US 20240296071A1

a2y Patent Application Publication (o) Pub. No.: US 2024/0296071 A1l

a9y United States

TOAL et al. 43) Pub. Date: Sep. 5, 2024
(54) AUTOMATICALLY IDENTIFYING AND (52) US. CL
RIGHT SIZING INSTANCES CPC ... GO6F 9/5027 (2013.01); GOGF 9/5083
(2013.01); GOG6F 2209/501 (2013.01); GO6F
(71) Applicant: Salesforce, Inc., San Francisco, CA 2209/5011 (2013.01); GOG6F 2209/505
(US) (2013.01)
(72) Inventors: Brian TOAL, San Francisco, CA (US);
Manpreet SINGH, Hyderabad (IN) 7 ABSTRACT
1) Appl. No.: 18/657,187 A system is d}sclosed. The system includes a resource
monitor to monitor a resource utilization of a set of resources
: f one or more instances, the resource utilization corre-
22) Filed: May 7, 2024 © ’
(22) File vt sponding to a first level of performance and cost and an
Related U.S. Application Data instance type determiner to, based on the resource utiliza-
o o tion, determine if there is an instance type for at least one of
(63) Continuation of application No. 17/854,652, filed on he one or more instances, with a resource profile, that will
Jun. 30, 2022, now Pat. No. 12,008,407, which is a provide a second level of performance and cost that is closer
continuation of application No. 16/566,209, filed on to a default level of performance and cost than the first level
Sep. 10, 2019, now Pat. No. 11,379,266. of performance and cost. In addition, the system also
Publication Classificati includes an instance type recommender to, based on the
ublication Classification determining, perform one of making and not making a
(51) Int. CL recommendation to replace the instance type of the at least
GO6F 9/50 (2006.01) one of the one or more instances.
e et eam e
o A\ E |
{4 230 mm mmmme 250§ 260
[etr inatano R By Serv
! ,i;fif”:e et ;:,i;;r;’(fwim Performance/oost Lj{iiccer ;
; oeryie hdtadt ;{ DEIILE COH:’?{}U.’BﬁGn jagieintin Y
b Workioad Metrics Friing PIG Theotting Evenis ¢
. ; ! Y H
i ' % E :
201 20 &
¢ 7} SR d S, :
™ T “"w”""’L““\“""”"}"””" TR Instance
! 501 E sie of Models i s Adgigo;}a
vt B . i S Cooying
§ Lo . eipforment | ! SeNVice san |
e e R State 4 Z{,:,,;g {earning D s 26, ‘
g - PR L 2 T - - =
‘ it N T Y « Tyt I Recommendation | instance §
- eature : L1 RF Agent g Actiong s 4 F %(’07? rgnd = pstanc ;
; Engingering : : ¥ - Enging ; Manager §
| Rewsrds ' R

i

2035

P A : :
R 2085 ¢
o

A
£

Recurrent
Neural Networks

Cnpeiot v
Hersist [|

Basaline Models

i Fealure Veciors ||

Patent Application Publication

Sep. §5,2024 Sheet 1 of 6

US 2024/0296071 A1

16
4
. System
s Iy P # ‘,g_
e el 2
Ry Ry ed
Tenant System Program
Data Dala Code
18] ;2B
Application Processor Process
Platform System Space
20
Melwork
Interface
e, Environment
N w
| Network
-4 w,,"%
12 12
|)
Uge{ C R I Lgser
System System

Patent Application Publication

Tenant Data 114

Sep. 5,2024 Sheet 2 of 6 US 2024/0296071 A1l
27
fenant DB 403
Tenant Space 1112
&
L3
&

™

Application MetaData -~ 118
18 S s ’2{8
{
&]
;38 =110 =102
Appiication Selup
Wechanism Tenant Management System
. Process | 20p Frocess
/\., 3{:}
Save Houtines o104~ 104 104
54 Tenant 1 {Tenant2}y . |Tenant¥
PLISOQL Hrocess § | Process Process
prnsssnssasnaimssssmsnainnan oo o
32 30
AP L
““““““ 1004 JUUREEE R LI
Environment FAQW ESBEDEED !"*23{3%
10 Server Server
”“: ?{4 y
12 |
i .M\
127 DY Matwem !
Processos Memory
System System
=120 12D W?E 12
fnput Cutput
System System

Patent Application Publication Sep. §5,2024 Sheet 3 of 6 US 2024/0296071 A1

210
) 240
Application Cluster Y
Type A Type A Type B Type B 1 e Instance Manager
instance 0 instance N instance {0 Instance N i
a "y i
v Lrchestrates
D Matics Sewvice 33D instances
Selection
A T
¢ e 200 LG
instance Advisar Service
4 | Retrieve Instance
Raver Deieing 2
| Pricing/Speo 1. ZA
faas Instance Metadats Service 230
200
) 240
{"‘\».." 2{)1 '\‘?
Fasource Monitor 241
203 Evaluation Request Recelver
tnstance Type Delerrniner 7 243
205 Instance Type Provisioner

instance Type Recommender

FIG. 2C

FG. 2

Patent Application Publication Sep. §5,2024 Sheet 4 of 6 US 2024/0296071 A1

fletric §nsian(‘e
Service eladata Serve

V‘mmo*" Metrics Pricing PiC Throttl ;*}3 Evenis

i

‘

:

:

:

:

,

:

!

