
(19) United States
US 2013 0090745A1

(12) Patent Application Publication (10) Pub. No.: US 2013/0090745 A1
Frazer et al. (43) Pub. Date: Apr. 11, 2013

(54) METHODS AND APPARATUS EMPLOYING
AN ACTION ENGINE FORMONITORING
AND/OR CONTROLLING DYNAMIC
ENVIRONMENTS

(71) Applicant: Opteon Corporation, Cambridge, MA
(US)

(72) Inventors: Mark J. Frazer, Toronto (CA); T. Eric
Hopkins, Wellesley, MA (US); Timothy
N. Schaeffer, Somerville, MA (US)

(73) Assignee: Opteon Corporation, Cambridge, MA
(US)

(21) Appl. No.: 13/646,452

(22) Filed: Oct. 5, 2012

Related U.S. Application Data
(60) Provisional application No. 61/543,680, filed on Oct.

5, 2011.

Publication Classification

(51) Int. Cl.
G05B 5/02 (2006.01)

40

SENSORS
(INPUT

DEVICES)

E

66 1

AUTOMATED PROCESS

QUIPMENT

(52) U.S. Cl.
CPC G05B 15/02 (2013.01)
USPC .. 700/12

(57) ABSTRACT

A dynamic environment (e.g., an automated industrial pro
cess) has multiple conditions in response to which corre
sponding actions are required, and comprises various equip
ment, control device(s) to control the equipment, and one or
more sensors to generate input signal(s) representing a moni
tored condition of the environment. A control system for the
environment comprises a master processor and one or more
co-processors, wherein the master processor configures a
given co-processor to evaluate only a first Subset of conditions
expected to occur in the environment within a specified time
period (e.g., less than a response time of the master proces
sor), and to provide first control information representing an
action to be taken if a particular condition of the first subset is
satisfied. The co-processor receives the input signal(s) repre
senting the monitored condition, processes the input signal(s)
so as to determine if the particular condition of the first subset
is satisfied, and provides the first control information to the
control devices so as to control the equipment. Exemplary
applications include dynamic environments in which
machine vision techniques and/or equipment are employed.

10

ACTUATORS
(CONTROL
DEVICES)

68

PROGRAMMABLE LOGIC CONTROLLER
(PLC)

US 2013/0090745 A1 Apr. 11, 2013 Sheet 1 of 10 Patent Application Publication

(OTCH)

_: 99 (SEOIAEG LºndNI) SèHOSNES 07

US 2013/0090745 A1

89

Apr. 11, 2013 Sheet 2 of 10 Patent Application Publication

US 2013/0090745 A1

Y

S

ÁJouleW

99

JOSS300.) J??SeW

Apr. 11, 2013 Sheet 4 of 10

89

Patent Application Publication

US 2013/0090745 A1 Apr. 11, 2013 Sheet 5 of 10 Patent Application Publication

US 2013/0090745 A1 Apr. 11, 2013 Sheet 6 of 10 Patent Application Publication

dO-ON

|Å OC] | |o IGLO DO0

US 2013/0090745 A1 Apr. 11, 2013 Sheet 8 of 10 Patent Application Publication

SèHE LS|5) ERH CJENIV/HO

01 (9/-/

US 2013/0090745 A1

| ||

89

Apr. 11, 2013 Sheet 10 of 10 Patent Application Publication

99

US 2013/0090745 A1

METHODS AND APPARATUS EMPLOYING
AN ACTION ENGINE FORMONITORING
AND/OR CONTROLLING DYNAMIC

ENVIRONMENTS

CROSS-REFERENCE TO RELATED
APPLICATION

0001. The present application claims a priority benefit,
under 35 U.S.C. S 119(e), to U.S. provisional application Ser.
No. 61/543,680, filed on Oct. 5, 2011, entitled “Methods,
Apparatus and Systems for Monitoring and/or Controlling
Dynamic Environments, which application is incorporated
herein by reference in its entirety.

BACKGROUND

0002. A programmable logic controller (PLC) is a special
form of computer-based controller typically employed to
control equipment, machinery and/or instrumentation in
automated industrial electromechanical processes. A com
mon example of Such an automated industrial electrome
chanical process is given by the operation of a factory assem
bly line. In the dynamic environment of a factory assembly
line, there may be multiple pieces of industrial equipment,
machinery and/or instrumentation (collectively referred to as
“equipment” for simplicity) associated with the fabrication,
assembly, and/or packaging of parts/components, as well as
the transport of the parts/components amongst various stages
of fabrication, assembly and/or packaging.
0003 FIG. 1 provides a general illustration of the typical
role of a conventional PLC 50 in connection with an auto
mated industrial process 10 Such as the operation of a factory
assembly line. In addition to multiple pieces of equipment 20,
the dynamic environment of a factory assembly line typically
includes several control devices 30 (e.g., actuators) for oper
ating the multiple pieces of equipment 20, as well as multiple
input devices 40 (e.g., sensors) to provide indications of
equipment status and/or various conditions associated with
fabrication, assembly, packaging and/or transport of parts/
components. Such indications provided by the input devices
40 often are referred to as “states' or “conditions” of the
dynamic environment. Some examples of control devices 30
used to operate the equipment 20 include magnetic relays,
Solenoids, electric motors, and pneumatic or hydraulic cylin
ders. Some examples of input devices 40 include limit
Switches, position sensors, analog sensors (e.g., pressure or
temperature sensors), and imaging devices (e.g., cameras).
0004 Generally speaking, the PLC 50 is employed to
monitor input signals 66 provided by input devices 40. These
input signals, respectively or in various combinations, repre
sent different states (conditions) of the dynamic environment
as a function of time. In response to the input signals present
at a given time, the PLC 50 generates output signals 68 to the
control devices 30 for operating the industrial equipment 20,
to ensure the automated process 10 is implemented efficiently
and predictably. To this end, the PLC 50 generally is
employed to coordinate predetermined sequences of actions
to be taken by the equipment 20 implementing the process 10,
in which respective actions may need to occur within a certain
time window contingent on information provided by the input
devices 40 (via the input signals 66).
0005. A typical PLC includes programmable memory to
store processor-executable instructions and employs various
other electronic components to implement functions such as

Apr. 11, 2013

logic, sequencing, timing, counting, and arithmetic. In terms
of general architecture and various aspects of functionality,
PLCs are in many respects similar to general-purpose com
puters (e.g., desktop or laptop personal computers); however,
whereas general-purpose computers typically are optimized
for calculation and display tasks, PLCs generally are opti
mized for control tasks in a dynamic environment such as an
automated industrial process. Accordingly, PLCs generally
are thought of as special-purpose control computers for con
trolled dynamic environments. Since PLCs often are
employed in the demanding conditions of an automated
industrial process, from a package design standpoint conven
tional PLCs often tend to be ruggedly designed so as to
withstand demanding environments in which the PLC may be
exposed to one or more of physical vibrations, challenging
temperature and humidity conditions, dust or potentially
damaging materials, and electrically noisy environments.
0006 FIG. 2 illustrates a generalized block diagram of the
typical electrical components/circuitry (e.g., "hardware’)
constituting the conventional PLC 50 of FIG.1. As shown in
FIG. 2, the basic functional components of the PLC 50
include a processor unit 52, memory 54, power supply 56,
input interface 58, output interface 60, and one or more com
munications interfaces 62 all communicatively and/or elec
trically coupled to one another. FIG. 2 also shows a program
ming device 64 communicatively coupled to the PLC 50 and
employed to program the PLC.
0007. In FIG. 2, the processor unit 52 includes a micro
processor to interpret input signals 66 received by the input
interface 58, and in turn provide output signals 68 via the
output interface 60 so as to implement control actions accord
ing to a program (e.g., series of processor-executable instruc
tions) stored in the memory 54. In particular, the memory 54
stores the program containing instructions representing the
control actions to be implemented by the microprocessor, as
well as various data relating to input signals, output signals
and operation of the microprocessor as it carries out various
instructions. The input interface 58 provides to the processor
unit 52 information via input signals 66 received from exter
nal input devices (e.g., sensors, Switches, meters, counters,
etc.). The processor unit 52 in turn communicates control
actions to external output devices (e.g., valves, motors, etc.)
via the output signals 68.
0008. In FIG. 2, examples of components constituting the
respective input and output interfaces may include analog-to
digital converters, optocouplers/optoisolators, buffers,
latches, and drivers So as to appropriately interface with vari
ous external input and output devices associated with the
controlled dynamic environment. Although four input signals
and four output signals are shown for purposes of illustration
in FIG. 2, it should be appreciated that different types of
conventionally available PLCs may be configured to accept
different numbers of input signals (some number N of input
signals) and provide different numbers of output signals
(some number X of output signal), and that the number of
input signals and output signals need not necessarily be the
same. In general, the number N of input signals and the
number X of output signals is dictated at least in part by the
number of input devices 40 employed to monitor the auto
mated process 10 of FIG. 1 and the number of control devices
30 employed to control the equipment 20.
0009. In the PLC 50 shown in FIG. 2, the communications
interface(s) 62 is/are used to receive and transmit various data
(which may relate to one or more of the programs for execu

US 2013/0090745 A1

tion by the processor unit 52, the input signals, the output
signals, other data to be utilized by the processor unit 52 in
executing the program, etc.) via one or more communication
networks from or to one or more network-based external
input/output devices and/or other remote PLCs. In general,
the communications interface(s) 62 implement Such func
tions as device verification, data acquisition, synchronization
between user applications, and connection management. The
power supply 56 converts AC voltage to a low DC voltage
(e.g., 5 Volts) required for the various circuitry in the PLC to
operate. Finally, the programming device 64 (which in some
examples may be coupled to the PLC 50 via the communica
tion interface(s) 62) is employed to enter into the memory 54
the program to be executed by the processing unit 52; typi
cally, the program is developed/written in the programming
device 64 and then transferred to the memory 54 of the PLC
SO.

0010 FIG. 3 provides additional details of the internal
architecture of the PLC 50 shown in FIG. 2, particularly in
connection with the processor unit, various elements of
memory, input/output interfaces, and busses to facilitate
information transfer. For example, FIG. 3 illustrates that the
processor unit 52 (denoted as CPU in FIG. 2) is associated
with a clock 52A, the frequency of which determines the
operating speed of the PLC and provides the timing and
synchronization for various elements in the PLC. Information
within the PLC is carried amongst the processor unit, various
memory elements, and to and from the input/output interfaces
58 and 60 via multiple busses; in particular, the PLC employs
a data bus for transporting data to and from the PLC’s con
stituent elements, an address bus to send the addresses of
locations for accessing stored data, and a control bus for
signals relating to internal control actions. The PLC architec
ture also may include an I/O system bus for communications
between the input/output interfaces 58 and 60 (from which
the input signals 66 are received from external input devices,
and the output signals 68 are provided to external output
devices, respectively) and an input/output unit 55 configured
to transfer input/output information between the I/O system
bus and the PLC's data bus.

0011. In general, the processor unit 52 (CPU) of the archi
tecture shown in FIG. 3 includes an arithmetic and logic unit
(ALU) that is responsible for data manipulation and carrying
out arithmetic operations (e.g., addition, Subtraction, multi
plication, division) and digital logic operations (e.g., AND,
OR, NOT, and EXCLUSIVE-OR), internal memory registers
used to store information involved in program execution, and
an internal control unit to receive the output of the clock 52A
and control the timing of operations. The various memory
elements constituting memory 54 may include read-only
memory (ROM) 54A to provide permanent storage for the
operating system and fixed data used by the processor unit,
user program random-access memory 54B (User program
RAM) employed for the program to be executed by the PLC,
and data random-access memory 54C (Data RAM) used for
data (information regarding the status of input and output
signals, values of timers and counters and other internal
devices, etc.). The program to be executed by the PLC may
also be stored in non-volatile memory.
0012. From the PLC architecture illustrated in FIG. 3, it
may be appreciated that although conventional PLCs often
are considered special-purpose computers rather than gen
eral-purpose computers, both PLCs and general-purpose
computers share many aspects of a “Von Neumann' computer

Apr. 11, 2013

architecture. In a Von Neumann computer architecture, com
puter instructions (the “user program” stored in User program
RAM 54A) as well as any data required for program execu
tion (e.g., stored in Data RAM 54C) are accessed from vari
ous memory elements over a common bus architecture (i.e.,
via the address, data and control busses shown in FIG. 3).
Although conventional PLCs attempt to tailor computer per
formance by being special-purpose computing devices
implementing specific functionality corresponding to a par
ticular automated industrial process, the architecture of con
ventional PLCs nonetheless places fundamental limits on
their performance, as they execute instructions serially and
hence effectively have no capacity for parallel execution.
0013 Programming of a PLC primarily is concerned with
specifying digital logic functions that process one or more
input signals representing a sensed condition (“state') asso
ciated with the automated process being implemented by
various equipmentata given time. The digital logic functions
acting on the monitored condition of the automated process
generate one or more control signals in response to the moni
tored condition. As noted above, these control signals are
applied to control devices that in turn control the various
equipment to take Some action involved in further implement
ing the automated process. At a high level, a PLC program
generally implements a sequence of one or more actions in
response to monitored conditions as a function of time (e.g.,
if A or B occurs, actuate C; if A and B occurs, actuate D). The
automated process evolves over time as actuators control
equipment to drive the process to new conditions. Hence, as
noted above, the automated process constitutes a dynamic
environment in which an evolution of conditions is monitored
by the PLC, and wherein the PLC makes decisions and
updates control signals to actuators, based on respective
monitored conditions, to drive the environment to new con
ditions.

0014. Many conventional PLCs are programmed via a
“ladder logic' programming language to codify the digital
logic that is used to evaluate inputs signals representing moni
tored conditions. Common ladder logic programming lan
guages typically employ graphical diagrams that resemble
“rungs' of a ladder, wherein respective rungs represent circuit
diagrams for electromechanical relays (which were used in
older logical control systems) to facilitate intuitive program
ming by control system engineers. Ladder logic is best Suited
to implement control solutions in which primarily binary
variables are involved (e.g., the monitored conditions in a
dynamic environment each may be represented as TRUE, i.e.,
logic one, or FALSE, i.e., logic Zero).
0015. However, in a variety of automated process environ
ments, outputs of sensors may be analog signals. Accord
ingly, in Some instances, if the direct output of a given input
device/sensor is not in the form of a binary signal, the output
of the input device/sensor may be pre-conditioned in some
respects to provide the input signals 66 in binary form. For
example, an analog output of a temperature sensing device
may be first applied to a comparator circuit having a tempera
ture set point Voltage as another input so as to provide, as one
of the input signals 66, a binary indication of whether or not
the monitored temperature is above or below the particular
temperature set point. Alternatively, an analog value may be
converted to a quantitative value encoded into a multi-bit
digital word used by the system to perform mathematical
operations and/or make decisions. Similarly, a multi-bit out
put of a counter serving as an input device may be compared

US 2013/0090745 A1

to a pre-determined count to in turn provide, as one of the
input signals 66, a binary indication of whether or not the
counter output is above or below the pre-determined count
(alternatively, an output of a counter having some number B
of bits may be provided directly as a number Bofinput signals
66). Yet other types of input devices may generate highly
transient signals; for Such devices, a latch may be employed to
facilitate the detection of a signal edge or transient so as to
provide an input signal of suitable duration to the PLC indi
cating the occurrence of the edge/transient. In other
examples, input devices may include various networked
devices, for which one or more communication status signals
(e.g., data packet transmitted/received) may serve as one of
the input signals 66.
0016 Ladder logic and other languages for programming
conventional PLCs generally are considered to be rules-based
programming languages. A typical PLC program may be
constituted by a series of rules, wherein each rule is consti
tuted by one or more binary input signals (e.g., A, B, C, D)
representing a monitored condition of the automated process,
and a corresponding control signal (e.g., X) that is generated
in response to particular digital logic evaluating the input
signals. Accordingly, in Some aspects a rule in a PLC program
may be viewed in a manner similar to an “IF/THEN” state
ment (e.g., If (A AND NOT B) AND (CORD), THEN X).
The PLC program includes all of the rules necessary to imple
ment all of the actions that are required in response to differ
ent combinations of input signals representing all of the dif
ferent possible conditions of the automated process that may
be monitored via the set of available input signals.
0017. With reference again to FIG. 2, the programming
device 64 (which may be a handheld programming device, a
desktop console, or a personal computer Such as a laptop or
tablet computer) is typically employed to create, store and
download to the PLC executable programs including a set of
rules. When the program is executed by the PLC, the rules are
typically executed sequentially from first to last and then
repeated, wherein each pass through the set of rules in
sequence often is referred to as a “scan or “control loop.”
Thus, consecutive repetitions of the scan or control loop
represent a continuous cycle of the PLC reading input signals,
examining input signal using the logic encoded in the pro
gram rules, and then changing control signals output by the
PLC as appropriate.
0018 More specifically, with respect to general operation,
including various housekeeping activities and performing
scans or control loops, conventional PLCs typically function
in a cyclical manner. For example, when power is initially
applied to a PLC, the PLC may perform a self-check or
diagnostic routine to ensure that various hardware compo
nents are functioning properly. With reference again to FIGS.
2 and 3, if no fault or error conditions are detected, the PLC
then controls the input interface 58 and memory 54 so as to
read each of the input signals 66 sequentially and store each
read instance of a given input signal in a dedicated memory
location. The PLC then executes its program by sequentially
testing each rule (i.e., fetching, decoding and executing the
program instructions in sequence) and solving the logic
encoded in the rule.

0019. In particular, for each rule, the stored instances of
certain input signals as specified in the rule are retrieved from
memory, the rule is evaluated based on the retrieved input
signals, and if the rule is satisfied (i.e., all of the pre-requisite
conditions specified in the rule are met), a control signal

Apr. 11, 2013

corresponding to the satisfaction of the rule is generated. If
Such a control signal is generated, it is stored in a dedicated
memory location. Evaluation of a given rule may involve
multiple read operations from, and write operations to, dif
ferent memory locations (e.g., registers) as the digital logic
codified in the rule is solved. As noted above, respective rules
are evaluated sequentially as the PLC executes the ladder
logic program; accordingly, while the PLC is evaluating a
particular rule, it is inattentive to the other rules codified in the
program.

0020. If the PLC generates any control signals in response
to evaluation of the rules, it may provide these for output as a
set of updated control signals 68. These control signals in turn
are transmitted to one or more actuators or other equipment to
be controlled in connection with the automated process. The
PLC then returns to performing the self-check, reading each
of the input signals and storing them to memory, executing the
program rules to complete the control loop, updating the
control signals for output (if any), and repeating this cycle
iteratively.
0021. The time period required by the PLC to complete the
cycle described above commonly is referred to as a “cycle
time' or “scan time.” Typical cycle times of conventional
PLCs are on the order of approximately 10 milliseconds to
hundreds of milliseconds. The cycle time generally is deter
mined by the particular CPU used in the processor unit, the
size of the program to be scanned (e.g., the number of rules
constituting the program, which in turn depends at least in
part on the number of input signals to be read, the number of
input signal combinations for which independent evaluations
are required, and the number of control signals to be gener
ated), and the system functions that are in use pursuant to
execution of the program. Thus, the more complex the pro
gram, the longer the cycle time will be.
0022. It should be appreciated that, in a conventional PLC,
the vast majority of rules when evaluated in a given cycle are
not satisfied (i.e., no control signal is generated pursuant to
evaluation of the rule); if a rule is not satisfied, the program
merely moves to the next rule for evaluation. In this manner,
it is common in conventional PLCs for a substantial portion of
a given cycle to be spent evaluating Successive rules without
generating any control signals.
0023. Although relatively quick compared to general-pur
pose computers programmed to implement similar function
ality, the cycle time of a PLC is not instantaneous. As a result,
the PLC does not “watch’ its input signals all of the time, but
instead the PLC samples the states of the input signals peri
odically depending on the cycle time. Furthermore, the cycle
time constitutes a minimum delay in updating control signals
(if generated pursuant to a satisfied rule) that are output by the
PLC in response to sampled input signals. In this manner, the
cycle time also may be viewed as a minimum response time (a
“reaction time') of the PLC to a particular monitored condi
tion (i.e., represented by a particular value for one or more of
the input signals), and is often referred to as a “latency' of the
PLC. Thus, it should be appreciated that due to this latency, an
input signal that lasts for a duration shorter than the cycle time
may be missed by the program (in general, any input signal
must be present for longer than the cycle time). In some
instances, external circuitry may be employed to latch tran
sient signals so that they will not be missed entirely by the
PLC. Even if a particular input signal is not “missed due to
latching, however, a control signal that is to be generated in

US 2013/0090745 A1

response to the input signal may be generated by the PLC too
late to be effective for the correct operation of the equipment
being controlled.
0024. Because of the cyclical nature in which a conven
tional PLC executes a program, all possible combinations of
input signals (representing all possible conditions of the auto
mated process being controlled for which some action is
required) must be contemplated in a single control loop of the
program. Stated differently, as noted above, as long as a
monitored condition represented by one or more input signals
is in Some manner involved in causing some action to occur
(via one or more control signals) at Some point during the
duration of an automated process, there needs to be one or
more rules in the program that evaluate the particular moni
tored condition. As noted above, the latency of a conventional
PLC Scales with program complexity; hence, as the number
of possible conditions of the process for which actions are
required increases, the program becomes larger and the
latency becomes greater. Furthermore, in many automated
processes, some conditions occur more frequently than oth
ers, and in Some instances conditions that may occur rarely
may be associated with a rule representing complicated logic
that needs to be evaluated (which requires more processing
time). Accordingly, significant portions of the cycle time may
be “used up' (and latency exacerbated) by executing one or
more rules to evaluate one or more monitored conditions that
occur rarely.

