Leu Lys Ala Thr Lys Glu Gly His Ile Val Lys Val 245 250 255 40 Asp Ala Gly Thr Tyr Trp Tyr Asn Asp Pro Tyr Thr Leu Asp Phe Met 260 270 Arg Lys Asp Leu Lys Glu Lys Leu Ile Lys Ala Ala Lys 275 280 285 45 <210> 247 233 <211> <212> PRT <213> Staphylococcus aureus <400> 50 Gly Cys Gly Ile Gly Lys Glu Ala Glu Val Lys Lys Ser Phe Glu Lys 1 5 10 15 Thr Leu Ser Met Tyr Pro Ile Lys Asn Leu Glu Asp Leu Tyr Asp Lys 20 25 30 55 Glu Gly Tyr Arg Asp Asp Gln Phe Asp Lys Asn Asp Lys Gly Thr Trp 35 40 45

EP 2 510 947 A1

	Ile	Ile 50	Asn	Ser	Glu	Met	Val 55	Ile	Gln	Pro	Asn	Asn 60	Glu	Asp	Met	Val
5	Ala 65	Lys	Gly	Met	Val	Leu 70	Туr	Met	Asn	Arg	Asn 75	Thr	Lys	Тhr	Thr	Asn 80
	Gly	туг	Туr	Туr	Val 85	Asp	Val	Thr	Lys	Asp 90	Glu	Asp	Glu	Gly	Lys 95	Pro
10	His	Asp	Asn	Glu 100	Lys	Arg	Туr	Pro	Va] 105	Lys	Met	Val	Asp	Asn 110	Lys	Ile
	Ile	Pro	Тhr 115	Lys	Glu	Ile	Lys	Asp 120	Glu	Lys	Ile	Lys	Lys 125	Glu	Ile	Glu
15	Asn	Phe 130	Lys	Phe	Phe	Val	Gln 135	туr	Gly	Asp	Phe	Lys 140	Asn	Leu	Lys	Asn
	Туг 145	Lys	Asp	Gly	Asp	I]e 150	Ser	Тyr	Asn	Pro	Glu 155	Val	Pro	Ser	Тyr	Ser 160
20	Ala	Lys	Туr	Gln	Leu 165	Thr	Asn	Asp	Asp	Туг 170	Asn	Val	Lys	Gln	Leu 175	Arg
	Lys	Arg	Тyr	Asp 180	Ile	Pro	Тhr	Ser	Lys 185	Ala	Pro	Lys	Leu	Leu 190	Leu	Lys
25	Gly	Ser	Gly 195	Asn	Leu	Lys	Gly	Ser 200	Ser	Val	Gly	туr	Lys 205	Asp	Ile	Glu
	Phe	Thr 210	Phe	Val	Glu	Lys	Lys 215	Glu	Glu	Asn	Ile	Туг 220	Phe	Ser	Asp	Ser
30	Leu 225	Asp	Туr	Lys	Lys	Ser 230	Gly	Asp	Val							
	<210 <211 <211 <211)> 1> 2> 3>	248 288 PRT Staj	248 288 PRT Staphylococcus aureus												
35	<400 Met 1)> Ala	248 Ser	Cys	Gly 5	Asn	Gln	Gly	Glu	Lys 10	Asn	Asn	Lys	Ala	Glu 15	Thr
40	Lys	Ser	Туr	Lys 20	Met	Asp	Asp	Gly	Lys 25	Thr	Val	Asp	Ile	Pro 30	Lys	Asp
	Pro	Lys	Arg 35	Ile	Ala	Val	Val	Ala 40	Pro	Тhr	туr	Ala	Gly 45	Gly	Leu	Lys
45	Lys	Leu 50	Gly	Ala	Asn	Ile	Val 55	Ala	Val	Asn	Gln	G]n 60	Val	Asp	Gln	Ser
	Lys 65	Val	Leu	Lys	Asp	Lys 70	Phe	Lys	Gly	Val	Thr 75	Lys	Ile	Gly	Asp	Gly 80
	Asp	Val	Glu	Lys	Val 85	Ala	Lys	Glu	Lys	Pro 90	Asp	Leu	Ile	Ile	Val 95	Tyr
50					05											
50	Ser	Thr	Asp	Lys 100	Asp	Ile	Lys	Lys	туг 105	Gln	Lys	Val	Ala	Pro 110	Thr	Val
55	Ser Val	Thr Val	Asp Asp 115	Lys 100 Tyr	Asp Asn	Ile Lys	Lys His	Lys Lys 120	Tyr 105 Tyr	Gln Leu	Lys Glu	Val Gln	Ala Gln 125	Pro 110 Glu	Thr Met	Val Leu

