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SPIRAL CONSTRUCTION OF A GEODESIC 
DOME 

RELATED APPLICATIONS 

This application is a continuation of prior patent applica 
tion Ser. No. 10/377,981, filed on Feb. 28, 2003, now U.S. 
Pat. No. 7,034,826 the benefit of the filing date of which is 
hereby claimed under 35 U.S.C. 120. 

10 
FIELD OF THE INVENTION 

The present invention generally pertains to a method and 
system for modeling spherical geometry, and more specifi 
cally, for modeling a geodesic dome through a single pass, 15 
iterative process of subdividing a polyhedron into the geo 
desic dome of arbitrary tessellation order, generating Verti 
ces and corresponding triangle index data for a specific 
polyhedron, such as an icosahedron. 

2O 
BACKGROUND OF THE INVENTION 

A sphere is one of the fundamental graphic primitive 
shapes employed in three-dimensional (3-D) computer 
graphics that are commonly used in computer games, simu- 25 
lations, and other types of virtual environments. Although 
dramatic advances have recently been made in developing 
powerful graphics hardware and engines to render 3-D 
computer graphics in real time, new approaches that reduce 
the processing overhead required for generating primitive 30 
shapes such as spheres are very much desired, so that the 
available processing capabilities of the central processing 
unit (CPU) and graphics processors can be more efficiently 
employed for other purposes. The geometry of spheres and 
other primitive shapes is either directly expressed as a 35 
collection of triangles, or through the control points of a 
higher order surface, which must itself be tessellated into 
triangles by the rendering engine early in the graphics 
pipeline processing. Accordingly, a sphere is normally 
approximated by a set of triangles with shared edges and, 40 
ideally, having vertices evenly distributed over the surface of 
the sphere. One of the geometric forms best suited to the 
approximation of a sphere using polygons is a geodesic 
dome, as shown in FIG. 2A. The geodesic dome shown in 
this Figure is constructed from a subdivided icosahedron and 45 
has 252 vertices that define the corners of 500 triangles. 
When rendered using diffuse light with Gouraud shading, 
the result is shown in FIG. 2B. To construct a geodesic dome 
like that shown in FIG. 2A from one of the regular polyhe 
dra, polygons comprising the base geometry of any of the 50 
five Platonic solids are reiteratively subdivided in a trian 
gulation process. Each of the polygons in the polyhedron are 
subdivided into a number of small polygons, and the result 
ing vertices of the polygons are projected out to a radius 
equal to that of the polyhedron’s original vertices. The 55 
smaller polygons are subdivided again, and the process is 
reiterated until the resulting geometry satisfactorily approxi 
mates a sphere for the purposes of the graphic application in 
which the sphere is to be used. Thus, this reiterative process 
creates n geodesic domes of various complexities to arrive 60 
at a final dome of order n, applying the geodesation opera 
tion on each intermediate dome in turn, to achieve greater 
tessellation. 

Although the process described above is straightforward 
and effective, it has its drawbacks. By its nature, this process 65 
lends itself to the use of recursive functions calls, which 
have a clear inherent processing cost, due to increased call 

2 
overhead, additional storage requirements for function state. 
and the repetitive nature of the method. This prior art process 
must construct intermediate geodesic domes during each 
successive pass to subdivide the polygons comprising each 
intermediate dome. Accordingly, a substantial up-front 
memory allocation must be made to store all of the inter 
mediate geodesic domes, or memory must be allocated at 
every reiterative pass, or a very high frequency of Smaller 
memory allocations and memory freeing operations must be 
performed at the polygon level to divide individual triangles 
of the intermediate domes. The single allocation and per 
pass allocation of memory reserve much more memory that 
is actually required to construct the final geodesic dome. The 
per-triangle allocations of memory are much better at con 
serving memory, but they sacrifice performance and cause 
memory fragmentation. Also, the multi-pass approach for 
generating a geodesic dome is computationally show, not 
only because it must generate successive intermediate geo 
desic domes, but also because the per-triangle subdivisions 
can lead to redundant calculation of vertex locations for 
subdivided triangles, where a calculated vertex location 
along the edge of one triangle might be recalculated for an 
adjacent triangle that shares the edge. 
To avoid the problems noted above, the geometry of the 

desired geodesic dome can be pre-computed and then loaded 
for rendering by a graphics engine when needed. However, 
in many applications, it will not be possible to pre-compute 
the required geometry for a geodesic dome. In addition, the 
storage requirements for a densely modeled sphere can be 
relatively significant. For example, a geodesic dome formed 
from an icosahedron with a tessellation order of 64 contains 
over 40,000 vertices and 490,000 indices. By generating a 
sphere at runtime instead of pre-computing it, the storage of 
the pre-computed geometry data is avoided. Instead, it is 
only necessary to store the origin, radius, and tessellation 
order of the sphere as input to the sphere generation process. 
Additionally, to provide a performance enhancement, there 
is a clear need for an approach that enables the spherical 
geometry to be computed in less time than required for 
loading the equivalent amount of pre-computed geometry 
data for the sphere from a file. 
To avoid recursive or multi-pass subdivisions of a geo 

desic dome, a simpler method of subdivision can be 
employed, so that the repositioning of polygons between 
each subdivision is postponed, and by performing the poly 
gon subdivision and vertex projections as discrete steps. 
Each polygon of a polyhedron is first completely subdivided 
into a final set of smaller polygons that will form the 
geodesic dome. After the subdivisions, all polygons have the 
same edge lengths and lie completely within the planes of 
the original polyhedral faces. The vertices of these polygons 
are then gnomonically projected en masse to a distance from 
the center of the polyhedron equal to that of the original 
vertices. Thus, this iterative approach is much faster than 
performing successive subdivisions of intermediate geode 
sic domes and simplifies the entire process for non-power 
of-two tessellation orders. However, in postponing the gno 
monic projections of polygons until after all subdivisions 
have taken place, this approach sacrifices the uniformity of 
vertex distribution on the surface of the geodesic dome. 
Instead, the uniformity of distribution lies on the surface of 
the original polyhedron and is lost during the projection 
process. Vertices located nearer to the corners of the original 
polyhedron will end up closer to one another in the resulting 
dome than those located close to the center of the original 
faces. Since the geodesic dome produced will less closely 
resemble a sphere than that which could have been con 
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structed through the more conventional recursive process, 
additional vertices must be added with a higher tessellation 
order to compensate for the uneven distribution of vertices. 
For this reason, a still different approach is required that 
achieves equal distribution of vertices, but enables a poly 
hedron to be efficiently subdivided in a single pass, without 
the need to construct intermediate geodesic domes. 

SUMMARY OF THE INVENTION 

The present invention avoids the shortcomings of the 
above-noted prior art strategies for generating a geodesic 
dome by providing a highly efficient method for subdividing 
a polyhedron in a single pass for any given tessellation order, 
while still providing a good approximation to a sphere. As 
has been known since the time of the ancient Greeks, there 
are five regular polyhedra, including the tetrahedron, the 
cube, the octahedron, the dodecahedron, and the icosahe 
dron. A regular polyhedron is one that that is both equilateral 
and equiangular, i.e., a polyhedron in which all its faces are 
equal regular polygons, and in which the same number of 
faces meet at every vertex. In carrying out the present 
invention, a preferred embodiment employs an icosahedron 
as the base polyhedron to subdivide since, of the five regular 
polyhedra, it provides the most uniform distribution of 
vertices across the surface of the sphere when subdivided 
into a geodesic dome (only four vertices and three edges of 
the icosahedron are actually required by the invention). 
However, it will be understood that other regular polyhedra 
can instead be employed. 
The present invention is able to perform single up-front 

memory allocations of exactly the right size for the vertex 
and index data generated for a geodesic dome. With memory 
requirements known from the start, the present invention 
does not need to reserve any memory above that required for 
storing the final geometry. Because the present invention is 
able to perform a single pass to generate a geodesic dome, 
regardless of the tessellation order required it also runs much 
faster than prior art recursive solutions. Indeed, the perfor 
mance delta between the prior art and the present invention 
increases with the order specified. The speed of the present 
invention is not much worse than that of the simple “fully 
subdivide and then fully project' method of constructing a 
geodesic dome, but unlike that method, the present invention 
does not suffer a distribution penalty. The vertices of the 
geodesic dome produced by the present invention are dis 
tributed as uniformly as that of a dome produced through a 
more conventional recursive approach. Further, the geode 
sation pass of the present invention is performed in Such a 
way as to generate the geometry in a spiral arrangement 
from one end of the dome to the other. Accordingly, it is a 
simple matter to modify the method to create a hemi or 
partial sphere by simply terminating the pass at a mid or 
other selected point, or by rendering a Smaller number of 
triangles from a geometry list. 