SUMMARY

0025. The Inventors have recognized and appreciated that
typical latencies associated with conventional programmable
logic controllers (PLCs) may be excessively long for moni
toring and/or controlling some types of dynamic environ
ments (e.g., involving automated systems and/or processes).
More generally, conventional PLCs as well as other more
general-purpose computers often are not appropriately Suited
for applications involving monitoring and/or controlling
dynamic environments in which significant speed and/or pre
cision is/are required in connection with response or reaction
time (e.g., taking some action, Such as controlling equipment,
machinery and/or instrumentation, in response to one or more
monitored conditions).
0026. In particular, processor-based control devices
employing a general-purpose computer architecture (or
related computer architectures with a small and finite set of
general purpose processors), and executing programs sequen
tially or cyclically, are not sufficiently fast to implement con
trol functions in dynamic environments that require reflex
like reactions in response to evolving conditions of the
environment, which may benefit from essentially simulta
neous evaluation of multiple possible conditions and taking
immediate action based on same. Examples of dynamic envi
ronments requiring reflex-like reactions include, but are not
limited to, aircraft control, complex chemical process control,
and machine vision applications (e.g., analysis of images to
extract data for controlling various processes, such as auto
matic inspection and robot guidance).
0027. In view of the foregoing, various inventive embodi
ments described herein are directed to methods, apparatus
and systems for monitoring and/or controlling dynamic envi
ronments, in which reactions to evolving conditions of the
environment may be provided with significantly lower

Apr. 11, 2013

latency and/or lower variability latency than possible with
conventional PLCs and/or other conventional computing
devices.

0028. For purposes of the present disclosure, a “dynamic
environment” refers to a process and/or system, whether
implemented physically and/or virtually (e.g., for purposes of
simulation), in which a condition of the process and/or system
(also referred to herein as a “state' of the environment) may
be monitored as a function of time, and one or more actions
may be taken (e.g., in the form of control stimuli applied to the
process and/or system) in response to a particular condition or
evolution of conditions. In exemplary implementations dis
cussed in greater detail below, actions taken in response to a
particular condition or evolution of conditions of the dynamic
environment may be “reflexive” in nature, in that they are
nearly instantaneous as a result of the appreciably low latency
achieved by the inventive methods, apparatus and systems
disclosed herein. While many practical applications of the
concepts disclosed herein are contemplated for physical
implementations of automated industrial control processes
and systems, for example, it should be appreciated that the
inventive concepts disclosed herein are not limited in this
respect, and may be applied advantageously in a variety of
physical and/or virtual dynamic environments.
0029. In connection with achieving appreciably low
latency for controlling a dynamic environment, the Inventors
have recognized and appreciated that for a given dynamic
environment, different conditions requiring action may occur
on different time scales and/or within different time frames
(e.g., Some conditions may occur more often than others,
and/or in close temporal proximity with certain other condi
tions). Furthermore, some conditions may occur more often
in particular sequences, and/or as a result of one or more
particular actions previously having been taken. Accordingly,
in one aspect of some inventive embodiments described
herein, rather than considering the entire dynamic environ
ment as a whole and contemplating all possible conditions of
the dynamic environment overall time for which actions may
be required, the Inventors have recognized and appreciated
that by breaking up the dynamic environment into multiple
Sub-environments (e.g., Sub-processes and/or Sub-systems)
based on a variety of criteria (e.g., time scale/time frame,
particular patterns of evolution or change in condition), a
control methodology may be implemented with significantly
low latency. Stated differently, the Inventors have recognized
that by identifying particular categories of conditions that can
occur and corresponding requiredactions that may be taken in
a dynamic environment (e.g., a Subset of conditions that could
all occur within a certain time period, a Subset of conditions
that could only occur after a particular action was taken, etc.),
the control Solution may be Subdivided and shared amongst
multiple assessment and control resources to significantly
reduce latency.
0030. With the foregoing in mind, some embodiments of
the present invention relate to a control system for a dynamic
environment (e.g., as a replacement for the conventional PLC
50 shown in FIG. 1), wherein the control system employs a
“master processor (also referred to herein as a “housekeep
ing processor) and one or more independent (i.e., asynchro
nous) “slave' co-processors (also referred to herein as
“responsive' co-processors) each dedicated to evaluating one
or more conditions constituting a Subset of all possible con
ditions that need to be evaluated in a given dynamic environ
ment. The Subset of conditions for which a given co-processor

US 2013/0090745 A1

in the control system is tasked to evaluate may be based on a
number of different criteria, as noted above (e.g., time scale/
time frame, particular patterns of evolution or change in con
dition). For purposes of the present disclosure, "evaluating a
condition refers to determining the presence of the condition
(“satisfying the condition, e.g., by comparing some number
N of monitored input signals at a given time to particular input
signal values representing the condition) and taking appro
priate action in response to the condition (e.g., generating one
or more corresponding control signals, or particular instruc
tions for generating same).
0031. Such a control system including a master “house
keeping processor and one or more slave “responsive' co
processors respectively dedicated to evaluating some Subset
of conditions in a dynamic environment may be viewed as
adopting a "divide and conquer approach to monitoring and
controlling the dynamic environment. In particular, rather
than employing a single processor to evaluate all possible
conditions of the environment for which actions are required,
the master processor may task one or more co-processors to
evaluate only some subset of possible conditions for which
actions are required, thereby relieving the master processor of
significant processing burden. In this manner, the latency of
the entire control system is a function of co-processor latency
(e.g., if multiple co-processors are employed, the latency of
the control system as a whole may be a function of the largest
co-processor latency).
0032. By distributing the condition evaluation process for
the dynamic environment amongst multiple co-processors in
the foregoing fashion, the latency of the control system as a
whole may be significantly reduced (e.g., in some cases by
several orders of magnitude) as compared to conventional
control approaches employing a single PLC and/or general
purpose computer. In various implementations discussed in
greater detail below, not only is appreciably low control sys
tem latency realized by such a “divide and conquer
approach, but predictable and repeatable latencies also may
be realized with exemplary control system and/or co-proces
sor architectures. One or both of low latency and low vari
ability latency may be particularly advantageous in some
machine vision applications, in which reliable/predictable
machine behavior, including acquisitions of images correctly
synchronized with machine and lighting system operation, is
important. Low latency and low variability latency also may
be important for coordinating control activities as indicated
above with decisions resulting from computer analysis that
may take place in a different time domain.
0033. In one embodiment of a control system according to
the present invention, a master processor (e.g., which in some
cases may be implemented as a general-purpose computer) is
communicatively coupled to one or more slave co-processors.
Each slave co-processor includes its own dedicated memory
(i.e., not shared with other co-processors, if they are present,
and accessible only to the co-processor itself and the master
processor), as well as associated hardware (e.g., processing
and/or logic circuitry) to act on the contents of the dedicated
memory. The contents of a given co-processor's dedicated
memory may be provided (i.e., loaded into the co-processor)
by the master processor. In exemplary system architectures
discussed in greater detail below, in Some aspects a given
slave co-processor also has Substantially unfettered access to
input signals representing different conditions of a dynamic
environment, as well as communication paths (e.g., with the
master processor and the dynamic environment). Such that

Apr. 11, 2013

multiple co-processors are capable of monitoring the same set
of input signals at the same time and evaluating their associ
ated conditions based on the same set of input signals.
0034. In one exemplary implementation, the contents of
the co-processor's dedicated memory includes information
(e.g., a program) relating to evaluation of a single condition of
the dynamic environment; hence, in Such an implementation,
a given co-processor is configured (e.g., to execute the pro
gram stored in the dedicated memory, or otherwise imple
ment particular digital logic functions on the memory con
tents) to evaluate only the single condition of the dynamic
environment pursuant to the particular information stored in
the co-processor's dedicated memory (in other embodiments
discussed below, a co-processor may be configured to evalu
ate multiple conditions). When a slave co-processor deter
mines that its condition is present, it takes the corresponding
prescribed action according to the co-processor's program/
logic (e.g., the co-processor provides some output that in turn
generates one or more control signals as appropriate) and
notifies the master processor that its condition is satisfied. In
other implementations, rather than the co-processor itself
taking the corresponding prescribed action, the co-processor
may merely notify the master processor that its condition is
satisfied (e.g., by generating an interrupt to the master pro
cessor), and the master processor in turn may be appropriately
configured to take the corresponding prescribed action. In
either situation, by "offloading from the master processor at
least the evaluation of the condition, the co-processor signifi
cantly improves the response time of the control system as a
whole.

0035. In some embodiments discussed in further detail
below, in response to a notification from a co-processor that
its condition is satisfied, the master processor may “re-task
the co-processor by loading into the co-processor's dedicated
memory new information relating to a new condition to evalu
ate (and corresponding action to be taken if the new condition
is satisfied). In this manner, the master processor facilitates
effective control of the dynamic environment as it evolves
over time by dynamically re-tasking one or more co-proces
sors of the control system (to evaluate new conditions and/or
take new/different actions).
0036. In some implementations of a control system
according to the present invention, multiple slave co-proces
sors may be employed if there are multiple conditions to be
evaluated in the dynamic environment within a given time
frame. Such that respective co-processors are configured to
evaluate different possible conditions and take appropriate
action as necessary. In one aspect of such an implementation,
the set of N available input signals representing different
possible conditions of the dynamic environment may be pro
vided identically (e.g., in parallel, via a bus architecture) and
available simultaneously to all of the co-processors for evalu
ation. Accordingly, the respective co-processors indepen
dently (i.e., asynchronously) may monitor the set of Navail
able input signals, evaluate their respective conditions, take
action if as appropriate, and notify the master processor when
their conditions are satisfied. In this manner, as noted above,
the latency of the control system is a function of a given
co-processor's latency. In situations in which a co-processor
is configured to evaluate a single condition, not only is the
latency of the co-processor appreciably low, but the latency
variation is appreciably low as well (and, for many practical
purposes, Substantially Zero).

US 2013/0090745 A1

0037. A variety of co-processor implementations are con
templated according to various embodiments of the inven
tion. For example, in one embodiment, a co-processor may be
implemented as a full-featured processor running an appre
ciably short program loaded in its dedicated memory (e.g., a
single IF THEN statement inside a loop for evaluating a
particular condition). In this type of co-processor implemen
tation, typical latencies for the co-processor (based on con
ventional processors evaluating a relatively small number of
instructions representing the IF THEN loop) may be on the
order of about one microsecond. For applications in which
space and/or hardware costs may be important practical con
siderations, however, the implementation of a co-processor as
a full-featured processor, particularly if control of a dynamic
environment entails evaluation of numerous conditions and
implicates multiple co-processors in a control system, may be
impractical in some instances (e.g., the processing resources
being spent on evaluating a single condition may be greater
than necessary, and may take up excessive chip space).
0038. In view of the foregoing, in other co-processor
implementations according to various embodiments of the
invention, a significantly streamlined special-purpose co-pro
cessor includes pared-down digital logic to specifically
implement a comparator function (e.g., the functional equiva
lent of an IF THEN statement) based on the contents of the
co-processor's dedicated memory and the monitored input
signals; in essence, the functional capability of the co-proces
sor is reduced to the particular evaluation of a single condition
via a significant reduction in hardware. Such a co-processor
implementation accomplishes the goal of a low-cost, space
saving, low-latency solution. In exemplary implementations,
several Such co-processors may be implemented inexpen
sively in a field programmable gate array (FPGA), an appli
cation specific integrated circuit (ASIC), or a fully-custom
ized circuit, for example.
0039. In one aspect of a streamlined co-processor imple
mentation as discussed above, to alternatively or further
facilitate low latency, a particular memory structure is
employed for the co-processor's dedicated memory to store
information in the form of a “condition/action pair.” In one
example of Such a memory structure, a condition/action pair
comprises particular data stored in a memory location (e.g., a
single memory register, or multiple adjacent memory regis
ters) arranged as a first number of bits representing the con
dition to be evaluated, and a second number of bits represent
ing an action to be taken if the condition is satisfied. Such a
memory structure facilitates a straightforward and relatively
simple digital logic implementation to compare monitored
input signals to the first number of bits representing the con
dition to be evaluated and, if there is a match (i.e., the condi
tion is satisfied), provide the second number of bits represent
ing the corresponding action to be taken as a gated output of
the co-processor. Accordingly, based on structured memory
contents constituting a “condition/action pair and relatively
simple digital logic implementing a comparator and a gate to
provide a gated output, and effective low-latency, low-foot
print, and low-cost co-processor may be realized.
0040. The configuration of a control system in which each
co-processor is tasked with evaluating only a single condition
(i.e., the smallest subset) of all possible conditions for the
dynamic environment may be viewed as a “degenerate' case
of minimum latency for the control system. More generally,
the latency for the control system is dictated by the physical
implementation of a given co-processor in the control system

Apr. 11, 2013

(e.g., full-featured microprocessor VS. pared-down simplified
digital logic implementation), and/or the functions (e.g., pro
grammed logic functions) being implemented by the co-pro
cessor. As discussed below, in Some embodiments the physi
cal implementation and/or the functions implemented by a
co-processor are particularly designed Such that an upper
bound on a latency of the co-processor is below a required
response time for the condition(s) being evaluated by the
co-processor. In some cases, meeting Such a requirement may
require that the co-processor only be configured to evaluate a
single condition, while in other cases the co-processor may be
configured to evaluate a Subset of some predetermined num
ber of conditions (e.g., sequentially rather than “simulta
neously.” but on a purposefully limited number of condi
tions). In general, by purposefully limiting the function of the
co-processor (e.g., size of the program executed by the co
processor and/or the information to be processed), an upper
bound on latency may be essentially guaranteed.
0041 Based on the foregoing premise of purposefully lim
iting the function(s) of a given co-processor, Some implemen
tations of a control system according to various embodiments
of the present invention may be predicated at least in part on
appropriately balancing the following design constraints in
the context of controlling a particular dynamic environment:
1) ensuring that the co-processor is configured to evaluate a
sufficiently comprehensive subset of conditions that may be
present in the dynamic environment pursuant to some criteria
(e.g., within a particular time frame, in a particular sequence,
following previous particular actions being taken, etc.); 2)
ensuring that the co-processor has sufficiently low (but not
necessarily minimum achievable) latency to take action in
response to satisfied conditions in an appropriate time frame
(i.e., ensuring that there is a predictable and Sufficiently low
upper bound on the co-processor's latency); and 3) ensuring
that realization of the co-processor entails reasonably low
hardware costs and/or space requirements.
0042. In view of the foregoing, some embodiments of the
present invention are directed to a control system that
includes an “action engine' that may comprise one or more
co-processors, wherein a given co-processor of the action
engine may be configured to evaluate a particular Subset of
multiple conditions that may arise in a dynamic environment.
In one implementation of an action engine including multiple
co-processors, each co-processor may function autono
mously and simultaneously evaluate at any given time one or
more particular conditions represented by some number N of
input signals being monitored at the same time by all co
processors of the action engine.
0043. In another implementation of an action engine
according to one embodiment, the action engine is configured
to evaluate up to some fixed maximum number of conditions
So as to establish an upper bound on latency and ensure
sufficiently low variation in latency. To this end, in one
example an action engine comprises an "event table' realized
by a memory structure that includes some number of multiple
sequentially-indexed memory locations (e.g., registers, or
contiguous groups of registers) each having a particular size.
In one aspect, each Such memory location is configured to
store information in the form of a “condition/action' pair as
discussed above, e.g., some first number of bits representing
a condition to be evaluated, and some second number of bits
representing some action to be taken if the condition is satis
fied. In another aspect, respective memory locations of the
event table store different condition/action pairs such that a

US 2013/0090745 A1

given memory location in the event table is “dedicated to
evaluating a particular condition that may be represented by
the N input signals.
0044. In the foregoing example, the action engine further
may include a "scanner communicatively coupled to the
event table and configured to receive the N input signals, to
sequentially evaluate the conditions represented by the con
dition/action pairs stored in the respective memory locations
of the event table. To this end, the scanner includes appropri
ate digital logic circuitry (e.g., logic gates to implement a
comparator and a gated output) to read the contents of a given
memory location and compare the condition portion of the
condition/action pair to the respective values of the N input
signals. In one example, the condition portion of the condi
tion/action pair includes N bits of the overall information
stored in the given memory location, such that there is a
one-to-one correspondence between the condition portion of
the condition/action pair and the N input signals. Regardless
of whether or not the particular condition is satisfied (i.e., the
respective values of the Ninput signals do or do not match the
condition portion of the condition/action pair), the scanner
proceeds to reading the contents of the next memory location
in the event table so as to compare the condition portion of the
condition/action pair stored in the next memory location to
the respective values of the N input signals.
0045. If a particular condition represented by the condi
tion portion of a condition/action pair stored in a given
memory location of the event table is satisfied (i.e., the
respective values of the N input signals match the condition
portion of the condition/action pair), the scanner provides as
an output the action portion of the condition/action pair (e.g.,
as a gated outputenabled by a comparator upon a match). This
output itself may constitute one or more control signals, or
represent an instruction that in turn generates one or more
control signals, for controlling equipment in the dynamic
environment. The scanner then proceeds to reading the con
tents of the next memory location in the event table so as to
compare the condition portion of the condition/action pair
stored in the next memory location to the respective values of
the N input signals and, if there is a match, the scanner
provides the action portion of the condition/action pair as a
gated output. Once the scanner reaches the last memory loca
tion of the event table and appropriately processes the condi
tion/action pair stored in this last memory location, the scan
ner returns to the first memory location in the event table and
repeats the cycle of sequentially processing the contents of
Successive memory locations of the event table.
0046. In some embodiments, an action engine including
an event table and Scanner as described above may be com
municatively coupled to a master (or “housekeeping) pro
cessor that provides the contents of the event table (e.g., the
condition/action pairs, and possibly other information) and
oversees the appropriate mapping of particular condition/
action pairs to particular memory locations of the event table
(e.g., based on a particular order or sequence in which the
master processor wants the action engine to process the con
dition/action pairs). In one aspect, the master processor may
occasionally or periodically "re-task the action engine by
loading one or more new condition/action pairs into its event
table for processing by the scanner of the action engine. To
this end, the scanner may provide an indication to the master
processor that the condition corresponding to a particular
condition/action pair being processed is satisfied, in response
to which indication the master processor may load one or

Apr. 11, 2013

more new condition/action pairs into the event table. Such an
indication of a satisfied condition may be constituted by the
generation of the output itself representing an action to be
taken (which output may be monitored by the master proces
sor), or in the form of a separate status signal or interrupt
generated by the action engine and monitored by the master
processor. Additionally (or alternatively), the scanner may
provide an indication to the master processor that a full scan
of the event table is complete (e.g., after processing of the
condition/action pair stored in the last memory location of the
event table), at which point the master processor may reload
the event table with one or more new condition/action pairs,
or a complete new set of condition/action pairs, for process
ing during a Subsequent scan of the event table by the Scanner.
0047. In embodiments of a control system according to the
present invention that include a master processor and an
action engine as described above, in one aspect the house
keeping and “re-tasking functions accomplished by the mas
ter processor facilitate a "divide and conquer approach to
controlling a dynamic environment, as discussed earlier. In
particular, in some implementations, given some total num
ber T of possible conditions for which corresponding actions
may be required in a dynamic environment, the master pro
cessor is configured (e.g., programmed) to select only a par
ticular subset of the total number T of possible conditions,
and task the action engine at a given time to evaluate only this
particular Subset of conditions. As noted above, the master
processor may be programmed to make the selection of a
particular subset of conditions for evaluation by the processor
based on various criteria. In one example, the master proces
sor selects a subset of conditions for evaluation by the action
engine based at least in part on a time period in which the
Subset of conditions is expected to occur in the dynamic
environment, and in consideration of the response time (e.g.,
longest or “worst-case' response time) of the master proces
sor itself in attending to its various duties (e.g., monitoring
and/or controlling functions for which the master processor
itself may be tasked in the overall context of the dynamic
environment).
0048 For example, in carrying out its own duties in the
context of a given dynamic environment, the master proces
sor itself has a limit on its ability to receive, process, and
respond to information within a certain time period. In par
ticular, a general purpose computer serving as the master
processor is Subject to various scheduling constraints (e.g.,
pursuant to scheduling and dispatching software) that gov
erns the manner in which multiple processes that need to be
attended to by the processor are assigned to execute. Given
the serial nature in which processes need to be scheduled,
there is necessarily Some lag time, or “response time of the
master processor, representing an amount of time between a
request to initiate a given process and providing some
response pursuant to execution of that process. The response
time of the master processor typically is based at least in part
on the number of such processes that need to be scheduled in
order for the master processor to attend to its required func
tions in the context of the dynamic environment, as well as the
complexity of the respective processes being scheduled. In
Some respects, this situation is similar to that of a conven
tional PLC, in which the scan time or cycle time of the PLC is
based on the number and complexity of rules encoded in the
PLCs program, which places fundamental limits on the abil
ity of the PLC to provide control signals within a particular
time frame in response to monitored conditions.

