
(12) United States Patent

USOO7304643B2

(10) Patent No.: US 7,304,643 B2
BrOnder (45) Date of Patent: *Dec. 4, 2007

(54) SPIRAL CONSTRUCTION OF A GEODESIC 6,429,865 B1 8/2002 Marshall 345,420
DOME 2004/OO75659 A1 4/2004 Taubin 345,428

(75) Inventor: Matthew L. Bronder, Bellevue, WA OTHER PUBLICATIONS
(US) Foley et al., Computer Graphics. Principles and Practice. Addison

Wesley Pub. Co., Inc. 1997. pp. 473-475.
(73) Assignee: Microsoft Corporation, Redmond, WA Holden, Alan. Shapes, Space, and Symmetry. New York: (C) Colum

(US) bia University Press, 1971.
Wenninger, Magus J. Spherical Models. New York: (C) Cambridge

(*) Notice: Subject to any disclaimer, the term of this University Press 1979.
patent is extended or adjusted under 35 Zimmerman, Uwe. Geodesic Shape Generator for Persistence of
U.S.C. 154(b) by 0 days. Vision 3. Ix. Version 2.0. Ju1 1999.

POV-Ray 3.5 Documentation. Dec. 5, 2002. <http://web.archive.

This patent is Subject to a terminal dis- gyeb 202120212020 www.povayogdocumentation view
claimer.

Primary Examiner Ulka Chauhan
(21) Appl. No.: 11/234,682 Assistant Examiner—Peter-Anthony Pappas

(22) Filed: Sep. 23, 2005 (57) ABSTRACT

(65) Prior Publication Data Four predefined vertices define an icosahedron used for
US 2006/0022977 A1 Feb. 2, 2006 constructing a geodesic dome. Each section of the icosahe

dron, including the top, center, and bottom, is sequentially
Related U.S. Application Data processed to construct a plurality of vertices and a plurality

(63) Continuation of application No. 10/377,981, filed on t Rgetti ss E. N.
Feb. 28, 2003, now Pat. No. 7,034,826. which determines the number of vertices. A plurality of

(51) Int. Cl transformation matrices are employed to rotate a three
cost iz00 (2006.01) dimensional vector about a selected axis through a pre

defined angle to generate the vertices. The indices for the
(52) U.S. Cl.r irrir. 345/423 triangles are constructed as either triangle strips or triangle
(58) Field of Classification Search None lists, for each of the three sections of the icosahedron.

See application file for complete search history. Vertices are stored in a vertex buffer and indices in an index
(56) References Cited buffer. The vertices are selected to form a plurality of edges

disposed at an equal distance from the center of the icosa
U.S. PATENT DOCUMENTS hedron.

4,901,483. A 2, 1990 Huegy 52/812
6,295,785 B1 10/2001 Hermann 52.745.08 29 Claims, 17 Drawing Sheets

DOMErADIUS,
WRX S2

werex
JFer drier

BASE
ICSAHERN

ATA

Nex

ForMStrip

FNCT FORMING
STRIP, FoRM Ist

122
S.

werex
construction

12 ------------
MEsted Lodas
FORMING TCP (ii.5)

126

TRANGE STRIP
CNSRIN

NESTE LOOPS
ForMING TO

TRANGELST
Nstrict

NESTED loops
ForMiNG TOP

NESEPs
ForMiNG cr

128

NESTELOPS
FORMING center File:E) ESTEPs

form CNEr

NESEPs
FORMINGoto

00

YNEST does
FORMING BOOM

COMPLETE 3DESCOME

NESTELCCPS
FORMINGSM E.

U.S. Patent Dec. 4, 2007 Sheet 2 of 17 US 7,304,643 B2

AS e

s

GOURAUD SHADED SPHERE

FIG. 2A FIG. 2B

(TRIANGLE)

FIG. 3A

U.S. Patent Dec. 4, 2007 Sheet 3 of 17 US 7,304,643 B2

s

U.S. Patent Dec. 4, 2007 Sheet 4 of 17 US 7,304,643 B2

VERTEXSIZE DOME ORDER os FORM STRIP

SZE
EXTRAPOLATION

MEMORY
ALLOCATION

VERTEX
BUFFER

112
INDEX
BUFFER ORDERED

BASE
COSAHEDRON

DATA
12()

()
FNOT FORMING
STRIP, FORMLIST

114 122

VERTEX
CONSTRUCTION

NESTED Loops
FORMING TOP

TRANGLE STRIP
CONSTRUCTION

TRANGLEST
CONSTRUCTION

----|--
NESTED LOOPS
FORMING TOP

--
NESTED loops
FORMING TOP

126

NESTED LOOPS
FORMING CENTER

132 -car 13
NESTED LOOPS NESTED LOOPS
FORMING CENTER FORMING CENTER

128 -steer wer
NESTED LOOPS NESTED LOOPS NESTED LOOPS

FORMING BOTTOM FORMING BOTTOM FORMING BOTTOM

COMPLETED GEODESC DOME

FIG. 5

U.S. Patent Dec. 4, 2007 Sheet 5 of 17 US 7,304,643 B2

START

INPUT:
RADIUS ORDER
FORMSTRP VERTEXSIZE

152

ROTATE ONE FIFTH Y=
(0.309017 O.0 0.951057 0.0
O.O 10 O.O O.O
-0.951957 O.O 0.309017 O.0
O.O. O.O O.O 1.0

154

VO=<0.0 1.0 OOD 156
V1 =<0.7236.0679775 0.4472135955 -0.52473111212>
V2=<0.894.427.191 -O4472135955 OOD
V3E COO - 1.0 OOD

ANGLE FACE = 1.107 14871.78 /

MIDROWCOUNT = ORDER +1 160
MIDROWVERTEXCOUNT = 5 x ORDER
ENDROWCOUNT = ORDER
ENDVERTEXCOUNT = (ORDER - 1) x ORDER/2 x 5 + 1

CONSTRUCT VERTICES -162

164
S

YES FORMSTRP TRUE NO 1.65 166

CONSTRUCT CONSTRUCT
TRIANGLE STRIP TRANGLE IST

OUTPUT:
VERTEXERUFFER INDEXBUFFER
VERTEXCOUNT INDEXCOUNT
TRANGLECOUNT

168

150

U.S. Patent Dec. 4, 2007 Sheet 6 of 17 US 7,304,643 B2

START
170

INPUT:
RADIUS ROTATE ONE FIFTHY MIDROWCOUNT
VERTEXSIZE VO V1 MIDROWVERTEXCOUNT

V2 V3 ENDROWCOUNT
ANGLE FACE ENOVERTEXCOUNT

172

IF VERTEXSIZE IS LARGE ENOUGH FOR 6 FLOATING POINT VALUES
THEN WRITENORMALS = TRUE
ELSE WRITENORMALS = FALSE

OUTPUT: VERTEXCOUNT = MIDROWCOUNT x 174
MIDROWVERTEXCOUNT + 2 x ENDVERTEXCOUNT

ALLOCATE MEMORY FORVERTEXBUFFER 176 178

SE VERTEXBUFFERWRITE LOCATION TO START OF BUFFER

VERTEXBUFFERs. VOXRADIUS 18O F WRITENORMASTENVERTEXBUFFER = V0 ADVANCEVERTEXBUFFERWRITELOCATESNEY VERTEXSIZE

CONSTRUCT TO SEccN coli (liosic, (ME 182

CONSTRUCT CENTER SECTION OF GEODESC DOME 184

CONSTRUCT BOTTOM SECTION OF GEODESIC DOME 186

VERTEXBUFFERs. V3 XRADIUS 188 F WRITENORMASPENVERTEXBUFFER V3 NORMAL

OUTPUT: 190
VERTEXBUFFER

162 RETURN FIG. 7

U.S. Patent Dec. 4, 2007 Sheet 7 of 17 US 7,304,643 B2

ENDPOINT = WO

START

AXISFACE = VOX V1
ROTATEFACE = MATRIXAXISROTATION(AXISFACE,

(ANGLEFACE ENDROWCOUNT))

ROW = ROW + 1

S
ROW <

NDROWCOUNT
NO

ENDPOINTO = ENDPONOx ROTATEFACE
ENDPOINT1 = <ENDPOINTO ENDPOINTO-ENDPOINT0 AXISSECTOR, ENDESSEENEPON? ANGESECTSR.Cos(ENDSOINTO ENDPOINT1) ROW
DOMEVERTEX - ENDPOINTO

RETURN

--------------> FACE La FACE - 1 -...-.

NO

ROTATESECTOR = MATRIXAXISROTATION(AXISSECTOR
ANGIESECTO) AXISSECTOR - AXISSECfORXR6ATE ONE FIFT Y

216

218 226

STEP = STEP + 1
222

VERTEXBUFFERest DOMEVERTEXx RADIUS if WRifENORMASTENVERTEXBUFFER 5BXEVERTEX
ADVANCE VERTEXBUFFER WRITE LOCATION BY VERTEXSIZE

YES

u
182

FIG. 8
224

DOMEVERTEX = DOMEVERTEXx ROATESECTOR

U.S. Patent Dec. 4, 2007 Sheet 8 of 17 US 7,304,643 B2

ENDPOINTO - V1

START

AXISFACE = W1 x V2
ROTATEFACE = MATRIXAXISROTATION(AXISFACE,
(ANGLEFACE/(MIDROWCOUNT - 1)))

ENDPONTO = END PONTOx
ROTATEFACE

STEPCOUNT = MIDROWCOUNT - 1 - ROW
STEPCOUNT = ROW
ENDPOINT1 = <ENDPOINTO ENDPOINTO -ENDPOINTO>
END PONT2 = ENDPOINTO XROTATE ONE FIFTHY
AXISSECTOR = ENDPOINTOxENDPOINT1 AXISSECTOR = ENDPoint NDPONT2
ANGIESECTOR s cos (ENDPINTERPOINT)/ SECOUNT
ANGLESECTOR, a COS (ENDPOINT1 . ENDPOINT2)

STEPCOUNT,
DOMEVERTEX is ENDPONTO

230

246

ROW = ROW + 1

MIDROWCOUNT

NO

RETURN

254

FACE = FACE + 1

FACEOID) at ACE MC)) IS 2
ROTATESECTOR is

No MATRIXAXISROTATION(AXISSECTOR
ANGLESECTORacoop)

AXISSECTOR actor ASSESEx
FACE < 10

258

DOMEVERTEX = DOMEVERTEX x
ROTATESECTOR

VERTEXBUFFERs DOMEVERTEXx RADIUS YESF WRENORMASPENVERTEXBUFFERE u = DOMEVERTEX
FIG. 9 256

260

SEP = STEP + 1

STEP <
STEPCOUNTaco

AVANCE VERTEXBUFFERWRITE LOCATION BY
ERTEX SIZE

U.S. Patent Dec. 4, 2007 Sheet 9 Of 17 US 7,304,643 B2

SART

ENDPOINTO = V2
AXISFACE = V2 x V3
ROTATEFACE = MATRIXAXISROTATION(AXISFACE, (ANGLEFACE/ENDROWCOUNT))
272

ROW = ROW + 1

IS
ROW C NO

ENDROWCOUNT

ENDPOINTO = ENDPOINTO x. ROTATEFACE
ENDPOINT ENDPOINTOOATE ONE FIFTHY
AXISSECTOR is ENOPOINT). ENDPON1
ANGESECfSr. = COS'(ENL)POINI () ENDPOINT1)