Another virtue of the present invention is that it is well 
Suited to the formation of the dome geometry using a 
triangle strip. A triangle strip is a rendering construct com 
prising a series of triangles, where all but the first in the 
series is defined, in large part, by the previous triangle of the 
sequence. The first triangle is specified using three vertices, 
but all others are specified with a single vertex, using the 
vertices of previous triangles to complete them and thereby 
forming a strip of triangles with shared edges. Arranging the 
geometry in this manner not only saves on the bandwidth 
required to send the geometry to a graphics processing unit 
(GPU), but also imposes structural cohesion on the geom 
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4 
etry for a post transform cache. The use of a triangle strip 
guarantees that two vertices will already be present in the 
post transform cache for all but the first triangle in the 
triangle strip, effectively yielding a triangle for every vertex. 
A method for generating at least a part of a geodesic dome 

for use in a graphic environment in accord with the present 
invention provides for initially defining a base geometry of 
a polyhedron that will be tessellated to produce a geodesic 
dome. The base geometry includes a plurality of vertices of 
the polyhedron that are disposed at selected location on the 
polyhedron. The polyhedron has a plurality of faces, each 
face comprising a polygon. The plurality of faces of the 
polyhedron are derived from the base geometry. Vertices and 
indices for the plurality of triangles comprising different 
sections of the polyhedron are generated in this method by 
processing the plurality of triangles for Successive faces of 
the polyhedron, and for Successive portions of the polyhe 
dron corresponding to the different sections of the polyhe 
dron. The different sections include a top section, a middle 
section, and a bottom section. A triangle construct is then 
constructed using the vertices and indices. The vertices and 
indices for the triangle construct thus comprise geometric 
data that define the geodesic dome (or a desired portion 
thereof). 
The step of defining the base geometry includes selecting 

the vertices so as to form a plurality of edges that are 
disposed at the same distance from a center of the polyhe 
dron. To generate the vertices of the triangles, current 
coordinates for a dome vertex are multiplied by a radial 
dimension desired for the geodesic dome, at each of a 
plurality of different positions of the dome vertex. The dome 
vertex is determined as a function of the base geometry of 
the polyhedron. 
A vertex buffer is allocated in memory to store the 

vertices, and an index buffer is allocated in memory to store 
the indices. When allocating memory for these buffers, the 
method determines the number of vertices and indices 
required for constructing the geodesic dome to a desired 
tessellation order. A plurality of parameters to control gen 
erating the geodesic dome can be input. These parameters 
include a radius of the geodesic dome, and a tessellation 
order of the geodesic dome. In addition, the input parameters 
can include a vertex size defining a stride of the vertices that 
define the geodesic dome. Optionally, a parameter that 
determines how much of the geodesic dome is to be gener 
ated can also be input. 
The triangle construct includes either a triangle strip, 

which includes adjacent triangles running trough different 
sections of the polyhedron, or a triangle list of Vertices and 
indices for triangles comprising the geodesic dome. An 
election can be made to use either the triangle strip or the 
triangle list for the triangle construct. 
The method also provides computing (or pre-computing) 

a plurality of constants for use in generating at least part of 
the geodesic dome, including a plurality of transformation 
matrices employed to rotate a 3-D vector about a selected 
axis through a predefined angle, the base geometry of the 
polyhedron, and a dot product of any two adjacent vertices 
of any face of the polyhedron. 

In one preferred form of the present invention, the poly 
hedron is an icosahedron. The step of defining the base 
geometry is carried out by defining four vertices, including 
first and fourth vertices that are disposed at opposite ends of 
the icosahedron, and second and third vertices that are 
disposed at other predefined corners of the icosahedron, 
intermediate to the ends thereof. Each of these four vertices 
is disposed at equal distances from a central origin of the 
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icosahedron. If needed for a specific application of the 
present invention, e.g., for ease of applying lighting, Surface 
normals for each triangle vertex of the plurality of the 
triangles that subdivide the plurality of faces of the polyhe 
dron can optionally be computed. 
A further aspect of the present invention is directed to a 

memory medium that stores machine instructions for carry 
ing out the steps of the method described above. Yet another 
aspect of the invention is directed to a system that includes 
a memory in which machine instructions are stored, and a 
processor. The processor executes the machine instructions 
and carries out functions that are also generally consistent 
with the steps of this method. 

BRIEF DESCRIPTION OF THE DRAWING 
FIGURES 

The foregoing aspects and many of the attendant advan 
tages of this invention will become more readily appreciated 
as the same becomes better understood by reference to the 
following detailed description, when taken in conjunction 
with the accompanying drawings, wherein: 

FIG. 1 is a schematic functional block diagram of an 
exemplary personal computer (PC) that is suitable for 
executing the present invention; 

FIG. 2A is an exemplary order 5 (5-frequency) geodesic 
dome that has been constructed from a subdivided icosahe 
dron (presented in wire frame form): 

FIG. 2B illustrates the geodesic dome of FIG. 2A ren 
dered with diffuse lighting, using Gouraud shading: 

FIGS. 3A, 3B, and 3C are orthographic projections of an 
icosahedron, showing the four vertices used to define the 
base geometry of the polyhedron, from the points of view of 
the negative X, negative y, and positive Z axes, respectively 
(in a left-handed coordinate system); 

FIG. 4 illustrates geodesic domes formed from icosahe 
drons using tessellation orders 1 through 5: 

FIG. 5 is a functional block diagram of the system 
architecture used in the present invention; 

FIG. 6 is a top level flowchart showing the overall logical 
steps carried out in a preferred embodiment of the present 
invention; 

FIG. 7 is a flowchart showing details implemented in 
constructing vertices of the geodesic dome; 

FIG. 8 is a flowchart showing further details for deter 
mining the vertices of a top section of the geodesic dome; 

FIG. 9 is a flowchart showing the logic for determining 
the vertices of a central section of the geodesic dome; 

FIG. 10 is a flowchart showing the logic for determining 
the vertices of a bottom section of the geodesic dome; 

FIG. 11 is a flowchart showing the steps for constructing 
a triangle strip to define the geodesic dome; 

FIG. 12 is a flowchart showing the steps for constructing 
triangle lists to define the geodesic dome (as an alternative 
to the triangle strip); 

FIG. 13 is a flowchart that illustrates the details for 
constructing a triangle strip around the top section of the 
geodesic dome: 

FIG. 14 is a flowchart that illustrates the details for 
constructing a triangle strip around the center section of the 
geodesic dome; 

FIG. 15 is a flowchart that illustrates the details for 
constructing a triangle strip around the bottom section of the 
geodesic dome; 

FIG. 16 is a flowchart that illustrates the details for 
constructing a triangle list around the top section of the 
geodesic dome: 
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6 
FIG. 17 is a flowchart that illustrates the details for 

constructing a triangle list around the center section of the 
geodesic dome; and 

FIG. 18 is a flowchart that illustrates the details for 
constructing a triangle list around the bottom section of the 
geodesic dome; 

DESCRIPTION OF THE PREFERRED 
EMBODIMENT 

PC for Implementing the Present Invention 
With reference to FIG. 1, an exemplary general purpose 

computing device useful for implementing the present 
invention is illustrated in the form of a conventional PC 20. 
While the present invention was initially developed for use 
on an electronic game playing system, it will be understood 
that the invention is generally applicable to almost any type 
of computing device that might be used to render a sphere 
or a portion of a sphere in electronic games, or in a virtual 
environment, or other graphic applications. Examples of 
Such devices include mobile computers, hand held comput 
ing devices such as personal data assistants (PDAs), mobile 
communication devices (e.g., cell phones), and other com 
puting devices that include a display on which a geodesic 
dome might be generated in accord with the present inven 
tion, for rendering a sphere or a portion of a sphere. 
The following discussion is intended to provide a brief, 

general description of a suitable computing environment in 
which the present invention may be implemented by execut 
ing machine instructions, such as program modules, on a PC 
or other computing platform. Generally, program modules 
include routines, programs, object, components, data struc 
tures, etc. that perform particular tasks or implement par 
ticular abstract data types. An embodiment of the present 
invention is readily implemented on an electronic game 
system or on a general purpose computing device Such as 
represented by PC 20. PC 20 is provided with a processing 
unit 21, a system memory 22 and a system bus 23. The 
system bus couples various system components, including 
the system memory, to processing unit 21 and may be any 
of several types of bus structure, including a memory bus or 
memory controller, a peripheral bus, and a local bus using 
any of a variety of bus architectures. The system memory 
includes read only memory (ROM) 24 and random access 
memory (RAM) 25. A basic input/output system 26 (BIOS), 
containing the basic routines that help to transfer informa 
tion between elements within the PC 20, such as during start 
up, is stored in ROM 24. PC 20 further includes a hard disk 
drive 27 for reading from and writing to a hard disk (not 
shown) and may include a magnetic disk drive 28 for 
reading from or writing to a removable magnetic disk 29. 
and an optical disk drive 30 for reading from or writing to 
a removable optical disk 31, such as a CD-ROM or other 
optical media, all of which comprise non-volatile memory 
media. Hard disk drive 27, magnetic disk drive 28, and 
optical disk drive 30 are connected to system bus 23 by a 
hard disk drive interface 32, a magnetic disk drive interface 
33, and an optical disk drive interface 34, respectively. The 
drives and their associated computer readable media provide 
nonvolatile storage of computer readable machine instruc 
tions, data structures, program modules, and other data for 
PC 20. Although, the exemplary environment described 
herein includes a hard disk, removable magnetic disk 29. 
and removable optical disk 31, it will be appreciated by 
those skilled in the art that other types of computer readable 
media, which can store data that are accessible by a com 
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puter, Such as magnetic cassettes, flash memory cards, 
DVDs, Bernoulli cartridges, RAMs, ROMs, and the like, 
may also be used in the exemplary operating environment. 
A number of program modules may be stored on the hard 