	⊤rp 145	Glu	Glu	Thr	⊤hr	Ala 150	Lys	Asp	Gly	Lys	Glu 155	Ile	Lys	Lys	Ala	Ile 160
5	Gly	Gln	Asp	Ala	⊤hr 165	Val	Ser	Leu	Phe	Asp 170	Glu	Phe	Asp	Lys	Lys 175	Leu
	⊤yr	Thr	Туr	Gly 180	Asp	Asn	тгр	G∣y	Arg 185	Gly	Gly	Glu	Val	Leu 190	Туr	Gln
	Ala	Phe	Gly 195	Leu	Lys	Met	Gln	Pro 200	Glu	Gln	Gln	Lys	Leu 205	Тhr	Ala	Lys
10	Ala	Gly 210	тгр	Ala	Glu	Val	Lys 215	Gln	Glu	Glu	Ile	G]u 220	Lys	туг	Ala	Gly
	Asp 225	туr	Ile	Val	Ser	Thr 230	Ser	Glu	Gly	Lys	Pro 235	⊤hr	Pro	Gly	туr	G1u 240
15	Ser	Тhr	Asn	Met	Trp 245	Lys	Asn	Leu	Lys	Ala 250	Тhr	Lys	Glu	Gly	ніs 255	Ile
	Val	Lys	Val	Asp 260	Ala	Gly	Thr	Тyr	Тгр 265	Тyr	Asn	Asp	Pro	Туг 270	Thr	Leu
20	Asp	Phe	Met 275	Arg	Lys	Asp	Leu	Lys 280	Glu	Lys	Leu	Ile	Lys 285	Ala	Ala	Lys
25	<210 <211 <211 <211	0> 1> 2> 3>	249 234 PRT Stap	ohyla	ococo	cus a	aurei	JS								
	<400 Met 1	D> Gly	249 Cys	Gly	Ile 5	Gly	Lys	Glu	Ala	Glu 10	Val	Lys	Lys	Ser	Phe 15	Glu
30	Lys	Thr	Leu	Ser 20	Met	туг	Pro	Ile	Lys 25	Asn	Leu	Glu	Asp	Leu 30	туг	Asp
	Lys	Glu	G]y 35	туг	Arg	Asp	Asp	Gln 40	Phe	Asp	Lys	Asn	Asp 45	Lys	Gly	⊤hr
35	⊤rp	11e 50	Ile	Asn	Ser	Glu	Met 55	Val	Ile	Gln	Pro	Asn 60	Asn	Glu	Asp	Met
	Val 65	Ala	Lys	Gly	Met	Va] 70	Leu	туг	Met	Asn	Arg 75	Asn	Thr	Lys	Thr	⊤hr 80
40	Asn	Gly	Туr	туг	⊤yr 85	Val	Asp	Val	Thr	Lys 90	Asp	Glu	Asp	Glu	G]y 95	Lys
	Pro	His	Asp	Asn 100	Glu	Lys	Arg	туг	Pro 105	Val	Lys	Met	Val	Asp 110	Asn	Lys
45	Ile	Ile	Pro 115	Тhr	Lys	Glu	Ile	Lys 120	Asp	Glu	Lys	I]e	Lys 125	Lys	Glu	Ile
	Glu	Asn 130	Phe	Lys	Phe	Phe	Val 135	Gln	Туr	Gly	Asp	Phe 140	Lys	Asn	Leu	Lys
50	Asn 145	Туr	Lys	Asp	Gly	Asp 150	IJe	Ser	Туr	Asn	Pro 155	Glu	Val	Pro	Ser	Tyr 160
	Ser	Ala	Lys	туг	Gln 165	Leu	Thr	Asn	Asp	Asp 170	туг	Asn	Val	Lys	Gln 175	Leu
55	Arg	Lys	Arg	туг 180	Asp	Ile	Pro	Тhr	Ser 185	Lys	Ala	Pro	Lys	Leu 190	Leu	Leu
	Lys	Gly	Ser	Gly	Asn	Leu	Lys	Gly	Ser	Ser	Val	Gly	туr	Lys	Asp	Ile