(ENDROWCOUNT-ROW)
DOMEVERTEX - ENDPOINTO

RETURN

290

FACE = FACE + 1

ROTATESECTOR =

ANGLESECTOR)
AXISSECTOR = AXISSECTOR x ROATEORE FIFTHY

286

296

|S STEP = STEP + 1

STEP <

294

DOMEVERTEX = DOMEVERTEX x
ROATESECTOR

VERTEXBUFFER = DOMEVERTEXx (ENDROWCOUNT -
RADIUS

F WRITENORMALS THEN
VERTEXBUFFER = DOMEVERTEX

ROW)
2

FIG. IO u ADVANCE VERTESEFFERWRTE
186 292 LOCATION BY VERTEXSIZE

U.S. Patent Dec. 4, 2007 Sheet 10 of 17 US 7,304,643 B2

START
300

INPUT:
ORDER

MIDROWCOUNT ENDROWCOUNT
MIDROWVERTEXCOUNT ENOVERTEXCOUNT

302

OUTPUT:
TRIANGLECOUNT = 20x ORDER2 + 16 x ORDER - 4
INDEXCOUNT = TRANGLECOUNT + 2

Allocate MEMORY For INDExBuFFERN'

SETIN)EXBUFFERWIRE LOCATION
TO START OF BUFFER
INDEX = 0

306

308

CONSTRUCT TRIANGLE STRP AROUND GEODESIC DOME TOP SECTION
31()

CONSTRUCT TRANGE STRP AROUND GEODESC DOME CENTER SECTION
312

CONSTRUCT TRIANGLE STRIP AROUND GEODESIC DOME BOTTOMSECTION

OUTPUT: 314
NDEXBUFFER

u RETURN
164

FIG. II

U.S. Patent Dec. 4, 2007 Sheet 11 of 17 US 7,304,643 B2

START

INPUT:
ORDER

MIDROWCOUNT ENDROWCOUNT
MIDROWVERTEXCOUNT ENDVERTEXCOUNT

320

ORDER 322
TRIANGLECOUNT = 20x ORDER2
INDEXCOUNT = TRANGLECOUNTX 3

ALLOCATE MEMORY FOR INDEXBUFFER 324

326

SET INDEXBUFFER WRITELOCATION TO START OF BUFFER
INDEX u ()

328

CONSTRUCT TRIANGLE LISTAROUND GEODESIC DOME TOP SECTION
330

CONSTRUCT TRANGLE LIST AROUND GEODESIC DOME CENTER SECTION

332

E LISTAROUND GEODESIC DOME BOTTOM SECTION

OUTPUT: 334
INDEXBUFFER

u RETURN
166

FIG. I2

CONSTRUCT TRIANG.

U.S. Patent Dec. 4, 2007 Sheet 12 of 17 US 7,304,643 B2

INDEXBUFFER = ROWINDEXO
INDEXBUFFER = ROWINDEX1
INDEX = NOEX + 1
INDEXBUFFER = ROWINDEX1
INDEX = NOEX + 1
ROWINDEXO-ROWINDEX1
ROWINDEX1 = ROWINDEX1 + (ROW + 1) x 5

ROWINDEXO = 0
ROWNDEX1 = 1

ROW = ROW + 1

IS
ROW C

NDROWCOUN

IS
STEP < ROW

p 362

STEP = STEP + 1

YES
NEEE p5x = ROWINDEX1 + (ROW + 1) x FACE + STEP

+

INDEXBUFFER = ROWINDEXO + ROW x FACE + STEP INDEXNDEXNP

308 FIG. I.3

U.S. Patent Dec. 4, 2007 Sheet 13 of 17 US 7,304,643 B2

START

AFTER CONSTRUCTING TOP SECTION,
ROWINDEXO = ENOVERTEXCOUNT
ROWINDEX1 = ENOVERTEXCOUNT +

MIDROWVERTEXCOUNT

370

384

372 INDEXBUFFER = ROWINDEXO
INDEXBUFFER = ROWINDEX1
NDEX = NDEX + 1
INDEXBUFFER = ROWINDEX1
INDEX = INDEX + 1
ROWINDEXO = ROWINDEX1
ROWINDEX1 = ROWINDEX1 + MIDROWVERTEXCOUNT

ROW = ROW + 1

NO

-NO b. RETURN
7.

N- S w Y

STEP = STEP + 1
a STEP < s

MIDROWVERTEXCOUNT
2

382

INDEXBUFFER = ROWINDEX1 + STEP
INDEX = INDEX + 1
INDEXBUFFER = ROWINDEXO + STEP + 1
INDEX = INDEX + 1

- FIG. I.4 31 O

U.S. Patent Dec. 4, 2007 Sheet 14 of 17 US 7,304,643 B2

START

AFTER CONSTRUCTING CENTER SECTION,
ROWINDEXO = MIDROWVERTEXCOUNTx (MIDROWCOUNT - 1) +

ENOVERTEXCOUNT
ROWINDEX1 = MIDROWVERTEXCOUNTx (MIDROWCOUNT - 1) +

ENOVERTEXCOUNT + MIDROWVERTEXCOUNT

412 INDEXBUFFER = ROWINDEX1
INDEX = NDEX + 1
INDEXBUFFER = ROWINDEX1
INDEX = INDEX + 1
ROWINDEXO = ROWINDEX1
ROWINDEX 1 = ROWNDEX1 +
(ENDROWCOUNT - ROW - 1) x 5

NO- ---------

S o ? A13
ROW x 1's -------

ENDROWCOUNT -d - ROW = ROW + 1 —No
396

IS
ROW <

ENDROWCOUNT -
2

? 408
No- FACE = FACE + 1 - 398

400 --
YES FACE C 5

NO

INDEXBUFFER = ROWINDEX1
INDEXBUFFER = ROWINDEXO

INDEXBUFFER = ROWNDEX1 +
(ENDROWCOORf-ROW). FACE STEP
INDEX = INDEX + 1
INDEXBUFFER = ROWNDEXO +
(ENDROWCOOR - ROWSFACE STEP + 1
INDEX = INDEX + 1

STEP = STEP + 1

S
STEP C

ENDROWCOUNT - 1
p

312

FIG. I5

U.S. Patent Dec. 4, 2007 Sheet 15 of 17 US 7,304,643 B2

442
STAR

420
446 YES

ROWNDEXO = O
ROWNDEX1 = 1

422

8
ROW = ROW + 1 44 444

INDEXBUFFER = ROWINDEXO

INDEXBUFFER = ROWINDEX1
ROWNDEXO = ROWNDEX1
ROWINDEX1 = ROWINDEX1 + (ROW + 1) x 5

INDEXE UFFER = ROWINDEXO
RETURN 424 S INDEX-2 426

ROW <
NO NDROWCOUN YES {FACE Fo)

440 428

-----------> ACE = ACE + 1 - ------------>4 FACE < 5 -------

YES

INDEXBUFFER = ROWINDEX1 + (ROW + 1) x FACE, INDEX INDEX + 1
INDEXBUFFER = ROWINDEXO + ROW x FACE INDEX = INDEX + 1
INDEXBUFFER = ROWINDEX 1 + (ROW + 1) x FACE + 1; INDEX = INDEX + 1

434 32
SN 4.

ROW

? STEP = STEP + 1

INDEXBUFFER = ROWINDEX1 + (ROW + 1) x FACE + STEP, INDEX = INDEX + 1
INDEXBUFFER = ROWINDEXO + ROW x FACE + STEP, INDEX = INDEX + 1
INDEXBUFFER = ROWINDEXO + ROW x FACE + STEP + 1; INDEX = INDEX + 1
1NDEXBUFFER = ROWINDEX1 + (ROW + 1) x FACE + STEP + 1, INDEX = INDEX + 1
INDEXBUFFER = ROWINDEXO + ROW x FACE + STEP + 1; INDEX = INDEX + 1
INDEXBUFFER = ROWINDEX1 + (ROW + 1) x FACE + STEP + 2; INDEX = INDEX + 1

u FIG. I6
328

U.S. Patent Dec. 4, 2007 Sheet 16 of 17 US 7,304,643 B2

START
460

AFTER CONSTRUCTING TOP SECTION, ROWINDEXO = ENDVERTEXCOUNT
8, ROWINDEX1 = ENOVERTEXCOUNT -- MIDROWVERTEXCOUNT

ROW E ROW + 1

INDEXBUFFER = ROWINDEXO
INDEXBUFFER = ROWINDEXO

{Row = ODHINDEXBUFFER = ROWINDEX1
ROWNDEXO = ROWINDEX1
ROWNDEX 1 = ROWINDEX 1 + MIDROWVERTEXCOUNT

476
474

464
IS

ROW C s
DROWCOUNT - 1/" YES. 466

NO

NO

RETURN

STEP = STEP + 1
468

IS
STEP C

DROWVERTEXCOUN T

INDEXBUFFER = ROWINDEX1 + STEP, INDEX = INDEX + 1
INDEXBUFFER = ROWINDEXO + STEP, INDEX = INDEX + 1
INDEXBUFFER = ROWINDEXO + STEP + 1; INDEX = INDEX + 1
INDEXBUFFER = ROWINDEX1 + STEP; INDEX = INDEX + 1
INDEXBUFFER = ROWINDEXO + STEP + 1; INDEX = INDEX + 1
INDEXBUFFER = ROWINDEX1 + STEP +1; INDEX = INDEX + 1

u FIG. I. 7
330

U.S. Patent Dec. 4, 2007 Sheet 17 Of 17 US 7,304,643 B2

AFTER CONSTRUCTING CENTER SECTION, ROWINDEXO =
MIDROWVERTEXCOUNTx (MIDROWCOUNT - 1) + ENDVERTEXCOUNT

& ROWNDEX1 = MIDROWVERTEXCOUNTx (MIDROWCOUNT - 1) +
ENDVERTEXCOUNT + MIDROWVERTEXCOUNT

5O6

NO

82 'INDEXBUFFER = ROWINDEXO
ROWINDEXO = ROWNDEX1
ROWINDEX1 = ROWINDEX1 +
(ENDROWCOUNT - ROW - 1) x 5

D S ROW C
ROW = ROW + 1 .508 504 NDROW COUNT -

484 INDEXBUFFER = ROWINDEX1
S INDEXBUFFER = ROWINDEX1

ROW <
ENDROWCOUNT YES

p

-NO.-----. -i?\.

Fact-act ' a y NO | ?
INDEXBUFFER = ROWINDEX1 + (ENDROWCOUNT - ROW-1) x FACE & INDEX = INDEX + 1
INDEXBUFFER = ROWINDEXO + (ENDROWCOUNT-ROW) x FACE & INDEX = INDEX + 1
INDEXBUFFER = ROWINDEXO + (ENDROWCOUNT - ROW) x FACE + 1 & INDEX = INDEX + 1

502

500

494

Y., is STEP <
ENDROWCOUNT -

ROW - 1

NEEEps = ROWINDEX1 + (ENDROWCOUNT - ROW - 1) x FACE + STEP
INDEX = NOEX
NEEEps = ROWINDEXO + (ENDROWCOUNT - ROW) X FACE + STEP + 1
NDEX = NOEX
NEEPEps = ROWINDEX1 + (ENDROWCOUNT-ROW-1) x FACE + STEP + 1
NDEX NDEX
NEEPEps = ROWINDEX 1 + (ENDROWCOUNT - ROW-1) x FACE + STEP + 1
NDEX c NDEX
INDEXBUFFER = ROWINDEXO + (ENDROWCOUNT-ROW) X FACE + STEP + 1 INDEX INDEXP
INDEXBUFFER = ROWINDEXO + (ENDROWCOUNT - ROW) X FACE + STEP + 2
INDEXNDEXPE 332

US 7,304,643 B2
1.