US 2013/0090745 A1

0049. The response time of the master processor may have
Some nominal expected or typical value, based at least in part
on the number of respective processes that need to be sched
uled and the complexity of those processes (which in turn is
dictated at least in part by the requirements of the dynamic
environment being monitored and controlled, and the com
plexity of control tasks at hand). Given the variability of
functions potentially performed by the master processor in a
given dynamic environment, however, there is typically a
longest potential response time, or a “worst-case' response
time, to which the master processor may be subject in pro
cessing information. If there are conditions of the dynamic
environment (for which actions may be required) that may
occur within a time period that is shorter than the worst-case
response time of the master processor, the master processor
itself effectively would be incapable of reliably responding to
these conditions. Accordingly, the longest potential response
time or “worst-case' response time of the master processor in
the context of a given dynamic environment may serve as one
example of a criterion upon which the master processor may
select a subset of conditions for evaluation by the action
engine. In this manner, the master processor essentially
charges the action engine with “paying attention” to monitor
ing certain conditions of the dynamic environment during a
time period in which the master processor effectively is inca
pable of doing so itself.
0050 Stated differently, based on at least the criterion of
time scale?time frame in which certain conditions may be
expected in the dynamic environment, the master processor
selects a Subset of conditions that could arise in the dynamic
environment during a time period corresponding to a worst
case response time of the master processor, and loads condi
tion/action pairs into the action engine for processing during
that time period. During that time period, the action engine
may complete many hundreds or even thousands of scanning
cycles before identifying that a particular condition repre
sented in the action engine's event table is satisfied. Once the
conditions are evaluated, appropriate action taken if as nec
essary, and the master processor is again able to correspond
with the action engine (i.e., within the worst-case response
time of the master processor), the master processor may load
one or more new condition/action pairs into the action
engine's event table, for evaluation during the next time
period during which the master processor may be preoccu
pied with other tasks (other scheduled processes). In one
aspect, the newly loaded condition/action pairs may be based
at least in part on the previously evaluated conditions and
actions taken, if any. In this manner, the master processor is
responsive to an evolution of conditions in the dynamic envi
ronment, and offloads significant processing burden to the
action engine by repeatedly re-tasking the action engine to
evaluate, at any given time, only a Subset of conditions that are
expected to occur within a particular time period (e.g., corre
sponding to the response time of the master processor).
0051. In the foregoing example of an action engine, it
should be appreciated that in one aspect, the combination of a
dedicated memory location of the event table storing a par
ticular condition/action pair, when coupled to the digital logic
circuitry of the scanner to evaluate the condition (and, if
satisfied, provide an output representing the action to be
taken), is functionally equivalent to a co-processor as dis
cussed above dedicated to evaluating a single condition.
However, rather than only evaluating a single condition, the
configuration of the scanner allows the digital logic circuitry

Apr. 11, 2013

performing the evaluation to be “shared (e.g., in a scanned or
time division multiplexed manner) amongst the respective
memory locations of the event table, such that the combina
tion of the scanner and the event table of the action engine
essentially constitutes a co-processor configured to evaluate
multiple conditions and take action as appropriate. Such a
component arrangement facilitates efficient and conservative
use of hardware resources.

0052. In various aspects, the size (e.g., number of bits) of
the respective memory locations in an event table of the action
engine, the total number of dedicated memory locations in the
event table, and the configuration of the scanner itself (e.g.,
the digital logic implemented by the Scanner) are specified so
as to achieve a desired latency for control of a particular
dynamic environment, wherein the latency has a Sufficiently
low upper bound and/or sufficiently predictable (and in some
cases insubstantial) variation. In one particular implementa
tion discussed in greater detail below, an appropriately con
figured action engine based on an event table and a scanner
achieves a latency for the action engine on the order of 10
nanoseconds per condition/action pair (e.g., based on a 100
MHz clock driving the logic functionality of the scanner);
accordingly, for an event table having 128 memory locations
respectively storing 128 condition/action pairs, for example,
an action engine latency on the order of approximately 1.28
microseconds (128x10 nanoseconds) may be realized. Such a
latency metric is several orders of magnitude lower than the
typical latency of tens to hundreds of milliseconds observed
in conventional PLCs.

0053. It should be appreciated that all combinations of the
foregoing concepts and additional concepts discussed in
greater detail below (provided such concepts are not mutually
inconsistent) are contemplated as being part of the inventive
Subject matter disclosed herein. In particular, all combina
tions of claimed Subject matter appearing at the end of this
disclosure are contemplated as being part of the inventive
subject matter disclosed herein.

BRIEF DESCRIPTION OF THE DRAWINGS

0054 The skilled artisan will understand that the drawings
primarily are for illustrative purposes and are not intended to
limit the scope of the inventive subject matter described
herein. The drawings are not necessarily to scale; in some
instances, various aspects of the inventive Subject matter dis
closed herein may be shown exaggerated or enlarged in the
drawings to facilitate an understanding of different features.
In the drawings, like reference characters generally refer to
like features (e.g., functionally similar and/or structurally
similar elements).
0055 FIG. 1 is a general illustration of the typical role of
a conventional programmable logic controller (PLC) in con
nection with an automated industrial process.
0056 FIG. 2 is a generalized block diagram of the typical
electrical components/circuitry (e.g., "hardware') constitut
ing the conventional PLC of FIG. 1.
0057 FIG. 3 is a block diagram that shows additional
details of the internal architecture of the conventional PLC
shown in FIG.2, particularly in connection with the processor
unit, memory, and input/output interfaces.
0.058 FIG. 4 is a block diagram illustrating a control sys
tem for monitoring and controlling a dynamic environment,
wherein the control system includes a master processor com

US 2013/0090745 A1

municatively coupled to an action engine comprising one or
more co-processors, according to one embodiment of the
present invention.
0059 FIG. 5 is a block diagram of an action engine that
includes multiple co-processors that operate in parallel to
monitor, synchronize, and/or control at least one aspect of a
dynamic environment, according to one embodiment of the
present invention.
0060 FIG. 6 is a block diagram of an action engine that
includes an event table and a scanner that operate to monitor,
synchronize, and/or control at least one aspect of a dynamic
environment, according to one embodiment of the present
invention.
0061 FIG. 7 is a block diagram of a scanner suitable for
use in the action engine of FIG. 6, according to one embodi
ment of the present invention.
0062 FIG. 8 is a diagram that illustrates the use of chained
registers in the event table of FIG. 6, according to one
embodiment of the present invention.
0063 FIG. 9 is a block diagram of an action engine that
includes multiple co-processors, each of which includes an
event table and a scanner, that are configured to respond to
operate in parallel to control at least one aspect of a dynamic
environment, according to one embodiment of the present
invention.
0064 FIG. 10 is a block diagram of a dynamic environ
ment in which machine vision techniques and equipment are
employed, as well as a control system according to one
embodiment of the present invention, for monitoring and
controlling the dynamic environment.

DETAILED DESCRIPTION

0065. Following below are more detailed descriptions of
various concepts related to, and embodiments of inventive
systems, methods and apparatus for monitoring and/or con
trolling dynamic environments. It should be appreciated that
various concepts introduced above and discussed in greater
detail below may be implemented in any of numerous ways,
as the disclosed concepts are not limited to any particular
manner of implementation. Examples of specific implemen
tations and applications are provided primarily for illustrative
purposes.
0066 FIG. 4 is a block diagram illustrating a control sys
tem 100a for monitoring and controlling a dynamic environ
ment, according to one embodiment of the present invention.
With reference again to FIG. 1, in which a conventional
programmable logic controller (PLC) 50 is shown as moni
toring and controlling an automated process 10, in exemplary
implementations discussed in greater detail below the control
system of FIG. 4 is configured as a replacement for the PLC
50 shown in FIG.1. However, it should be appreciated that the
control system of FIG. 4 is not limited in this respect, and
various control systems according to embodiments of the
present invention, as well as constituent elements thereof,
may have wide applicability for monitoring and/or control
ling a variety of dynamic environments, particularly those
requiring low latency (i.e., significantly fast response time)
and/or low variability latency. One exemplary application of
control systems according to the present invention is given by
a dynamic environment in which machine vision techniques
and/or equipment are employed, as discussed in greater detail
below in connection with FIG. 10.
0067. As illustrated in FIG.4, the control system 100a of
this embodiment includes a master processor 190 (also

Apr. 11, 2013

referred to as a “housekeeping CPU”) that is communica
tively coupled to an action engine 110a. The action engine
110a may comprise one or more responsive co-processors
(respectively indicated in FIG. 4 as co-processors 120a-1 and
120a-2; collectively indicated as co-processors 120a). Each
co-processor 120a includes an input interface 158a and an
output interface 160a that are coupled to co-processor logic
(indicated respectively as controllers 130a-1 and 130a-2; col
lectively controllers 130a). Exemplary input interfaces 158a
output interfaces 160a may include, but are not limited to
RS232 interfaces, Ethernet interfaces, universal serial bus
(USB), and/or any other suitable parallel or serial communi
cations interfaces. Each co-processor controller 130a is com
municatively coupled to a dedicated memory (indicated
respectively as memory 140a-1 and 140a-2; collectively
memory 140a) that stores one or more conditions (indicated
respectively as conditions 142a-1 and 142a-2; collectively
conditions 142a) and at least one predetermined action (indi
cated respectively as action 144a-1 and 144a-2; collectively
actions 144a) corresponding to the condition 142a stored in
the same memory 140a. Although the action engine 110a
shown in FIG. 4 includes only two co-processors 120a, it
should be appreciated that action engines according to other
embodiments are not limited in this respect, and may include
only one co-processor or more than two co-processors.
0068. In one aspect of the control system 100a shown in
FIG. 4, the control system 100a monitors, controls, and/or
synchronizes a dynamic environment by using the action
engine 110a to evaluate conditions that occur on relatively
fast time scales and by using the housekeeping CPU 190 to
evaluate conditions that occur on relatively slower time
scales. More generally, as discussed above, in some embodi
ments the housekeeping CPU 190 essentially tasks the action
engine with "paying attention' to monitoring certain condi
tions of the dynamic environment during a time period in
which the housekeeping CPU 190 effectively is incapable of
doing so itself. In one aspect, the time period during which the
action engine 110a is particularly tasked with monitoring
certain conditions (and taking action in response to same if
necessary) is based at least in part on a “response time' (also
referred to as “latency”) ofthehousekeeping CPU190 (which
response time results from limits placed on the housekeeping
CPU's ability to process information given the number of
different tasks or processes that the housekeeping CPU itself
needs to attend to). In some examples discussed below, the
time period during which the housekeeping CPU delegates
certain monitoring and control tasks to the action engine is
based on a longest or worst-case response time of the house
keeping CPU that may be expected in the context of the
particular dynamic environment being controlled.
0069. In view of the foregoing, in one exemplary imple
mentation of the control system shown in FIG. 4, the action
engine 110a Screens for fast-occurring events by evaluating
input signals 66 representing the dynamic environment
against conditions 142a that benefit from reflexive responses,
i.e., responses executed faster than the latency of the house
keeping CPU 190. Exemplary input signals 66 include, but
are not limited to: discrete inputs, such as digital values (bits),
analog values, or digital representations of analog inputs;
real-time versions of discrete inputs; latched versions of dis
crete inputs; derived versions of discrete inputs, such as
counter values that are derived from a pair of counters clocked
in quadrature; and decoded contents of messages (e.g., pack
ets) received from one or more communication ports. The

US 2013/0090745 A1

input signals 66 may represent a single parameter (e.g., tem
perature, pressure, position) constituting a condition of the
dynamic environment or a collection of such parameters con
stituting a condition of the dynamic environment.
0070. To achieve this reflexive behavior, the controller
130a of each co-processor 120a in the action engine 110a
compares the input signals 110a to a particular condition
142a (or set of conditions 142a). Unlike a general-purpose
processor, each co-processor 120a evaluates only the particu
lar condition 142a (or set of conditions 142a) stored in its
memory, which enables the co-processor 120a to operate with
low (and predictable) latency. If the controller 130a deter
mines that the input signals 66 match the particular condition
142a, the controller 130a executes the corresponding action
144a. For example, execution of a corresponding action 144a
may include transmitting one or more output signals 68 to
other devices and/or systems. Alternatively, the action 144a
may include forwarding an interrupt to the housekeeping
CPU 190 to implement the response.
0071. At the same time, the housekeeping CPU190 moni
tors the evolution of the dynamic environment through analy
sis of the input signals 66 and output signals 68. In certain
circumstances (e.g., for slow evolutions of the dynamic envi
ronment), the housekeeping CPU190 may respond directly to
particular input signals 66 by transmitting its own output
signals. In other circumstances, the housekeeping CPU 190
responds indirectly to evolutions of the dynamic environment
by re-tasking the co-processors 120a, e.g., by updating and/or
replacing some or all of the conditions 142a and/or (prede
termined) actions 144a stored in the memories 140a. If the
dynamic environment is an assembly line, for instance, the
housekeeping CPU 190 may re-task co-processors 120a
originally dedicated to tracking a first part to instead tracking
a second part once the first part has moved off the assembly
line.

0072 Dividing responsibility between the housekeeping
CPU 190 and the action engine 110a allows the housekeeping
CPU 190 to place the processing burden for the subset of
events (e.g., fast-occurring events likely to occur given a
particular evolution of the dynamic environment) represented
by conditions 142a on the action engine 110a. At the same
time, the housekeeping CPU 190 may continue to process
conditions associated with slower evolutions of the dynamic
environment. This divide-and-conquer approach may reduce
the overall latency and/or jitter (latency variation) of the
system's response to events represented by the input signals
66. In some cases, shifting the processing burden for fast
occurring events may also make the latency of the entire
control system 100a substantially a function of co-processor
latency.
0073
0074 FIG.5 shows another illustrative action engine 110b
for monitoring, synchronizing, and/or controlling at least one
aspect of a dynamic environment. Examples of such environ
ments with which the system shown in FIG. 5, and particu
larly the action engine 110b, may be employed include, but
are not limited to, an assembly line, inspection line, autono
mous or semi-autonomous vehicle (or vehicle convoy), power
management system (e.g., a Smart grid), warehouse, indus
trial space, parking facility, airport, shipping port, Surveil
lance system, amusement ride, and/or communications net
work. For instance, the action engine 110b may be used for
machine control and/or image triggering.

Action Engines with Comparator Logic

Apr. 11, 2013

0075. The action engine 110b includes multiple co-pro
cessors (respectively indicated in FIG. 5 as co-processors
120b-1 through 120b-n; collectively indicated as co-proces
sors 120b). Each co-processor 120b is a special-purpose com
puter processor that executes a limited number of operations
at high speed, i.e., speeds higher than can be achieved execut
ing the same operations with a general-purpose computer or
CPU, e.g., housekeeping CPU190. Illustrative co-processors
120b may be implemented in FPGAs, ASICs, and/or any
other suitable implementation known in the art.
0076 Each co-processor 120b in the action engine 110b
includes a respective input port (respectively indicated in
FIG. 5 as input ports 158b-1 through 158b-n; collectively
indicated as input ports 158) coupled to an input bus 102 that
is operably coupled to receive data from sensors, actuators,
receive queues (e.g., Ethernet receive queues), and other
Sources of information about the dynamic environment.
Although FIG.5 depicts in entries, those of skill in the art will
readily appreciate that exemplary action engines may have
any number of co-processors 120b, e.g., 1, 2, 4, 8, 16, 32, 64.
128, 256, 512, or 1024 co-processors 120b.
0077. Each co-processor 120b also includes a respective
register (respectively indicated in FIG. 5 as registers 140b-1
through 140b-n; collectively indicated as registers 140b) that
stores representations of one or more states or conditions
(respectively conditions 142b-1 through 142b-n; collectively
conditions 142b) and representations of one or more actions
(respectively actions 144b-1 through 144b-n; collectively
conditions 144b) to be executed by the co-processor 120b as
described below. Each condition 142b may be independent of
(and possibly overlap with) the other conditions 142b in the
action engines registers 140b. A condition 142b may also be
contingent upon satisfaction of one or more other conditions
142b in the action engine 110b for example, they may be
logically “ANDed” together into supersets as described in
greater detail below.
0078. The registers 140b can be implemented in any suit
able type of memory, including but not limited to computer
readable storage media Such as a volatile or nonvolatile com
puter memory, flash memories, compact discs, optical discs,
magnetic tapes, one or more floppy discs, circuit configura
tions in FPGAs or other semiconductor devices, or other
non-transitory media or tangible computer storage media.
Each register 140b is dedicated to its respective co-processor
120b; that is, the co-processors 120b do not share memories.
Dedicating a register 140b to each co-processor helps reduce
or eliminate contention issues.
0079. Each co-processor 120b also includes a comparator
(respectively comparator 130b-1 through 130b-n; collec
tively comparators 130b) or other logic element(s) that com
pare input signals 66 received via the input bus 102 and input
port 158 to the conditions 142b. Because all the co-processors
120b have their own comparators 130b and receive the inputs
101 simultaneously via the input bus 101, the co-processors
120b can compare the inputs 101 to their respective condi
tions 142b simultaneously. As a result, the number of co
processors 120b in the action engine 110b does not affect the
speed with which the comparisons are performed.
0080. If the input signals 66 match the conditions 142b,
the comparator 130b emits an output (respectively outputs
132-1 through 132-n; collectively, outputs 132) indicative of
the match. It is possible for one, more than one, or none of the
co-processors 120b to include conditions 142b that match the
input signals 66. Each co-processor 120b may couple its

US 2013/0090745 A1

output 132 to an output bus 103 via an output port (respec
tively output ports 160b-1 through 160b-n; collectively out
put ports 160b).
0081. Each co-processor 120b also executes the action
144b stored in its respective register 140b upon detection of
inputs 101 that match its respective conditions 142b. The
action 144b are coupled to a logic element (respectively, logic
elements 134-1 through 134-n; collectively, logic elements
134) controlled by the output 132 of the comparator 130b.
When the logic element 134 receives an output 132 indicative
of a match between the inputs 101 and the conditions 142b,
the logic element 134 executes the action represented by the
action 144b. In some cases, the logic element 134 may trans
mit additional information or instructions, shown here as
output signals 68, to other devices, such as sensors, actuators,
and other devices associated with the dynamic environment,
via the output port 160b and output bus 104. Illustrative
output signals 68 include, but are not limited to: discrete
outputs, such as digital values, analog values, and/or digital
representations of analog values; latched versions of discrete
outputs; and/or output data and machine operation commands
encoded in message packages sent via one or more commu
nication ports (e.g., output port 160b). In other cases, the
action 144b may be a “no-op' instructions in which the co
processor 120b does not perform any action.
0082. The action engine 110b is also coupled to a house
keeping CPU 190 via the input bus 102, output bus 104, and
additional connections to the registers 140b. (In other
embodiments, one or more registers 140h in the action engine
110b may be operably coupled to the housekeeping CPU190
via input ports 158 and input bus 102.) The housekeeping
CPU 190 performs general housekeeping task and loads and
maintains the conditions 142b and/or action 144b in the co
processor registers 140b. For example, the housekeeping
CPU 190 may replace or update condition/action pairs in one
or more co-processors 120b in response to the action engine's
identification of a particular state of the dynamic environ
ment, indications that op-codes are out of date, instructions
from the action engine, instructions from users and/or other
devices, etc. Since the action engine 110b can respond
“directly' to inputs from the dynamic environment without
necessarily requiring resources from the housekeeping CPU
190, the housekeeping CPU 190 therefore remains substan
tially free of any processing burden in connection with
responding to Successive input states (i.e., the housekeeping
CPU 190 remains substantially “unloaded’); accordingly, the
housekeeping CPU190 is available when needed to perform
tests and actions that may not be possible or practical for the
action engine 110b to perform itself. In addition, the house
keeping CPU 190 is not in a critical path for responding to
evolutions of the dynamic environment, so it does not delay
the action engine's response.
0083) Action Engines with Event Tables and Scanners
0084 FIG. 6 shows a system configuration of various
components, including an illustrative action engine 110c for
monitoring, synchronizing, and/or controlling at least one
aspect of a dynamic environment. Examples of such environ
ments with which the system shown in FIG. 6, and particu
larly the action engine 110c, may be employed include, but
are not limited to, an assembly line, inspection line, autono
mous or semi-autonomous vehicle (or vehicle convoy), power
management system (e.g., a Smart grid), warehouse, indus
trial space, parking facility, airport, shipping port, Surveil
lance system, amusement ride, and/or communications net

Apr. 11, 2013

work. For instance, the action engine 110c may be used for
machine control and/or image triggering.
I0085. The action engine 110c includes an event table 112,
which in turn includes event table registers (collectively,
event table registers 140c: respectively registers 140c-1
through 140C-5), each of which stores a representation of one
or more conditions (collectively indicated in FIG. 6 as con
ditions 142c; respectively indicated in FIG. 8 as conditions
142c-1 through 142c-5). Each event table register 140c also
stores a representation of one or more actions corresponding
to the condition(s) stored in the register 140c (collectively
indicated in FIG. 6 as instructions 144c: respectively indi
cated in FIG. 8 as instructions 144C-1 through 144C-5). The
event table 112 and event table registers 140c can be imple
mented in any Suitable type of memory, including but not
limited to computer readable storage media Such as a volatile
or nonvolatile computer memory, flash memories, compact
discs, optical discs, magnetic tapes, one or more floppy discs,
circuit configurations in field programmable gate arrays or
other semiconductor devices, or other non-transitory media
or tangible computer storage media.
I0086 Each event table register 140c stores an independent
condition 142c. Taken together, the event table registers 140c
can store conditions 142c representing every possible state of
the dynamic environment that can be measured by one or
sensors 40 coupled to the input bus 110. In many cases,
however, the event table registers 140c may hold a reprogram
mable Subset of conditions 142c, e.g., only those conditions
142c that benefit from actions 144C executed more quickly
than the latency of the housekeeping CPU190. In some cases,
the conditions 142c may overlap; for instance, condition
142c-1 may include temperature and pressure thresholds, and
condition 142c-2 may include temperature and position
thresholds. Although FIG. 6 shows only five event table reg
isters 140c for purposes of illustration, it should be appreci
ated that, in other embodiments, an event table 112 may have
more or fewer registers 140c, e.g., tens, hundreds, or even
thousands of entries. In general, virtually any number of
conditions 142c germane to a particular environment, pursu
ant to which some response/reaction may be required, may be
represented in an event table 112 as an event table register
140C.