			195					200				205				
	Glu	Phe 210	Thr	Phe	Val	Glu	Lys 215	Lys	Glu	Glu	Asn	Ile 220	Тyr	Phe	Ser	Asp
5	Ser 225	Leu	Asp	Тyr	Lys	Lys 230	Ser	Gly	Asp	Val						
10	<210 <211 <212 <213)> L> }> }>	250 206 PRT Stap	ohy1c	ococo	cus a	aurei	ıs								
	<400 Met 1)> Ala	250 Met	Ile	Lys 5	Met	Ser	Pro	Glu	Glu 10	Ile	Arg	Ala	Lys	Ser 15	Gln
15	Ser	Туr	Gly	G]n 20	Gly	Ser	Asp	Gln	Ile 25	Arg	Gln	Ile	Leu	Ser 30	Asp	Leu
20	Thr	Arg	Ala 35	Gln	Gly	Glu	Ile	Ala 40	Ala	Asn	тгр	Glu	Gly 45	Gln	Ala	Phe
	Ser	Arg 50	Phe	Glu	Glu	Gln	Phe 55	Gln	Gln	Leu	Ser	Pro 60	Lys	Val	Glu	Lys
	Phe 65	Ala	Gln	Leu	Leu	Glu 70	Glu	Ile	Lys	Gln	G]n 75	Leu	Asn	Ser	Thr	Ala 80
25	Asp	Ala	Val	Gln	Glu 85	Gln	Asp	Gln	Gln	Leu 90	Ser	Asn	Asn	Phe	G]y 95	Leu
30	Gln	Ala	Ser	Gly 100	Gly	Gly	Ser	Gly	Gly 105	Тyr	Lys	Gly	Ile	Lys 110	Ala	Asp
	Gly	Gly	Lys 115	Val	Asp	Gln	Ala	Lys 120	Gln	Leu	Ala	Ala	Lys 125	Thr	Ala	Lys
35	Asp	I]e 130	Glu	Ala	Cys	Gln	Lys 135	Gln	Thr	Gln	Gln	Leu 140	Ala	Glu	Туr	Ile
	Glu 145	Gly	Ser	Asp	тгр	Glu 150	Gly	Gln	Phe	Ala	Asn 155	Lys	Val	Lys	Asp	Va] 160
40	Leu	Leu	Ile	Met	Ala 165	Lys	Phe	Gln	Glu	Glu 170	Leu	Val	Gln	Pro	Met 175	Ala
40	Asp	His	Gln	Lys 180	Ala	Ile	Asp	Asn	Leu 185	Ser	Gln	Asn	Leu	Ala 190	Lys	Туr
	Asp	Thr	Leu 195	Ser	Ile	Lys	Gln	Gly 200	Leu	Asp	Arg	Val	Asn 205	Pro		

50

Claims

1. An immunogenic composition comprising sta006 antigen for use in a method for raising an immune response in a mammal, wherein the sta006 antigen: (i) can elicit an antibody that recognises SEQ ID NO: 42; and (ii) comprises an amino acid sequence: (a) having 50% or more identity to SEQ ID NO: 42; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ ID NO: 42, wherein 'n' is 7 or more.

- 55
- 2. The composition of claim 1, further comprising an adjuvant.
- 3. An immunogenic composition comprising a sta006 antigen and an adjuvant, wherein the sta006 antigen: (i) can elicit an antibody that recognises SEQ ID NO: 42; and (ii) comprises an amino acid sequence: (a) having 50% or more identity to SEQ ID NO: 42; and/or (b) comprising a fragment of at least 'n' consecutive amino acids of SEQ

ID NO: 42, wherein 'n' is 7 or more.

- 4. The composition of claim 3 for use in a method for raising an immune response in a mammal.
- 5. The composition of any preceding claim, wherein the sta006 antigen comprises an amino acid sequence having 60%, 70%, 80%, 90% or more identity to SEQ ID NO: 42.
 - **6.** The composition of any preceding claim, wherein the sta006 antigen comprises an amino acid sequence having 90% or more identity to SEQ ID NO: 246.

10

15

5

- 7. The composition of any preceding claim, wherein the sta006 antigen comprises an amino acid having 99% or more identity to SEQ ID NO: 248.
- 8. The composition of any of claims 2-7, wherein the adjuvant is aluminium hydroxide.
- 9. The composition of any preceding claim, wherein the composition includes a histidine buffer or a phosphate buffer.
- **10.** The composition of any preceding claim, further comprising one or more conjugates of a *S. aureus* exopolysaccharide and a carrier protein.

20

- **11.** The composition of any of claims 1-9, further comprising one or more conjugates of a *S.aureus* capsular polysaccharide and a carrier protein.
- **12.** The composition of any preceding claim, in lyophilized form.

25

- 13. The composition of any of claims 1-11, in aqueous form.
- **14.** A method for preparing the composition of claim 13, by reconstituting the composition of claim 12 with aqueous material.

30

15. A pharmaceutical composition comprising the composition of any preceding claim, and a pharmaceutical carrier and/or an excipient.

