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(57) ABSTRACT 

A dynamic environment (e.g., an automated industrial pro 
cess) has multiple conditions in response to which corre 
sponding actions are required, and comprises various equip 
ment, control device(s) to control the equipment, and one or 
more sensors to generate input signal(s) representing a moni 
tored condition of the environment. A control system for the 
environment comprises a master processor and one or more 
co-processors, wherein the master processor configures a 
given co-processor to evaluate only a first Subset of conditions 
expected to occur in the environment within a specified time 
period (e.g., less than a response time of the master proces 
sor), and to provide first control information representing an 
action to be taken if a particular condition of the first subset is 
satisfied. The co-processor receives the input signal(s) repre 
senting the monitored condition, processes the input signal(s) 
so as to determine if the particular condition of the first subset 
is satisfied, and provides the first control information to the 
control devices so as to control the equipment. Exemplary 
applications include dynamic environments in which 
machine vision techniques and/or equipment are employed. 
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METHODS AND APPARATUS EMPLOYING 
AN ACTION ENGINE FORMONITORING 
AND/OR CONTROLLING DYNAMIC 

ENVIRONMENTS 

CROSS-REFERENCE TO RELATED 
APPLICATION 

0001. The present application claims a priority benefit, 
under 35 U.S.C. S 119(e), to U.S. provisional application Ser. 
No. 61/543,680, filed on Oct. 5, 2011, entitled “Methods, 
Apparatus and Systems for Monitoring and/or Controlling 
Dynamic Environments, which application is incorporated 
herein by reference in its entirety. 

BACKGROUND 

0002. A programmable logic controller (PLC) is a special 
form of computer-based controller typically employed to 
control equipment, machinery and/or instrumentation in 
automated industrial electromechanical processes. A com 
mon example of Such an automated industrial electrome 
chanical process is given by the operation of a factory assem 
bly line. In the dynamic environment of a factory assembly 
line, there may be multiple pieces of industrial equipment, 
machinery and/or instrumentation (collectively referred to as 
“equipment” for simplicity) associated with the fabrication, 
assembly, and/or packaging of parts/components, as well as 
the transport of the parts/components amongst various stages 
of fabrication, assembly and/or packaging. 
0003 FIG. 1 provides a general illustration of the typical 
role of a conventional PLC 50 in connection with an auto 
mated industrial process 10 Such as the operation of a factory 
assembly line. In addition to multiple pieces of equipment 20, 
the dynamic environment of a factory assembly line typically 
includes several control devices 30 (e.g., actuators) for oper 
ating the multiple pieces of equipment 20, as well as multiple 
input devices 40 (e.g., sensors) to provide indications of 
equipment status and/or various conditions associated with 
fabrication, assembly, packaging and/or transport of parts/ 
components. Such indications provided by the input devices 
40 often are referred to as “states' or “conditions” of the 
dynamic environment. Some examples of control devices 30 
used to operate the equipment 20 include magnetic relays, 
Solenoids, electric motors, and pneumatic or hydraulic cylin 
ders. Some examples of input devices 40 include limit 
Switches, position sensors, analog sensors (e.g., pressure or 
temperature sensors), and imaging devices (e.g., cameras). 
0004 Generally speaking, the PLC 50 is employed to 
monitor input signals 66 provided by input devices 40. These 
input signals, respectively or in various combinations, repre 
sent different states (conditions) of the dynamic environment 
as a function of time. In response to the input signals present 
at a given time, the PLC 50 generates output signals 68 to the 
control devices 30 for operating the industrial equipment 20, 
to ensure the automated process 10 is implemented efficiently 
and predictably. To this end, the PLC 50 generally is 
employed to coordinate predetermined sequences of actions 
to be taken by the equipment 20 implementing the process 10, 
in which respective actions may need to occur within a certain 
time window contingent on information provided by the input 
devices 40 (via the input signals 66). 
0005. A typical PLC includes programmable memory to 
store processor-executable instructions and employs various 
other electronic components to implement functions such as 
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logic, sequencing, timing, counting, and arithmetic. In terms 
of general architecture and various aspects of functionality, 
PLCs are in many respects similar to general-purpose com 
puters (e.g., desktop or laptop personal computers); however, 
whereas general-purpose computers typically are optimized 
for calculation and display tasks, PLCs generally are opti 
mized for control tasks in a dynamic environment such as an 
automated industrial process. Accordingly, PLCs generally 
are thought of as special-purpose control computers for con 
trolled dynamic environments. Since PLCs often are 
employed in the demanding conditions of an automated 
industrial process, from a package design standpoint conven 
tional PLCs often tend to be ruggedly designed so as to 
withstand demanding environments in which the PLC may be 
exposed to one or more of physical vibrations, challenging 
temperature and humidity conditions, dust or potentially 
damaging materials, and electrically noisy environments. 
0006 FIG. 2 illustrates a generalized block diagram of the 
typical electrical components/circuitry (e.g., "hardware’) 
constituting the conventional PLC 50 of FIG.1. As shown in 
FIG. 2, the basic functional components of the PLC 50 
include a processor unit 52, memory 54, power supply 56, 
input interface 58, output interface 60, and one or more com 
munications interfaces 62 all communicatively and/or elec 
trically coupled to one another. FIG. 2 also shows a program 
ming device 64 communicatively coupled to the PLC 50 and 
employed to program the PLC. 
0007. In FIG. 2, the processor unit 52 includes a micro 
processor to interpret input signals 66 received by the input 
interface 58, and in turn provide output signals 68 via the 
output interface 60 so as to implement control actions accord 
ing to a program (e.g., series of processor-executable instruc 
tions) stored in the memory 54. In particular, the memory 54 
stores the program containing instructions representing the 
control actions to be implemented by the microprocessor, as 
well as various data relating to input signals, output signals 
and operation of the microprocessor as it carries out various 
instructions. The input interface 58 provides to the processor 
unit 52 information via input signals 66 received from exter 
nal input devices (e.g., sensors, Switches, meters, counters, 
etc.). The processor unit 52 in turn communicates control 
actions to external output devices (e.g., valves, motors, etc.) 
via the output signals 68. 
0008. In FIG. 2, examples of components constituting the 
respective input and output interfaces may include analog-to 
digital converters, optocouplers/optoisolators, buffers, 
latches, and drivers So as to appropriately interface with vari 
ous external input and output devices associated with the 
controlled dynamic environment. Although four input signals 
and four output signals are shown for purposes of illustration 
in FIG. 2, it should be appreciated that different types of 
conventionally available PLCs may be configured to accept 
different numbers of input signals (some number N of input 
signals) and provide different numbers of output signals 
(some number X of output signal), and that the number of 
input signals and output signals need not necessarily be the 
same. In general, the number N of input signals and the 
number X of output signals is dictated at least in part by the 
number of input devices 40 employed to monitor the auto 
mated process 10 of FIG. 1 and the number of control devices 
30 employed to control the equipment 20. 
0009. In the PLC 50 shown in FIG. 2, the communications 
interface(s) 62 is/are used to receive and transmit various data 
(which may relate to one or more of the programs for execu 
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tion by the processor unit 52, the input signals, the output 
signals, other data to be utilized by the processor unit 52 in 
executing the program, etc.) via one or more communication 
networks from or to one or more network-based external 
input/output devices and/or other remote PLCs. In general, 
the communications interface(s) 62 implement Such func 
tions as device verification, data acquisition, synchronization 
between user applications, and connection management. The 
power supply 56 converts AC voltage to a low DC voltage 
(e.g., 5 Volts) required for the various circuitry in the PLC to 
operate. Finally, the programming device 64 (which in some 
examples may be coupled to the PLC 50 via the communica 
tion interface(s) 62) is employed to enter into the memory 54 
the program to be executed by the processing unit 52; typi 
cally, the program is developed/written in the programming 
device 64 and then transferred to the memory 54 of the PLC 
SO. 

0010 FIG. 3 provides additional details of the internal 
architecture of the PLC 50 shown in FIG. 2, particularly in 
connection with the processor unit, various elements of 
memory, input/output interfaces, and busses to facilitate 
information transfer. For example, FIG. 3 illustrates that the 
processor unit 52 (denoted as CPU in FIG. 2) is associated 
with a clock 52A, the frequency of which determines the 
operating speed of the PLC and provides the timing and 
synchronization for various elements in the PLC. Information 
within the PLC is carried amongst the processor unit, various 
memory elements, and to and from the input/output interfaces 
58 and 60 via multiple busses; in particular, the PLC employs 
a data bus for transporting data to and from the PLC’s con 
stituent elements, an address bus to send the addresses of 
locations for accessing stored data, and a control bus for 
signals relating to internal control actions. The PLC architec 
ture also may include an I/O system bus for communications 
between the input/output interfaces 58 and 60 (from which 
the input signals 66 are received from external input devices, 
and the output signals 68 are provided to external output 
devices, respectively) and an input/output unit 55 configured 
to transfer input/output information between the I/O system 
bus and the PLC's data bus. 

0011. In general, the processor unit 52 (CPU) of the archi 
tecture shown in FIG. 3 includes an arithmetic and logic unit 
(ALU) that is responsible for data manipulation and carrying 
out arithmetic operations (e.g., addition, Subtraction, multi 
plication, division) and digital logic operations (e.g., AND, 
OR, NOT, and EXCLUSIVE-OR), internal memory registers 
used to store information involved in program execution, and 
an internal control unit to receive the output of the clock 52A 
and control the timing of operations. The various memory 
elements constituting memory 54 may include read-only 
memory (ROM) 54A to provide permanent storage for the 
operating system and fixed data used by the processor unit, 
user program random-access memory 54B (User program 
RAM) employed for the program to be executed by the PLC, 
and data random-access memory 54C (Data RAM) used for 
data (information regarding the status of input and output 
signals, values of timers and counters and other internal 
devices, etc.). The program to be executed by the PLC may 
also be stored in non-volatile memory. 
0012. From the PLC architecture illustrated in FIG. 3, it 
may be appreciated that although conventional PLCs often 
are considered special-purpose computers rather than gen 
eral-purpose computers, both PLCs and general-purpose 
computers share many aspects of a “Von Neumann' computer 
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architecture. In a Von Neumann computer architecture, com 
puter instructions (the “user program” stored in User program 
RAM 54A) as well as any data required for program execu 
tion (e.g., stored in Data RAM 54C) are accessed from vari 
ous memory elements over a common bus architecture (i.e., 
via the address, data and control busses shown in FIG. 3). 
Although conventional PLCs attempt to tailor computer per 
formance by being special-purpose computing devices 
implementing specific functionality corresponding to a par 
ticular automated industrial process, the architecture of con 
ventional PLCs nonetheless places fundamental limits on 
their performance, as they execute instructions serially and 
hence effectively have no capacity for parallel execution. 
0013 Programming of a PLC primarily is concerned with 
specifying digital logic functions that process one or more 
input signals representing a sensed condition (“state') asso 
ciated with the automated process being implemented by 
various equipmentata given time. The digital logic functions 
acting on the monitored condition of the automated process 
generate one or more control signals in response to the moni 
tored condition. As noted above, these control signals are 
applied to control devices that in turn control the various 
equipment to take Some action involved in further implement 
ing the automated process. At a high level, a PLC program 
generally implements a sequence of one or more actions in 
response to monitored conditions as a function of time (e.g., 
if A or B occurs, actuate C; if A and B occurs, actuate D). The 
automated process evolves over time as actuators control 
equipment to drive the process to new conditions. Hence, as 
noted above, the automated process constitutes a dynamic 
environment in which an evolution of conditions is monitored 
by the PLC, and wherein the PLC makes decisions and 
updates control signals to actuators, based on respective 
monitored conditions, to drive the environment to new con 
ditions. 

0014. Many conventional PLCs are programmed via a 
“ladder logic' programming language to codify the digital 
logic that is used to evaluate inputs signals representing moni 
tored conditions. Common ladder logic programming lan 
guages typically employ graphical diagrams that resemble 
“rungs' of a ladder, wherein respective rungs represent circuit 
diagrams for electromechanical relays (which were used in 
older logical control systems) to facilitate intuitive program 
ming by control system engineers. Ladder logic is best Suited 
to implement control solutions in which primarily binary 
variables are involved (e.g., the monitored conditions in a 
dynamic environment each may be represented as TRUE, i.e., 
logic one, or FALSE, i.e., logic Zero). 
0015. However, in a variety of automated process environ 
ments, outputs of sensors may be analog signals. Accord 
ingly, in Some instances, if the direct output of a given input 
device/sensor is not in the form of a binary signal, the output 
of the input device/sensor may be pre-conditioned in some 
respects to provide the input signals 66 in binary form. For 
example, an analog output of a temperature sensing device 
may be first applied to a comparator circuit having a tempera 
ture set point Voltage as another input so as to provide, as one 
of the input signals 66, a binary indication of whether or not 
the monitored temperature is above or below the particular 
temperature set point. Alternatively, an analog value may be 
converted to a quantitative value encoded into a multi-bit 
digital word used by the system to perform mathematical 
operations and/or make decisions. Similarly, a multi-bit out 
put of a counter serving as an input device may be compared 
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to a pre-determined count to in turn provide, as one of the 
input signals 66, a binary indication of whether or not the 
counter output is above or below the pre-determined count 
(alternatively, an output of a counter having some number B 
of bits may be provided directly as a number Bofinput signals 
66). Yet other types of input devices may generate highly 
transient signals; for Such devices, a latch may be employed to 
facilitate the detection of a signal edge or transient so as to 
provide an input signal of suitable duration to the PLC indi 
cating the occurrence of the edge/transient. In other 
examples, input devices may include various networked 
devices, for which one or more communication status signals 
(e.g., data packet transmitted/received) may serve as one of 
the input signals 66. 
0016 Ladder logic and other languages for programming 
conventional PLCs generally are considered to be rules-based 
programming languages. A typical PLC program may be 
constituted by a series of rules, wherein each rule is consti 
tuted by one or more binary input signals (e.g., A, B, C, D) 
representing a monitored condition of the automated process, 
and a corresponding control signal (e.g., X) that is generated 
in response to particular digital logic evaluating the input 
signals. Accordingly, in Some aspects a rule in a PLC program 
may be viewed in a manner similar to an “IF/THEN” state 
ment (e.g., If (A AND NOT B) AND (CORD), THEN X). 
The PLC program includes all of the rules necessary to imple 
ment all of the actions that are required in response to differ 
ent combinations of input signals representing all of the dif 
ferent possible conditions of the automated process that may 
be monitored via the set of available input signals. 
0017. With reference again to FIG. 2, the programming 
device 64 (which may be a handheld programming device, a 
desktop console, or a personal computer Such as a laptop or 
tablet computer) is typically employed to create, store and 
download to the PLC executable programs including a set of 
rules. When the program is executed by the PLC, the rules are 
typically executed sequentially from first to last and then 
repeated, wherein each pass through the set of rules in 
sequence often is referred to as a “scan or “control loop.” 
Thus, consecutive repetitions of the scan or control loop 
represent a continuous cycle of the PLC reading input signals, 
examining input signal using the logic encoded in the pro 
gram rules, and then changing control signals output by the 
PLC as appropriate. 
0018 More specifically, with respect to general operation, 
including various housekeeping activities and performing 
scans or control loops, conventional PLCs typically function 
in a cyclical manner. For example, when power is initially 
applied to a PLC, the PLC may perform a self-check or 
diagnostic routine to ensure that various hardware compo 
nents are functioning properly. With reference again to FIGS. 
2 and 3, if no fault or error conditions are detected, the PLC 
then controls the input interface 58 and memory 54 so as to 
read each of the input signals 66 sequentially and store each 
read instance of a given input signal in a dedicated memory 
location. The PLC then executes its program by sequentially 
testing each rule (i.e., fetching, decoding and executing the 
program instructions in sequence) and solving the logic 
encoded in the rule. 

0019. In particular, for each rule, the stored instances of 
certain input signals as specified in the rule are retrieved from 
memory, the rule is evaluated based on the retrieved input 
signals, and if the rule is satisfied (i.e., all of the pre-requisite 
conditions specified in the rule are met), a control signal 
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corresponding to the satisfaction of the rule is generated. If 
Such a control signal is generated, it is stored in a dedicated 
memory location. Evaluation of a given rule may involve 
multiple read operations from, and write operations to, dif 
ferent memory locations (e.g., registers) as the digital logic 
codified in the rule is solved. As noted above, respective rules 
are evaluated sequentially as the PLC executes the ladder 
logic program; accordingly, while the PLC is evaluating a 
particular rule, it is inattentive to the other rules codified in the 
program. 

0020. If the PLC generates any control signals in response 
to evaluation of the rules, it may provide these for output as a 
set of updated control signals 68. These control signals in turn 
are transmitted to one or more actuators or other equipment to 
be controlled in connection with the automated process. The 
PLC then returns to performing the self-check, reading each 
of the input signals and storing them to memory, executing the 
program rules to complete the control loop, updating the 
control signals for output (if any), and repeating this cycle 
iteratively. 
0021. The time period required by the PLC to complete the 
cycle described above commonly is referred to as a “cycle 
time' or “scan time.” Typical cycle times of conventional 
PLCs are on the order of approximately 10 milliseconds to 
hundreds of milliseconds. The cycle time generally is deter 
mined by the particular CPU used in the processor unit, the 
size of the program to be scanned (e.g., the number of rules 
constituting the program, which in turn depends at least in 
part on the number of input signals to be read, the number of 
input signal combinations for which independent evaluations 
are required, and the number of control signals to be gener 
ated), and the system functions that are in use pursuant to 
execution of the program. Thus, the more complex the pro 
gram, the longer the cycle time will be. 
0022. It should be appreciated that, in a conventional PLC, 
the vast majority of rules when evaluated in a given cycle are 
not satisfied (i.e., no control signal is generated pursuant to 
evaluation of the rule); if a rule is not satisfied, the program 
merely moves to the next rule for evaluation. In this manner, 
it is common in conventional PLCs for a substantial portion of 
a given cycle to be spent evaluating Successive rules without 
generating any control signals. 
0023. Although relatively quick compared to general-pur 
pose computers programmed to implement similar function 
ality, the cycle time of a PLC is not instantaneous. As a result, 
the PLC does not “watch’ its input signals all of the time, but 
instead the PLC samples the states of the input signals peri 
odically depending on the cycle time. Furthermore, the cycle 
time constitutes a minimum delay in updating control signals 
(if generated pursuant to a satisfied rule) that are output by the 
PLC in response to sampled input signals. In this manner, the 
cycle time also may be viewed as a minimum response time (a 
“reaction time') of the PLC to a particular monitored condi 
tion (i.e., represented by a particular value for one or more of 
the input signals), and is often referred to as a “latency' of the 
PLC. Thus, it should be appreciated that due to this latency, an 
input signal that lasts for a duration shorter than the cycle time 
may be missed by the program (in general, any input signal 
must be present for longer than the cycle time). In some 
instances, external circuitry may be employed to latch tran 
sient signals so that they will not be missed entirely by the 
PLC. Even if a particular input signal is not “missed due to 
latching, however, a control signal that is to be generated in 
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response to the input signal may be generated by the PLC too 
late to be effective for the correct operation of the equipment 
being controlled. 
0024. Because of the cyclical nature in which a conven 
tional PLC executes a program, all possible combinations of 
input signals (representing all possible conditions of the auto 
mated process being controlled for which some action is 
required) must be contemplated in a single control loop of the 
program. Stated differently, as noted above, as long as a 
monitored condition represented by one or more input signals 
is in Some manner involved in causing some action to occur 
(via one or more control signals) at Some point during the 
duration of an automated process, there needs to be one or 
more rules in the program that evaluate the particular moni 
tored condition. As noted above, the latency of a conventional 
PLC Scales with program complexity; hence, as the number 
of possible conditions of the process for which actions are 
required increases, the program becomes larger and the 
latency becomes greater. Furthermore, in many automated 
processes, some conditions occur more frequently than oth 
ers, and in Some instances conditions that may occur rarely 
may be associated with a rule representing complicated logic 
that needs to be evaluated (which requires more processing 
time). Accordingly, significant portions of the cycle time may 
be “used up' (and latency exacerbated) by executing one or 
more rules to evaluate one or more monitored conditions that 
occur rarely. 

SUMMARY 

0025. The Inventors have recognized and appreciated that 
typical latencies associated with conventional programmable 
logic controllers (PLCs) may be excessively long for moni 
toring and/or controlling some types of dynamic environ 
ments (e.g., involving automated systems and/or processes). 
More generally, conventional PLCs as well as other more 
general-purpose computers often are not appropriately Suited 
for applications involving monitoring and/or controlling 
dynamic environments in which significant speed and/or pre 
cision is/are required in connection with response or reaction 
time (e.g., taking some action, Such as controlling equipment, 
machinery and/or instrumentation, in response to one or more 
monitored conditions). 
0026. In particular, processor-based control devices 
employing a general-purpose computer architecture (or 
related computer architectures with a small and finite set of 
general purpose processors), and executing programs sequen 
tially or cyclically, are not sufficiently fast to implement con 
trol functions in dynamic environments that require reflex 
like reactions in response to evolving conditions of the 
environment, which may benefit from essentially simulta 
neous evaluation of multiple possible conditions and taking 
immediate action based on same. Examples of dynamic envi 
ronments requiring reflex-like reactions include, but are not 
limited to, aircraft control, complex chemical process control, 
and machine vision applications (e.g., analysis of images to 
extract data for controlling various processes, such as auto 
matic inspection and robot guidance). 
0027. In view of the foregoing, various inventive embodi 
ments described herein are directed to methods, apparatus 
and systems for monitoring and/or controlling dynamic envi 
ronments, in which reactions to evolving conditions of the 
environment may be provided with significantly lower 
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latency and/or lower variability latency than possible with 
conventional PLCs and/or other conventional computing 
devices. 