I0087. In addition to representations of conditions 142c,
each event table register 140c also includes representations of
one or more actions 144c to be carried out if the state input
matches the condition(s) 144c. Accordingly, ifa scanner 130c
of the action engine 110c determines that the input signals 66
match a given condition 142c stored in an event table register
140c, the Scanner 130c accesses the corresponding action(s)
144c stored in the event table register 140c, and executes the
action(s) 144c So as to control one or more aspects of the
dynamic environment. To this end, the action engine 110c
also includes an input port 158c, an output port 160c, and/or
one or more other communication interfaces (e.g., input/out
put buses, Ethernet ports) to communicate instructions
accessed in the event table to one or more external devices, as
well as receive the state input, as well as other information
relevant to the dynamic environment, from one or more
Sources of Such information.

I0088 As shown in FIG. 6, the action engine 110c further
comprises a scanner 130c. The input port 158c that provides
a connection from the event table 112 and scanner 130c to an
input bus 102. FIG. 6 also illustrates that the input bus 102 of
the action engine 110C is coupled to a variety of external

US 2013/0090745 A1

devices, including (but not limited to) a CPU 190, as well as
a semaphore register 150, a counter 42, one or more sensors
40, and a communications interface in the form of a receive
queue 44 (e.g., an Ethernet receive queue). The scanner 130c.
which is also connected to the input bus 102, includes digital
logic (not shown in FIG. 6) that compares the set of conditions
142c in each event table register 140c to input signals 66
coupled to the input bus 102 from the housekeeping CPU190,
the counter 42, the sensor(s) 40, the receive queue 44, and/or
any other Suitable dataSource. In some cases, the input signals
66 may include data derived from the dynamic environment
by one or more embedded application systems, such as a
processor that evaluates image data from a camera, position
information from a robotic controller, and/or flow informa
tion from a mixer or flow control system in a continuous
process chemical reactor. In some implementations, pre-con
ditioning or pre-processing raw data may reduce the number
of bits required to represent the data, which in turn makes it
possible to reduce the size of the registers 140c.
0089 FIG. 7 is a block diagram that shows one possible
embodiment of the scanner 130c in greater detail. The scan
ner 130c includes comparator logic 131 that is coupled to
action logic 132, sequencing logic 133, and one or more flag
registers 135. Input signals 66, including but not limited to
counter 42 value(s), sensor 40 value(s), State change inputs,
and flag states, are evaluated by the comparator logic 131 with
respect to the data representing conditions 142c from the
event table 112 to determine if the conditions 142c are met.
This “condition met” status is passed to the action logic 132.
0090 Referring again to FIG. 7, the scanner 130c also
includes action logic 132 that receives the “condition met”
status from the comparator logic 131 along with data repre
senting instructions 144c from the event table 112. The action
logic 132 is also coupled to one or more flag registers 135,
semaphore registers 150 (FIG. 6), output registers 136, com
munication logic (not shown), counters, and data input cir
cuitry. Depending on the state of the “condition met status
and the data representing instructions 144c, the action logic
132 may perform operations affecting the state of the flag
registers 135, semaphore registers 150, output registers 136
coupled to an output port 160b, communication logic 34.
counters, and data input circuitry, as delineated in more detail
below. In addition, the action logic 132 is coupled to event
table write arbitration logic 134, which facilitates the chang
ing of conditions 142c and/or instructions 144c in the event
table 112, when, for example, an action has been executed and
further evaluations of the condition/action pair are to be
inhibited.

0091. The sequencing logic 133 in the scanner 130c (FIG.
7) synchronizes the activities of the comparator logic 131, the
action logic 132, and the event table 112 (FIG. 6). It provides
the read address to the event table 112, which determines
which register 140c in the event table 112 is to be evaluated.
The sequencing logic 133 also provides the write address to
the event table write arbitration logic 134 when the action
engine 110c determines that conditions 142c and/or instruc
tions 144c in the event table 112 are to be modified. The event
table write arbitration logic 134 receives inputs from the
housekeeping CPU 190 as well as from other logic within the
scanner 130c to govern write activity to the event table 112.
When contention arises between write operations from the
CPU 190 and write operations from other logic within the
scanner 130c, priority may be given to the logic within the
scanner 130c So that the scanner operation can continue unin

Apr. 11, 2013

terrupted. In this case of contention, a wait signal is asserted
to the housekeeping CPU 190 so that the CPU write operation
is suspended until the event table write arbitration logic 134
determines that the event table 112 is available to accept the
write data from the CPU 190. In one embodiment of the
scanner 130C, the sequencing logic 133 causes a new condi
tion/action pair to be evaluated on every cycle of the master
clock (not shown).
0092. In various aspects, the scanner 130c and event table
112 may be implemented in a single co-processor, e.g., in an
FPGA using a working hardware description language
(HDL) code. The scanner 130c may also be implemented as a
unitary digital logic structure coupled to the one or more
storage media in which the event table is stored. Alternatively,
the scanner 130c may be implemented as multiple distributed
logic components communicatively coupled to the event
table. For example, in one embodiment, the scanner 130c may
be implemented as multiple digital logic components respec
tively dedicated to one event table register 140c, such that
there is a one-to-one correspondence between an event table
entry and dedicated digital logic to compare input signals to
one or more conditions in a given event table register and
access one or more corresponding instructions as appropriate.
In yet other embodiments, digital logic components consti
tuting a portion of the Scanner may be dedicated or assigned
to particular groups of multiple event table registers. Accord
ingly, it should be appreciated that the scanner of the action
engine, and the digital logic circuits constituting the scanner,
may be implemented in any of numerous ways according to
various embodiments of the present invention.
0093. In one exemplary implementation, the scanner of
the action engine compares the state input Substantially
simultaneously (e.g., in parallel) to multiple sets of conditions
in the event table so that appropriate instructions for respond
ing/reacting to the state input may be accessed (and in turn
communicated to one or more external devices) with appre
ciably high speeds. As a result, the action engine exhibits a
significantly low latency with respect to processing informa
tion relating to respective states of the dynamic environment
and taking actions in response to same.
0094 For instance, the scanner 130c may be implemented
as a state machine that processes a single register 140c every
two clock cycles. During the first clock cycle, the Scanner
130c reads the condition 142c. The scanner 130c performs the
corresponding action 144c during the second clock cycle if
the condition 142c is met. The second clock cycle may
involve a write back to the action 144c in the event table 112
to indicate that the appropriate operation has been completed
for the next scan. Implementations that involve especially
complex conditions and/or a large number of input states may
use more than two clock cycles to process a single register. In
scanners 130c that use multi-cycle executions, a dual ported
memory having concurrent read and write cycles can be
implemented, where the write cycle writes back the register
140c processed during a previous read cycle. State machine
pipeline registers (as described below) in conjunction with
the concurrent read and write cycles of the dual port memory
will allow a new register to be processed every cycle, signifi
cantly reducing latency.
0.095 Referring again to FIG. 6, it should be appreciated
that a set of one or more input signals 66, provided on the
input bus 102 of the action engine 110c, may be obtained from
a variety of sources coupled to the input bus 102 (e.g., the
housekeeping CPU 190, the counter(s) 42, the sensor(s) 40,

US 2013/0090745 A1

etc.) and may be provided by a single source at a given time or
multiple sources at a given time. Such a set of one or more
input signals 66 may, at least in part, represent the dynamic
environment at a given point in time, and these input signals
66 may be compared (e.g., by the scanner 130c) to each of the
sets of conditions 142c stored in respective event table regis
ters 140C.
0096. The input signals 66 are evaluated constantly to
detect a change of State (rising or falling edge). At the begin
ning of each scan of the event table 112, any input state
changes discovered during the previous scan are presented as
latched inputs (not shown) to the Scanner logic. This means
that any signals that pass through the input filters will be
detected, no matter how short their duration. Hence any
change of state for any input signal can be presented to the
scanner logic, even if their duration of the state change is
shorter than the duration of a scan.
0097. In one exemplary implementation of the action
engine 110c shown in FIG. 6, if the set of input signals 66
provided on the input bus 102 matches the condition(s) 142c
for a particular event table register 140c, the scanner 130c
executes the corresponding action 144c from that event table
register 140c. In some cases, these actions 144c may include
acquiring or releasing a semaphore, or setting or clearing a
flag coupled to the scanner 130C, which uses the semaphore or
flag to evaluate conditions 142c as described in greater detail
below. The scanner 130c in turn transmits output signals 68
corresponding to a matched set of conditions to the dynamic
environment, the housekeeping CPU 190, and a transmit
queue 34 (e.g., an Ethernet transmit queue) via an output bus
104.

0098. Alternatively, or in addition, the scanner 130c may
be operably coupled to various peripherals. For example, the
scanner 130c may reset or latch counters, latch input registers,
set or clear output registers, or load entries into the transmit
queue 34. In the case of multiple scanners, various ways of
handling contention may be employed. For instance, reset/
latch/set/clear input contention can be handled by OR gates.
The transmit queue 34 may be dedicated to the scanner 130c
and have its own circuit process for managing data. The
scanner 130c may alternatively share the transmit queue 34
(possibly with other scanners 130c), and the circuit process
may manage ownership of the queue 34.
0099. In some cases, the actions 144c are executed to one
or more devices external to the action engine 110C (e.g., via
one or more communication interfaces of the action engine)
as a data packet (e.g., as employed in various packet-mode
computer networks, such as TCP/IP packets). In implemen
tations in which data packets are employed to transmit
instructions relating to actions 144c, in Some embodiments
the contents of such packets may include not only the instruc
tions themselves, but additional data (e.g., metadata) that
relates in some manner to the instructions, the set of condi
tions corresponding to the instructions, and/or one or more
other aspects of the dynamic environment. The additional
data may include, but is not limited to, address information
(e.g., an Ethernet media access control (MAC) address
header) and/or payload buffers, which may be filled in by the
housekeeping CPU 190 in a location referenced by an index
stored in the event table register 140c.
0100. In some implementations, the action engine 110c
selects or generates Such data for inclusion in a packet pay
load (e.g., based on monitoring various information sources
coupled to the input bus 102, and/or based on various infor

Apr. 11, 2013

mation that may be stored in memory in addition to the event
table 112). For example, when a given condition 142c is
satisfied, the scanner 130c may select a corresponding pay
load buffer based on an index stored in the corresponding
register 140c, then copy corresponding payload buffer to the
transmit queue 34. In other cases, the data may include the
number of a part being tracked through an assembly or
inspection line. Alternatively, the data may include informa
tion about one or more data sources (e.g., the location and/or
orientation of a camera serving as a sensor 40 and providing
image information for evaluation) and/or the data may be
associated with and/or represent some aspect of the state
input itself (that is compared to sets of conditions stored in the
event table).
0101 Master Processor (“Housekeeping CPU”) Pro
gramming and Operation
0102. In embodiments of a system configuration employ
ing the action engine 110C and various other components,
such as shown in FIG. 6, the housekeeping CPU190 loads and
maintains the conditions 142c and instructions 144c in the
event table 112. In some cases, the housekeeping CPU 190
may replace some or all of the conditions 142c and the
instructions 144c in the event table 112 in response to an
evolution of the dynamic environment (i.e., changing condi
tions as a function of time). Since the action engine 110c can
respond "directly (e.g., autonomously, without intervention
of the CPU 190) to input signals representing conditions of
the dynamic environment without necessarily requiring
resources from the housekeeping CPU 190 (e.g., during time
periods in which the action engine is commissioned to evalu
ate particular conditions), the housekeeping CPU 190 there
fore remains substantially free of any processing burden in
connection with evaluating these particular conditions;
accordingly, the housekeeping CPU 190 is available to attend
to other processes (e.g., perform tests and actions that may not
be possible or practical for the action engine 110c to perform
itself).
0103 With respect to commissioning the action engine
110c to evaluate particular conditions during a given time
period (or more generally, tasking one or more co-processors
with evaluating one or more conditions), in one embodiment
the housekeeping CPU 190 is configured to allocate tasks to
co-processors by segregating application-specific machine
coordination algorithms into distinct (e.g., orthogonal) pro
cedural steps distinguished by their being conditional on the
passage of time (e.g., either a known period of time, or an
unknown period of time that may occur given its being con
ditional on a collection of future external inputs or a particular
sequence of monitored conditions). To this end, and with
reference again to FIG. 6, the housekeeping CPU or master
processor 190 includes one or more communication inter
faces 192 and/or one or more input/output (I/O) ports for
receiving input signals 66 representing conditions of the
dynamic environment (as a function of time), as well as one or
more processing units 194 and memory 196 to store proces
sor-executable instructions, and various program data as nec
essary, for the processing unit(s) 194 to implement orthogo
nal procedural steps for controlling an action engine (or more
generally one or more co-processors according to various
embodiments).
0104 Procedural steps as disclosed hereincan be executed
independently of each other (e.g., by the processing unit(s)
194 of the master processor 190) completely in parallel and in
any order as their conditions are met (e.g., particular condi

US 2013/0090745 A1

tions are evaluated by either the master processor 190 or the
action engine 110c to initiate a given procedural step). Each
procedural step may include one or more of the following: 1)
starting one or more processes, or instances of one or more
processes; 2) stopping one or more processes, or instances of
one or more processes; 3) performing one or more math
ematical transformations; 4) presenting one or more outputs;
5) transmitting one or more messages, e.g., between the
housekeeping processor 190 and one or more action engines
110c, between action engines 110c, to devices in the dynamic
environment, and any other specified destinations; 6) acquir
ing or releasing binary Semaphores to allow multiple pro
cesses to guarantee mutual exclusion from desired sections of
program code; 7) latching the state of peripherals, such as the
inputs and counters; and 8) setting or clearing "flag variables
for inter-process synchronization and communication. (Flag
variables may be Boolean variables that are implemented by
register peripherals that the event-table scanners have access
to as opposed to variables Stored in the master processor's
memory.)
0105. In one embodiment of the present invention, com
puter-implementable instructions (e.g., written in the
SCORETM programming language) encoded on non-volatile,
non-transitory computer-readable media accessible by the
master processor 190 describe machine coordination tasks
specific to each real world application (e.g., generation of
output signals from one or more co-processors/an action
engine to ultimately control various equipment in the
dynamic environment). These instructions cause the master
processor 190 to implement one or more processes, or state
machines, possibly using one or more action engines 110c
and/or one or more co-processors. Each process may also be
implemented multiple times by the same system, either in
parallel, in sequence, or both. Concurrently executed copies
of a given process are known as “instances of the process,
with each instance executed by a different slot 140 or set of
slots in the action engine 110c or different co-processor.
0106 Each process can be considered as a state machine,
with each state in the state machine corresponding to a par
ticular condition of the dynamic environment. The processes
(state machines) include one-shot processes, which are
executed once, and continuous processes, which are per
formed (e.g., repetitively) without interruption. Both one
shot and continuous processes may be halted or terminated
before finishing, e.g., in response to a command from the
master processor 190 or other source or upon reaching a
predetermined point in the sequence of computer-implement
able instructions.

0107 Each state machine includes one or more states,
each of which may be implemented as a “wait' statement,
executed by an action engine/co-processor, during which the
action engine/co-processor monitors the dynamic environ
ment for the occurrence of the particular condition. In one
significant aspect, the computer-implementable instructions
include a particular definition of a “wait' Statement, having as
arguments one or more conditions of the dynamic environ
ment that, when satisfied, trigger execution of one or more
actions and a notification of the master processor that the
condition has been met. The “wait' statement essentially
specifies that one or more actions will be executed when one
or more real world conditions are met. The housekeeping
processor 190 may off-load wait statement conditions and
associated actions that are compatible with the action
engine's operations to the action engine. Pursuant to the

Apr. 11, 2013

programming language once compiled to be executed by the
processing unit(s) 194 and the master processor 190, blocks
of instructions between wait statements are executed by the
action engine/co-processor and/or the master processor 190
until the next wait statement. For example, an action engine
may execute one or more actions directly following a wait
statement provided that those actions are compatible with the
action opcodes of the co-processor.
0108. In at least one implementation, a wait statement
causes the progress of a process to pause until the condition
clause is satisfied. This enables the master processor 190 to
schedule processes by querying the current wait statement
condition of each process and continuing a process when its
condition is satisfied. Wait statements can have the format
“wait for <Boolean-expression>, where <Boolean-expres
sion represents a condition of the dynamic environment.
Subroutine calls may be made as desired to evaluate the
condition of the statement. For instance, the condition may
involve evaluation of a Boolean counter condition. Counter
variables can accessed by name, optionally preceding the
counter name with the keyword counter. Counter compari
Sons can be made from an initial value. Such as a belt position
when apart detect signal is generated. Automatically declared
counter time can also be used to compare durations precisely
(e.g., with microsecond precision). Some examples include
(hash marks “if” indicate comments):

wait for total - 2:
wait for canContinue(); # the Subroutine canContinue returns a Boolean
wait for computeTotal () > 99
wait for counter position >= 100 from detectLocation
wait for time >= 100us from detectTime; # includes “from keyword
wait for flagA and flagB or booleanC

The “from keyword removes the need for the developer to
worry about counter roll-over for applications where a
counter reset is not desirable.