SPIRAL CONSTRUCTION OF A GEODESIC
DOME

RELATED APPLICATIONS

This application is a continuation of prior patent applica
tion Ser. No. 10/377,981, filed on Feb. 28, 2003, now U.S.
Pat. No. 7,034,826 the benefit of the filing date of which is
hereby claimed under 35 U.S.C. 120.

10
FIELD OF THE INVENTION

The present invention generally pertains to a method and
system for modeling spherical geometry, and more specifi
cally, for modeling a geodesic dome through a single pass, 15
iterative process of subdividing a polyhedron into the geo
desic dome of arbitrary tessellation order, generating Verti
ces and corresponding triangle index data for a specific
polyhedron, such as an icosahedron.

2O
BACKGROUND OF THE INVENTION

A sphere is one of the fundamental graphic primitive
shapes employed in three-dimensional (3-D) computer
graphics that are commonly used in computer games, simu- 25
lations, and other types of virtual environments. Although
dramatic advances have recently been made in developing
powerful graphics hardware and engines to render 3-D
computer graphics in real time, new approaches that reduce
the processing overhead required for generating primitive 30
shapes such as spheres are very much desired, so that the
available processing capabilities of the central processing
unit (CPU) and graphics processors can be more efficiently
employed for other purposes. The geometry of spheres and
other primitive shapes is either directly expressed as a 35
collection of triangles, or through the control points of a
higher order surface, which must itself be tessellated into
triangles by the rendering engine early in the graphics
pipeline processing. Accordingly, a sphere is normally
approximated by a set of triangles with shared edges and, 40
ideally, having vertices evenly distributed over the surface of
the sphere. One of the geometric forms best suited to the
approximation of a sphere using polygons is a geodesic
dome, as shown in FIG. 2A. The geodesic dome shown in
this Figure is constructed from a subdivided icosahedron and 45
has 252 vertices that define the corners of 500 triangles.
When rendered using diffuse light with Gouraud shading,
the result is shown in FIG. 2B. To construct a geodesic dome
like that shown in FIG. 2A from one of the regular polyhe
dra, polygons comprising the base geometry of any of the 50
five Platonic solids are reiteratively subdivided in a trian
gulation process. Each of the polygons in the polyhedron are
subdivided into a number of small polygons, and the result
ing vertices of the polygons are projected out to a radius
equal to that of the polyhedron’s original vertices. The 55
smaller polygons are subdivided again, and the process is
reiterated until the resulting geometry satisfactorily approxi
mates a sphere for the purposes of the graphic application in
which the sphere is to be used. Thus, this reiterative process
creates n geodesic domes of various complexities to arrive 60
at a final dome of order n, applying the geodesation opera
tion on each intermediate dome in turn, to achieve greater
tessellation.

Although the process described above is straightforward
and effective, it has its drawbacks. By its nature, this process 65
lends itself to the use of recursive functions calls, which
have a clear inherent processing cost, due to increased call

2
overhead, additional storage requirements for function state.
and the repetitive nature of the method. This prior art process
must construct intermediate geodesic domes during each
successive pass to subdivide the polygons comprising each
intermediate dome. Accordingly, a substantial up-front
memory allocation must be made to store all of the inter
mediate geodesic domes, or memory must be allocated at
every reiterative pass, or a very high frequency of Smaller
memory allocations and memory freeing operations must be
performed at the polygon level to divide individual triangles
of the intermediate domes. The single allocation and per
pass allocation of memory reserve much more memory that
is actually required to construct the final geodesic dome. The
per-triangle allocations of memory are much better at con
serving memory, but they sacrifice performance and cause
memory fragmentation. Also, the multi-pass approach for
generating a geodesic dome is computationally show, not
only because it must generate successive intermediate geo
desic domes, but also because the per-triangle subdivisions
can lead to redundant calculation of vertex locations for
subdivided triangles, where a calculated vertex location
along the edge of one triangle might be recalculated for an
adjacent triangle that shares the edge.
To avoid the problems noted above, the geometry of the

desired geodesic dome can be pre-computed and then loaded
for rendering by a graphics engine when needed. However,
in many applications, it will not be possible to pre-compute
the required geometry for a geodesic dome. In addition, the
storage requirements for a densely modeled sphere can be
relatively significant. For example, a geodesic dome formed
from an icosahedron with a tessellation order of 64 contains
over 40,000 vertices and 490,000 indices. By generating a
sphere at runtime instead of pre-computing it, the storage of
the pre-computed geometry data is avoided. Instead, it is
only necessary to store the origin, radius, and tessellation
order of the sphere as input to the sphere generation process.
Additionally, to provide a performance enhancement, there
is a clear need for an approach that enables the spherical
geometry to be computed in less time than required for
loading the equivalent amount of pre-computed geometry
data for the sphere from a file.
To avoid recursive or multi-pass subdivisions of a geo

desic dome, a simpler method of subdivision can be
employed, so that the repositioning of polygons between
each subdivision is postponed, and by performing the poly
gon subdivision and vertex projections as discrete steps.
Each polygon of a polyhedron is first completely subdivided
into a final set of smaller polygons that will form the
geodesic dome. After the subdivisions, all polygons have the
same edge lengths and lie completely within the planes of
the original polyhedral faces. The vertices of these polygons
are then gnomonically projected en masse to a distance from
the center of the polyhedron equal to that of the original
vertices. Thus, this iterative approach is much faster than
performing successive subdivisions of intermediate geode
sic domes and simplifies the entire process for non-power
of-two tessellation orders. However, in postponing the gno
monic projections of polygons until after all subdivisions
have taken place, this approach sacrifices the uniformity of
vertex distribution on the surface of the geodesic dome.
Instead, the uniformity of distribution lies on the surface of
the original polyhedron and is lost during the projection
process. Vertices located nearer to the corners of the original
polyhedron will end up closer to one another in the resulting
dome than those located close to the center of the original
faces. Since the geodesic dome produced will less closely
resemble a sphere than that which could have been con

US 7,304,643 B2
3

structed through the more conventional recursive process,
additional vertices must be added with a higher tessellation
order to compensate for the uneven distribution of vertices.
For this reason, a still different approach is required that
achieves equal distribution of vertices, but enables a poly
hedron to be efficiently subdivided in a single pass, without
the need to construct intermediate geodesic domes.

SUMMARY OF THE INVENTION

The present invention avoids the shortcomings of the
above-noted prior art strategies for generating a geodesic
dome by providing a highly efficient method for subdividing
a polyhedron in a single pass for any given tessellation order,
while still providing a good approximation to a sphere. As
has been known since the time of the ancient Greeks, there
are five regular polyhedra, including the tetrahedron, the
cube, the octahedron, the dodecahedron, and the icosahe
dron. A regular polyhedron is one that that is both equilateral
and equiangular, i.e., a polyhedron in which all its faces are
equal regular polygons, and in which the same number of
faces meet at every vertex. In carrying out the present
invention, a preferred embodiment employs an icosahedron
as the base polyhedron to subdivide since, of the five regular
polyhedra, it provides the most uniform distribution of
vertices across the surface of the sphere when subdivided
into a geodesic dome (only four vertices and three edges of
the icosahedron are actually required by the invention).
However, it will be understood that other regular polyhedra
can instead be employed.
The present invention is able to perform single up-front

memory allocations of exactly the right size for the vertex
and index data generated for a geodesic dome. With memory
requirements known from the start, the present invention
does not need to reserve any memory above that required for
storing the final geometry. Because the present invention is
able to perform a single pass to generate a geodesic dome,
regardless of the tessellation order required it also runs much
faster than prior art recursive solutions. Indeed, the perfor
mance delta between the prior art and the present invention
increases with the order specified. The speed of the present
invention is not much worse than that of the simple “fully
subdivide and then fully project' method of constructing a
geodesic dome, but unlike that method, the present invention
does not suffer a distribution penalty. The vertices of the
geodesic dome produced by the present invention are dis
tributed as uniformly as that of a dome produced through a
more conventional recursive approach. Further, the geode
sation pass of the present invention is performed in Such a
way as to generate the geometry in a spiral arrangement
from one end of the dome to the other. Accordingly, it is a
simple matter to modify the method to create a hemi or
partial sphere by simply terminating the pass at a mid or
other selected point, or by rendering a Smaller number of
triangles from a geometry list.

Another virtue of the present invention is that it is well
Suited to the formation of the dome geometry using a
triangle strip. A triangle strip is a rendering construct com
prising a series of triangles, where all but the first in the
series is defined, in large part, by the previous triangle of the
sequence. The first triangle is specified using three vertices,
but all others are specified with a single vertex, using the
vertices of previous triangles to complete them and thereby
forming a strip of triangles with shared edges. Arranging the
geometry in this manner not only saves on the bandwidth
required to send the geometry to a graphics processing unit
(GPU), but also imposes structural cohesion on the geom

5

10

15

25

30

35

40

45

50

55

60

65

4
etry for a post transform cache. The use of a triangle strip
guarantees that two vertices will already be present in the
post transform cache for all but the first triangle in the
triangle strip, effectively yielding a triangle for every vertex.
A method for generating at least a part of a geodesic dome

for use in a graphic environment in accord with the present
invention provides for initially defining a base geometry of
a polyhedron that will be tessellated to produce a geodesic
dome. The base geometry includes a plurality of vertices of
the polyhedron that are disposed at selected location on the
polyhedron. The polyhedron has a plurality of faces, each
face comprising a polygon. The plurality of faces of the
polyhedron are derived from the base geometry. Vertices and
indices for the plurality of triangles comprising different
sections of the polyhedron are generated in this method by
processing the plurality of triangles for Successive faces of
the polyhedron, and for Successive portions of the polyhe
dron corresponding to the different sections of the polyhe
dron. The different sections include a top section, a middle
section, and a bottom section. A triangle construct is then
constructed using the vertices and indices. The vertices and
indices for the triangle construct thus comprise geometric
data that define the geodesic dome (or a desired portion
thereof).
The step of defining the base geometry includes selecting

the vertices so as to form a plurality of edges that are
disposed at the same distance from a center of the polyhe
dron. To generate the vertices of the triangles, current
coordinates for a dome vertex are multiplied by a radial
dimension desired for the geodesic dome, at each of a
plurality of different positions of the dome vertex. The dome
vertex is determined as a function of the base geometry of
the polyhedron.
A vertex buffer is allocated in memory to store the

vertices, and an index buffer is allocated in memory to store
the indices. When allocating memory for these buffers, the
method determines the number of vertices and indices
required for constructing the geodesic dome to a desired
tessellation order. A plurality of parameters to control gen
erating the geodesic dome can be input. These parameters
include a radius of the geodesic dome, and a tessellation
order of the geodesic dome. In addition, the input parameters
can include a vertex size defining a stride of the vertices that
define the geodesic dome. Optionally, a parameter that
determines how much of the geodesic dome is to be gener
ated can also be input.
The triangle construct includes either a triangle strip,

which includes adjacent triangles running trough different
sections of the polyhedron, or a triangle list of Vertices and
indices for triangles comprising the geodesic dome. An
election can be made to use either the triangle strip or the
triangle list for the triangle construct.
The method also provides computing (or pre-computing)

a plurality of constants for use in generating at least part of
the geodesic dome, including a plurality of transformation
matrices employed to rotate a 3-D vector about a selected
axis through a predefined angle, the base geometry of the
polyhedron, and a dot product of any two adjacent vertices
of any face of the polyhedron.