0028. For purposes of the present disclosure, a “dynamic 
environment” refers to a process and/or system, whether 
implemented physically and/or virtually (e.g., for purposes of 
simulation), in which a condition of the process and/or system 
(also referred to herein as a “state' of the environment) may 
be monitored as a function of time, and one or more actions 
may be taken (e.g., in the form of control stimuli applied to the 
process and/or system) in response to a particular condition or 
evolution of conditions. In exemplary implementations dis 
cussed in greater detail below, actions taken in response to a 
particular condition or evolution of conditions of the dynamic 
environment may be “reflexive” in nature, in that they are 
nearly instantaneous as a result of the appreciably low latency 
achieved by the inventive methods, apparatus and systems 
disclosed herein. While many practical applications of the 
concepts disclosed herein are contemplated for physical 
implementations of automated industrial control processes 
and systems, for example, it should be appreciated that the 
inventive concepts disclosed herein are not limited in this 
respect, and may be applied advantageously in a variety of 
physical and/or virtual dynamic environments. 
0029. In connection with achieving appreciably low 
latency for controlling a dynamic environment, the Inventors 
have recognized and appreciated that for a given dynamic 
environment, different conditions requiring action may occur 
on different time scales and/or within different time frames 
(e.g., Some conditions may occur more often than others, 
and/or in close temporal proximity with certain other condi 
tions). Furthermore, some conditions may occur more often 
in particular sequences, and/or as a result of one or more 
particular actions previously having been taken. Accordingly, 
in one aspect of some inventive embodiments described 
herein, rather than considering the entire dynamic environ 
ment as a whole and contemplating all possible conditions of 
the dynamic environment overall time for which actions may 
be required, the Inventors have recognized and appreciated 
that by breaking up the dynamic environment into multiple 
Sub-environments (e.g., Sub-processes and/or Sub-systems) 
based on a variety of criteria (e.g., time scale/time frame, 
particular patterns of evolution or change in condition), a 
control methodology may be implemented with significantly 
low latency. Stated differently, the Inventors have recognized 
that by identifying particular categories of conditions that can 
occur and corresponding requiredactions that may be taken in 
a dynamic environment (e.g., a Subset of conditions that could 
all occur within a certain time period, a Subset of conditions 
that could only occur after a particular action was taken, etc.), 
the control Solution may be Subdivided and shared amongst 
multiple assessment and control resources to significantly 
reduce latency. 
0030. With the foregoing in mind, some embodiments of 
the present invention relate to a control system for a dynamic 
environment (e.g., as a replacement for the conventional PLC 
50 shown in FIG. 1), wherein the control system employs a 
“master processor (also referred to herein as a “housekeep 
ing processor) and one or more independent (i.e., asynchro 
nous) “slave' co-processors (also referred to herein as 
“responsive' co-processors) each dedicated to evaluating one 
or more conditions constituting a Subset of all possible con 
ditions that need to be evaluated in a given dynamic environ 
ment. The Subset of conditions for which a given co-processor 
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in the control system is tasked to evaluate may be based on a 
number of different criteria, as noted above (e.g., time scale/ 
time frame, particular patterns of evolution or change in con 
dition). For purposes of the present disclosure, "evaluating a 
condition refers to determining the presence of the condition 
(“satisfying the condition, e.g., by comparing some number 
N of monitored input signals at a given time to particular input 
signal values representing the condition) and taking appro 
priate action in response to the condition (e.g., generating one 
or more corresponding control signals, or particular instruc 
tions for generating same). 
0031. Such a control system including a master “house 
keeping processor and one or more slave “responsive' co 
processors respectively dedicated to evaluating some Subset 
of conditions in a dynamic environment may be viewed as 
adopting a "divide and conquer approach to monitoring and 
controlling the dynamic environment. In particular, rather 
than employing a single processor to evaluate all possible 
conditions of the environment for which actions are required, 
the master processor may task one or more co-processors to 
evaluate only some subset of possible conditions for which 
actions are required, thereby relieving the master processor of 
significant processing burden. In this manner, the latency of 
the entire control system is a function of co-processor latency 
(e.g., if multiple co-processors are employed, the latency of 
the control system as a whole may be a function of the largest 
co-processor latency). 
0032. By distributing the condition evaluation process for 
the dynamic environment amongst multiple co-processors in 
the foregoing fashion, the latency of the control system as a 
whole may be significantly reduced (e.g., in some cases by 
several orders of magnitude) as compared to conventional 
control approaches employing a single PLC and/or general 
purpose computer. In various implementations discussed in 
greater detail below, not only is appreciably low control sys 
tem latency realized by such a “divide and conquer 
approach, but predictable and repeatable latencies also may 
be realized with exemplary control system and/or co-proces 
sor architectures. One or both of low latency and low vari 
ability latency may be particularly advantageous in some 
machine vision applications, in which reliable/predictable 
machine behavior, including acquisitions of images correctly 
synchronized with machine and lighting system operation, is 
important. Low latency and low variability latency also may 
be important for coordinating control activities as indicated 
above with decisions resulting from computer analysis that 
may take place in a different time domain. 
0033. In one embodiment of a control system according to 
the present invention, a master processor (e.g., which in some 
cases may be implemented as a general-purpose computer) is 
communicatively coupled to one or more slave co-processors. 
Each slave co-processor includes its own dedicated memory 
(i.e., not shared with other co-processors, if they are present, 
and accessible only to the co-processor itself and the master 
processor), as well as associated hardware (e.g., processing 
and/or logic circuitry) to act on the contents of the dedicated 
memory. The contents of a given co-processor's dedicated 
memory may be provided (i.e., loaded into the co-processor) 
by the master processor. In exemplary system architectures 
discussed in greater detail below, in Some aspects a given 
slave co-processor also has Substantially unfettered access to 
input signals representing different conditions of a dynamic 
environment, as well as communication paths (e.g., with the 
master processor and the dynamic environment). Such that 
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multiple co-processors are capable of monitoring the same set 
of input signals at the same time and evaluating their associ 
ated conditions based on the same set of input signals. 
0034. In one exemplary implementation, the contents of 
the co-processor's dedicated memory includes information 
(e.g., a program) relating to evaluation of a single condition of 
the dynamic environment; hence, in Such an implementation, 
a given co-processor is configured (e.g., to execute the pro 
gram stored in the dedicated memory, or otherwise imple 
ment particular digital logic functions on the memory con 
tents) to evaluate only the single condition of the dynamic 
environment pursuant to the particular information stored in 
the co-processor's dedicated memory (in other embodiments 
discussed below, a co-processor may be configured to evalu 
ate multiple conditions). When a slave co-processor deter 
mines that its condition is present, it takes the corresponding 
prescribed action according to the co-processor's program/ 
logic (e.g., the co-processor provides some output that in turn 
generates one or more control signals as appropriate) and 
notifies the master processor that its condition is satisfied. In 
other implementations, rather than the co-processor itself 
taking the corresponding prescribed action, the co-processor 
may merely notify the master processor that its condition is 
satisfied (e.g., by generating an interrupt to the master pro 
cessor), and the master processor in turn may be appropriately 
configured to take the corresponding prescribed action. In 
either situation, by "offloading from the master processor at 
least the evaluation of the condition, the co-processor signifi 
cantly improves the response time of the control system as a 
whole. 

0035. In some embodiments discussed in further detail 
below, in response to a notification from a co-processor that 
its condition is satisfied, the master processor may “re-task 
the co-processor by loading into the co-processor's dedicated 
memory new information relating to a new condition to evalu 
ate (and corresponding action to be taken if the new condition 
is satisfied). In this manner, the master processor facilitates 
effective control of the dynamic environment as it evolves 
over time by dynamically re-tasking one or more co-proces 
sors of the control system (to evaluate new conditions and/or 
take new/different actions). 
0036. In some implementations of a control system 
according to the present invention, multiple slave co-proces 
sors may be employed if there are multiple conditions to be 
evaluated in the dynamic environment within a given time 
frame. Such that respective co-processors are configured to 
evaluate different possible conditions and take appropriate 
action as necessary. In one aspect of such an implementation, 
the set of N available input signals representing different 
possible conditions of the dynamic environment may be pro 
vided identically (e.g., in parallel, via a bus architecture) and 
available simultaneously to all of the co-processors for evalu 
ation. Accordingly, the respective co-processors indepen 
dently (i.e., asynchronously) may monitor the set of Navail 
able input signals, evaluate their respective conditions, take 
action if as appropriate, and notify the master processor when 
their conditions are satisfied. In this manner, as noted above, 
the latency of the control system is a function of a given 
co-processor's latency. In situations in which a co-processor 
is configured to evaluate a single condition, not only is the 
latency of the co-processor appreciably low, but the latency 
variation is appreciably low as well (and, for many practical 
purposes, Substantially Zero). 
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0037. A variety of co-processor implementations are con 
templated according to various embodiments of the inven 
tion. For example, in one embodiment, a co-processor may be 
implemented as a full-featured processor running an appre 
ciably short program loaded in its dedicated memory (e.g., a 
single IF THEN statement inside a loop for evaluating a 
particular condition). In this type of co-processor implemen 
tation, typical latencies for the co-processor (based on con 
ventional processors evaluating a relatively small number of 
instructions representing the IF THEN loop) may be on the 
order of about one microsecond. For applications in which 
space and/or hardware costs may be important practical con 
siderations, however, the implementation of a co-processor as 
a full-featured processor, particularly if control of a dynamic 
environment entails evaluation of numerous conditions and 
implicates multiple co-processors in a control system, may be 
impractical in some instances (e.g., the processing resources 
being spent on evaluating a single condition may be greater 
than necessary, and may take up excessive chip space). 
0038. In view of the foregoing, in other co-processor 
implementations according to various embodiments of the 
invention, a significantly streamlined special-purpose co-pro 
cessor includes pared-down digital logic to specifically 
implement a comparator function (e.g., the functional equiva 
lent of an IF THEN statement) based on the contents of the 
co-processor's dedicated memory and the monitored input 
signals; in essence, the functional capability of the co-proces 
sor is reduced to the particular evaluation of a single condition 
via a significant reduction in hardware. Such a co-processor 
implementation accomplishes the goal of a low-cost, space 
saving, low-latency solution. In exemplary implementations, 
several Such co-processors may be implemented inexpen 
sively in a field programmable gate array (FPGA), an appli 
cation specific integrated circuit (ASIC), or a fully-custom 
ized circuit, for example. 
0039. In one aspect of a streamlined co-processor imple 
mentation as discussed above, to alternatively or further 
facilitate low latency, a particular memory structure is 
employed for the co-processor's dedicated memory to store 
information in the form of a “condition/action pair.” In one 
example of Such a memory structure, a condition/action pair 
comprises particular data stored in a memory location (e.g., a 
single memory register, or multiple adjacent memory regis 
ters) arranged as a first number of bits representing the con 
dition to be evaluated, and a second number of bits represent 
ing an action to be taken if the condition is satisfied. Such a 
memory structure facilitates a straightforward and relatively 
simple digital logic implementation to compare monitored 
input signals to the first number of bits representing the con 
dition to be evaluated and, if there is a match (i.e., the condi 
tion is satisfied), provide the second number of bits represent 
ing the corresponding action to be taken as a gated output of 
the co-processor. Accordingly, based on structured memory 
contents constituting a “condition/action pair and relatively 
simple digital logic implementing a comparator and a gate to 
provide a gated output, and effective low-latency, low-foot 
print, and low-cost co-processor may be realized. 
0040. The configuration of a control system in which each 
co-processor is tasked with evaluating only a single condition 
(i.e., the smallest subset) of all possible conditions for the 
dynamic environment may be viewed as a “degenerate' case 
of minimum latency for the control system. More generally, 
the latency for the control system is dictated by the physical 
implementation of a given co-processor in the control system 
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(e.g., full-featured microprocessor VS. pared-down simplified 
digital logic implementation), and/or the functions (e.g., pro 
grammed logic functions) being implemented by the co-pro 
cessor. As discussed below, in Some embodiments the physi 
cal implementation and/or the functions implemented by a 
co-processor are particularly designed Such that an upper 
bound on a latency of the co-processor is below a required 
response time for the condition(s) being evaluated by the 
co-processor. In some cases, meeting Such a requirement may 
require that the co-processor only be configured to evaluate a 
single condition, while in other cases the co-processor may be 
configured to evaluate a Subset of some predetermined num 
ber of conditions (e.g., sequentially rather than “simulta 
neously.” but on a purposefully limited number of condi 
tions). In general, by purposefully limiting the function of the 
co-processor (e.g., size of the program executed by the co 
processor and/or the information to be processed), an upper 
bound on latency may be essentially guaranteed. 
0041 Based on the foregoing premise of purposefully lim 
iting the function(s) of a given co-processor, Some implemen 
tations of a control system according to various embodiments 
of the present invention may be predicated at least in part on 
appropriately balancing the following design constraints in 
the context of controlling a particular dynamic environment: 
1) ensuring that the co-processor is configured to evaluate a 
sufficiently comprehensive subset of conditions that may be 
present in the dynamic environment pursuant to some criteria 
(e.g., within a particular time frame, in a particular sequence, 
following previous particular actions being taken, etc.); 2) 
ensuring that the co-processor has sufficiently low (but not 
necessarily minimum achievable) latency to take action in 
response to satisfied conditions in an appropriate time frame 
(i.e., ensuring that there is a predictable and Sufficiently low 
upper bound on the co-processor's latency); and 3) ensuring 
that realization of the co-processor entails reasonably low 
hardware costs and/or space requirements. 
0042. In view of the foregoing, some embodiments of the 
present invention are directed to a control system that 
includes an “action engine' that may comprise one or more 
co-processors, wherein a given co-processor of the action 
engine may be configured to evaluate a particular Subset of 
multiple conditions that may arise in a dynamic environment. 
In one implementation of an action engine including multiple 
co-processors, each co-processor may function autono 
mously and simultaneously evaluate at any given time one or 
more particular conditions represented by some number N of 
input signals being monitored at the same time by all co 
processors of the action engine. 
0043. In another implementation of an action engine 
according to one embodiment, the action engine is configured 
to evaluate up to some fixed maximum number of conditions 
So as to establish an upper bound on latency and ensure 
sufficiently low variation in latency. To this end, in one 
example an action engine comprises an "event table' realized 
by a memory structure that includes some number of multiple 
sequentially-indexed memory locations (e.g., registers, or 
contiguous groups of registers) each having a particular size. 
In one aspect, each Such memory location is configured to 
store information in the form of a “condition/action' pair as 
discussed above, e.g., some first number of bits representing 
a condition to be evaluated, and some second number of bits 
representing some action to be taken if the condition is satis 
fied. In another aspect, respective memory locations of the 
event table store different condition/action pairs such that a 
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given memory location in the event table is “dedicated to 
evaluating a particular condition that may be represented by 
the N input signals. 
0044. In the foregoing example, the action engine further 
may include a "scanner communicatively coupled to the 
event table and configured to receive the N input signals, to 
sequentially evaluate the conditions represented by the con 
dition/action pairs stored in the respective memory locations 
of the event table. To this end, the scanner includes appropri 
ate digital logic circuitry (e.g., logic gates to implement a 
comparator and a gated output) to read the contents of a given 
memory location and compare the condition portion of the 
condition/action pair to the respective values of the N input 
signals. In one example, the condition portion of the condi 
tion/action pair includes N bits of the overall information 
stored in the given memory location, such that there is a 
one-to-one correspondence between the condition portion of 
the condition/action pair and the N input signals. Regardless 
of whether or not the particular condition is satisfied (i.e., the 
respective values of the Ninput signals do or do not match the 
condition portion of the condition/action pair), the scanner 
proceeds to reading the contents of the next memory location 
in the event table so as to compare the condition portion of the 
condition/action pair stored in the next memory location to 
the respective values of the N input signals. 
0045. If a particular condition represented by the condi 
tion portion of a condition/action pair stored in a given 
memory location of the event table is satisfied (i.e., the 
respective values of the N input signals match the condition 
portion of the condition/action pair), the scanner provides as 
an output the action portion of the condition/action pair (e.g., 
as a gated outputenabled by a comparator upon a match). This 
output itself may constitute one or more control signals, or 
represent an instruction that in turn generates one or more 
control signals, for controlling equipment in the dynamic 
environment. The scanner then proceeds to reading the con 
tents of the next memory location in the event table so as to 
compare the condition portion of the condition/action pair 
stored in the next memory location to the respective values of 
the N input signals and, if there is a match, the scanner 
provides the action portion of the condition/action pair as a 
gated output. Once the scanner reaches the last memory loca 
tion of the event table and appropriately processes the condi 
tion/action pair stored in this last memory location, the scan 
ner returns to the first memory location in the event table and 
repeats the cycle of sequentially processing the contents of 
Successive memory locations of the event table. 
0046. In some embodiments, an action engine including 
an event table and Scanner as described above may be com 
municatively coupled to a master (or “housekeeping) pro 
cessor that provides the contents of the event table (e.g., the 
condition/action pairs, and possibly other information) and 
oversees the appropriate mapping of particular condition/ 
action pairs to particular memory locations of the event table 
(e.g., based on a particular order or sequence in which the 
master processor wants the action engine to process the con 
dition/action pairs). In one aspect, the master processor may 
occasionally or periodically "re-task the action engine by 
loading one or more new condition/action pairs into its event 
table for processing by the scanner of the action engine. To 
this end, the scanner may provide an indication to the master 
processor that the condition corresponding to a particular 
condition/action pair being processed is satisfied, in response 
to which indication the master processor may load one or 
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more new condition/action pairs into the event table. Such an 
indication of a satisfied condition may be constituted by the 
generation of the output itself representing an action to be 
taken (which output may be monitored by the master proces 
sor), or in the form of a separate status signal or interrupt 
generated by the action engine and monitored by the master 
processor. Additionally (or alternatively), the scanner may 
provide an indication to the master processor that a full scan 
of the event table is complete (e.g., after processing of the 
condition/action pair stored in the last memory location of the 
event table), at which point the master processor may reload 
the event table with one or more new condition/action pairs, 
or a complete new set of condition/action pairs, for process 
ing during a Subsequent scan of the event table by the Scanner. 
0047. In embodiments of a control system according to the 
present invention that include a master processor and an 
action engine as described above, in one aspect the house 
keeping and “re-tasking functions accomplished by the mas 
ter processor facilitate a "divide and conquer approach to 
controlling a dynamic environment, as discussed earlier. In 
particular, in some implementations, given some total num 
ber T of possible conditions for which corresponding actions 
may be required in a dynamic environment, the master pro 
cessor is configured (e.g., programmed) to select only a par 
ticular subset of the total number T of possible conditions, 
and task the action engine at a given time to evaluate only this 
particular Subset of conditions. As noted above, the master 
processor may be programmed to make the selection of a 
particular subset of conditions for evaluation by the processor 
based on various criteria. In one example, the master proces 
sor selects a subset of conditions for evaluation by the action 
engine based at least in part on a time period in which the 
Subset of conditions is expected to occur in the dynamic 
environment, and in consideration of the response time (e.g., 
longest or “worst-case' response time) of the master proces 
sor itself in attending to its various duties (e.g., monitoring 
and/or controlling functions for which the master processor 
itself may be tasked in the overall context of the dynamic 
environment). 
0048 For example, in carrying out its own duties in the 
context of a given dynamic environment, the master proces 
sor itself has a limit on its ability to receive, process, and 
respond to information within a certain time period. In par 
ticular, a general purpose computer serving as the master 
processor is Subject to various scheduling constraints (e.g., 
pursuant to scheduling and dispatching software) that gov 
erns the manner in which multiple processes that need to be 
attended to by the processor are assigned to execute. Given 
the serial nature in which processes need to be scheduled, 
there is necessarily Some lag time, or “response time of the 
master processor, representing an amount of time between a 
request to initiate a given process and providing some 
response pursuant to execution of that process. The response 
time of the master processor typically is based at least in part 
on the number of such processes that need to be scheduled in 
order for the master processor to attend to its required func 
tions in the context of the dynamic environment, as well as the 
complexity of the respective processes being scheduled. In 
Some respects, this situation is similar to that of a conven 
tional PLC, in which the scan time or cycle time of the PLC is 
based on the number and complexity of rules encoded in the 
PLCs program, which places fundamental limits on the abil 
ity of the PLC to provide control signals within a particular 
time frame in response to monitored conditions. 
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0049. The response time of the master processor may have 
Some nominal expected or typical value, based at least in part 
on the number of respective processes that need to be sched 
uled and the complexity of those processes (which in turn is 
dictated at least in part by the requirements of the dynamic 
environment being monitored and controlled, and the com 
plexity of control tasks at hand). Given the variability of 
functions potentially performed by the master processor in a 
given dynamic environment, however, there is typically a 
longest potential response time, or a “worst-case' response 
time, to which the master processor may be subject in pro 
cessing information. If there are conditions of the dynamic 
environment (for which actions may be required) that may 
occur within a time period that is shorter than the worst-case 
response time of the master processor, the master processor 
itself effectively would be incapable of reliably responding to 
these conditions. Accordingly, the longest potential response 
time or “worst-case' response time of the master processor in 
the context of a given dynamic environment may serve as one 
example of a criterion upon which the master processor may 
select a subset of conditions for evaluation by the action 
engine. In this manner, the master processor essentially 
charges the action engine with “paying attention” to monitor 
ing certain conditions of the dynamic environment during a 
time period in which the master processor effectively is inca 
pable of doing so itself. 
0050 Stated differently, based on at least the criterion of 
time scale?time frame in which certain conditions may be 
expected in the dynamic environment, the master processor 
selects a Subset of conditions that could arise in the dynamic 
environment during a time period corresponding to a worst 
case response time of the master processor, and loads condi 
tion/action pairs into the action engine for processing during 
that time period. During that time period, the action engine 
may complete many hundreds or even thousands of scanning 
cycles before identifying that a particular condition repre 
sented in the action engine's event table is satisfied. Once the 
conditions are evaluated, appropriate action taken if as nec 
essary, and the master processor is again able to correspond 
with the action engine (i.e., within the worst-case response 
time of the master processor), the master processor may load 
one or more new condition/action pairs into the action 
engine's event table, for evaluation during the next time 
period during which the master processor may be preoccu 
pied with other tasks (other scheduled processes). In one 
aspect, the newly loaded condition/action pairs may be based 
at least in part on the previously evaluated conditions and 
actions taken, if any. In this manner, the master processor is 
responsive to an evolution of conditions in the dynamic envi 
ronment, and offloads significant processing burden to the 
action engine by repeatedly re-tasking the action engine to 
evaluate, at any given time, only a Subset of conditions that are 
expected to occur within a particular time period (e.g., corre 
sponding to the response time of the master processor). 
0051. In the foregoing example of an action engine, it 
should be appreciated that in one aspect, the combination of a 
dedicated memory location of the event table storing a par 
ticular condition/action pair, when coupled to the digital logic 
circuitry of the scanner to evaluate the condition (and, if 
satisfied, provide an output representing the action to be 
taken), is functionally equivalent to a co-processor as dis 
cussed above dedicated to evaluating a single condition. 
However, rather than only evaluating a single condition, the 
configuration of the scanner allows the digital logic circuitry 

Apr. 11, 2013 

performing the evaluation to be “shared (e.g., in a scanned or 
time division multiplexed manner) amongst the respective 
memory locations of the event table, such that the combina 
tion of the scanner and the event table of the action engine 
essentially constitutes a co-processor configured to evaluate 
multiple conditions and take action as appropriate. Such a 
component arrangement facilitates efficient and conservative 
use of hardware resources. 

