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SYSTEM AND/OR METHOD FOR DIRECTED
AIRCRAFT PERCEPTION

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of U.S. applica-
tion Ser. No. 18/126,299, filed 24 Mar. 2023, which is
incorporated herein in its entirety by this reference.

[0002] This application related to U.S. application Ser. No.
17/500,358, filed 13 Oct. 2021, which claims the benefit of
U.S. Provisional Application No. 63/090,898, filed 13 Oct.
2020, which is incorporated herein in its entirety by this
reference.

TECHNICAL FIELD

[0003] This invention relates generally to the aviation
field, and more specifically to a new and useful perception
system and/or method in the aviation field.

BACKGROUND

[0004] Aircraft pilots are frequently expected to identify
traffic, or confirm a visual on objects, in proximity to their
flightpath at the request of Air Traffic Control (ATC). Even
with the assistance of ATC, pilots commonly fail to identify
nearby traffic (e.g., identification accuracy among pilots, in
general, is about 50%), regularly resulting in air traffic being
rerouted to avoid collisions. Some aircraft are equipped with
ADS-B systems which provide a position estimate for
aircrafts in the surrounding airspace. In general aviation,
ADS-B position estimates are not relied upon as a source of
truth for aircraft positions, as they are sometimes inaccurate
(e.g., reliant on the intrinsic localization of each individual
aircraft, which can be sensitive to onboard sensing capabili-
ties, GPS/GNSS availability, inertial sensing drift, etc.;
typical ADS-B accuracy is about 95%). Additionally,
ADS-B systems are not equipped on all aircrafts, meaning
ADS-B data may be incomplete (missing estimates for some
aircrafts/objects that a pilot may be requested to identify).

[0005] Thus, there is a need in the aviation field to create
a new and useful system and/or method for directed aircraft
perception. This invention provides such a new and useful
system and/or method.

BRIEF DESCRIPTION OF THE FIGURES

[0006] FIG. 1 is a schematic representation of a variant of
the system.

[0007] FIG. 2 is a diagrammatic representation of a variant
of the method.

[0008] FIG. 3 is a diagrammatic representation of a variant
of the method.

[0009] FIG. 4 is a diagrammatic representation of an

example of training an ASR model in a variant of the
method.

[0010] FIG. 5 is a diagrammatic representation of an
example of training a language model in a variant of the
method.

[0011] FIG. 6 is a diagrammatic representation of an
example of training a Question/Answer model in a variant of
the method.

[0012] FIG. 7 is a schematic representation of an example
of the system.
[0013] FIG. 8 is a graphical representation of an example

of'a domain expert evaluation tool in a variant of the method.
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[0014] FIG.9 is a diagrammatic representation of a variant
of the method.

[0015] FIGS. 10A-D are diagrammatic representations of
a first, second, third, and fourth variant of the system,
respectively.

[0016] FIGS. 11A-C are first, second, and third examples
of tree-based query structures, respectively.

[0017] FIG. 12 is a diagrammatic representation of a
variant of the system and/or method.

[0018] FIG. 13 is a schematic representation of a variant
of the system.
[0019] FIG. 14 is a schematic representation of a variant
of the system.
[0020] FIG. 15 is a schematic representation of a variant
of the system.
[0021] FIG. 16 is a diagrammatic flow chart representation

of a variant of the method.

[0022] FIG. 17 is a schematic representation of a variant
of the system.
[0023] FIG. 18 is a diagrammatic flow chart representation

of a variant of the method.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

[0024] The following description of the preferred embodi-
ments of the invention is not intended to limit the invention
to these preferred embodiments, but rather to enable any
person skilled in the art to make and use this invention.

1. Overview

1.1 Semantic Parsing

[0025] The semantic parsing method, an example of which
is shown in FIG. 2, can include performing inference using
the system S200; and can optionally include training the
system components S100. The method functions to auto-
matically interpret flight commands from a stream of air
traffic control (ATC) radio communications. The method can
additionally or alternatively function to train and/or update
a natural language processing system based on ATC com-
munications. Additionally, the method can include or be
used in conjunction with collision avoidance and/or directed
perception for traffic detection associated therewith.

[0026] The performing inference S200 can include: at an
aircraft, receiving an audio utterance from air traffic control
S210, converting the audio utterance into a predetermined
format S215, determining commands using a question-and-
answer model S240, and optionally controlling the aircraft
based on the commands S250 (example shown in FIG. 3).
The method functions to automatically interpret flight com-
mands from the air traffic control (ATC) stream. The flight
commands can be: automatically used to control aircraft
flight; presented to a user (e.g., pilot, a remote teleoperator);
relayed to an auto-pilot system in response to a user (e.g.,
pilot) confirmation; and/or otherwise used.

[0027] In an illustrative example, the method can receive
ATC audio stream, convert the ATC audio stream to ATC
text, and provide the ATC text (as the reference text) and a
predetermined set of queries (each associated with a differ-
ent flight command parameter) to an ATC-tuned question
and answer model (e.g., ATC-tuned BERT), which analyzes
an ATC text for the query answers. The query answers (e.g.,
responses of the question and answer model) can then be
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used to select follow-up queries and/or fill out a command
parameter value, which can be used for direct or indirect
aircraft control. The ATC audio stream can be converted to
the ATC text using an ATC-tuned integrated sentence bound-
ary detection and automatic speech recognition model
(SBD/ASR model) and an ATC-tuned language model,
wherein an utterance hypotheses (e.g., a sentence hypoth-
esis, utterance by an individual speaker, etc.) can be selected
for inclusion in the ATC text based on the joint score from
the SBD/ASR model and the language model.

[0028] S200 can be performed using a semantic parsing
system 100 including a Speech-to-Text module and a ques-
tion and answer (Q/A) module (e.g., cooperatively forming
a semantic parser). The system functions to interpret audio
air traffic control (ATC) audio into flight commands, and can
optionally control the aircraft based on the set of flight
commands.

[0029] The semantic parsing system 100 is preferably
mounted to, installed on, integrated into, and/or configured
to operate with any suitable vehicle (e.g., the semantic
parsing system can include the vehicle). Preferably, the
vehicle is an aircraft, but can alternately be a watercraft,
land-based vehicle, spacecraft, and/or any other suitable
vehicle. The semantic parsing system can be integrated with
any suitable aircraft, such as a rotorcraft (e.g., helicopter,
multi-copter), fixed-wing aircraft (e.g., airplane), VIOL,
STOL, lighter-than-air aircraft, multi-copter, and/or any
other suitable aircraft. However, the vehicle can be an
autonomous aircraft, unmanned aircraft (UAV), manned
aircraft (e.g., with a pilot, with an unskilled operator execut-
ing primary aircraft control), semi-autonomous aircraft, and/
or any other suitable aircraft. Hereinafter, the term ‘vehicle’
can refer to any suitable aircraft, and the term ‘aircraft’ can
likewise refer to any other suitable vehicle.

[0030] The semantic parsing system is preferably
equipped on an autonomous aircraft, which is configured to
control the aircraft according to a set of flight commands
using a flight processing system without user (e.g., pilot)
intervention. Alternatively, the semantic parsing system can
be equipped on a semi-autonomous vehicle and/or human-
operated vehicle as a flight aid. In a first variant, the
semantic parsing system can display ATC commands to a
user (e.g., pilot) and/or relay ATC commands to an auto-pilot
system in response to a user (e.g., pilot) confirmation.
[0031] The term “tuned,” as referenced in regard to neural
networks, language models, or otherwise, can be understood
to relate to tuning (e.g., adjusting) parameters (e.g., hyper-
parameters, training parameters, variables, etc.) using train-
ing data. Accordingly, an ATC-tuned network can be under-
stood as having parameters tuned based on ATC audio
and/or ATC-specific semantic training data (as opposed to a
network dedicated to a specific radio frequency band).
[0032] The term “traffic advisory” as utilized herein can
refer to the term traffic advisory as relied upon by FAA,
ATC, and/or general aviation guidelines. Additionally or
alternatively, the term traffic advisory can refer to any
suitable aircraft communications which pertain to air traffic,
which can be used to inform/direct collision avoidance (e.g.,
even in cases where the ego aircraft is not specifically
requested/required to identify said traffic). Accordingly, traf-
fic advisories can be determined from ATC, communications
of other aircraft on the same radio channel, communications
intended for the ego aircraft (e.g., where the aircraft is the
intended recipient), communications intended for other air-
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craft (e.g., where the aircraft is not the intended recipient),
automated collision avoidance systems (e.g., TCAS, ACAS,
remote collision avoidance/monitoring systems, etc.; which
may be based on ground-based radar and transponder relays,
space-based GPS, etc.), and/or any other suitable commu-
nications, advisories, and/or alerts. It is understood that, in
some variants, the term traffic advisory as utilized herein can
be interchangeably referenced with “traffic alert,” “traffic
communication,” “aircraft advisory,” and/or other like
terms. However, the term “traffic advisory” can be otherwise
suitably relied upon or referenced herein.

[0033] The term “negative contact” as utilized herein can
refer to a failure to identify, perceive, locate, and/or detect an
object/aircraft. For example, negative contact can refer to a
lack of visual or other contact (e.g., transponder contact)
with an adjacent aircraft (e.g., an aircraft associated with a
traffic alert). As a second example, negative contact can be
a term used by pilots to inform ATC that the previously
issued traffic is not in sight (e.g., which may be followed by
a request for the controller to provide assistance in avoiding
the traffic). In a third example, the term negative contact as
relied upon by FAA, ATC, and/or general aviation guide-
lines. However, the term “negative contact” can be other-
wise suitably relied upon or referenced herein.

[0034] Though the systems and/or methods herein are
addressed in reference to aircraft, it is understood that, in
some variants, these systems, methods, and/or elements
thereof can be applied to land-based vehicles, taxiing air-
craft, and the like. Accordingly, in some variants, the term
“aircraft” as referenced herein can interchangeably refer to
a vehicle, automobile, fixed-wing aircraft, rotorcraft, water-
craft, and/or any other suitable vehicle(s), and/or can be
otherwise suitably referenced.

1.2 Directed Aircraft Perception

[0035] In variants, the perception system can use various
sensors to detect other aircraft and/or objects in the vicinity
in order to avoid collisions. In some cases, sensors (for
example radar, cameras, or directional radio receivers) are
arranged in an array. This may be because a single sensor’s
field of view is smaller than the overall sector of space in
which traffic needs to be detected (for example a camera
with a particular lens and image sensor resolution), or
because an individual sensor cannot distinguish direction
itself (for example a directional radio receiver) and which
specific sensor detects traffic is indicative of the bearing to
that traffic. Some detection methods (for example, computer
vision using a camera or radar target detection) may utilize
large amounts of signal processing. For example, computer
vision may use a deep neural network detection method that
requires teraflops worth of computation to detect traffic from
images in a video stream. Variants can reduce the compu-
tational effort of the traffic detection system by directing its
attention to a particular sector of airspace and/or sampling
region of perception data. In variants, this direction can be
based on NLP capabilities (e.g., semantic parsing of ATC
communications) and/or auxiliary data sources (e.g., a low
resolution, onboard inputs such as from a transponder, radar,
and/or directional radio receiver; historical traffic data, etc.).
[0036] In a nominal operational mode, a traffic detection
system can process sensor inputs from the full sensor array,
which covers a wide sector around the aircraft. In the
nominal operational mode, sensor inputs can be processed
‘coarsely’ in order to operate with available compute
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resources. For example, the rate at which the whole array is
processed might be relatively low, or the sensor input data
(for example from a camera) might be downsampled to a
lower spatial resolution. The detection system can search for
any traffic at any range in the coverage sectors, which
includes many classes of aircraft that may appear at many
apparent sizes depending on their range (e.g., a distant large
jet may be perceived as apparently similar to a closer light
aircraft, for example).

