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(54) FIELD PROGRAMMABLE GATE ARRAY (FPGA) BASED NEUROMORPHIC COMPUTING 
ARCHITECTURE

(57) This disclosure relates generally to a method
and a system for computing using a field programmable
gate array (FPGA) neuromorphic architecture. Imple-
menting energy efficient Artificial Intelligence (AI) appli-
cations at power constrained environment/devices is
challenging due to huge energy consumption during both
training and inferencing. The disclosure is a FPGA archi-
tecture based neuromorphic computing platform, the ba-
sic components include a plurality of neurons and mem-

ory. The FPGA neuromorphic architecture is parameter-
ized, parallel and modular, thus enabling improved en-
ergy/inference and Latency-Throughput. Based on val-
ues of the plurality of features of the data set, the FPGA
neuromorphic architecture is generated in a modular and
parallel fashion. The output of the disclosed FPGA neu-
romorphic architecture is the plurality of output spikes
from the neuron, which becomes the basis of inference
for computing.
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Description

CROSS-REFERENCE TO RELATED APPLICATIONS AND PRIORITY

[0001] The present application claims priority from Indian application no. 202121047012, filed in India on October 14,
2021.

TECHNICAL FIELD

[0002] The disclosure herein generally relates to computing, and, more particularly, to a method and a system for
computing using a field programmable gate array (FPGA) neuromorphic architecture.

BACKGROUND

[0003] Implementing energy efficient Artificial Intelligence (AI) applications at power constrained environment/devices
is challenging due to huge energy consumption during both training and inferencing.
[0004] The existing state of art techniques for computing in AI applications includes classical Machine Learning (ML)/
Deep Learning (DL) methods that require huge power and memory both during training and inferencing. To overcome
the challenge of requirement of huge memory and power, several other existing techniques for computing in AI application
use mammalian brain inspired spiking neural networks (SNN) capable of learning and inferring from sparse data.
[0005] The SNN are implemented on large scale in ASIC (application-specific integrated circuit) based neuromorphic
platforms. However, the ASIC based neuromorphic platforms allow development and testing within only a given limitations
of number of neurons and synapses. Further, the ASIC based neuromorphic platforms can provide only sequential
processing that may not be very efficient. Hence the researchers are also considering the possibility of using FPGA
based scalable neuromorphic systems as FPGAs are more energy efficient than CPU/GPUs, can provide parallel process-
ing capability and are flexibly reconfigurable to cater to different network model. However, the designing of FPGA based
neuromorphic computing platforms to provide energy efficient computing is a much- researched field.

SUMMARY

[0006] Embodiments of the present disclosure present technological improvements as solutions to one or more of the
above-mentioned technical problems recognized by the inventors in conventional systems. For example, in one embod-
iment, a method FPGA based neuromorphic computing architecture is provided. The system includes a memory storing
instructions, one or more communication interfaces, and one or more hardware processors coupled to the memory via
the one or more communication interfaces, wherein the one or more hardware processors are configured by the instruc-
tions to receive a synaptic weight, a data set associated with an application, wherein the data set comprises a plurality
of features and a plurality of input spikes via an input module. The system further comprises a FPGA based neuromorphic
computing architecture configured for computing a plurality of output spikes for the plurality of input spikes wherein the
neuromorphic FPGA architecture is generated by optimizing a neuromorphic FPGA circuit, wherein the neuromorphic
FPGA circuit is generated based on a Spiking Neural Network (SNN) technique, comprising: a memory configured for
receiving and saving the synaptic weight; and a plurality of neurons, wherein each neuron among the plurality of neurons
comprises a Multiply and accumulate (MA) layer, a Registered Adder (RAT) layer and a Leaky Integrate and Fire (LIF)
layer .
[0007] In another aspect, a method for FPGA based neuromorphic computing architecture is provided. The method
includes receiving a synaptic weight and a data set associated with an application, wherein the data set comprises a
plurality of features and the synaptic weight is a pre-trained parameter. The method further includes generating a neu-
romorphic FPGA circuit comprising a memory and a plurality of neurons based on a Spiking Neural Network (SNN)
technique, where in the generation of the neuromorphic FPGA circuit is characterized by comprising the following steps :
generating transferring the synaptic weight to the memory and generating a plurality of neurons based on the plurality
of features, wherein each neuron among the plurality of neurons comprises a Multiply and Accumulate (MA) layer, a
Registered Adder Tree (RAT) layer and a Leaky Integrate and Fire (LIF) layer. The method further includes generating
optimizing via the one or more hardware processors, the neuromorphic FPGA circuit based on the plurality of features
to obtain a neuromorphic FPGA architecture, herein the optimization comprises an arrangement of the generated plurality
of neurons in a modular and a parallel fashion based on the plurality of features. The method further includes generating
receiving a plurality of input spikes ], wherein the plurality of input spikes are associated with the data set. The method
further includes generating computing a plurality of output spikes for the plurality of input spikes using the neuromorphic
FPGA architecture, wherein the plurality of output spikes are utilized for classification and inferencing of the data set.
[0008] In yet another aspect, a non-transitory computer readable medium for FPGA based neuromorphic computing
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architecture is provided. The program includes receiving a synaptic weight and a data set associated with an application,
wherein the data set comprises a plurality of features and the synaptic weight is a pre-trained parameter. The program
further includes generating a neuromorphic FPGA circuit comprising a memory and a plurality of neurons based on a
Spiking Neural Network (SNN) technique, where in the generation of the neuromorphic FPGA circuit is characterized
by comprising the following steps : generating transferring the synaptic weight to the memory and generating a plurality
of neurons based on the plurality of features, wherein each neuron among the plurality of neurons comprises a Multiply
and Accumulate (MA) layer, a Registered Adder Tree (RAT) layer and a Leaky Integrate and Fire (LIF) layer. The program
further includes generating optimizing via the one or more hardware processors, the neuromorphic FPGA circuit based
on the plurality of features to obtain a neuromorphic FPGA architecture, herein the optimization comprises an arrangement
of the generated plurality of neurons in a modular and a parallel fashion based on the plurality of features. The program
further includes generating receiving a plurality of input spikes wherein the plurality of input spikes are associated with
the data set. The program further includes generating computing a plurality of output spikes for the plurality of input
spikes using the neuromorphic FPGA architecture, wherein the plurality of output spikes are utilized for classification
and inferencing of the data set.
[0009] It is to be understood that both the foregoing general description and the following detailed description are
exemplary and explanatory only and are not restrictive of the invention, as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] The accompanying drawings, which are incorporated in and constitute a part of this disclosure, illustrate ex-
emplary embodiments and, together with the description, serve to explain the disclosed principles:

FIG.1 illustrates an exemplary system for FPGA based neuromorphic computing architecture according to some
embodiments of the present disclosure.
FIG.2 is of a neuron, wherein the neuron is a basic component of the neuromorphic FPGA architecture for computing
according to some embodiments of the present disclosure.
FIG.3A, FIG.3B and FIG.3C is a flow diagram illustrating a method (300) for FPGA based neuromorphic computing
architecture in accordance with some embodiments of the present disclosure.
FIG.4 is a diagram illustrating an 8-input neuron architecture in accordance with some embodiments of the present
disclosure.
FIG.5 is a diagram illustrating an 8-input FPGA neuromorphic architecture in accordance with some embodiments
of the present disclosure.
FIG.6 is a diagram illustrating a 16-input neuron architecture in accordance with some embodiments of the present
disclosure.
FIG.7 is a diagram illustrating a 16-input FPGA neuromorphic architecture in accordance with some embodiments
of the present disclosure.
FIG.8A, FIG.8B and FIG.8C illustrating a comparison of a plurality of input spike signal processing in an existing
state of art technique for a input spike and the disclosed technique in accordance with some embodiments of the
present disclosure.

DETAILED DESCRIPTION OF EMBODIMENTS

[0011] Exemplary embodiments are described with reference to the accompanying drawings. In the figures, the left-
most digit(s) of a reference number identifies the figure in which the reference number first appears. Wherever convenient,
the same reference numbers are used throughout the drawings to refer to the same or like parts. While examples and
features of disclosed principles are described herein, modifications, adaptations, and other implementations are possible
without departing from the scope of the disclosed embodiments.
[0012] Referring now to the drawings, and more particularly to FIG. 1 through FIG.8C, where similar reference char-
acters denote corresponding features consistently throughout the figures, there are shown preferred embodiments and
these embodiments are described in the context of the following exemplary system and/or method.
[0013] FIG.1 is a functional block diagram of a system 100 for FPGA based neuromorphic computing architecture in
accordance with some embodiments of the present disclosure. The neuromorphic FPGA architecture is generated by
optimizing a neuromorphic FPGA circuit.
[0014] The basic component of the neuromorphic FPGA circuit that is optimized to generate the FPGA based neuro-
morphic architecture includes an input module (102), plurality of neurons (106-112) and one or more data storage devices
or a memory (104). The memory (104) is operatively coupled to the plurality of neurons (106-112) to execute functions
of one or more functional blocks of the system 100.
[0015] In an embodiment, the input module (102) configured for receiving a synaptic weight, a data set associated
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with an application, wherein the data set comprises a plurality of features and a plurality of input spikes.
[0016] In another embodiment, the input module (102) can include a variety of software and hardware interfaces, for
example, a web interface, a graphical user interface, a touch user interface (TUI) and the like and can facilitate multiple
communications within a wide variety of networks N/W and protocol types, including wired networks, for example, LAN,
cable, etc., and wireless networks, such as WLAN, cellular, or satellite. In an embodiment, the I/O interface (s) 106 can
include one or more ports for connecting a number of devices (nodes) of the system 100 to one another or to another server.
[0017] The system 100 further comprises the memory (104). The memory (104) may include any computer-readable
medium known in the art including, for example, volatile memory, such as static random-access memory (SRAM) and
dynamic random-access memory (DRAM), and/or non-volatile memory, such as read only memory (ROM), erasable
programmable ROM, flash memories, hard disks, optical disks, and magnetic tapes. The memory (104) may comprise
information pertaining to input(s)/output(s) of each step performed by the system 100 and methods of the present
disclosure.
[0018] The basic component of the neuromorphic FPGA architecture is a neuron (106-112) among the plurality of
neurons configured for receiving a synaptic weight and a data set associated with an application. The architecture of
the neuromorphic FPGA is parameterized and modular by optimizing the number/layer and position of the plurality of
neurons in the neuromorphic FPGA circuit. Based on values of the plurality of features of the data set, the inferencing
circuit can be automatically generated in a modular and parallel fashion. The plurality of features of the data set includes
parameters like number of input data (like a number of pixels, in case of image), a time duration of the spike train, a
number of classes, a bit-width of synaptic weights etc.,
[0019] The FIG.1 illustrates a generic functional system of a neuromorphic FPGA architecture, wherein the plurality
of neurons are arranged in plurality of layers in a modular and parallel fashion. The basic component of the neuromorphic
FPGA architecture is a bio-plausible high-performance neuron. Each neuron among the plurality of neurons is intercon-
nected with other neurons of a backward or a forward layer only through a plurality of synapses in multiple layers, and
each of the neuron is mutually independent. With reference to the FIG.1, the plurality of neurons is arranged in the
plurality of layers, wherein the neurons in the first layer are represented as a neuron-11 (106), a neuron-12 (108) and
a neuron-1N (110) (till a number N). Further neurons in the second layer are represented as a neuron-21 (112), a neuron-
22 (114) and a neuron-2N (116) (till a number N). The neuromorphic FPGA architecture can comprise several such
layers that can go up to a number (N), wherein the neurons in the Nth layer are represented as a neuron-N1 (118), a
neuron-N2 (120) and a neuron-NN (122).
[0020] Based on a network topology and the application needs, the design of the neuromorphic FPGA architecture
may change depending on plurality of features of the data set. The parallel architecture enables low latency and decreased
energy consumed per inference Further, the modular design brings in high clock frequency. Frequency of entire circuit
of neurons is 500 MHz on Alveo u280.
[0021] Post reset, the synaptic weight weights are transferred to a memory (104) and data set is applied to the plurality
of neurons (106-122). The plurality of input spikes is used to calculate a latency from the clock when the first spike train
is applied. In an embodiment, the system 100 can be implemented in a variety of computing systems including laptop
computers, notebooks, hand-held devices such as mobile phones, workstations, mainframe computers, servers, a net-
work cloud and the like.
[0022] Functions of the components of system 100 are explained in conjunction with block diagram of a neuron among
the plurality of neurons of system 100 in FIG. 2 and flow diagram of FIGS.3A, 3B and 3C for FPGA based neuromorphic
computing architecture.
[0023] The system 100 supports various connectivity options such as BLUETOOTH®, USB, ZigBee and other cellular