0052. In various aspects, the size (e.g., number of bits) of 
the respective memory locations in an event table of the action 
engine, the total number of dedicated memory locations in the 
event table, and the configuration of the scanner itself (e.g., 
the digital logic implemented by the Scanner) are specified so 
as to achieve a desired latency for control of a particular 
dynamic environment, wherein the latency has a Sufficiently 
low upper bound and/or sufficiently predictable (and in some 
cases insubstantial) variation. In one particular implementa 
tion discussed in greater detail below, an appropriately con 
figured action engine based on an event table and a scanner 
achieves a latency for the action engine on the order of 10 
nanoseconds per condition/action pair (e.g., based on a 100 
MHz clock driving the logic functionality of the scanner); 
accordingly, for an event table having 128 memory locations 
respectively storing 128 condition/action pairs, for example, 
an action engine latency on the order of approximately 1.28 
microseconds (128x10 nanoseconds) may be realized. Such a 
latency metric is several orders of magnitude lower than the 
typical latency of tens to hundreds of milliseconds observed 
in conventional PLCs. 

0053. It should be appreciated that all combinations of the 
foregoing concepts and additional concepts discussed in 
greater detail below (provided such concepts are not mutually 
inconsistent) are contemplated as being part of the inventive 
Subject matter disclosed herein. In particular, all combina 
tions of claimed Subject matter appearing at the end of this 
disclosure are contemplated as being part of the inventive 
subject matter disclosed herein. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0054 The skilled artisan will understand that the drawings 
primarily are for illustrative purposes and are not intended to 
limit the scope of the inventive subject matter described 
herein. The drawings are not necessarily to scale; in some 
instances, various aspects of the inventive Subject matter dis 
closed herein may be shown exaggerated or enlarged in the 
drawings to facilitate an understanding of different features. 
In the drawings, like reference characters generally refer to 
like features (e.g., functionally similar and/or structurally 
similar elements). 
0055 FIG. 1 is a general illustration of the typical role of 
a conventional programmable logic controller (PLC) in con 
nection with an automated industrial process. 
0056 FIG. 2 is a generalized block diagram of the typical 
electrical components/circuitry (e.g., "hardware') constitut 
ing the conventional PLC of FIG. 1. 
0057 FIG. 3 is a block diagram that shows additional 
details of the internal architecture of the conventional PLC 
shown in FIG.2, particularly in connection with the processor 
unit, memory, and input/output interfaces. 
0.058 FIG. 4 is a block diagram illustrating a control sys 
tem for monitoring and controlling a dynamic environment, 
wherein the control system includes a master processor com 
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municatively coupled to an action engine comprising one or 
more co-processors, according to one embodiment of the 
present invention. 
0059 FIG. 5 is a block diagram of an action engine that 
includes multiple co-processors that operate in parallel to 
monitor, synchronize, and/or control at least one aspect of a 
dynamic environment, according to one embodiment of the 
present invention. 
0060 FIG. 6 is a block diagram of an action engine that 
includes an event table and a scanner that operate to monitor, 
synchronize, and/or control at least one aspect of a dynamic 
environment, according to one embodiment of the present 
invention. 
0061 FIG. 7 is a block diagram of a scanner suitable for 
use in the action engine of FIG. 6, according to one embodi 
ment of the present invention. 
0062 FIG. 8 is a diagram that illustrates the use of chained 
registers in the event table of FIG. 6, according to one 
embodiment of the present invention. 
0063 FIG. 9 is a block diagram of an action engine that 
includes multiple co-processors, each of which includes an 
event table and a scanner, that are configured to respond to 
operate in parallel to control at least one aspect of a dynamic 
environment, according to one embodiment of the present 
invention. 
0064 FIG. 10 is a block diagram of a dynamic environ 
ment in which machine vision techniques and equipment are 
employed, as well as a control system according to one 
embodiment of the present invention, for monitoring and 
controlling the dynamic environment. 

DETAILED DESCRIPTION 

0065. Following below are more detailed descriptions of 
various concepts related to, and embodiments of inventive 
systems, methods and apparatus for monitoring and/or con 
trolling dynamic environments. It should be appreciated that 
various concepts introduced above and discussed in greater 
detail below may be implemented in any of numerous ways, 
as the disclosed concepts are not limited to any particular 
manner of implementation. Examples of specific implemen 
tations and applications are provided primarily for illustrative 
purposes. 
0066 FIG. 4 is a block diagram illustrating a control sys 
tem 100a for monitoring and controlling a dynamic environ 
ment, according to one embodiment of the present invention. 
With reference again to FIG. 1, in which a conventional 
programmable logic controller (PLC) 50 is shown as moni 
toring and controlling an automated process 10, in exemplary 
implementations discussed in greater detail below the control 
system of FIG. 4 is configured as a replacement for the PLC 
50 shown in FIG.1. However, it should be appreciated that the 
control system of FIG. 4 is not limited in this respect, and 
various control systems according to embodiments of the 
present invention, as well as constituent elements thereof, 
may have wide applicability for monitoring and/or control 
ling a variety of dynamic environments, particularly those 
requiring low latency (i.e., significantly fast response time) 
and/or low variability latency. One exemplary application of 
control systems according to the present invention is given by 
a dynamic environment in which machine vision techniques 
and/or equipment are employed, as discussed in greater detail 
below in connection with FIG. 10. 
0067. As illustrated in FIG.4, the control system 100a of 
this embodiment includes a master processor 190 (also 

Apr. 11, 2013 

referred to as a “housekeeping CPU”) that is communica 
tively coupled to an action engine 110a. The action engine 
110a may comprise one or more responsive co-processors 
(respectively indicated in FIG. 4 as co-processors 120a-1 and 
120a-2; collectively indicated as co-processors 120a). Each 
co-processor 120a includes an input interface 158a and an 
output interface 160a that are coupled to co-processor logic 
(indicated respectively as controllers 130a-1 and 130a-2; col 
lectively controllers 130a). Exemplary input interfaces 158a 
output interfaces 160a may include, but are not limited to 
RS232 interfaces, Ethernet interfaces, universal serial bus 
(USB), and/or any other suitable parallel or serial communi 
cations interfaces. Each co-processor controller 130a is com 
municatively coupled to a dedicated memory (indicated 
respectively as memory 140a-1 and 140a-2; collectively 
memory 140a) that stores one or more conditions (indicated 
respectively as conditions 142a-1 and 142a-2; collectively 
conditions 142a) and at least one predetermined action (indi 
cated respectively as action 144a-1 and 144a-2; collectively 
actions 144a) corresponding to the condition 142a stored in 
the same memory 140a. Although the action engine 110a 
shown in FIG. 4 includes only two co-processors 120a, it 
should be appreciated that action engines according to other 
embodiments are not limited in this respect, and may include 
only one co-processor or more than two co-processors. 
0068. In one aspect of the control system 100a shown in 
FIG. 4, the control system 100a monitors, controls, and/or 
synchronizes a dynamic environment by using the action 
engine 110a to evaluate conditions that occur on relatively 
fast time scales and by using the housekeeping CPU 190 to 
evaluate conditions that occur on relatively slower time 
scales. More generally, as discussed above, in some embodi 
ments the housekeeping CPU 190 essentially tasks the action 
engine with "paying attention' to monitoring certain condi 
tions of the dynamic environment during a time period in 
which the housekeeping CPU 190 effectively is incapable of 
doing so itself. In one aspect, the time period during which the 
action engine 110a is particularly tasked with monitoring 
certain conditions (and taking action in response to same if 
necessary) is based at least in part on a “response time' (also 
referred to as “latency”) ofthehousekeeping CPU190 (which 
response time results from limits placed on the housekeeping 
CPU's ability to process information given the number of 
different tasks or processes that the housekeeping CPU itself 
needs to attend to). In some examples discussed below, the 
time period during which the housekeeping CPU delegates 
certain monitoring and control tasks to the action engine is 
based on a longest or worst-case response time of the house 
keeping CPU that may be expected in the context of the 
particular dynamic environment being controlled. 
0069. In view of the foregoing, in one exemplary imple 
mentation of the control system shown in FIG. 4, the action 
engine 110a Screens for fast-occurring events by evaluating 
input signals 66 representing the dynamic environment 
against conditions 142a that benefit from reflexive responses, 
i.e., responses executed faster than the latency of the house 
keeping CPU 190. Exemplary input signals 66 include, but 
are not limited to: discrete inputs, such as digital values (bits), 
analog values, or digital representations of analog inputs; 
real-time versions of discrete inputs; latched versions of dis 
crete inputs; derived versions of discrete inputs, such as 
counter values that are derived from a pair of counters clocked 
in quadrature; and decoded contents of messages (e.g., pack 
ets) received from one or more communication ports. The 
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input signals 66 may represent a single parameter (e.g., tem 
perature, pressure, position) constituting a condition of the 
dynamic environment or a collection of such parameters con 
stituting a condition of the dynamic environment. 
0070. To achieve this reflexive behavior, the controller 
130a of each co-processor 120a in the action engine 110a 
compares the input signals 110a to a particular condition 
142a (or set of conditions 142a). Unlike a general-purpose 
processor, each co-processor 120a evaluates only the particu 
lar condition 142a (or set of conditions 142a) stored in its 
memory, which enables the co-processor 120a to operate with 
low (and predictable) latency. If the controller 130a deter 
mines that the input signals 66 match the particular condition 
142a, the controller 130a executes the corresponding action 
144a. For example, execution of a corresponding action 144a 
may include transmitting one or more output signals 68 to 
other devices and/or systems. Alternatively, the action 144a 
may include forwarding an interrupt to the housekeeping 
CPU 190 to implement the response. 
0071. At the same time, the housekeeping CPU190 moni 
tors the evolution of the dynamic environment through analy 
sis of the input signals 66 and output signals 68. In certain 
circumstances (e.g., for slow evolutions of the dynamic envi 
ronment), the housekeeping CPU190 may respond directly to 
particular input signals 66 by transmitting its own output 
signals. In other circumstances, the housekeeping CPU 190 
responds indirectly to evolutions of the dynamic environment 
by re-tasking the co-processors 120a, e.g., by updating and/or 
replacing some or all of the conditions 142a and/or (prede 
termined) actions 144a stored in the memories 140a. If the 
dynamic environment is an assembly line, for instance, the 
housekeeping CPU 190 may re-task co-processors 120a 
originally dedicated to tracking a first part to instead tracking 
a second part once the first part has moved off the assembly 
line. 

0072 Dividing responsibility between the housekeeping 
CPU 190 and the action engine 110a allows the housekeeping 
CPU 190 to place the processing burden for the subset of 
events (e.g., fast-occurring events likely to occur given a 
particular evolution of the dynamic environment) represented 
by conditions 142a on the action engine 110a. At the same 
time, the housekeeping CPU 190 may continue to process 
conditions associated with slower evolutions of the dynamic 
environment. This divide-and-conquer approach may reduce 
the overall latency and/or jitter (latency variation) of the 
system's response to events represented by the input signals 
66. In some cases, shifting the processing burden for fast 
occurring events may also make the latency of the entire 
control system 100a substantially a function of co-processor 
latency. 
0073 
0074 FIG.5 shows another illustrative action engine 110b 
for monitoring, synchronizing, and/or controlling at least one 
aspect of a dynamic environment. Examples of such environ 
ments with which the system shown in FIG. 5, and particu 
larly the action engine 110b, may be employed include, but 
are not limited to, an assembly line, inspection line, autono 
mous or semi-autonomous vehicle (or vehicle convoy), power 
management system (e.g., a Smart grid), warehouse, indus 
trial space, parking facility, airport, shipping port, Surveil 
lance system, amusement ride, and/or communications net 
work. For instance, the action engine 110b may be used for 
machine control and/or image triggering. 

Action Engines with Comparator Logic 
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0075. The action engine 110b includes multiple co-pro 
cessors (respectively indicated in FIG. 5 as co-processors 
120b-1 through 120b-n; collectively indicated as co-proces 
sors 120b). Each co-processor 120b is a special-purpose com 
puter processor that executes a limited number of operations 
at high speed, i.e., speeds higher than can be achieved execut 
ing the same operations with a general-purpose computer or 
CPU, e.g., housekeeping CPU190. Illustrative co-processors 
120b may be implemented in FPGAs, ASICs, and/or any 
other suitable implementation known in the art. 
0076 Each co-processor 120b in the action engine 110b 
includes a respective input port (respectively indicated in 
FIG. 5 as input ports 158b-1 through 158b-n; collectively 
indicated as input ports 158) coupled to an input bus 102 that 
is operably coupled to receive data from sensors, actuators, 
receive queues (e.g., Ethernet receive queues), and other 
Sources of information about the dynamic environment. 
Although FIG.5 depicts in entries, those of skill in the art will 
readily appreciate that exemplary action engines may have 
any number of co-processors 120b, e.g., 1, 2, 4, 8, 16, 32, 64. 
128, 256, 512, or 1024 co-processors 120b. 
0077. Each co-processor 120b also includes a respective 
register (respectively indicated in FIG. 5 as registers 140b-1 
through 140b-n; collectively indicated as registers 140b) that 
stores representations of one or more states or conditions 
(respectively conditions 142b-1 through 142b-n; collectively 
conditions 142b) and representations of one or more actions 
(respectively actions 144b-1 through 144b-n; collectively 
conditions 144b) to be executed by the co-processor 120b as 
described below. Each condition 142b may be independent of 
(and possibly overlap with) the other conditions 142b in the 
action engines registers 140b. A condition 142b may also be 
contingent upon satisfaction of one or more other conditions 
142b in the action engine 110b for example, they may be 
logically “ANDed” together into supersets as described in 
greater detail below. 
0078. The registers 140b can be implemented in any suit 
able type of memory, including but not limited to computer 
readable storage media Such as a volatile or nonvolatile com 
puter memory, flash memories, compact discs, optical discs, 
magnetic tapes, one or more floppy discs, circuit configura 
tions in FPGAs or other semiconductor devices, or other 
non-transitory media or tangible computer storage media. 
Each register 140b is dedicated to its respective co-processor 
120b; that is, the co-processors 120b do not share memories. 
Dedicating a register 140b to each co-processor helps reduce 
or eliminate contention issues. 
0079. Each co-processor 120b also includes a comparator 
(respectively comparator 130b-1 through 130b-n; collec 
tively comparators 130b) or other logic element(s) that com 
pare input signals 66 received via the input bus 102 and input 
port 158 to the conditions 142b. Because all the co-processors 
120b have their own comparators 130b and receive the inputs 
101 simultaneously via the input bus 101, the co-processors 
120b can compare the inputs 101 to their respective condi 
tions 142b simultaneously. As a result, the number of co 
processors 120b in the action engine 110b does not affect the 
speed with which the comparisons are performed. 
0080. If the input signals 66 match the conditions 142b, 
the comparator 130b emits an output (respectively outputs 
132-1 through 132-n; collectively, outputs 132) indicative of 
the match. It is possible for one, more than one, or none of the 
co-processors 120b to include conditions 142b that match the 
input signals 66. Each co-processor 120b may couple its 
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output 132 to an output bus 103 via an output port (respec 
tively output ports 160b-1 through 160b-n; collectively out 
put ports 160b). 
0081. Each co-processor 120b also executes the action 
144b stored in its respective register 140b upon detection of 
inputs 101 that match its respective conditions 142b. The 
action 144b are coupled to a logic element (respectively, logic 
elements 134-1 through 134-n; collectively, logic elements 
134) controlled by the output 132 of the comparator 130b. 
When the logic element 134 receives an output 132 indicative 
of a match between the inputs 101 and the conditions 142b, 
the logic element 134 executes the action represented by the 
action 144b. In some cases, the logic element 134 may trans 
mit additional information or instructions, shown here as 
output signals 68, to other devices, such as sensors, actuators, 
and other devices associated with the dynamic environment, 
via the output port 160b and output bus 104. Illustrative 
output signals 68 include, but are not limited to: discrete 
outputs, such as digital values, analog values, and/or digital 
representations of analog values; latched versions of discrete 
outputs; and/or output data and machine operation commands 
encoded in message packages sent via one or more commu 
nication ports (e.g., output port 160b). In other cases, the 
action 144b may be a “no-op' instructions in which the co 
processor 120b does not perform any action. 
0082. The action engine 110b is also coupled to a house 
keeping CPU 190 via the input bus 102, output bus 104, and 
additional connections to the registers 140b. (In other 
embodiments, one or more registers 140h in the action engine 
110b may be operably coupled to the housekeeping CPU190 
via input ports 158 and input bus 102.) The housekeeping 
CPU 190 performs general housekeeping task and loads and 
maintains the conditions 142b and/or action 144b in the co 
processor registers 140b. For example, the housekeeping 
CPU 190 may replace or update condition/action pairs in one 
or more co-processors 120b in response to the action engine's 
identification of a particular state of the dynamic environ 
ment, indications that op-codes are out of date, instructions 
from the action engine, instructions from users and/or other 
devices, etc. Since the action engine 110b can respond 
“directly' to inputs from the dynamic environment without 
necessarily requiring resources from the housekeeping CPU 
190, the housekeeping CPU 190 therefore remains substan 
tially free of any processing burden in connection with 
responding to Successive input states (i.e., the housekeeping 
CPU 190 remains substantially “unloaded’); accordingly, the 
housekeeping CPU190 is available when needed to perform 
tests and actions that may not be possible or practical for the 
action engine 110b to perform itself. In addition, the house 
keeping CPU 190 is not in a critical path for responding to 
evolutions of the dynamic environment, so it does not delay 
the action engine's response. 
0083) Action Engines with Event Tables and Scanners 
0084 FIG. 6 shows a system configuration of various 
components, including an illustrative action engine 110c for 
monitoring, synchronizing, and/or controlling at least one 
aspect of a dynamic environment. Examples of such environ 
ments with which the system shown in FIG. 6, and particu 
larly the action engine 110c, may be employed include, but 
are not limited to, an assembly line, inspection line, autono 
mous or semi-autonomous vehicle (or vehicle convoy), power 
management system (e.g., a Smart grid), warehouse, indus 
trial space, parking facility, airport, shipping port, Surveil 
lance system, amusement ride, and/or communications net 
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work. For instance, the action engine 110c may be used for 
machine control and/or image triggering. 
I0085. The action engine 110c includes an event table 112, 
which in turn includes event table registers (collectively, 
event table registers 140c: respectively registers 140c-1 
through 140C-5), each of which stores a representation of one 
or more conditions (collectively indicated in FIG. 6 as con 
ditions 142c; respectively indicated in FIG. 8 as conditions 
142c-1 through 142c-5). Each event table register 140c also 
stores a representation of one or more actions corresponding 
to the condition(s) stored in the register 140c (collectively 
indicated in FIG. 6 as instructions 144c: respectively indi 
cated in FIG. 8 as instructions 144C-1 through 144C-5). The 
event table 112 and event table registers 140c can be imple 
mented in any Suitable type of memory, including but not 
limited to computer readable storage media Such as a volatile 
or nonvolatile computer memory, flash memories, compact 
discs, optical discs, magnetic tapes, one or more floppy discs, 
circuit configurations in field programmable gate arrays or 
other semiconductor devices, or other non-transitory media 
or tangible computer storage media. 
I0086 Each event table register 140c stores an independent 
condition 142c. Taken together, the event table registers 140c 
can store conditions 142c representing every possible state of 
the dynamic environment that can be measured by one or 
sensors 40 coupled to the input bus 110. In many cases, 
however, the event table registers 140c may hold a reprogram 
mable Subset of conditions 142c, e.g., only those conditions 
142c that benefit from actions 144C executed more quickly 
than the latency of the housekeeping CPU190. In some cases, 
the conditions 142c may overlap; for instance, condition 
142c-1 may include temperature and pressure thresholds, and 
condition 142c-2 may include temperature and position 
thresholds. Although FIG. 6 shows only five event table reg 
isters 140c for purposes of illustration, it should be appreci 
ated that, in other embodiments, an event table 112 may have 
more or fewer registers 140c, e.g., tens, hundreds, or even 
thousands of entries. In general, virtually any number of 
conditions 142c germane to a particular environment, pursu 
ant to which some response/reaction may be required, may be 
represented in an event table 112 as an event table register 
140C. 