In one preferred form of the present invention, the poly
hedron is an icosahedron. The step of defining the base
geometry is carried out by defining four vertices, including
first and fourth vertices that are disposed at opposite ends of
the icosahedron, and second and third vertices that are
disposed at other predefined corners of the icosahedron,
intermediate to the ends thereof. Each of these four vertices
is disposed at equal distances from a central origin of the

US 7,304,643 B2
5

icosahedron. If needed for a specific application of the
present invention, e.g., for ease of applying lighting, Surface
normals for each triangle vertex of the plurality of the
triangles that subdivide the plurality of faces of the polyhe
dron can optionally be computed.
A further aspect of the present invention is directed to a

memory medium that stores machine instructions for carry
ing out the steps of the method described above. Yet another
aspect of the invention is directed to a system that includes
a memory in which machine instructions are stored, and a
processor. The processor executes the machine instructions
and carries out functions that are also generally consistent
with the steps of this method.

BRIEF DESCRIPTION OF THE DRAWING
FIGURES

The foregoing aspects and many of the attendant advan
tages of this invention will become more readily appreciated
as the same becomes better understood by reference to the
following detailed description, when taken in conjunction
with the accompanying drawings, wherein:

FIG. 1 is a schematic functional block diagram of an
exemplary personal computer (PC) that is suitable for
executing the present invention;

FIG. 2A is an exemplary order 5 (5-frequency) geodesic
dome that has been constructed from a subdivided icosahe
dron (presented in wire frame form):

FIG. 2B illustrates the geodesic dome of FIG. 2A ren
dered with diffuse lighting, using Gouraud shading:

FIGS. 3A, 3B, and 3C are orthographic projections of an
icosahedron, showing the four vertices used to define the
base geometry of the polyhedron, from the points of view of
the negative X, negative y, and positive Z axes, respectively
(in a left-handed coordinate system);

FIG. 4 illustrates geodesic domes formed from icosahe
drons using tessellation orders 1 through 5:

FIG. 5 is a functional block diagram of the system
architecture used in the present invention;

FIG. 6 is a top level flowchart showing the overall logical
steps carried out in a preferred embodiment of the present
invention;

FIG. 7 is a flowchart showing details implemented in
constructing vertices of the geodesic dome;

FIG. 8 is a flowchart showing further details for deter
mining the vertices of a top section of the geodesic dome;

FIG. 9 is a flowchart showing the logic for determining
the vertices of a central section of the geodesic dome;

FIG. 10 is a flowchart showing the logic for determining
the vertices of a bottom section of the geodesic dome;

FIG. 11 is a flowchart showing the steps for constructing
a triangle strip to define the geodesic dome;

FIG. 12 is a flowchart showing the steps for constructing
triangle lists to define the geodesic dome (as an alternative
to the triangle strip);

FIG. 13 is a flowchart that illustrates the details for
constructing a triangle strip around the top section of the
geodesic dome:

FIG. 14 is a flowchart that illustrates the details for
constructing a triangle strip around the center section of the
geodesic dome;

FIG. 15 is a flowchart that illustrates the details for
constructing a triangle strip around the bottom section of the
geodesic dome;

FIG. 16 is a flowchart that illustrates the details for
constructing a triangle list around the top section of the
geodesic dome:

10

15

25

30

35

40

45

50

55

60

65

6
FIG. 17 is a flowchart that illustrates the details for

constructing a triangle list around the center section of the
geodesic dome; and

FIG. 18 is a flowchart that illustrates the details for
constructing a triangle list around the bottom section of the
geodesic dome;

DESCRIPTION OF THE PREFERRED
EMBODIMENT

PC for Implementing the Present Invention
With reference to FIG. 1, an exemplary general purpose

computing device useful for implementing the present
invention is illustrated in the form of a conventional PC 20.
While the present invention was initially developed for use
on an electronic game playing system, it will be understood
that the invention is generally applicable to almost any type
of computing device that might be used to render a sphere
or a portion of a sphere in electronic games, or in a virtual
environment, or other graphic applications. Examples of
Such devices include mobile computers, hand held comput
ing devices such as personal data assistants (PDAs), mobile
communication devices (e.g., cell phones), and other com
puting devices that include a display on which a geodesic
dome might be generated in accord with the present inven
tion, for rendering a sphere or a portion of a sphere.
The following discussion is intended to provide a brief,

general description of a suitable computing environment in
which the present invention may be implemented by execut
ing machine instructions, such as program modules, on a PC
or other computing platform. Generally, program modules
include routines, programs, object, components, data struc
tures, etc. that perform particular tasks or implement par
ticular abstract data types. An embodiment of the present
invention is readily implemented on an electronic game
system or on a general purpose computing device Such as
represented by PC 20. PC 20 is provided with a processing
unit 21, a system memory 22 and a system bus 23. The
system bus couples various system components, including
the system memory, to processing unit 21 and may be any
of several types of bus structure, including a memory bus or
memory controller, a peripheral bus, and a local bus using
any of a variety of bus architectures. The system memory
includes read only memory (ROM) 24 and random access
memory (RAM) 25. A basic input/output system 26 (BIOS),
containing the basic routines that help to transfer informa
tion between elements within the PC 20, such as during start
up, is stored in ROM 24. PC 20 further includes a hard disk
drive 27 for reading from and writing to a hard disk (not
shown) and may include a magnetic disk drive 28 for
reading from or writing to a removable magnetic disk 29.
and an optical disk drive 30 for reading from or writing to
a removable optical disk 31, such as a CD-ROM or other
optical media, all of which comprise non-volatile memory
media. Hard disk drive 27, magnetic disk drive 28, and
optical disk drive 30 are connected to system bus 23 by a
hard disk drive interface 32, a magnetic disk drive interface
33, and an optical disk drive interface 34, respectively. The
drives and their associated computer readable media provide
nonvolatile storage of computer readable machine instruc
tions, data structures, program modules, and other data for
PC 20. Although, the exemplary environment described
herein includes a hard disk, removable magnetic disk 29.
and removable optical disk 31, it will be appreciated by
those skilled in the art that other types of computer readable
media, which can store data that are accessible by a com

US 7,304,643 B2
7

puter, Such as magnetic cassettes, flash memory cards,
DVDs, Bernoulli cartridges, RAMs, ROMs, and the like,
may also be used in the exemplary operating environment.
A number of program modules may be stored on the hard

disk, magnetic disk 29, optical disk 31, ROM 24 or RAN 25,
including an operating system 35, one or more application
programs 36, other program modules 37, and program data
38. A user may enter commands and information into PC 20
through input devices such as a keyboard 40 and a pointing
device 42. Pointing device 42 may include a mouse, stylus,
wireless remote control, or other pointer. Other input devices
(not shown) may include a joystick, game pad, wheel pedal,
microphone, satellite dish, Scanner, digital camera, digital
video recorder, or the like. These and other input/output
(I/O) devices are often connected to processing unit 21
through an I/O interface 46 that is coupled to the system bus
23. The term I/O interface is intended to encompass each
interface specifically used for a serial port, a parallel port, a
game port, a keyboard port, and/or a universal serial bus
(USB). A monitor 47 or other type of display device is also
connected to system bus 23 via an appropriate interface,
Such as a video adapter 48, and is usable to display appli
cation programs, Web pages, a simulated or virtual environ
ment Such as in the present invention, and/or other infor
mation, including visual content of a digital media work that
is being played from its original distribution medium, Such
as a CD-ROM, DVD, or other storage medium. In addition
to the monitor, PCs are often coupled to other peripheral
output devices (not shown), Such as speakers 55 (through a
Sound card or other audio interface (not shown)), and
printers (also not shown).
As indicated above, the invention may be developed and

practiced on a single computing device, however, PC 20
may operate in a networked environment using logical
connections to one or more remote computers, such as a
remote computer 49. Remote computer 49 may be another
PC, a server (which is typically generally configured much
like PC 20), a router, a network PC, a game console, a peer
device, a satellite, or other common network node. Remote
computer 49 may include many or all of the elements
described above in connection with PC 20. So as not to make
FIG. 1 unnecessarily complex, remove computer 49 is
shown with only an external memory storage device 50. The
logical connections depicted in FIG. 1 include a local area
network (LAN)51 and a wide area network (WAN)52. Such
networking environment are common in offices, enterprise
wide computer networks, intranets, and the Internet. When
coupled to the Internet, electronic games or other applica
tions in which a virtual environment is employed can be
loaded and executed, permitting for example, play of an
electronic game or interaction in a virtual environment with
other PCs over the network. The present invention can be
used to create a sphere or part of a sphere in Such games or
virtual environment.
When used in a LAN networking environment, PC 20 is

typically connected to LAN 51 through a network interface
or adapter 53, which may be a wireless network adapter.
When used in a WAN networking environment, PC 20
typically includes a modem 54, or other means such as a
cable modem, Digital Subscriber Line (DSL) interface, or an
Integrated Service Digital Network (ISDN) interface, for
establishing communications over WAN 52. One type of
WAN commonly used for communication is the Internet.
Modem 54, which may be internal or external, is connected
to the system bus 23 or coupled to the bus via I/O device
interface 46, i.e., through a serial port. In a networked
environment, program modules depicted relative to PC 20,

10

15

25

30

35

40

45

50

55

60

65

8
or portions thereof, may be stored in the remote memory
storage device. It will be appreciated that the network
connections shown are exemplary and other means of estab
lishing a communications link between the computers may
be used. Such as wireless communication and wide band
network links.

Input Parameters Used in Constructing a Geodesic Dome
While the present invention can be used to construct a

geodesic dome using other regular polyhedra, an exemplary
embodiment of the present invention preferably employs an
icosahedron for this purpose. Given the following disclo
sure, one of ordinary skill in the art should be able to readily
adapt the present invention to constructing a geodesic dome
from other polyhedra.
The following input parameters are provided to imple

ment the method, as indicated in blocks 102, 104, and 106
in an overview 100 (FIG. 5):
Radius—The radius of the dome to be constructed.
Vertex Size The stride (i.e., the storage size allocated

for each vertex in the buffer) of the vertices that will
define the dome. The first three floating point values of
each vertex will specify the three Cartesian coordinates
of the vertex's position. If the stride allows for it, the
next three floating point values of each vertex will
specify the vertex normal.

Order The tessellation order of the geodesic dome. (A
tessellation order of one generates the base icosahedron
itself. FIG. 4 illustrates geodesic domes of orders 1
through 5.)

Form Strip—Boolean variable indicating the primitive
type of the dome (i.e., this variable indicates that the
geodesic domes will be defined using a triangle list if
the variable is false, and by using a triangle strip if the
variable is true).

In a block 108 in FIG. 5, the size of the geodesic dome (i.e.,
the number of vertices and indices that will be required) is
extrapolated. Next a block 110 allocates the necessary
memory for the vertex buffer and index buffer that respec
tively store the vertices and indices of the desired geodesic
dome. The calculation used to determine the size of the
memory that should be allocated is described below.
A block 116 directs the memory allocation and the Order

input variable to either a triangle strip construction block
118, or a triangle list construction block 122, depending
upon the value of the Form Strip variable, as indicated in a
block 120. The Radius, V Size, and Order input variables,
along with the vertex buffer memory allocation, are directed
to a block 114, which also receives ordered base icosahedron
data from a block 112. Blocks 114, 118, and 122 each
include three nested loops for forming the top, center, and
bottom portions of the geodesic dome. Specifically, block
114, which provides for construction of the vertices,
includes nested loops 124, 126, and 128; block 118, which
provides for the triangle strips construction, includes nested
loops 130, 132, and 134; while block 122, which provides
for the triangle lists construction, includes nested loops 136,
138, and 140.