0109. A wait statement may also be used to wait for a
particular time period to elapse by using the argument <dura
tion-expressions: “wait for <duration-expressions.” This
time period may be expressed as an absolute value, such as a
time in milliseconds; a relative period, Such as a time period
required by another process; or a time expressed as a variable.
If the expression involves calling Subroutines or evaluating
variable values, those variable values are evaluated only when
the wait statement is processed the first time. Some examples
include:

wait for 1ms:
wait for pauseduration; # where the variable is type timespan
wait for computeWaitTime(); # will call the Subroutine once

0110. A wait statement may also be used to wait for a
rising or falling edge of a particular input: “wait for <edge of
input <inputd.” The input given can be either the input index
or the named input which would be previously declared.
Multiple inputs can be given with an edge on any one of them
satisfying the condition. Named and indexed inputs can be
mixed in the OR’d list of inputs. Multiple inputs can be
separated by either the OR keyword or a comma. Input
indexes start at 0. Some examples include:

US 2013/0090745 A1

wait for rising edge of input O
wait for falling edge of inputs PartDetect, DisableSwitch
wait for rising edge of input 1,2,3 or 4 or DisableSwitch

0111. A wait statement may also be used to wait for one or
more inputs to change to a desired State (e.g., a set state or a
cleared state): “wait for <stated input(s)<input-listd.” The
“AND” keyword may be used to indicate all inputs are
required to be in the desired state to satisfy the condition.
Similarly, the “OR” keyword may indicate that the condition
is satisfied if any of the inputs reaches the desired state. Some
examples include:

wait for set input 3
wait for set input 3, 12 and Enable
wait for set inputs 3 and 12 and Enable
wait for clear inputs in Progress or Abort

0112 A wait statement can be used to wait for one or more
flags to be set or cleared: “wait for <stated flag(s)<flag-lists.”
This is analogous to waiting one or more inputs to be set or
cleared as above. Multiple flags can be given and the “flag”
keyword can be used in the plural form for readability. Flags
are indicated by a declared flag variable. Some examples
include:

wait for set flaggo Ahead;
wait for set flags doneA, doneBand doneC
wait for set flag finished set or finished clear
wait for cleared flag availablei

0113 A wait statement can be used to wait for one or more
trigger ladder to fire: “wait for trigger ladder <integer-expres
sion>.” A trigger ladder may be specified by its index, with
trigger ladder indexes starting at 0. Examples include:

wait for trigger ladder 1
wait for trigger ladders 1 or 3
wait for trigger ladders 0, 1, 2 or 3

0114. Other types of wait statements include, but are not
limited to:

0115 Waiting for a quadrature encoder counter to
decrease: “wait for decreasing counter <counterd.” This
may be used with another condition, such as a rising
edge of a part detection input;

0116 Waiting a for quadrature encoder counter to
increase: “wait for increasing counter <counters”. This
may also be used with another condition, Such as a rising
edge of a part detection input;

0117 Waiting for a previous send statement in the same
process to complete transmission “wait for send (sender)
to finish’. For example, it may be used to wait for an
Ethernet SureSynctM event transmission to finish before
the process modifies the payload so as to avoid corrupt
ing the payload for the transmission in progress;

0118 Waiting for messages to arrive at an event packet
receiverports in the co-processor or action engine: “wait

Apr. 11, 2013

for message.” The device IDs of the sending devices may
be either stored in the power on configuration or config
ured at runtime by a host computer. If the event sender is
relevant, the wait statement can be followed by an “if
else if Statement that Switches on the message port
value. In certain embodiments, a process that waits for a
message will not wait for anything else. This enables the
process to either run continuously or wait for a message,
which in turn enables the scheduler to give a received
message to the process. If the scheduler reads a message
from a receiver peripheral and there is no process wait
ing for a message, however, the message may be dis
carded.

0119 Multiple conditions can be combined together so
that all must be satisfied at the same time before the wait
statement is completed. This candone by combining the “for”
clauses in the wait statement with the “AND” keyword.
Examples include:

wait for set flaggoAhead and for set input Enabled;
wait for set input Enabled and for counter ticker > 100;

In some instances, the action engine/co-processor may not
execute a wait statement until all outstanding message sends
have been completed. For communication with a 1x1 device,
which may have a high latency in performing a message
acknowledgement/no acknowledgement handshake, this can
result in delays of over a millisecond. If this is not desirable,
a separate one-shot process may be used to send the message,
removing this latency from the main process.
I0120 In general, the master processor 190 delegates as
many conditions as possible to the action engine(s) 110c
and/or co-processors. Typically, the master processor 190
assigns one condition to each slot 140 in the event table 112 of
the action engine 110C and/or to each co-processor. It may
assign the conditions to the respective slots 140 and/or co
processors based on the initial compiling of the instructions,
a desired latency, the capabilities of the action engine 110c
and the co-processors, the conditions themselves, and/or its
own capabilities. For instance, the master processor 190 may
determine a first subset of conditions for evaluation by a
particular co-processor based on at least one of a time period
in which the first subset of the plurality of conditions is
expected to occur in the dynamic environment; a particular
sequence in which the plurality of conditions is expected to
occur in the dynamic environment; at least one previous
action taken in the dynamic environment; a present state of
the dynamic environment; a response time of the master pro
cessor, and at least one attribute of the at least one co-proces
Sor (e.g., functioning status, processing speed, memory size,
input signal number, input signal type, output signal number,
and output signal type). In some examples, the co-processor is
configured to evaluate a number of conditions that is Smaller
than some fixed maximum number of conditions, which may
be based at least in part on a maximum permissible latency
defined by a required response time in the dynamic environ
ment

0121 The master processor may also re-assign conditions
dynamically, e.g., in response to the evolution of the dynamic
environment, new instructions, and/or previously stored
instructions. By delegating conditions to the action engine(s)
110c and/or co-processors, the master processor 190 can per

US 2013/0090745 A1

form other processing tasks instead of monitoring the condi
tions in a serial fashion. For example, the master processor
may configure a given co-processor at a first time to evaluate
only first subset of conditions and to provide control infor
mation representing the first action in a plurality of actions if
the first Subset of conditions is satisfied. Later, at a second
time, the master processor reconfigures the co-processor to
evaluate only a second Subset of conditions and to provide
additional control information representing another action if
the second Subset is of conditions is satisfied. In some cases,
the master processor may determine the second Subset of
conditions based at least in part on whether or not the first
Subset of conditions is satisfied. In at least one of these cases,
the master processor determines the second Subset of condi
tions based on at least one of: a time period in which the
second Subset of conditions is expected to occur in the
dynamic environment; a particular sequence in which the
conditions is expected to occur in the dynamic environment;
a present state of the dynamic environment; at least one pre
vious action taken in the dynamic environment; and the mas
ter processor's response time. The master processor may
determine the second Subset of conditions based on at least
one of the co-processor's attributes, which include but are not
limited to: the co-processor's functioning status (e.g., idle,
active, etc.); a first number of the input signal processed by the
co-processor, a first type of the input signal processed by the
co-processor, a second number of the output signal processed
by the co-processor; and a second type of the output signal
processed by the co-processor.
0122. In one aspect, the master processor 190 determines
how to delegate conditions (and possibly actions as well)
according to compiled computer-implementable instructions
from an optimizing compiler (not shown). As understood by
those of skill in the art, the compiler transforms the user
written source code (e.g., in the SCORETM programming
language) into a target language. Such as object code, that can
be executed by the master processor, the action engine(s),
and/or the co-processor(s). In performing this transformation,
the compiler may compile the Source code in the order pre
sented in the source code and produce object code with simi
lar or roughly analogous ordering.
0123. The compiler may also analyze the state machine(s)
generated by compiling the Source code, e.g., by going from
state to state along the edges (actions) connecting the states
(wait statements/conditions). In one example, a user Supplies
the compiler with a profile of the available action engine(s)
and/or co-processor(s), e.g., by providing command-line
arguments to the compiler. The compiler uses this profile to
designate certain conditions and certain actions in the com
piled object code as within the capabilities of the available
action engine(s) and/or co-processor(s). The master proces
Sor may assign these conditions (and possibly the actions as
well) to the action engines or co-processors designated in the
compiled object code. In some embodiments, the compiler
determines these allocations of action engine/co-processor
resources to designated conditions (and actions) at compile
time, and these allocations remain static.
0.124. In other embodiments, the master processor may
allocate or re-allocate action engine/co-processor resources
to designated conditions (and actions) in a dynamic fashion,
e.g., in response to the evolution of the dynamic environment
or changes in System or component status. In Such a dynamic
environment, the master processor may create and/or main
tain a profile of the available action engine/co-processor

Apr. 11, 2013

resources. For instance, the master processor may obtain
information about the available action engine/co-processor
resources by polling the operably coupled action engine/co
processor device(s), by receiving status updates from the
operably coupled device(s), and/or by receiving the profile
from a user via command-line arguments or any other Suitable
interface.

0.125. The master processor 190 may also create and main
tain a list of processes (state machines), including the status
(state(s)) of those delegated in whole or in part to the action
engine(s) 110c and those that it reserves for itself. During
operation, the master processor 190 uses this list to advance
each of the state machines implemented by the system. For
example, a given co-processor may be tasked with monitoring
the dynamic environment for a particular condition (e.g., the
arrival of a part at a designated point in an assembly line). The
process then enters a “wait' state during which it monitors the
dynamic environment for the condition. When the co-proces
Sor determines that the condition has been met (e.g., the part
arrives at designated point), the process exits the wait state to
perform a predetermined action (e.g., it instructs a camera to
take a picture of the part). The co-processor also notifies the
master processor 190 that its condition has been met by trans
mitting a notification signal (“notification for short) to the
master processor 190. For instance, the co-processor may
generate a match signal if a particular condition of the
dynamic environment matches the condition monitored by
the co-processor and provide the match signal to the master
processor as the notification signal.
0.126 Upon receiving a notification signal (match signal)
from the co-processor that a condition has been met, the
master processor 190 advances those state machines waiting
for the notification on its list of state machines, including the
one implemented by the co-processor. Depending on the state
machine, the master processor 190 may note that the condi
tion has been met and allow the co-processor to continue
implementing the process, or it may halt the state machine
(process) implemented by the co-processor and cause the
co-processor to implement another state machine. It may also
use the notification to start, halt, or advance other state
machines implemented by the system.
I0127. In sum, in some implementations, the wait state
ment condition evaluated by the co-processor for a single
processor may have several Sub-conditions combined with
Boolean logic followed by one or more procedural steps to be
taken on satisfaction of the condition as a whole and/or Sub
conditions; this is what the co-processor is commissioned to
do for a single process instance at any given time. When the
condition is satisfied and the actions are completed, the co
processor notifies the master processor, which can re-com
mission the co-processor for the next wait statement in the
process.

I0128. Each state (condition) may have associated with it at
least one particular action. If possible, the master processor
190 also delegates the action(s) associated with a particular
condition to the same slot 140 or co-processor assigned to
monitor the particular condition. In some embodiments, the
master processor 190 delegates actions involving inputs and
outputs to the action engine 110C and/or co-processors 140.
These actions may include, but are not limited to: sending
packets, setting outputs, clearing outputs, adding outputs,
latching counters, setting flags, clearing flags, acquiring
semaphores, releasing semaphores, and no operations (no
ops). In some cases, the master processor 190 delegates

US 2013/0090745 A1

actions based on the capabilities of the slot 140 or co-proces
sor assigned to monitor the associated condition. It may also
assign the condition to the slot 140 or co-processor based on
the associated action and the ability of the slot 140 or co
processor to perform the associate action.
0129. The master processor 190 may also delegate a con
dition to a slot 140 or co-processor while reserving execution
of the associated action to itself. For instance, the master
processor 190 may execute all actions related to accessing
information in memory, including but not limited to: Storing
information in memory; retrieving information from
memory; incrementing variables in memory; and arithmetic
involving numbers stored in memory. The master processor
190 may also execute other types of actions as well on an
as-needed or as-desired basis.
0130 Below are several pseudo-code examples of pro
cesses (state machines) and Sub-processes Suitable for imple
mentation using the systems and devices disclosed herein,
including the system shown in FIG. 6. Hash marks (ii) indi
cate comments in each example.

Example 1

Continuous One-State Process

0131)

continuous process Send on edge with instances i := 0.7
begin

wait for rising edge of input i # State (condition no. 1)
send sender i # action (executed by co-processor)

end

0132) Example 1 is a continuous process, called “send
on edge” in which a co-processor is tasked with waiting for
a rising edge (the condition) of input i and sending a packet
(the action) to another device upon satisfaction of the condi
tion. The co-processor also notifies the master processor that
its condition has been met upon detecting the rising edge. In
this example, once the co-processor has sent the packet, the
master processor reloads the same condition and action
opcode pair in the co-processor's memory. The co-processor
continues to monitor the rising edge of input i until the co
processor is halted or interrupted, e.g., by the master proces
sor 190. This process is implemented eight times (i-0... 7),
with each instance running on a separate slot in the action
engine or on a corresponding co-processor.

Example 2

Continuous Two-State Process

0133)

continuous process send on pulse with instances i := 0.7
begin

wait for rising edge of input i # state no. 1 (condition no. 1)
send sender i # action no. 1a (executed by co-processor)
set output i+8 # action no. 1b (also executed by co-processor)
wait for 100ms # State no. 2 (condition no. 2)
clear output i+8 # action no. 2 (executed by co-processor)

end

17
Apr. 11, 2013

0.134 Example 2 is a continuous process, called “send
on pulse.” in which a co-processor alternates between two
states depending on the evolution of the dynamic environ
ment. In the first state, the co-processor waits for a rising edge
to appear on inputias in Example 1 (this is the first condition
of this process). Once the co-processor detects the input, it
sends a packet to another device and notifies the master pro
cessor that the first condition has been met as above. It also
performs another action it sets output i+8—before proceed
ing to its second state (“wait for 100ms). In this second state,
the co-processor waits for occurrence of the second condi
tion, elapsation of 100 ms. Once this condition is met (i.e.,
once 100 ms has elapsed), the co-processor performs its sec
ond action—clearing output i+8—and notifies the master
processor that the second condition has been met. It then
transitions back to the first state to wait for the first condition
to occur again. Like the process in Example 1, the Example 2
process continues until it is halted or interrupted, e.g., by the
master processor 190. It is also implemented eight times (i-0
... 7), which each instance running on a separate pair of slots
in the action engine or on a corresponding co-processor.
0.135 Example 2 is performed with at least two slots in the
action engine because it involves two actions associated with
one condition both “send sender i” (action no. 1a) and “set
output i+8” (action no. 1b) are triggered by satisfaction of
“rising edge on input i' (condition no. 1). Condition no. 1 and
action no. 1a are loaded into the first slot, and action no. 1b is
loaded into the second slot, which is chained to the first slot.
The second slot is also loaded with the condition “do always'
which is implemented as “counter|0>=0, and which causes
it to execute whenever condition no. 1 is met (see below for a
more detailed discussion of "chaining slots together).

Example 3

Continuous Process with Master Processor Action

0.136

continuous process send sequence with instances i := 0.7
begin

static unsigned integer sequence := 0
payload p; # declaration
p.dwordO := Sequence; # master processor action
wait for rising edge of input i # condition no. 1
send sender i with payload p if action no. 1a (co-processor)
sequence++; # action no. 1b (master processor)
wait for sender to finish # condition no. 2; action 2 is a no-op

end

declaration

0.137 Example 3 is another continuous process, entitled
'send sequence.” in which a co-processor monitors condi
tions and the co-processor and the master processor each
execute actions in response to detection of the conditions. In
this case, the process begins with the declaration of a static
variable named “sequence' ('static unsigned integer
sequence') and a 16-byte payload p that goes out with every
event packet. Once these have been initialized, the master
processor sets a word (“p.dword”) in the payload to the value
of the “sequence” variable. The co-processor then enters a
wait state in which it monitors the dynamic environment for a
rising edge on input i. When it detects the rising edge, it
notifies the master processor that its condition has been met
and sends the payload, which may trigger a camera or other
device that receives the payload.

US 2013/0090745 A1

0.138. Upon receiving the notification that the condition
has been met, the master processor increments the variable
"sequence.” The master processor performs this action
because incrementing a variable involves accessing informa
tion in memory, which is often beyond the capabilities of an
action engine or a co-processor. The master processor also
advances the state machine to its next state, in which the
co-processor waits for the sender to finish its action. If the
co-processor detects fulfillment of this condition, it performs
the corresponding action. In this case, the corresponding
action is a “no operation, or "no-op. So the code does not
include a specific command. The co-processor also notifies
the master processor that the condition has been met, and the
master processor advances the state machine to its next state
(here, back to the “wait for rising edge of input i” state) in
response to the notification. Like the processes in Examples 1
and 2, the Example 3 processes runs until it is halted or
interrupted and is implemented in eight separate instances.

0.139. In example 3, condition no. 2 (“wait for sender to
finish') is intended to prevent procedural statements from
overwriting a payload buffer (p in Example 3) until the send
is completed, which happens in a non-deterministic time
period due to network contention and variance in communi
cation protocol latency. This is because the co-processor
might not be able to get access to the desired physical network
resource when a send action is used. There are several pos
sible ways to deal with access issues, including but not limited
to: (a) adding queues to store the payloads and port numbers
for storage before processing; (b) holding the notification to
the master processor until the send has completed; and (c)
adding another notification to the master processor that the
send has completed and notifying the master processor of the
condition satisfaction and action completion immediately.
Option (a) may not be optimal in field-programmable gate
array (FPGA) implementations due to FPGA resource restric
tion. Option (b) may introduce extra delay because a send
completion can take up to 1 ms due to slow handshaking
speed in the event message protocol with non-real time peers
(e.g., host computers running MS Windows.(R). Option (c)
allows the master processor to run non-co-processor-compat
ible actions after a wait statement immediately, but prevents
the master processor from modifying the event-table slots
until the send has completed. In some implementations, each
wait statement has an implicit “wait for send to finish' since
the slots cannot be overwritten until all send statements ahead
of the wait statement have been completed.
0140. In some cases, including the one illustrated in
Example 4 below, the master processor evaluates a “flow
control statement, such as an “if” statement, to determine
how to advance the State machine. For instance, the evalua
tion may yield a first result that causes the master processor to
advance one or more state machines to particular first states or
a second result that causes the master processor to advance
one or more state machines to particular second states. Flow
control statements may also be used to decide to interrupt,
pause, or halt on-going processes and to initiate other pro
CCSSCS.

Apr. 11, 2013

Example 4

Flow Control Statements

0141

quadrature counter PartPosition on inputs 0, 1 # declaration
wait for counter partPosition >= rejectDistance from position

condition (co-processor)
if votes < 2 OR input DoReject is set # flow control statement

set output reject # co-processor action
failure count++ # master processor action
wait for counter time >= rejectDuration from now

condition (co-processor)
clear output reject # co-processor action

else
wait for counter partPosition >= acceptDistance from
position

condition (co-processor)
set output accept # co-processor action
wait for accept Duration # condition (co-processor)
clear output accept # co-processor action
endif

0142. Example 4 is a sub-process that includes a flow
control statement. The Sub-process of Example 4 includes
four states, each of which is indicated by a “wait' statement
and a particular condition of the real-world environment, e.g.,
is the part position counter greater than or equal to a prede
termined value from a parts current position ("counter part
Position> rejectDistance from position”). As in Examples
1-3, an action engine or co-processor evaluates each condi
tion and, if the condition is met, notifies the master processor
and performs an appropriate action, such as a no-op, clearing
an output, or setting an output. The master processor
advances the state machine and, optionally, acts in response to
the notification.
0143. In Example 4, the master processor controls the flow
of the state machine by evaluating a flow statement (if
votes.<2 OR input DoReject is set) relating to whether or not
a part has passed inspection at two different inspection sta
tions. In another part of the overall process (not listed above),
the inspection stations "vote on the parts quality, and the
master processor increments a variable “votes' in response to
the inspection stations outputs. At the same time, the co
processor monitors the parts position. If the co-processor
senses that the part has reached a particular position, it noti
fies the master processor, which evaluates the flow control
statement in response to the notification. If the master pro
cessor determines that the part has failed inspection (e.g.,
because the “votes' variable is less than 2 or the “DoReject’
input is set), the master processor increments a failure count
(“failure count”) and causes or allows the co-processor to
reject the part by setting the “reject' output. The state
machine then advances to a state in which the co-processor
waits for the counter time to equal or exceed a specified time
period (“rejectDuration'). If the part has not failed inspec
tion, the master processor advances the state machine to a
state in which the co-processor waits for the part position
counter to equal or exceed another variable (“acceptDis
tance').
0144. Examples 3 and 4 also illustrate the use of declara
tion statements to set variables and to configure peripheral
devices, e.g., cameras, etc. Declarations may be used to set
variables stored in the master processor's memory, like the
“sequence' variable in Example 3 or the (implicitly) declared

US 2013/0090745 A1

“rejectDistance' and “position variables in Example 4. They
can also set counter values, like the “part Position' counter in
Example 4, which is declared to be a quadrature counterpart
Position' on inputs 0 and 1. It could also be declared to be a
pulse counter “part Position' on the rising edge of input 2.
0145. Other declarations may set peripheral variables,
including input and output variables. Inputs can be declared
to have pulse filters. Outputs can be declared to have pulse
widths and polarity inversions. The counter and other periph
eral variable declarations get compiled into instructions
executed by the master processor, which loads the configura
tion registers of the peripheral devices. When the counter is
used in the program, the event table conditions and actions
access the counter allocated by the compiler.