I0087. In addition to representations of conditions 142c, 
each event table register 140c also includes representations of 
one or more actions 144c to be carried out if the state input 
matches the condition(s) 144c. Accordingly, ifa scanner 130c 
of the action engine 110c determines that the input signals 66 
match a given condition 142c stored in an event table register 
140c, the Scanner 130c accesses the corresponding action(s) 
144c stored in the event table register 140c, and executes the 
action(s) 144c So as to control one or more aspects of the 
dynamic environment. To this end, the action engine 110c 
also includes an input port 158c, an output port 160c, and/or 
one or more other communication interfaces (e.g., input/out 
put buses, Ethernet ports) to communicate instructions 
accessed in the event table to one or more external devices, as 
well as receive the state input, as well as other information 
relevant to the dynamic environment, from one or more 
Sources of Such information. 

I0088 As shown in FIG. 6, the action engine 110c further 
comprises a scanner 130c. The input port 158c that provides 
a connection from the event table 112 and scanner 130c to an 
input bus 102. FIG. 6 also illustrates that the input bus 102 of 
the action engine 110C is coupled to a variety of external 
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devices, including (but not limited to) a CPU 190, as well as 
a semaphore register 150, a counter 42, one or more sensors 
40, and a communications interface in the form of a receive 
queue 44 (e.g., an Ethernet receive queue). The scanner 130c. 
which is also connected to the input bus 102, includes digital 
logic (not shown in FIG. 6) that compares the set of conditions 
142c in each event table register 140c to input signals 66 
coupled to the input bus 102 from the housekeeping CPU190, 
the counter 42, the sensor(s) 40, the receive queue 44, and/or 
any other Suitable dataSource. In some cases, the input signals 
66 may include data derived from the dynamic environment 
by one or more embedded application systems, such as a 
processor that evaluates image data from a camera, position 
information from a robotic controller, and/or flow informa 
tion from a mixer or flow control system in a continuous 
process chemical reactor. In some implementations, pre-con 
ditioning or pre-processing raw data may reduce the number 
of bits required to represent the data, which in turn makes it 
possible to reduce the size of the registers 140c. 
0089 FIG. 7 is a block diagram that shows one possible 
embodiment of the scanner 130c in greater detail. The scan 
ner 130c includes comparator logic 131 that is coupled to 
action logic 132, sequencing logic 133, and one or more flag 
registers 135. Input signals 66, including but not limited to 
counter 42 value(s), sensor 40 value(s), State change inputs, 
and flag states, are evaluated by the comparator logic 131 with 
respect to the data representing conditions 142c from the 
event table 112 to determine if the conditions 142c are met. 
This “condition met” status is passed to the action logic 132. 
0090 Referring again to FIG. 7, the scanner 130c also 
includes action logic 132 that receives the “condition met” 
status from the comparator logic 131 along with data repre 
senting instructions 144c from the event table 112. The action 
logic 132 is also coupled to one or more flag registers 135, 
semaphore registers 150 (FIG. 6), output registers 136, com 
munication logic (not shown), counters, and data input cir 
cuitry. Depending on the state of the “condition met status 
and the data representing instructions 144c, the action logic 
132 may perform operations affecting the state of the flag 
registers 135, semaphore registers 150, output registers 136 
coupled to an output port 160b, communication logic 34. 
counters, and data input circuitry, as delineated in more detail 
below. In addition, the action logic 132 is coupled to event 
table write arbitration logic 134, which facilitates the chang 
ing of conditions 142c and/or instructions 144c in the event 
table 112, when, for example, an action has been executed and 
further evaluations of the condition/action pair are to be 
inhibited. 

0091. The sequencing logic 133 in the scanner 130c (FIG. 
7) synchronizes the activities of the comparator logic 131, the 
action logic 132, and the event table 112 (FIG. 6). It provides 
the read address to the event table 112, which determines 
which register 140c in the event table 112 is to be evaluated. 
The sequencing logic 133 also provides the write address to 
the event table write arbitration logic 134 when the action 
engine 110c determines that conditions 142c and/or instruc 
tions 144c in the event table 112 are to be modified. The event 
table write arbitration logic 134 receives inputs from the 
housekeeping CPU 190 as well as from other logic within the 
scanner 130c to govern write activity to the event table 112. 
When contention arises between write operations from the 
CPU 190 and write operations from other logic within the 
scanner 130c, priority may be given to the logic within the 
scanner 130c So that the scanner operation can continue unin 
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terrupted. In this case of contention, a wait signal is asserted 
to the housekeeping CPU 190 so that the CPU write operation 
is suspended until the event table write arbitration logic 134 
determines that the event table 112 is available to accept the 
write data from the CPU 190. In one embodiment of the 
scanner 130C, the sequencing logic 133 causes a new condi 
tion/action pair to be evaluated on every cycle of the master 
clock (not shown). 
0092. In various aspects, the scanner 130c and event table 
112 may be implemented in a single co-processor, e.g., in an 
FPGA using a working hardware description language 
(HDL) code. The scanner 130c may also be implemented as a 
unitary digital logic structure coupled to the one or more 
storage media in which the event table is stored. Alternatively, 
the scanner 130c may be implemented as multiple distributed 
logic components communicatively coupled to the event 
table. For example, in one embodiment, the scanner 130c may 
be implemented as multiple digital logic components respec 
tively dedicated to one event table register 140c, such that 
there is a one-to-one correspondence between an event table 
entry and dedicated digital logic to compare input signals to 
one or more conditions in a given event table register and 
access one or more corresponding instructions as appropriate. 
In yet other embodiments, digital logic components consti 
tuting a portion of the Scanner may be dedicated or assigned 
to particular groups of multiple event table registers. Accord 
ingly, it should be appreciated that the scanner of the action 
engine, and the digital logic circuits constituting the scanner, 
may be implemented in any of numerous ways according to 
various embodiments of the present invention. 
0093. In one exemplary implementation, the scanner of 
the action engine compares the state input Substantially 
simultaneously (e.g., in parallel) to multiple sets of conditions 
in the event table so that appropriate instructions for respond 
ing/reacting to the state input may be accessed (and in turn 
communicated to one or more external devices) with appre 
ciably high speeds. As a result, the action engine exhibits a 
significantly low latency with respect to processing informa 
tion relating to respective states of the dynamic environment 
and taking actions in response to same. 
0094 For instance, the scanner 130c may be implemented 
as a state machine that processes a single register 140c every 
two clock cycles. During the first clock cycle, the Scanner 
130c reads the condition 142c. The scanner 130c performs the 
corresponding action 144c during the second clock cycle if 
the condition 142c is met. The second clock cycle may 
involve a write back to the action 144c in the event table 112 
to indicate that the appropriate operation has been completed 
for the next scan. Implementations that involve especially 
complex conditions and/or a large number of input states may 
use more than two clock cycles to process a single register. In 
scanners 130c that use multi-cycle executions, a dual ported 
memory having concurrent read and write cycles can be 
implemented, where the write cycle writes back the register 
140c processed during a previous read cycle. State machine 
pipeline registers (as described below) in conjunction with 
the concurrent read and write cycles of the dual port memory 
will allow a new register to be processed every cycle, signifi 
cantly reducing latency. 
0.095 Referring again to FIG. 6, it should be appreciated 
that a set of one or more input signals 66, provided on the 
input bus 102 of the action engine 110c, may be obtained from 
a variety of sources coupled to the input bus 102 (e.g., the 
housekeeping CPU 190, the counter(s) 42, the sensor(s) 40, 
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etc.) and may be provided by a single source at a given time or 
multiple sources at a given time. Such a set of one or more 
input signals 66 may, at least in part, represent the dynamic 
environment at a given point in time, and these input signals 
66 may be compared (e.g., by the scanner 130c) to each of the 
sets of conditions 142c stored in respective event table regis 
ters 140C. 
0096. The input signals 66 are evaluated constantly to 
detect a change of State (rising or falling edge). At the begin 
ning of each scan of the event table 112, any input state 
changes discovered during the previous scan are presented as 
latched inputs (not shown) to the Scanner logic. This means 
that any signals that pass through the input filters will be 
detected, no matter how short their duration. Hence any 
change of state for any input signal can be presented to the 
scanner logic, even if their duration of the state change is 
shorter than the duration of a scan. 
0097. In one exemplary implementation of the action 
engine 110c shown in FIG. 6, if the set of input signals 66 
provided on the input bus 102 matches the condition(s) 142c 
for a particular event table register 140c, the scanner 130c 
executes the corresponding action 144c from that event table 
register 140c. In some cases, these actions 144c may include 
acquiring or releasing a semaphore, or setting or clearing a 
flag coupled to the scanner 130C, which uses the semaphore or 
flag to evaluate conditions 142c as described in greater detail 
below. The scanner 130c in turn transmits output signals 68 
corresponding to a matched set of conditions to the dynamic 
environment, the housekeeping CPU 190, and a transmit 
queue 34 (e.g., an Ethernet transmit queue) via an output bus 
104. 

0098. Alternatively, or in addition, the scanner 130c may 
be operably coupled to various peripherals. For example, the 
scanner 130c may reset or latch counters, latch input registers, 
set or clear output registers, or load entries into the transmit 
queue 34. In the case of multiple scanners, various ways of 
handling contention may be employed. For instance, reset/ 
latch/set/clear input contention can be handled by OR gates. 
The transmit queue 34 may be dedicated to the scanner 130c 
and have its own circuit process for managing data. The 
scanner 130c may alternatively share the transmit queue 34 
(possibly with other scanners 130c), and the circuit process 
may manage ownership of the queue 34. 
0099. In some cases, the actions 144c are executed to one 
or more devices external to the action engine 110C (e.g., via 
one or more communication interfaces of the action engine) 
as a data packet (e.g., as employed in various packet-mode 
computer networks, such as TCP/IP packets). In implemen 
tations in which data packets are employed to transmit 
instructions relating to actions 144c, in Some embodiments 
the contents of such packets may include not only the instruc 
tions themselves, but additional data (e.g., metadata) that 
relates in some manner to the instructions, the set of condi 
tions corresponding to the instructions, and/or one or more 
other aspects of the dynamic environment. The additional 
data may include, but is not limited to, address information 
(e.g., an Ethernet media access control (MAC) address 
header) and/or payload buffers, which may be filled in by the 
housekeeping CPU 190 in a location referenced by an index 
stored in the event table register 140c. 
0100. In some implementations, the action engine 110c 
selects or generates Such data for inclusion in a packet pay 
load (e.g., based on monitoring various information sources 
coupled to the input bus 102, and/or based on various infor 
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mation that may be stored in memory in addition to the event 
table 112). For example, when a given condition 142c is 
satisfied, the scanner 130c may select a corresponding pay 
load buffer based on an index stored in the corresponding 
register 140c, then copy corresponding payload buffer to the 
transmit queue 34. In other cases, the data may include the 
number of a part being tracked through an assembly or 
inspection line. Alternatively, the data may include informa 
tion about one or more data sources (e.g., the location and/or 
orientation of a camera serving as a sensor 40 and providing 
image information for evaluation) and/or the data may be 
associated with and/or represent some aspect of the state 
input itself (that is compared to sets of conditions stored in the 
event table). 
0101 Master Processor (“Housekeeping CPU”) Pro 
gramming and Operation 
0102. In embodiments of a system configuration employ 
ing the action engine 110C and various other components, 
such as shown in FIG. 6, the housekeeping CPU190 loads and 
maintains the conditions 142c and instructions 144c in the 
event table 112. In some cases, the housekeeping CPU 190 
may replace some or all of the conditions 142c and the 
instructions 144c in the event table 112 in response to an 
evolution of the dynamic environment (i.e., changing condi 
tions as a function of time). Since the action engine 110c can 
respond "directly (e.g., autonomously, without intervention 
of the CPU 190) to input signals representing conditions of 
the dynamic environment without necessarily requiring 
resources from the housekeeping CPU 190 (e.g., during time 
periods in which the action engine is commissioned to evalu 
ate particular conditions), the housekeeping CPU 190 there 
fore remains substantially free of any processing burden in 
connection with evaluating these particular conditions; 
accordingly, the housekeeping CPU 190 is available to attend 
to other processes (e.g., perform tests and actions that may not 
be possible or practical for the action engine 110c to perform 
itself). 
0103 With respect to commissioning the action engine 
110c to evaluate particular conditions during a given time 
period (or more generally, tasking one or more co-processors 
with evaluating one or more conditions), in one embodiment 
the housekeeping CPU 190 is configured to allocate tasks to 
co-processors by segregating application-specific machine 
coordination algorithms into distinct (e.g., orthogonal) pro 
cedural steps distinguished by their being conditional on the 
passage of time (e.g., either a known period of time, or an 
unknown period of time that may occur given its being con 
ditional on a collection of future external inputs or a particular 
sequence of monitored conditions). To this end, and with 
reference again to FIG. 6, the housekeeping CPU or master 
processor 190 includes one or more communication inter 
faces 192 and/or one or more input/output (I/O) ports for 
receiving input signals 66 representing conditions of the 
dynamic environment (as a function of time), as well as one or 
more processing units 194 and memory 196 to store proces 
sor-executable instructions, and various program data as nec 
essary, for the processing unit(s) 194 to implement orthogo 
nal procedural steps for controlling an action engine (or more 
generally one or more co-processors according to various 
embodiments). 
0104 Procedural steps as disclosed hereincan be executed 
independently of each other (e.g., by the processing unit(s) 
194 of the master processor 190) completely in parallel and in 
any order as their conditions are met (e.g., particular condi 
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tions are evaluated by either the master processor 190 or the 
action engine 110c to initiate a given procedural step). Each 
procedural step may include one or more of the following: 1) 
starting one or more processes, or instances of one or more 
processes; 2) stopping one or more processes, or instances of 
one or more processes; 3) performing one or more math 
ematical transformations; 4) presenting one or more outputs; 
5) transmitting one or more messages, e.g., between the 
housekeeping processor 190 and one or more action engines 
110c, between action engines 110c, to devices in the dynamic 
environment, and any other specified destinations; 6) acquir 
ing or releasing binary Semaphores to allow multiple pro 
cesses to guarantee mutual exclusion from desired sections of 
program code; 7) latching the state of peripherals, such as the 
inputs and counters; and 8) setting or clearing "flag variables 
for inter-process synchronization and communication. (Flag 
variables may be Boolean variables that are implemented by 
register peripherals that the event-table scanners have access 
to as opposed to variables Stored in the master processor's 
memory.) 
0105. In one embodiment of the present invention, com 
puter-implementable instructions (e.g., written in the 
SCORETM programming language) encoded on non-volatile, 
non-transitory computer-readable media accessible by the 
master processor 190 describe machine coordination tasks 
specific to each real world application (e.g., generation of 
output signals from one or more co-processors/an action 
engine to ultimately control various equipment in the 
dynamic environment). These instructions cause the master 
processor 190 to implement one or more processes, or state 
machines, possibly using one or more action engines 110c 
and/or one or more co-processors. Each process may also be 
implemented multiple times by the same system, either in 
parallel, in sequence, or both. Concurrently executed copies 
of a given process are known as “instances of the process, 
with each instance executed by a different slot 140 or set of 
slots in the action engine 110c or different co-processor. 
0106 Each process can be considered as a state machine, 
with each state in the state machine corresponding to a par 
ticular condition of the dynamic environment. The processes 
(state machines) include one-shot processes, which are 
executed once, and continuous processes, which are per 
formed (e.g., repetitively) without interruption. Both one 
shot and continuous processes may be halted or terminated 
before finishing, e.g., in response to a command from the 
master processor 190 or other source or upon reaching a 
predetermined point in the sequence of computer-implement 
able instructions. 

0107 Each state machine includes one or more states, 
each of which may be implemented as a “wait' statement, 
executed by an action engine/co-processor, during which the 
action engine/co-processor monitors the dynamic environ 
ment for the occurrence of the particular condition. In one 
significant aspect, the computer-implementable instructions 
include a particular definition of a “wait' Statement, having as 
arguments one or more conditions of the dynamic environ 
ment that, when satisfied, trigger execution of one or more 
actions and a notification of the master processor that the 
condition has been met. The “wait' statement essentially 
specifies that one or more actions will be executed when one 
or more real world conditions are met. The housekeeping 
processor 190 may off-load wait statement conditions and 
associated actions that are compatible with the action 
engine's operations to the action engine. Pursuant to the 
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programming language once compiled to be executed by the 
processing unit(s) 194 and the master processor 190, blocks 
of instructions between wait statements are executed by the 
action engine/co-processor and/or the master processor 190 
until the next wait statement. For example, an action engine 
may execute one or more actions directly following a wait 
statement provided that those actions are compatible with the 
action opcodes of the co-processor. 
0108. In at least one implementation, a wait statement 
causes the progress of a process to pause until the condition 
clause is satisfied. This enables the master processor 190 to 
schedule processes by querying the current wait statement 
condition of each process and continuing a process when its 
condition is satisfied. Wait statements can have the format 
“wait for <Boolean-expression>, where <Boolean-expres 
sion represents a condition of the dynamic environment. 
Subroutine calls may be made as desired to evaluate the 
condition of the statement. For instance, the condition may 
involve evaluation of a Boolean counter condition. Counter 
variables can accessed by name, optionally preceding the 
counter name with the keyword counter. Counter compari 
Sons can be made from an initial value. Such as a belt position 
when apart detect signal is generated. Automatically declared 
counter time can also be used to compare durations precisely 
(e.g., with microsecond precision). Some examples include 
(hash marks “if” indicate comments): 

wait for total - 2: 
wait for canContinue(); # the Subroutine canContinue returns a Boolean 
wait for computeTotal () > 99 
wait for counter position >= 100 from detectLocation 
wait for time >= 100us from detectTime; # includes “from keyword 
wait for flagA and flagB or booleanC 

The “from keyword removes the need for the developer to 
worry about counter roll-over for applications where a 
counter reset is not desirable. 

0109. A wait statement may also be used to wait for a 
particular time period to elapse by using the argument <dura 
tion-expressions: “wait for <duration-expressions.” This 
time period may be expressed as an absolute value, such as a 
time in milliseconds; a relative period, Such as a time period 
required by another process; or a time expressed as a variable. 
If the expression involves calling Subroutines or evaluating 
variable values, those variable values are evaluated only when 
the wait statement is processed the first time. Some examples 
include: 

wait for 1ms: 
wait for pauseduration; # where the variable is type timespan 
wait for computeWaitTime(); # will call the Subroutine once 

0110. A wait statement may also be used to wait for a 
rising or falling edge of a particular input: “wait for <edge of 
input <inputd.” The input given can be either the input index 
or the named input which would be previously declared. 
Multiple inputs can be given with an edge on any one of them 
satisfying the condition. Named and indexed inputs can be 
mixed in the OR’d list of inputs. Multiple inputs can be 
separated by either the OR keyword or a comma. Input 
indexes start at 0. Some examples include: 
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wait for rising edge of input O 
wait for falling edge of inputs PartDetect, DisableSwitch 
wait for rising edge of input 1,2,3 or 4 or DisableSwitch 

0111. A wait statement may also be used to wait for one or 
more inputs to change to a desired State (e.g., a set state or a 
cleared state): “wait for <stated input(s)<input-listd.” The 
“AND” keyword may be used to indicate all inputs are 
required to be in the desired state to satisfy the condition. 
Similarly, the “OR” keyword may indicate that the condition 
is satisfied if any of the inputs reaches the desired state. Some 
examples include: 

wait for set input 3 
wait for set input 3, 12 and Enable 
wait for set inputs 3 and 12 and Enable 
wait for clear inputs in Progress or Abort 

0112 A wait statement can be used to wait for one or more 
flags to be set or cleared: “wait for <stated flag(s)<flag-lists.” 
This is analogous to waiting one or more inputs to be set or 
cleared as above. Multiple flags can be given and the “flag” 
keyword can be used in the plural form for readability. Flags 
are indicated by a declared flag variable. Some examples 
include: 

wait for set flaggo Ahead; 
wait for set flags doneA, doneBand doneC 
wait for set flag finished set or finished clear 
wait for cleared flag availablei 

0113 A wait statement can be used to wait for one or more 
trigger ladder to fire: “wait for trigger ladder <integer-expres 
sion>.” A trigger ladder may be specified by its index, with 
trigger ladder indexes starting at 0. Examples include: 

wait for trigger ladder 1 
wait for trigger ladders 1 or 3 
wait for trigger ladders 0, 1, 2 or 3 

0114. Other types of wait statements include, but are not 
limited to: 

0115 Waiting for a quadrature encoder counter to 
decrease: “wait for decreasing counter <counterd.” This 
may be used with another condition, such as a rising 
edge of a part detection input; 

0116 Waiting a for quadrature encoder counter to 
increase: “wait for increasing counter <counters”. This 
may also be used with another condition, Such as a rising 
edge of a part detection input; 

0117 Waiting for a previous send statement in the same 
process to complete transmission “wait for send (sender) 
to finish’. For example, it may be used to wait for an 
Ethernet SureSynctM event transmission to finish before 
the process modifies the payload so as to avoid corrupt 
ing the payload for the transmission in progress; 

0118 Waiting for messages to arrive at an event packet 
receiverports in the co-processor or action engine: “wait 
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for message.” The device IDs of the sending devices may 
be either stored in the power on configuration or config 
ured at runtime by a host computer. If the event sender is 
relevant, the wait statement can be followed by an “if 
else if Statement that Switches on the message port 
value. In certain embodiments, a process that waits for a 
message will not wait for anything else. This enables the 
process to either run continuously or wait for a message, 
which in turn enables the scheduler to give a received 
message to the process. If the scheduler reads a message 
from a receiver peripheral and there is no process wait 
ing for a message, however, the message may be dis 
carded. 