disk, magnetic disk 29, optical disk 31, ROM 24 or RAN 25, 
including an operating system 35, one or more application 
programs 36, other program modules 37, and program data 
38. A user may enter commands and information into PC 20 
through input devices such as a keyboard 40 and a pointing 
device 42. Pointing device 42 may include a mouse, stylus, 
wireless remote control, or other pointer. Other input devices 
(not shown) may include a joystick, game pad, wheel pedal, 
microphone, satellite dish, Scanner, digital camera, digital 
video recorder, or the like. These and other input/output 
(I/O) devices are often connected to processing unit 21 
through an I/O interface 46 that is coupled to the system bus 
23. The term I/O interface is intended to encompass each 
interface specifically used for a serial port, a parallel port, a 
game port, a keyboard port, and/or a universal serial bus 
(USB). A monitor 47 or other type of display device is also 
connected to system bus 23 via an appropriate interface, 
Such as a video adapter 48, and is usable to display appli 
cation programs, Web pages, a simulated or virtual environ 
ment Such as in the present invention, and/or other infor 
mation, including visual content of a digital media work that 
is being played from its original distribution medium, Such 
as a CD-ROM, DVD, or other storage medium. In addition 
to the monitor, PCs are often coupled to other peripheral 
output devices (not shown), Such as speakers 55 (through a 
Sound card or other audio interface (not shown)), and 
printers (also not shown). 
As indicated above, the invention may be developed and 

practiced on a single computing device, however, PC 20 
may operate in a networked environment using logical 
connections to one or more remote computers, such as a 
remote computer 49. Remote computer 49 may be another 
PC, a server (which is typically generally configured much 
like PC 20), a router, a network PC, a game console, a peer 
device, a satellite, or other common network node. Remote 
computer 49 may include many or all of the elements 
described above in connection with PC 20. So as not to make 
FIG. 1 unnecessarily complex, remove computer 49 is 
shown with only an external memory storage device 50. The 
logical connections depicted in FIG. 1 include a local area 
network (LAN)51 and a wide area network (WAN)52. Such 
networking environment are common in offices, enterprise 
wide computer networks, intranets, and the Internet. When 
coupled to the Internet, electronic games or other applica 
tions in which a virtual environment is employed can be 
loaded and executed, permitting for example, play of an 
electronic game or interaction in a virtual environment with 
other PCs over the network. The present invention can be 
used to create a sphere or part of a sphere in Such games or 
virtual environment. 
When used in a LAN networking environment, PC 20 is 

typically connected to LAN 51 through a network interface 
or adapter 53, which may be a wireless network adapter. 
When used in a WAN networking environment, PC 20 
typically includes a modem 54, or other means such as a 
cable modem, Digital Subscriber Line (DSL) interface, or an 
Integrated Service Digital Network (ISDN) interface, for 
establishing communications over WAN 52. One type of 
WAN commonly used for communication is the Internet. 
Modem 54, which may be internal or external, is connected 
to the system bus 23 or coupled to the bus via I/O device 
interface 46, i.e., through a serial port. In a networked 
environment, program modules depicted relative to PC 20, 
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8 
or portions thereof, may be stored in the remote memory 
storage device. It will be appreciated that the network 
connections shown are exemplary and other means of estab 
lishing a communications link between the computers may 
be used. Such as wireless communication and wide band 
network links. 

Input Parameters Used in Constructing a Geodesic Dome 
While the present invention can be used to construct a 

geodesic dome using other regular polyhedra, an exemplary 
embodiment of the present invention preferably employs an 
icosahedron for this purpose. Given the following disclo 
sure, one of ordinary skill in the art should be able to readily 
adapt the present invention to constructing a geodesic dome 
from other polyhedra. 
The following input parameters are provided to imple 

ment the method, as indicated in blocks 102, 104, and 106 
in an overview 100 (FIG. 5): 
Radius—The radius of the dome to be constructed. 
Vertex Size The stride (i.e., the storage size allocated 

for each vertex in the buffer) of the vertices that will 
define the dome. The first three floating point values of 
each vertex will specify the three Cartesian coordinates 
of the vertex's position. If the stride allows for it, the 
next three floating point values of each vertex will 
specify the vertex normal. 

Order The tessellation order of the geodesic dome. (A 
tessellation order of one generates the base icosahedron 
itself. FIG. 4 illustrates geodesic domes of orders 1 
through 5.) 

Form Strip—Boolean variable indicating the primitive 
type of the dome (i.e., this variable indicates that the 
geodesic domes will be defined using a triangle list if 
the variable is false, and by using a triangle strip if the 
variable is true). 

In a block 108 in FIG. 5, the size of the geodesic dome (i.e., 
the number of vertices and indices that will be required) is 
extrapolated. Next a block 110 allocates the necessary 
memory for the vertex buffer and index buffer that respec 
tively store the vertices and indices of the desired geodesic 
dome. The calculation used to determine the size of the 
memory that should be allocated is described below. 
A block 116 directs the memory allocation and the Order 

input variable to either a triangle strip construction block 
118, or a triangle list construction block 122, depending 
upon the value of the Form Strip variable, as indicated in a 
block 120. The Radius, V Size, and Order input variables, 
along with the vertex buffer memory allocation, are directed 
to a block 114, which also receives ordered base icosahedron 
data from a block 112. Blocks 114, 118, and 122 each 
include three nested loops for forming the top, center, and 
bottom portions of the geodesic dome. Specifically, block 
114, which provides for construction of the vertices, 
includes nested loops 124, 126, and 128; block 118, which 
provides for the triangle strips construction, includes nested 
loops 130, 132, and 134; while block 122, which provides 
for the triangle lists construction, includes nested loops 136, 
138, and 140. 

Using the input, the present invention constructs a geo 
desic dome of the desired radius, tessellation order, and 
primitive type, and in a block 142, returns the following 
output data for defining the geodesic dome: 

Vertex Buffer—A vertex buffer that stores the vertices of 
the geodesic dome. 

Vertex Count The number of vertices stored in the 
vertex buffer. 
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Index Buffer—An index buffer that stores indices into the 
vertex buffer, so that the indices and vertices define the 
triangles forming the geodesic dome. 

Index Count The number of indices stored in the index 
buffer. 

Triangle Count The number of triangle primitives 
employed to construct the geodesic dome. 

The present invention makes use of a number of local 
variables, as described below. Three constants are also used, 
and may be pre-computed before the method is actually 
implemented. The first constant, which is referred to herein 
as Rotate One Fifth Y, is a 4x4 transformation matrix 
employed to rotate a 3-D vector about the y axis through an 
angle of -2L/5 radians (assuming a left-handed coordinate 
system): 

cos(-27 f 5) 0.0 - sin(-2t f5) 0.0 
O.O 1.O O.O O.O 

sin(-27tf3) 0.0 cos(-2t f5) 0.0 
O.O O.O O.O 1.0 

This matrix evaluates to: 

0.309016994375 O.O 0.95.105651629 O.O 

O.O 1.0 O.O O.O 

-0.95.105651295 O.O O.309016994375 0.0 

O.O O.O O.O 1.0 

The second constant is the set of four vertices that define 
the base icosahedron from which the geodesic dome is 
constructed. These constant vertices have the following 
values: 

The constant set of vertices therefore evaluates to: 

wO = &O.O 1.O O.O> 
v1 = 0.72360679775 O.447213595S -O.S2573111212 
w2 = 0.894.427.191 -0.447213595S O.O> 
w3 = &O.O -1.0 O.O> 

These constant vertices correspond to four points on an 
icosahedron whose distances from the central origin of the 
icosahedron are all equal and are inherently normalized to 
1.0. The icosahedron defined by this base geometry is 
oriented in space in Such a way as to take advantage of 
symmetry along the X axis. The second vertex V1, when 
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10 
reflected through the X axis, corresponds to another point on 
the icosahedron (this symmetry plays an important role in 
simplifying the construction of the geodesic dome). FIGS. 
3A-3C show these four vertices that define the base geom 
etry of the icosahedron. 
The third constant is simply the angle of the sector defined 

by taking the vectors from the origin of the icosahedron to 
any two vertices from any one of the 20 triangles forming 
the icosahedron. This constant, Angle Face, is obtained by 
taking the dot product of v0 and V1 and calculating the arc 
cosine of the result. When evaluated, the following result is 
obtained: 

Angle Face=1.1071487178 radians 

Details of block 108 in FIG. 5, in which the size of the 
geodesic dome is extrapolated, are as follows. The number 
of vertex rows and total vertices required for both the top 
and bottom sections of the dome are determined from the 
given tessellation order: 

End Row Count=Order 

End Vertex Count=(Order-1)xOrder/2x5+1 

The number of vertex rows and vertices per row needed 
to form the center section are calculated as: 