Example 5

Setup Process

014.6

one-shot process setup
begin

for i := 0.7 do
start process send on sequencel

done
end

0147 Example 5 is a set-up process that the master pro
cessor uses to task the action engine/co-processors with dif
ferent instances of a particular process. Unlike the processes
in Examples 1-4, the Example 5 process does not involve any
conditions. Instead, it is a simple one-shot process that creates
eight instances of another process (here, the 'send on Se
quence' process from Example 3). Each of these instances
runs on a corresponding slot in an action engine or on a
separate co-processor.
0148. In various embodiments, any language statement
(computer-implementable instruction) can be executed on the
housekeeping CPU 190, but greater or smaller sets of lan
guage statements can also be executed by one or more action
engines described herein. Any statements that cannot be
executed on the action engines of a particular embodiment of
the invention may be run on the housekeeping CPU 190. In
general any statements that can be run on the action engine of
a particular embodiment will be allocated by the housekeep
ing CPU 190 to the action engines. Statements or groups of
statements may be cancelled at any time prior to their execu
tion.
0149. In one embodiment, the computer-implementable
instructions permit that any processes described in an appro
priate computer language (e.g., SCORETM) can be run simul
taneously and that multiple instances of a given process may
also run concurrently. In one aspect, the language is compiled
into condition/action pairs described in greater detail above;
in exemplary implementations, such condition/action pairs
are assembled into an event table which may be scanned at a
high and fixed rate (e.g., as discussed above in connection
with the event table 112 and action engine 110c of FIG. 6).
The condition/action pairs may also be chained as described
in greater detail below.
0150. With reference to FIG. 6, in one embodiment the
housekeeping CPU 190 may add and remove entries to the
event table 112 of an action engine 110C without affecting or

Apr. 11, 2013

interrupting the operation of the action engine 110c. If nec
essary due to the housekeeping CPU word size (which may
be, e.g., 32 bits) being less than the width of the event table
register 140c (which may be, e.g., 64 bits) a given register
140c can be written in part by writing the input conditions to
Zero first, then writing the action second. Registers 140c that
are currently not in use may have a Zero first word which
indicates a “not in use” conditional operation which can never
be satisfied. The scanner 130c will not consider any event
table conditions 142c in its scan that have a “not in use”
condition, so instructions 144c in a partially written event
table register 140c will not be executed before the housekeep
ing CPU 190 finishes writing the partially written event table
register 140c.
0151. In another aspect, any statement or chained group of
registers 140c that the housekeeping CPU190 may allocate to
the action engine 110C will either run in their entirety, or not
at all. In particular, by writing chained groups into contiguous
event table registers 140c from the first to the last (with
respect to the scan direction) with Zeros, then the last to the
first (again with respect to the scan direction) with the new
conditions 142c and actions 144c, no condition/action pairs
will be processed (e.g., by the scanner 130c of the action
engine 110c) unless all are processed, even if the scanner
130c passes through the addresses of the corresponding sec
tion of memory multiple times while the housekeeping CPU
190 is writing the chained group; the scanner's rules are such
that it will not execute the actions of an event table register
140cina chained group, even if that event table register's own
input conditions are met, unless all of the input conditions of
all of the preceding event table registers 140c up to and
including the next previous event table register 140c whose
chain bit is not set are also met. Since each new event table
register 140c is being written in a section of event table
registers 140c set to zero, the prior event table register 140c
will not have valid input conditions and so neither it nor the
event table register 140c just written will be executed.
0152 Similarly, by clearing a set of chained event table
registers 140c from the first to the last (e.g., by filling the
registers 140c with all Zeros or all ones), and for each event
table register 140c beginning by clearing the input conditions
for each event table register 140c first, at a rate equal to or
slower than the rate at which the scanner 130c is addressing
the event table registers 140c, the housekeeping CPU 190
may replace or clear even a chain of event table registers 140c
for a procedural step that had been allocated to a particular
co-processor/action engine in Such away that either the entire
set of chained registers 140c will be executed, or none will be
executed.
0153. The foregoing techniques for programming the
master processor 190, efficiently compiling the program lan
guage to provide executable code (e.g., for the processing
unit(s) 194 and the master processor 190), and the resulting
procedure implemented by the master processor 190 for
updating an event table 112 of an action engine 110C (or more
generally "programming one or more co-processors to
evaluate particular conditions) yields several unique advan
tages. This methodology produces an extremely compact set
of code that can run very rapidly on any general-purpose
processor (with or without one or more action engines or
other co-processors). However, when employed in connec
tion with the action engine 110c shown in FIG. 6, and in
particular with the scanner 130c, these techniques yield com
pletely deterministic operation even when the evolution of

US 2013/0090745 A1

conditions in the dynamic environment would require code
execution to branch, and/or function calls to be made and/or
cancelled for conventional systems. In fact these transitions
can be made without rearranging memory pointers in the
action engine 110c, since the inventive techniques described
above allow multiple subroutines (e.g., chains of event table
register 140c) to run to completion without signaling back to
the calling process (in the master processor 190). The sim
plicity of the instruction set, which does not have any loops or
jumps, keeps the run time of the co-processor/action engine
program space deterministic.
0154). Also note that the housekeeping CPU 190 does not
need to be dedicated to housekeeping for the action engine(s).
Housekeeping could be done by a process and/or device
driver on a general-purpose operating system such as Linux
or Windows. The action engine could be on a peripheral card
(such as a PCI) along with the counters, digital and/or analog
I/O interfaces, etc., allowing a general-purpose computer to
achieve the same precision in event handling as a special
purpose embedded computer when working in tandem with
the action engine(s) described herein. The action engine and/
or separate co-processors may also be implemented in one or
more field-programmable gate arrays (FPGAs) or as a collec
tion of other suitable processors.
0155 Pipelining, Latency, and Jitter
0156. In one exemplary implementation of the action
engine 110c shown in FIG. 6, the scanner 130c is configured
to implement a "pipelining technique to make comparisons
of the input signals 66 to the conditions 142c. As understood
by those of skill in the art, "pipelining is a computational
technique that increases throughput by splitting a computa
tion into a series of stages that are connected to form a com
putational "pipe. Each stage of the pipe performs its part of
the computation (e.g., the comparison of the input signals 66
to the set of conditions 142c) in parallel with the other stages,
much like a worker on an assembly line. Pipelining acceler
ates the action of the scanner 130c such that regardless of how
long it may take to compare the input signals 66 to a given
condition 142c, the time spent on each register 140c is limited
to one clock cycle.
0157 With respect to calculating a “latency” of the action
engine, i.e., the time period required to compare a particular
input state of the dynamic environment at a given time to the
multiple sets of conditions contained in the event table and
transmit one or more instructions in response to the input
state, in Some exemplary embodiments such a latency may be
derived in consideration of a pipelining technique imple
mented by the action engine 110c. For example, the time it
takes for the action engine 110c to compare the input signals
66 and/or discovered State changes (see paragraph 89 above)
to a particular set of conditions 142c and transmit one or more
instructions in response equals the time it takes the scanner
130c to reach the corresponding event table register 140c plus
the propagation time through the pipeline, which depends on
the number of stages in the pipeline. For an event table 112
with 128 registers 140c and a scanner 130c clocked at 100
MHz with a three-stage pipeline, the longest possible time
from input to output is 1.31 us, which corresponds to a con
dition 142c that occurs at the very beginning of a scanthrough
the event table 112 but is not used until the very end of the
scan through the event table 112 plus a 0.03 LS propagation
time through the pipeline (i.e., three clock cycles). The short
est possible time from input to output is 0.030 us. Thus, the
action engine 110c compares the input signals 66 and/or

20
Apr. 11, 2013

discovered State changes to the sets of conditions 142c with a
latency, or time delay, that is bounded by the number of
registers 140c in the event table 112, the number of stages in
the pipeline, and the clock frequency.
0158 An additional advantage of using an event table
register 140c to evaluate a small number of conditions 142c
very quickly is that the variation in latency is very low. Jitter
can be defined as the difference between the longest latency
and shortest latency. For an event table register 140c that
evaluates a single condition 142c, the variation in latency is
minimal, and may even border on Zero depending on how
incoming and outgoing data is transmitted. In the example
above, the longest possible latency is 1.31 us, and the shortest
possible latency is about 0.03 us, which corresponds to ajitter
of 1.28 us, or one scan time. (Applying input filters, discov
ering input state changes, or receiving and transmitting data
via Ethernet packets may introduce variable delay indepen
dent of the action engine 110c.)
0159 Low jitter is especially useful in applications—e.g.,
triggering images—in which long response delays are per
fectly acceptable so long as the latency is very repeatable, and
in which even much shorter maximum latencies are not
acceptable if the individual latencies were highly variable. In
machine vision applications, for instance, reducing the jitter
makes it possible to reduce the sensor field of view, which in
turn allows for higher resolution images of the scene of inter
est. Consider a situation in which the time window for imag
ing a fast-moving part is about 10 JLS, but the jitter is much
larger than 100 us as it would be with a PLC. Capturing an
image of the part requires expanding the time window to
substantially greater than 110 us by increasing the field of
view to be well over eleven times the size of the part itself,
which in turn reduces the number of pixels on the sensor
dedicated to imaging the part by a factor of more than eleven.
In contrast, an action engine 110C with a jitter of about 2.5 LS
can be used to acquire an image of the same part with about
80% of the sensor's active area dedicated to imaging the part
itself.
0160 Condition/Action Pair Memory Structures and
Execution

0.161 Embodiments of the present invention may include
particular memory structures to store the one or more “con
dition/action pairs.” In the action engine 110c shown in FIG.
6, for example, the event table 112 provides dedicated
memory in the form of multiple registers 140c, respective
ones of which store a condition/action pair as a particular
sequence of bits (represented generally in FIG. 6 by a condi
tion 142c and an action or “instruction 144c). Alternatively,
one or more registers 140c may include multiple adjacent
memory registers, arranged as a first number of bits repre
senting the condition to be evaluated, and a second number of
bits representing an action to be taken if the condition is
satisfied. Generally speaking, various embodiments, such as
those shown in FIGS.5 and 6, may include memory structures
in the form of one or more registers (e.g., registers 140b in
FIG. 5; registers 140c in FIG. 6) that hold respective condi
tion/action pairs as Some arrangement of bits in a given reg
ister.

0162. It should be appreciated that, in some instances, a
given action corresponding to a particular condition that is
satisfied may be to take no action relating to control of one or
more devices in the dynamic environment. Stated differently,
one possible action for a given condition/action pair is to take
no affirmative action in the dynamic environment, also

US 2013/0090745 A1

referred to herein as a “no-op. In some instances of a no-op,
as discussed in greater detail below, the action engine may
nonetheless notify the master processor if the particular con
dition being evaluated is satisfied, and/or move on to evalua
tion of one or more other conditions as specified in Subse
quent registers of the event table.
0163. It should also be appreciated that the concept of a
“condition/action pair may be implemented in diverse man
ners according to various embodiments disclosed herein. For
example, in Some implementations, the contents of memory
representing the condition portion of a particular condition/
action pair may include Some number of adjacent bits within
a given register, and/or may include Some number of bits
dispersed in the given register with intervening register con
tents not necessarily pertaining to the condition portion. Simi
larly, the contents of memory representing the action portion
of a particular condition/action pair may include some num
ber of adjacent bits within a given register, and/or may include
Some number of bits dispersed in the given register with
intervening register contents not necessarily pertaining to the
action portion. Accordingly, a wide variety of content orga
nization within a given memory location/register represent
ing a given condition/action pairis contemplated according to
the inventive concepts disclosed herein.
0164. In one example discussed in detail below, a memory
structure to contain a condition/action pair may include a
64-bit word-sized register (e.g., that may be accessed and
read in a single clock cycle), some number of bits of which
represent or relate to the condition 142c to be evaluated, and
another number of bits of which represent or relate to the
action 144c to be taken if the condition is satisfied. In one
non-limiting example, the 64-bit register is segregated into
three portions, and the condition 142c and action 144c are
encoded in these three different portions respectively as: 1) an
“op-code' represented by a 16-bit unsigned integer; 2) a
16-bit “action parameter'; and 3) a 32-bit “condition oper
and', wherein the information contained in the action param
eter and the condition operand may facilitate implementation
of an operation contained in the op-code. TABLE 1 below
illustrates the general format of Such a 64-bit register, in
which the op-code portion is represented in bits 48-63, the
action parameter is represented in bits 32-47, and the condi
tion operand is represented in bits 0-31.

TABLE 1.

Illustrative Encoding of Condition/Action Pair

63-48 47-32 31-0

Op-code Action Parameter Condition Operand

0.165. With respect to the op-code portion of the 64-bit
register illustrated in TABLE 1, TABLE 2 below provides an
exemplary format for different fields of the 16-bit op-code:

TABLE 2

21
Apr. 11, 2013

0166 In the example above, the four most significant bits
of the op-code (bits 15-12, respectively labeled in TABLE 2
as “F”, “E”, “D', and “C”) specify a condition type code
(labeled as “OP”) for the condition 142c to be evaluated. The
four next most significant bits (bits 11-8, respectively labeled
in TABLE 2 as “B”, “A”, “9, and “8”) represent an action
operand (labeled as 'ACT) for the action 144c. The remain
ing bits of the op-code include a chain bit C, an XOR bit X, a
notify bit N, a satisfied bit S, a last condition bit L, and one or
more counter values CTR, each of which is described in turn
in greater detail below.
0167. In the present example, with reference again to
TABLE 1, the 32-bit “condition operand” in bits 0-31 of the
64-bit register may be used together with the condition type
code specified in the OP field of the op-code to determine
whether or not a particular condition has been satisfied. Addi
tionally, the 16-bit “action parameter' in bits 32-47 of the
64-bit register may be used together with the action operand
specified in the ACT field of the op-code to specify a corre
sponding action to be taken if the particular condition is
satisfied. Moreover, the op-code fields C (chain), X (XOR),
and CTR (counter) may be employed for evaluation of a
particular condition, and the op-code fields N (notify), S
(satisfied) and L (last condition) may be employed to specify
a corresponding action. Thus, as discussed in greater detail
below, a first set of bits/fields of the 64-bit register shown in
TABLE 1, namely OP, C, X, CTR and the “condition oper
and may collectively define the condition 142c of the con
dition/action pair represented in the 64-bit register, similarly,
a second set of bits/fields of the 64-bit register, namely ACT,
N. S. L and the “action parameter.” may collectively define
the action 144c of the condition/action pair represented in the
64-bit register.
0168 More specifically, the condition type code OP of the
op-code shown in TABLE 2 specifies the type of condition to
be monitored, one or more input signals to be monitored,
and/or the State of any monitored input signal(s) that satisfies
the condition. For some condition type codes OP, satisfaction
of the condition depends at least in part upon one or more
values of the 32-bit “condition operand represented in bits
0-31 of the 64-bit register (refer to TABLE 1 above). Exem
plary condition type codes that may be present in the OP field
of the op-code include, but are not limited to:

O—Register is Unused
1—Act when counter #CTR is less than or equal to the operand
2—Act when counter if CTR is greater than or equal to the operand
3—Act when rising edge detected on any inputs set in operandO ... 15
4—Act when falling edge detected on any inputs set in operand O... 15
5—Act when trigger ladder fires on any ladder set in operandO ... 3
6—Act when high signal present on any inputs set in operand O... 15
7—Act when low signal present on any inputs set in operand O... 15
8—Act when high signal present on all inputs set in operand O... 15

Illustrative Encoding of Condition/Action Op-code

F E D C B A. 9 8 7 6 S 4 3

OP ACT C X N S L

2 1 O

CTR

US 2013/0090745 A1
22

-continued

9—Act when low signal present on all inputs set in operandO ... 15
10—Act when set state exists on any flags set in operand O... 31
11—Act when clear state exists on any flags set in operand O... 31
12—Act when set state exists on all flags set in operandO ... 31
13—Act when clear state exists on all flags set in operandO ... 31
14—Act when counter # CTR direction (condition bit O: 1 -> inc, 0 ->
dec)
15—undefined

0169. Additional condition type codes specified in the OP
field of the op-code can be defined using the X bit, discussed
below (e.g., condition type codes 3-15 above may be rede
fined using the Xbit). In this non-limiting example, the CTR
bits are used for condition type codes 1, 2 and 14; in other
examples, the CTR bits may be used to redefine the other
condition type codes when non-zero.
0170 The action operand ACT of the op-code shown in
TABLE 2 above specifies a corresponding action to be taken
when the condition specified by the condition type code and
the condition operand (and in some cases other fields of the
64-bit register) is satisfied. For some action operands ACT,
the action to be taken depends at least in part upon one or more
values of the 16-bit “action parameter represented in bits
32-47 of the 64-bit register (refer to TABLE 1 above). Exem
plary action operand codes that may be present in the ACT
field of the op-code include, but are not limited to:

O—No-op—do nothing (e.g., raise interrupt completion if N is set)
1—Queue Message Transmit

The action-parameter is interpreted as containing the descriptor # in
bits O-3, a notify housekeeping CPU on message acknowledgement flag in bit 5,
a notify housekeeping CPU on message failure flag in bit 6, a payload index
in bits 12-6.
2—Set outputs: A bit set in the action parameter indicates the output

is to set.
3—Clear outputs: A bit set in the action parameter indicates the output

is to cleared.
4—Latch data inputs. (No action parameter)
5—Latch counter value: A bit set in the action parameter indicates the

counter is to latched.

6—Zero counter: A bit set in the action parameter indicates the counter
is to Zeroed.

7–Set flags MSW: A bit set in the action parameter indicates the flag
is to be set.

8–Set flags LSW: A bit set in the action parameter indicates the flag
is to be set.
9–Clear flags MSW: A bit set in the action parameter indicates the flag

is to be cleared.
10–Clear flags LSW: A bit set in the action parameter indicates the flag
is to be cleared.
11—Get Semaphore: The Semaphore index is given in the action parameter.
12—Release Semaphore: The semaphore index is given in the action
parameter.
13-15—reserved.

Apr. 11, 2013

previous register. If the chain bit C is set, the condition 142c
in the preceding event table register 140c must be true before
the condition 142c in this event table register 140c can be
considered. They may also include an XOR bit X that imple
ments a shadow register so that comparisons do not have to
deal with overflow or underflow; a notify bit N, which, when
set to 1, causes upon satisfaction of the input conditions a
completion message to be forwarded to the housekeeping
CPU 190, and a satisfied bit S that is set when the condition
142c is satisfied.

0173 The other bits may also include a last condition bit L
that is used to cause the scanner to reset the condition operand
OP to Zero when the condition 142c is satisfied. In other
words, the last condition bit L prevents the next scan from of
the event table 112 re-satisfying the condition. When multiple
conditions 142c are to be satisfied (e.g., using the chain bit C
as described below) before an action 144c is to be performed,
the preceding registers will not have the L bit set so that the
operation can be re-evaluated. Event table registers that are
chained together with a do-always condition may have the
last bit set to prevent the action from recurring.
0.174. The action engine 110c can be programmed using
the SCORETM programming language. In particular, as dis
cussed above, the housekeeping CPU (master processor) 190

Action 15 may be an extension action with some number of bits of the action parameter used to indicate the
action with a reduced number of bits to indicate the action operand.

0171 The 16-bit action parameter used in conjunction
with some of the action operands specified above may
include, but is not limited to: a descriptor it (e.g., bits 0-3), a
notify ack (e.g., bit 4), a notify exh (e.g., bit 5), a payload #
(e.g., bits 6-12) or a bit field (e.g., bits 13-15).
0172. As described above, other bits of the 16-bit op-code
contained in bits 48-63 of the 64-bit register representing a
condition/action pair may include a chain bit C from the

may be programmed via an inventive programming language
according to one embodiment of the present invention that,
when compiled, enables the master processor to in turn pro
vide instructions to task the action engine, in the form of
condition/action pairs. Examples of SCORETM statements
and resulting event table settings are given below. The
SCORETM Statements are formatted Such that each line of
SCORETM code matches with a single condition/action pair:

US 2013/0090745 A1

wait for counter 3 >= 0x1000 from Ox10000
and for set flag 4 send descriptor 1 with payload2
set output 0

OP ACT C X N S L CTR AP OPERAND
2 O O 1 O O O 3 OxOOOO OxOO101OOO
10 1 1 O O O 1 O OxOOB1 OXOOOOOO10
2 2 1 O 1 O 1 O OxOOO1 OXOOOOOOOO

wait for rising edge of input O
and for clear inputs 1 and 2 latch counter2
set outputs 3 and 4

OP ACT C X N S L CTR AP OPERAND
3 O O O O O O O OxOOOO OxOOOOOOO1
9 5 1 O O O 1 O OxOOO4 OxOOOOOOO6
2 2 1 O 1 O 1 O OxOO18 OxOOOOOOOO

wait for rising edge of input O
and for clear inputs 1 and 2 set output 3

OP ACT C X N S L CTR AP OPERAND
3 O O O O O O O OxOOOO OxOOOOOOO1
9 2 1 O 1 O 1 O OxOOO8 OxOOOOOOO6

wait for rising edge of input O set output 3

OP ACT C X N S L CTR AP OPERAND
3 2 O O 1 0 1 O OxOOO8 OxOOOOOOO1

wait for counter|3) >= 0x1100 from 0x10203040
and for set input 1 or 2 send descriptor2.
set output 4

OP ACT C X N S L CTR AP OPERAND
2 O O O O O O 3 OxOOOO Ox10204140
6 1 1 O O O 1 O Ox1FF2 OxOOOOOO10
2 2 1 O 1 O 1 O OxOO10 OxOOOOOOOO

OP, C, X, CTR and OPERAND define the condition.
ACT, N. S. Land AP define the action.