services. The network environment enables connection of various components of the system 100 using any communi-
cation link including Internet, WAN, MAN, and so on. In an exemplary embodiment, the system 100 is implemented to
operate as a stand-alone device. In another embodiment, the system 100 may be implemented to work as a loosely
coupled device to a smart computing environment. The components and functionalities of the system 100 are described
further in detail.
[0024] FIG.2 is an example block diagram of a neuron among the plurality of neurons of the system of FIG.1, in
accordance with some embodiments of the present disclosure. As depicted in the architecture, the FIG.2 illustrates the
architecture and functions of the neuron of the system 100 for FPGA based neuromorphic computing architecture.
[0025] Each neuron among the plurality of neurons comprises of three layers: (a) Multiply and accumulate (MA) layer,
(b) registered adder tree (RAT) layer and (c) Leaky Integrate and Fire (LIF) layer.
[0026] Each neuron among the plurality of neurons is interconnected with other neurons of a backward or a forward
layer only through a plurality of synapses in multiple layers, and each of the neuron is mutually independent. The MA
layer is a single layer configured for multiplication and accumulation of the plurality of input spikes based on the pre-
trained synaptic weight, wherein the MA layer is generated based on the plurality of features. The RAT layer comprises
an adder configured for summation of the output from the MA layer. The LIF layer comprises a behavior mimicking
biological neuron implemented digitally, wherein the LIF layer is configured for storing a plurality of voltages of corre-
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sponding a previous timestep, for summation of the plurality of input spikes and the pre-trained synaptic weight, generation
of the plurality of output spikes, implementation of a leakage for a plurality of current time steps, and to reset voltage
when receiving a new data set.
[0027] The various modules of the system 100 and the neuron in FIG.2 that are configured for FPGA based neuro-
morphic computing architecture are implemented as at least one of a logically self-contained part of a software program,
a self-contained hardware component, and/or, a self-contained hardware component with a logically self-contained part
of a software program embedded into each of the hardware component that when executed perform the above method
described herein.
[0028] Functions and architecture of the neuron of the system 200 are explained in conjunction with the system 100
stored in the memory 104 and further explained in conjunction with flow diagram of FIG.3A, FIG.3B and FIG.3C. The
FIG.3A, FIG.3B and FIG.3C with reference to FIG.1, is an exemplary flow diagram illustrating a method 300 FPGA based
neuromorphic computing architecture using the system 100 of FIG.1 according to an embodiment of the present disclo-
sure.
[0029] The steps of the method of the present disclosure will now be explained with reference to the components of
the system (100) for FPGA based neuromorphic computing architecture as depicted in FIG.2 and the flow diagrams as
depicted in FIG.3A, FIG.3B and FIG.3C. Although process steps, method steps, techniques or the like may be described
in a sequential order, such processes, methods and techniques may be configured to work in alternate orders. In other
words, any sequence or order of steps that may be described does not necessarily indicate a requirement that the steps
to be performed in that order. The steps of processes described herein may be performed in any order practical. Further,
some steps may be performed simultaneously.
[0030] At step 302 of the method (300), a synaptic weight and a data set associated with an application is received
by the input module (102). The data set comprises a plurality of features and the synaptic weight is a pre-trained parameter.
[0031] In an embodiment, the data set associated with the application, wherein the application is a digital platform
configured to perform a specific digital task for several domains or application comprising a set of computing tasks
including an inference and a classification. In an example scenario, the application (digital platform) can be a trading
platform from a finance domain, a ticket booking platform or a shopping/online store from a retail domain.
[0032] In an embodiment, the plurality of features of the data set includes parameters like number of input data (like
a number of pixels, in case of image), a time duration of the spike train, a number of classes, a bit-width of synaptic
weights etc., Based on values of the plurality of features of the data set, the inferencing circuit can be automatically
generated in a modular and parallel fashion. Further, by default a FPGA also received a clock (also referred to as clk)
and a reset (also referred to as rst) as inputs.
[0033] At step 304 of the method (300), the neuromorphic FPGA circuit is generated. The neuromorphic FPGA circuit
comprises a memory (104) and a plurality of neurons (106-122). The neuromorphic FPGA circuit is generated based
on a Spiking Neural Network (SNN) technique.
[0034] In an embodiment, the Spiking Neural Network (SNN) technique, wherein the SNN technique is technique to
generate a network that receives input spikes and processes the received input spikes to generate output spikes. In an
example scenario, the SNN technique includes a feed forward network.
[0035] In an embodiment, the generation of the neuromorphic FPGA circuit is characterized by comprising the following
steps is explained with flow chart (300) as illustrated in FIG.3C comprises:
[0036] At step 304A of the method (300), the synaptic weight from the input module (102) is transferred to the memory
(104).
[0037] An FPGA comprises limited input/output pins. Hence the synaptic weights are stored inside the FPGA to make
the processing more efficient. The synaptic weights that is saved in the input module (102) is later transferred to the
memory (104) as required based on the processing.
[0038] At step 304B of the method (300), a plurality of neurons is generated based on the plurality of features. The
FIG.2 illustrates the architecture of each neuron among the plurality of neurons (106-122) from FIG. 1. The neuron as
explained in detail in the FIG.2 comprises a Multiply and Accumulate (MA) layer (202), a Registered Adder Tree (RAT)
layer (204) and a Leaky Integrate and Fire (LIF) layer (206).
[0039] The MA layer (202) is a single layer configured for multiplication and accumulation of the plurality of input spikes
based on the pre-trained synaptic weight, wherein the MA layer is generated based on the plurality of features. The MA
layer is a single layer with a plurality of synapse inference cell (SIC). The MA layer is generated based on the plurality
of features.
[0040] In an embodiment, the MA layer multiplies the plurality of input spikes by the corresponding synaptic weight
and accumulate based on the equation shown below:
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Wherein,

MA layer is an output of one SIC in the MA layer; and
Sk and Wk are spike and weight respectively for kth synapses for nth neuron.