0119 Multiple conditions can be combined together so 
that all must be satisfied at the same time before the wait 
statement is completed. This candone by combining the “for” 
clauses in the wait statement with the “AND” keyword. 
Examples include: 

wait for set flaggoAhead and for set input Enabled; 
wait for set input Enabled and for counter ticker > 100; 

In some instances, the action engine/co-processor may not 
execute a wait statement until all outstanding message sends 
have been completed. For communication with a 1x1 device, 
which may have a high latency in performing a message 
acknowledgement/no acknowledgement handshake, this can 
result in delays of over a millisecond. If this is not desirable, 
a separate one-shot process may be used to send the message, 
removing this latency from the main process. 
I0120 In general, the master processor 190 delegates as 
many conditions as possible to the action engine(s) 110c 
and/or co-processors. Typically, the master processor 190 
assigns one condition to each slot 140 in the event table 112 of 
the action engine 110C and/or to each co-processor. It may 
assign the conditions to the respective slots 140 and/or co 
processors based on the initial compiling of the instructions, 
a desired latency, the capabilities of the action engine 110c 
and the co-processors, the conditions themselves, and/or its 
own capabilities. For instance, the master processor 190 may 
determine a first subset of conditions for evaluation by a 
particular co-processor based on at least one of a time period 
in which the first subset of the plurality of conditions is 
expected to occur in the dynamic environment; a particular 
sequence in which the plurality of conditions is expected to 
occur in the dynamic environment; at least one previous 
action taken in the dynamic environment; a present state of 
the dynamic environment; a response time of the master pro 
cessor, and at least one attribute of the at least one co-proces 
Sor (e.g., functioning status, processing speed, memory size, 
input signal number, input signal type, output signal number, 
and output signal type). In some examples, the co-processor is 
configured to evaluate a number of conditions that is Smaller 
than some fixed maximum number of conditions, which may 
be based at least in part on a maximum permissible latency 
defined by a required response time in the dynamic environ 
ment 

0121 The master processor may also re-assign conditions 
dynamically, e.g., in response to the evolution of the dynamic 
environment, new instructions, and/or previously stored 
instructions. By delegating conditions to the action engine(s) 
110c and/or co-processors, the master processor 190 can per 
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form other processing tasks instead of monitoring the condi 
tions in a serial fashion. For example, the master processor 
may configure a given co-processor at a first time to evaluate 
only first subset of conditions and to provide control infor 
mation representing the first action in a plurality of actions if 
the first Subset of conditions is satisfied. Later, at a second 
time, the master processor reconfigures the co-processor to 
evaluate only a second Subset of conditions and to provide 
additional control information representing another action if 
the second Subset is of conditions is satisfied. In some cases, 
the master processor may determine the second Subset of 
conditions based at least in part on whether or not the first 
Subset of conditions is satisfied. In at least one of these cases, 
the master processor determines the second Subset of condi 
tions based on at least one of: a time period in which the 
second Subset of conditions is expected to occur in the 
dynamic environment; a particular sequence in which the 
conditions is expected to occur in the dynamic environment; 
a present state of the dynamic environment; at least one pre 
vious action taken in the dynamic environment; and the mas 
ter processor's response time. The master processor may 
determine the second Subset of conditions based on at least 
one of the co-processor's attributes, which include but are not 
limited to: the co-processor's functioning status (e.g., idle, 
active, etc.); a first number of the input signal processed by the 
co-processor, a first type of the input signal processed by the 
co-processor, a second number of the output signal processed 
by the co-processor; and a second type of the output signal 
processed by the co-processor. 
0122. In one aspect, the master processor 190 determines 
how to delegate conditions (and possibly actions as well) 
according to compiled computer-implementable instructions 
from an optimizing compiler (not shown). As understood by 
those of skill in the art, the compiler transforms the user 
written source code (e.g., in the SCORETM programming 
language) into a target language. Such as object code, that can 
be executed by the master processor, the action engine(s), 
and/or the co-processor(s). In performing this transformation, 
the compiler may compile the Source code in the order pre 
sented in the source code and produce object code with simi 
lar or roughly analogous ordering. 
0123. The compiler may also analyze the state machine(s) 
generated by compiling the Source code, e.g., by going from 
state to state along the edges (actions) connecting the states 
(wait statements/conditions). In one example, a user Supplies 
the compiler with a profile of the available action engine(s) 
and/or co-processor(s), e.g., by providing command-line 
arguments to the compiler. The compiler uses this profile to 
designate certain conditions and certain actions in the com 
piled object code as within the capabilities of the available 
action engine(s) and/or co-processor(s). The master proces 
Sor may assign these conditions (and possibly the actions as 
well) to the action engines or co-processors designated in the 
compiled object code. In some embodiments, the compiler 
determines these allocations of action engine/co-processor 
resources to designated conditions (and actions) at compile 
time, and these allocations remain static. 
0.124. In other embodiments, the master processor may 
allocate or re-allocate action engine/co-processor resources 
to designated conditions (and actions) in a dynamic fashion, 
e.g., in response to the evolution of the dynamic environment 
or changes in System or component status. In Such a dynamic 
environment, the master processor may create and/or main 
tain a profile of the available action engine/co-processor 
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resources. For instance, the master processor may obtain 
information about the available action engine/co-processor 
resources by polling the operably coupled action engine/co 
processor device(s), by receiving status updates from the 
operably coupled device(s), and/or by receiving the profile 
from a user via command-line arguments or any other Suitable 
interface. 

0.125. The master processor 190 may also create and main 
tain a list of processes (state machines), including the status 
(state(s)) of those delegated in whole or in part to the action 
engine(s) 110c and those that it reserves for itself. During 
operation, the master processor 190 uses this list to advance 
each of the state machines implemented by the system. For 
example, a given co-processor may be tasked with monitoring 
the dynamic environment for a particular condition (e.g., the 
arrival of a part at a designated point in an assembly line). The 
process then enters a “wait' state during which it monitors the 
dynamic environment for the condition. When the co-proces 
Sor determines that the condition has been met (e.g., the part 
arrives at designated point), the process exits the wait state to 
perform a predetermined action (e.g., it instructs a camera to 
take a picture of the part). The co-processor also notifies the 
master processor 190 that its condition has been met by trans 
mitting a notification signal (“notification for short) to the 
master processor 190. For instance, the co-processor may 
generate a match signal if a particular condition of the 
dynamic environment matches the condition monitored by 
the co-processor and provide the match signal to the master 
processor as the notification signal. 
0.126 Upon receiving a notification signal (match signal) 
from the co-processor that a condition has been met, the 
master processor 190 advances those state machines waiting 
for the notification on its list of state machines, including the 
one implemented by the co-processor. Depending on the state 
machine, the master processor 190 may note that the condi 
tion has been met and allow the co-processor to continue 
implementing the process, or it may halt the state machine 
(process) implemented by the co-processor and cause the 
co-processor to implement another state machine. It may also 
use the notification to start, halt, or advance other state 
machines implemented by the system. 
I0127. In sum, in some implementations, the wait state 
ment condition evaluated by the co-processor for a single 
processor may have several Sub-conditions combined with 
Boolean logic followed by one or more procedural steps to be 
taken on satisfaction of the condition as a whole and/or Sub 
conditions; this is what the co-processor is commissioned to 
do for a single process instance at any given time. When the 
condition is satisfied and the actions are completed, the co 
processor notifies the master processor, which can re-com 
mission the co-processor for the next wait statement in the 
process. 

I0128. Each state (condition) may have associated with it at 
least one particular action. If possible, the master processor 
190 also delegates the action(s) associated with a particular 
condition to the same slot 140 or co-processor assigned to 
monitor the particular condition. In some embodiments, the 
master processor 190 delegates actions involving inputs and 
outputs to the action engine 110C and/or co-processors 140. 
These actions may include, but are not limited to: sending 
packets, setting outputs, clearing outputs, adding outputs, 
latching counters, setting flags, clearing flags, acquiring 
semaphores, releasing semaphores, and no operations (no 
ops). In some cases, the master processor 190 delegates 



US 2013/0090745 A1 

actions based on the capabilities of the slot 140 or co-proces 
sor assigned to monitor the associated condition. It may also 
assign the condition to the slot 140 or co-processor based on 
the associated action and the ability of the slot 140 or co 
processor to perform the associate action. 
0129. The master processor 190 may also delegate a con 
dition to a slot 140 or co-processor while reserving execution 
of the associated action to itself. For instance, the master 
processor 190 may execute all actions related to accessing 
information in memory, including but not limited to: Storing 
information in memory; retrieving information from 
memory; incrementing variables in memory; and arithmetic 
involving numbers stored in memory. The master processor 
190 may also execute other types of actions as well on an 
as-needed or as-desired basis. 
0130 Below are several pseudo-code examples of pro 
cesses (state machines) and Sub-processes Suitable for imple 
mentation using the systems and devices disclosed herein, 
including the system shown in FIG. 6. Hash marks (ii) indi 
cate comments in each example. 

Example 1 

Continuous One-State Process 

0131) 

continuous process Send on edge with instances i := 0.7 
begin 

wait for rising edge of input i # State (condition no. 1) 
send sender i # action (executed by co-processor) 

end 

0132) Example 1 is a continuous process, called “send 
on edge” in which a co-processor is tasked with waiting for 
a rising edge (the condition) of input i and sending a packet 
(the action) to another device upon satisfaction of the condi 
tion. The co-processor also notifies the master processor that 
its condition has been met upon detecting the rising edge. In 
this example, once the co-processor has sent the packet, the 
master processor reloads the same condition and action 
opcode pair in the co-processor's memory. The co-processor 
continues to monitor the rising edge of input i until the co 
processor is halted or interrupted, e.g., by the master proces 
sor 190. This process is implemented eight times (i-0... 7), 
with each instance running on a separate slot in the action 
engine or on a corresponding co-processor. 

Example 2 

Continuous Two-State Process 

0133) 

continuous process send on pulse with instances i := 0.7 
begin 

wait for rising edge of input i # state no. 1 (condition no. 1) 
send sender i # action no. 1a (executed by co-processor) 
set output i+8 # action no. 1b (also executed by co-processor) 
wait for 100ms # State no. 2 (condition no. 2) 
clear output i+8 # action no. 2 (executed by co-processor) 

end 

17 
Apr. 11, 2013 

0.134 Example 2 is a continuous process, called “send 
on pulse.” in which a co-processor alternates between two 
states depending on the evolution of the dynamic environ 
ment. In the first state, the co-processor waits for a rising edge 
to appear on inputias in Example 1 (this is the first condition 
of this process). Once the co-processor detects the input, it 
sends a packet to another device and notifies the master pro 
cessor that the first condition has been met as above. It also 
performs another action it sets output i+8—before proceed 
ing to its second state (“wait for 100ms). In this second state, 
the co-processor waits for occurrence of the second condi 
tion, elapsation of 100 ms. Once this condition is met (i.e., 
once 100 ms has elapsed), the co-processor performs its sec 
ond action—clearing output i+8—and notifies the master 
processor that the second condition has been met. It then 
transitions back to the first state to wait for the first condition 
to occur again. Like the process in Example 1, the Example 2 
process continues until it is halted or interrupted, e.g., by the 
master processor 190. It is also implemented eight times (i-0 
... 7), which each instance running on a separate pair of slots 
in the action engine or on a corresponding co-processor. 
0.135 Example 2 is performed with at least two slots in the 
action engine because it involves two actions associated with 
one condition both “send sender i” (action no. 1a) and “set 
output i+8” (action no. 1b) are triggered by satisfaction of 
“rising edge on input i' (condition no. 1). Condition no. 1 and 
action no. 1a are loaded into the first slot, and action no. 1b is 
loaded into the second slot, which is chained to the first slot. 
The second slot is also loaded with the condition “do always' 
which is implemented as “counter|0>=0, and which causes 
it to execute whenever condition no. 1 is met (see below for a 
more detailed discussion of "chaining slots together). 

Example 3 

Continuous Process with Master Processor Action 

0.136 

continuous process send sequence with instances i := 0.7 
begin 

static unsigned integer sequence := 0 
payload p; # declaration 
p.dwordO := Sequence; # master processor action 
wait for rising edge of input i # condition no. 1 
send sender i with payload p if action no. 1a (co-processor) 
sequence++; # action no. 1b (master processor) 
wait for sender to finish # condition no. 2; action 2 is a no-op 

end 

# declaration 

0.137 Example 3 is another continuous process, entitled 
'send sequence.” in which a co-processor monitors condi 
tions and the co-processor and the master processor each 
execute actions in response to detection of the conditions. In 
this case, the process begins with the declaration of a static 
variable named “sequence' ('static unsigned integer 
sequence') and a 16-byte payload p that goes out with every 
event packet. Once these have been initialized, the master 
processor sets a word (“p.dword”) in the payload to the value 
of the “sequence” variable. The co-processor then enters a 
wait state in which it monitors the dynamic environment for a 
rising edge on input i. When it detects the rising edge, it 
notifies the master processor that its condition has been met 
and sends the payload, which may trigger a camera or other 
device that receives the payload. 
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0.138. Upon receiving the notification that the condition 
has been met, the master processor increments the variable 
"sequence.” The master processor performs this action 
because incrementing a variable involves accessing informa 
tion in memory, which is often beyond the capabilities of an 
action engine or a co-processor. The master processor also 
advances the state machine to its next state, in which the 
co-processor waits for the sender to finish its action. If the 
co-processor detects fulfillment of this condition, it performs 
the corresponding action. In this case, the corresponding 
action is a “no operation, or "no-op. So the code does not 
include a specific command. The co-processor also notifies 
the master processor that the condition has been met, and the 
master processor advances the state machine to its next state 
(here, back to the “wait for rising edge of input i” state) in 
response to the notification. Like the processes in Examples 1 
and 2, the Example 3 processes runs until it is halted or 
interrupted and is implemented in eight separate instances. 

0.139. In example 3, condition no. 2 (“wait for sender to 
finish') is intended to prevent procedural statements from 
overwriting a payload buffer (p in Example 3) until the send 
is completed, which happens in a non-deterministic time 
period due to network contention and variance in communi 
cation protocol latency. This is because the co-processor 
might not be able to get access to the desired physical network 
resource when a send action is used. There are several pos 
sible ways to deal with access issues, including but not limited 
to: (a) adding queues to store the payloads and port numbers 
for storage before processing; (b) holding the notification to 
the master processor until the send has completed; and (c) 
adding another notification to the master processor that the 
send has completed and notifying the master processor of the 
condition satisfaction and action completion immediately. 
Option (a) may not be optimal in field-programmable gate 
array (FPGA) implementations due to FPGA resource restric 
tion. Option (b) may introduce extra delay because a send 
completion can take up to 1 ms due to slow handshaking 
speed in the event message protocol with non-real time peers 
(e.g., host computers running MS Windows.(R). Option (c) 
allows the master processor to run non-co-processor-compat 
ible actions after a wait statement immediately, but prevents 
the master processor from modifying the event-table slots 
until the send has completed. In some implementations, each 
wait statement has an implicit “wait for send to finish' since 
the slots cannot be overwritten until all send statements ahead 
of the wait statement have been completed. 
0140. In some cases, including the one illustrated in 
Example 4 below, the master processor evaluates a “flow 
control statement, such as an “if” statement, to determine 
how to advance the State machine. For instance, the evalua 
tion may yield a first result that causes the master processor to 
advance one or more state machines to particular first states or 
a second result that causes the master processor to advance 
one or more state machines to particular second states. Flow 
control statements may also be used to decide to interrupt, 
pause, or halt on-going processes and to initiate other pro 
CCSSCS. 
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Example 4 

Flow Control Statements 

0141 

quadrature counter PartPosition on inputs 0, 1 # declaration 
wait for counter partPosition >= rejectDistance from position 

# condition (co-processor) 
if votes < 2 OR input DoReject is set # flow control statement 

set output reject # co-processor action 
failure count++ # master processor action 
wait for counter time >= rejectDuration from now 

# condition (co-processor) 
clear output reject # co-processor action 

else 
wait for counter partPosition >= acceptDistance from 
position 

# condition (co-processor) 
set output accept # co-processor action 
wait for accept Duration # condition (co-processor) 
clear output accept # co-processor action 
endif 

0142. Example 4 is a sub-process that includes a flow 
control statement. The Sub-process of Example 4 includes 
four states, each of which is indicated by a “wait' statement 
and a particular condition of the real-world environment, e.g., 
is the part position counter greater than or equal to a prede 
termined value from a parts current position ("counter part 
Position> rejectDistance from position”). As in Examples 
1-3, an action engine or co-processor evaluates each condi 
tion and, if the condition is met, notifies the master processor 
and performs an appropriate action, such as a no-op, clearing 
an output, or setting an output. The master processor 
advances the state machine and, optionally, acts in response to 
the notification. 
0143. In Example 4, the master processor controls the flow 
of the state machine by evaluating a flow statement (if 
votes.<2 OR input DoReject is set) relating to whether or not 
a part has passed inspection at two different inspection sta 
tions. In another part of the overall process (not listed above), 
the inspection stations "vote on the parts quality, and the 
master processor increments a variable “votes' in response to 
the inspection stations outputs. At the same time, the co 
processor monitors the parts position. If the co-processor 
senses that the part has reached a particular position, it noti 
fies the master processor, which evaluates the flow control 
statement in response to the notification. If the master pro 
cessor determines that the part has failed inspection (e.g., 
because the “votes' variable is less than 2 or the “DoReject’ 
input is set), the master processor increments a failure count 
(“failure count”) and causes or allows the co-processor to 
reject the part by setting the “reject' output. The state 
machine then advances to a state in which the co-processor 
waits for the counter time to equal or exceed a specified time 
period (“rejectDuration'). If the part has not failed inspec 
tion, the master processor advances the state machine to a 
state in which the co-processor waits for the part position 
counter to equal or exceed another variable (“acceptDis 
tance'). 
0144. Examples 3 and 4 also illustrate the use of declara 
tion statements to set variables and to configure peripheral 
devices, e.g., cameras, etc. Declarations may be used to set 
variables stored in the master processor's memory, like the 
“sequence' variable in Example 3 or the (implicitly) declared 
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“rejectDistance' and “position variables in Example 4. They 
can also set counter values, like the “part Position' counter in 
Example 4, which is declared to be a quadrature counterpart 
Position' on inputs 0 and 1. It could also be declared to be a 
pulse counter “part Position' on the rising edge of input 2. 
0145. Other declarations may set peripheral variables, 
including input and output variables. Inputs can be declared 
to have pulse filters. Outputs can be declared to have pulse 
widths and polarity inversions. The counter and other periph 
eral variable declarations get compiled into instructions 
executed by the master processor, which loads the configura 
tion registers of the peripheral devices. When the counter is 
used in the program, the event table conditions and actions 
access the counter allocated by the compiler. 