[0037] When a communication is received on the radio
from air traffic control, the semantic parsing system 100 can
process the audio into a semantic interpretation (e.g., via
NLP). If the received communication pertains to traffic (for
example, “traffic, one o’clock, 5 miles, traffic is a 737”), this
information can be passed to the traffic detection system as
a traffic advisory. The traffic detection system then increases
its performance based on the information provided: it can
process the sector of the array covering that bearing at higher
rate or with higher resolution, reducing rate or resolution in
the other array sectors where the presence of traffic is less of
a risk. A priori knowledge about the detection profile of a
737 at a range of 5 miles (for example, its geometry and
apparent size) can also improve the detection performance,
for example by using a particular model trained on 737
detection and using a known size template for that range.
[0038] As an example, traffic communications received
from ATC may indicate an object identifier (e.g., call sign),
estimated/expected (ego-relative) position of aircraft/objects
(e.g., “two ‘o clock; two thousand feet above”), an object
class (e.g., large aircraft class, such as a 737, or light aircraft
such as a Cessna 172, etc.), and/or other distinguishing
information or object characteristics (e.g., Airline, etc.).

1.3 Examples

[0039] In a first set of variants, a method for air traffic
control (ATC)-directed collision avoidance on an aircraft
includes: receiving an air traffic control (ATC) audio signal
from a communication system; determining an utterance
hypothesis from the ATC audio signal with automatic speech
recognition (ASR); autonomously determining a traffic advi-
sory by querying the utterance hypothesis with a pre-trained
neural network model based on the utterance hypothesis, the
traffic advisory comprising an estimated ego-relative posi-
tion of an object; locating the object associated with the
traffic advisory, comprising: based on aircraft perception
data, performing an extended range search with a pretrained
classifier, the extended range search directed based on the
estimated ego-relative position; and performing an action
based on the identification of the object.

[0040] In some examples, performing the action can
include controlling the aircraft based on the object. In some
examples, performing the action can include reporting nega-
tive contact (e.g., via an ATC radio) and/or determining a
resolution advisory (e.g., automatically generating a resolu-
tion advisory; onboard the aircraft, remotely, etc.). In some
examples, the aircraft perception data comprises a set of
camera images collected onboard the aircraft. In some
examples, the extended range search is directed by restrict-
ing an image pixel search space within the set of camera
images based on a proximity of the estimated ego-relative
position. In some examples, the method further includes
refining the extended range search based on a set of histori-
cal traffic data. In some examples, the method further
includes refining the extended range search based on aircraft
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position data from an Automatic Dependent Surveillance-
Broadcast (ADS-B). In some examples, a detection range of
the extended range search is between 2 and 5 nautical miles
(e.g., which may advantageously improve detection accu-
racy for aircraft which may not be identified during a coarse,
closer-range search). In some examples, the object com-
prises a second aircraft. In some examples, determining the
utterance hypothesis from the ATC audio signal includes:
with an integrated ASR and sentence boundary detection
(SBD) module, generating a set of linguistic hypotheses
based on the ATC audio signal; using an ATC-tuned lan-
guage model, determining a respective language score for
each linguistic hypothesis of the set of linguistic hypotheses;
and determining the utterance hypothesis from the set of the
linguistic hypotheses based on the respective language
scores. In some examples, the traffic advisory is determined
according to a sequence of the natural language queries.
[0041] In a second set of variants, nonexclusive with the
first, a method for vehicle collision avoidance includes:
receiving an audio signal; determining an utterance hypoth-
esis for the audio signal; autonomously determining a traffic
alert based on the utterance hypothesis; in response to
determination of the traffic alert, performing an extended-
range search with a pretrained classifier using vehicle per-
ception data; based on the extended range search, identify-
ing an object associated with the traffic alert; and
determining a vehicle command based on the identification
of the object.

[0042] In some examples, the vehicle comprises an air-
craft and the object comprises a second aircraft, wherein the
traffic alert comprises a traffic advisory from air traffic
control (ATC). In some examples, the traffic alert comprises
a position estimate for the object. In some examples, the
method further includes automatically determining a reso-
Iution advisory, wherein the vehicle command is associated
with the resolution advisory. In some examples, the
extended range search is directed by restricting a search
space within the set of camera images based on an estimated
position of the object. In some examples, the estimated
position of the object is based on aircraft position data from
an Automatic Dependent Surveillance-Broadcast (ADS-B).
In some examples, the method further includes refining the
extended range search based on historical traffic data.

2. Benefits

[0043] Variations of the technology can afford several
benefits and/or advantages.

[0044] First, variations of this technology can enable
communication-directed vehicle perception (e.g., based on
ATC communications), which can improve classification
accuracy and/or extend the range of vehicle perception in an
object (traffic) detection, collision avoidance, and/or navi-
gational context (e.g., for navigation relative to terrain or
terrestrial objects/structures, etc.). Additionally, such vari-
ants can improve the processing efficiency of object (traffic)
detection and/or collision avoidance. For example, granular
searches for objects (such as other aircraft in proximity to
the flightpath) and/or high processing bandwidth searches
can be performed in response to specific ATC communica-
tions or requests (e.g., discretely, discontinuously, etc.; as
opposed to a continuous, coarser object detection routine
which may be used to facilitate emergency collision avoid-
ance relative to objects in close proximity to the aircraft,
which may utilize less compute). Additionally, search spaces
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of granular and/or high processing bandwidth searches (e.g.,
extended range searches with a range between 2 and 5
nautical miles) can be restricted and/or refined based on ATC
communications and/or other data sources (e.g., historical
traffic patterns, Automatic Dependent Surveillance-Broad-
cast [ADS-B] data, etc.). However, variations of this tech-
nology can otherwise enable communication-directed
vehicle perception.

[0045] Second, variants can partially or fully automate
identification/classification of surrounding air traffic, or oth-
erwise assist pilots in traffic detection, which may improve
detection accuracy and thus reduce the frequency of ATC
intervention to reroute traffic (e.g., in cases where surround-
ing traffic cannot be identified). Additionally, variants can
partially or fully automate aircraft/pilot actions in the
response to ATC requests (e.g., confirming identification,
determining a resolution advisory, etc.).

[0046] Third, variants can confer increased semantic pars-
ing accuracy over conventional systems by utilizing a mul-
tiple-query (or repeated question-and-answer) approach, for
example by neural network (e.g., BERT), since existing deep
neural network models have high intrinsic accuracy in
responding to these types of questions.

[0047] Fourth, variations of this technology utilizing a
multiple-query approach which asks natural language ques-
tions (e.g., “message intended for DAL456?”; “topics?”;
“heading values?”; etc.) of a neural network can improve the
interpretability and/or auditability of the semantic parser. In
such variants, a specific module/model/query of the seman-
tic parsing system can be identified as a point of failure when
a user rejects a command, which can be used to further
train/improve the semantic parsing system. In some variants,
the multi-query approach can additionally enable portions of
the semantic parser to be trained based on partial and/or
incomplete tagged responses (e.g., which can be sufficient to
answer a subset of the queries used to extract a command
from an ATC transcript). As an example, training data can be
used when values and/or aircraft tail numbers are not
identified and/or validated within a training dataset.

[0048] Fifth, variations of this technology can enable
semantic parsing of ATC utterances without the use of
grammar rules or syntax-which can be time intensive to
develop, slow to execute, and yield inaccurate results (par-
ticularly when handling edge case scenarios or unusual
speech patterns). In an example: as a conversation between
ATC and an aircraft continues, the ATC controller and the
pilot often shorten phrases and/or deviate from the standard
speech template, which can severely impact the efficacy of
grammar/syntax-based NLP approaches. In variants, the
semantic parsing system and/or method can convert unfor-
matted audio, syntactically inconsistent (non-standardized)
audio, and/or non-uniform audio data or corresponding ATC
transcript into a standardized/formatted data input (e.g., as
may be accepted/interpreted by a certified aircraft proces-
sor). In variants, standardized inputs can be utilized to
certify aircraft systems in a deterministically testable man-
ner. As an example, the technology can be used to convert
an arbitrarily large number of audio signals into a substan-
tially finite set of commands (e.g., with bounded ranges of
values corresponding to a predetermined set of aircraft
command parameters, which can be deterministically tested
and/or repeatably demonstrated).

[0049] Sixth, variations of this technology can include an
approach necessarily rooted in computer technology for
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overcoming a problem specifically arising in the realm of
computer networks. In an example, the technology can
automatically translate audio into a computer readable for-
mat which can be interpreted by an aircraft processor. In an
example, the technology can enable control of a partially
and/or fully autonomous system based on communications
with ATC operators. In such examples, the system/method
may act in place of an incapacitated pilot (e.g., for a manned
aircraft) and/or replace an onboard pilot (e.g., for an
unmanned aircraft).

[0050] Seventh, variations of this technology can enable
high speed and/or high accuracy natural language processing
(NLP) of air traffic control (ATC) utterances by leveraging
neural network models that were pre-trained on other data-
sets (e.g., pretrained models), then tuned to ATC-specific
semantics. These ATC-tuned models can improve the speed/
accuracy of the semantic parsing system in the context of
noisy, multi-speaker ATC channels. These ATC-tuned mod-
els can also retain the broad ‘common sense’ comprehension
of the pre-existing model and avoid overly biasing the
semantic parsing system towards conventional ATC lan-
guage-thus enabling the semantic parsing system to effec-
tively respond to edge case scenarios or speech patterns
which infrequently occur in ATC communications.

[0051] However, variations of the technology can addi-
tionally or alternately provide any other suitable benefits
and/or advantages.

3. Semantic Parsing System

[0052] The semantic parsing system 100, an example of
which is shown in FIG. 1, can include: a Speech-to-Text
module 120 and a question-and-answer (Q/A) module 130
(e.g., cooperatively the “semantic parser”). The semantic
parsing system can optionally include a communication
subsystem 110 and a flight processing system 140. However,
the semantic parsing system 100 can additionally or alter-
natively include any other suitable set of components. The
semantic parsing system 100 functions to determine flight
commands 106 from an audio input 102 (e.g., received ATC
radio transmission) which can be used for vehicle guidance,
navigation, and/or control. In variants, the semantic parsing
system 100 can optionally include or be used in conjunction
with a collision avoidance system 200 (e.g., a first example
is shown in FIG. 13; a second example is shown in FIG. 14;
a third example is shown in FIG. 15) to facilitate directed
perception and/or collision avoidance (e.g., in accordance
with S300).

[0053] The audio input 102 can include a unitary utterance
(e.g., sentence), multiple utterances (e.g., over a predeter-
mined window-such as 30 seconds, within a continuous
audio stream, over a rolling window), periods of silence, a
continuous audio stream (e.g., on a particular radio channel,
such as based on a current aircraft location or dedicated ATC
communication channel), and/or any other suitable audio
input. In a first example, the audio input can be provided as
a continuous stream. In a second example, a continuous ATC
radiofrequency stream can be stored locally, and a rolling
window of a particular duration (e.g., last 30 seconds,
dynamic window which is sized based on previous utterance
detections, etc.) can be analyzed from the continuous radiof-
requency stream.

[0054] The audio input is preferably in the form of a
digital signal (e.g., radio transmission passed through an
A/D converter and/or a wireless communication chipset),
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however can be in any suitable data format. In a specific
example, the audio input is a radio stream from an ATC
station in a digital format. In variants, the system can
directly receive radio communications from an ATC tower
and translate the communications into commands which can
be interpreted by a flight processing system. In a first
‘human in the loop’ example, a user (e.g., pilot in command,
unskilled operator, remote moderator, etc.) can confirm
and/or validate the commands before they are sent to and/or
executed by the flight processing system. In a second
‘autonomous’ example, commands can be sent to and/or
executed by the flight processing system without direct
involvement of a human. However, the semantic parsing
system 100 can otherwise suitably determine commands
from an audio input.