(0175 Chain Bits for Monitoring More Complex Condi
tions

0176). In some cases, the registers 140c of the event table
112 shown in FIG. 6 may not be wide enough to describe
more complex condition/action pairs. In such cases, the
action engine 110c, event table 112, and scanner 130c can be
configured to evaluate more complicated sets of input condi
tions (e.g., multiple conditions upon satisfaction of which one
or more actions are predicated) using chain bits (denoted “C”
in FIG. 6). Each chain bit is logically part of the correspond
ing set of conditions 142c in that it includes the satisfaction of
a particular condition 142c represented in the previous event
table register 140c. In effect, chain bits can be used to increase
the effective (and finite) size of a single event table register
140c by linking a group of contiguous event table registers
140c to form a single “super register” for the purposes of
defining groups of input conditions, all of which must be
satisfied for the actions described in this chained group of
event table entries to be taken. Chaining together contiguous
blocks of event table registers 140c logically “ANDs’ the
chained registers 140c together, i.e., it causes them to react to
a particular combination of input signals 66 by issuing a
particular set of instructions (possibly in a predetermined
order).
(0177 FIG. 8 illustrates how chained event table registers
140cidentify and react to a group of conditions 142c that have
been chained together. (For simplicity, FIG. 8 shows only the
sets of conditions 142c and outputs 144c for each register

23

no xor
AP12:6 = no payload
op = ctrl O >= 0

Apr. 11, 2013

xor ctr value
notify acklexh = 1
ctrl) >= 0 (always true)

note we never set the S bit

140c.) Each event table register 140c reacts to a different
combination of sensor inputs A-C and current counter values
CTR (not shown in FIG. 8) as well as flag register values and
whether a semaphore request earlier in the set of chained
event table registers was successful. By convention, the first
event table entry in a chained group 140c-1 will not have its
chain bit set. In this example, event table registers 140c-2
through 140c-4 all have chain bits C set to 1. Event table
register 140C-5 has a low chain bit C and therefore operates
independently of event table registers 140c-1 through 140c-4.
0.178 Chained registers 140c-1 and 140C-2 each include a
respective condition 142c-1 and 142c-2 and a do-nothing
(no-op) action 144c-1 and 144C-2, followed by a "critical
register here, a single register 140c-3 with both a “useful
condition 142c-3 and an action 144C-3 other than a no-op.
Such a “critical register may be, and in this case is, followed
by another register 140c-4 with an additional action which
should also be taken when the chained group's input condi
tions are met. To ensure that the useful action 144C-4 is also
immediately taken when that of the critical entry is executed,
the input condition 142c-4 is set to a condition that is tauto
logically true i.e. counterO >=0 (no XOR). This will not
cause premature execution of the action in this event table
entry since as part of a chained group of event table entries, all
of the preceding input conditions in this chained group must
also be satisfied. The last condition bit L is set in register
140C-2, which means that registers 140c-1 and 140C-2 must
be satisfied in a single table scan before the satisfied bit S is set

US 2013/0090745 A1
24

on the critical register 140c-3. Once the satisfied bit S is set on
the critical register 140c-3, the state of the preceding registers
140c-1 and 140C-2 does not matter as the action 144C-4 in the
critical register 140c-4 will be retried on every scan (assum
ing it was a semaphore or send action, as all other actions
complete on the first attempt). The register 140C-4 in the chain
after the critical register 144c-3 will have the last condition bit
L set, indicating the satisfied bit S can be set by the scanner
130c.
0179 Semaphores for Tracking Evolutions of a Dynamic
Environment

0180. The action engine 110c shown in FIG. 6 can also
issue a series of instructions in response to an evolution of the
real-world system. For evolutions that occur more slowly
than the maximum CPU response time (e.g. 10 to 1000 us),
the scanner 130c may report matches (satisfied conditions) to
the housekeeping CPU 190, which responds by issuing
instructions and/or updating one or more of the event table
registers 140c as described above. For faster evolutions (i.e.,
those that may occur more quickly than the maximum CPU
response time), the action engine 110C may use one or more
semaphores to make conditions 142c contingent upon each
other and/or to prevent contention (collision) among different
registers 140c whose respective conditions 142c are at least
partially satisfied by the same input signal(s) 66 without
intervention by the housekeeping CPU190. Generally speak
ing, semaphores facilitate management of resource conten
tion, and may be acquired and released by the action engine to
ensure availability one or more resources on which evaluation
of one or more conditions rely.
0181. In some instances, an event table register 140c-1 in
a chained group of event table registers 140c may attempt to
acquire one of a collection of semaphores which are managed
by the scanner but which will typically be released by the
scanner in response to semaphore release action in a later
event table entry or may be released unilaterally by the house
keeping CPU190. Together with their other input conditions,
Successful acquisition of the semaphore will automatically be
a necessary condition for the execution of any Subsequent
response actions present in Such a chained collection of event
table registers.
0182. In illustrative embodiments, semaphore handling is
based on a test-and-set operation. A semaphore can be con

Apr. 11, 2013

input of the R/S flip-flop. If the semaphore was previously
unset (result of the simultaneous read of the output of the R/S
flip-flop was a logic low), then the set action is considered to
be completed. If the semaphore was previously set, then the
set action is not considered to be successful and actions
dependent on a Successful semaphore set will not be taken.
Unlike other actions, the semaphore get action causes any
Subsequent registers 140c in this chain to be ignored until the
semaphore get is successful (on a future scan). A release of the
semaphore is accomplished by clocking the R input to the
flop. Arbitrated versions of these semaphores may be used to
coordinate the operation of multiple event table scanners
130c (e.g., as described with respect to FIG.9). For example,
an action engine with multiple scanners 130c may use a
simple round robin arbitration scheme.
0183) To see how the event table 112 uses semaphores,
consider three concurrent processes that are involved in set
ting a clocked output (clock on output 0, data on outputs 1-7):
(a) a first process responsible for waiting for a triggering
event, acquiring a semaphore, setting the clock output low,
setting the output value on 1-7, and enabling the second &
third processes; (b) a second process that includes waiting for
the setup time, setting the clock output high, and enabling the
third process; and (c) a third process that includes waiting for
the combined setup and hold times, releasing the semaphore,
and notifying the housekeeping CPU 190. Each of the three
processes is represented by a group of chained registers 140c
in the event table 112. (The semaphore may be used by any
process Wanting to manipulate outputs 0-7, counter 1 and
flag.0, allowing multiple sets of these processes on the event
table 112 to send a clocked output without interfering with
one another.) Assume further that the counter counter 1 has
been set up to count microsecond ticks and is used for timing
the output signals. In this example, the setup and hold time are
both 1 mS on the output signals.
0.184 To begin, the first process acquires a semaphore.
Once it has acquired the semaphore, it clears outputs 0 and
2-7, sets output 1, resets a counter (counter 1) configured to
count timebasepulses, in this case a 1 MHZ timebase, and sets
a flag (flag O) using a series of five registers that are chained
together. The first process may be expressed using the follow
ing SCORETM statements (with comments) and condition/
action pairs (coded as above and in hexadecimal format):

wait for rising edge of input 9 get Semaphore O
clear outputs 0, 2, 3, 4, 5, 6,
set output 1
reset counter1
set flag O

OP ACT
11

C X
O O

3 1 O
1 O
1 O
1 O

3
2
2 2
2 6
2 8

Ox3B08 0000 0x0000 0200

7 # these chained action are
deferred until the scan in which
Semaphore O acquisition succeeds

L. CTR AP OPERAND
1 O OxOOOO OxOOOOO2OO # on rising edge, get Semaphore
1 O OxOOFD OxOOOOOOOO # then, clear outputs 0, 2-7
1 O OxOOO2 OxOOOOOOOO # then, set output 1
1 O OxOOO2 OxOOOOOOOO # then, reset counter|1
1 O OxOOO1 OxOOOOOOOO # then, set flag O

restatement of the condition action pairs
Ox2388 OOFD 0x0000 0000 # given above in hexadecimal format
Ox2288 0002 0x0000 OOOO
Ox2688 0002 0x0000 0000
Ox28A8 0001 0x0000 0000

sidered to be an R/S flip-flop. A set operation involves reading
the output Q of the flop simultaneously with clocking the S

0185. The second process begins once the flag is set. It
then sets an output at a given counter value. The correspond

US 2013/0090745 A1

ing SCORETM statements (with comments) and condition/
action pairs (coded as above and in hexadecimal format) for
the second process are:

wait for flag O
and for counter 1 >= 1000 set output O

Apr. 11, 2013

120C-1 through 120c-in; collectively, co-processors 120c)
coupled to an input bus 102 via a respective input port (re
spectively input ports 158c-1 through 158c-n; collectively

OP ACT C X N S L CTR AP OPERAND
12 O O O O O O O 0x0000 0x00000001 it wait on flag|O)
2 2 1 O 1 O 1

OxC000 0000 0x0000 0001
0x22A9 0001 0x0000 03e3

0186 The third process begins once the flag is set. Once
the given counter reaches a second value, it clears the first flag
and releases the semaphore. The corresponding SCORETM
statements (with comments) and condition/action pairs
(coded as above and in hexadecimal format) for the third
process are:

wait for flag2
and for counter1 >= 2000 clear flag O) and flag(1)
release semaphore O

OP ACT C X

1 0x0001 0x000003e3 # ctr1 >= 1000, set output

input ports 158c). Each co-processor 120c includes a respec
tive event table (respectively event tables 110c-1 through
110c-in; collectively event tables 110c) coupled to a respec
tive scanner (respectively scanners 130C-1 through 130c-in:
collectively scanners 130c). As above, each event table 112
includes multiple entries, each of which represents one or

0x0001 0x000007DO # ctr1 >= 2000, clear flag|O

N S L CTR AP OPERAND
12 O O O O O O O 0x0000 0x00000002 it wait on flag(1)
2 10 1 O O O 1 1
2 12 1 O 1 O 1 O

OxCOOO OOOOOx0000 0002
0x2A89 0001 0x0000 07DO
0x2CA8 00000x0000 0000

0187. Note that only one flag is used to enable the second
and third processes, (b) and (c), because the third process, (c),
is waiting on the counter elapsing the combined setup and
hold times. The semaphore protects the use of the counter and
the flag so that all groups of processes can use the same
counter and flag.
0188 Alternatively, these three separate, concurrently
running processes may written as a single SCORETM state
ment because the timing requirements of the setup-and-hold
times are 1 ms, which is more than enough time for the
housekeeping CPU 190 to act:

wait for rising edge of input 9 get Semaphore O
clear outputs 0, 2, 3, 4, 5, 6, 7
set output 1

reset counter1
wait for counter1 >= 1000 set output O
wait for counter1 >= 2000 release semaphore O

(0189 The housekeeping CPU 190 may replace the first
four-register chain with a single-register chain on comple
tion. On the completion of that second chain, another single
chain entry would be written to execute the third wait and the
semaphore release.
(0190 Action Engines with Multiple Event Table/Scanner
Co-Processors

0191 FIG. 9 shows an action engine 110c that includes
multiple parallel co-processors (respectively, co-processors

0x0000 0x00000000 # ctro D-= 0, rel semaphore(O)

more sets of independent conditions and corresponding
actions.

0.192 The co-processors 120c operate in parallel to
execute the condition/action pairs stored in the event tables
110c with very low latency, e.g., latencies of about 1.6 us or
less. During parallel execution, each scanner 130c compares
the conditions in the event table 112 to input signals 66
received via the input bus 102 and input port 158c and
executes instructions in the eventofa match as described with
respect to FIGS. 6-8. If appropriate, the scanner 130c trans
mits output signals 68 via a respective output port (respec
tively output ports 160c-1 through 160c-in; collectively output
ports 160c) to the output bus 102. The action engine 110c may
also include counters, flag registers, and/or semaphore regis
ters as described above with respect to FIG. 6.
0193 Examples of the action engines described above can
be implemented as a single event table scanner on a single
FPGA (e.g., using HDL code) with a memory large enough to
hold 144c opcodes, or “condition/action' pairs. The scanner
executes the event table by evaluating the conditions sequen
tially. When the scanner finds a satisfied chain of conditions,
it executes the actions and notifies a master CPU, which may
implemented on the same FPGA, as to which register(s) in the
event table is being used for the satisfied condition. The
master CPU reloads the register(s) in question with new op
codes as the process follows the evolution of the real-world
condition. Alternatively, action engines may be implemented
as: a dedicated chip containing event table memories and

US 2013/0090745 A1

scanners embedded in a peripheral component interface
(PCI) card and used in a general-purpose computer, an
embedded processor to decode an event table and run native
instructions instead of placing native op-codes in the co
processor memory; and multiple FPGAs, each of which has a
separate FPGA program to evaluate the conditions at a very
low latency.
0194 Dynamic Environments Employing Machine Vision
Techniques/Equipment
0.195 As noted earlier, control systems according to vari
ous embodiments of the present invention, as well as constitu
ent elements thereof, may have wide applicability for moni
toring and/or controlling a variety of dynamic environments,
particularly those requiring low latency (i.e., significantly fast
response time) and/or low variability latency. One exemplary
application of control systems according to the present inven
tion is given by a dynamic environment in which machine
vision techniques and/or equipment are employed.
0.196 FIG. 10 is a block diagram of a dynamic environ
ment in which machine vision techniques and equipment are
used, together with a control system according to embodi
ments of the present invention for monitoring and controlling
the dynamic environment. The dynamic environment illus
trated in FIG. 10 generally relates to an automated process 10,
in which various robotics equipment 22 as well as machine
vision equipment (collectively equipment 20) may be
employed to facilitate implementation of the automated pro
cess 10, wherein the machine vision equipment may include
one or more image acquisition devices 42 and lighting equip
ment 44. Examples of an automated process 10 for which the
control concepts discussed herein are applicable include, but
are not limited to, counting, tracking, sorting and/or handling
of parts on an assembly line (e.g., for automotive, consumer
goods manufacturing and/or agricultural applications), qual
ity control functions (e.g., automated inspection for defects)
in connection with a manufacturing process, measurement of
position and/or orientation of parts formanipulation by robot
ics equipment, and removing undesirable artifacts from bulk
materials (e.g., food stuffs, agricultural products, etc.).
0197) In FIG. 10, the dynamic environment also includes
various actuators or control devices 30 (in a manner similar to
that shown in FIG. 1) to control the robotics equipment 22, the
lighting equipment 24 and/or the image acquisition device(s)
42. The environment also includes various sensors or input
devices 40 to monitor the automated process 10 and provide
information (e.g., one or more input signals 66) representing
a monitored condition of the environment at a given time. As
shown in FIG. 10, the sensors may include the one or more
image acquisition devices 42 to acquire images relating to the
automated process, as well as one or more other sensors 44
(e.g., temperature, humidity, pressure, light and/or other envi
ronmental sensors; counters; receive queues for information
packets, some of which information packets may be provided
by one or more image acquisition devices or other devices,
etc.), for providing input signals representing monitored con
ditions.

0198 FIG. 10 also shows a control system 100, including
a master processor 190 and an action engine 110 as described
above in connection with various embodiments, to receive
and process one or more input signals 66 representing moni
tored conditions as a function of time so as to provide one or
more output signals 68 to the control devices 30 (which in
turn control one or more of the robotics equipment, the light
ing equipment, and the image acquisition devices). Addition

26
Apr. 11, 2013

ally, the dynamic environment shown in FIG. 10 also may
include animage processing computer 200, communicatively
coupled to the control system 100, to process image informa
tion acquired by the one or more image acquisition devices
and to control the lighting equipment. In embodiments
including the image processing computer 200, at least some
of the information otherwise provided by the one or more
input signals 66 representing monitored conditions of the
dynamic environment may be provided by the image process
ing computer 200 to the control system 100, particularly in
connection with information derived from images acquired
by the one or more image acquisition devices.
0199. In the dynamic environment shown in FIG. 10, the
image acquisition device(s) 42 and the lighting equipment 24
may be particularly employed to implement machine vision
techniques in connection with monitoring and control of the
automated process 10. The term “machine vision very gen
erally refers to analysis of images to extract data for purposes
of controlling a process. Machine vision techniques typically
comprise a sequence of operations involving acquisition of
images using any of a variety of image acquisition devices
(e.g., digital still or video cameras), and in Some cases lenses
and various lighting equipment (which in Some instances may
be particularly designed and configured to provide various
differentiation of certain objects from the general environ
ment to facilitate Subsequent image processing). Image data
provided by one or more image acquisition devices can be in
a variety of formats (e.g., video sequences, views from mul
tiple cameras, or multi-dimensional data, as from a medical
scanner). Acquired images are then processed (e.g., via
execution of various image processing software by an imag
ing processing computer 200 operably coupled to the
machine vision equipment 20 and the control system 100,
and/or one or more other independent/external computing
devices) so as to extract various information from the images,
which extracted information then is used to make decisions in
connection with controlling the automated process.
0200. With respect to various lighting equipment and tech
niques that may be employed for machine vision, two-dimen
sional visible light imaging techniques (using monochro
matic or color light sources) perhaps are most commonly
adopted. However, other Suitable imaging techniques
include, but are not limited to, selective infrared imaging in
which infrared lighting equipment (e.g., sources and/or fil
ters) may be employed, line scan imaging, three-dimensional
imaging of Surfaces, and X-ray imaging. Regarding the image
acquisition devices, a number of form factors, functionalities,
and communication protocols may be employed in Such
devices; for example, in Some instances an image acquisition
device may not have any particular image processing capa
bility, while in other instances image acquisition devices may
be implemented with some degree of image processing func
tionality (e.g., 'Smart' cameras or sensors). Also, various
commercially available image acquisition devices may be
configured to communicate data via any of a variety of inter
faces, such as Ethernet, USB or FireWire connections.
0201 Regarding exemplary image processing techniques
that may be implemented by the master processor 190 of the
control system 100, the image processing computer 200, and/
or one or more other computing/processing devices,
examples of typical techniques include, but are not limited to,
thresholding (converting a grayscale image to black and
white, or using separation based on a grayscale value), seg
mentation, blob extraction, pattern recognition, barcode and

US 2013/0090745 A1

data matrix code reading, optical character recognition, gaug
ing (measuring object dimensions), positioning, edge detec
tion, color analysis, filtering (e.g. morphological filtering)
and template matching (finding, matching, and/or counting
specific patterns).
0202 In FIG. 10, various image information extracted
from acquired images as a result of using any one or more of
the image processing techniques noted above may be
included as part of the overall information represented by one
or more input signals 66 received by the control system 100
from one or more sensors/input devices, and/or provided to
the control system 100 by the image processing computer
200. For example, Such extracted image information may
indicate that a particular object (e.g., a part on an assembly
line) was present in one or more images acquired at a particu
lar time, that a particular position and/or orientation of an
object was detected in one or more images, that a particular
defect was observed in an object present in one or more
images, and the like. Such information extracted from images
may be used alone or in combination with other information
from one or more sensors to represent a monitored condition
of the automated process at a given time, upon which the
control system may be configured to prescribe one or more
particular corresponding actions to be taken in connection
with the automated process 10.