Example 5 

Setup Process 

014.6 

one-shot process setup 
begin 

for i := 0.7 do 
start process send on sequencel 

done 
end 

0147 Example 5 is a set-up process that the master pro 
cessor uses to task the action engine/co-processors with dif 
ferent instances of a particular process. Unlike the processes 
in Examples 1-4, the Example 5 process does not involve any 
conditions. Instead, it is a simple one-shot process that creates 
eight instances of another process (here, the 'send on Se 
quence' process from Example 3). Each of these instances 
runs on a corresponding slot in an action engine or on a 
separate co-processor. 
0148. In various embodiments, any language statement 
(computer-implementable instruction) can be executed on the 
housekeeping CPU 190, but greater or smaller sets of lan 
guage statements can also be executed by one or more action 
engines described herein. Any statements that cannot be 
executed on the action engines of a particular embodiment of 
the invention may be run on the housekeeping CPU 190. In 
general any statements that can be run on the action engine of 
a particular embodiment will be allocated by the housekeep 
ing CPU 190 to the action engines. Statements or groups of 
statements may be cancelled at any time prior to their execu 
tion. 
0149. In one embodiment, the computer-implementable 
instructions permit that any processes described in an appro 
priate computer language (e.g., SCORETM) can be run simul 
taneously and that multiple instances of a given process may 
also run concurrently. In one aspect, the language is compiled 
into condition/action pairs described in greater detail above; 
in exemplary implementations, such condition/action pairs 
are assembled into an event table which may be scanned at a 
high and fixed rate (e.g., as discussed above in connection 
with the event table 112 and action engine 110c of FIG. 6). 
The condition/action pairs may also be chained as described 
in greater detail below. 
0150. With reference to FIG. 6, in one embodiment the 
housekeeping CPU 190 may add and remove entries to the 
event table 112 of an action engine 110C without affecting or 
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interrupting the operation of the action engine 110c. If nec 
essary due to the housekeeping CPU word size (which may 
be, e.g., 32 bits) being less than the width of the event table 
register 140c (which may be, e.g., 64 bits) a given register 
140c can be written in part by writing the input conditions to 
Zero first, then writing the action second. Registers 140c that 
are currently not in use may have a Zero first word which 
indicates a “not in use” conditional operation which can never 
be satisfied. The scanner 130c will not consider any event 
table conditions 142c in its scan that have a “not in use” 
condition, so instructions 144c in a partially written event 
table register 140c will not be executed before the housekeep 
ing CPU 190 finishes writing the partially written event table 
register 140c. 
0151. In another aspect, any statement or chained group of 
registers 140c that the housekeeping CPU190 may allocate to 
the action engine 110C will either run in their entirety, or not 
at all. In particular, by writing chained groups into contiguous 
event table registers 140c from the first to the last (with 
respect to the scan direction) with Zeros, then the last to the 
first (again with respect to the scan direction) with the new 
conditions 142c and actions 144c, no condition/action pairs 
will be processed (e.g., by the scanner 130c of the action 
engine 110c) unless all are processed, even if the scanner 
130c passes through the addresses of the corresponding sec 
tion of memory multiple times while the housekeeping CPU 
190 is writing the chained group; the scanner's rules are such 
that it will not execute the actions of an event table register 
140cina chained group, even if that event table register's own 
input conditions are met, unless all of the input conditions of 
all of the preceding event table registers 140c up to and 
including the next previous event table register 140c whose 
chain bit is not set are also met. Since each new event table 
register 140c is being written in a section of event table 
registers 140c set to zero, the prior event table register 140c 
will not have valid input conditions and so neither it nor the 
event table register 140c just written will be executed. 
0152 Similarly, by clearing a set of chained event table 
registers 140c from the first to the last (e.g., by filling the 
registers 140c with all Zeros or all ones), and for each event 
table register 140c beginning by clearing the input conditions 
for each event table register 140c first, at a rate equal to or 
slower than the rate at which the scanner 130c is addressing 
the event table registers 140c, the housekeeping CPU 190 
may replace or clear even a chain of event table registers 140c 
for a procedural step that had been allocated to a particular 
co-processor/action engine in Such away that either the entire 
set of chained registers 140c will be executed, or none will be 
executed. 
0153. The foregoing techniques for programming the 
master processor 190, efficiently compiling the program lan 
guage to provide executable code (e.g., for the processing 
unit(s) 194 and the master processor 190), and the resulting 
procedure implemented by the master processor 190 for 
updating an event table 112 of an action engine 110C (or more 
generally "programming one or more co-processors to 
evaluate particular conditions) yields several unique advan 
tages. This methodology produces an extremely compact set 
of code that can run very rapidly on any general-purpose 
processor (with or without one or more action engines or 
other co-processors). However, when employed in connec 
tion with the action engine 110c shown in FIG. 6, and in 
particular with the scanner 130c, these techniques yield com 
pletely deterministic operation even when the evolution of 
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conditions in the dynamic environment would require code 
execution to branch, and/or function calls to be made and/or 
cancelled for conventional systems. In fact these transitions 
can be made without rearranging memory pointers in the 
action engine 110c, since the inventive techniques described 
above allow multiple subroutines (e.g., chains of event table 
register 140c) to run to completion without signaling back to 
the calling process (in the master processor 190). The sim 
plicity of the instruction set, which does not have any loops or 
jumps, keeps the run time of the co-processor/action engine 
program space deterministic. 
0154). Also note that the housekeeping CPU 190 does not 
need to be dedicated to housekeeping for the action engine(s). 
Housekeeping could be done by a process and/or device 
driver on a general-purpose operating system such as Linux 
or Windows. The action engine could be on a peripheral card 
(such as a PCI) along with the counters, digital and/or analog 
I/O interfaces, etc., allowing a general-purpose computer to 
achieve the same precision in event handling as a special 
purpose embedded computer when working in tandem with 
the action engine(s) described herein. The action engine and/ 
or separate co-processors may also be implemented in one or 
more field-programmable gate arrays (FPGAs) or as a collec 
tion of other suitable processors. 
0155 Pipelining, Latency, and Jitter 
0156. In one exemplary implementation of the action 
engine 110c shown in FIG. 6, the scanner 130c is configured 
to implement a "pipelining technique to make comparisons 
of the input signals 66 to the conditions 142c. As understood 
by those of skill in the art, "pipelining is a computational 
technique that increases throughput by splitting a computa 
tion into a series of stages that are connected to form a com 
putational "pipe. Each stage of the pipe performs its part of 
the computation (e.g., the comparison of the input signals 66 
to the set of conditions 142c) in parallel with the other stages, 
much like a worker on an assembly line. Pipelining acceler 
ates the action of the scanner 130c such that regardless of how 
long it may take to compare the input signals 66 to a given 
condition 142c, the time spent on each register 140c is limited 
to one clock cycle. 
0157 With respect to calculating a “latency” of the action 
engine, i.e., the time period required to compare a particular 
input state of the dynamic environment at a given time to the 
multiple sets of conditions contained in the event table and 
transmit one or more instructions in response to the input 
state, in Some exemplary embodiments such a latency may be 
derived in consideration of a pipelining technique imple 
mented by the action engine 110c. For example, the time it 
takes for the action engine 110c to compare the input signals 
66 and/or discovered State changes (see paragraph 89 above) 
to a particular set of conditions 142c and transmit one or more 
instructions in response equals the time it takes the scanner 
130c to reach the corresponding event table register 140c plus 
the propagation time through the pipeline, which depends on 
the number of stages in the pipeline. For an event table 112 
with 128 registers 140c and a scanner 130c clocked at 100 
MHz with a three-stage pipeline, the longest possible time 
from input to output is 1.31 us, which corresponds to a con 
dition 142c that occurs at the very beginning of a scanthrough 
the event table 112 but is not used until the very end of the 
scan through the event table 112 plus a 0.03 LS propagation 
time through the pipeline (i.e., three clock cycles). The short 
est possible time from input to output is 0.030 us. Thus, the 
action engine 110c compares the input signals 66 and/or 
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discovered State changes to the sets of conditions 142c with a 
latency, or time delay, that is bounded by the number of 
registers 140c in the event table 112, the number of stages in 
the pipeline, and the clock frequency. 
0158 An additional advantage of using an event table 
register 140c to evaluate a small number of conditions 142c 
very quickly is that the variation in latency is very low. Jitter 
can be defined as the difference between the longest latency 
and shortest latency. For an event table register 140c that 
evaluates a single condition 142c, the variation in latency is 
minimal, and may even border on Zero depending on how 
incoming and outgoing data is transmitted. In the example 
above, the longest possible latency is 1.31 us, and the shortest 
possible latency is about 0.03 us, which corresponds to ajitter 
of 1.28 us, or one scan time. (Applying input filters, discov 
ering input state changes, or receiving and transmitting data 
via Ethernet packets may introduce variable delay indepen 
dent of the action engine 110c.) 
0159 Low jitter is especially useful in applications—e.g., 
triggering images—in which long response delays are per 
fectly acceptable so long as the latency is very repeatable, and 
in which even much shorter maximum latencies are not 
acceptable if the individual latencies were highly variable. In 
machine vision applications, for instance, reducing the jitter 
makes it possible to reduce the sensor field of view, which in 
turn allows for higher resolution images of the scene of inter 
est. Consider a situation in which the time window for imag 
ing a fast-moving part is about 10 JLS, but the jitter is much 
larger than 100 us as it would be with a PLC. Capturing an 
image of the part requires expanding the time window to 
substantially greater than 110 us by increasing the field of 
view to be well over eleven times the size of the part itself, 
which in turn reduces the number of pixels on the sensor 
dedicated to imaging the part by a factor of more than eleven. 
In contrast, an action engine 110C with a jitter of about 2.5 LS 
can be used to acquire an image of the same part with about 
80% of the sensor's active area dedicated to imaging the part 
itself. 
0160 Condition/Action Pair Memory Structures and 
Execution 

0.161 Embodiments of the present invention may include 
particular memory structures to store the one or more “con 
dition/action pairs.” In the action engine 110c shown in FIG. 
6, for example, the event table 112 provides dedicated 
memory in the form of multiple registers 140c, respective 
ones of which store a condition/action pair as a particular 
sequence of bits (represented generally in FIG. 6 by a condi 
tion 142c and an action or “instruction 144c). Alternatively, 
one or more registers 140c may include multiple adjacent 
memory registers, arranged as a first number of bits repre 
senting the condition to be evaluated, and a second number of 
bits representing an action to be taken if the condition is 
satisfied. Generally speaking, various embodiments, such as 
those shown in FIGS.5 and 6, may include memory structures 
in the form of one or more registers (e.g., registers 140b in 
FIG. 5; registers 140c in FIG. 6) that hold respective condi 
tion/action pairs as Some arrangement of bits in a given reg 
ister. 

0162. It should be appreciated that, in some instances, a 
given action corresponding to a particular condition that is 
satisfied may be to take no action relating to control of one or 
more devices in the dynamic environment. Stated differently, 
one possible action for a given condition/action pair is to take 
no affirmative action in the dynamic environment, also 
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referred to herein as a “no-op. In some instances of a no-op, 
as discussed in greater detail below, the action engine may 
nonetheless notify the master processor if the particular con 
dition being evaluated is satisfied, and/or move on to evalua 
tion of one or more other conditions as specified in Subse 
quent registers of the event table. 
0163. It should also be appreciated that the concept of a 
“condition/action pair may be implemented in diverse man 
ners according to various embodiments disclosed herein. For 
example, in Some implementations, the contents of memory 
representing the condition portion of a particular condition/ 
action pair may include Some number of adjacent bits within 
a given register, and/or may include Some number of bits 
dispersed in the given register with intervening register con 
tents not necessarily pertaining to the condition portion. Simi 
larly, the contents of memory representing the action portion 
of a particular condition/action pair may include some num 
ber of adjacent bits within a given register, and/or may include 
Some number of bits dispersed in the given register with 
intervening register contents not necessarily pertaining to the 
action portion. Accordingly, a wide variety of content orga 
nization within a given memory location/register represent 
ing a given condition/action pairis contemplated according to 
the inventive concepts disclosed herein. 
0164. In one example discussed in detail below, a memory 
structure to contain a condition/action pair may include a 
64-bit word-sized register (e.g., that may be accessed and 
read in a single clock cycle), some number of bits of which 
represent or relate to the condition 142c to be evaluated, and 
another number of bits of which represent or relate to the 
action 144c to be taken if the condition is satisfied. In one 
non-limiting example, the 64-bit register is segregated into 
three portions, and the condition 142c and action 144c are 
encoded in these three different portions respectively as: 1) an 
“op-code' represented by a 16-bit unsigned integer; 2) a 
16-bit “action parameter'; and 3) a 32-bit “condition oper 
and', wherein the information contained in the action param 
eter and the condition operand may facilitate implementation 
of an operation contained in the op-code. TABLE 1 below 
illustrates the general format of Such a 64-bit register, in 
which the op-code portion is represented in bits 48-63, the 
action parameter is represented in bits 32-47, and the condi 
tion operand is represented in bits 0-31. 

TABLE 1. 

Illustrative Encoding of Condition/Action Pair 

63-48 47-32 31-0 

Op-code Action Parameter Condition Operand 

0.165. With respect to the op-code portion of the 64-bit 
register illustrated in TABLE 1, TABLE 2 below provides an 
exemplary format for different fields of the 16-bit op-code: 

TABLE 2 
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0166 In the example above, the four most significant bits 
of the op-code (bits 15-12, respectively labeled in TABLE 2 
as “F”, “E”, “D', and “C”) specify a condition type code 
(labeled as “OP”) for the condition 142c to be evaluated. The 
four next most significant bits (bits 11-8, respectively labeled 
in TABLE 2 as “B”, “A”, “9, and “8”) represent an action 
operand (labeled as 'ACT) for the action 144c. The remain 
ing bits of the op-code include a chain bit C, an XOR bit X, a 
notify bit N, a satisfied bit S, a last condition bit L, and one or 
more counter values CTR, each of which is described in turn 
in greater detail below. 
0167. In the present example, with reference again to 
TABLE 1, the 32-bit “condition operand” in bits 0-31 of the 
64-bit register may be used together with the condition type 
code specified in the OP field of the op-code to determine 
whether or not a particular condition has been satisfied. Addi 
tionally, the 16-bit “action parameter' in bits 32-47 of the 
64-bit register may be used together with the action operand 
specified in the ACT field of the op-code to specify a corre 
sponding action to be taken if the particular condition is 
satisfied. Moreover, the op-code fields C (chain), X (XOR), 
and CTR (counter) may be employed for evaluation of a 
particular condition, and the op-code fields N (notify), S 
(satisfied) and L (last condition) may be employed to specify 
a corresponding action. Thus, as discussed in greater detail 
below, a first set of bits/fields of the 64-bit register shown in 
TABLE 1, namely OP, C, X, CTR and the “condition oper 
and may collectively define the condition 142c of the con 
dition/action pair represented in the 64-bit register, similarly, 
a second set of bits/fields of the 64-bit register, namely ACT, 
N. S. L and the “action parameter.” may collectively define 
the action 144c of the condition/action pair represented in the 
64-bit register. 
0168 More specifically, the condition type code OP of the 
op-code shown in TABLE 2 specifies the type of condition to 
be monitored, one or more input signals to be monitored, 
and/or the State of any monitored input signal(s) that satisfies 
the condition. For some condition type codes OP, satisfaction 
of the condition depends at least in part upon one or more 
values of the 32-bit “condition operand represented in bits 
0-31 of the 64-bit register (refer to TABLE 1 above). Exem 
plary condition type codes that may be present in the OP field 
of the op-code include, but are not limited to: 

O—Register is Unused 
1—Act when counter #CTR is less than or equal to the operand 
2—Act when counter if CTR is greater than or equal to the operand 
3—Act when rising edge detected on any inputs set in operandO ... 15 
4—Act when falling edge detected on any inputs set in operand O... 15 
5—Act when trigger ladder fires on any ladder set in operandO ... 3 
6—Act when high signal present on any inputs set in operand O... 15 
7—Act when low signal present on any inputs set in operand O... 15 
8—Act when high signal present on all inputs set in operand O... 15 

Illustrative Encoding of Condition/Action Op-code 

F E D C B A. 9 8 7 6 S 4 3 

OP ACT C X N S L 

2 1 O 

CTR 



US 2013/0090745 A1 
22 

-continued 

9—Act when low signal present on all inputs set in operandO ... 15 
10—Act when set state exists on any flags set in operand O... 31 
11—Act when clear state exists on any flags set in operand O... 31 
12—Act when set state exists on all flags set in operandO ... 31 
13—Act when clear state exists on all flags set in operandO ... 31 
14—Act when counter # CTR direction (condition bit O: 1 -> inc, 0 -> 
dec) 
15—undefined 

0169. Additional condition type codes specified in the OP 
field of the op-code can be defined using the X bit, discussed 
below (e.g., condition type codes 3-15 above may be rede 
fined using the Xbit). In this non-limiting example, the CTR 
bits are used for condition type codes 1, 2 and 14; in other 
examples, the CTR bits may be used to redefine the other 
condition type codes when non-zero. 
0170 The action operand ACT of the op-code shown in 
TABLE 2 above specifies a corresponding action to be taken 
when the condition specified by the condition type code and 
the condition operand (and in some cases other fields of the 
64-bit register) is satisfied. For some action operands ACT, 
the action to be taken depends at least in part upon one or more 
values of the 16-bit “action parameter represented in bits 
32-47 of the 64-bit register (refer to TABLE 1 above). Exem 
plary action operand codes that may be present in the ACT 
field of the op-code include, but are not limited to: 

O—No-op—do nothing (e.g., raise interrupt completion if N is set) 
1—Queue Message Transmit 

The action-parameter is interpreted as containing the descriptor # in 
bits O-3, a notify housekeeping CPU on message acknowledgement flag in bit 5, 
a notify housekeeping CPU on message failure flag in bit 6, a payload index 
in bits 12-6. 
2—Set outputs: A bit set in the action parameter indicates the output 

is to set. 
3—Clear outputs: A bit set in the action parameter indicates the output 

is to cleared. 
4—Latch data inputs. (No action parameter) 
5—Latch counter value: A bit set in the action parameter indicates the 

counter is to latched. 

6—Zero counter: A bit set in the action parameter indicates the counter 
is to Zeroed. 

7–Set flags MSW: A bit set in the action parameter indicates the flag 
is to be set. 

8–Set flags LSW: A bit set in the action parameter indicates the flag 
is to be set. 
9–Clear flags MSW: A bit set in the action parameter indicates the flag 

is to be cleared. 
10–Clear flags LSW: A bit set in the action parameter indicates the flag 
is to be cleared. 
11—Get Semaphore: The Semaphore index is given in the action parameter. 
12—Release Semaphore: The semaphore index is given in the action 
parameter. 
13-15—reserved. 
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previous register. If the chain bit C is set, the condition 142c 
in the preceding event table register 140c must be true before 
the condition 142c in this event table register 140c can be 
considered. They may also include an XOR bit X that imple 
ments a shadow register so that comparisons do not have to 
deal with overflow or underflow; a notify bit N, which, when 
set to 1, causes upon satisfaction of the input conditions a 
completion message to be forwarded to the housekeeping 
CPU 190, and a satisfied bit S that is set when the condition 
142c is satisfied. 

0173 The other bits may also include a last condition bit L 
that is used to cause the scanner to reset the condition operand 
OP to Zero when the condition 142c is satisfied. In other 
words, the last condition bit L prevents the next scan from of 
the event table 112 re-satisfying the condition. When multiple 
conditions 142c are to be satisfied (e.g., using the chain bit C 
as described below) before an action 144c is to be performed, 
the preceding registers will not have the L bit set so that the 
operation can be re-evaluated. Event table registers that are 
chained together with a do-always condition may have the 
last bit set to prevent the action from recurring. 
0.174. The action engine 110c can be programmed using 
the SCORETM programming language. In particular, as dis 
cussed above, the housekeeping CPU (master processor) 190 

Action 15 may be an extension action with some number of bits of the action parameter used to indicate the 
action with a reduced number of bits to indicate the action operand. 

0171 The 16-bit action parameter used in conjunction 
with some of the action operands specified above may 
include, but is not limited to: a descriptor it (e.g., bits 0-3), a 
notify ack (e.g., bit 4), a notify exh (e.g., bit 5), a payload # 
(e.g., bits 6-12) or a bit field (e.g., bits 13-15). 
0172. As described above, other bits of the 16-bit op-code 
contained in bits 48-63 of the 64-bit register representing a 
condition/action pair may include a chain bit C from the 

may be programmed via an inventive programming language 
according to one embodiment of the present invention that, 
when compiled, enables the master processor to in turn pro 
vide instructions to task the action engine, in the form of 
condition/action pairs. Examples of SCORETM statements 
and resulting event table settings are given below. The 
SCORETM Statements are formatted Such that each line of 
SCORETM code matches with a single condition/action pair: 
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wait for counter 3 >= 0x1000 from Ox10000 
and for set flag 4 send descriptor 1 with payload2 
set output 0 

OP ACT C X N S L CTR AP OPERAND 
2 O O 1 O O O 3 OxOOOO OxOO101OOO 
10 1 1 O O O 1 O OxOOB1 OXOOOOOO10 
2 2 1 O 1 O 1 O OxOOO1 OXOOOOOOOO 

wait for rising edge of input O 
and for clear inputs 1 and 2 latch counter2 
set outputs 3 and 4 

OP ACT C X N S L CTR AP OPERAND 
3 O O O O O O O OxOOOO OxOOOOOOO1 
9 5 1 O O O 1 O OxOOO4 OxOOOOOOO6 
2 2 1 O 1 O 1 O OxOO18 OxOOOOOOOO 

wait for rising edge of input O 
and for clear inputs 1 and 2 set output 3 

OP ACT C X N S L CTR AP OPERAND 
3 O O O O O O O OxOOOO OxOOOOOOO1 
9 2 1 O 1 O 1 O OxOOO8 OxOOOOOOO6 

wait for rising edge of input O set output 3 

OP ACT C X N S L CTR AP OPERAND 
3 2 O O 1 0 1 O OxOOO8 OxOOOOOOO1 

wait for counter|3) >= 0x1100 from 0x10203040 
and for set input 1 or 2 send descriptor2. 
set output 4 

OP ACT C X N S L CTR AP OPERAND 
2 O O O O O O 3 OxOOOO Ox10204140 
6 1 1 O O O 1 O Ox1FF2 OxOOOOOO10 
2 2 1 O 1 O 1 O OxOO10 OxOOOOOOOO 

OP, C, X, CTR and OPERAND define the condition. 
ACT, N. S. Land AP define the action. 