[0041] The MA layer (202) is a single layer and comprises of a plurality of synapse inference cell (SIC), wherein the
SIC is also referred to as MA blocks. The terms MA blocks and SIC is interchangeably used in the description of the
disclosure. In the FIG.1, the SIC is represented by synapse inference cell (SIC) 11 (208), synapse inference cell (SIC)
12 (210), synapse inference cell (SIC) 1 (N-1) (212) & synapse inference cell (SIC) 1(N) (214). The SIC cells within the
MA layer is generated based on the plurality of features. The number of inputs of the plurality of features is used for
deciding the number of MA blocks (also referred to as SIC cells), wherein the MA blocks (SIC) is half the number of
inputs. Also, one MA block (SIC) operates on not more than two inputs. In an example scenario if plurality of features
has 8 parameters (8 inputs), then the MA layer has 4 SIC cells.
[0042] The RAT layer (204) comprises an adder configured for summation of the output from the MA layer, wherein
the output from the plurality of SIC are summed in the RAT layer. The RAT layer comprises of a plurality of Intermediate
inference cell.
[0043] The FIG.2 illustrates the RAT layer (204) which comprises of a plurality of IIC represented as Intermediate
inference cell (IIC)-21 216 and Intermediate inference cell (IIC)-2(N/2) 218. The RAT layer (204) receives the multiplicated
and accumulated plurality of input spikes from the output of MA layer (202), wherein the output from the plurality SIC
are summed in the RAT layer. The RAT layer (204) is configured for summation of the output from the MA layer, which
is represented as : 

Wherein,
Sk and Wk are spike and weight respectively for kth synapses for nth neuron.
[0044] In an embodiment, the input size of weights of adders are same as weights of output of MA layer. Number of
adder blocks at RAT layer is half the number of outputs in the previous layer (the MA layer). Middle layer has only one
layer as shown in FIG.2, but multiple layers for adder tree are possible. Number of layers is determined by: 

where, each layer RAT takes one clock to process
[0045] The LIF layer (206) comprises a behavior mimicking biological neuron implemented digitally, wherein the LIF
cell comprises of a single Sum Cell (220). The LIF layer is configured for storing a plurality of voltages of corresponding
previous timestep, for summation of the plurality of input spikes and the pre-trained synaptic weight, generation of the
plurality of output spikes, implementation of a leakage for a plurality of current time steps, and to reset voltage when
receiving a new data set.
[0046] In an embodiment, the LIF layer implements the below functionality: 

[0047] Wherein,

Vn is the voltage,
Sn is the spike at nth neuron,
C is constant representing voltage leakage at time t, and
Sk and Wk are spike and weight respectively for kth synapses for n-th neuron.

[0048] The entire neuron circuit take latency of log2#Number_input, to process the one timestep, but it is highly
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pipelined. The neuron is designed to accept each timestep per clock. For e.g., at a given clock T (considering 8 input
neurons), while LIF layer processes data corresponding to timestep T-2 then RAT layer processes data corresponding
to timestep T-1 and MA layer may accept and process the data corresponding to timestep T. Further in each layer, no
blocks take more than two inputs - which helps in reducing combinational delay there by giving high implementation
frequency. Parallel processing helps reduce latency and energy/inference in availability of sufficient resources.
[0049] The neuron circuit is parameterized and modular. Based on values of parameters like number of input data
(example: number of pixels, in case of image), time duration of spike train, number of classes, bit-width of synaptic
weights etc., the inferencing circuit can be automatically generated in a modular fashion. Based on network topology
and application needs, the design of this circuit may change depending on these input parameters. The modular design
brings in high clock frequency. Frequency of entire circuit of neurons is 500 MHz on Alveo u280.
[0050] Considering an example scenario, a neuron generated for an 8-input data set is illustrated in FIG.4. The neuron
in FIG.4 is generated for 8 input datasets based on the disclosed technique (as a customized/personalized architecture
based on the generic neuromorphic architecture in FIG. 1) comprises four SIC in the MA layer, two IIC in the RAT layer
and one Sum in the LIF layer. Another example scenario is illustrated in the FIG.6, wherein the neuron has been generated
for 16 input datasets based on the disclosed technique (as a customized/personalized architecture based on the generic
neuromorphic architecture in FIG.1) comprises eight SIC in the MA layer, four IIC in the RAT layer and one Sum in the
LIF layer.
[0051] Referring to step 306 of the method (300), the neuromorphic FPGA circuit is optimized to obtain the neuromorphic
FPGA architecture. The optimizing is based on the plurality of features to obtain the neuromorphic FPGA architecture.
The optimization comprises an arrangement of the generated plurality of neurons in a modular and a parallel fashion
based on the plurality of features.
[0052] The neuromorphic FPGA architecture is generated by optimizing a neuromorphic FPGA circuit based on the
plurality of features, wherein the plurality of neurons (106-112) are arranged in a modular and a parallel fashion based
on the plurality of features.
[0053] The basic component of the neuromorphic FPGA circuit that is optimized to generate the FPGA based neuro-
morphic architecture includes an input module (102), plurality of neurons (106-112) and one or more data storage devices
or a memory (104). The memory (104) is operatively coupled to the plurality of neurons (106-112) to execute functions
of one or more functional blocks of the system 100.
[0054] In an embodiment, the optimization of the neuromorphic FPGA circuit based on the plurality of features using
a heuristic technique to obtain a modular and parallelized neuromorphic FPGA architecture. The architecture of the
neuromorphic FPGA is parameterized and modular by optimizing the number/layer and position of the plurality of neurons
in the neuromorphic FPGA circuit based on the heuristic technique.
[0055] The neuromorphic FPGA circuit is parameterized and modular, wherein the position and number (of layers) of
the plurality of neurons are optimized based on the plurality of features based on the heuristic technique. In an example
scenario, the heuristic techniques include a trial-error optimization that enables optimized tradeoffs between area, per-
formance, and redundancy/latency, while focusing on FPGA implementation considerations, such as resource realization
costs, to produce more efficient architecture, wherein the arrangement of the plurality of neurons is optimized based on
the plurality of features. The arrangement of the plurality of neurons includes determining the number of neurons, the
layers of neurons etc., to be optimized heuristically based on the plurality of features. The values of plurality of features
include a number of input data (examples include a number of pixels, in case of image), time duration of spike train,
number of classes, bit-width of synaptic weights etc., the inferencing circuit can be automatically generated in a modular
fashion. Based on network topology and application needs, the design of this circuit may change depending on these
input parameters. The modular design brings in high clock frequency. Frequency of entire circuit of neurons is 500 MHz
on Alveo u280.
[0056] Considering an example scenario as illustrated in FIG.5 of a neuromorphic FPGA architecture with the neuron
generated for an 8-input data set (illustrated in FIG.4). The neuromorphic FPGA architecture of 8-input data set as
illustrated in FIG.5 comprises of a layer of neurons, comprising of 3 neurons in the layer. Further, another example
scenario has been illustrated in FIG.7 of a neuromorphic FPGA architecture with the neuron generated for a 16-input
data set (illustrated in FIG.6). The neuromorphic FPGA architecture of 16-input data set as illustrated in FIG.6 comprises
of two layers of neurons, each layer comprising of 3 neurons in the layer.
[0057] At step 308 of the method (300), receiving a plurality of input spikes in the input module (102). The plurality of
input spikes is associated with the data set
[0058] In an embodiment, the plurality of input spikes is associated with the dataset, wherein the data set associated
with the application. The application is a digital platform configured to perform a specific digital task for several domains
or application comprising a set of computing tasks including an inference and a classification. In an example scenario,
the application (digital platform) can be a trading platform from a finance domain, a ticket booking platform or a shop-
ping/online store from a retail domain. Hence the dataset can be in a variety of format including images, videos, text
etc., The varied format of the dataset is converted into a plurality of input spikes using an encoder in the input module 102.
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[0059] At step 310 of the method (300), a plurality of output spikes is computed for the plurality of spikes using the
neuromorphic FPGA architecture. The plurality of output spikes is utilized for classification and inferencing of the data set
[0060] In an embodiment, after a reset of the FPGA based neuromorphic architecture, a set of pre-trained synaptic
weights are transferred into the memory via standard communication protocols such as an Advanced eXtensible Interface
(AXI), a Serial Peripheral Interface (SPI) and an Inter-Integrated Circuit (I2C). The input spikes are fed into FPGA based
neuromorphic architecture to start inferencing. During inferencing, plurality of input spikes from input and the synaptic
weights from memory are fed into each neuron in parallel. The equations (4) and (5) are performed within LIF layer of
each neuron to obtain the plurality of output spikes.