[0055] The semantic parsing system 100 is preferably
mounted to, installed on, integrated into, and/or configured
to operate with any suitable vehicle (e.g., the system can
include the vehicle). The semantic parsing system 100 is
preferably specific to the vehicle (e.g., the modules are
specifically trained for the vehicle, the module is trained on
a vehicle-specific dataset), but can be generic across mul-
tiple vehicles. The vehicle is preferably an aircraft (e.g.,
cargo aircraft, autonomous aircraft, passenger aircraft,
manually piloted aircraft, manned aircraft, unmanned air-
craft, etc.), but can alternately be a watercraft, land-based
vehicle, spacecraft, and/or any other suitable vehicle. In a
specific example, the aircraft can include exactly one pilot/
PIC, where the system can function as a backup or failsafe
in the event the sole pilot/PIC becomes incapacitated (e.g.,
an autonomous co-pilot, enabling remote validation of air-
craft control, etc.).

[0056] The semantic parsing system 100 can include any
suitable data processors and/or processing modules. Data
processing for the various system and/or method elements
preferably occurs locally onboard the aircraft, but can addi-
tionally or alternatively be distributed among remote pro-
cessing systems (e.g., for primary and/or redundant process-
ing operations), such as at a remote validation site, at an ATC
data center, on a cloud computing system, and/or at any
other suitable location. Data processing for the Speech-to-
Text module and /A module can be centralized or distrib-
uted. In a specific example, the data processing for the
Speech-to-Text module and the Q/A module can occur at a
separate processing system from the flight processing sys-
tem (e.g., are not performed by the FMS or FCS processing
systems; the Speech-to-Text module and /A module can be
decoupled from the FMS/FCS processing; an example is
shown in FIG. 12), but can additionally or alternatively be
occur at the same compute node and/or within the same
(certified) aircraft system. Data processing can be executed
at redundant endpoints (e.g., redundant onboard/aircraft
endpoints), or can be unitary for various instances of system/
method. In a first variant, the semantic parsing system can
include a first natural language processing (NLP) system,
which includes the Speech-to-Text module and the Q/A
module, which can be used with a second flight processing
system, which includes the flight processing system and/or
communication systems (e.g., ATC radio). In a second
variant, an aircraft can include a unified ‘onboard’ process-
ing system for all runtime/inference processing operations.
In a third variant, remote (e.g., cloud) processing can be
utilized for Speech-to-Text operations and/or Q/A response
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generation. However, the semantic parsing system 100 can
include any other suitable data processing systems/opera-
tions.

[0057] The semantic parsing system 100 can optionally
include a communication subsystem, which functions to
transform an ATC communication (e.g., radio signal) into an
audio input which can be processed by the ASR module.
Additionally or alternately, the communication subsystem
can be configured to communicate a response to ATC. The
communication subsystem can include an antenna, radio
receiver (e.g., ATC radio receiver), a radio transmitter, an
A/D converter, filters, amplifiers, mixers, modulators/de-
modulators, detectors, a wireless (radiofrequency) commu-
nication chipset, and/or any other suitable components. The
communication subsystem include: an ATC radio, cellular
communications device, VHF/UHF radio, and/or any other
suitable communication devices. In a specific example, the
communication subsystem is configured to execute S210.
However, the communication subsystem can include any
other suitable components, and/or otherwise suitably estab-
lish communication with air traffic control (ATC).

[0058] The Speech-to-Text module of the semantic pars-
ing system 100 functions to convert the audio input (e.g.,
ATC radio signal) into an utterance hypothesis 104, such as
in the form of text (e.g., an ATC transcript) and/or alpha-
numeric characters. The utterance hypothesis is preferably a
text stream (e.g., dynamic transcript), but can alternatively
be a text document (e.g., static transcript), a string of
alphanumeric characters (e.g., ASCII characters), or have
any other suitable human-readable and/or machine-readable
format. The Speech-to-Text module is preferably onboard
the aircraft, but can additionally or alternatively be remote.
The Speech-to-Text module is preferably an ATC-tuned
Speech-to-Text module, which includes one or more models
pre-trained on ATC audio data, but can additionally or
alternatively include one or more generic models/networks
and/or models/networks pre-trained on generalized training
data (e.g., natural language utterances not associated with
ATC communication).

[0059] The Speech-to-Text module can include: an inte-
grated automatic speech recognition (ASR) module 122, a
sentence boundary detection (SBD) module 124, a language
module 126, and/or other modules, and/or combinations
thereof. In a specific example, the Speech-to-Text module
can include an integrated ASR/SBD module 125. The
Speech-to-Text module (and/or submodules thereof) can
include a neural network (e.g., DNN, CNN, RNN, etc.), a
cascade of neural networks, compositional networks, Bayes-
ian networks, Markov chains, predetermined rules, prob-
ability distributions, attention-based models, heuristics,
probabilistic graphical models, or other models. The
Speech-to-Text module (and/or submodules thereof) can be
tuned versions of pretrained models (e.g., pretrained for
another domain or use case, using different training data), be
trained versions of previously untrained models, and/or be
otherwise constructed.

[0060] In variants, a submodule(s) of the Speech-to-Text
module (e.g., ASR module and/or SBD module) can ingest
the audio input (e.g., audio stream, audio clip) and generate
a set of linguistic hypotheses (e.g., weighted or unweighted),
which can serve as an intermediate data format, such as may
be used to audit the Speech-to-Text module, audit sub-
modules/models therein, and/or select a unitary utterance
hypothesis. The set of linguistic hypotheses can include
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overlapping/alternative hypotheses for segments of audio, or
can be unitary (e.g., a single hypothesis for an individual
audio segment or time period). The set of linguistic hypoth-
eses can include: utterance hypotheses (e.g., utterance
hypothesis candidates), letters, word-segment streams, pho-
nemes, words, sentence segments (e.g., text format), word
sequences (e.g., phrases), sentences, speaker changes, utter-
ance breaks (e.g., starts, stops, etc.), and/or any other suit-
able hypotheses. In variants where the audio stream includes
multiple speakers/utterances, the set of linguistic hypotheses
can additionally include an utterance boundary hypothesis
which can distinguish multiple speakers and/or identify the
initiation and termination of an utterance, with an associated
weight and/or a speaker hypothesis (e.g., tag identifying a
particular speaker, tag identifying a particular aircraft/
tower). Additionally or alternately, the utterance boundary
hypothesis can identify utterance boundaries and/or change
in speaker without identifying individual speaker(s). Each
linguistic hypothesis preferably includes an associated
weight/score associated with an utterance (and/or utterance
boundary), assigned according to a relative confidence (e.g.,
statistical; such as determined using an ASR model, SBD
model, and/or language model; etc.). The set of linguistic
hypotheses is preferably ordered, sequential, and/or time-
stamped in association with the receipt time, but can be
otherwise suitably related.

[0061] However, the Speech-to-Text module can generate,
store, and/or output any other suitable set of hypotheses. As
an example, the linguistic hypotheses can include a plurality
of utterance hypotheses, wherein a single utterance hypoth-
esis can be selected based on the set of generated set of
utterance hypotheses. As a second example, a subset (e.g.,
complete set) of linguistic hypotheses, with a corresponding
weight/score, can be output by the Speech-to-Text module.

[0062] The Speech-to-Text module can include an ASR
module which functions to extract linguistic hypotheses
from the audio input. Using the audio input, the ASR module
can determine a sequence of linguistic hypotheses, such as:
letters, word-segment streams, phonemes, words, sentence
segments (e.g., text format), word sequences (e.g., phrases),
sentences, and/or any other suitable linguistic hypotheses
(e.g., with a corresponding weight). The ASR module is
preferably a neural network (e.g., Wav2Lletter, Kaldi,
Botium, etc.), but can alternatively be any other suitable
model. In an example, a pretrained neural network can be
tuned for ATC audio and/or trained using ATC audio (e.g.,
with an associated transcript). In a second example, the ASR
module can include the ASR model trained by S110 and/or
S120. In a specific example, the ASR module is configured
to execute S220 of the method. The ASR module can
optionally include an integrated SBD module. In variants
where the ASR module outputs lower-level linguistic com-
ponents (e.g., phonemes, phonetics, etc.), the semantic pars-
ing system can optionally include auxiliary transformation
modules (e.g., phoneme-to-word transformations) that con-
vert the lower-level linguistic components to linguistic com-
ponents compatible by the language module and/or other
modules.

[0063] The Speech-to-Text module can include an SBD
module which functions to identify utterance boundaries
and/or speaker changes for a multi-utterance audio inputs.
Using the audio input, the SBD module can determine a
sequence of linguistic hypotheses, such as: an utterance
boundary hypothesis, a speaker hypothesis (e.g., tag identi-
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fying a particular speaker, tag identifying a particular air-
craft/tower), and/or any other suitable hypotheses. The SBD
module is preferably integrated with the ASR module (an
example is shown in FIG. 10A), but can otherwise be
separate from the ASR module, such as operating sequen-
tially with the ASR module (e.g., passing a single utterance
input into the ASR module, tagging outputs of the ASR
module, etc.; examples are shown in FIG. 10C-D) or in
parallel with the ASR module (e.g., separately providing
speaker change and/or utterance boundary annotations by
way of time stamps, etc.; an example is shown in FIG. 10B).
The SBD module is preferably a neural network (e.g.,
Wav2L etter, Kaldi, Botium, etc.), but can alternatively be
any other suitable model. In an example, a pretrained SBD
neural network can be tuned for ATC audio and/or trained
using ATC audio (e.g., with an associated transcript). In a
second example, an SBD neural network can be trained
separately from the ASR module (e.g., using a distinct
training set, using a training set including periods of radio
silence and/or audio artifacts, etc.). In a third example, the
SBD model can be tuned for ATC audio and/or trained using
ATC audio, such as trained to identify silence speakers
and/or utterance boundary characters (e.g., transition speak-
ers, transition audio artifacts). However, the Speech-to-Text
module can include any other suitable SBD module(s).

[0064] The language module of the Speech-to-Text mod-
ule functions to select an utterance hypothesis based on the
set of linguistic hypotheses, which can then be passed into
the Q/A module. The language module receives the set of
linguistic hypotheses from the ASR module (e.g., phonemes,
words, sentence subsets, etc.) and returns an utterance
hypothesis associated with a single utterance (e.g., a sen-
tence, a series of linguistic hypothesis, etc.). The language
module preferably determines the utterance hypothesis
purely from the linguistic hypotheses, but can alternatively
or additionally ingest the audio input and/or other auxiliary
data. Auxiliary data can include: an aircraft ID, contextual
information (e.g., vehicle state, geographical position, ATC
control tower ID and/or location, etc.), weather data, and/or
any other suitable information. The utterance hypothesis is
preferably text (e.g., a text string or utterance transcript), but
can alternatively be a set of phoneme indexes, audio, or any
suitable data format.

[0065] The language module preferably selects an utter-
ance hypothesis from the set of linguistic hypotheses by
weighting the likelihood of various ‘sound-based’ language
interpretations in the context of the entire utterance and/or
ATC language patterns. In a first variant, the language
module assigns language weights/scores to each utterance
hypothesis using a neural network language model (e.g., an
LSTM network, a CNN, FairSeq ConvLM, etc.) tuned for
ATC language (e.g., neural network trained using ATC
transcripts, etc.; such as a language model trained according
to S140). In a second variant, the language module assigns
language weights/scores according to a grammar-based lan-
guage model (e.g., according to a set of heuristics, grammar
rules, etc.). In a third variant, the language module can be
tightly integrated with the ASR module. In examples, a
language model(s) can be used during the search, during the
first pass, and/or during reranking. However, the language
module can assign weights/scores in any other suitable
manner. In a specific example, the language module is
configured to execute S230 of the method.



US 2024/0321126 Al

[0066] In an example, the Speech-to-Text module trans-
forms an ATC audio stream into a natural language text
transcript which is provided to the Q/A module, preserving
the syntax as conveyed by the ATC speaker (e.g., arbitrary,
inconsistent, non-uniform syntax).