Mid Row Count=Order-1 

Mid Row Vertex Count=(Order+1)xOrderx5 

The total number of vertices used in the construction of the 
geodesic dome is: 

Vertex Count=Mid Row CountxMid Row Vertex 
Count--End Vertex Countx2 

This total is multiplied by the vertex stride that was input 
and then used to allocate a Vertex Buffer of a size equal to 
Vertex CountxVertex Size bytes. This size is used in block 
110 to allocate the required memory. 
Logical Steps Employed in Constructing a Geodesic Dome 
An overview flowchart 150 is illustrated in FIG. 6, 

showing the steps generally implemented in constructing a 
geodesic dome, which can be used for rendering a sphere or 
part of a sphere. The input values used in the process, as 
described above, are supplied at a step 152, either by a user, 
or by another software program that is employing the 
present invention for constructing a geodesic dome. Next, a 
step 154 calculates the constant Rotate One Fifth Y, which 
is the first constant discussed above. A step 156 sets forth the 
second constant, comprising the four vertices that define the 
base icosahedron used to construct the geodesic dome. 
Again, the derivation of the values shown in this step has 
already been discussed above. The third constant, also 
discussed above, is then defined in a step 158. Step 160 
provides for calculating the parameters that are used for 
extrapolating the size of the geodesic dome and for allocat 
ing memory, also as discussed above. A step 162 constructs 
the vertices of the geodesic dome based on the input 
parameters. Substantial details are involved in this step, as 
explained below. 
A decision step 164 determines if the value of the Boolean 

parameter Form Strip is true and if so, a step 165 carries out 
a process for constructing a triangle strip. Alternatively, a 
step 166 carries out the process necessary to construct a 
triangle list. Further details of each of these processes in 
steps 165 and 166 are explained below. Once the vertices 
have been constructed and either the triangle strip or triangle 
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list has been created, a step 168 provides the output defining 
the geodesic dome in terms of the indicated variables 
Vertex Buffer, Index Buffer, Vertex Count, Index Count, 
and Triangle Count. The process of constructing the geo 
desic dome is then complete. 

In FIG. 7, details of step 162 are illustrated. A step 170 
indicates that this process is provided with each of the 
inputs, constants, and other parameters that were calculated 
in step 160 of FIG. 6. Next, a step 172 in FIG. 7 provides that 
if the Vertex Size that was input is sufficient to hold six 
floating point values, then a variable Write Normals is set 
equal to true and otherwise is set equal to false. A step 174 
then provides an output, calculating a value for the variable 
Vertex Count as noted above. Next, a step 176 allocates 
memory for the Vertex Buffer as a function of the variable 
calculated in step 174 and the input variable Vertex Size. A 
step 178 sets the Vertex Buffer write location to the start of 
the buffer. 

After a successful memory allocation, the vertices of the 
top section of the dome are calculated. In a step 180, the first 
vertex copied into the buffer is simply v0xRadius. The 
coordinates for this vertex are copied into the first three 
floating point values of the vertex buffer (Vertex 
Buffer). If the vertex stride (i.e., the storage spaced 
allocated for each vertex) that was selected allows for three 
more floating point values (as determined by the Boolean 
variable Write Normals), the vertex normal is stored by 
copying v0 into the buffer (at Vertex Buffer) for this 
vertex. Since all vertices of the base icosahedron are at a 
distance of 1.0 from the center, the values are normalized 
and also form vectors orthogonal to the icosahedron at each 
vertex. For subsequent vertices written into the vertex buffer, 
the Boolean variable Write Normals is again used to indi 
cate whether the vertex size is sufficient to accommodate a 
surface normal. Normal to the surface for each vertex are 
useful in certain graphic applications of the geodesic dome, 
e.g., for performing lighting calculations, but may not be 
required for other applications. 
A step 182 next provides for constructing the remaining 

vertices for the top section of the geodesic dome. Details of 
this step and of steps 184 and 186, which provide for 
constructing the vertices for the center and bottom sections 
of the geodesic domes, respectively, are set forth below. In 
a step 188, the Vertex Buffer, is set equal to the 
product of V3 and the Radius. If Write Normals is true, then 
Vertex Buffer is set to V3. A block 190 indicates 
produces the Vertex Buffer as an output. 

In FIG. 8, details of step 182 (FIG. 7) are illustrated to 
show how the remaining vertices for the top section of the 
geodesic dome are determined. The first vertex of the top 
section has already been defined. To calculate the remaining 
vertices of the top section, a vertex, Endpoint0, is initialized 
in a step 200 to be equal to v0, and an axis vector, Axis Face 
is initialized to be perpendicular to the plane of the sector 
formed by v0 and V1 using the cross product of v0 and v1. 
(Note that since v0 and V1 are constant values, Axis Face 
will also be initialized to a constant and can simply be set to 
<-0.52573111212, 0.0, -O.7236.0679775 O 
<-0.5877852523, 0.0, -0.8090169943745> normalized). In 
step 200, the axis angle is also used to construct a 4x4 
matrix. Rotate Face, which will rotate a vector around the 
axis by (Angle Face/End Row Count) radians. This trans 
form will be used to rotate Endpoint0 through the arc of the 
sector formed by v0 and v1. It is important to note that for 
all cases that follow wherein a rotation matrix using an 
arbitrary axis of rotation is built, an optimization may be 
employed such that the axis of rotation is normalized 
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12 
immediately after it is calculated (i.e. immediately after the 
cross product operation that is used to calculate the axis). 
The function later used to initialize the rotation matrix can 
then assume a normalized axis and does not have to renor 
malize the given vector every time a matrix is built. In order 
to simplify the discussion of the present invention, that 
optimization has not been illustrated in the drawings and is 
not further described. 

After initializing these variables in step 200, the proce 
dure begins the first of three sets of nested loops. The 
outermost loop iterates over the rows of the top section of 
the dome. It initializes the variable Row to 1 in a step 202, 
continues as long as Row is less than End Row Count, as 
determined by a decision step 204, and increments Row after 
each iteration in a step 212. Upon entering the loop, at a step 
206, the procedure multiplies the Endpoint0 vector by the 
Rotate Face matrix and sets Endpoint0 to the result to move 
it down a row along the v0/v1 sector. A second vertex, 
Endpoint1, is then derived from Endpoint0 by reflecting it 
through the x axis such that Endpoint1=Endpoint0, 
Endpoint1 Endpoint0, and Endpoint1 =Endpoint0. Also 
in step 206, another rotation axis, Axis Sectoro, is calculated 
perpendicular to the plane of the sector formed by the end 
points through the cross product of Endpoint0 and End 
point1. As indicated by "x,” a simplified cross product may 
be employed in this case due to the symmetry between 
Endpoint0 and Endpoint1, where the Z coordinate of the 
resulting vector can be always set to 0.0 and need not be 
calculated (since the axis is known to lie in the Xy plane). 
The angle of the sector formed by the two end points is also 
calculated in step 206, Such that Angle Sectoro arccosine 
(Endpoint0-Endpoint1)/Row. (Note that “” is here used to 
indicate a dot product operation and “x' is used between two 
vectors to indicate a cross product.) One last variable, 
Dome Vertex, is set to be equal to Endpoint0 and will be 
used to walk along the arc between Endpoint0 and End 
point1. (Note that Endpoint0 can be used directly instead of 
a separate Dome Vertex variable, but this makes the pro 
cedure more Susceptible to rounding errors stemming from 
repeated vector-matrix multiplication operations that rotate 
Dome Vertex around the dome. Using a separate variable 
helps preserve the vector against degeneration at the higher 
tessellation orders). 
The next loop nested in the first loop set is used to iterate 

over the five triangles at the top of the base icosahedron. A 
step 208 initializes the variable Face to 0, and the next loop 
continues as long as Face is less than 5, as determined in a 
decision step 210, and increments Face after each iteration 
in a step 220. So long as the result of decision step 210 is 
true, a step 214 performs two operations before the third 
loop in the set is entered. If the result of decision step 210 
is false, the logic continues with s 212. In step 214, the first 
operation builds a rotation matrix called Rotate Sector 
around the Axis Sector axis to rotate a vector by Angle 
Sector, radians. The second operation in step 214 multiplies 
the Axis Sector vector by the Rotate One Fifth Y matrix 
and sets Axis Sectoro to the result, thereby rotating the 
vector into the next triangular region of the base icosahe 
dron. 
The innermost loop of the first set iterates across the arc 

of the current sector of the icosahedron. It initializes a Step 
variable to 0 in a step 216, and continues to a step 222, while 
the variable Step is less than Row, as determined in a 
decision step 218. The logic increments Step after each 
iteration of this loop, in a step 226. A negative response to 
decision step 218 leads to step 220. Inside the innermost 
loop, at step 222, Dome Vertex is multiplied by Radius and 
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the result is copied into the Vertex Buffer at the current 
write location in the buffer, as indicated by Vertex 
Buffer. Once again, if Write Normals is true, 
Dome Vertex is copied into Vertex Buffer, the Sur 
face normal portion of the vertex in the buffer, before 
advancing the write location in the buffer to the next vertex. 
Dome Vertex is then multiplied by the Rotate Sector matrix 
and set to the result to advance it along the arc in a step 224. 
After the conditions for completing the innermost and 
second loop are met, the three nested loops close, since no 
operations for computing the vertices in the top section 
follow after the closing of either of the inner loops. 