EXPERIMENTS:

[0061] An experiment has been conducted with by implementing on Xilinx Vivado, 2019.2, Alveo u280 and implemen-
tation frequency is at 100 MHz. Experiments were carried on a standard MNIST dataset (m = 28x28 = 784pixels/image).
Our proposed FPGA based neuromorphic computing architecture is also implemented on the same board with frequency
500 MHz. For both the cases, offline Poisson based rate encoding scheme for spike encoding is used in order to convert
dataset (image data) into spike domain.
[0062] A spike trains of length 200 timesteps (δ is timestamp =200) has been utilized for experimentation purposes
with βOM (minimum clocks required) = 210. Thus, input data bandwidth requirement for conducting the experiment is
200x784/8 = 19.6KB, in time 210/(500MHz) = 420 310-9 s. A set of a performance parameters are computed based on
performance modelling equations ( known in art ) to obtain the value of y ( average number of synaptic spikes per
timestamp ) is 25.1 on average, ε (Number of classes ) for MNIST dataset is 10, θ (Clocks per synaptic weights) is 2 for
the ODIN, π (power consumed ) is 3.15W for ODIN, and 4.5W for our method on Alevo u 280. βODIN (Minimum clocks
required for ODIN) = 1 E5, while βOM= 209, ΔtODIN (clock period for ODIN) = 10 ns, while ΔtOM (clock period for the
disclosed techniques) =2 ns. Also, for Alveo 280 πODIN=3.17W while πOM=5.03W and energy efficiency is αODIN (total
energy per inference for ODIN) = 3.2mJ and αOM (total energy per inference for the disclosed technique) = 2.1mJ.
[0063] For experimentation purposes, a comparison has been conducted with an existing Online-Learning Digital
spiking Neuromorphic Processor (ODIN) wherein, an 84% test accuracy has been obtained for both ODIN and disclosed
technique running on FPGA using Modified National Institute of Standards and Technology database (MNIST). The
results have been tabulated as shown in Table 1, wherein the disclosed technique is more efficient compared to ODIN
in terms of clock latency, frequency of clock, throughput, energy/inference by factor of 478, 5, 2403 and 1523 times,
respectively.

[0064] Further Table 2, compares latency, energy/inference, maximum clock frequency, and platform/architecture of
the disclosed technique with existing state of art technique (ODIN). It is observed that the disclosed technique has
substantially smaller value of latency compared to existing state of art technique.

[0065] Hence, based on the experiment section it can be concluded that:

• Energy/inference is improved by -1500 times,
• Latency and Throughput is improved by -2400 times.

[0066] The written description describes the subject matter herein to enable any person skilled in the art to make and

Table 1: Comparison of ODIN (Existing state of art) and disclosed technique

Architecture Latency 
(Clocks)

Frequency of 
clocks (MHz)

Throughput (in 
1000)

Power 
(watts)

Energy/inf
(J)

Existing state of art 
(ODIN FPGA)

1E5 100 13 319 3.2E-3

Disclosed technique 210 500 2403 5.03 2.16E-6

Table 2: Comparison of performance across a state of art technique and the disclosed technique