[0067] Alternatively, the speech-to-text module can
include a neural network trained (e.g., using audio data
labeled with an audio transcript) to output utterance hypoth-
eses (e.g., one or more series of linguistic components
separated by utterance boundaries) based on an audio input.
However, the speech-to-text module can include: only an
automated speech recognition module, only a language
module, and/or be otherwise constructed.

[0068] However, the semantic parsing system can include
any other suitable Speech-to-Text module.

[0069] The semantic parsing system 100 can include a
question-and-answer (Q/A) module (example shown in FIG.
7), which functions to determine a set of commands from the
selected hypothesis (e.g., text transcript) using a set of flight
command queries. The Q/A module preferably receives an
utterance hypothesis from the Speech-to-Text module in
text, but can alternately receive audio and/or any other
suitable inputs.

[0070] The Q/A module preferably includes one or more
Q/A models (e.g., BERT, BERT tuned to ATC applications,
etc.), but can additionally or alternatively include a classifier
or other model. The /A model is preferably a pre-trained
language model tuned for ATC transcripts but can be
untrained or have another format. The Q/A model can be: a
convolutional neural network, a (pre-trained) large neural
language model, bidirectional encoder representations from
transformers (BERT), generative pre-trained transformer
(GPT), and/or any other suitable language model. However,
the Q/A module can include any other suitable neural
language models.

[0071] The Q/A module preferably answers a set of flight
command queries (e.g., natural language queries). The flight
command queries are preferably predetermined (e.g., manu-
ally determined, extracted from a command template, etc.),
but can be dynamically determined. Flight command queries
are preferably semantic queries in a human-readable format,
but can additionally or alternatively be provided in a
machine-readable format. The command queries are prefer-
ably natural language (“reading comprehension™), but can
alternatively be vectors, tensors, and/or have another format.
The set of flight command queries is preferably organized in
a hierarchical structure (e.g., with parent-child query rela-
tionships), but can alternatively be organized in a serial
structure, or be otherwise organized. The flight command
queries can be organized in a list, a tree, or otherwise
organized. In variants, flight command queries can be pro-
vided as a sequence/series of chained nodes (examples are
shown in FIGS. 11A-C), each node corresponding to a
predetermined query, wherein the nodes include a set of
independent nodes and a set of dependent nodes, each
dependent node linked to a specific answer/response (e.g.,
specific answer value) of a broader/higher-level parent
semantic query (e.g., where queries have a finite set of
answers or a closed range of answers). Accordingly, depen-
dent queries may be triggered in response to a determination
of a predetermined answer at a higher-level linked node.
Alternatively, the set of predetermined flight command
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queries can be provided synchronously or asynchronously in
any suitable combination/permutation of series and/or par-

allel.

[0072] The command queries can be configured to have
binary answers (e.g., “yes”, “no”, discrete answers (e.g.,
letters, integers, etc.), continuous answers (e.g., coordinate
values, etc.), and/or any other suitable type of answer value.
Different types of commands can have different query struc-
tures. For example, high-criticality queries, such as aircraft
identifiers, can be structured as binary queries. In another
example, attributes with multiple potential answers can be
structured as open-ended questions (e.g., “topics?”) instead
of binary questions (e.g., “Does the utterance include head-
ing?” Does the utterance include altitude?”). However, the
queries can be otherwise structured. Examples of command
queries include: whether the aircraft is the intended recipient
of an utterance hypothesis, what or whether command
parameters or topics (e.g., heading, altitude, etc.) are
included in the utterance hypothesis, what or whether com-
mand parameter values (e.g., altitude direction, altitude
level, etc.) are included in the utterance hypothesis, and/or
other queries. In a first example, the Q/A module determines
that the utterance is intended for the aircraft (e.g., Question:
“Intended for DAL456?”; Answer: “yes”). In a second
example, the Q/A module determines the topics of an
utterance (e.g., Question: “Topics?”; Answer: “Heading,
Altitude”). In a third example, the /A determines the values
associated with a topic of the utterance (e.g., Question:
“Altitude values?”; Answer: “Direction: down, Level:
20007). In an example, the Q/A module can be configured to
execute S240.

[0073] Based on the queries, the Q/A module outputs a set
of flight commands, which can include guidance commands
(e.g., navigational instructions; sequences of waypoints,
approach landing site, etc.), vehicle state commands (e.g.,
instructions to modify vehicle state parameters, increase
altitude to 5000 ft, etc.), effector state commands (e.g.,
effector instructions; deploy landing gear, etc.), flightpath
commands (e.g., trajectory between waypoints, etc.), and/or
any other suitable commands. The commands preferably
output in a prescribed format based on the answers gener-
ated by the Q/A module, such as a standardized human-
readable format (e.g., allowing human validation) and/or a
machine-readable format (e.g., allowing human interpreta-
tion/validation of the commands). In a specific example, the
commands can be provided as the union of the answers to
the command parameter identification query and at least one
command parameter value query (e.g., corresponding to the
answer of the command parameter identification query). In
a second example, the commands can be directly taken as a
combination of each answer/response as generated by the
Q/A module. Output commands are preferably text based
and/or alphanumeric, but can be otherwise suitably provided
(e.g., text-to-speech validation, etc.). In some variants, the
commands can be post-processed according to any suitable
heuristics, grammar rules, or formatting protocols, but can
otherwise be provided to a pilot and/or flight processing
system directly as the output of the Q/A module. In a specific
example, the Q/A module can convert an utterance hypoth-
esis into a command in a standardized data format (e.g., as
may be accepted/interpreted by a certified aircraft proces-
sor). In variants, the commands can include a substantially
finite set of command parameters (e.g., altitude, heading,
etc.) corresponding to a predetermined set of topics. Addi-
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tionally, command parameters can be within substantially
finite and/or bounded ranges (e.g., heading limited to com-
pass directions, altitude limited by physical aircraft con-
straints, commands cooperatively limited by flight envelope,
etc.). However, command parameters can additionally or
alternatively be arbitrary, unbounded, and/or substantially
unconstrained. However, the Q/A module can generate any
other suitable commands.

[0074] However, the semantic parsing system can include
any other suitable Q/A module.

[0075] The semantic parsing system 100 can optionally
include and/or be used with a flight processing system,
which functions to control various effectors of the aircraft
according to the commands. The flight processing system
can include an aircraft flight management system (FMS), a
flight control system (FCS), flight guidance/navigation sys-
tems, and/or any other suitable processors and/or control
systems. The flight processing system can control flight
effectors/actuators during normal operation of the vehicle,
takeoff, landing, and/or sustained flight. Alternatively, the
flight processing system can be configured to implement
conventional manual flight controls in a flight-assistive
configuration. The semantic parsing system can include a
single flight processing system, multiple (e.g., three) redun-
dant flight processing systems, and/or any other suitable
number of flight processing systems. The flight processing
system(s) can be located onboard the aircraft, distributed
between the aircraft and a remote system, remote from the
aircraft, and/or otherwise suitably distributed. In a specific
example, the flight processing system is configured to
execute S250.

[0076] In variants, the flight processing system can be
configured (e.g., certified) to accept only a predetermined set
of command input and/or inputs having a predetermined
format, where the outputs of the /A model are provided in
the predetermined format and/or are a subset of the prede-
termined set of commands.

[0077] However, the semantic parsing system can include
any other suitable components and/or be otherwise suitably
configured to execute S200 of the method.

4. Semantic Parsing Method

[0078] The method, an example of which is shown in FIG.
2, can optionally include training the system components
S100; and performing inference using the system S200. The
method functions to automatically interpret flight commands
from a stream of air traffic control (ATC) radio communi-
cations. The method can additionally or alternatively func-
tion to train and/or update a natural language processing
system based on ATC communications.

4.1 Training

[0079] Training the system components S100 (example
shown in FIG. 9) functions to generate an ATC-tuned system
capable of interpreting ATC audio signals into flight com-
mands. S100 can include training a Speech-to-Text model
and training a question-and-answer (Q/A) model S150. S100
can optionally include generating augmented ATC tran-
scripts S130. However, training the semantic parser S100
can include any other suitable elements. S100 is preferably
performed offline and/or by a remote computing system, but
can alternatively be performed onboard the aircraft (e.g.,
locally, during flight, asynchronously with aircraft flight).
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[0080] Training the Speech-to-Text model functions to
generate a transcription model that is specific to ATC
communications, accounting for ATC-specific grammar,
lexicon, speech patterns, and other idiosyncrasies. Training
the Speech-to-Text model can include training an ASR
model S110, training an SBD model S120, training a lan-
guage model S140, and/or any other suitable elements.
Training can include: tuning the network weights, determin-
ing weights de novo, and/or otherwise training the network.
Training (and/or inference) can leverage: gradient-based
methods (e.g., stochastic gradient descent), belief propaga-
tion (e.g., sum-product message passing; max product mes-
sage passing, etc.), and/or any other suitable training
method.

[0081] Training an automatic speech recognition (ASR)
module S110 functions to train a neural network to recog-
nize natural language in ATC communications. The ASR
model is preferably trained (e.g., using supervised training,
semi-supervised training) from a pre-existing ASR model
(e.g., Wav2letter), and can be ‘tuned’ by providing the
neural network a mix (e.g., 50/50, 60/40, 70/30, predeter-
mined mix, 100/0, etc.) of ATC training audio with corre-
sponding ATC transcripts and the original training data (e.g.,
from the pre-existing model). An example is shown in FIG.
4. The ATC training audio with transcripts is preferably
manually determined (e.g., by a human, by a domain expert),
but can be verified/audited ATC communication audio/
transcripts (e.g., generated from an existing ASR model),
and/or otherwise determined. The ATC training audio can
include a single utterance, multiple utterances, a stream of
radio communication over an ATC communications channel,
and/or any other suitable training audio. Preferably, utter-
ances (e.g., statements from an individual speaker, sen-
tences, etc.) are individually associated with a transcript as
part of the training data. However, the ASR model can be
otherwise trained for ATC speech recognition.

[0082] Training a sentence boundary detection (SBD)
module S120 functions to train the Speech-to-Text module
to identify utterance boundaries (e.g., sentence segment
boundaries, sentence boundaries). S120 can optionally train
the Speech-to-Text module to differentiate unique utterances
and/or utterances from different speakers/entities. S120 can
train an existing ASR model (e.g., as determined in S110,
which generates an integrated ASR/SBD model) or a sepa-
rate model to generate the SBD module. Preferably, the SBD
model can be trained using time-length concatenated audio,
which includes a series of multiple utterances and periods of
silence (e.g., periods of no speaking) therebetween, and the
associated multi-utterance training transcripts. The ATC
audio and transcripts used to train the SBD model can be the
same as the ASR model and/or different from the ASR
model.

[0083] Multi-utterance training transcripts preferably
include boundary annotations (e.g., with a unique boundary
character or other identifier; using a /> or * %’ character;
etc.) which can delineate unique speakers, unique utter-
ances, breaks between utterances, periods of silence, audio
artifacts (e.g., the “squelch” when the ATC speaker starts
and/or starts broadcasting), and/or any other appropriate
boundaries. Boundary annotations are preferably automati-
cally added during transcript concatenation, but can be
inserted manually, be determined from the audio, and/or
otherwise added.
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[0084] In a specific example, the ASR model is trained by
assigning a unique ‘silence speaker’ and/or a unique ‘tran-
sition speaker’ in the audio and/or transcript—which can be
particularly advantageous in SBD for ATC radio communi-
cations, commonly exhibit a characteristic radio “squelch”
sound prior to an utterance. By assigning these segments of
audio to a unique ‘transition speaker’ (or a ‘squelch
speaker’) the SBD model can more accurately differentiate
between back-to-back utterances (e.g., with minimal inter-
vening silence), which commonly occurs in noisy ATC radio
channels.