After the first set of loops has concluded to calculate the 
vertices for the top section of the geodesic dome, the 
procedure moves on to calculate the vertices for the center 
section of the dome, as indicated by the details of step 184, 
shown in FIG. 7. In a step 230, Endpoint0 is set to be equal 
to v1, Axis Face is initialized to be perpendicular to the 
plane of the sector formed by v1 and v2 (Axis Face-V1XV2. 
producing a constant that can be set to <-0.2351141009174, 
-0.4702282018348, -O.7236.0679775 O 
<-0.26286555606, -0.52573111212, -0.8090169943745> 
normalized), and the Rotate Face matrix is constructed to 
rotate a vector about the Axis Face axis by (Angle Face/ 
(Mid Row Count-1)) radians. The second set of nested 
loops begins similar to the first set used to calculate the 
vertices for the top section, with an outer loop to iterate over 
the rows of the center section of the dome. The Row variable 
is initialized to 0 in a step 232, and the outer loop continues 
while Row is less than Mid Row Count, as determined by 
a decision step 234. Row is incremented after each iteration 
in a step 246. Inside this loop, a step 236 carries out several 
operations. An array called Step Count containing two 
entries is used to track the number of vertices in a row. The 
first entry will correspond to the even numbered faces 
comprising the middle of the base icosahedron and the 
second will correspond to the odd numbered faces. On 
entering the loop at step 236, Step Count is set to Mid 
Row Count-1-Row, and Step Count is set equal to Row. 
Endpoint1 is once again derived by reflecting Endpoint0 
through the X axis (Endpoint1 =Endpoint0, 
Endpoint1 Endpoint0, and Endpoint1 =Endpoint0). This 
time however, a third end point variable, Endpoint2, is used 
and is initialized to be the product obtained by multiplying 
Endpoint0 by the Rotate One Fifth Y matrix. Two axis 
vectors and two sector angles are calculated from these three 
end points. Axis Sector is set to the simplified cross prod 
uct between Endpoint0 and Endpoint1. Again, this cross 
product operation is simplified in that the result for the z 
coordinate is set to zero rather than be calculated. But a new 
variable, Axis Sector, must use the full cross product 
operation to obtain the cross product between Endpoint1 and 
Endpoint2. Angle Sectoro is calculated to be equal to arc 
cosine(Endpoint0-Endpoint1)/Step Count. The variable 
Angle Sector, is Set equal tO arccosine 
(Endpoint1 Endpoint2)/Step Count. Dome Vertex is set to 
Endpoint0 as before (although, also as before Endpoint0, 
can be used in place of Dome Vertex if the rounding errors 
encountered will be negligible across the entire range of 
possible tessellation orders given). 
The middle nested loop in the second set iterates over the 

ten triangles contained in the center section of the base 
icosahedron. This middle loop initializes Face to 0 in a step 
238, continues while Face is less than 10, as determined by 
a decision step 240, and increments Face after each iteration 
in a step 254. If the result of decision step 240 is negative, 
the logic continues with a step 242. 
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In the middle loop, a step 248 carries out several opera 

tions. An index variable, Face Odd is set to 0 if the current 
value of Face is even, or 1 if the current value of Face is odd 
(which can be done in a number of ways Such as 
Face Odd=Face modulus 2, Face Odd=Face bitwise-AND 
1, or by initializing Face Odd to 0 outside the middle loop 
and setting Face Odd=Face Odd bitwise-XOR 1 after each 
loop iteration). The Rotate Sector matrix is initialized to 
rotate a vector about the Axis Sector axis by Angle 
Sector of radians. The Axis Sectorpeo, Vector is then 
rotated by multiplying it by the Rotate One Fifth Y matrix 
and assigning the result to the vector. 
As before, the innermost loop in the set iterates across the 

arc of the current sector. It initializes Step to 0 in a step 250, 
continues while Step is less than Step Counto, as 
determined by a decision step 252, and increments Step after 
each iteration in a step 260. If the result in decision step 252 
is negative, the logic returns to step 254. The body of the 
innermost loop is also the same as the body of the innermost 
loop of the first set. In a step 256, Dome Vertex is multiplied 
by Radius and the result is copied into Vertex Buffer. 
Dome Vertex is copied to Vertex Buffer, if Write N 
ormals is true. The write location in the buffer is then 
advanced. Next, in a step 258, Dome Vertex is multiplied by 
the Rotate Sector matrix and set equal to the result. The first 
and second sets of nested loops do differ in their closure, 
however. The second set does one operation following the 
closure of middle loop nest before continuing on with the 
closure of the outer loop. In this operation, which is carried 
out in a step 242, the Endpoint0 vector is multiplied by the 
Rotate Face matrix and the vector is assigned the result. 
Step 242 is reached when a negative response to decision 
step 240 indicates that the middle loop is complete. 

In FIG. 10 the third set of nested loops used to compute 
the vertices for the bottom section of the geodesic dome of 
step 186 from FIG. 7 also shares similarities with the first 
set, with the primary exception being that it cannot take 
advantage of the symmetry of the X axis in the same way. 
Before entering the loops, a step 270 sets Endpoint0 to v2. 
calculates Axis Face as the cross product between V2 and v3 
(or since the result is a constant, just sets Axis Face to <0.0, 
0.0, -0.8944271912 or <0.0, 0.0, -1.0> normalized), and 
initializes the Rotate Face matrix to rotate a vector about the 
Axis Face axis by (Angle Face/End Row Count) radians. 
The outer loop again initializes Row to 1 in a step 272, 
continues while Row is less than EndRow Count, as deter 
mined by a decision step 274. A step 282 increments Row 
after each iteration. Once inside the outermost loop, several 
operations are carried out in a step 276. In this step, 
Endpoint0 is multiplied by the Rotate Face matrix and is 
assigned the result. This multiplication is simplified in a 
similar way to the earlier simplified cross product operations 
in that the Z coordinate needs not be calculated and is instead 
set to 0.0 (in this case the arc that Endpoint0 is rotated 
through falls within the xy plane so Z is always 0.0). 
Endpoint1 is calculated by multiplying Endpoint0 by the 
Rotate One Fifth Y matrix. Axis Sector, the rotation axis 
perpendicular to the plane of the sector formed by the two 
end points, is calculated to be the cross product (complete 
not simplified) between Endpoint0 and Endpoint1. Angle 
Sector, is set to arccosine(Endpoint0-Endpoint1)/(End 
Row Count-Row). Dome Vertex is again set to Endpoint0 
although, as in both prior nested loop sets, using Dome Ver 
tex as a separate variable is not a strict requirement. 
The middle loop in the set iterates over the bottom five 

triangles of the base icosahedron. In a step 278, Face is 
initialized to 0. In accord with a decision step 280, the loop 
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continues while Face is less than 5. A step 290 increments 
Face after each loop iteration. Within this loop, a step 284 
carries out several operations. The Rotate Sector matrix is 
constructed to rotate a vector around the Axis Sector axis by 
Angle Sectoro radians. Axis Sectoro is then multiplied by 
the Rotate One Fifth Y matrix and assigned the result. 

The innermost loop is processed next. In a step 286, Step 
is initialized to 0. The innermost loop continues in a decision 
step 288, while Step is less than (End Row Count-Row). 
Step is incremented after each iteration in a step 296. The 
body of the innermost loop matches that of the innermost 
loops of both preceding loop sets. In a step 292, Dome Ver 
tex is multiplied by Radius, and the result is assigned to the 
current Vertex Buffer, write location. Dome Vertex is 
set as the Vertex Buffer if Write Normals is true. The 
write location is then advanced to the next vertex in the 
buffer. In a step 294, the Dome Vertex vector is multiplied 
by the Rotate Sector matrix and assigned to the result. After 
all of the loops are compete, the logic returns to step 188 in 
FIG. 7. 

As noted above, in step 188, the last vertex to be written 
into the vertex buffer is the lowest point on the dome (along 
the y axis). For this step, v3 is multiplied by Radius, and the 
result is written to Vertex Buffer. If Write Normals is 
true, v3 is set as the Vertex Buffer. With this step, all 
vertices used in the construction of the geodesic dome are 
now calculated, and the Vertex Buffer is complete. 

Next, the indices that join the vertices of the dome 
together into triangles must be determined. The form of the 
index buffer will depend on the value of the given Boolean 
parameter Form Strip. If this parameter has been set to true, 
the indices will define a triangle strip to form the dome. If 
false, the indices will provide a list of triangles. Each of 
these cases uses a structurally similar method for construct 
ing the indices of the dome (a set of three nested loops 
mirroring that used in the formation of the vertices), but the 
specific operation differ between them. As such the descrip 
tion of these operations will be detailed separately for each 
CaSC. 