Architecture Latency (Clocks) Energy/Inference (J) Max. Clock frequency

Existing state of art (ODIN FPGA) IE-3 3.2E-3 100MHz

Disclosed technique 4.2E-7 2.1E-6 500MHz
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use the embodiments. The scope of the subject matter embodiments is defined by the claims and may include other
modifications that occur to those skilled in the art. Such other modifications are intended to be within the scope of the
claims if they have similar elements that do not differ from the literal language of the claims or if they include equivalent
elements with insubstantial differences from the literal language of the claims.
[0067] SNNs are inspired from mammalian brains as the SNNs implements a neuron for synaptic functionalities and
learning mechanisms. The existing ASIC based techniques/architecture receives a spike train comprises N synaptic
events (S1, S2,...SN), at a single timestep, as shown in FIG. 8A. The existing ASIC based architectures processes each
of the said input spikes sequentially, wherein the M represents total number of spike trains for N synapses for a single
timestamp as illustrated in FIG.8B. During inference in a classification task, each spike results into X synaptic events,
where X is number of classes and each synaptic event (S) consumes 2 clocks. Thus, existing ASIC based architectures
takes a total M∗2T clocks to process whole spike train (sequentially) which is represented as (M∗2T) on FIG.8B, thus
bringing in huge latency and increased energy consumed per inference. However, the disclosed technique is based on
parallel and modular architecture and hence utilizes only time (T) - as illustrated in FIG.8C. Hence in comparison to time
(M∗2T) utilized the existing state of art, the disclosed techniques utilize only time T, thus solving the problem of huge
latency, while also bringing in decreased energy consumption.
[0068] The embodiments of present disclosure herein address the above unresolved problem of huge latency and
decreased energy consumed per inference in neuromorphic computing. From the experiment section it can be concluded
that energy/inference is improved by -1500 times, and Latency-Throughput is improved by -2400 times.
[0069] It is to be understood that the scope of the protection is extended to such a program and in addition to a
computer-readable means having a message therein; such computer-readable storage means contain program-code
means for implementation of one or more steps of the method, when the program runs on a server or mobile device or
any suitable programmable device. The hardware device can be any kind of device which can be programmed including
e.g., any kind of computer like a server or a personal computer, or the like, or any combination thereof. The device may
also include means which could be e.g., hardware means like e.g., an application-specific integrated circuit (ASIC), a
field-programmable gate array (FPGA), or a combination of hardware and software means, e.g., an ASIC and an FPGA,
or at least one microprocessor and at least one memory with software processing components located therein. Thus,
the means can include both hardware means and software means. The method embodiments described herein could
be implemented in hardware and software. The device may also include software means. Alternatively, the embodiments
may be implemented on different hardware devices, e.g., using a plurality of CPUs.
[0070] The embodiments herein can comprise hardware and software elements. The embodiments that are imple-
mented in software include but are not limited to, firmware, resident software, microcode, etc. The functions performed
by various components described herein may be implemented in other components or combinations of other components.
For the purposes of this description, a computer-usable or computer readable medium can be any apparatus that can
comprise, store, communicate, propagate, or transport the program for use by or in connection with the instruction
execution system, apparatus, or device.
[0071] The illustrated steps are set out to explain the exemplary embodiments shown, and it should be anticipated
that ongoing technological development will change the manner in which particular functions are performed. These
examples are presented herein for purposes of illustration, and not limitation. Further, the boundaries of the functional
building blocks have been arbitrarily defined herein for the convenience of the description. Alternative boundaries can
be defined so long as the specified functions and relationships thereof are appropriately performed. Alternatives (including
equivalents, extensions, variations, deviations, etc., of those described herein) will be apparent to persons skilled in the
relevant art(s) based on the teachings contained herein. Such alternatives fall within the scope of the disclosed embod-
iments. Also, the words "comprising," "having," "containing," and "including," and other similar forms are intended to be
equivalent in meaning and be open ended in that an item or items following any one of these words is not meant to be
an exhaustive listing of such item or items or meant to be limited to only the listed item or items. It must also be noted
that as used herein and in the appended claims, the singular forms "a," "an," and "the" include plural references unless
the context clearly dictates otherwise.
[0072] Furthermore, one or more computer-readable storage media may be utilized in implementing embodiments
consistent with the present disclosure. A computer-readable storage medium refers to any type of physical memory on
which information or data readable by a processor may be stored. Thus, a computer-readable storage medium may
store instructions for execution by one or more processors, including instructions for causing the processor(s) to perform
steps or stages consistent with the embodiments described herein. The term "computer-readable medium" should be
understood to include tangible items and exclude carrier waves and transient signals, i.e., be non-transitory. Examples
include random access memory (RAM), read-only memory (ROM), volatile memory, nonvolatile memory, hard drives,
CD ROMs, DVDs, flash drives, disks, and any other known physical storage media.
[0073] It is intended that the disclosure and examples be considered as exemplary only, with a true scope of disclosed
embodiments being indicated by the following claims.
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Claims

1. A field programmable gate array (FPGA) neuromorphic architecture-based method (300) for computing comprising:

receiving a synaptic weight and a data set associated with an application, wherein the data set comprises a
plurality of features and the synaptic weight is a pre-trained parameter (302);
generating (304) a neuromorphic FPGA circuit comprising a memory and a plurality of neurons based on a
Spiking Neural Network (SNN) technique, where in the generation of the neuromorphic FPGA circuit is char-
acterized by comprising the following steps:

transferring the synaptic weight to the memory (304A); and
generating a plurality of neurons based on the plurality of features, wherein each neuron among the plurality
of neurons comprises a Multiply and Accumulate (MA) layer, a Registered Adder Tree (RAT) layer and a
Leaky Integrate and Fire (LIF) layer (304B);

optimizing via the one or more hardware processors, the neuromorphic FPGA circuit based on the plurality of
features to obtain a neuromorphic FPGA architecture, wherein the optimization comprises an arrangement of
the generated plurality of neurons in a modular and a parallel fashion based on the plurality of features (306);
receiving a plurality of input spikes, wherein the plurality of input spikes is associated with the data set (308); and
computing a plurality of output spikes for the plurality of input spikes using the neuromorphic FPGA architecture,
wherein the plurality of output spikes is utilized for classification and inferencing of the data set (310).

2. The method of claim 1, wherein the application is a digital platform configured to perform a specific digital task for
several domains or application comprising a set of computing tasks including an inference and a classification.

3. The method of claim 1, wherein each neuron among the plurality of neurons is interconnected with other neurons
of a backward or a forward layer only through a plurality of synapses in multiple layers, and each of the neuron is
mutually independent.