35

40

45

50

FIGURE 2

FIGURE 8

FIGURE 9A

EUROPEAN SEARCH REPORT

Application Number EP 12 17 5868

I	DOCUMENTS CONSID			
Category	Citation of document with in of relevant pass	ndication, where appropriate, ages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)
Х	WO 02/094868 A2 (CH MASIGNANI VEGA [IT] SCARSELLI MA) 28 November 2002 (2 * e.g. claim 1,11,1 the whole document	HIRON SPA [IT]; ; MORA MARIROSA [IT]; 2002-11-28) 2,22; *	1-15	INV. A61K39/085 C07K14/31
A	SCHAFFER ADAM C ET passive immunisatic Staphylococcus aure INTERNATIONAL JOURN AGENTS NOV 2008 LNW vol. 32 Suppl 1, No pages S71-S78, XPOG ISSN: 0924-8579 * e.g. section 6.2 right-hand column, the whole document	AL: "Vaccination and on against sus.", IAL OF ANTIMICROBIAL (D- PUBMED:18757184, ovember 2008 (2008-11), 02601981, on page S75; page S77, paragraph 2;	1-15	
A	DATABASE Geneseq [C	Dnline]	1-15	
	20 November 2003 (2 XP002601982, retrieved from EBI GSP:ABM72354 Database accession * the whole documer	2003-11-20), accession no. no. ABM72354 ht * 		SEARCHED (IPC) A61K C07K
	Place of search	Date of completion of the search		Examiner
	The Hague	24 August 2012	Gru	ber, Andreas
CA X : parti Y : parti docu A : tech O : non P : inter	ATEGORY OF CITED DOCUMENTS icularly relevant if taken alone icularly relevant if combined with anot iment of the same category inological background -written disclosure mediate document	T : theory or principl E : earlier patent doo after the filing dat D : document oited i L : document oited fi & : member of the sa document	e underlying the i cument, but publi- e n the application or other reasons ame patent family	nvention shed on, or , oorresponding

EP 2 510 947 A1

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 12 17 5868

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

24-08-2012

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 02094868 A2	28-11-2002	CA 2440368 A1 EP 1373310 A2 EP 1829892 A2 EP 2298796 A2 JP 2005502326 A JP 2009165468 A US 2006115490 A1 US 2010047267 A1 US 2010055130 A1 US 2012020890 A1 US 2012052084 A1 US 2012052084 A1 US 2012058143 A1 WO 02094868 A2	28-11-2002 02-01-2004 05-09-2007 23-03-2011 27-01-2005 30-07-2009 01-06-2006 25-02-2010 04-03-2010 26-01-2012 01-03-2012 08-03-2012 28-11-2002

 $\frac{6}{10}$ For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 2007113222 A [0649]
- WO 2005009379 A [0649] •
- WO 2009029132 A [0649] •
- WO 2008079315 A [0649]
- WO 2005086663 A [0649]
- WO 2005115113 A [0649]
- WO 2006033918 A [0649]
- WO 2006078680 A [0649]
- WO 2007113224 A [0649]
- WO 9810788 A [0649]
- WO 2007053176 A [0649] •
- EP 0372501 A [0649]
- EP 0378881 A [0649]
- EP 0427347 A [0649] •
- WO 9317712 A [0649]
- WO 9403208 A [0649]
- WO 9858668 A [0649]
- ٠ EP 0471177 A [0649]
- WO 9101146 A [0649]
- EP 0594610 A [0649]
- WO 0056360 A [0649] •
- WO 02091998 A [0649] ٠
- WO 0172337 A [0649] .
- WO 0061761 A [0649]
- WO 0033882 A [0649]
- US 4761283 A [0649]
- US 4356170 A [0649]
- US 4882317 A [0649] •
- US 4695624 A [0649]
- EP 0208375 A [0649]
- WO 0010599 A [0649] •
- . US 4057685 A [0649]
- US 4673574 A [0649]
- US 4808700 A [0649]
- US 4459286 A [0649]
- US 4965338 A [0649]
- US 4663160 A [0649]
- WO 2007000343 A [0649]
- WO 2008019162 A [0649]
- WO 2007145689 A [0649]
- WO 2009029831 A [0649]
- WO 2005079315 A [0649] •
- WO 2008152447 A [0649]
- WO 2005009378 A [0649]
- WO 2007071692 A [0649]
- WO 2010039563 A [0649]
- US 5707829 A [0649]
- US 6355271 B [0649]
- WO 0023105 A [0649]