(0175 Chain Bits for Monitoring More Complex Condi 
tions 

0176). In some cases, the registers 140c of the event table 
112 shown in FIG. 6 may not be wide enough to describe 
more complex condition/action pairs. In such cases, the 
action engine 110c, event table 112, and scanner 130c can be 
configured to evaluate more complicated sets of input condi 
tions (e.g., multiple conditions upon satisfaction of which one 
or more actions are predicated) using chain bits (denoted “C” 
in FIG. 6). Each chain bit is logically part of the correspond 
ing set of conditions 142c in that it includes the satisfaction of 
a particular condition 142c represented in the previous event 
table register 140c. In effect, chain bits can be used to increase 
the effective (and finite) size of a single event table register 
140c by linking a group of contiguous event table registers 
140c to form a single “super register” for the purposes of 
defining groups of input conditions, all of which must be 
satisfied for the actions described in this chained group of 
event table entries to be taken. Chaining together contiguous 
blocks of event table registers 140c logically “ANDs’ the 
chained registers 140c together, i.e., it causes them to react to 
a particular combination of input signals 66 by issuing a 
particular set of instructions (possibly in a predetermined 
order). 
(0177 FIG. 8 illustrates how chained event table registers 
140cidentify and react to a group of conditions 142c that have 
been chained together. (For simplicity, FIG. 8 shows only the 
sets of conditions 142c and outputs 144c for each register 
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# no xor 
# AP12:6 = no payload 
# op = ctrl O >= 0 
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# xor ctr value 
# notify acklexh = 1 
# ctrl) >= 0 (always true) 

# note we never set the S bit 

140c.) Each event table register 140c reacts to a different 
combination of sensor inputs A-C and current counter values 
CTR (not shown in FIG. 8) as well as flag register values and 
whether a semaphore request earlier in the set of chained 
event table registers was successful. By convention, the first 
event table entry in a chained group 140c-1 will not have its 
chain bit set. In this example, event table registers 140c-2 
through 140c-4 all have chain bits C set to 1. Event table 
register 140C-5 has a low chain bit C and therefore operates 
independently of event table registers 140c-1 through 140c-4. 
0.178 Chained registers 140c-1 and 140C-2 each include a 
respective condition 142c-1 and 142c-2 and a do-nothing 
(no-op) action 144c-1 and 144C-2, followed by a "critical 
register here, a single register 140c-3 with both a “useful 
condition 142c-3 and an action 144C-3 other than a no-op. 
Such a “critical register may be, and in this case is, followed 
by another register 140c-4 with an additional action which 
should also be taken when the chained group's input condi 
tions are met. To ensure that the useful action 144C-4 is also 
immediately taken when that of the critical entry is executed, 
the input condition 142c-4 is set to a condition that is tauto 
logically true i.e. counterO >=0 (no XOR). This will not 
cause premature execution of the action in this event table 
entry since as part of a chained group of event table entries, all 
of the preceding input conditions in this chained group must 
also be satisfied. The last condition bit L is set in register 
140C-2, which means that registers 140c-1 and 140C-2 must 
be satisfied in a single table scan before the satisfied bit S is set 



US 2013/0090745 A1 
24 

on the critical register 140c-3. Once the satisfied bit S is set on 
the critical register 140c-3, the state of the preceding registers 
140c-1 and 140C-2 does not matter as the action 144C-4 in the 
critical register 140c-4 will be retried on every scan (assum 
ing it was a semaphore or send action, as all other actions 
complete on the first attempt). The register 140C-4 in the chain 
after the critical register 144c-3 will have the last condition bit 
L set, indicating the satisfied bit S can be set by the scanner 
130c. 
0179 Semaphores for Tracking Evolutions of a Dynamic 
Environment 

0180. The action engine 110c shown in FIG. 6 can also 
issue a series of instructions in response to an evolution of the 
real-world system. For evolutions that occur more slowly 
than the maximum CPU response time (e.g. 10 to 1000 us), 
the scanner 130c may report matches (satisfied conditions) to 
the housekeeping CPU 190, which responds by issuing 
instructions and/or updating one or more of the event table 
registers 140c as described above. For faster evolutions (i.e., 
those that may occur more quickly than the maximum CPU 
response time), the action engine 110C may use one or more 
semaphores to make conditions 142c contingent upon each 
other and/or to prevent contention (collision) among different 
registers 140c whose respective conditions 142c are at least 
partially satisfied by the same input signal(s) 66 without 
intervention by the housekeeping CPU190. Generally speak 
ing, semaphores facilitate management of resource conten 
tion, and may be acquired and released by the action engine to 
ensure availability one or more resources on which evaluation 
of one or more conditions rely. 
0181. In some instances, an event table register 140c-1 in 
a chained group of event table registers 140c may attempt to 
acquire one of a collection of semaphores which are managed 
by the scanner but which will typically be released by the 
scanner in response to semaphore release action in a later 
event table entry or may be released unilaterally by the house 
keeping CPU190. Together with their other input conditions, 
Successful acquisition of the semaphore will automatically be 
a necessary condition for the execution of any Subsequent 
response actions present in Such a chained collection of event 
table registers. 
0182. In illustrative embodiments, semaphore handling is 
based on a test-and-set operation. A semaphore can be con 
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input of the R/S flip-flop. If the semaphore was previously 
unset (result of the simultaneous read of the output of the R/S 
flip-flop was a logic low), then the set action is considered to 
be completed. If the semaphore was previously set, then the 
set action is not considered to be successful and actions 
dependent on a Successful semaphore set will not be taken. 
Unlike other actions, the semaphore get action causes any 
Subsequent registers 140c in this chain to be ignored until the 
semaphore get is successful (on a future scan). A release of the 
semaphore is accomplished by clocking the R input to the 
flop. Arbitrated versions of these semaphores may be used to 
coordinate the operation of multiple event table scanners 
130c (e.g., as described with respect to FIG.9). For example, 
an action engine with multiple scanners 130c may use a 
simple round robin arbitration scheme. 
0183) To see how the event table 112 uses semaphores, 
consider three concurrent processes that are involved in set 
ting a clocked output (clock on output 0, data on outputs 1-7): 
(a) a first process responsible for waiting for a triggering 
event, acquiring a semaphore, setting the clock output low, 
setting the output value on 1-7, and enabling the second & 
third processes; (b) a second process that includes waiting for 
the setup time, setting the clock output high, and enabling the 
third process; and (c) a third process that includes waiting for 
the combined setup and hold times, releasing the semaphore, 
and notifying the housekeeping CPU 190. Each of the three 
processes is represented by a group of chained registers 140c 
in the event table 112. (The semaphore may be used by any 
process Wanting to manipulate outputs 0-7, counter 1 and 
flag.0, allowing multiple sets of these processes on the event 
table 112 to send a clocked output without interfering with 
one another.) Assume further that the counter counter 1 has 
been set up to count microsecond ticks and is used for timing 
the output signals. In this example, the setup and hold time are 
both 1 mS on the output signals. 
0.184 To begin, the first process acquires a semaphore. 
Once it has acquired the semaphore, it clears outputs 0 and 
2-7, sets output 1, resets a counter (counter 1) configured to 
count timebasepulses, in this case a 1 MHZ timebase, and sets 
a flag (flag O) using a series of five registers that are chained 
together. The first process may be expressed using the follow 
ing SCORETM statements (with comments) and condition/ 
action pairs (coded as above and in hexadecimal format): 

wait for rising edge of input 9 get Semaphore O 
clear outputs 0, 2, 3, 4, 5, 6, 
set output 1 
reset counter1 
set flag O 

OP ACT 
11 

C X 
O O 

3 1 O 
1 O 
1 O 
1 O 

3 
2 
2 2 
2 6 
2 8 

Ox3B08 0000 0x0000 0200 

7 # these chained action are 
# deferred until the scan in which 
# Semaphore O acquisition succeeds 

L. CTR AP OPERAND 
1 O OxOOOO OxOOOOO2OO # on rising edge, get Semaphore 
1 O OxOOFD OxOOOOOOOO # then, clear outputs 0, 2-7 
1 O OxOOO2 OxOOOOOOOO # then, set output 1 
1 O OxOOO2 OxOOOOOOOO # then, reset counter|1 
1 O OxOOO1 OxOOOOOOOO # then, set flag O 

# restatement of the condition action pairs 
Ox2388 OOFD 0x0000 0000 # given above in hexadecimal format 
Ox2288 0002 0x0000 OOOO 
Ox2688 0002 0x0000 0000 
Ox28A8 0001 0x0000 0000 

sidered to be an R/S flip-flop. A set operation involves reading 
the output Q of the flop simultaneously with clocking the S 

0185. The second process begins once the flag is set. It 
then sets an output at a given counter value. The correspond 
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ing SCORETM statements (with comments) and condition/ 
action pairs (coded as above and in hexadecimal format) for 
the second process are: 

wait for flag O 
and for counter 1 >= 1000 set output O 
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120C-1 through 120c-in; collectively, co-processors 120c) 
coupled to an input bus 102 via a respective input port (re 
spectively input ports 158c-1 through 158c-n; collectively 

OP ACT C X N S L CTR AP OPERAND 
12 O O O O O O O 0x0000 0x00000001 it wait on flag|O) 
2 2 1 O 1 O 1 

OxC000 0000 0x0000 0001 
0x22A9 0001 0x0000 03e3 

0186 The third process begins once the flag is set. Once 
the given counter reaches a second value, it clears the first flag 
and releases the semaphore. The corresponding SCORETM 
statements (with comments) and condition/action pairs 
(coded as above and in hexadecimal format) for the third 
process are: 

wait for flag2 
and for counter1 >= 2000 clear flag O) and flag(1) 
release semaphore O 

OP ACT C X 

1 0x0001 0x000003e3 # ctr1 >= 1000, set output 

input ports 158c). Each co-processor 120c includes a respec 
tive event table (respectively event tables 110c-1 through 
110c-in; collectively event tables 110c) coupled to a respec 
tive scanner (respectively scanners 130C-1 through 130c-in: 
collectively scanners 130c). As above, each event table 112 
includes multiple entries, each of which represents one or 

0x0001 0x000007DO # ctr1 >= 2000, clear flag|O 

N S L CTR AP OPERAND 
12 O O O O O O O 0x0000 0x00000002 it wait on flag(1) 
2 10 1 O O O 1 1 
2 12 1 O 1 O 1 O 

OxCOOO OOOOOx0000 0002 
0x2A89 0001 0x0000 07DO 
0x2CA8 00000x0000 0000 

0187. Note that only one flag is used to enable the second 
and third processes, (b) and (c), because the third process, (c), 
is waiting on the counter elapsing the combined setup and 
hold times. The semaphore protects the use of the counter and 
the flag so that all groups of processes can use the same 
counter and flag. 
0188 Alternatively, these three separate, concurrently 
running processes may written as a single SCORETM state 
ment because the timing requirements of the setup-and-hold 
times are 1 ms, which is more than enough time for the 
housekeeping CPU 190 to act: 

wait for rising edge of input 9 get Semaphore O 
clear outputs 0, 2, 3, 4, 5, 6, 7 
set output 1 

reset counter1 
wait for counter1 >= 1000 set output O 
wait for counter1 >= 2000 release semaphore O 

(0189 The housekeeping CPU 190 may replace the first 
four-register chain with a single-register chain on comple 
tion. On the completion of that second chain, another single 
chain entry would be written to execute the third wait and the 
semaphore release. 
(0190 Action Engines with Multiple Event Table/Scanner 
Co-Processors 

0191 FIG. 9 shows an action engine 110c that includes 
multiple parallel co-processors (respectively, co-processors 

0x0000 0x00000000 # ctro D-= 0, rel semaphore(O) 

more sets of independent conditions and corresponding 
actions. 

0.192 The co-processors 120c operate in parallel to 
execute the condition/action pairs stored in the event tables 
110c with very low latency, e.g., latencies of about 1.6 us or 
less. During parallel execution, each scanner 130c compares 
the conditions in the event table 112 to input signals 66 
received via the input bus 102 and input port 158c and 
executes instructions in the eventofa match as described with 
respect to FIGS. 6-8. If appropriate, the scanner 130c trans 
mits output signals 68 via a respective output port (respec 
tively output ports 160c-1 through 160c-in; collectively output 
ports 160c) to the output bus 102. The action engine 110c may 
also include counters, flag registers, and/or semaphore regis 
ters as described above with respect to FIG. 6. 
0193 Examples of the action engines described above can 
be implemented as a single event table scanner on a single 
FPGA (e.g., using HDL code) with a memory large enough to 
hold 144c opcodes, or “condition/action' pairs. The scanner 
executes the event table by evaluating the conditions sequen 
tially. When the scanner finds a satisfied chain of conditions, 
it executes the actions and notifies a master CPU, which may 
implemented on the same FPGA, as to which register(s) in the 
event table is being used for the satisfied condition. The 
master CPU reloads the register(s) in question with new op 
codes as the process follows the evolution of the real-world 
condition. Alternatively, action engines may be implemented 
as: a dedicated chip containing event table memories and 
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scanners embedded in a peripheral component interface 
(PCI) card and used in a general-purpose computer, an 
embedded processor to decode an event table and run native 
instructions instead of placing native op-codes in the co 
processor memory; and multiple FPGAs, each of which has a 
separate FPGA program to evaluate the conditions at a very 
low latency. 
0194 Dynamic Environments Employing Machine Vision 
Techniques/Equipment 
0.195 As noted earlier, control systems according to vari 
ous embodiments of the present invention, as well as constitu 
ent elements thereof, may have wide applicability for moni 
toring and/or controlling a variety of dynamic environments, 
particularly those requiring low latency (i.e., significantly fast 
response time) and/or low variability latency. One exemplary 
application of control systems according to the present inven 
tion is given by a dynamic environment in which machine 
vision techniques and/or equipment are employed. 
0.196 FIG. 10 is a block diagram of a dynamic environ 
ment in which machine vision techniques and equipment are 
used, together with a control system according to embodi 
ments of the present invention for monitoring and controlling 
the dynamic environment. The dynamic environment illus 
trated in FIG. 10 generally relates to an automated process 10, 
in which various robotics equipment 22 as well as machine 
vision equipment (collectively equipment 20) may be 
employed to facilitate implementation of the automated pro 
cess 10, wherein the machine vision equipment may include 
one or more image acquisition devices 42 and lighting equip 
ment 44. Examples of an automated process 10 for which the 
control concepts discussed herein are applicable include, but 
are not limited to, counting, tracking, sorting and/or handling 
of parts on an assembly line (e.g., for automotive, consumer 
goods manufacturing and/or agricultural applications), qual 
ity control functions (e.g., automated inspection for defects) 
in connection with a manufacturing process, measurement of 
position and/or orientation of parts formanipulation by robot 
ics equipment, and removing undesirable artifacts from bulk 
materials (e.g., food stuffs, agricultural products, etc.). 
0197) In FIG. 10, the dynamic environment also includes 
various actuators or control devices 30 (in a manner similar to 
that shown in FIG. 1) to control the robotics equipment 22, the 
lighting equipment 24 and/or the image acquisition device(s) 
42. The environment also includes various sensors or input 
devices 40 to monitor the automated process 10 and provide 
information (e.g., one or more input signals 66) representing 
a monitored condition of the environment at a given time. As 
shown in FIG. 10, the sensors may include the one or more 
image acquisition devices 42 to acquire images relating to the 
automated process, as well as one or more other sensors 44 
(e.g., temperature, humidity, pressure, light and/or other envi 
ronmental sensors; counters; receive queues for information 
packets, some of which information packets may be provided 
by one or more image acquisition devices or other devices, 
etc.), for providing input signals representing monitored con 
ditions. 

0198 FIG. 10 also shows a control system 100, including 
a master processor 190 and an action engine 110 as described 
above in connection with various embodiments, to receive 
and process one or more input signals 66 representing moni 
tored conditions as a function of time so as to provide one or 
more output signals 68 to the control devices 30 (which in 
turn control one or more of the robotics equipment, the light 
ing equipment, and the image acquisition devices). Addition 
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ally, the dynamic environment shown in FIG. 10 also may 
include animage processing computer 200, communicatively 
coupled to the control system 100, to process image informa 
tion acquired by the one or more image acquisition devices 
and to control the lighting equipment. In embodiments 
including the image processing computer 200, at least some 
of the information otherwise provided by the one or more 
input signals 66 representing monitored conditions of the 
dynamic environment may be provided by the image process 
ing computer 200 to the control system 100, particularly in 
connection with information derived from images acquired 
by the one or more image acquisition devices. 
0199. In the dynamic environment shown in FIG. 10, the 
image acquisition device(s) 42 and the lighting equipment 24 
may be particularly employed to implement machine vision 
techniques in connection with monitoring and control of the 
automated process 10. The term “machine vision very gen 
erally refers to analysis of images to extract data for purposes 
of controlling a process. Machine vision techniques typically 
comprise a sequence of operations involving acquisition of 
images using any of a variety of image acquisition devices 
(e.g., digital still or video cameras), and in Some cases lenses 
and various lighting equipment (which in Some instances may 
be particularly designed and configured to provide various 
differentiation of certain objects from the general environ 
ment to facilitate Subsequent image processing). Image data 
provided by one or more image acquisition devices can be in 
a variety of formats (e.g., video sequences, views from mul 
tiple cameras, or multi-dimensional data, as from a medical 
scanner). Acquired images are then processed (e.g., via 
execution of various image processing software by an imag 
ing processing computer 200 operably coupled to the 
machine vision equipment 20 and the control system 100, 
and/or one or more other independent/external computing 
devices) so as to extract various information from the images, 
which extracted information then is used to make decisions in 
connection with controlling the automated process. 
0200. With respect to various lighting equipment and tech 
niques that may be employed for machine vision, two-dimen 
sional visible light imaging techniques (using monochro 
matic or color light sources) perhaps are most commonly 
adopted. However, other Suitable imaging techniques 
include, but are not limited to, selective infrared imaging in 
which infrared lighting equipment (e.g., sources and/or fil 
ters) may be employed, line scan imaging, three-dimensional 
imaging of Surfaces, and X-ray imaging. Regarding the image 
acquisition devices, a number of form factors, functionalities, 
and communication protocols may be employed in Such 
devices; for example, in Some instances an image acquisition 
device may not have any particular image processing capa 
bility, while in other instances image acquisition devices may 
be implemented with some degree of image processing func 
tionality (e.g., 'Smart' cameras or sensors). Also, various 
commercially available image acquisition devices may be 
configured to communicate data via any of a variety of inter 
faces, such as Ethernet, USB or FireWire connections. 
0201 Regarding exemplary image processing techniques 
that may be implemented by the master processor 190 of the 
control system 100, the image processing computer 200, and/ 
or one or more other computing/processing devices, 
examples of typical techniques include, but are not limited to, 
thresholding (converting a grayscale image to black and 
white, or using separation based on a grayscale value), seg 
mentation, blob extraction, pattern recognition, barcode and 
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data matrix code reading, optical character recognition, gaug 
ing (measuring object dimensions), positioning, edge detec 
tion, color analysis, filtering (e.g. morphological filtering) 
and template matching (finding, matching, and/or counting 
specific patterns). 
0202 In FIG. 10, various image information extracted 
from acquired images as a result of using any one or more of 
the image processing techniques noted above may be 
included as part of the overall information represented by one 
or more input signals 66 received by the control system 100 
from one or more sensors/input devices, and/or provided to 
the control system 100 by the image processing computer 
200. For example, Such extracted image information may 
indicate that a particular object (e.g., a part on an assembly 
line) was present in one or more images acquired at a particu 
lar time, that a particular position and/or orientation of an 
object was detected in one or more images, that a particular 
defect was observed in an object present in one or more 
images, and the like. Such information extracted from images 
may be used alone or in combination with other information 
from one or more sensors to represent a monitored condition 
of the automated process at a given time, upon which the 
control system may be configured to prescribe one or more 
particular corresponding actions to be taken in connection 
with the automated process 10. 