4. The method of claim 1, wherein the MA layer is a single layer configured for multiplication and accumulation of the
plurality of input spikes based on the pre-trained synaptic weight, wherein the MA layer is generated based on the
plurality of features.

5. The method of claim 1, wherein the RAT layer comprises an adder configured for summation of the output from the
MA layer.

6. The method of claim 1, wherein the LIF layer comprises a behavior mimicking biological neuron implemented digitally,
wherein the LIF layer is configured for storing a plurality of voltages of corresponding timestep, for summation of
the plurality of input spikes and the pre-trained synaptic weight, generation of the plurality of output spikes, imple-
mentation of a leakage for a plurality of current time steps, and to reset voltage when receiving a new data set.

7. The method of claim 1, wherein the optimization of the neuromorphic FPGA circuit based on the plurality of features
using a heuristic technique to obtain a modular and parallelized neuromorphic FPGA architecture.

8. A system (100), comprising:

an input module (102) configured for receiving a synaptic weight, a data set associated with an application,
wherein the data set comprises a plurality of features and a plurality of input spikes; and
a FPGA based neuromorphic FPGA architecture (100) configured for computing a plurality of output spikes for
the plurality of input spikes wherein the neuromorphic FPGA architecture is generated by optimizing a neuro-
morphic FPGA circuit (100), wherein the neuromorphic FPGA circuit (100) is generated based on a Spiking
Neural Network (SNN) technique, comprising:

a memory (102) configured for receiving and saving the synaptic weight; and
a plurality of neurons (106-122), wherein each neuron (200) among the plurality of neurons comprises a
Multiply and accumulate (MA) layer (202), a Registered Adder Tree (RAT) layer (204) and a Leaky Integrate
and Fire (LIF) layer (206).
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9. The system of claim 8, wherein the FPGA based neuromorphic computing architecture is configured by the instruc-
tions to generate the Multiply and accumulate (MA) layer (202) based on the plurality of features, wherein the MA
layer is a single layer configured for multiplication and accumulation of the plurality of input spikes based on the
pre-trained synaptic weight.

10. The method of claim 8, wherein the FPGA based neuromorphic computing architecture is configured by the instruc-
tions to generate the Registered Adder Tree (RAT) layer (204) based on an output from the MA layer, where the
RAT layer comprises, an adder configured for summation of the plurality of input spikes and the pre-trained synaptic
weight.

11. The method of claim 8, wherein the FPGA based neuromorphic computing architecture is configured by the instruc-
tions to generate the Leaky Integrate and Fire (LIF) layer (206) comprising of two inputs and one output and configured
for storing a plurality of voltages of that timesteps, for summation of the plurality of past input spikes for that particular
inference with the corresponding pre-trained synaptic weight, generation of spikes, implementation of a leakage for
a plurality of current time steps, and to reset voltage when receiving a new data set for next inference.

12. The method of claim 8, wherein the FPGA based neuromorphic computing architecture is configured by the instruc-
tions to optimize the neuromorphic FPGA circuit based on the on the plurality of features using a heuristic technique
to obtain a modular and parallelized neuromorphic FPGA architecture.

13. A computer program product comprising a non-transitory computer readable medium having a computer readable
program embodied therein, wherein the computer readable program, when executed on a computing device, causes
the computing device to:

receive a synaptic weight and a data set associated with an application, wherein the data set comprises a
plurality of features and the synaptic weight is a pre-trained parameter;
generate a neuromorphic FPGA circuit comprising a memory and a plurality of neurons based on a Spiking
Neural Network (SNN) technique, where in the generation of the neuromorphic FPGA circuit is characterized
by comprising the following steps:

transferring the synaptic weight to the memory; and
generating a plurality of neurons based on the plurality of features, wherein each neuron among the plurality
of neurons comprises a Multiply and Accumulate (MA) layer, a Registered Adder Tree (RAT) layer and a
Leaky Integrate and Fire (LIF) layer;

optimize via the one or more hardware processors, the neuromorphic FPGA circuit based on the plurality of
features to obtain a neuromorphic FPGA architecture, wherein the optimization comprises an arrangement of
the generated plurality of neurons in a modular and a parallel fashion based on the plurality of features;
receive a plurality of input spikes, wherein the plurality of input spikes is associated with the data set; and
compute a plurality of output spikes for the plurality of input spikes using the neuromorphic FPGA architecture,
wherein the plurality of output spikes is utilized for classification and inferencing of the data set.

Amended claims in accordance with Rule 137(2) EPC.

1. A field programmable gate array (FPGA) neuromorphic architecture-based method (300) for computing comprising:

receiving a synaptic weight and a data set associated with an application, wherein the data set comprises a
plurality of features and the synaptic weight is a pre-trained parameter, wherein the synaptic weight is stored
inside an FPGA to make processing efficient, and wherein the plurality of features comprising a number of input
data, a time duration of a spike train, a number of classes and a bit-width of the synaptic weight (302);
generating (304) a neuromorphic FPGA circuit comprising a memory and a plurality of neurons based on a
Spiking Neural Network (SNN) technique, where in the generation of the neuromorphic FPGA circuit is char-
acterized by comprising the following steps:

transferring the synaptic weight to the memory (304A); and
generating a plurality of neurons using the plurality of features, wherein each neuron among the plurality
of neurons comprises a Multiply and Accumulate (MA) layer (202), a Registered Adder Tree (RAT) layer
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(204) and a Leaky Integrate and Fire (LIF) layer (206) (304B);

optimizing via the one or more hardware processors, the neuromorphic FPGA circuit based on the plurality of
features using a heuristic technique to obtain a neuromorphic FPGA architecture, wherein the optimization
comprises an arrangement of the generated plurality of neurons in a plurality of layers in a modular and a parallel
fashion based on values of the plurality of features, wherein the arrangement of the generated plurality of
neurons includes determining a number of neurons, layers of neurons to be optimized heuristically based on
the values of the plurality of features, and wherein the optimized neuromorphic FPGA architecture is modular
and parallel enables high clock frequency, low latency and decreased energy consumed per inference (306);
receiving a plurality of input spikes, wherein the plurality of input spikes is associated with the data set (308); and
computing a plurality of output spikes for the plurality of input spikes using the neuromorphic FPGA architecture,
wherein the plurality of output spikes is utilized for classification and inferencing of the data set (310).