- WO 9014837 A [0649]
- WO 2008043774 A [0649]
- US 2007014805 A [0649]
- US 20070191314 A [0649]
- WO 9511700 A [0649]
- US 6080725 A [0649]
- WO 2005097181 A [0649]
- WO 2006113373 A [0649]
- US 6630161 B [0649]
- ٠ US 5057540 A [0649]
- WO 9633739 A [0649]
- •
- EP 0109942 A [0649] •
- WO 9611711 A [0649] •
- WO 0007621 A [0649] •
- WO 03024480 A [0649]
- WO 03024481 A [0649]
- EP 0689454 A [0649]
- WO 0226757 A [0649]
- WO 9962923 A [0649]
- WO 9840100 A [0649]
- US 6207646 B [0649]
- ٠ US 6239116 B [0649]
- US 6429199 B [0649]
- WO 0195935 A [0649]
- WO 03035836 A [0649]
- WO 0122972 A [0649]
- WO 9517211 A [0649]
- WO 9842375 A [0649]
- WO 09940936 A [0649] ٠
- ٠ WO 09944636 A [0649]
- WO 9927960 A [0649]
- . US 6090406 A [0649]
- . US 5916588 A [0649]
- ٠ EP 0626169 A [0649]
- WO 9952549 A [0649]
- WO 0121207 A [0649]
- WO 0121152 A [0649]
- US 4680338 A [0649]
- US 4988815 A [0649]
- WO 9215582 A [0649]
- US 4689338 A [0649]
- US 4929624 A [0649]
- US 5238944 A [0649]
- US 5266575 A [0649] •
- US 5268376 A [0649]

•

408

US 5346905 A [0649]

US 5352784 A [0649]

US 5389640 A [0649]

US 5395937 A [0649]

EP 2 510 947 A1

WO 03105769 A [0649]

- - WO 9400153 A [0649]
 - WO 9911241 A [0649]

WO 9857659 A [0649]

EP 0835318 A [0649]

EP 0735898 A [0649]

EP 0761231 A [0649]

WO 9007936 A [0649]

WO 9403622 A [0649]

WO 9325698 A [0649]

WO 9325234 A [0649]

US 5219740 A [0649]

WO 9311230 A [0649]

WO 9310218 A [0649]

US 4777127 A [0649]

GB 2200651 A [0649]

EP 0345242 A [0649]

WO 9102805 A [0649]

WO 9412649 A [0649]

WO 9303769 A [0649]

WO 9319191 A [0649]

WO 9428938 A [0649]

WO 9511984 A [0649]

WO 9500655 A [0649]

US 5814482 A [0649]

WO 9507994 A [0649]

WO 9617072 A [0649]

WO 9530763 A [0649]

WO 9742338 A [0649]

WO 9011092 A [0649]

US 5580859 A [0649]

US 5422120 A [0649]

WO 9513796 A [0649]

WO 9423697 A [0649]

WO 9114445 A [0649]

EP 0524968 A [0649]

US 5206152 A [0649]

WO 9211033 A [0649]

US 5149655 A [0649]

RUAN et al. J Immunol, 1990, vol. 145, 3379-3384

KUO et al. Infect Immun, 1995, vol. 63, 2706-13

MICHON et al. Vaccine, 1998, vol. 16, 1732-41

Mol. Immunol., 1985, vol. 22, 907-919 [0649]

• BETHELL G.S. et al. J. Biol. Chem., 1979, vol. 254,

• HEARN M.T.W. J. Chromatogr., 1981, vol. 218,

• US 4816567 A [0649]

GB 2276169 A [0649]

[0649]

[0649]

[0649]

2572-4 [0649]

509-18 [0649]

•

•

•

WO 2006110603 A [0649]

•

- US 5494916 A [0649]

US 5482936 A [0649]

.

٠

- US 5525612 A [0649]

- US 6083505 A [0649]
- US 6440992 B [0649]

- US 6627640 B [0649]
- US 6656938 B [0649]
- US 6660735 B [0649]
- US 6660747 B [0649]
- US 6664260 B [0649]
- US 6664264 B [0649] •
- US 6664265 B [0649]

- US 6667312 B [0649]

- US 6670372 B [0649]
- US 6677347 B [0649]

- US 6677348 B [0649]

- US 6677349 B [0649]

- US 6683088 B [0649]

- US 6703402 B [0649]
- US 6743920 B [0649]
- US 6800624 B [0649]

- •
- US 6809203 B [0649]
- US 6888000 B [0649]
- US 6924293 B [0649]
- WO 03011223 A [0649]
- WO 2004060308 A [0649]
- WO 2004064759 A [0649]
- US 6924271 B [0649]
- US 20050070556 A [0649]
- US 5658731 A [0649]
- US 5011828 A [0649] ٠
- WO 200487153 A [0649] .
- US 6605617 B [0649]
- WO 0218383 A [0649]

FR 2859633 [0649]

US 5936076 A [0649]

499-501 [0649]

2215-23 [0649]

3816-3824 [0649]

4884-7 [0649]

[0649]

•

.

.