Using the input, the present invention constructs a geo
desic dome of the desired radius, tessellation order, and
primitive type, and in a block 142, returns the following
output data for defining the geodesic dome:

Vertex Buffer—A vertex buffer that stores the vertices of
the geodesic dome.

Vertex Count The number of vertices stored in the
vertex buffer.

US 7,304,643 B2

Index Buffer—An index buffer that stores indices into the
vertex buffer, so that the indices and vertices define the
triangles forming the geodesic dome.

Index Count The number of indices stored in the index
buffer.

Triangle Count The number of triangle primitives
employed to construct the geodesic dome.

The present invention makes use of a number of local
variables, as described below. Three constants are also used,
and may be pre-computed before the method is actually
implemented. The first constant, which is referred to herein
as Rotate One Fifth Y, is a 4x4 transformation matrix
employed to rotate a 3-D vector about the y axis through an
angle of -2L/5 radians (assuming a left-handed coordinate
system):

cos(-27 f 5) 0.0 - sin(-2t f5) 0.0
O.O 1.O O.O O.O

sin(-27tf3) 0.0 cos(-2t f5) 0.0
O.O O.O O.O 1.0

This matrix evaluates to:

0.309016994375 O.O 0.95.105651629 O.O

O.O 1.0 O.O O.O

-0.95.105651295 O.O O.309016994375 0.0

O.O O.O O.O 1.0

The second constant is the set of four vertices that define
the base icosahedron from which the geodesic dome is
constructed. These constant vertices have the following
values:

The constant set of vertices therefore evaluates to:

wO = &O.O 1.O O.O>
v1 = 0.72360679775 O.447213595S -O.S2573111212
w2 = 0.894.427.191 -0.447213595S O.O>
w3 = &O.O -1.0 O.O>

These constant vertices correspond to four points on an
icosahedron whose distances from the central origin of the
icosahedron are all equal and are inherently normalized to
1.0. The icosahedron defined by this base geometry is
oriented in space in Such a way as to take advantage of
symmetry along the X axis. The second vertex V1, when

10

15

25

30

35

40

45

50

55

60

65

10
reflected through the X axis, corresponds to another point on
the icosahedron (this symmetry plays an important role in
simplifying the construction of the geodesic dome). FIGS.
3A-3C show these four vertices that define the base geom
etry of the icosahedron.
The third constant is simply the angle of the sector defined

by taking the vectors from the origin of the icosahedron to
any two vertices from any one of the 20 triangles forming
the icosahedron. This constant, Angle Face, is obtained by
taking the dot product of v0 and V1 and calculating the arc
cosine of the result. When evaluated, the following result is
obtained:

Angle Face=1.1071487178 radians

Details of block 108 in FIG. 5, in which the size of the
geodesic dome is extrapolated, are as follows. The number
of vertex rows and total vertices required for both the top
and bottom sections of the dome are determined from the
given tessellation order:

End Row Count=Order

End Vertex Count=(Order-1)xOrder/2x5+1

The number of vertex rows and vertices per row needed
to form the center section are calculated as:

Mid Row Count=Order-1

Mid Row Vertex Count=(Order+1)xOrderx5

The total number of vertices used in the construction of the
geodesic dome is:

Vertex Count=Mid Row CountxMid Row Vertex
Count--End Vertex Countx2

This total is multiplied by the vertex stride that was input
and then used to allocate a Vertex Buffer of a size equal to
Vertex CountxVertex Size bytes. This size is used in block
110 to allocate the required memory.
Logical Steps Employed in Constructing a Geodesic Dome
An overview flowchart 150 is illustrated in FIG. 6,

showing the steps generally implemented in constructing a
geodesic dome, which can be used for rendering a sphere or
part of a sphere. The input values used in the process, as
described above, are supplied at a step 152, either by a user,
or by another software program that is employing the
present invention for constructing a geodesic dome. Next, a
step 154 calculates the constant Rotate One Fifth Y, which
is the first constant discussed above. A step 156 sets forth the
second constant, comprising the four vertices that define the
base icosahedron used to construct the geodesic dome.
Again, the derivation of the values shown in this step has
already been discussed above. The third constant, also
discussed above, is then defined in a step 158. Step 160
provides for calculating the parameters that are used for
extrapolating the size of the geodesic dome and for allocat
ing memory, also as discussed above. A step 162 constructs
the vertices of the geodesic dome based on the input
parameters. Substantial details are involved in this step, as
explained below.
A decision step 164 determines if the value of the Boolean

parameter Form Strip is true and if so, a step 165 carries out
a process for constructing a triangle strip. Alternatively, a
step 166 carries out the process necessary to construct a
triangle list. Further details of each of these processes in
steps 165 and 166 are explained below. Once the vertices
have been constructed and either the triangle strip or triangle

US 7,304,643 B2
11

list has been created, a step 168 provides the output defining
the geodesic dome in terms of the indicated variables
Vertex Buffer, Index Buffer, Vertex Count, Index Count,
and Triangle Count. The process of constructing the geo
desic dome is then complete.

In FIG. 7, details of step 162 are illustrated. A step 170
indicates that this process is provided with each of the
inputs, constants, and other parameters that were calculated
in step 160 of FIG. 6. Next, a step 172 in FIG. 7 provides that
if the Vertex Size that was input is sufficient to hold six
floating point values, then a variable Write Normals is set
equal to true and otherwise is set equal to false. A step 174
then provides an output, calculating a value for the variable
Vertex Count as noted above. Next, a step 176 allocates
memory for the Vertex Buffer as a function of the variable
calculated in step 174 and the input variable Vertex Size. A
step 178 sets the Vertex Buffer write location to the start of
the buffer.

After a successful memory allocation, the vertices of the
top section of the dome are calculated. In a step 180, the first
vertex copied into the buffer is simply v0xRadius. The
coordinates for this vertex are copied into the first three
floating point values of the vertex buffer (Vertex
Buffer). If the vertex stride (i.e., the storage spaced
allocated for each vertex) that was selected allows for three
more floating point values (as determined by the Boolean
variable Write Normals), the vertex normal is stored by
copying v0 into the buffer (at Vertex Buffer) for this
vertex. Since all vertices of the base icosahedron are at a
distance of 1.0 from the center, the values are normalized
and also form vectors orthogonal to the icosahedron at each
vertex. For subsequent vertices written into the vertex buffer,
the Boolean variable Write Normals is again used to indi
cate whether the vertex size is sufficient to accommodate a
surface normal. Normal to the surface for each vertex are
useful in certain graphic applications of the geodesic dome,
e.g., for performing lighting calculations, but may not be
required for other applications.
A step 182 next provides for constructing the remaining

vertices for the top section of the geodesic dome. Details of
this step and of steps 184 and 186, which provide for
constructing the vertices for the center and bottom sections
of the geodesic domes, respectively, are set forth below. In
a step 188, the Vertex Buffer, is set equal to the
product of V3 and the Radius. If Write Normals is true, then
Vertex Buffer is set to V3. A block 190 indicates
produces the Vertex Buffer as an output.

In FIG. 8, details of step 182 (FIG. 7) are illustrated to
show how the remaining vertices for the top section of the
geodesic dome are determined. The first vertex of the top
section has already been defined. To calculate the remaining
vertices of the top section, a vertex, Endpoint0, is initialized
in a step 200 to be equal to v0, and an axis vector, Axis Face
is initialized to be perpendicular to the plane of the sector
formed by v0 and V1 using the cross product of v0 and v1.
(Note that since v0 and V1 are constant values, Axis Face
will also be initialized to a constant and can simply be set to
<-0.52573111212, 0.0, -O.7236.0679775 O
<-0.5877852523, 0.0, -0.8090169943745> normalized). In
step 200, the axis angle is also used to construct a 4x4
matrix. Rotate Face, which will rotate a vector around the
axis by (Angle Face/End Row Count) radians. This trans
form will be used to rotate Endpoint0 through the arc of the
sector formed by v0 and v1. It is important to note that for
all cases that follow wherein a rotation matrix using an
arbitrary axis of rotation is built, an optimization may be
employed such that the axis of rotation is normalized

10

15

25

30

35

40

45

50

55

60

65

12
immediately after it is calculated (i.e. immediately after the
cross product operation that is used to calculate the axis).
The function later used to initialize the rotation matrix can
then assume a normalized axis and does not have to renor
malize the given vector every time a matrix is built. In order
to simplify the discussion of the present invention, that
optimization has not been illustrated in the drawings and is
not further described.

After initializing these variables in step 200, the proce
dure begins the first of three sets of nested loops. The
outermost loop iterates over the rows of the top section of
the dome. It initializes the variable Row to 1 in a step 202,
continues as long as Row is less than End Row Count, as
determined by a decision step 204, and increments Row after
each iteration in a step 212. Upon entering the loop, at a step
206, the procedure multiplies the Endpoint0 vector by the
Rotate Face matrix and sets Endpoint0 to the result to move
it down a row along the v0/v1 sector. A second vertex,
Endpoint1, is then derived from Endpoint0 by reflecting it
through the x axis such that Endpoint1=Endpoint0,
Endpoint1 Endpoint0, and Endpoint1 =Endpoint0. Also
in step 206, another rotation axis, Axis Sectoro, is calculated
perpendicular to the plane of the sector formed by the end
points through the cross product of Endpoint0 and End
point1. As indicated by "x,” a simplified cross product may
be employed in this case due to the symmetry between
Endpoint0 and Endpoint1, where the Z coordinate of the
resulting vector can be always set to 0.0 and need not be
calculated (since the axis is known to lie in the Xy plane).
The angle of the sector formed by the two end points is also
calculated in step 206, Such that Angle Sectoro arccosine
(Endpoint0-Endpoint1)/Row. (Note that “” is here used to
indicate a dot product operation and “x' is used between two
vectors to indicate a cross product.) One last variable,
Dome Vertex, is set to be equal to Endpoint0 and will be
used to walk along the arc between Endpoint0 and End
point1. (Note that Endpoint0 can be used directly instead of
a separate Dome Vertex variable, but this makes the pro
cedure more Susceptible to rounding errors stemming from
repeated vector-matrix multiplication operations that rotate
Dome Vertex around the dome. Using a separate variable
helps preserve the vector against degeneration at the higher
tessellation orders).
The next loop nested in the first loop set is used to iterate

over the five triangles at the top of the base icosahedron. A
step 208 initializes the variable Face to 0, and the next loop
continues as long as Face is less than 5, as determined in a
decision step 210, and increments Face after each iteration
in a step 220. So long as the result of decision step 210 is
true, a step 214 performs two operations before the third
loop in the set is entered. If the result of decision step 210
is false, the logic continues with s 212. In step 214, the first
operation builds a rotation matrix called Rotate Sector
around the Axis Sector axis to rotate a vector by Angle
Sector, radians. The second operation in step 214 multiplies
the Axis Sector vector by the Rotate One Fifth Y matrix
and sets Axis Sectoro to the result, thereby rotating the
vector into the next triangular region of the base icosahe
dron.
The innermost loop of the first set iterates across the arc

of the current sector of the icosahedron. It initializes a Step
variable to 0 in a step 216, and continues to a step 222, while
the variable Step is less than Row, as determined in a
decision step 218. The logic increments Step after each
iteration of this loop, in a step 226. A negative response to
decision step 218 leads to step 220. Inside the innermost
loop, at step 222, Dome Vertex is multiplied by Radius and

US 7,304,643 B2
13

the result is copied into the Vertex Buffer at the current
write location in the buffer, as indicated by Vertex
Buffer. Once again, if Write Normals is true,
Dome Vertex is copied into Vertex Buffer, the Sur
face normal portion of the vertex in the buffer, before
advancing the write location in the buffer to the next vertex.
Dome Vertex is then multiplied by the Rotate Sector matrix
and set to the result to advance it along the arc in a step 224.
After the conditions for completing the innermost and
second loop are met, the three nested loops close, since no
operations for computing the vertices in the top section
follow after the closing of either of the inner loops.