2. The field programmable gate array (FPGA) neuromorphic architecture-based method (300) of claim 1, wherein the
application is a digital platform configured to perform a specific digital task for several domains or application com-
prising a set of computing tasks including an inference and a classification.

3. The field programmable gate array (FPGA) neuromorphic architecture-based method (300) of claim 1, wherein each
neuron among the plurality of neurons is interconnected with other neurons of a backward or a forward layer only
through a plurality of synapses in multiple layers, and each of the neuron is mutually independent.

4. The field programmable gate array (FPGA) neuromorphic architecture-based method (300) of claim 1, wherein the
MA layer is a single layer configured for multiplication and accumulation of the plurality of input spikes based on the
pre-trained synaptic weight, wherein the MA layer is generated based on the plurality of features.

5. The field programmable gate array (FPGA) neuromorphic architecture-based method (300) of claim 1, wherein the
RAT layer comprises an adder configured for summation of the output from the MA layer.

6. The field programmable gate array (FPGA) neuromorphic architecture-based method (300) of claim 1, wherein the
LIF layer comprises a behavior mimicking biological neuron implemented digitally, wherein the LIF layer is configured
for storing a plurality of voltages of corresponding timestep, for summation of the plurality of input spikes and the
pre-trained synaptic weight, generation of the plurality of output spikes, implementation of a leakage for a plurality
of current time steps, and to reset voltage when receiving a new data set.

7. A system (100), comprising:

an input module (102) configured for receiving a synaptic weight, a data set associated with an application,
wherein the data set comprises a plurality of features and a plurality of input spikes, wherein the synaptic weight
is stored inside an FPGA to make processing efficient, and wherein the plurality of features comprising a number
of input data, a time duration of a spike train, a number of classes and a bit-width of the synaptic weight; and
a FPGA based neuromorphic FPGA architecture (100) configured for computing a plurality of output spikes for
the plurality of input spikes, wherein plurality of output spikes is utilized for classification and inferencing of the
data set, wherein the neuromorphic FPGA architecture is generated by optimizing a neuromorphic FPGA circuit
(100), wherein optimizing the neuromorphic FPGA circuit based on the plurality of features using a heuristic
technique to generate the neuromorphic FPGA architecture, wherein the optimization comprises an arrangement
of the generated plurality of neurons in a plurality of layers in a modular and a parallel fashion based on values
of the plurality of features, wherein the arrangement of the generated plurality of neurons includes determining
a number of neurons, layers of neurons to be optimized heuristically based on the values of the plurality of
features, wherein the optimized neuromorphic FPGA architecture is modular and parallel enables high clock
frequency, low latency and decreased energy consumed per inference, and wherein the neuromorphic FPGA
circuit (100) is generated based on a Spiking Neural Network (SNN) technique, comprising:

a memory (102) configured for receiving and saving the synaptic weight; and
a plurality of neurons (106-122), wherein each neuron (200) among the plurality of neurons comprises a
Multiply and accumulate (MA) layer (202), a Registered Adder Tree (RAT) layer (204) and a Leaky Integrate
and Fire (LIF) layer (206).

8. The system (100) of claim 7, wherein the FPGA based neuromorphic computing architecture is configured by the
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instructions to generate the Multiply and accumulate (MA) layer (202) based on the plurality of features, wherein
the MA layer is a single layer configured for multiplication and accumulation of the plurality of input spikes based
on the pre-trained synaptic weight.

9. The system (100) of claim 7, wherein the FPGA based neuromorphic computing architecture is configured by the
instructions to generate the Registered Adder Tree (RAT) layer (204) based on an output from the MA layer, where
the RAT layer comprises, an adder configured for summation of the plurality of input spikes and the pre-trained
synaptic weight.

10. The system (100) of claim 7, wherein the FPGA based neuromorphic computing architecture is configured by the
instructions to generate the Leaky Integrate and Fire (LIF) layer (206) comprising of two inputs and one output and
configured for storing a plurality of voltages of that timesteps, for summation of the plurality of past input spikes for
that particular inference with the corresponding pre-trained synaptic weight, generation of spikes, implementation
of a leakage for a plurality of current time steps, and to reset voltage when receiving a new data set for next inference.

11. A computer program product comprising a non-transitory computer readable medium having a computer readable
program embodied therein, wherein the computer readable program, when executed on a computing device, causes
the computing device to:

receive a synaptic weight and a data set associated with an application, wherein the data set comprises a
plurality of features and the synaptic weight is a pre-trained parameter, wherein the synaptic weight is stored
inside an FPGA to make processing efficient, and wherein the plurality of features comprising a number of input
data, a time duration of a spike train, a number of classes and a bit-width of the synaptic weight (302);
generate (304) a neuromorphic FPGA circuit comprising a memory and a plurality of neurons based on a Spiking
Neural Network (SNN) technique, where in the generation of the neuromorphic FPGA circuit is characterized
by comprising the following steps:

transferring the synaptic weight to the memory (304A); and
generating a plurality of neurons using the plurality of features, wherein each neuron among the plurality
of neurons comprises a Multiply and Accumulate (MA) layer (202), a Registered Adder Tree (RAT) layer
(204) and a Leaky Integrate and Fire (LIF) layer (206) (304B);

optimize via the one or more hardware processors, the neuromorphic FPGA circuit based on the plurality of
features using a heuristic technique to obtain a neuromorphic FPGA architecture, wherein the optimization
comprises an arrangement of the generated plurality of neurons in a plurality of layers in a modular and a parallel
fashion based on values of the plurality of features, wherein the arrangement of the generated plurality of
neurons includes determining a number of neurons, layers of neurons to be optimized heuristically based on
the values of the plurality of features, and wherein the optimized neuromorphic FPGA architecture is modular
and parallel enables high clock frequency, low latency and decreased energy consumed per inference (306);
receive a plurality of input spikes, wherein the plurality of input spikes is associated with the data set (308); and
compute a plurality of output spikes for the plurality of input spikes using the neuromorphic FPGA architecture,
wherein the plurality of output spikes is utilized for classification and inferencing of the data set (310).
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