The logic for constructing a triangle strip as provided in 
step 165 (FIG. 6) is illustrated in overview by FIG. 11 and 
will be used if the Form Strip parameter is set to true. As 
shown in step 300, this procedure uses input parameters that 
include the Order, Mid Row Count, End Row Count, 
Mid Row Vertex Count, and End Vertex Count. The 
number of indices and triangles used in dome (i.e., the 
Output) is calculated to take into account both the arrange 
ment of dome triangles into a strip and the degenerate 
triangles needed to join together strips between dome sectors 
and rows. The total number of triangles is calculated in a 
step 342 as: 

Triangle Count=20xOrder' +1 6xOrder-4 

The number of indices used in the dome, Index Count, is 
also set to Triangle Count-2 in step 302. The Index Buffer 
memory is then allocated in a step 304 to a size equal to 
Index Count multiplied by the size of an index (typically a 
16 or 32 bit valued). To write values into it, the allocated 
Index Buffer is treated as an array and an Index variable is 
used to track the current write location into the buffer. 
Initially Index is set to 0 in a step 306. Again, a different 
portion of the triangle strip is separately computed for the 
top section in a step 308, the center section in a step 310, and 
the bottom section in a step 312. However, the triangle strip 
spirals around the top, central, and bottom sections and 
includes degenerate triangles to make the triangle strip 
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16 
continuous through all three sections (assuming the entire 
geodesic dome is being created). The output is then provided 
as the Index Buffer in a step 134. 

Details of step 308 for computing the triangle strip around 
the top section of the geodesic dome are provided in FIG. 13. 
Before entering a first loop of three nested loops, two 
variables, Row Index and Row Index, are declared and 
initialized in a step 340. These variables will be set to offset 
values to vertices in the Vertex Buffer. Row Index will be 
set to the offset of the first vertex in one row of vertices in 
the buffer, and Row Index will be set to the offset of the 
first vertex in the next row. As expected, Row Index is 
initially set to 0 and Row Index is set to 1. 
The outermost loop iterates over the rows of the top 

section of the dome. The Row variable is initialized to 0 in 
a step 342, and the loop continues while Row is less than 
End Row Count, as indicated by a decision step 344. The 
loop increments Row after each iteration, in a step 352. Once 
inside the loop, the second loop begins immediately. In this 
loop, Face is initialized to 0 in a step 346. The loop continues 
while Face is less than 5, as indicated by a decision step 348, 
and if the result of this decision step is in the negative, the 
logic proceeds to a step 350. Face is incremented after each 
iterations, in a step 358. 
Once inside the middle loop, the innermost loop begins. 

This loop initializes Step to 0 in a step 354, continues while 
Step is less than or equal to Row, as indicated by a decision 
step 356 and increments Step after each iteration, in a step 
362. If the result of decision step 356 is not true, the logic 
proceeds to step 358. Inside the innermost loop, the Index 
entry of Index Buffer is set to (Row Index+(Row+1)x 
Face--Step) in a step 360. In this step, Index is then incre 
mented to advance to the next entry in Index Buffer, and the 
Index entry of Index Buffer is set to (Row Index+Rawx 
Face--Step). Finally, Index is again incremented. After this 
step, the innermost and middle loops close looping back to 
step 350 from decision step 348. In step 350, the (Index-1) 
entry into the Index Buffer is then set to Row Index to 
correct the last index set to wrap back around to the start of 
the vertex row. Two more indices are then added to form 
degenerate triangles that will move the strip down a row, and 
both are equal to Row Index. For this step, the Index entry 
of Index Buffer is set to Row Index, Index is incremented, 
the Index entry of Index Buffer is again set to Row Index, 
and Index is incremented yet again. As a final task before 
closing the outermost loop, Row Index and Row Index 
must be updated. Here, Row Index is set to Row Index 
and Row Index is incremented by (Row+1)x5), as the last 
operation in step 350. The logic then advances to step 352. 

FIG. 14 illustrates the steps for constructing the triangle 
strip around the center portion of the geodesic dome. The 
Row Index, and Row Index, variables need not be updated 
before beginning the second set of nested loops (or the 
third), because they are correctly initialized coming out of 
the first loop set. But, just for reference, Row Index is now 
equal to End Vertex Count and Row Index is now equal to 
End Vertex Count+Mid Row Vertex Count, as noted in a 
step 370. In constructing the center section of the dome, the 
outermost loop of the second set initializes Row to 0 in a step 
372. The outermost loop continues while Row is less than 
Mid Row Count-1, as provided by a decision step 374. A 
step 386 increments Row after each iteration. The second 
(and in this case innermost) loop then begins with Step set 
to 0 in a step 376. In accord with a decision step 378, the 
second loop continues while Step is less than Mid 
Row Vertex Count. If not, the logic advances to a step 384. 
A step 382 increments Step after each iteration of the 
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second loop. Inside this loop, at a step 380. Index Buffer at 
the Index entry is set to Row Index+Step and Index is 
incremented. The Index entry of Index Buffer is then set to 
Row Index+Step+1 and Index is incremented. The inner 
most loop closes when the result of decision step 378 leads 
to step 384. 
As in the previous loop set, the last index added must be 

replaced and two indices for degenerate triangles must be 
added. These operations are carried out in step 384. In this 
step, the Index-1 entry of Index Buffer is set to Row In 
dexo, the Index entry of Index Buffer is set to Row Index, 
Index is incremented, the Index entry of Index Buffer is 
again set to Row Index, and Index is again incremented. 
Also, before closing the outermost loop at decision step 374, 
Row Index is set to Row Index and Row Index is incre 
mented by Mid Row Vertex Count in step 384. 
The third and final loop set used in constructing the 

triangle strip in step 312 determines the indices for the 
bottom section of the dome, as shown in FIG. 15. As with 
the second loop set, Row Index and Row Index do not 
need updating, but for reference, Row Index is now equal 
to Mid Row Vertex Countx(Mid Row Count-1)+End 
Vertex Count and Row Index is equal to Mid Row Ver 
tex Countx(Mid Row Count-1)+End Vertex Count-- 
Mid Row Vertex Count, as shown in a step 390. The 
outermost of what will be three loops in this set initializes 
Row to 0 in a step 392. A decision step 394 continues the 
loop while Row is less than End Row Count. A step 416 
increments Row after each iteration. The middle loop fol 
lows immediately by initializing Face to 0 in a step 396. 
While Face is less than 5, a decision step 398 continues the 
middle loop, advancing to a step 410, once the condition is 
no longer met. A step 408 increments Face after each 
iteration. The innermost loop then begins by initializing Step 
to 0 in a step 400. A decision step 402 continues processing 
the innermost loop while Step is less than or equal to 
(End Row Count-Row-1), and if not, the logic proceeds to 
step 408. A step 406 increments Step after each iteration of 
the innermost loop. Within the body of the innermost loop, 
at a step 404, several operations are completed. Specifically, 
the Index entry of Index Buffer is set to Row Index+ 
(End Row Count-Row-1)xFace--Step, and Index is incre 
mented. The Index entry of Index Buffer is then set to 
Row Index+(End Row Count-Row)xFace+Step--1, and 
Index is incremented again in step 404. 
Once the innermost and middle loops close when the 

condition in decision step 398 is no longer met, two index 
values previously written into the Index Buffer need to be 
“fixed up' to wrap them around to the start of the row. This 
operation is carried out in step 410, wherein the Index-2 
entry of Index Buffer is set to Row Index and be Index-1 
entry of Index Buffer is set to Row Index. Degenerate 
triangle indices are then added and the row index variables 
are updated as usual, but in this case, only if the procedure 
has not reached the last strip row (since degenerates are not 
needed after the final row). So if Row is less than (End 
Row Count-1) in decision step 412, in a step 414, the Index 
entry of Index Buffer will be set to Row Index, Index will 
be incremented, the Index entry of Index Buffer will again 
be set to Row Index, Index will again be incremented, 
Row Index, will be set to Row Index, and Row Index 
will be incremented by (End Row Count-Row-1)x5. Oth 
erwise, the logic continues with step 416. After the outer 
most loop closes with a negative response in decision step 
394, the geodesic dome construction is complete. 
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If the Form Strip parameter is set to false, a similar set of 

operations as that used to form the strip index list will take 
place. The primary differences between the procedure 
employed to form the triangle strip and that used to form the 
triangle list is that additional indices are Supplied to provide 
three indices per triangle in the latter case, and no additional 
indices are added for the now unnecessary degenerate tri 
angles. Details of step 166 that define the overview of the 
process for constructing the triangle lists are shown in FIG. 
12. Again, as shown in a step 320, the input to the process 
includes the Order. Mid Row Count, End Row Count, 
Mid Row Vertex Count, and End Vertex Count. In a step 
322, the Triangle Count is calculated to be 20xOrder and 
Index Count is (Triangle Countx3). The Index Buffer is 
allocated in memory in a step 324, as in the triangle strip 
case, only with the new allocation size. As before, the Index 
variable will be used to track the write location offset and is 
initialized to 0 in a step 326. The Row Index and Row 
Index, variables will also serve the same purpose in forming 
the triangle list. Three sets of nested loops are again 
executed to construct the triangle list for the top section, 
center section, and bottom section of the geodesic dome, as 
indicated respectively in steps 328,330, and 332. The result 
is an output that include the Index Buffer, as shown in a step 
334. 