[0085]

[0086] Training a language model S140 functions to train
a language model to distinguish ATC linguistic patterns. In
variants, the language model can determine whether a tran-
script is contextually correct/logical (e.g., syntactically cor-
rect, based on ATC grammar, etc.), determine a language/
syntax score for a transcript, and/or otherwise determine
whether a transcript makes sense. Preferably, S140 tunes a
pre-existing language model (e.g., convolutional neural net-
work, FairSeq ConvLM, etc.), but can alternately train an
untrained language model. An existing language model can
be tuned based on ATC transcripts, which can be single
utterance ATC transcripts, multi-utterance ATC transcripts,
and/or boundary annotated ATC transcripts (e.g., such as
those used to train the SBD model in S120), however the
language model can be trained using any suitable ATC
transcripts. S140 preferably does not train on the ATC audio,
but can alternatively train on the ATC audio. In variants, the
language model can be trained using entity-tagged ATC
transcripts, which identify ATC specific entities within the
transcript. Tagged entities can include: carriers, aircraft,
waypoints, airports, numbers, directions, and/or any other
suitable entities. Entity tags can be assigned manually,
automatically (e.g., unsupervised), with a semi-supervised
HMM tagger (e.g., using a domain expert evaluation tool,
etc.), and/or in any other suitable manner. A single word or
phrase appearing in a transcript can be assigned to multiple
entities depending on the context in which it appears (i.e.,
the entity tag lexicon can include multiple phonetically
and/or lexicographically conflicting entities which are pro-
nounced and/or spelled substantially identically). In an
example, “Southwest” can be tagged as (and/or communi-
cate) a direction or a carrier depending on the context in
which it appears. Likewise, in a second example, “delta” can
be tagged as part of an aircraft name (e.g., DAL456="delta
alpha lima four five six™), a carrier, and/or untagged (e.g.,
referring to a change in value or parameter) depending on
the context in which it appears. In a third example, “Lima”
can be an airport, a waypoint, part of an aircraft name, and/or
otherwise tagged. In a fourth example, waypoints can be
pronounced substantially identically (e.g., “ocean”) while
corresponding to different waypoint entities depending on
the context in which they appear. However, the language
model can be trained with any other suitable transcripts
and/or information.

[0087] In variants, a portion of the training text provided
to train the language model is the same as that used to
originally train the pre-existing language model (e.g.,
FairSeq ConvL.M). Accordingly, the language model can be
‘tuned’ by providing the neural network a mix (e.g., 50/50,
60/40, 70/30, predetermined mix, etc.) of ATC training
transcripts and the original training data (e.g., from the

However, an SBD model can be otherwise trained.
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pre-existing model). However, a language model can be
otherwise trained for ATC linguistic patterns.

[0088] S100 can optionally include generating augmented
ATC transcripts S130 (e.g., synthetic transcripts), which
functions to expand the number/quantity of ATC training
transcripts available to train the language model in S140, an
example of which is shown in FIG. 5. In variants, this can
be beneficial in order to provide training transcripts specific
to areas/regions where entities are known (e.g., airport
names, waypoints, carriers, etc.), but from which ATC
transcripts are unavailable. Additionally or alternately, S130
can improve the accuracy of the language model by increas-
ing a size of the training dataset (e.g., number of available
utterance transcripts). S130 preferably substitutes the values
of tagged entities (e.g., within the entity-tagged ATC tran-
scripts) with different entity values from an ATC entity
lexicon. The ATC entity lexicon can be manually generated,
generated by a domain expert (e.g., pilot), randomly gener-
ated (e.g., number substitution), generated using: historical
flight logs, aircraft databases, airport databases, randomly
generated, and/or otherwise generated. In variants, the aug-
mented ATC transcripts can preferentially (e.g., at a higher
rate; with greater frequency; occurring with greater than a
threshold number of instances-such as 3 or more within the
training set) substitute phonetically and/or lexicographically
conflicting entity names (e.g., which are identified by mul-
tiple tags in different contexts), such as “southwest” and
“delta.” The augmented ATC transcripts can then be used to
train the language model in S140 and/or question-and-
answer model in S150 (e.g., an example of training an
ATC-tuned language model is shown in FIG. 5).

[0089] However, ATC transcripts can be otherwise gener-
ated. Alternatively, the semantic parsing system (and/or
neural network models therein) can be trained entirely with
real ATC communication transcripts.

[0090] S100 can include training a question-and-answer
(Q/A) module S150, which functions to train a model to
answer ATC-specific queries. S150 preferably includes tun-
ing a pre-trained language model, but can include training an
untrained model. The language model can be trained using:
an ATC transcript, the associated parsed meaning (e.g.,
reference outputs; answers to the queries; values for com-
mand parameters determined from the ATC transcript, etc.),
the set of command queries, and/or other data. In variants,
S150 can also provide the language model contextual infor-
mation pertaining to a particular utterance—such as a tail
number or carrier for a particular aircraft, a flight plan for the
aircraft, a set of utterance transcripts preceding the particular
utterance, and/or any other suitable contextual information.
[0091] The text transcripts used to train the Q/A model can
be the same ATC transcripts used to train the ASR and/or
SBD model, the same ATC transcripts (and/or augmented
ATC transcripts) used to train the language model, the
utterance hypotheses output by the Speech-to-Text module,
and/or other transcripts. However, the Q/A model can be
trained using any suitable ATC transcripts.

[0092] The parsed meaning used to train the Q/A model
can be: manually determined, manually audited by a domain
expert, provided by a grammatical semantic parser (e.g.,
SEMPRE, a lower-accuracy parser than the system, a pre-
vious iteration of the system, etc.; an example is shown in
FIG. 6) referencing ATC grammar (e.g., manually deter-
mined, iteratively determined, learned, etc.), and/or other-
wise suitably determined.
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[0093] In a specific example, a grammatical semantic
parser parses the command parameter values from the ATC
transcripts, wherein the parsed values (e.g., command
hypotheses), source transcript, optionally ATC audio, and/or
other data are presented on a domain evaluation tool (an
example is shown in FIG. 8) to domain experts. The domain
expert can: label to the model output (e.g., as “correct,”
“incomplete,” “incorrect,” etc.), correct the parsed values,
and/or otherwise interact with the parser output. In variants,
reference outputs labelled as “incorrect” and/or “incom-
plete” can be reviewed and used to update or improve
grammar rules of a grammatical semantic parser. In variants,
reference outputs labelled “incorrect” are not used to train
the Q/A model, but can alternately be used to train the Q/A
model (e.g., the “incorrect” label serving to train by coun-
terexample). In variants, reference outputs which are
labelled as “correct” and/or “incomplete” can be passed into
the Q/A model during S150. In variants, incomplete label
data can be used to train a subset of queries associated with
a particular utterance (e.g., based on the correctly labelled
portions of the transcript). As an example, where the param-
eter values may be unlabelled and the topics are identified,
the topics may be used to train a command identification
(e.g., “topics?”) query. Likewise, where the aircraft tail
number is tagged/identified, incomplete label data can be
used to train the plane-specific speaker identification query
(ies). However, the labels can be otherwise used, and model
outputs can be otherwise suitably determined.

[0094] However, a question-and-answer model can be
otherwise suitably trained.

[0095] In variants, the ASR model, SBD model, language
model, and/or Q/A model can be optionally retrained and/or
updated based on pilot/PIC validation with any suitable
update frequency. The models can be updated/retrained
independently, synchronously, asynchronously, periodically
(e.g., with a common update frequency, with different fre-
quencies), never (e.g., which may be desirable in instances
where the deterministic model(s) are certified), based on
auditing of the intermediate outputs, and/or can be otherwise
suitably updated or trained. The models can be updated
locally, onboard the aircraft, periodically via remote/cloud
(push) updates, and/or can be otherwise suitably updated/
retrained.

[0096] In variants, the model(s) can be audited based on a
pilot rejection of the final output parameters in order to
locate error origin(s) within the data pipeline (e.g., as part of
a root cause analysis), which can be used as a training input
to improve the network. As an example: an erroneous
intermediate parameter (such as in the utterance hypothesis
or linguistic hypothesis) can result in an incorrect output of
the Q/A module even in cases where the /A module
performs correctly. In variants, the outputs of each model/
module can additionally be audited against a formatting
template prescribed to each step (e.g., to enable certification
compliance of the system). However, the system and/or
various subcomponents can be otherwise suitably audited.

[0097] However, the system components can be otherwise
suitable trained.

4.2 Runtime/Inference

[0098] S200 can include: at an aircraft, receiving an audio
utterance from air traffic control S210, converting the audio
utterance into a predetermined format S215, determining
commands using a question-and-answer model S240, and
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controlling the aircraft based on the commands S250. How-
ever, the method S200 can additionally or alternatively
include any other suitable elements. S200 functions to
automatically interpret flight commands from the air traffic
control (ATC) stream. The flight commands can be auto-
matically used to control aircraft flight; presented to a user
(e.g., pilot, a remote teleoperator); relayed to an auto-pilot
system in response to a user (e.g., pilot) confirmation; and/or
otherwise used.

[0099] All or portions of S200 can be performed continu-
ously, periodically, sporadically, in response to transmission
of a radio receipt, during aircraft flight, in preparation for
and/or following flight, at all times, and/or with any other
timing. S200 can be performed in real- or near-real time, or
asynchronously with aircraft flight or audio utterance
receipt. S200 is preferably performed onboard the aircraft,
but can alternatively be partially or entirely performed
remotely.

[0100] Receiving an audio utterance from air traffic con-
trol S210 functions to receive a communication signal at the
aircraft and/or convert the communication signal into an
audio input, which can be processed by the ASR module. In
a specific example, S210 transforms an analog radio signal
into a digital signal using an A/D converter (and/or other
suitable wireless communication chipset), and sends the
digital signal to the ASR module (e.g., via a wired connec-
tion) as the audio input. S210 preferably monitors a single
radio channel (e.g., associated with the particular aircraft),
but can alternately sweep multiple channels (e.g., to gather
larger amounts of ATC audio data). However, S210 can
otherwise suitably receive an utterance.

[0101] Converting the audio utterance into a predeter-
mined format S215 functions to generate a transcript from
the ATC audio. This can be performed by the Speech-to-Text
module or other system component. Converting the audio
utterance to into a predetermined (e.g., text) format can
include: determining a set of utterance hypotheses for an
utterance S220 and selecting an utterance hypothesis from
the set of utterance hypotheses S230; however, the ATC
audio can be otherwise converted.

[0102] Determining a set of utterance hypotheses for an
utterance S220 functions to identify audio patterns (e.g.,
such as letters, phonemes, words, short phrases, etc.) within
the utterance. In a specific example, S220 can be performed
by the Speech-to-Text module, an ASR module (and/or ASR
model therein), an integrated ASR/SBD module (e.g., with
an integrated ASR/SBD model therein), a language module,
and/or combinations thereof. S220 can optionally include
assigning a weight or score to each audio pattern (a.k.a.
linguistic hypothesis) using the ASR module and/or other
modules. An utterance hypothesis can be: a linguistic
hypothesis, a series of linguistic hypotheses, and/or any
other suitable hypothesis.

[0103] In a first variation, an ASR and/or integrated SBD/
ASR module generates a set of linguistic hypotheses,
wherein a language module receives the linguistic hypoth-
eses and generates a score (e.g., ASR score; same or different
from language weight/score) for each string or sequence of
linguistic hypotheses. One or more linguistic hypothesis sets
can be generated from the same audio clip. The SBD/ASR
module can also output a score (ASR score or ASR weight)
for each linguistic hypothesis, sequence of hypotheses,
and/or set of linguistic hypotheses. However, the set of
utterance hypotheses can be otherwise determined.
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[0104] Selecting an utterance hypothesis from the set of
utterance hypotheses S230 functions to detect language
patterns from the set of linguistic hypotheses in the context
of the entire utterance. Additionally or alternately, S230 can
function to select the highest probability string/sequence of
linguistic hypotheses as the utterance hypothesis. S230 can
be performed by the language module, the Q/A module,
and/or another module.

[0105] In a first variation, the language module can select
the string or sequence of linguistic hypotheses which has the
highest combined language weight (or score) and ASR
weight (or score) as the utterance hypothesis.