WO 2004018455 A [0649] WO 03082272 A [0649]

US 20050215517 A [0649]

WO 2004064715 A [0649]

US 20050192248 A [0649] WO 2005102049 A [0649]

Non-patent literature cited in the description

SHERIDAN. Nature Biotechnology, 2009, vol. 27,

KUKLIN et al. Infect Immun., 2006, vol. 74 (4),

O'BRIEN et al. J Dairy Sci, 2000, vol. 83, 1758-66

Research Disclosure, January 2002, 453077 [0649]

FALUGI et al. Eur J Immunol, 2001, vol. 31,

BARALDO et al. Infect Immun, 2004, vol. 72 (8),

- GEVER et al. Med. Microbiol. Immunol, 1979, vol. 165, 171-288 [0649]
- RABLE ; WARDENBURG. Infect Immun, 2009, vol. 77, 2712-8 [0649]
- KIM et al. Vaccine, 2010 [0649]
- SJODAHL. J. Biochem., 1977, vol. 73, 343-351 [0649]
- UHLEN et al. J. Biol. Chem., 1984, vol. 259, 1695-1702 [0649]
- SCHNEEWIND et al. Cell, 1992, vol. 70, 267-281
 [0649]
- DEDENT et al. EMBO J., 2008, vol. 27, 2656-2668
 [0649]
- SJOQUIST et al. Eur. J. Biochem., 1972, vol. 30, 190-194 [0649]
- DEDENT et al. J. Bacteriol., 2007, vol. 189, 4473-4484 [0649]
- DEISENHOFER et al. Hoppe-Seyh Zeitsch. Physiol. Chem., 1978, vol. 359, 975-985 [0649]
- DEISENHOFER. Biochemistry, 1981, vol. 20, 2361-2370 [0649]
- GRAILLE et al. Proc. Nat. Acad. Sci. USA, 2000, vol. 97, 5399-5404 [0649]
- O'SEAGHDHA et al. FEBS J., 2006, vol. 273, 4831-41 [0649]
- GOMEZ et al. J. Biol. Chem., 2006, vol. 281, 20190-20196 [0649]
- SEBULSKY; HEINRICHS. J Bacteriol, vol. 183, 4994-5000 [0649]
- SEBULSKY et al. J Biol Chem, 2003, vol. 278, 49890-900 [0649]
- Current Protocols in Molecular Biology. 1987, 30 [0649]
- KURODA et al. Lancet, 2001, vol. 357, 1225-1240
 [0649]
- NEEDLEMAN ; WUNSCH. J. Mol. Biol., 1970, vol. 48, 443-453 [0649]
- RICE et al. Trends Genet, 2000, vol. 16, 276-277 [0649]
- Vaccine Design... Plenum, 1995 [0649]
- PODDA; DEL GIUDICE. Expert Rev Vaccines, 2003, vol. 2, 197-203 [0649]
- PODDA. Vaccine, 2001, vol. 19, 2673-2680 [0649]
- Vaccine Design: The Subunit and Adjuvant Approach. Plenum Press, 1995 [0649]
- Vaccine Adjuvants: Preparation Methods and Research Protocols. Methods in Molecular Medicine series. vol. 42 [0649]
- ALLISON ; BYARS. Res Immunol, 1992, vol. 143, 519-25 [0649]
- HARIHARAN et al. Cancer Res, 1995, vol. 55, 3486-9 [0649]
- SULI et al. Vaccine, 2004, vol. 22 (25-26), 3464-9 [0649]
- HAN et al. Impact of Vitamin E on Immune Function and Infectious Diseases in the Aged at Nutrition. *Immune functions and Health EuroConference, Paris,* 09 June 2005 [0649]