Details of step 328 for constructing the triangle list for the 
top section of the dome are shown in FIG. 16. Preceding the 
first set of nested loops, Row Index is set to 0 and Row 
Index, is set to 1 in a step 420. The outermost loop begins by 
initializing Row to 0 in a step 422, and the outermost loop 
continues while Row is less than End Row Count, as 
determined in a decision step 424. A step 448 increments 
Row after each iteration of the outermost loop. 
The middle loop then begins, initializing Face to 0 in a 

step 426. This loop continues, as determined in a decision 
step 428, while Face is less than 5, and if not, the process 
proceeds to a decision step 442. In a step 440, Face is 
incremented after each iteration of the middle loop. Within 
this loop, at a step 430, three indices are added to the 
Index Buffer before the innermost loop begins, and after 
each index is added, the Index variable is incremented. The 
first to be added is Row Index+(Row4-1)xFace, followed 
by Row Index-RowxFace, and then Row Index+(Row + 
1)xFace-1. 
The innermost loop begins at a step 432, which initializes 

Step to 0 and continues while Step is less than Row, as 
determined in a decision step 434. A step 438 increment Step 
after each iteration of the innermost loop. Six indices per 
iteration are added to Index Buffer within the body of this 
loop, at a step 436. In step 436, using Index to reference the 
current “write” entry and incrementing Index after each 
addition, the following indices are added in the order listed: 
Row Index+(Row--1)xFace--Step--1, Row Index-Rowx 
Face+Step, Row Index+RowxFace+Step--1, Row In 
dex+(Row4-1)xFace--Step--1, Row Index+RowxFace-- 
Step--1, and finally Row Index+(Row4-1)xFace+Step+2. 
Note that RowxFace--Step and/or (Row--1)xFace+Step may 
be calculated once, Stored in temporary variables, and then 
referenced in the index calculations. 

After closing both the innermost and middle loops with a 
negative response at decision step 428, two of the previous 
index values written are “fixed up' for rows other than the 
first to wrap them around. If Row is not equal to 0 in 
decision step 442, both the Index-4 and Index-2 entries of 
Index Buffer are set to Row Index. A third index value is 
then fixed up in a step 446 (no matter what the value of 
Row), so that the Index-1 entry of Index Buffer is set to 
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Row Index. As a final task before closing the outermost 
loop, the row index values are also updated in step 446; 
Row Index, is set to Row Index, and Row Index is incre 
mented by (Row--1)x5. 
The second set of nested loops used to construct the 

triangle list for the center section of the geodesic dome 
consists of only two loops, as shown for step 330 in FIG. 17. 
Before entering the outer of these two loops, Row Indexo 
will be equal to End Vertex Count and Row Index will be 
equal to End Vertex Count-i-Mid Row Vertex Count, as 
shown in a step 460, but as with the triangle strip construc 
tion, neither needs to be explicitly set. The outer loop begins 
by initializing Row to 0 in a step 462. A decision step 464 
loop continues the outer loop while Row is less than 
Mid Row Count-1. A step 476 increments Row after each 
iteration of the outer loop. The inner loop follows, initial 
izing Step to 0 in a step 466. The inner loop continues, as 
provided by a decision step 468, while Step is less than 
Mid Row Vertex Count, and if not, the logic proceeds to a 
step 474. A step 472 increments Step after each iteration of 
the inner loop. 
As was the case with the first loop set to construct the 

triangle list for the top section, the body of the inner loop 
adds six indices per iteration to Index Buffer (incrementing 
Index after each addition). In a step 470, these indices are 
calculated to be: Row Index+Step, Row Index+Step, 
Row Index+Step+1. Row Index+Step. Row Index+ 
Step-1, and Row Index+Step--1. 

After closing the inner loop, when the condition in 
decision step 468 is no longer met, three indices are fixed up. 
In step 474, the Index-4 and Index-2 entries of Index 
Buffer are both set to Row Index, and the Index-1 entry is 
set to Row Index. Also in step 474, Row Index is set to 
Row Index, and Row Index is incremented by Mid 
Row Vertex Count. The outer loop closes when decision 
step 464 returns a negative response. 

Finally, the details of step 332 for constructing the triangle 
list for the bottom section of the geodesic dome are illus 
trated in FIG. 18. Emerging from the second set of loops, a 
step 480 notes that Row Index is equal to Mid Row Ver 
tex Countx(Mid Row Count-1)+End Vertex Count, and 
Row Index, is equal to Mid Row Vertex Countx(Mid 
Row Count-1)+ 
End Vertex Count-i-Mid Row Vertex Count (again, this 
step is merely a reference as to the values of Row Index 
and Row Index and should not be taken as an operation to 
be performed). For the bottom section of the dome, the 
outermost of the final loop set opens in a step 482 by 
initializing Row to 0. A decision step 484 ensures that 
processing in the outermost loop continues while Row is less 
than End Row Count. A step 508 increments Row after 
each iteration of the outermost loop. 
The middle loop follows in a step 486, which initializes 

Face to 0. A decisions step 488 continues processing the 
middle loop while Face is less than 5. A step 500 increments 
Face after each iteration of the middle loop. Within the loop, 
at a step 490, the following three indices are added to the 
Index Buffer (incrementing Index after each addition): 
Row Index-(End Row Count-Row-1)xFace, Row In 
dex+(End Row Count-Row)xFace, and Row Index+ 
(End Row Count-Row)xFace+1. 
The innermost loop then begins at a step 492, initializing 

Step to 0. A decision step 494 continues processing in the 
innermost loop while Step is less than End Row Count 
Row-1. Step is incremented in a step 498 after each iteration 
of this innermost loop. In a step 496 of the innermost loop, 
six indices per iteration are added to Index Buffer (again 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

20 
incrementing Index after each value is added): Row In 
dex+End Row Count-Row-1)xFace+Step, Row Index+ 
(End Row Count-Row)xFace+Step-1, Row Index+ 
(End Row Count-Row-1)xFace-Step--1, Row Index+ 
(End Row Count-Row-1)xFace+Step+1. Row Index+ 
(End Row Count-Row)xFace+Step--1, and Row Index+ 
(End Row Count-Row)xFace+Step-2. As before these 
calculations can use temporary variables to hold the inter 
mediate results so they won't have to be evaluated multiple 
times. The innermost and middle loops then close when the 
response in decision step 488 is negative, leading to step 
502, followed by fix-ups to some of the indices. Decision 
step 502 determines if Row is less than End Row Count-1, 
and if so, in a step 504, the Index-4 and Index-3 entries in 
the Index Buffer are set to Row Index. Next, in a step 506, 
the Index-1 entry of Index Buffer is set to Row Index 
(whether on the last row or not), and finally, Row Index is 
set to Row Index and Row Index is incremented by (End 
Row Count-Row-1)x5. With that, the outer loop closes 
with a negative response to decision step 484, concluding 
the formation of the triangle list. 

Whether the procedure formed a triangle strip or a triangle 
list, when it has finished calculating the indices defining the 
arrangement of dome triangles, the present invention returns 
the constructed geodesic dome's Vertex Buffer, Index 
Buffer, Vertex Count, Index Count and Triangle Count. 
These output parameters fully define the constructed geo 
desic dome, as indicated in step 168 of FIG. 6. If only a 
portion of the geodesic dome is required for a specific 
graphic application, the process used to construct the verti 
ces and indices can then be limited to produce the vertices 
and indices of triangles comprising the portion of the 
geodesic dome desired. In this case, a further input would 
indicate the portion of the geodesic dome to be generated 
e.g., the top half, for use in rendering a hemisphere. 

Depending upon the application of the present invention, 
the geodesic dome that has been constructed can serve 
various purposes. Most commonly, the geodesic dome, or a 
portion of it, will be used to render a sphere (or portion of 
a sphere) in a graphic environment, such as an electronic 
game or virtual environment. The present invention enables 
a sphere or portion thereof to be efficiently rendered in real 
time, and using very little more memory resources than are 
required to store the vertices and indices of the geodesic 
dome at the order desired. 

Although the present invention has been described in 
connection with the preferred form of practicing it, those of 
ordinary skill in the art will understand that many modifi 
cations can be made thereto within the scope of the claims 
that follow. Accordingly, it is not intended that the scope of 
the invention in any way be limited by the above description, 
but instead be determined entirely by reference to the claims 
that follow. 
The invention in which an exclusive right is claimed is 

defined by the following: 
1. A method implemented by a computing device for 

generating at least a part of a geodesic dome for use in a 
graphic environment, comprising the steps of: 

(a) defining a base geometry of a polyhedron, said poly 
hedron having a plurality of faces, each of which is a 
polygon, said base geometry including a plurality of 
vertices of the faces, at selected locations on the 
polyhedron; 

(b) based upon the plurality of vertices at the selected 
locations and using a plurality of transformation matri 
ces, generating vertices and indices for a plurality of 
triangles comprising the faces of the geodesic dome, by 



US 7,304,643 B2 
21 

Successively processing the Successive faces of the 
polyhedron, in successive different sections of the 
polyhedron, wherein the vertices and indices of the 
plurality of triangles are generated only in a single pass 
without any further subdivision of the polyhedron; 

(c) preparing a triangle construct using said vertices and 
indices that are generated; 

(d) storing the vertices and indices for the triangle con 
struct as geometric data that define the at least the part 
of the geodesic dome; and 

(e) using the stored vertices and indices, generated in the 
single pass, to generate a display in a graphic environ 
ment. 