[0106] In a second variation, multiple modules’ outputs
are cooperatively used to select the utterance hypothesis. For
example, the utterance hypothesis with the highest com-
bined hypothesis score and/or maximum hypothesis weight
cooperatively determined by the language model and the
integrated ASR/SBD model is selected. In a first example,
the utterance hypothesis which maximizes the language
weight multiplied by the ASR weight for an utterance is
selected. In a second example, the hypothesis which maxi-
mizes the sum of the language score and the ASR score for
an utterance.

[0107] However, the utterance hypothesis can be other-
wise selected.
[0108] Determining commands from the utterance hypoth-

esis using a question-and-answer model S240 functions to
extract flight commands from the utterance hypothesis,
which can be interpreted and/or implemented by a flight
processing system. S240 is preferably performed by one or
more instances of the Q/A module, but can be performed by
another component. S240 is preferably performed using the
set of flight command queries and the utterance hypothesis,
but can be otherwise performed.

[0109] S240 can include providing the /A module with a
set of command queries in addition to the utterance hypoth-
esis as an input, wherein the /A module answers the
command queries using the utterance hypothesis as a refer-
ence text. In a first embodiment, the queries are provided
serially, wherein the successive query is determined based
on the prior answer. The query series can be determined
from the command query set structure (e.g., list, tree, etc.),
randomly determined, or otherwise determined. In a specific
example, S240 includes querying for topic presence within
the utterance hypothesis, then only querying for values for
the topics confirmed to be within the utterance. In a second
specific example, S240 includes initially determines if the
aircraft (and/or pilot) is the intended recipient of the utter-
ance (associated with the utterance hypothesis), and only
querying further if the utterances are intended for the air-
craft/pilot (e.g., utterances not intended for the aircrafi/pilot
are ignored and/or any commands therein are not passed to
the flight processing system; utterances corresponding to a
transition speaker detections can be neglected; etc.). Alter-
natively, the Q/A model (or different versions or instances
thereof) can be queried with multiple queries in parallel or
can be otherwise queried.

[0110] In a second variant, the Q/A module includes
pre-embedded queries, wherein the Q/A module answers a
predetermined set of questions based on the utterance
hypothesis. For example, the Q/A module can be a multi-
class classifier that outputs values, determined from the
utterance hypothesis, for each of a set of “classes,” wherein

Sep. 26, 2024

each class represents a command parameter. However, S240
can otherwise suitably determine command parameter val-
ues.

[0111] In some variants, the /A module can be further
utilized (e.g., by S240 or a similar process) to determine:
flight changes, traffic advisories, and/or any other suitable
ATC communications/instructions (e.g., where the aircraft is
the intended recipient or otherwise). For example, S240 can
additionally or alternatively determine traffic advisories,
traffic alerts, ATC instructions/directions, and/or any other
suitable instructions.

[0112] However, commands and/or other instructions for
the aircraft can be otherwise suitably determined using the
Q/A model.

[0113] S200 can optionally include controlling the aircraft
based on the commands S250, which functions to modify the
aircraft state according to the utterance (e.g., ATC direc-
tives). In a specific example, S250 autonomously controls
the effectors and/or propulsion systems of the aircraft
according to the commands (e.g., to achieve the commanded
values). In a second example, the flight processing system
can change waypoints and/or autopilot inputs based on the
commands. In variants, S200 can include providing the
commands to a flight processing system (e.g., FCS) in a
standardized format (e.g., a standardized machine-readable
format).

[0114] However, S250 can otherwise suitably control the
aircraft based on the commands. Alternatively, the system
can be used entirely in an assistive capacity (e.g., without
passing commands to an aircraft processor or controlling the
aircraft, such as to enable control of an aircraft by a
hearing-impaired pilot), and/or can be otherwise used. How-
ever, S200 can include any other suitable elements.

5. Directed Perception

5.1 System

[0115] The collision avoidance system 200, an example of
which is shown in FIG. 14, can include: a traffic detection
module 210, an avoidance module 220, and/or any other
suitable components. The collision avoidance system can
function to facilitate detection of objects (e.g., traffic
obstacles, other aircraft, etc.) and/or determination of reso-
Iution advisories (e.g., via input from a collision avoidance
system, such as TCAS or ACAS, and/or autonomous tra-
jectory planning) to avoid aircraft collisions with objects. In
variants (e.g., an example is shown in FIG. 15), collision
avoidance system 200 (and/or the traffic detection module
and/or the collision avoidance module thereof) can be inte-
grated into the lower assurance system and/or as a comput-
ing module of the autonomous computing system as
described in U.S. application Ser. No. 17/891,845, filed 19
Aug. 2022, which is incorporated herein in its entirety by
this reference.

[0116] The collision avoidance system 200 can receive
inputs from the aircraft sensor suite and/or perception sen-
sors thereof (e.g., camera, Radar, Lidar, time-of-flight sen-
sors, etc.). The (onboard) aircraft sensor suite can include
one or more: time-of-flight sensors (e.g., radar, LIDAR,
time-of-flight camera, etc.), radar sensors (e.g., radar altim-
eter, etc.), LIDAR sensors, sonar sensors, cameras (e.g.,
RGB, CCD, CMOS, multispectral, visual range, hyperspec-
tral, infrared, stereoscopic, etc.), wave-based sensors (e.g.,
light waves, sound waves, etc.), light-based sensors (e.g.,
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cameras, visual spectrum, IR spectrum, radio-frequency
spectrum, etc.), spatial sensors (e.g., inertial measurement
sensors, IMU, INS, accelerometer, gyroscope, altimeter,
magnetometer, AHRS, compass, etc.), location sensors (e.g.,
GPS, GNSS, triangulation, trilateration, etc.), air data sen-
sors (e.g., airspeed, pressure, temperature, etc.), force sen-
sors, vibration sensors, and/or any other suitable set of
sensors. Additionally, the collision avoidance system 200
can receive traflic advisories and/or other commands, advi-
sories, alerts, or other information from the semantic parsing
system 100. For example, the semantic parsing system can
provide traffic advisories (or traffic alerts) which can be used
to direct perception via the collision avoidance system 200
(e.g., in accordance with S300). Additionally, the collision
avoidance system can optionally receive inputs from auxil-
iary data sources 230, which can include: historical flight
information (e.g., flight logs, tracking data, aggregate rout-
ing information, aggregate traffic information, flight traffic
heatmaps, etc.), transponder data (e.g., Mode C and Mode S
transponders; TCAS, ACAS, etc.), TCAS data, ACAS data,
ADS-B data (e.g., from an onboard ADS-B system), ground-
based aircraft tracking data (e.g., from ground-based radar/
localization), and/or any other suitable datasets. In variants,
historical flight information can be accessed from public
databases and/or stored locally onboard the aircraft (e.g., in
conjunction with a flight plan, prior to departure, etc.). As an
example, historical flight information and/or other auxiliary
data can be stored onboard the aircraft (e.g., in conjunction
with a flight plan or otherwise) in conjunction with the
system and/or methods as described in U.S. application Ser.
No. 17/674,518, filed 17 Feb. 2022, which is incorporated
herein in its entirety by this reference.

[0117] However, the collision avoidance system can
receive any other suitable set of data/inputs from any other
aircraft systems or data sources.

[0118] The collision avoidance system can include a traffic
detection module 210 which functions to detect traffic using
data from the perception sensors. As an example, the traffic
detection module can execute Block S320 of the directed
perception method.

[0119] The traffic detection module can include one or
more: pretrained object detector (e.g., pretrained for a spe-
cific class of aircraft, detection range, etc.), neural network
(e.g., CNN, R-CNN, FCN, YOLQO, etc.), graphical model
(e.g., Bayesian network), a logistic regression, clustering
algorithms, feature detectors (e.g., ORB, SIFT, etc.), histo-
gram of gradients (HOG), single shot detector (SSD), spatial
pyramid pooling (SPP-net), and/or any other suitable object
detector(s). In variants, the object detector can include a
classifier (e.g., binary classifier, multiclass classifier, etc.)
and/or can function to classify detected objects. The object
detector can include: an integrated object detector/classifier,
a binary classifier, a multi-class classifier, a clustering model
(e.g., hierarchical clustering model), a regression model, a
neural network model (e.g., R-CNN, DNN, CNN, RNN,
etc.), a cascade of neural networks, an ensemble of neural
networks, compositional networks, Bayesian networks,
Markov chains, predetermined rules, probability distribu-
tions, heuristics, probabilistic graphical models, and/or other
model(s). However, the object detector can include any other
suitable model(s).

[0120] In variants, the traffic detection module can per-
form continuous traffic detection (e.g., in conjunction with a
continuous/persistent collision avoidance routine) and/or
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can continuously search for objects (or obstacles) in the
surrounding airspace environment using a stream of percep-
tion data from the aircraft sensor suite (and/or perception
sensors thereof). For example, a collision avoidance routine
(e.g., close range, such as less than 2 nautical miles, etc.) can
be performed in substantially real-time using the vehicle
perception data based on a coarse analysis of the aircraft
perception data (e.g., downsampling images, binned images,
lower resolution search, closer range search, search for
larger apparent objects, etc.; lower resolution point cloud,
etc.). In variants, the traffic detection module can addition-
ally or alternatively facilitate directed perception/searches
based on inputs received from the semantic parsing system
(e.g., traffic advisories) and/or auxiliary data sources 230
(e.g., ADS-B data, historical traffic information, etc.). For
example, directed perception/searches can be performed
discretely, such as in response to an ATC request (e.g., traffic
advisory; request for identification of an aircraft in proxim-
ity), a pilot request (e.g., via a pilot validation interface, such
as a pilot communicating an ATC traffic advisory and/or
manually providing request, etc.), and/or with any other
frequency/timing. As an example, the traffic detection sys-
tem can perform (extended-range) directed perception con-
temporaneously with a closer-range collision avoidance
routine (e.g., and/or closer range traffic detection routine
thereof), wherein the closer-range collision avoidance rou-
tine is performed in substantially real-time using the vehicle
perception data and is based on a coarser analysis of the
vehicle perception data than the directed object detection
routine search.

[0121] In variants, the traffic detection routine can be
performed: continuously, discontinuously, discretely, in
response to a determination of a traffic advisory (e.g., via the
semantic parsing system 100), in response to an operator
request (e.g., ATC communication, pilot input, remote
operator, etc.), once (e.g., searching for a particular aircraft/
object), periodically, aperiodically, repeatedly, in response to
satisfaction of a trigger condition, contemporaneously with
another collision avoidance routine (e.g., extended-range
traffic detection and/or collision avoidance can occur con-
temporaneously with close-range traffic detection and/or
collision avoidance), and/or with any other suitable fre-
quency/timing.

[0122] In some variants, perception data (e.g., camera
images; point clouds; etc.) can be prefiltered and/or prepro-
cessed to eliminate distorted and/or saturated regions of
perception data. For example, saturated pixels (e.g., washed
out due to sunlight, etc.) can be masked, filtered-out of the
image and/or otherwise neglected from consideration during
object detection/classification, which may be useful when
objects are large relative to pixel resolution and/or when
perception data is downsampled (e.g., during closer range
object detection), to improve the quality of image data.
Additionally or alternatively, saturated pixels can be used to
direct and/or seed extended range searches (e.g., such as by
incorporating saturated pixels into heuristic or tree-based
searches/classification), and/or otherwise used by extended-
range object detection/classification. For example, the
‘glint’ of sunlight reflecting from a windscreen or piece of
metal may be a distinct indicator of the presence of a distant
aircraft. As the apparent size of an adjacent aircraft grows
small (e.g., which is particularly relevant for extended range
detection; such as between 2 and 5 nautical miles), the
sunlight glint and the corresponding pixel saturation may be
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a strong(est) indicator of aircraft presence. Thus, variants
can advantageously direct extended-range searches by
including these pixels and/or directing traffic (object) detec-
tion within the surrounding region of pixels (and corre-
sponding airspace). However, perception data can be other-
wise e filtered/processed as a part of object detection/
classification.