After the first set of loops has concluded to calculate the
vertices for the top section of the geodesic dome, the
procedure moves on to calculate the vertices for the center
section of the dome, as indicated by the details of step 184,
shown in FIG. 7. In a step 230, Endpoint0 is set to be equal
to v1, Axis Face is initialized to be perpendicular to the
plane of the sector formed by v1 and v2 (Axis Face-V1XV2.
producing a constant that can be set to <-0.2351141009174,
-0.4702282018348, -O.7236.0679775 O
<-0.26286555606, -0.52573111212, -0.8090169943745>
normalized), and the Rotate Face matrix is constructed to
rotate a vector about the Axis Face axis by (Angle Face/
(Mid Row Count-1)) radians. The second set of nested
loops begins similar to the first set used to calculate the
vertices for the top section, with an outer loop to iterate over
the rows of the center section of the dome. The Row variable
is initialized to 0 in a step 232, and the outer loop continues
while Row is less than Mid Row Count, as determined by
a decision step 234. Row is incremented after each iteration
in a step 246. Inside this loop, a step 236 carries out several
operations. An array called Step Count containing two
entries is used to track the number of vertices in a row. The
first entry will correspond to the even numbered faces
comprising the middle of the base icosahedron and the
second will correspond to the odd numbered faces. On
entering the loop at step 236, Step Count is set to Mid
Row Count-1-Row, and Step Count is set equal to Row.
Endpoint1 is once again derived by reflecting Endpoint0
through the X axis (Endpoint1 =Endpoint0,
Endpoint1 Endpoint0, and Endpoint1 =Endpoint0). This
time however, a third end point variable, Endpoint2, is used
and is initialized to be the product obtained by multiplying
Endpoint0 by the Rotate One Fifth Y matrix. Two axis
vectors and two sector angles are calculated from these three
end points. Axis Sector is set to the simplified cross prod
uct between Endpoint0 and Endpoint1. Again, this cross
product operation is simplified in that the result for the z
coordinate is set to zero rather than be calculated. But a new
variable, Axis Sector, must use the full cross product
operation to obtain the cross product between Endpoint1 and
Endpoint2. Angle Sectoro is calculated to be equal to arc
cosine(Endpoint0-Endpoint1)/Step Count. The variable
Angle Sector, is Set equal tO arccosine
(Endpoint1 Endpoint2)/Step Count. Dome Vertex is set to
Endpoint0 as before (although, also as before Endpoint0,
can be used in place of Dome Vertex if the rounding errors
encountered will be negligible across the entire range of
possible tessellation orders given).
The middle nested loop in the second set iterates over the

ten triangles contained in the center section of the base
icosahedron. This middle loop initializes Face to 0 in a step
238, continues while Face is less than 10, as determined by
a decision step 240, and increments Face after each iteration
in a step 254. If the result of decision step 240 is negative,
the logic continues with a step 242.

10

15

25

30

35

40

45

50

55

60

65

14
In the middle loop, a step 248 carries out several opera

tions. An index variable, Face Odd is set to 0 if the current
value of Face is even, or 1 if the current value of Face is odd
(which can be done in a number of ways Such as
Face Odd=Face modulus 2, Face Odd=Face bitwise-AND
1, or by initializing Face Odd to 0 outside the middle loop
and setting Face Odd=Face Odd bitwise-XOR 1 after each
loop iteration). The Rotate Sector matrix is initialized to
rotate a vector about the Axis Sector axis by Angle
Sector of radians. The Axis Sectorpeo, Vector is then
rotated by multiplying it by the Rotate One Fifth Y matrix
and assigning the result to the vector.
As before, the innermost loop in the set iterates across the

arc of the current sector. It initializes Step to 0 in a step 250,
continues while Step is less than Step Counto, as
determined by a decision step 252, and increments Step after
each iteration in a step 260. If the result in decision step 252
is negative, the logic returns to step 254. The body of the
innermost loop is also the same as the body of the innermost
loop of the first set. In a step 256, Dome Vertex is multiplied
by Radius and the result is copied into Vertex Buffer.
Dome Vertex is copied to Vertex Buffer, if Write N
ormals is true. The write location in the buffer is then
advanced. Next, in a step 258, Dome Vertex is multiplied by
the Rotate Sector matrix and set equal to the result. The first
and second sets of nested loops do differ in their closure,
however. The second set does one operation following the
closure of middle loop nest before continuing on with the
closure of the outer loop. In this operation, which is carried
out in a step 242, the Endpoint0 vector is multiplied by the
Rotate Face matrix and the vector is assigned the result.
Step 242 is reached when a negative response to decision
step 240 indicates that the middle loop is complete.

In FIG. 10 the third set of nested loops used to compute
the vertices for the bottom section of the geodesic dome of
step 186 from FIG. 7 also shares similarities with the first
set, with the primary exception being that it cannot take
advantage of the symmetry of the X axis in the same way.
Before entering the loops, a step 270 sets Endpoint0 to v2.
calculates Axis Face as the cross product between V2 and v3
(or since the result is a constant, just sets Axis Face to <0.0,
0.0, -0.8944271912 or <0.0, 0.0, -1.0> normalized), and
initializes the Rotate Face matrix to rotate a vector about the
Axis Face axis by (Angle Face/End Row Count) radians.
The outer loop again initializes Row to 1 in a step 272,
continues while Row is less than EndRow Count, as deter
mined by a decision step 274. A step 282 increments Row
after each iteration. Once inside the outermost loop, several
operations are carried out in a step 276. In this step,
Endpoint0 is multiplied by the Rotate Face matrix and is
assigned the result. This multiplication is simplified in a
similar way to the earlier simplified cross product operations
in that the Z coordinate needs not be calculated and is instead
set to 0.0 (in this case the arc that Endpoint0 is rotated
through falls within the xy plane so Z is always 0.0).
Endpoint1 is calculated by multiplying Endpoint0 by the
Rotate One Fifth Y matrix. Axis Sector, the rotation axis
perpendicular to the plane of the sector formed by the two
end points, is calculated to be the cross product (complete
not simplified) between Endpoint0 and Endpoint1. Angle
Sector, is set to arccosine(Endpoint0-Endpoint1)/(End
Row Count-Row). Dome Vertex is again set to Endpoint0
although, as in both prior nested loop sets, using Dome Ver
tex as a separate variable is not a strict requirement.
The middle loop in the set iterates over the bottom five

triangles of the base icosahedron. In a step 278, Face is
initialized to 0. In accord with a decision step 280, the loop

US 7,304,643 B2
15

continues while Face is less than 5. A step 290 increments
Face after each loop iteration. Within this loop, a step 284
carries out several operations. The Rotate Sector matrix is
constructed to rotate a vector around the Axis Sector axis by
Angle Sectoro radians. Axis Sectoro is then multiplied by
the Rotate One Fifth Y matrix and assigned the result.

The innermost loop is processed next. In a step 286, Step
is initialized to 0. The innermost loop continues in a decision
step 288, while Step is less than (End Row Count-Row).
Step is incremented after each iteration in a step 296. The
body of the innermost loop matches that of the innermost
loops of both preceding loop sets. In a step 292, Dome Ver
tex is multiplied by Radius, and the result is assigned to the
current Vertex Buffer, write location. Dome Vertex is
set as the Vertex Buffer if Write Normals is true. The
write location is then advanced to the next vertex in the
buffer. In a step 294, the Dome Vertex vector is multiplied
by the Rotate Sector matrix and assigned to the result. After
all of the loops are compete, the logic returns to step 188 in
FIG. 7.

As noted above, in step 188, the last vertex to be written
into the vertex buffer is the lowest point on the dome (along
the y axis). For this step, v3 is multiplied by Radius, and the
result is written to Vertex Buffer. If Write Normals is
true, v3 is set as the Vertex Buffer. With this step, all
vertices used in the construction of the geodesic dome are
now calculated, and the Vertex Buffer is complete.

Next, the indices that join the vertices of the dome
together into triangles must be determined. The form of the
index buffer will depend on the value of the given Boolean
parameter Form Strip. If this parameter has been set to true,
the indices will define a triangle strip to form the dome. If
false, the indices will provide a list of triangles. Each of
these cases uses a structurally similar method for construct
ing the indices of the dome (a set of three nested loops
mirroring that used in the formation of the vertices), but the
specific operation differ between them. As such the descrip
tion of these operations will be detailed separately for each
CaSC.

The logic for constructing a triangle strip as provided in
step 165 (FIG. 6) is illustrated in overview by FIG. 11 and
will be used if the Form Strip parameter is set to true. As
shown in step 300, this procedure uses input parameters that
include the Order, Mid Row Count, End Row Count,
Mid Row Vertex Count, and End Vertex Count. The
number of indices and triangles used in dome (i.e., the
Output) is calculated to take into account both the arrange
ment of dome triangles into a strip and the degenerate
triangles needed to join together strips between dome sectors
and rows. The total number of triangles is calculated in a
step 342 as:

Triangle Count=20xOrder' +1 6xOrder-4

The number of indices used in the dome, Index Count, is
also set to Triangle Count-2 in step 302. The Index Buffer
memory is then allocated in a step 304 to a size equal to
Index Count multiplied by the size of an index (typically a
16 or 32 bit valued). To write values into it, the allocated
Index Buffer is treated as an array and an Index variable is
used to track the current write location into the buffer.
Initially Index is set to 0 in a step 306. Again, a different
portion of the triangle strip is separately computed for the
top section in a step 308, the center section in a step 310, and
the bottom section in a step 312. However, the triangle strip
spirals around the top, central, and bottom sections and
includes degenerate triangles to make the triangle strip

10

15

25

30

35

40

45

50

55

60

65

16
continuous through all three sections (assuming the entire
geodesic dome is being created). The output is then provided
as the Index Buffer in a step 134.

Details of step 308 for computing the triangle strip around
the top section of the geodesic dome are provided in FIG. 13.
Before entering a first loop of three nested loops, two
variables, Row Index and Row Index, are declared and
initialized in a step 340. These variables will be set to offset
values to vertices in the Vertex Buffer. Row Index will be
set to the offset of the first vertex in one row of vertices in
the buffer, and Row Index will be set to the offset of the
first vertex in the next row. As expected, Row Index is
initially set to 0 and Row Index is set to 1.
The outermost loop iterates over the rows of the top

section of the dome. The Row variable is initialized to 0 in
a step 342, and the loop continues while Row is less than
End Row Count, as indicated by a decision step 344. The
loop increments Row after each iteration, in a step 352. Once
inside the loop, the second loop begins immediately. In this
loop, Face is initialized to 0 in a step 346. The loop continues
while Face is less than 5, as indicated by a decision step 348,
and if the result of this decision step is in the negative, the
logic proceeds to a step 350. Face is incremented after each
iterations, in a step 358.
Once inside the middle loop, the innermost loop begins.