2. The method of claim 1, wherein the step of defining the 
base geometry includes the step of selecting the vertices so 
as to form a plurality of edges disposed at a unity distance 
from a center of the polyhedron, two of said vertices being 
disposed at opposite ends of the polyhedron. 

3. The method of claim 1, wherein the step of generating 
the Vertices includes the step of multiplying current coordi 
nates for a dome vertex by a radial dimension desired for the 
geodesic dome, at each of a plurality of different positions 
of the dome vertex, the dome vertex being determined as a 
function of the base geometry of the polyhedron and the 
plurality of transformation matrices. 

4. The method of claim 1, wherein the different sections 
of the polyhedron include a top section, a middle section, 
and a bottom section. 

5. The method of claim 1, further comprising the step of 
allocating a vertex buffer in a memory to store the vertices 
and an index buffer in the memory to store the indices. 

6. The method of claim 5, wherein the step of allocating 
comprises the step of determining the number of vertices 
and indices required for constructing the at least the part of 
the geodesic dome to a desired tessellation order. 

7. The method of claim 1, further comprising the step of 
enabling input of a plurality of parameters to control gen 
erating the at least the part of the geodesic dome, said 
parameters including a radius of the geodesic dome, and a 
tessellation order of the geodesic dome. 

8. The method of claim 7, wherein the step of enabling 
input also enables input of a vertex size defining a stride of 
the vertices that define the at least the part of the geodesic 
dome. 

9. The method of claim 7, wherein the step of enabling 
input also enables input of another parameter that deter 
mines how much of the geodesic dome is to be generated. 

10. The method of claim 7, wherein the triangle construct 
comprises one of: 

(a) a triangle strip including vertices and indices for 
adjacent triangles comprising the geodesic dome, said 
triangle strip spiraling around each section of the 
polyhedron and including degenerate triangles used to 
produce the triangle strip; and 

(b) a triangle list of vertices and indices for adjacent 
triangles in each different section of the geodesic dome. 

11. The method of claim 10, wherein the step of enabling 
input also enables an election to be made to use either the 
triangle strip or the triangle list for the triangle construct. 

12. The method of claim 1, further comprising the step of 
computing a plurality of constants for use in generating the 
at least the part of the geodesic dome, wherein a first 
constant comprises a transformation matrix, said transfor 
mation matrix being employed to rotate a three dimensional 
vector about a selected axis through a predefined angle, a 
second constant comprises the base geometry of the poly 
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hedron, and a third constant comprises a dot product of any 
two vertices of any polygon comprising a face of the 
polyhedron. 

13. The method of claim 1, wherein the polyhedron is an 
icosahedron, and wherein the step of defining the base 
geometry comprises the steps of defining four vertices, 
including first and fourth vertices that are disposed at 
opposite ends of the icosahedron, and second and third 
vertices that are disposed at other predefined corners of the 
icosahedron, intermediate the ends thereof, each vertex of 
said four vertices being disposed at equal distances from a 
central origin of the icosahedron. 

14. The method of claim 1, further comprising the step of 
determining Surface normals for each triangle vertex of the 
plurality of the triangles that define the at least the part of the 
geometric dome. 

15. A machine readable medium that stores machine 
instructions, that when executed on a computing machine, 
cause the execution of steps comprising: 

(a) defining a base geometry of a polyhedron, said poly 
hedron having a plurality of faces, each of which is a 
polygon, said base geometry including a plurality of 
vertices of the faces, at selected locations on the 
polyhedron; 

(b) based upon the plurality of vertices at the selected 
locations and using a plurality of transformation matri 
ces, generating vertices and indices for a plurality of 
triangles comprising the faces of the geodesic dome, by 
Successively processing the Successive faces of the 
polyhedron, in successive different sections of the 
polyhedron, wherein the vertices and indices of the 
plurality of triangles are generated only in a single pass, 
without any further subdivision of the polyhedron; 

(c) preparing a triangle construct using said vertices and 
indices that are generated; 

(d) storing the vertices and indices for the triangle con 
struct as geometric data that define the at least the part 
of the geodesic dome; and 

(e) using the stored vertices and indices, generated in the 
single pass, to generate a display in a graphic environ 
ment. 

16. A system for generating at least a part of a geodesic 
dome for use in a graphic environment, comprising: 

(a) a memory in which machine instructions are stored 
and for storing geometric data defining the at least the 
part of the geodesic dome; and 

(b) a processor coupled to the memory, said processor 
executing the machine instructions to carry out a plu 
rality of functions, including: 
(i) defining a base geometry of a polyhedron, said 

polyhedron having a plurality of faces, each of which 
is a polygon, said base geometry including a plural 
ity of vertices of the faces, at selected locations on 
the polyhedron; 

(ii) based upon the plurality of vertices at the selected 
locations and using a plurality of transformation 
matrices, generating vertices and indices for a plu 
rality of triangles comprising the geodesic dome, by 
Successively processing Successive faces of the poly 
hedron, in successive different sections of the poly 
hedron, wherein the vertices and indices of the 
plurality of triangles are generated only in a single 
pass without any further subdivision of the polyhe 
dron; 

(iii) preparing a triangle construct using said vertices 
and indices that are generated; and 



US 7,304,643 B2 
23 

(iv) storing the vertices and indices for the triangle 
construct in the memory as geometric data that 
define the at least the part of the geodesic dome for 
use in the graphic environment for display or other 
purposes. 

17. The system of claim 16, wherein the machine instruc 
tions further cause the processor to define the base geometry 
including the step of selecting the vertices so as to form a 
plurality of edges disposed at a unity distance from a center 
of the polyhedron, two of said vertices being disposed at 
opposite ends of the polyhedron. 

18. The system of claim 16, wherein the machine instruc 
tions further cause the processor to multiply current coor 
dinates for a dome vertex by a radial dimension desired for 
the geodesic dome, at each of a plurality of different 
positions of the dome vertex, the dome vertex being deter 
mined as a function of the base geometry of the polyhedron 
and the plurality of transformation matrices. 

19. The system of claim 16, wherein the different sections 
of the polyhedron include a top section, a middle section, 
and a bottom section. 

20. The system of claim 16, wherein the machine instruc 
tions further cause the processor to allocate in the memory 
a vertex buffer to store the vertices and an index buffer to 
store the indices. 

21. The system of claim 20, wherein the machine instruc 
tions further cause the processor to determine the number of 
vertices and indices required for constructing the at least the 
part of the geodesic dome to a desired tessellation order. 

22. The system of claim 16, wherein the machine instruc 
tions further cause the processor to enable input of a 
plurality of parameters that the processor uses to control 
generating the at least the part of the geodesic dome, said 
parameters including a radius of the geodesic dome, and a 
tessellation order of the geodesic dome. 

23. The system of claim 22, wherein the machine instruc 
tions further cause the processor to enable input of a vertex 
size defining a stride of the vertices that define the at least 
the part of the geodesic dome. 

24. The system of claim 22, wherein the machine instruc 
tions further cause the processor to enable input of another 
parameter that determines how much of the geodesic dome 
is to be generated. 
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25. The system of claim 22, wherein the triangle construct 

comprises one of: 
(a) a triangle strip including vertices and indices for 

adjacent triangles comprising the geodesic dome, said 
triangle strip spiraling around each section of the 
polyhedron and including degenerate triangles used to 
produce the triangle strip; and 

(b) a triangle list of vertices and indices for adjacent 
triangles in each different section of the geodesic dome. 

26. The system of claim 25, wherein the machine instruc 
tions further cause the processor to enable determining 
whether to use either the triangle strip or the triangle list, for 
the triangle construct. 

27. The system of claim 16, wherein the machine instruc 
tions further cause the processor to compute a plurality of 
constants for use in generating the at least the part of the 
geodesic dome, wherein a first constant comprises a trans 
formation matrix, said transformation matrix being 
employed to rotate a three dimensional vector about a 
selected axis through a predefined angle, a second constant 
comprises the base geometry of the polyhedron, and a third 
constant comprises a dot product of any two vertices of any 
polygon on a face of the polyhedron. 

28. The system of claim 16, wherein the polyhedron is an 
icosahedron, and wherein the machine instructions further 
cause the processor to define the base geometry using four 
vertices, including first and fourth Vertices that are disposed 
at opposite ends of the icosahedron, and second and third 
vertices that are disposed at other predefined corners of the 
icosahedron, intermediate the ends thereof, each vertex of 
said four vertices being disposed at equal distances from a 
central origin of the icosahedron. 

29. The system of claim 16, further comprising the step of 
determining Surface normals for each triangle vertex of the 
plurality of triangles that define the at least the part of the 
geometric dome. 