- BARR et al. Advanced Drug Delivery Reviews, 1998, vol. 32, 247-271 [0649]
- SJOLANDERET et al. Advanced Drug Delivery Reviews, 1998, vol. 32, 321-338 [0649]
- NIIKURA et al. Virology, 2002, vol. 293, 273-280 [0649]
- LENZ et al. J Immunol, 2001, vol. 166, 5346-5355
 [0649]
- PINTO et al. J Infect Dis, 2003, vol. 188, 327-338
 [0649]
- GERBER et al. J Virol, 2001, vol. 75, 4752-4760
 [0649]
- GLUCK et al. Vaccine, 2002, vol. 20, B10-B16 [0649]
- JOHNSON et al. Bioorg Med Chem Lett, 1999, vol. 9, 2273-2278 [0649]
- EVANS et al. Expert Rev Vaccines, 2003, vol. 2, 219-229 [0649]
- MERALDI et al. Vaccine, 2003, vol. 21, 2485-2491
 [0649]
- PAJAK et al. Vaccine, 2003, vol. 21, 836-842 [0649]
- KANDIMALLA et al. Nucleic Acids Research, 2003, vol. 31, 2393-2400 [0649]
- KRIEG. Nature Medicine, 2003, vol. 9, 831-835
 [0649]
- MCCLUSKIE et al. FEMS Immunology and Medical Microbiology, 2002, vol. 32, 179-185 [0649]
- KANDIMALLA et al. Biochemical Society Transactions, 2003, vol. 31, 654-658 [0649]
- BLACKWELL et al. J Immunol, 2003, vol. 170, 4061-4068 [0649]
- KRIEG. Trends Immunol, 2002, vol. 23, 64-65 [0649]
- KANDIMALLA et al. BBRC, 2003, vol. 306, 948-953
 [0649]
- BHAGAT et al. BBRC, 2003, vol. 300, 853-861
 [0649]
- SCHELLACK et al. Vaccine, 2006, vol. 24, 5461-72 [0649]
- KAMATH et al. Eur J Immunol, 2008, vol. 38, 1247-56 [0649]
- RIEDL et al. Vaccine, 2008, vol. 26, 3461-8 [0649]
- BEIGNON et al. Infect Immun, 2002, vol. 70, 3012-3019 [0649]
- PIZZA et al. Vaccine, 2001, vol. 19, 2534-2541 [0649]
- PIZZA et al. Int J Med Microbiol, 2000, vol. 290, 455-461 [0649]
- SCHARTON-KERSTEN et al. Infect Immun, 2000, vol. 68, 5306-5313 [0649]
- RYAN et al. Infect Immun, 1999, vol. 67, 6270-6280
 [0649]
- PARTIDOS et al. Immunol Lett, 1999, vol. 67, 209-216 [0649]
- PEPPOLONI et al. Expert Rev Vaccines, 2003, vol. 2, 285-293 [0649]
- PINE et al. J Control Release, 2002, vol. 85, 263-270 [0649]

- TEBBEY et al. Vaccine, 2000, vol. 18, 2723-34 [0649]
- DOMENIGHINI et al. Mol Microbiol, 1995, vol. 15, 1165-1167 [0649]
- SINGH et al. J Cont Release, 2001, vol. 70, 267-276 [0649]
- ANDRIANOV et al. Biomaterials, 1998, vol. 19, 109-115 [0649]
- PAYNE et al. Adv Drug Delivery Review, 1998, vol. 31, 185-196 [0649]
- STANLEY. Clin Exp Dermatol, 2002, vol. 27, 571-577 [0649]
- WU et al. Antiviral Res., 2004, vol. 64 (2), 79-83
 [0649]
- VASILAKOS et al. Cell Immunol., 2000, vol. 204 (1), 64-74 [0649]
- JONES. Curr Opin Investig Drugs, 2003, vol. 4, 214-218 [0649]
- HU et al. Vaccine, 2009, vol. 27, 4867-73 [0649]
- WONG et al. J Clin Pharmacol, 2003, vol. 43 (7), 735-42 [0649]
- DYAKONOVA et al. Int Immunopharmacol, 2004, vol. 4 (13), 1615-23 [0649]
- SIGNORELLI; HADDEN. Int Immunopharmacol, 2003, vol. 3 (8), 1177-86 [0649]
- DE LIBERO et al. Nature Reviews Immunology, 2005, vol. 5, 485-496 [0649]
- OKI et al. J. Clin. Investig., vol. 113, 1631-1640 [0649]
- YANG et al. Angew. Chem. Int. Ed., 2004, vol. 43, 3818-3822 [0649]
- GOFF et al. J. Am. Chem., Soc., 2004, vol. 126, 13602-13603 [0649]
- COOPER. Pharm Biotechnol, 1995, vol. 6, 559-80
 [0649]
- STRANGER-JONES et al. PNAS USA, 2006, vol. 103, 16942-7 [0649]
- WARDENBURG et al. Infect Immun, 2007, vol. 75, 1040-4 [0649]
- DONNELLY et al. Annu Rev Immunol, 1997, vol. 15, 617-648 [0649]
- STRUGNELL et al. Immunol Cell Biol, 1997, vol. 75 (4), 364-369 [0649]
- CUI. Adv Genet, 2005, vol. 54, 257-89 [0649]
- ROBINSON; TORRES. Seminars in Immunol, 1997, vol. 9, 271-283 [0649]
- BRUNHAM et al. J Infect Dis, 2000, vol. 181 (3), 5538-43 [0649]
- SVANHOLM et al. Scand J Immunol, 2000, vol. 51 (4), 345-53 [0649]
- DNA Vaccination Genetic Vaccination. 1998 [0649]
- Gene Vaccination : Theory and Practice. 1998 [0649]
- FINDEIS et al. Trends Biotechnol., 1993, vol. 11, 202 [0649]
- CHIOU et al. Gene Therapeutics: Methods And Applications Of Direct Gene Transfer. 1994 [0649]
- WU et al. J. Biol. Chem., 1988, vol. 263, 621 [0649]
- WU et al. J. Biol. Chem., 1994, vol. 269, 542 [0649]