CONCLUSION 

0203 While various inventive embodiments have been 
described and illustrated herein, those of ordinary skill in the 
art will readily envision a variety of other means and/or struc 
tures for performing the functions and/or obtaining the results 
and/or one or more of the advantages described herein, and 
each of such variations and/or modifications, is deemed to be 
within the scope of the inventive embodiments described 
herein. More generally, those skilled in the art will readily 
appreciate that all parameters, dimensions, materials, and 
configurations described herein are meant to be exemplary 
and that the actual parameters, dimensions, materials, and/or 
configurations will depend upon the specific application or 
applications for which the inventive teachings is/are used. 
Those skilled in the art will recognize, or be able to ascertain 
using no more than routine experimentation, many equiva 
lents to the specific inventive embodiments described herein. 
It is, therefore, to be understood that the foregoing embodi 
ments are presented by way of example only and that, within 
the scope of the appended claims and equivalents thereto, 
inventive embodiments may be practiced otherwise than as 
specifically described and claimed. Inventive embodiments 
of the present disclosure are directed to each individual fea 
ture, system, article, material, kit, and/or method described 
herein. In addition, any combination of two or more Such 
features, systems, articles, materials, kits, and/or methods, if 
Such features, systems, articles, materials, kits, and/or meth 
ods are not mutually inconsistent, is included within the 
inventive scope of the present disclosure. 
0204 The above-described embodiments can be imple 
mented in any of numerous ways. For example, the embodi 
ments may be implemented using hardware, Software or a 
combination thereof. When implemented in software, the 
Software code can be executed on any Suitable processor or 
collection of processors, whether provided in a single com 
puter or distributed among multiple computers. 
0205 Further, it should be appreciated that a computer 
may be embodied in any of a number of forms, such as a 
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rack-mounted computer, a desktop computer, a laptop com 
puter, or a tablet computer. Additionally, a computer may be 
embedded in a device not generally regarded as a computer 
but with Suitable processing capabilities, including a Personal 
Digital Assistant (PDA), a smartphone or any other suitable 
portable or fixed electronic device. 
0206. Also, a computer may have one or more input and 
output devices. These devices can be used, among other 
things, to present a user interface. Examples of output devices 
that can be used to provide a user interface include printers or 
display Screens for visual presentation of output and speakers 
or other Sound generating devices for audible presentation of 
output. Examples of input devices that can be used for a user 
interface include keyboards, and pointing devices, such as 
mice, touch pads, and digitizing tablets. As another example, 
a computer may receive input information through speech 
recognition or in other audible format. 
0207 Such computers may be interconnected by one or 
more networks in any suitable form, including a local area 
network or a wide area network, such as an enterprise net 
work, and intelligent network (IN) or the Internet. Such net 
works may be based on any Suitable technology and may 
operate according to any suitable protocol and may include 
wireless networks, wired networks or fiber optic networks. 
0208. The various methods or processes outlined herein 
may be coded as Software that is executable on one or more 
processors that employ any one of a variety of operating 
systems or platforms. Additionally, such software may be 
written using any of a number of suitable programming lan 
guages and/or programming or scripting tools, and also may 
be compiled as executable machine language code or inter 
mediate code that is executed on a framework or virtual 
machine. 
0209. In this respect, various inventive concepts may be 
embodied as a computer readable storage medium (or mul 
tiple computer readable storage media) (e.g., a computer 
memory, one or more floppy discs, compact discs, optical 
discs, magnetic tapes, flash memories, circuit configurations 
in Field Programmable Gate Arrays or other semiconductor 
devices, or other non-transitory medium or tangible computer 
storage medium) encoded with one or more programs that, 
when executed on one or more computers or other processors, 
perform methods that implement the various embodiments of 
the invention discussed above. The computer readable 
medium or media can be transportable. Such that the program 
or programs stored thereon can be loaded onto one or more 
different computers or other processors to implement various 
aspects of the present invention as discussed above. 
0210. The terms “program” or “software are used herein 
in a generic sense to refer to any type of computer code or set 
of computer-executable instructions that can be employed to 
program a computer or other processor to implement various 
aspects of embodiments as discussed above. Additionally, it 
should be appreciated that according to one aspect, one or 
more computer programs that when executed perform meth 
ods of the present invention need not reside on a single com 
puter or processor, but may be distributed in a modular fash 
ion amongsta number of different computers or processors to 
implement various aspects of the present invention. 
0211 Computer-executable instructions may be in many 
forms, such as program modules, executed by one or more 
computers or other devices. Generally, program modules 
include routines, programs, objects, components, data struc 
tures, etc. that perform particular tasks or implement particu 
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lar abstract data types. Typically the functionality of the pro 
gram modules may be combined or distributed as desired in 
various embodiments. 
0212. Also, data structures may be stored in computer 
readable media in any suitable form. For simplicity of illus 
tration, data structures may be shown to have fields that are 
related through location in the data structure. Such relation 
ships may likewise beachieved by assigning storage for the 
fields with locations in a computer-readable medium that 
convey relationship between the fields. However, any suitable 
mechanism may be used to establish a relationship between 
information in fields of a data structure, including through the 
use of pointers, tags or other mechanisms that establish rela 
tionship between data elements. 
0213 Also, various inventive concepts may be embodied 
as one or more methods, of which an example has been 
provided. The acts performed as part of the method may be 
ordered in any Suitable way. Accordingly, embodiments may 
be constructed in which acts are performed in an order dif 
ferent than illustrated, which may include performing some 
acts simultaneously, even though shown as sequential acts in 
illustrative embodiments. 

0214 All definitions, as defined and used herein, should 
be understood to control over dictionary definitions, defini 
tions in documents incorporated by reference, and/or ordi 
nary meanings of the defined terms. 
0215. The indefinite articles“a” and “an as used herein in 
the specification and in the claims, unless clearly indicated to 
the contrary, should be understood to mean “at least one.” 
0216. The phrase “and/or as used herein in the specifica 
tion and in the claims, should be understood to mean “either 
or both of the elements so conjoined, i.e., elements that are 
conjunctively present in Some cases and disjunctively present 
in other cases. Multiple elements listed with “and/or should 
be construed in the same fashion, i.e., "one or more' of the 
elements so conjoined. Other elements may optionally be 
present other than the elements specifically identified by the 
“and/or clause, whether related or unrelated to those ele 
ments specifically identified. Thus, as a non-limiting 
example, a reference to “A and/or B, when used in conjunc 
tion with open-ended language Such as “comprising can 
refer, in one embodiment, to A only (optionally including 
elements other than B); in another embodiment, to B only 
(optionally including elements other than A); in yet another 
embodiment, to both A and B (optionally including other 
elements); etc. 
0217. As used herein in the specification and in the claims, 
“or should be understood to have the same meaning as 
“and/or as defined above. For example, when separating 
items in a list, 'or' or “and/or shall be interpreted as being 
inclusive, i.e., the inclusion of at least one, but also including 
more than one, of a number or list of elements, and, option 
ally, additional unlisted items. Only terms clearly indicated to 
the contrary, such as “only one of or “exactly one of” or, 
when used in the claims, “consisting of will refer to the 
inclusion of exactly one element of a number or list of ele 
ments. In general, the term 'or' as used herein shall only be 
interpreted as indicating exclusive alternatives (i.e. “one or 
the other but not both') when preceded by terms of exclusiv 
ity, such as “either,” “one of “only one of or “exactly one 
of “Consisting essentially of when used in the claims, shall 
have its ordinary meaning as used in the field of patent law. 
0218. As used herein in the specification and in the claims, 
the phrase “at least one.” in reference to a list of one or more 
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elements, should be understood to mean at least one element 
selected from any one or more of the elements in the list of 
elements, but not necessarily including at least one of each 
and every element specifically listed within the list of ele 
ments and not excluding any combinations of elements in the 
list of elements. This definition also allows that elements may 
optionally be present other than the elements specifically 
identified within the list of elements to which the phrase “at 
least one' refers, whether related or unrelated to those ele 
ments specifically identified. Thus, as a non-limiting 
example, “at least one of A and B (or, equivalently, “at least 
one of A or B.’ or, equivalently “at least one of A and/or B) 
can refer, in one embodiment, to at least one, optionally 
including more than one, A, with no B present (and optionally 
including elements other than B); in another embodiment, to 
at least one, optionally including more than one, B, with no A 
present (and optionally including elements other than A); in 
yet another embodiment, to at least one, optionally including 
more than one, A, and at least one, optionally including more 
than one, B (and optionally including other elements); etc. 
0219. In the claims, as well as in the specification above, 
all transitional phrases such as “comprising.” “including.” 
“carrying.” “having.” “containing.” “involving,” “holding.” 
“composed of and the like are to be understood to be open 
ended, i.e., to mean including but not limited to. Only the 
transitional phrases "consisting of and "consisting essen 
tially of shall be closed or semi-closed transitional phrases, 
respectively, as set forth in the United States Patent Office 
Manual of Patent Examining Procedures, Section 2111.03. 

1. An action engine to evaluate a plurality of conditions of 
a dynamic environment, the action engine comprising: 

a memory to store at least one event table, the at least one 
event table being structured as a plurality of Successive 
contiguous memory locations, wherein each memory 
location of the plurality of Successive contiguous 
memory locations is configured to store contents repre 
senting a particular condition of the plurality of condi 
tions to be evaluated by the action engine and a corre 
sponding action to be taken if the particular condition is 
satisfied; and 

at least one scanner, communicatively coupled to the 
memory so as to access the at least one event table, the at 
least one scanner comprising processing circuitry con 
figured to: 
sequentially process the contents of the respective 
memory locations of the at least one event table to 
evaluate the plurality of conditions represented in the 
contents; 

generate a notification signal for each condition of the 
plurality of conditions that is satisfied upon evalua 
tion; and 

generate control information representing at least one 
action to be taken in the dynamic environment if any 
of the plurality of conditions is satisfied upon evalu 
ation. 

2. The action engine of claim 1, wherein: 
A) the dynamic environment includes: 
A1) equipment to implement an automated process; 
A2) at least one control device to control the equipment 

in response to at least one control signal; and 
A3) at least one sensor to monitor the automated process 

and generate at least one input signal representing a 
monitored condition of the plurality of conditions: 
and 
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B) the at least one scanner of the action engine: 
B1) receives the at least one input signal representing the 

monitored condition; 
B2) processes the at least one input signal So as to deter 
mine if at least a first condition represented by the 
contents of at least a first memory location of the event 
table is satisfied; and 

B3) provides at least first control information represent 
ing at least one first action to be taken corresponding 
to the at least one first condition if the monitored 
condition matches the at least one first condition. 

3. A control system, comprising: 
the action engine of claim 2; and 
a master processor communicatively coupled to the action 

engine, the master processor configured to, upon execu 
tion of processor-executable instructions stored in the 
master processor: 
provide to the action engine the contents of the respec 

tive memory locations of the at least one event table: 
and 

receive from the action engine a notification signal for 
each condition of the plurality of conditions that is 
satisfied upon evaluation. 

4. A machine vision system, comprising: 
the action engine of claim 2: 
the equipment to implement the automated process in A1); 
the at least one control device in A2) to control the equip 

ment; and 
the at least one sensor to monitor the automated process, 
wherein: 
the equipment to implement the automated process com 

prises: 
robotics equipment; and 
lighting equipment to provide controlled ambient light 

ing for the automated process; 
the at least one control device includes a plurality of actua 

tors coupled to the robotics equipment and/or the light 
ing equipment to control the robotics equipment and/or 
the lighting equipment; 

the at least one sensor comprises at least one image acqui 
sition device to acquire at least one image of at least a 
portion of the automated process; and 

the action engine is communicatively coupled to the at least 
one control device and the at least one sensor, to receive 
the at least one input signal generated by the at least one 
sensor and to control the plurality of actuators and/or the 
at least one image acquisition device based at least in 
part on at least the first control information generated in 
B3). 

5. The action engine of claim 1, further comprising: 
at least one input interface, communicatively coupled to 

the at least one scanner, to receive at least one input 
signal representing a monitored condition of the plural 
ity of conditions of the dynamic environment, 

wherein: 
the processing circuitry of the at least one scanner com 

pares a value of the at least one input signal to at least a 
first portion of the contents of at least one memory 
location of the at least one event table, wherein the first 
portion of the contents of each memory location repre 
sents the particular condition to be evaluated; and 

if the value of the at least one input signal matches at least 
the first portion of the contents of the at least one 
memory location and representing the particular condi 
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tion to be evaluated, the processing circuitry of the at 
least one scanner processes a second portion of the con 
tents of the at least one memory location representing 
the corresponding action to be taken in the dynamic 
environment so as to provide at least Some of the control 
information. 

6. The action engine of claim 5, wherein: 
the at least one event table includes a fixed maximum 

number of Successive contiguous memory locations; 
and 

the maximum number of memory locations is based at least 
in part on a maximum permissible latency defined by a 
required response time for providing the control infor 
mation in the dynamic environment if any condition of 
the plurality of conditions is satisfied. 

7. The action engine of claim 5, wherein the processing 
circuitry of the Scanner comprises: 

comparator logic circuitry to compare the value of the at 
least one input signal to at least the first portion of the 
contents of the at least one memory location; 

action logic circuitry to process the second portion of the 
contents of the at least one memory location and repre 
senting the corresponding action to be taken, and pro 
vide the at least some of the control information; 

sequencing logic circuitry to control the at least one event 
table so as to sequentially provide the contents of the 
respective memory locations to the comparator logic 
circuitry and the action logic circuitry; and 

event table write arbitration logic circuitry to control the at 
least one event table so as to write new contents to at 
least one memory register of the at least one event table. 

8. The action engine of claim 5, wherein: 
the contents of each memory location of the plurality of 

Successive contiguous memory locations includes a con 
dition/action pair, the condition/action pair including a 
first number of bits constituting the first portion and 
having respective values representing a particular con 
dition of the plurality of conditions to be evaluated, and 
a second number of bits constituting the second portion 
and having respective values representing the corre 
sponding action to be taken if the particular condition is 
satisfied; and 

the processing circuitry of the Scanner comprises: 
a comparator coupled to the at least one memory loca 

tion to compare the respective values of the first num 
ber of bits representing the particular condition and 
the value of the at least one input signal representing 
the monitored condition of the plurality of conditions, 
the comparator further configured to generate a match 
signal if the particular condition matches the moni 
tored condition; and 

a gate, coupled to the at least one memory location and 
coupled to the comparator So as to receive the match 
signal, to output the second number of bits having 
respective values representing the corresponding 
action to be taken if the match signal is asserted by the 
comparator. 

9. The action engine of claim 5, further comprising at least 
one semaphore register, communicatively coupled to the at 
least one scanner, to store at least one semaphore, wherein: 

the at least one semaphore facilitates management of 
resource contention; and 

the at least one scanner acquires and releases the at least 
one semaphore to ensure availability of at least one 
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resource on which evaluation of at least one condition of 
the plurality of conditions relies. 

10. The action engine of claim 5, wherein: 
the at least one input signal includes a plurality of input 

signals, wherein respective values of the plurality of 
input signals at a given time represent the monitored 
condition of the plurality of conditions; and 

the at least one input interface is configured to receive the 
plurality of input signals. 

11. The action engine of claim 10, wherein the respective 
values of the plurality of input signals comprise at least one 
of: 

a plurality of real-time values representing the monitored 
condition; 

a plurality of latched values representing the monitored 
condition; 

at least one multi-bit digital value representing the moni 
tored condition; 

a plurality of binary values respectively representing dif 
ferent sensed parameters constituting the monitored 
condition; and 

at least one binary value representing at least one sema 
phore. 

12. The action engine of claim 5, wherein the at least one 
input interface further is configured to receive the contents of 
each memory location of the event table from an external 
device that receives the notification signal generated by the 
processing circuitry of the at least one scanner. 

13. The action engine of claim 5, further comprising: 
at least one output interface, communicatively coupled to 

the at least one scanner, to provide the notification signal 
for each condition of the plurality of conditions that is 
satisfied upon evaluation, and to further provide the at 
least some of the control information based at least in 
part on the second portion of the contents of the at least 
one memory location representing the corresponding 
action to be taken in the dynamic environment. 

14. The action engine of claim 13, wherein the correspond 
ing action to be taken in the dynamic environment, as repre 
sented by the at least some of the control information, 
includes at least one of: 

sending at least one data packet to at least one control 
device in the dynamic environment; 

setting and/or clearing at least one flag bit; 
setting and/or clearing at least one output bit; 
setting and/or clearing at least one semaphore; and 
latching and/or resetting at least one counter. 
15. The action engine of claim 5, wherein: 
each memory location of the at least one event table 

includes at least one memory register having a first num 
ber of bits; and 

the first portion of the contents of each memory location 
representing the particular condition to be evaluated 
includes a second number of bits smaller than the first 
number, wherein at least some of the second number of 
bits are nonadjacent bits in the at least one memory 
register. 

16. The action engine of claim 15, wherein: 
the second portion of the contents of each memory location 

representing the corresponding action to be taken in the 
dynamic environment includes a third number of bits 
Smaller than the first number, wherein at least some of 
the third number of bits are nonadjacent bits in the at 
least one memory register. 
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17. The action engine of claim 5, wherein: 
the first portion of the contents of a first memory location of 

the plurality of successive contiguous memory locations 
includes a chain bit to link the first memory location to a 
next memory location of the plurality of successive con 
tiguous memory locations, the first portion of the con 
tents of the first memory location representing a first 
condition to be evaluated: 

the second portion of the contents of the first memory 
location representing a first corresponding action to be 
taken in the dynamic environment includes a first action 
operand indicating that no action is to be taken in the 
dynamic environment; 

the first portion of the contents of the next memory location 
represents a second condition to be evaluated; and 

the second portion of the contents of the next memory 
location includes a second action operand representing 
at least one action to be taken in the dynamic environ 
ment if both the first condition and the second condition 
are satisfied. 

18. The action engine of claim 5, wherein: 
each memory location of the at least one event table 

includes at least one memory register having a first num 
ber of bits: 

the first number of bits are partitioned as an op-code, an 
action parameter, and a condition operand; and 

the op-code comprises at least a condition type code and an 
action operand, 

wherein: 
the condition type code and the condition operand consti 

tute at least part of the first portion of the contents of each 
memory location representing the particular condition 
to be evaluated; and 

the action operand and the action parameter constitute at 
least part of the second portion of the contents of each 
memory location representing the corresponding action 
to be taken in the dynamic environment. 

19. The action engine of claim 18, wherein: 
the first number of bits for the at least one memory register 

is 64 bits: 
the op-code is 16 bits: 
the action parameter is 16 bits; and 
the condition operand is 32 bits. 
20. The action engine of claim 19, wherein the at least one 

event table includes 128 memory locations. 
21. The action engine of claim 18, wherein the op-code 

further comprises: 
a counter field; and 
at least one bit relating to processing of the condition type 

code. 
22. The action engine of claim 21, wherein the at least one 

bit relating to processing of the condition type code includes 
at least one of: 

a chain bit; 
an XOR bit; 
a notify bit; 
a satisfied bit; and 
a last condition bit. 
23. A method for evaluating a plurality of conditions of a 

dynamic environment, the method comprising: 
A) sequentially processing contents of respective memory 

locations of at least one event table stored in a memory, 
the at least one event table being structured as a plurality 
of Successive contiguous memory locations, wherein 



US 2013/0090745 A1 

each memory location of the plurality of successive con 
tiguous memory locations is configured to store a con 
dition/action pair representing a particular condition of 
the plurality of conditions to be evaluated and a corre 
sponding action to be taken if the particular condition is 
satisfied; 

B) generating a notification signal for each condition of the 
plurality of conditions that is satisfied upon evaluation in 
A); and 

C) transmitting, to at least one control device so as to 
control at least one piece of equipment in the dynamic 
environment, control information representing at least 
one action to be taken in the dynamic environment if any 
of the plurality of conditions is satisfied upon evaluation 
in A). 

24. The method of claim 23, wherein A) comprises: 
A1) receiving at least one input signal representing a moni 

tored condition of the plurality of conditions of the 
dynamic environment; 

A2) comparing a value of the at least one input signal to at 
least a first portion of the contents of at least one memory 
location of the at least one event table, wherein the first 
portion of the contents of each memory location repre 
sents the particular condition to be evaluated; and 

A3) if the value of the at least one input signal matches at 
least the first portion of the contents of the at least one 
memory location and representing the particular condi 
tion to be evaluated, processing a second portion of the 
contents of the at least one memory location represent 
ing the corresponding action to be taken in the dynamic 
environment so as to provide at least some of the control 
information transmitted in C). 

25. The method of claim 24, further comprising: 
acquiring and releasing at least one semaphore to ensure 

availability of at least one resource on which A) relies, 
wherein the at least one semaphore facilitates manage 
ment of resource contention. 

26. The method of claim 24, wherein: 
the at least one input signal includes a plurality of input 

signals, wherein respective values of the plurality of 
input signals at a given time represent the monitored 
condition of the plurality of conditions. 

27. The method of claim 26, wherein the respective values 
of the plurality of input signals comprise at least one of: 

a plurality of real-time values representing the monitored 
condition; 

a plurality of latched values representing the monitored 
condition; 

at least one multi-bit digital value representing the moni 
tored condition; 

a plurality of binary values respectively representing dif 
ferent sensed parameters constituting the monitored 
condition; and 

at least one binary value representing at least one sema 
phore. 

28. The method of claim 23, further comprising: 
receiving the contents of each memory location of the event 

table from an external device that receives the notifica 
tion signal generated in B). 

29. The method of claim 23, wherein C) comprises at least 
one of: 
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sending at least one data packet to the at least one control 
device; 

setting and/or clearing at least one flag bit; 
setting and/or clearing at least one output bit; 
setting and/or clearing at least one semaphore; and 
latching and/or resetting at least one counter. 
30. The method of claim 23, wherein: 
each memory location of the at least one event table 

includes at least one memory register having a first num 
ber of bits; and 

the first portion of the contents of each memory location 
representing the particular condition to be evaluated 
includes a second number of bits smaller than the first 
number, wherein at least some of the second number of 
bits are nonadjacent bits in the at least one memory 
register. 

31. The method of claim 30, wherein: 
the second portion of the contents of each memory location 

representing the corresponding action to be taken in the 
dynamic environment includes a third number of bits 
Smaller than the first number, wherein at least some of 
the third number of bits are nonadjacent bits in the at 
least one memory register. 

32. The method of claim 23, wherein: 
the first portion of the contents of a first memory location of 

the plurality of successive contiguous memory locations 
includes a chain bit to link the first memory location to a 
next memory location of the plurality of successive con 
tiguous memory locations, the first portion of the con 
tents of the first memory location representing a first 
condition to be evaluated: 

the second portion of the contents of the first memory 
location representing a first corresponding action to be 
taken in the dynamic environment includes a first action 
operand indicating that no action is to be taken in the 
dynamic environment; 

the first portion of the contents of the next memory location 
represents a second condition to be evaluated; and 

the second portion of the contents of the next memory 
location includes a second action operand representing 
at least one action to be taken in the dynamic environ 
ment if both the first condition and the second condition 
are satisfied. 

33. The method of claim 23, wherein: 
each memory location of the at least one event table 

includes at least one memory register having a first num 
ber of bits: 

the first number of bits are partitioned as an op-code, an 
action parameter, and a condition operand; and 

the op-code comprises at least a condition type code and an 
action operand, 

wherein: 
the condition type code and the condition operand consti 

tute at least part of the first portion of the contents of each 
memory location representing the particular condition 
to be evaluated; and 

the action operand and the action parameter constitute at 
least part of the second portion of the contents of each 
memory location representing the corresponding action 
to be taken in the dynamic environment. 
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