CONCLUSION

0203 While various inventive embodiments have been
described and illustrated herein, those of ordinary skill in the
art will readily envision a variety of other means and/or struc
tures for performing the functions and/or obtaining the results
and/or one or more of the advantages described herein, and
each of such variations and/or modifications, is deemed to be
within the scope of the inventive embodiments described
herein. More generally, those skilled in the art will readily
appreciate that all parameters, dimensions, materials, and
configurations described herein are meant to be exemplary
and that the actual parameters, dimensions, materials, and/or
configurations will depend upon the specific application or
applications for which the inventive teachings is/are used.
Those skilled in the art will recognize, or be able to ascertain
using no more than routine experimentation, many equiva
lents to the specific inventive embodiments described herein.
It is, therefore, to be understood that the foregoing embodi
ments are presented by way of example only and that, within
the scope of the appended claims and equivalents thereto,
inventive embodiments may be practiced otherwise than as
specifically described and claimed. Inventive embodiments
of the present disclosure are directed to each individual fea
ture, system, article, material, kit, and/or method described
herein. In addition, any combination of two or more Such
features, systems, articles, materials, kits, and/or methods, if
Such features, systems, articles, materials, kits, and/or meth
ods are not mutually inconsistent, is included within the
inventive scope of the present disclosure.
0204 The above-described embodiments can be imple
mented in any of numerous ways. For example, the embodi
ments may be implemented using hardware, Software or a
combination thereof. When implemented in software, the
Software code can be executed on any Suitable processor or
collection of processors, whether provided in a single com
puter or distributed among multiple computers.
0205 Further, it should be appreciated that a computer
may be embodied in any of a number of forms, such as a

27
Apr. 11, 2013

rack-mounted computer, a desktop computer, a laptop com
puter, or a tablet computer. Additionally, a computer may be
embedded in a device not generally regarded as a computer
but with Suitable processing capabilities, including a Personal
Digital Assistant (PDA), a smartphone or any other suitable
portable or fixed electronic device.
0206. Also, a computer may have one or more input and
output devices. These devices can be used, among other
things, to present a user interface. Examples of output devices
that can be used to provide a user interface include printers or
display Screens for visual presentation of output and speakers
or other Sound generating devices for audible presentation of
output. Examples of input devices that can be used for a user
interface include keyboards, and pointing devices, such as
mice, touch pads, and digitizing tablets. As another example,
a computer may receive input information through speech
recognition or in other audible format.
0207 Such computers may be interconnected by one or
more networks in any suitable form, including a local area
network or a wide area network, such as an enterprise net
work, and intelligent network (IN) or the Internet. Such net
works may be based on any Suitable technology and may
operate according to any suitable protocol and may include
wireless networks, wired networks or fiber optic networks.
0208. The various methods or processes outlined herein
may be coded as Software that is executable on one or more
processors that employ any one of a variety of operating
systems or platforms. Additionally, such software may be
written using any of a number of suitable programming lan
guages and/or programming or scripting tools, and also may
be compiled as executable machine language code or inter
mediate code that is executed on a framework or virtual
machine.
0209. In this respect, various inventive concepts may be
embodied as a computer readable storage medium (or mul
tiple computer readable storage media) (e.g., a computer
memory, one or more floppy discs, compact discs, optical
discs, magnetic tapes, flash memories, circuit configurations
in Field Programmable Gate Arrays or other semiconductor
devices, or other non-transitory medium or tangible computer
storage medium) encoded with one or more programs that,
when executed on one or more computers or other processors,
perform methods that implement the various embodiments of
the invention discussed above. The computer readable
medium or media can be transportable. Such that the program
or programs stored thereon can be loaded onto one or more
different computers or other processors to implement various
aspects of the present invention as discussed above.
0210. The terms “program” or “software are used herein
in a generic sense to refer to any type of computer code or set
of computer-executable instructions that can be employed to
program a computer or other processor to implement various
aspects of embodiments as discussed above. Additionally, it
should be appreciated that according to one aspect, one or
more computer programs that when executed perform meth
ods of the present invention need not reside on a single com
puter or processor, but may be distributed in a modular fash
ion amongsta number of different computers or processors to
implement various aspects of the present invention.
0211 Computer-executable instructions may be in many
forms, such as program modules, executed by one or more
computers or other devices. Generally, program modules
include routines, programs, objects, components, data struc
tures, etc. that perform particular tasks or implement particu

US 2013/0090745 A1

lar abstract data types. Typically the functionality of the pro
gram modules may be combined or distributed as desired in
various embodiments.
0212. Also, data structures may be stored in computer
readable media in any suitable form. For simplicity of illus
tration, data structures may be shown to have fields that are
related through location in the data structure. Such relation
ships may likewise beachieved by assigning storage for the
fields with locations in a computer-readable medium that
convey relationship between the fields. However, any suitable
mechanism may be used to establish a relationship between
information in fields of a data structure, including through the
use of pointers, tags or other mechanisms that establish rela
tionship between data elements.
0213 Also, various inventive concepts may be embodied
as one or more methods, of which an example has been
provided. The acts performed as part of the method may be
ordered in any Suitable way. Accordingly, embodiments may
be constructed in which acts are performed in an order dif
ferent than illustrated, which may include performing some
acts simultaneously, even though shown as sequential acts in
illustrative embodiments.

0214 All definitions, as defined and used herein, should
be understood to control over dictionary definitions, defini
tions in documents incorporated by reference, and/or ordi
nary meanings of the defined terms.
0215. The indefinite articles“a” and “an as used herein in
the specification and in the claims, unless clearly indicated to
the contrary, should be understood to mean “at least one.”
0216. The phrase “and/or as used herein in the specifica
tion and in the claims, should be understood to mean “either
or both of the elements so conjoined, i.e., elements that are
conjunctively present in Some cases and disjunctively present
in other cases. Multiple elements listed with “and/or should
be construed in the same fashion, i.e., "one or more' of the
elements so conjoined. Other elements may optionally be
present other than the elements specifically identified by the
“and/or clause, whether related or unrelated to those ele
ments specifically identified. Thus, as a non-limiting
example, a reference to “A and/or B, when used in conjunc
tion with open-ended language Such as “comprising can
refer, in one embodiment, to A only (optionally including
elements other than B); in another embodiment, to B only
(optionally including elements other than A); in yet another
embodiment, to both A and B (optionally including other
elements); etc.
0217. As used herein in the specification and in the claims,
“or should be understood to have the same meaning as
“and/or as defined above. For example, when separating
items in a list, 'or' or “and/or shall be interpreted as being
inclusive, i.e., the inclusion of at least one, but also including
more than one, of a number or list of elements, and, option
ally, additional unlisted items. Only terms clearly indicated to
the contrary, such as “only one of or “exactly one of” or,
when used in the claims, “consisting of will refer to the
inclusion of exactly one element of a number or list of ele
ments. In general, the term 'or' as used herein shall only be
interpreted as indicating exclusive alternatives (i.e. “one or
the other but not both') when preceded by terms of exclusiv
ity, such as “either,” “one of “only one of or “exactly one
of “Consisting essentially of when used in the claims, shall
have its ordinary meaning as used in the field of patent law.
0218. As used herein in the specification and in the claims,
the phrase “at least one.” in reference to a list of one or more

28
Apr. 11, 2013

elements, should be understood to mean at least one element
selected from any one or more of the elements in the list of
elements, but not necessarily including at least one of each
and every element specifically listed within the list of ele
ments and not excluding any combinations of elements in the
list of elements. This definition also allows that elements may
optionally be present other than the elements specifically
identified within the list of elements to which the phrase “at
least one' refers, whether related or unrelated to those ele
ments specifically identified. Thus, as a non-limiting
example, “at least one of A and B (or, equivalently, “at least
one of A or B.’ or, equivalently “at least one of A and/or B)
can refer, in one embodiment, to at least one, optionally
including more than one, A, with no B present (and optionally
including elements other than B); in another embodiment, to
at least one, optionally including more than one, B, with no A
present (and optionally including elements other than A); in
yet another embodiment, to at least one, optionally including
more than one, A, and at least one, optionally including more
than one, B (and optionally including other elements); etc.
0219. In the claims, as well as in the specification above,
all transitional phrases such as “comprising.” “including.”
“carrying.” “having.” “containing.” “involving,” “holding.”
“composed of and the like are to be understood to be open
ended, i.e., to mean including but not limited to. Only the
transitional phrases "consisting of and "consisting essen
tially of shall be closed or semi-closed transitional phrases,
respectively, as set forth in the United States Patent Office
Manual of Patent Examining Procedures, Section 2111.03.

1. An action engine to evaluate a plurality of conditions of
a dynamic environment, the action engine comprising:

a memory to store at least one event table, the at least one
event table being structured as a plurality of Successive
contiguous memory locations, wherein each memory
location of the plurality of Successive contiguous
memory locations is configured to store contents repre
senting a particular condition of the plurality of condi
tions to be evaluated by the action engine and a corre
sponding action to be taken if the particular condition is
satisfied; and

at least one scanner, communicatively coupled to the
memory so as to access the at least one event table, the at
least one scanner comprising processing circuitry con
figured to:
sequentially process the contents of the respective
memory locations of the at least one event table to
evaluate the plurality of conditions represented in the
contents;

generate a notification signal for each condition of the
plurality of conditions that is satisfied upon evalua
tion; and

generate control information representing at least one
action to be taken in the dynamic environment if any
of the plurality of conditions is satisfied upon evalu
ation.

2. The action engine of claim 1, wherein:
A) the dynamic environment includes:
A1) equipment to implement an automated process;
A2) at least one control device to control the equipment

in response to at least one control signal; and
A3) at least one sensor to monitor the automated process

and generate at least one input signal representing a
monitored condition of the plurality of conditions:
and

US 2013/0090745 A1

B) the at least one scanner of the action engine:
B1) receives the at least one input signal representing the

monitored condition;
B2) processes the at least one input signal So as to deter
mine if at least a first condition represented by the
contents of at least a first memory location of the event
table is satisfied; and

B3) provides at least first control information represent
ing at least one first action to be taken corresponding
to the at least one first condition if the monitored
condition matches the at least one first condition.

3. A control system, comprising:
the action engine of claim 2; and
a master processor communicatively coupled to the action

engine, the master processor configured to, upon execu
tion of processor-executable instructions stored in the
master processor:
provide to the action engine the contents of the respec

tive memory locations of the at least one event table:
and

receive from the action engine a notification signal for
each condition of the plurality of conditions that is
satisfied upon evaluation.

4. A machine vision system, comprising:
the action engine of claim 2:
the equipment to implement the automated process in A1);
the at least one control device in A2) to control the equip

ment; and
the at least one sensor to monitor the automated process,
wherein:
the equipment to implement the automated process com

prises:
robotics equipment; and
lighting equipment to provide controlled ambient light

ing for the automated process;
the at least one control device includes a plurality of actua

tors coupled to the robotics equipment and/or the light
ing equipment to control the robotics equipment and/or
the lighting equipment;

the at least one sensor comprises at least one image acqui
sition device to acquire at least one image of at least a
portion of the automated process; and

the action engine is communicatively coupled to the at least
one control device and the at least one sensor, to receive
the at least one input signal generated by the at least one
sensor and to control the plurality of actuators and/or the
at least one image acquisition device based at least in
part on at least the first control information generated in
B3).

5. The action engine of claim 1, further comprising:
at least one input interface, communicatively coupled to

the at least one scanner, to receive at least one input
signal representing a monitored condition of the plural
ity of conditions of the dynamic environment,

wherein:
the processing circuitry of the at least one scanner com

pares a value of the at least one input signal to at least a
first portion of the contents of at least one memory
location of the at least one event table, wherein the first
portion of the contents of each memory location repre
sents the particular condition to be evaluated; and

if the value of the at least one input signal matches at least
the first portion of the contents of the at least one
memory location and representing the particular condi

29
Apr. 11, 2013

tion to be evaluated, the processing circuitry of the at
least one scanner processes a second portion of the con
tents of the at least one memory location representing
the corresponding action to be taken in the dynamic
environment so as to provide at least Some of the control
information.

6. The action engine of claim 5, wherein:
the at least one event table includes a fixed maximum

number of Successive contiguous memory locations;
and

the maximum number of memory locations is based at least
in part on a maximum permissible latency defined by a
required response time for providing the control infor
mation in the dynamic environment if any condition of
the plurality of conditions is satisfied.

7. The action engine of claim 5, wherein the processing
circuitry of the Scanner comprises:

comparator logic circuitry to compare the value of the at
least one input signal to at least the first portion of the
contents of the at least one memory location;

action logic circuitry to process the second portion of the
contents of the at least one memory location and repre
senting the corresponding action to be taken, and pro
vide the at least some of the control information;

sequencing logic circuitry to control the at least one event
table so as to sequentially provide the contents of the
respective memory locations to the comparator logic
circuitry and the action logic circuitry; and

event table write arbitration logic circuitry to control the at
least one event table so as to write new contents to at
least one memory register of the at least one event table.

8. The action engine of claim 5, wherein:
the contents of each memory location of the plurality of

Successive contiguous memory locations includes a con
dition/action pair, the condition/action pair including a
first number of bits constituting the first portion and
having respective values representing a particular con
dition of the plurality of conditions to be evaluated, and
a second number of bits constituting the second portion
and having respective values representing the corre
sponding action to be taken if the particular condition is
satisfied; and

the processing circuitry of the Scanner comprises:
a comparator coupled to the at least one memory loca

tion to compare the respective values of the first num
ber of bits representing the particular condition and
the value of the at least one input signal representing
the monitored condition of the plurality of conditions,
the comparator further configured to generate a match
signal if the particular condition matches the moni
tored condition; and

a gate, coupled to the at least one memory location and
coupled to the comparator So as to receive the match
signal, to output the second number of bits having
respective values representing the corresponding
action to be taken if the match signal is asserted by the
comparator.

9. The action engine of claim 5, further comprising at least
one semaphore register, communicatively coupled to the at
least one scanner, to store at least one semaphore, wherein:

the at least one semaphore facilitates management of
resource contention; and

the at least one scanner acquires and releases the at least
one semaphore to ensure availability of at least one

US 2013/0090745 A1

resource on which evaluation of at least one condition of
the plurality of conditions relies.

10. The action engine of claim 5, wherein:
the at least one input signal includes a plurality of input

signals, wherein respective values of the plurality of
input signals at a given time represent the monitored
condition of the plurality of conditions; and

the at least one input interface is configured to receive the
plurality of input signals.

11. The action engine of claim 10, wherein the respective
values of the plurality of input signals comprise at least one
of:

a plurality of real-time values representing the monitored
condition;

a plurality of latched values representing the monitored
condition;

at least one multi-bit digital value representing the moni
tored condition;

a plurality of binary values respectively representing dif
ferent sensed parameters constituting the monitored
condition; and

at least one binary value representing at least one sema
phore.

12. The action engine of claim 5, wherein the at least one
input interface further is configured to receive the contents of
each memory location of the event table from an external
device that receives the notification signal generated by the
processing circuitry of the at least one scanner.

13. The action engine of claim 5, further comprising:
at least one output interface, communicatively coupled to

the at least one scanner, to provide the notification signal
for each condition of the plurality of conditions that is
satisfied upon evaluation, and to further provide the at
least some of the control information based at least in
part on the second portion of the contents of the at least
one memory location representing the corresponding
action to be taken in the dynamic environment.

14. The action engine of claim 13, wherein the correspond
ing action to be taken in the dynamic environment, as repre
sented by the at least some of the control information,
includes at least one of:

sending at least one data packet to at least one control
device in the dynamic environment;

setting and/or clearing at least one flag bit;
setting and/or clearing at least one output bit;
setting and/or clearing at least one semaphore; and
latching and/or resetting at least one counter.
15. The action engine of claim 5, wherein:
each memory location of the at least one event table

includes at least one memory register having a first num
ber of bits; and

the first portion of the contents of each memory location
representing the particular condition to be evaluated
includes a second number of bits smaller than the first
number, wherein at least some of the second number of
bits are nonadjacent bits in the at least one memory
register.

16. The action engine of claim 15, wherein:
the second portion of the contents of each memory location

representing the corresponding action to be taken in the
dynamic environment includes a third number of bits
Smaller than the first number, wherein at least some of
the third number of bits are nonadjacent bits in the at
least one memory register.

30
Apr. 11, 2013

17. The action engine of claim 5, wherein:
the first portion of the contents of a first memory location of

the plurality of successive contiguous memory locations
includes a chain bit to link the first memory location to a
next memory location of the plurality of successive con
tiguous memory locations, the first portion of the con
tents of the first memory location representing a first
condition to be evaluated:

the second portion of the contents of the first memory
location representing a first corresponding action to be
taken in the dynamic environment includes a first action
operand indicating that no action is to be taken in the
dynamic environment;

the first portion of the contents of the next memory location
represents a second condition to be evaluated; and

the second portion of the contents of the next memory
location includes a second action operand representing
at least one action to be taken in the dynamic environ
ment if both the first condition and the second condition
are satisfied.

18. The action engine of claim 5, wherein:
each memory location of the at least one event table

includes at least one memory register having a first num
ber of bits:

the first number of bits are partitioned as an op-code, an
action parameter, and a condition operand; and

the op-code comprises at least a condition type code and an
action operand,

wherein:
the condition type code and the condition operand consti

tute at least part of the first portion of the contents of each
memory location representing the particular condition
to be evaluated; and

the action operand and the action parameter constitute at
least part of the second portion of the contents of each
memory location representing the corresponding action
to be taken in the dynamic environment.

19. The action engine of claim 18, wherein:
the first number of bits for the at least one memory register

is 64 bits:
the op-code is 16 bits:
the action parameter is 16 bits; and
the condition operand is 32 bits.
20. The action engine of claim 19, wherein the at least one

event table includes 128 memory locations.
21. The action engine of claim 18, wherein the op-code

further comprises:
a counter field; and
at least one bit relating to processing of the condition type

code.
22. The action engine of claim 21, wherein the at least one

bit relating to processing of the condition type code includes
at least one of:

a chain bit;
an XOR bit;
a notify bit;
a satisfied bit; and
a last condition bit.
23. A method for evaluating a plurality of conditions of a

dynamic environment, the method comprising:
A) sequentially processing contents of respective memory

locations of at least one event table stored in a memory,
the at least one event table being structured as a plurality
of Successive contiguous memory locations, wherein

US 2013/0090745 A1

each memory location of the plurality of successive con
tiguous memory locations is configured to store a con
dition/action pair representing a particular condition of
the plurality of conditions to be evaluated and a corre
sponding action to be taken if the particular condition is
satisfied;

B) generating a notification signal for each condition of the
plurality of conditions that is satisfied upon evaluation in
A); and

C) transmitting, to at least one control device so as to
control at least one piece of equipment in the dynamic
environment, control information representing at least
one action to be taken in the dynamic environment if any
of the plurality of conditions is satisfied upon evaluation
in A).

24. The method of claim 23, wherein A) comprises:
A1) receiving at least one input signal representing a moni

tored condition of the plurality of conditions of the
dynamic environment;

A2) comparing a value of the at least one input signal to at
least a first portion of the contents of at least one memory
location of the at least one event table, wherein the first
portion of the contents of each memory location repre
sents the particular condition to be evaluated; and

A3) if the value of the at least one input signal matches at
least the first portion of the contents of the at least one
memory location and representing the particular condi
tion to be evaluated, processing a second portion of the
contents of the at least one memory location represent
ing the corresponding action to be taken in the dynamic
environment so as to provide at least some of the control
information transmitted in C).

25. The method of claim 24, further comprising:
acquiring and releasing at least one semaphore to ensure

availability of at least one resource on which A) relies,
wherein the at least one semaphore facilitates manage
ment of resource contention.

26. The method of claim 24, wherein:
the at least one input signal includes a plurality of input

signals, wherein respective values of the plurality of
input signals at a given time represent the monitored
condition of the plurality of conditions.

27. The method of claim 26, wherein the respective values
of the plurality of input signals comprise at least one of:

a plurality of real-time values representing the monitored
condition;

a plurality of latched values representing the monitored
condition;

at least one multi-bit digital value representing the moni
tored condition;

a plurality of binary values respectively representing dif
ferent sensed parameters constituting the monitored
condition; and

at least one binary value representing at least one sema
phore.

28. The method of claim 23, further comprising:
receiving the contents of each memory location of the event

table from an external device that receives the notifica
tion signal generated in B).

29. The method of claim 23, wherein C) comprises at least
one of:

31
Apr. 11, 2013

sending at least one data packet to the at least one control
device;

setting and/or clearing at least one flag bit;
setting and/or clearing at least one output bit;
setting and/or clearing at least one semaphore; and
latching and/or resetting at least one counter.
30. The method of claim 23, wherein:
each memory location of the at least one event table

includes at least one memory register having a first num
ber of bits; and

the first portion of the contents of each memory location
representing the particular condition to be evaluated
includes a second number of bits smaller than the first
number, wherein at least some of the second number of
bits are nonadjacent bits in the at least one memory
register.

31. The method of claim 30, wherein:
the second portion of the contents of each memory location

representing the corresponding action to be taken in the
dynamic environment includes a third number of bits
Smaller than the first number, wherein at least some of
the third number of bits are nonadjacent bits in the at
least one memory register.

32. The method of claim 23, wherein:
the first portion of the contents of a first memory location of

the plurality of successive contiguous memory locations
includes a chain bit to link the first memory location to a
next memory location of the plurality of successive con
tiguous memory locations, the first portion of the con
tents of the first memory location representing a first
condition to be evaluated:

the second portion of the contents of the first memory
location representing a first corresponding action to be
taken in the dynamic environment includes a first action
operand indicating that no action is to be taken in the
dynamic environment;

the first portion of the contents of the next memory location
represents a second condition to be evaluated; and

the second portion of the contents of the next memory
location includes a second action operand representing
at least one action to be taken in the dynamic environ
ment if both the first condition and the second condition
are satisfied.

33. The method of claim 23, wherein:
each memory location of the at least one event table

includes at least one memory register having a first num
ber of bits:

the first number of bits are partitioned as an op-code, an
action parameter, and a condition operand; and

the op-code comprises at least a condition type code and an
action operand,

wherein:
the condition type code and the condition operand consti

tute at least part of the first portion of the contents of each
memory location representing the particular condition
to be evaluated; and

the action operand and the action parameter constitute at
least part of the second portion of the contents of each
memory location representing the corresponding action
to be taken in the dynamic environment.

k k k k k