This loop initializes Step to 0 in a step 354, continues while
Step is less than or equal to Row, as indicated by a decision
step 356 and increments Step after each iteration, in a step
362. If the result of decision step 356 is not true, the logic
proceeds to step 358. Inside the innermost loop, the Index
entry of Index Buffer is set to (Row Index+(Row+1)x
Face--Step) in a step 360. In this step, Index is then incre
mented to advance to the next entry in Index Buffer, and the
Index entry of Index Buffer is set to (Row Index+Rawx
Face--Step). Finally, Index is again incremented. After this
step, the innermost and middle loops close looping back to
step 350 from decision step 348. In step 350, the (Index-1)
entry into the Index Buffer is then set to Row Index to
correct the last index set to wrap back around to the start of
the vertex row. Two more indices are then added to form
degenerate triangles that will move the strip down a row, and
both are equal to Row Index. For this step, the Index entry
of Index Buffer is set to Row Index, Index is incremented,
the Index entry of Index Buffer is again set to Row Index,
and Index is incremented yet again. As a final task before
closing the outermost loop, Row Index and Row Index
must be updated. Here, Row Index is set to Row Index
and Row Index is incremented by (Row+1)x5), as the last
operation in step 350. The logic then advances to step 352.

FIG. 14 illustrates the steps for constructing the triangle
strip around the center portion of the geodesic dome. The
Row Index, and Row Index, variables need not be updated
before beginning the second set of nested loops (or the
third), because they are correctly initialized coming out of
the first loop set. But, just for reference, Row Index is now
equal to End Vertex Count and Row Index is now equal to
End Vertex Count+Mid Row Vertex Count, as noted in a
step 370. In constructing the center section of the dome, the
outermost loop of the second set initializes Row to 0 in a step
372. The outermost loop continues while Row is less than
Mid Row Count-1, as provided by a decision step 374. A
step 386 increments Row after each iteration. The second
(and in this case innermost) loop then begins with Step set
to 0 in a step 376. In accord with a decision step 378, the
second loop continues while Step is less than Mid
Row Vertex Count. If not, the logic advances to a step 384.
A step 382 increments Step after each iteration of the

US 7,304,643 B2
17

second loop. Inside this loop, at a step 380. Index Buffer at
the Index entry is set to Row Index+Step and Index is
incremented. The Index entry of Index Buffer is then set to
Row Index+Step+1 and Index is incremented. The inner
most loop closes when the result of decision step 378 leads
to step 384.
As in the previous loop set, the last index added must be

replaced and two indices for degenerate triangles must be
added. These operations are carried out in step 384. In this
step, the Index-1 entry of Index Buffer is set to Row In
dexo, the Index entry of Index Buffer is set to Row Index,
Index is incremented, the Index entry of Index Buffer is
again set to Row Index, and Index is again incremented.
Also, before closing the outermost loop at decision step 374,
Row Index is set to Row Index and Row Index is incre
mented by Mid Row Vertex Count in step 384.
The third and final loop set used in constructing the

triangle strip in step 312 determines the indices for the
bottom section of the dome, as shown in FIG. 15. As with
the second loop set, Row Index and Row Index do not
need updating, but for reference, Row Index is now equal
to Mid Row Vertex Countx(Mid Row Count-1)+End
Vertex Count and Row Index is equal to Mid Row Ver
tex Countx(Mid Row Count-1)+End Vertex Count--
Mid Row Vertex Count, as shown in a step 390. The
outermost of what will be three loops in this set initializes
Row to 0 in a step 392. A decision step 394 continues the
loop while Row is less than End Row Count. A step 416
increments Row after each iteration. The middle loop fol
lows immediately by initializing Face to 0 in a step 396.
While Face is less than 5, a decision step 398 continues the
middle loop, advancing to a step 410, once the condition is
no longer met. A step 408 increments Face after each
iteration. The innermost loop then begins by initializing Step
to 0 in a step 400. A decision step 402 continues processing
the innermost loop while Step is less than or equal to
(End Row Count-Row-1), and if not, the logic proceeds to
step 408. A step 406 increments Step after each iteration of
the innermost loop. Within the body of the innermost loop,
at a step 404, several operations are completed. Specifically,
the Index entry of Index Buffer is set to Row Index+
(End Row Count-Row-1)xFace--Step, and Index is incre
mented. The Index entry of Index Buffer is then set to
Row Index+(End Row Count-Row)xFace+Step--1, and
Index is incremented again in step 404.
Once the innermost and middle loops close when the

condition in decision step 398 is no longer met, two index
values previously written into the Index Buffer need to be
“fixed up' to wrap them around to the start of the row. This
operation is carried out in step 410, wherein the Index-2
entry of Index Buffer is set to Row Index and be Index-1
entry of Index Buffer is set to Row Index. Degenerate
triangle indices are then added and the row index variables
are updated as usual, but in this case, only if the procedure
has not reached the last strip row (since degenerates are not
needed after the final row). So if Row is less than (End
Row Count-1) in decision step 412, in a step 414, the Index
entry of Index Buffer will be set to Row Index, Index will
be incremented, the Index entry of Index Buffer will again
be set to Row Index, Index will again be incremented,
Row Index, will be set to Row Index, and Row Index
will be incremented by (End Row Count-Row-1)x5. Oth
erwise, the logic continues with step 416. After the outer
most loop closes with a negative response in decision step
394, the geodesic dome construction is complete.

10

15

25

30

35

40

45

50

55

60

65

18
If the Form Strip parameter is set to false, a similar set of

operations as that used to form the strip index list will take
place. The primary differences between the procedure
employed to form the triangle strip and that used to form the
triangle list is that additional indices are Supplied to provide
three indices per triangle in the latter case, and no additional
indices are added for the now unnecessary degenerate tri
angles. Details of step 166 that define the overview of the
process for constructing the triangle lists are shown in FIG.
12. Again, as shown in a step 320, the input to the process
includes the Order. Mid Row Count, End Row Count,
Mid Row Vertex Count, and End Vertex Count. In a step
322, the Triangle Count is calculated to be 20xOrder and
Index Count is (Triangle Countx3). The Index Buffer is
allocated in memory in a step 324, as in the triangle strip
case, only with the new allocation size. As before, the Index
variable will be used to track the write location offset and is
initialized to 0 in a step 326. The Row Index and Row
Index, variables will also serve the same purpose in forming
the triangle list. Three sets of nested loops are again
executed to construct the triangle list for the top section,
center section, and bottom section of the geodesic dome, as
indicated respectively in steps 328,330, and 332. The result
is an output that include the Index Buffer, as shown in a step
334.

Details of step 328 for constructing the triangle list for the
top section of the dome are shown in FIG. 16. Preceding the
first set of nested loops, Row Index is set to 0 and Row
Index, is set to 1 in a step 420. The outermost loop begins by
initializing Row to 0 in a step 422, and the outermost loop
continues while Row is less than End Row Count, as
determined in a decision step 424. A step 448 increments
Row after each iteration of the outermost loop.
The middle loop then begins, initializing Face to 0 in a

step 426. This loop continues, as determined in a decision
step 428, while Face is less than 5, and if not, the process
proceeds to a decision step 442. In a step 440, Face is
incremented after each iteration of the middle loop. Within
this loop, at a step 430, three indices are added to the
Index Buffer before the innermost loop begins, and after
each index is added, the Index variable is incremented. The
first to be added is Row Index+(Row4-1)xFace, followed
by Row Index-RowxFace, and then Row Index+(Row +
1)xFace-1.
The innermost loop begins at a step 432, which initializes

Step to 0 and continues while Step is less than Row, as
determined in a decision step 434. A step 438 increment Step
after each iteration of the innermost loop. Six indices per
iteration are added to Index Buffer within the body of this
loop, at a step 436. In step 436, using Index to reference the
current “write” entry and incrementing Index after each
addition, the following indices are added in the order listed:
Row Index+(Row--1)xFace--Step--1, Row Index-Rowx
Face+Step, Row Index+RowxFace+Step--1, Row In
dex+(Row4-1)xFace--Step--1, Row Index+RowxFace--
Step--1, and finally Row Index+(Row4-1)xFace+Step+2.
Note that RowxFace--Step and/or (Row--1)xFace+Step may
be calculated once, Stored in temporary variables, and then
referenced in the index calculations.

After closing both the innermost and middle loops with a
negative response at decision step 428, two of the previous
index values written are “fixed up' for rows other than the
first to wrap them around. If Row is not equal to 0 in
decision step 442, both the Index-4 and Index-2 entries of
Index Buffer are set to Row Index. A third index value is
then fixed up in a step 446 (no matter what the value of
Row), so that the Index-1 entry of Index Buffer is set to

US 7,304,643 B2
19

Row Index. As a final task before closing the outermost
loop, the row index values are also updated in step 446;
Row Index, is set to Row Index, and Row Index is incre
mented by (Row--1)x5.
The second set of nested loops used to construct the

triangle list for the center section of the geodesic dome
consists of only two loops, as shown for step 330 in FIG. 17.
Before entering the outer of these two loops, Row Indexo
will be equal to End Vertex Count and Row Index will be
equal to End Vertex Count-i-Mid Row Vertex Count, as
shown in a step 460, but as with the triangle strip construc
tion, neither needs to be explicitly set. The outer loop begins
by initializing Row to 0 in a step 462. A decision step 464
loop continues the outer loop while Row is less than
Mid Row Count-1. A step 476 increments Row after each
iteration of the outer loop. The inner loop follows, initial
izing Step to 0 in a step 466. The inner loop continues, as
provided by a decision step 468, while Step is less than
Mid Row Vertex Count, and if not, the logic proceeds to a
step 474. A step 472 increments Step after each iteration of
the inner loop.
As was the case with the first loop set to construct the

triangle list for the top section, the body of the inner loop
adds six indices per iteration to Index Buffer (incrementing
Index after each addition). In a step 470, these indices are
calculated to be: Row Index+Step, Row Index+Step,
Row Index+Step+1. Row Index+Step. Row Index+
Step-1, and Row Index+Step--1.

After closing the inner loop, when the condition in
decision step 468 is no longer met, three indices are fixed up.
In step 474, the Index-4 and Index-2 entries of Index
Buffer are both set to Row Index, and the Index-1 entry is
set to Row Index. Also in step 474, Row Index is set to
Row Index, and Row Index is incremented by Mid
Row Vertex Count. The outer loop closes when decision
step 464 returns a negative response.

Finally, the details of step 332 for constructing the triangle
list for the bottom section of the geodesic dome are illus
trated in FIG. 18. Emerging from the second set of loops, a
step 480 notes that Row Index is equal to Mid Row Ver
tex Countx(Mid Row Count-1)+End Vertex Count, and
Row Index, is equal to Mid Row Vertex Countx(Mid
Row Count-1)+
End Vertex Count-i-Mid Row Vertex Count (again, this
step is merely a reference as to the values of Row Index
and Row Index and should not be taken as an operation to
be performed). For the bottom section of the dome, the
outermost of the final loop set opens in a step 482 by
initializing Row to 0. A decision step 484 ensures that
processing in the outermost loop continues while Row is less
than End Row Count. A step 508 increments Row after
each iteration of the outermost loop.
The middle loop follows in a step 486, which initializes

Face to 0. A decisions step 488 continues processing the
middle loop while Face is less than 5. A step 500 increments
Face after each iteration of the middle loop. Within the loop,
at a step 490, the following three indices are added to the
Index Buffer (incrementing Index after each addition):
Row Index-(End Row Count-Row-1)xFace, Row In
dex+(End Row Count-Row)xFace, and Row Index+
(End Row Count-Row)xFace+1.
The innermost loop then begins at a step 492, initializing

Step to 0. A decision step 494 continues processing in the
innermost loop while Step is less than End Row Count
Row-1. Step is incremented in a step 498 after each iteration
of this innermost loop. In a step 496 of the innermost loop,
six indices per iteration are added to Index Buffer (again

10

15

25

30

35

40

45

50

55

60

65

20
incrementing Index after each value is added): Row In
dex+End Row Count-Row-1)xFace+Step, Row Index+
(End Row Count-Row)xFace+Step-1, Row Index+
(End Row Count-Row-1)xFace-Step--1, Row Index+
(End Row Count-Row-1)xFace+Step+1. Row Index+
(End Row Count-Row)xFace+Step--1, and Row Index+
(End Row Count-Row)xFace+Step-2. As before these
calculations can use temporary variables to hold the inter
mediate results so they won't have to be evaluated multiple
times. The innermost and middle loops then close when the
response in decision step 488 is negative, leading to step
502, followed by fix-ups to some of the indices. Decision
step 502 determines if Row is less than End Row Count-1,
and if so, in a step 504, the Index-4 and Index-3 entries in
the Index Buffer are set to Row Index. Next, in a step 506,
the Index-1 entry of Index Buffer is set to Row Index
(whether on the last row or not), and finally, Row Index is
set to Row Index and Row Index is incremented by (End
Row Count-Row-1)x5. With that, the outer loop closes
with a negative response to decision step 484, concluding
the formation of the triangle list.