[0123] The traffic detection module can output: object
(traffic) detections/identifications (e.g., geospatial location;
ego-relative position; bounding box; etc.), an object identi-
fiers (e.g., aircraft tail number, instance 1D), an object class
(e.g., type of aircraft; type of object; size of aircraft; etc.), a
probability (e.g., identification confidence; classification
probability; etc.), and/or any other suitable object/traffic
information.

[0124] However, the collision avoidance system can
include any other suitable traffic detection module.

[0125] The collision avoidance system 200 can include an
avoidance module 220, which functions to resolve potential
collision conflicts. Additionally or alternatively, the avoid-
ance module can enable determination of resolution advi-
sories. Additionally or alternatively, the avoidance module
can facilitate aircraft navigation based on traffic detections
(and/or failure to detect adjacent aircraft) by the traffic
detection module 210. The avoidance module preferably
receives outputs (e.g., traffic detections) from the traffic
detection module 210 and acts to resolve potential collision
conflicts (i.e., avoid collisions) based on the outputs from the
traffic detection module. Additionally, the avoidance module
can receive outputs from the semantic parsing system (e.g.,
aircraft advisories, commands, traffic advisories, etc.) to
facilitate routing and collision avoidance. The collision
avoidance module can include: a classically programmed
collision avoidance model(s), a ML model (e.g., neural
networks, etc.), heuristic model, a tree-based model, and/or
can facilitate collision avoidance by a set of predetermined
rules, heuristics, or other techniques. The collision avoid-
ance module can respond by performing (or directing) one
or more actions in accordance with Block S330, and/or can
otherwise facilitate collision avoidance.

[0126] In some variants, the avoidance module can facili-
tate tracking of traffic (e.g., in the immediate airspace, which
may facilitate in aircraft routing and collision avoidance; via
an object tracking sub-module) and/or can operate without
object (traffic) tracking (e.g., in cases where observing an
aircraft proximal to an expected position may be sufficient to
avoid a collision, such as at the request of ATC; where the
traffic detection can perform object tracking, etc.).

[0127] In a first set of variants, the avoidance module can
include an autonomous navigation/routing engine which can
autonomously determine resolution advisories based on the
traffic detections, wherein the resolution advisories can be
validated by a pilot (e.g., via a pilot validation interface). In
a second set of variants, the avoidance module can facilitate
automated audio requests for collision avoidance guidance
(e.g., via the system 100 and/or an ATC radio), wherein ATC
may redirect the aircraft to avoid a potential collision. In a
third set of variants, the avoidance module can direct pilot
intervention.

[0128] However, the collision avoidance system 200 can
include any other avoidance module(s); and/or the collision
avoidance system can be otherwise configured.
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5.2 Method

[0129] The method S300 for directed perception, an
example of which is shown in FIG. 16, can include deter-
mining a traffic advisory S310, locating an object associated
with the traffic advisory S320, and performing an action
based on the location of the object S330. The method
functions to automatically facilitate directed perception
based on traffic advisories (e.g., via interpret communica-
tions from a stream of ATC radio communications). The
method can additionally or alternatively function to facilitate
autonomous and/or automatic detection of objects (e.g.,
other aircraft) based on ATC communications. However, the
method S300 can otherwise facilitate directed perception.
[0130] Determining a traffic advisory S310 functions to
determine a traffic advisory based on ATC communications
(e.g., an example is shown in FIG. 17). For example,
semantic parsing of an ATC audio input (and/or an utterance
hypothesis derived thereof) via the semantic parsing system
100 can be used to determine a traffic advisory, wherein the
ego aircraft is the intended recipient (e.g., based on an ego
call sign and/or tail number). In such cases, the ATC audio
may be associated with an air traffic controller alerting the
aircraft to the presence of an object (e.g., aircraft, large
tower/bridge, etc.) and/or requesting that the ego aircraft
confirm a visual on the adjacent object. Traffic advisories
preferably refer to other aircraft, but can reference any
suitable objects or visual references (e.g., terrain features,
etc.).

[0131] S310 is preferably performed using the semantic
parsing system 100 and/or by executing all or a portion of
S200. Additionally or alternatively, S310 can include or be
based on: validation of the advisory (e.g., by an pilot
onboard the ego aircraft, by a remote operator, etc.), pilot
inputs (e.g., via a pilot validation interface), and/or any other
suitable information/inputs.

[0132] The traffic advisory (and/or information output
from the semantic parsing system 100, as derived from the
radio utterance) can include object information, such as: an
object identifier (e.g., aircraft tail number, call sign, etc.; a
proper noun/name such as “Needham Towers™ or “Air Force
One”), an object class (e.g., bridge, aircraft type, etc.), a
position estimate (e.g., position information such as an Earth
referenced position estimate, ego-relative position estimate,
altitude estimate, ego-relative altitude estimate, ego-relative
heading position; “eleven o’clock, two-thousand feet
above”), object movement information (e.g., absolute or
relative heading, speed, airspeed, etc.) and/or any other
suitable object information.

[0133] In a first variant, S310 can include: receiving an
audio signal; determining an utterance hypothesis for the
audio signal; and autonomously determining a traffic alert
based on the utterance hypothesis.

[0134] In a second variant, nonexclusive with the first,
S310 can include: receiving an air traffic control (ATC)
audio signal from a communication system; determining an
utterance hypothesis from the ATC audio signal with auto-
matic speech recognition (ASR); autonomously determining
a traffic advisory by querying the utterance hypothesis with
a pre-trained neural network model based on the utterance
hypothesis, the traffic advisory comprising an estimated
ego-relative position of an object. As an example, determin-
ing the utterance hypothesis from the ATC audio signal can
include: with the integrated ASR and sentence boundary
detection (SBD) module, generating a set of linguistic
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hypotheses based on the ATC audio signal; using an ATC-
tuned language model, determining a respective language
score for each linguistic hypothesis of the set of linguistic
hypotheses; and determining the utterance hypothesis from
the set of the linguistic hypotheses based on the respective
language scores.

[0135] However, the traffic advisories can be otherwise
suitably determined.

[0136] Locating an object associated with the traffic advi-
sory S320 functions to detect, identity, and/or determine a
location (i.e., confirm a position estimate, within threshold
accuracy) of traffic, such as nearby aircraft, to facilitate
aircraft routing and collision avoidance. S320 is preferably
performed with perception data collected onboard the air-
craft (e.g., via sensor suite and/or perception sensors thereof;
LIDAR point clouds, camera images, radar data cubes, etc.),
but can additionally utilize auxiliary data sources and/or any
other suitable data. S320 is preferably performed by the
collision avoidance system and/or a traffic detection module
thereof, but can be otherwise suitably executed with any
other aircraft (sub-)systems.

[0137] In one set of variants, the collision avoidance
system can perform substantially continuous object detec-
tion/tracking (e.g., close range detection/tracking; within 2
nautical miles) across surrounding airspace. For example, a
collision avoidance system can perform real-time (or near
real time) traffic detection/avoidance with a coarse analysis
of perception data (e.g., down-sampled data; fast object
detection model which utilizes less compute, etc.). Addi-
tionally or alternatively, persistent object detection/tracking
can be used to validate ADS-B position estimates, and/or
fused with ADS-B (and/or other auxiliary data) to provide
persistent position estimates for a set of aircraft and/or
object in the surrounding airspace (e.g., and/or nearby
planned flightpath). In such variants, in cases where the
object has already been, and/or is currently, detected/
tracked, the object location can be referenced from a prior
(e.g., current and/or historical tracking data, such as refer-
enced from recent detection/tracking across the last 10
seconds, last 30 seconds, etc.; based on ADS-B estimate
which has been validated for accuracy within the last
minute, etc.) in S320. As an example, S320 can locate a
nearby aircraft by referencing a prior. However, in cases
where no prior exists for an aircraft and/or where the
estimated aircraft position is beyond the detection range of
real-time object detection/tracking systems, S320 and/or the
traffic detection system may trigger an extended range
search (e.g., contemporaneous and/or asynchronously with
real-time traffic detection, tracking, and/or collision avoid-
ance).

[0138] In a second set of variants, nonexclusive with the
first set of variants, S320 can direct object/traffic detection
based on the traffic advisory. More preferably. S320 can
direct object/traffic detection based on the object informa-
tion associated with the traffic advisory. As an example,
S320 can trigger a (directed) object/traffic detection routine
(i.e., perception-based search) in response to the (automatic/
autonomous) determination of the traffic advisory.

[0139] Directing object/traffic detection based on the
object information can include one or more of: providing the
object information (e.g., ego-relative position; aircraft class;
etc.) as inputs to a pretrained object detector/classifier,
selecting a pretrained object detector from a plurality of
object detectors based on the object class (e.g., wherein each
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object detector of the plurality is pretrained to detect a
respective object class; for example a first object detector
can be pretrained to detect Boeing 737s and a second object
detector can be pretrained to detect light aircrafts, such as a
Cessna 172; etc.), restricting a search space based on the
object information (e.g., restricting an image pixel search
space within the set of camera images based on a proximity
of the estimated ego-relative position; restricting an azi-
muthal region of space based on an ego-relative heading
and/or estimated nautical distance; restricting a zenith angle
range of search space based on the altitude and/or range;
restricting a range of returns based on an estimated distance
to the aircraft), seeding an object detection search based on
the object information (e.g., wherein the search focuses/
centers around the estimated position or a high probability
region estimated based on the object information; where the
estimated position can serve as a starting point for an object
detection routine; kernel[s] or other techniques to focus
convolutions and layers of neural network; biased pixel
binning approaches; etc.), estimating an apparent size of the
aircraft based on the object information (e.g., using classical
programming techniques, ML-based programmatic tech-
niques, etc.; and providing the estimated apparent size of the
aircraft as an object/traffic detection input), and/or object/
traffic detection can be otherwise based on any other suitable
object information. Directed perception in S320 preferably
occurs based on granular perception data (e.g., relative to
real-time detection; triggering directed imaging with a modi-
fied magnification/focal length/lens focus/etc.; at higher/
full-resolution; etc.). Additionally, S230 can occur for a
current data frame/window (e.g., single image from each of
a set of cameras and/or frame of a radar data cube) and/or
can include analysis of multiple historical data frames/
windows (e.g., optical flow techniques; utilizing historical
data to improve detection accuracy, detection likelihood,
and/or detection confidence; etc.). However, directed per-
ception can additionally or alternatively be based on auxil-
iary data (e.g., from auxiliary data sources 230), refined data
(e.g., refined perception data; iteratively refined search
region, etc.), a subregion of data (e.g., subset of pixels,
subset of radar data cube, etc.), current perception data,
historical perception data, aircraft data, historical NLP traffic
data (e.g., prior utterances, parsed during current flight/
mission), and/or any other suitable data/information.

[0140] In a first variant, perception-based traffic detection
can be directed based on the estimated position of the
aircraft by confining/reducing the search space to a data
region corresponding to a sector of airspace containing the
estimated position.

[0141] In a second variant, perception-based traffic detec-
tion can be directed based on real-time traffic data from
auxiliary data sources (e.g., ADS-B). For example, a per-
ception-based search for a particular aircraft (e.g., as
directed by an ATC traffic advisory) can scan a search space
which is refined based on the estimated ego-relative position
of the aircraft, received from an auxiliary data source such
as ADS-B.

[0142] In a third variant, perception-based traffic detection
can be refined based on historical data, such as historical
flight traffic aggregates (e.g., a heatmap of high probability
regions of airspace, historical trajectories for the particular
flight number or tail number, etc.). For example, if aircraft
usually change course or turn around a lighthouse (e.g., as
may occur off the coast of Cape Cod), this traffic pattern may
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be used to further refine the search and/or predict the likely
trajectory (or region of airspace) where the aircraft is likely
to be present.