- ZENKE et al. Proc. Natl. Acad. Sci. (USA), 1990, vol. 87, 3655 [0649]
- WU et al. J. Biol. Chem., 1991, vol. 266, 338 [0649]
- JOLLY. Cancer Gene Therapy, 1994, vol. 1, 51 [0649]
- KIMURA. Human Gene Therapy, 1994, vol. 5, 845 [0649]
- CONNELLY. Human Gene Therapy, 1995, vol. 1, 185 [0649]
- KAPLITT. Nature Genetics, 1994, vol. 6, 148 [0649]
- CURIEL. Hum. Gene Ther., 1992, vol. 3, 147 [0649]
- WU. J. Biol. Chem., 1989, vol. 264, 16985 [0649]
- PHILIP. Mol. Cell Biol., 1994, vol. 14, 2411 [0649]
- WOFFENDIN. Proc. Natl. Acad. Sci., 1994, vol. 91, 11581 [0649]
- WINTER et al. Nature, 1991, vol. 349, 293-99 [0649]
- INBAR et al. Proc. Natl. Acad. Sci. U.S.A., 1972, vol. 69, 2659-62 [0649]
- EHRLICH et al. *Biochem*, 1980, vol. 19, 4091-96 [0649]
- HUSTON et al. Proc. Natl. Acad. Sci. U.S.A., 1988, vol. 85, 5897-83 [0649]
- PACK et al. Biochem, 1992, vol. 31, 1579-84 [0649]
- CUMBER et al. J. Immunology, 1992, vol. 149B, 120-26 [0649]
- RIECHMANN et al. Nature, 1988, vol. 332, 323-27
 [0649]
- VERHOEYAN et al. Science, 1988, vol. 239, 1534-36 [0649]
- **GENNARO.** Remington: The Science and Practice of Pharmacy. 2000 [0649]
- Methods In Enzymology. Academic Press, Inc, [0649]
- Handbook of Experimental Immunology. Blackwell Scientific Publications, 1986, vol. I-IV [0649]
- SAMBROOK et al. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, 2001 [0649]
- Handbook of Surface and Colloidal Chemistry. CRC Press, 1997 [0649]
- Short protocols in molecular biology. Current Protocols, 2002 [0649]
- Molecular Biology Techniques: An Intensive Laboratory Course. Academic Press, 1998 [0649]
- PCR. Springer Verlag, 1997 [0649]
- GEYSEN et al. PNAS USA, 1984, vol. 81, 3998-4002 [0649]
- CARTER. Methods Mol Biol, 1994, vol. 36, 207-23 [0649]
- JAMESON, BA et al. CABIOS, 1988, vol. 4 (1), 181-186 [0649]
- RADDRIZZANI ; HAMMER. Brief Bioinform, 2000, vol. 1 (2), 179-89 [0649]
- BUBLIL et al. Proteins, 2007, vol. 68 (1), 294-304
 [0649]
- DE LALLA et al. J. Immunol., 1999, vol. 163, 1725-29 [0649]

- KWOK et al. *Trends Immunol*, 2001, vol. 22, 583-88 [0649]
- BRUSIC et al. *Bioinformatics*, 1998, vol. 14 (2), 121-30 [0649]
- MEISTER et al. Vaccine, 1995, vol. 13 (6), 581-91 [0649]
- ROBERTS et al. AIDS Res Hum Retroviruses, 1996, vol. 12 (7), 593-610 [0649]
- MAKSYUTOV ; ZAGREBELNAYA. Comput Appl Biosci, 1993, vol. 9 (3), 291-7 [0649]
- FELLER; DE LA CRUZ. Nature, 1991, vol. 349 (6311), 720-1 [0649]
- HOPP. Peptide Research, 1993, vol. 6, 183-190 [0649]
- WELLING et al. FEBS Lett., 1985, vol. 188, 215-218 [0649]

- DAVENPORT et al. Immunogenetics, 1995, vol. 42, 392-297 [0649]
- TSURUI ; TAKAHASHI. J Pharmacol Sci., 2007, vol. 105 (4), 299-316 [0649]
- TONG et al. Brief Bioinform, 2007, vol. 8 (2), 96-108 [0649]
- SCHIRLE et al. J Immunol Methods., 2001, vol. 257 (1-2), 1-16 [0649]
- CHEN et al. Amino Acids, 2007, vol. 33 (3), 423-8 [0649]
- Current Protocols in Molecular Biology. 1987, vol. 30
 [0649]
- SMITH ; WATERMAN. Adv. Appl. Math., 1981, vol. 2, 482-489 [0649]
- DORO et al. Molecular & Cellular Proteomics, 2009, vol. 8, 1728-1737 [0649]