Whether the procedure formed a triangle strip or a triangle
list, when it has finished calculating the indices defining the
arrangement of dome triangles, the present invention returns
the constructed geodesic dome's Vertex Buffer, Index
Buffer, Vertex Count, Index Count and Triangle Count.
These output parameters fully define the constructed geo
desic dome, as indicated in step 168 of FIG. 6. If only a
portion of the geodesic dome is required for a specific
graphic application, the process used to construct the verti
ces and indices can then be limited to produce the vertices
and indices of triangles comprising the portion of the
geodesic dome desired. In this case, a further input would
indicate the portion of the geodesic dome to be generated
e.g., the top half, for use in rendering a hemisphere.

Depending upon the application of the present invention,
the geodesic dome that has been constructed can serve
various purposes. Most commonly, the geodesic dome, or a
portion of it, will be used to render a sphere (or portion of
a sphere) in a graphic environment, such as an electronic
game or virtual environment. The present invention enables
a sphere or portion thereof to be efficiently rendered in real
time, and using very little more memory resources than are
required to store the vertices and indices of the geodesic
dome at the order desired.

Although the present invention has been described in
connection with the preferred form of practicing it, those of
ordinary skill in the art will understand that many modifi
cations can be made thereto within the scope of the claims
that follow. Accordingly, it is not intended that the scope of
the invention in any way be limited by the above description,
but instead be determined entirely by reference to the claims
that follow.
The invention in which an exclusive right is claimed is

defined by the following:
1. A method implemented by a computing device for

generating at least a part of a geodesic dome for use in a
graphic environment, comprising the steps of:

(a) defining a base geometry of a polyhedron, said poly
hedron having a plurality of faces, each of which is a
polygon, said base geometry including a plurality of
vertices of the faces, at selected locations on the
polyhedron;

(b) based upon the plurality of vertices at the selected
locations and using a plurality of transformation matri
ces, generating vertices and indices for a plurality of
triangles comprising the faces of the geodesic dome, by

US 7,304,643 B2
21

Successively processing the Successive faces of the
polyhedron, in successive different sections of the
polyhedron, wherein the vertices and indices of the
plurality of triangles are generated only in a single pass
without any further subdivision of the polyhedron;

(c) preparing a triangle construct using said vertices and
indices that are generated;

(d) storing the vertices and indices for the triangle con
struct as geometric data that define the at least the part
of the geodesic dome; and

(e) using the stored vertices and indices, generated in the
single pass, to generate a display in a graphic environ
ment.

2. The method of claim 1, wherein the step of defining the
base geometry includes the step of selecting the vertices so
as to form a plurality of edges disposed at a unity distance
from a center of the polyhedron, two of said vertices being
disposed at opposite ends of the polyhedron.

3. The method of claim 1, wherein the step of generating
the Vertices includes the step of multiplying current coordi
nates for a dome vertex by a radial dimension desired for the
geodesic dome, at each of a plurality of different positions
of the dome vertex, the dome vertex being determined as a
function of the base geometry of the polyhedron and the
plurality of transformation matrices.

4. The method of claim 1, wherein the different sections
of the polyhedron include a top section, a middle section,
and a bottom section.

5. The method of claim 1, further comprising the step of
allocating a vertex buffer in a memory to store the vertices
and an index buffer in the memory to store the indices.

6. The method of claim 5, wherein the step of allocating
comprises the step of determining the number of vertices
and indices required for constructing the at least the part of
the geodesic dome to a desired tessellation order.

7. The method of claim 1, further comprising the step of
enabling input of a plurality of parameters to control gen
erating the at least the part of the geodesic dome, said
parameters including a radius of the geodesic dome, and a
tessellation order of the geodesic dome.

8. The method of claim 7, wherein the step of enabling
input also enables input of a vertex size defining a stride of
the vertices that define the at least the part of the geodesic
dome.

9. The method of claim 7, wherein the step of enabling
input also enables input of another parameter that deter
mines how much of the geodesic dome is to be generated.

10. The method of claim 7, wherein the triangle construct
comprises one of:

(a) a triangle strip including vertices and indices for
adjacent triangles comprising the geodesic dome, said
triangle strip spiraling around each section of the
polyhedron and including degenerate triangles used to
produce the triangle strip; and

(b) a triangle list of vertices and indices for adjacent
triangles in each different section of the geodesic dome.

11. The method of claim 10, wherein the step of enabling
input also enables an election to be made to use either the
triangle strip or the triangle list for the triangle construct.

12. The method of claim 1, further comprising the step of
computing a plurality of constants for use in generating the
at least the part of the geodesic dome, wherein a first
constant comprises a transformation matrix, said transfor
mation matrix being employed to rotate a three dimensional
vector about a selected axis through a predefined angle, a
second constant comprises the base geometry of the poly

10

15

25

30

35

40

45

50

55

60

65

22
hedron, and a third constant comprises a dot product of any
two vertices of any polygon comprising a face of the
polyhedron.

13. The method of claim 1, wherein the polyhedron is an
icosahedron, and wherein the step of defining the base
geometry comprises the steps of defining four vertices,
including first and fourth vertices that are disposed at
opposite ends of the icosahedron, and second and third
vertices that are disposed at other predefined corners of the
icosahedron, intermediate the ends thereof, each vertex of
said four vertices being disposed at equal distances from a
central origin of the icosahedron.

14. The method of claim 1, further comprising the step of
determining Surface normals for each triangle vertex of the
plurality of the triangles that define the at least the part of the
geometric dome.

15. A machine readable medium that stores machine
instructions, that when executed on a computing machine,
cause the execution of steps comprising:

(a) defining a base geometry of a polyhedron, said poly
hedron having a plurality of faces, each of which is a
polygon, said base geometry including a plurality of
vertices of the faces, at selected locations on the
polyhedron;

(b) based upon the plurality of vertices at the selected
locations and using a plurality of transformation matri
ces, generating vertices and indices for a plurality of
triangles comprising the faces of the geodesic dome, by
Successively processing the Successive faces of the
polyhedron, in successive different sections of the
polyhedron, wherein the vertices and indices of the
plurality of triangles are generated only in a single pass,
without any further subdivision of the polyhedron;

(c) preparing a triangle construct using said vertices and
indices that are generated;

(d) storing the vertices and indices for the triangle con
struct as geometric data that define the at least the part
of the geodesic dome; and

(e) using the stored vertices and indices, generated in the
single pass, to generate a display in a graphic environ
ment.

16. A system for generating at least a part of a geodesic
dome for use in a graphic environment, comprising:

(a) a memory in which machine instructions are stored
and for storing geometric data defining the at least the
part of the geodesic dome; and

(b) a processor coupled to the memory, said processor
executing the machine instructions to carry out a plu
rality of functions, including:
(i) defining a base geometry of a polyhedron, said

polyhedron having a plurality of faces, each of which
is a polygon, said base geometry including a plural
ity of vertices of the faces, at selected locations on
the polyhedron;

(ii) based upon the plurality of vertices at the selected
locations and using a plurality of transformation
matrices, generating vertices and indices for a plu
rality of triangles comprising the geodesic dome, by
Successively processing Successive faces of the poly
hedron, in successive different sections of the poly
hedron, wherein the vertices and indices of the
plurality of triangles are generated only in a single
pass without any further subdivision of the polyhe
dron;

(iii) preparing a triangle construct using said vertices
and indices that are generated; and

US 7,304,643 B2
23

(iv) storing the vertices and indices for the triangle
construct in the memory as geometric data that
define the at least the part of the geodesic dome for
use in the graphic environment for display or other
purposes.

17. The system of claim 16, wherein the machine instruc
tions further cause the processor to define the base geometry
including the step of selecting the vertices so as to form a
plurality of edges disposed at a unity distance from a center
of the polyhedron, two of said vertices being disposed at
opposite ends of the polyhedron.

18. The system of claim 16, wherein the machine instruc
tions further cause the processor to multiply current coor
dinates for a dome vertex by a radial dimension desired for
the geodesic dome, at each of a plurality of different
positions of the dome vertex, the dome vertex being deter
mined as a function of the base geometry of the polyhedron
and the plurality of transformation matrices.

19. The system of claim 16, wherein the different sections
of the polyhedron include a top section, a middle section,
and a bottom section.

20. The system of claim 16, wherein the machine instruc
tions further cause the processor to allocate in the memory
a vertex buffer to store the vertices and an index buffer to
store the indices.

21. The system of claim 20, wherein the machine instruc
tions further cause the processor to determine the number of
vertices and indices required for constructing the at least the
part of the geodesic dome to a desired tessellation order.

22. The system of claim 16, wherein the machine instruc
tions further cause the processor to enable input of a
plurality of parameters that the processor uses to control
generating the at least the part of the geodesic dome, said
parameters including a radius of the geodesic dome, and a
tessellation order of the geodesic dome.

23. The system of claim 22, wherein the machine instruc
tions further cause the processor to enable input of a vertex
size defining a stride of the vertices that define the at least
the part of the geodesic dome.

24. The system of claim 22, wherein the machine instruc
tions further cause the processor to enable input of another
parameter that determines how much of the geodesic dome
is to be generated.

10

15

25

30

35

40

24
25. The system of claim 22, wherein the triangle construct

comprises one of:
(a) a triangle strip including vertices and indices for

adjacent triangles comprising the geodesic dome, said
triangle strip spiraling around each section of the
polyhedron and including degenerate triangles used to
produce the triangle strip; and

(b) a triangle list of vertices and indices for adjacent
triangles in each different section of the geodesic dome.

26. The system of claim 25, wherein the machine instruc
tions further cause the processor to enable determining
whether to use either the triangle strip or the triangle list, for
the triangle construct.

27. The system of claim 16, wherein the machine instruc
tions further cause the processor to compute a plurality of
constants for use in generating the at least the part of the
geodesic dome, wherein a first constant comprises a trans
formation matrix, said transformation matrix being
employed to rotate a three dimensional vector about a
selected axis through a predefined angle, a second constant
comprises the base geometry of the polyhedron, and a third
constant comprises a dot product of any two vertices of any
polygon on a face of the polyhedron.

28. The system of claim 16, wherein the polyhedron is an
icosahedron, and wherein the machine instructions further
cause the processor to define the base geometry using four
vertices, including first and fourth Vertices that are disposed
at opposite ends of the icosahedron, and second and third
vertices that are disposed at other predefined corners of the
icosahedron, intermediate the ends thereof, each vertex of
said four vertices being disposed at equal distances from a
central origin of the icosahedron.

29. The system of claim 16, further comprising the step of
determining Surface normals for each triangle vertex of the
plurality of triangles that define the at least the part of the
geometric dome.