[0143] In a fourth variant, perception-based traffic detec-
tion can be directed based on inter-aircraft communications
on the active radio frequency (e.g., in addition to ground
ATC). For example, if the aircraft associated with a traffic
advisory has referenced terrain features/callouts (X bridge;
blue tanks; “Verify that you are visual on the Needham
towers”™; etc.) in previous radio communications, these may
be identified and referenced to direct perception searches.
[0144] In some variants, S320 can additionally direct
searches based on ‘glint’ returns. For example, instead of
filtering out highly saturated pixels and neglecting them
from consideration as object detection inputs, these may be
provided to object detectors and/or referenced as indicators
of aircraft presence. In variants, traffic detectors can be
pretrained to associate ‘glint” with the presence of aircraft/
objects, and/or data regions surrounding a ‘glint’ instance
may be used to more efficiently direct object detection (e.g.,
seeding search). As an illustrative example, light reflections
off of an aircraft windshield are often the first hint of an
aircraft that is identified to another pilot. Accordingly,
perception-based traffic detection may further utilize glint
and/or pixel saturation to further refine or direct the search
space.

[0145] S320 preferably identifies and locates aircraft (or
another objects) associated with the traffic advisory, and
outputs the location and/or confirmation of the detection to
facilitate collision avoidance and/or routing. For example,
S320 can utilize a pretrained traffic/object detector, such as
within the traffic detection module 210, to detect the aircraft
associated with the traffic advisory and determine a location
of the aircraft, which can be used to direct actions in
accordance with S330. Alternatively, in cases where the
aircraft cannot be identified/located, and/or where a confi-
dence falls below a predetermined confidence threshold
(e.g., classification probability output by an object detector,
etc.), the system can output a null location and optionally
request pilot and/or ATC intervention (e.g., by way of S330).
For example, a pilot may be able to visually confirm the
location of an adjacent aircraft and/or may validate that the
aircraft/object cannot be identified (e.g., via the pilot vali-
dation interface).

[0146] In variants, S320 can include ‘extended-range’
searches and/or traffic detection beyond the range of real-
time detection/tracking capabilities in response to traffic
advisory determinations according to S310. For example,
S320 can include extended-range searches which can be: 1
nautical mile, 2 nautical miles, 3 nautical miles, 4 nautical
miles, 5 nautical miles, 7 nautical miles, 10 nautical miles,
greater than 10 nautical miles, any open or closed range
bounded by the aforementioned values, and/or any other
suitable search range. Additionally or alternatively,
extended-range searches may utilize a greater granularity of
input data (e.g., resolution, refresh rate, optical range, data
volume) and/or a proportionally larger amount of processing
bandwidth/time (e.g., larger models for object detection/
classification, non-generic/class-specific models, etc.).
Additionally or alternatively, extended range searches can
be discretized/discontinuous (e.g., so as to avoid continuous
consuming processing bandwidth) and/or may terminate in
response to satisfaction of a trigger condition (e.g., con-
firmed location of the object with greater than threshold
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confidence, pilot identification and/or validation of the
object location, expiration of a time threshold, receipt of a
follow-up request from ATC, etc.). However, S320 can
otherwise facilitate extended range traffic detection and/or
extended range searches for objects associated with traffic
advisories. Alternatively, traffic detection and/or perception
for collision avoidance can be otherwise directed within any
suitable range(s), and/or S320 can be otherwise suitably
executed.

[0147] In one variant, a detection range of an extended
range search can be between 2 and 5 nautical miles (e.g.,
which may allow detection of aircraft which may otherwise
remain undetected during real-time collision avoidance).

[0148] In one variant, extended range searches can be
refined based on aircraft position data from an Automatic
Dependent Surveillance-Broadcast (ADS-B).

[0149] In variants, S320 can include identifying the object
associated with a traffic advisory/alert based on a traffic
detection routine (e.g., such as an extended-range search; an
example is shown in FIG. 18). For example, the object can
be identified based on a detection/classification probability
exceeding a predetermined threshold and/or a location of the
object falling within a threshold distance of an expected/
estimated position of the object.

[0150] However, objects associated with a traffic advisory
can be otherwise suitably located.

[0151] Performing an action based on the location of the
object S330 functions to facilitate aircraft navigation and/or
control based on the location of the object/aircraft. Addi-
tionally or alternatively, S330 preferably occurs in response
to determining the location of the aircraft via S320, but can
additionally or alternatively occur in response to pilot vali-
dation of the location and/or with any other suitable timing.
Actions performed in S330 can include one or more of:
determining a resolution advisory (e.g., via an autonomous
engine onboard the aircraft, via a pilot interface, etc.),
reporting negative contact (e.g., via an ATC radio), request-
ing updated ATC instructions (e.g., based on negative con-
tact/failure to identify an object/aircraft; via an ATC request
and NLP of the ATC response), confirming perception of the
object/aircraft (e.g., providing a response to ATC, such as by
generation of a semantic confirmation via the semantic
parsing system 100), automatically determining an aircraft
command (e.g., emergency plan; flight command based on a
resolution advisory; flight command according to the current
flight plan, such as in cases where the flightpath and/or flight
plan remains unchanged and confirming the location of the
object may allow the ego aircraft to proceed; etc.), control-
ling the aircraft, and/or any other suitable actions.

[0152] In one variant, performing the action includes
controlling the aircraft based on the object. In one variant,
performing the action includes reporting negative contact
via an ATC radio (and/or requesting an updated ATC direc-
tion). In one variant, performing the action includes deter-
mining a resolution advisory and reporting the resolution
advisory via the ATC radio.

[0153] In one variant, S330 can include: reporting nega-
tive contact (e.g., traffic not in sight; failure to identify
proximal aircraft; reported to ATC and/or pilot) based on an
extended-range search failing to identify an object associ-
ated with a traffic advisory (and/or traffic alert).

[0154]
formed.

However, any other suitable actions can be per-
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[0155] S330 is preferably executed by the collision avoid-
ance system (and/or an avoidance module thereof), but can
additionally or alternatively or alternatively be executed by
an autonomous computing system, the computing system(s)
as described in U.S. application Ser. No. 17/891,845, filed
19 Aug. 2022, which is incorporated herein in its entirety by
this reference, and/or any other suitable system(s) modules.

[0156] In some variants, S300 can optionally include
cross-validating identification and/or localization of an air-
craft based on real-time data. In one variant, the method can
optionally include providing a follow-up request for an
aircraft class, such as: “Say type of aircraft”, and cross-
validating the aircraft location based on semantic analysis of
a radio response (e.g., such as by a subsequent iteration of
S200). As an illustrative example, a common form of
misidentification may occur when an aircraft pilot mistakes
a large plane (e.g., which may be easy to see) for a small
plane (e.g., which might be harder to see). Cross-validation
may avoid misidentifications and/or improve accuracy/con-
fidence of object identification/classification (and localiza-
tion associated therewith). As a second example, a location
can be cross-validated against an auxiliary data source[s]
(e.g., ground radar) and/or via a pilot validation interface
(e.g., where a pilot may also confirm a visual on the aircraft).
However, traffic detections can be otherwise validated and/
or verified, or may otherwise be acted upon entirely autono-
mously.

[0157] However, directed perception can include any
other suitable elements, and/or can be otherwise suitably
implemented in conjunction with the semantic parsing sys-
tem and/or natural language processing.

[0158] Alternative embodiments implement the above
methods and/or processing modules in non-transitory com-
puter-readable media, storing computer-readable instruc-
tions. The instructions can be executed by computer-execut-
able components integrated with the computer-readable
medium and/or processing system. The computer-readable
medium may include any suitable computer readable media
such as RAMs, ROMs, flash memory, EEPROMs, optical
devices (CD or DVD), hard drives, floppy drives, non-
transitory computer readable media, or any suitable device.
The computer-executable component can include a comput-
ing system and/or processing system (e.g., including one or
more collocated or distributed, remote or local processors)
connected to the non-transitory computer-readable medium,
such as CPUs, GPUS, TPUS, microprocessors, or ASICs,
but the instructions can alternatively or additionally be
executed by any suitable dedicated hardware device.

[0159] Embodiments of the system and/or method can
include every combination and permutation of the various
system components and the various method processes,
wherein one or more instances of the method and/or pro-
cesses described herein can be performed asynchronously
(e.g., sequentially), concurrently (e.g., in parallel), or in any
other suitable order by and/or using one or more instances of
the systems, elements, and/or entities described herein.

[0160] As a person skilled in the art will recognize from
the previous detailed description and from the figures and
claims, modifications and changes can be made to the
preferred embodiments of the invention without departing
from the scope of this invention defined in the following
claims.
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We claim:

1. A method for directed collision avoidance on an aircraft
comprising:

receiving a traffic advisory associated with an estimated

location of an object;

determining a set of camera images collected onboard the

aircraft;

performing an extended range search with a pretrained

classifier based on the estimated location of the object,
wherein the extended range search is directed by
restricting an image pixel search space, within the set
camera images, based on the estimated location; and
performing an action based on the extended range search.

2. The method of claim 1, wherein restricting the image
pixel search space comprises: restricting an ego-relative,
azimuthal range of search space based on an ego-relative
heading estimate for the object and a nautical distance to the
estimated location.

3. The method of claim 1, wherein restricting the image
pixel search space comprises: restricting an ego-relative,
zenith-angle range of search space based on an ego-relative
altitude estimate for the object and a nautical distance to the
estimated location.

4. The method of claim 1, wherein the traffic advisory
comprises a set of object information associated with the
object, wherein the extended range search is based on the
object information.

5. The method of claim 4, further comprising: estimating
an apparent size of the object based on the object informa-
tion, wherein the extended range search is based on the
apparent size.

6. The method of claim 4, wherein the object information
comprises an aircraft size class, wherein the pretrained
classifier is an object detector which is pretrained for the
aircraft size class.

7. The method of claim 1, wherein the extended range
search is directed based on a set of glint returns comprising
highly saturated pixels within the set of camera images.

8. The method of claim 1, wherein the set of camera
images comprises a plurality of historical image frames
collected prior to receipt of the traffic advisory.

9. The method of claim 8, wherein the traffic advisory
comprises object movement information, wherein the
extended range search of the plurality of historical images
frames is based on the movement information.

10. The method of claim 1, wherein the extended range
search is seeded based on the estimated location of the
object.

11. The method of claim 1, further comprising: detecting
the object associated with the traffic advisory based on the
extended range search, wherein the action is performed
based on the object detection.

12. The method of claim 11, wherein performing the
action comprises determining a resolution advisory based on
the object detection.

13. The method of claim 1, wherein performing the action
comprises reporting negative contact based on the extended
range search failing to detect the object.

14. The method of claim 1, wherein the estimated location
is an ego-relative region of airspace.

15. The method of claim 1, wherein the estimated location
is an ADS-B position estimate.
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16. A method for vehicle collision avoidance comprising:

determining a traffic alert associated with an object;

based on the traffic alert, performing a directed object
detection routine with a pretrained classifier to search
for the object using vehicle perception data;

refining a search space of the directed object detection
routine based on a set of historical traffic data;

based on the directed object detection routine, locating the
object associated with the traffic alert; and

performing an action based on the location of the object.

17. The method of claim 16, wherein refining the search

space comprises:

restricting an ego-relative, azimuthal range of search
space based on an ego-relative heading estimate for the
object and a nautical distance to the estimated location;
and
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restricting an ego-relative, zenith-angle range of search
space based on an ego-relative altitude estimate for the
object and the nautical distance to the estimated loca-
tion.

18. The method of claim 16, further comprising: estimat-
ing an apparent size of the object based on traffic advisory,
wherein the directed object detection routine is based on the
apparent size.

19. The method of claim 16, wherein the estimated
position of the object is based on aircraft position data from
an Automatic Dependent Surveillance-Broadcast (ADS-B).

20. The method of claim 16, wherein the vehicle percep-
tion data comprises a plurality of historical image frames
collected prior to receipt of the traffic advisory, wherein the
traffic advisory comprises object movement information,
wherein the search space for the plurality of historical
images frames is based on the movement information.
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