:

:

x

:

:

{

!

!

:

} : ;

! ., i i

H e, H

: ; 200 G ;

¢ e —? :

! 1 :

: St [oh] i

: ¢ : i

‘ : : . i

! o : : 29\} :

i ¢ H ‘ i

; g .) kS A

. ; o 4

H i * ‘ i H 5\ M

{ : i : : . : }

3 £l LI ! i M

i H f:@"fi e i ; ! QOO H inatanes ;

: : ealure o - o L Hecommendation] | instan :

; : e Do RF Agent - Actiong e 4 M, tecommendation}_; e g

| : Enginesring I : P Engine ; Manager § |

: : e i — :
B H A H +

E 5 g Rewards Lo B

d : : § ‘o 25 :

; . e 1) Tmmommmmm e e oy ' :

t % B | ;

: ; : ; :

; : laone . : ;

E : F\e(: frént e SEOFE (5 : !

‘ ; : Meural Networks L : :

) H ; HE H ‘

: i . P 2 P ! :
£l . € K 4 i

; ; Pergist e * o : :

; ! A v - i i i

: ; Feature Vectors s s Basoline Models 2030 | ; :

1 : H ; :

: OO S U S A i :

| i .

e et e et 2 et et 2 e 2 e 2 e e e A e 2 e 8220 2 2 e 8 2 2 = P e 0 22 e 2 e e 2 8 2 2 H

Patent Application Publication Sep. §5,2024 Sheet 5 of 6 US 2024/0296071 A1

AN A
SR

\

Monitering resoure ulilization
of one #re more inglance

~"Is there an instance type®
with a resaurce prefiie that
", will pravide a mare sptimal
™ Jevel #f perfarmance?

& Ves
w“”‘f"“ ‘
s N
|5 the instance type
?\3‘% / . h & i o It
e chifferent frem the current

T instance type? e

~ 305

a2
o
e}

Repiace current instance fype

!

Reguest an evaluatien of the
recemmended insiance type

(:t::
&5

Patent Application Publication Sep. §5,2024 Sheet 6 of 6 US 2024/0296071 A1

3008
N (st)
¥

9 T w b Seve ey v rrReeveney Sy soqds v oy bpem - b
Recaive request for an instance type evaluation 311

¥
Frovision hstances of recommendead type
fo service work assaciated with cluster

313

US 2024/0296071 Al

AUTOMATICALLY IDENTIFYING AND
RIGHT SIZING INSTANCES

COPYRIGHT NOTICE

[0001] A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure, as it appears in the United States Patent and
Trademark Office patent file or records, but otherwise
reserves all copyright rights whatsoever.

TECHNICAL FIELD

[0002] One or more implementations relate generally to
container instances, and more specifically to automatically
identifying and right sizing container instances.

BACKGROUND

[0003] The material discussed in this background section
should not be assumed to be prior art merely as a result of
its mention in the background section. Similarly, a problem
mentioned in the background section or associated with the
subject matter of the background section should not be
assumed to have been previously recognized in the prior art.
The subject matter in the background section merely repre-
sents different approaches, which in and of themselves may
also correspond to implementations of the claimed technol-
ogy.

[0004] Infrastructure as a service (IaaS) is a form of cloud
computing that provides virtualized computing resources
over the internet. In an IaaS model, a cloud provider hosts
the infrastructure components traditionally present in an
on-premises data center, including servers, storage and net-
working hardware, as well as the virtualization or hypervisor
layer.

[0005] The IaaS provider also supplies a range of services
to accompany those infrastructure components. The services
can be provided by an application that can run across one to
many instances of containers. A container is mapped to an
instance type.

[0006] The underutilization of instances that are provided
by an laa8S service in terms of their CPU/Memory/Storage
usage can be problematic from a cost perspective. In par-
ticular, when an instance is purchased on a per year basis the
full cost of the instance must be paid whether usage of the
resources associated with the instance is maximized or not.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] The included drawings are for illustrative purposes
and serve to provide examples of possible structures and
operations for the disclosed inventive systems, apparatus,
methods and computer-readable storage media. These draw-
ings in no way limit any changes in form and detail that may
be made by one skilled in the art without departing from the
spirit and scope of the disclosed implementations.

[0008] FIG. 1A shows a block diagram of an example
environment in which an on-demand database service can be
used according to some implementations.

[0009] FIG. 1B shows a block diagram of example imple-
mentations of elements of FIG. 1A and example intercon-
nections between these elements according to some imple-
mentations.

Sep. 5, 2024

[0010] FIG. 2A illustrates the operation of an instance
advisory service shown in FIG. 1B according to an embodi-
ment.

[0011] FIG. 2B shows components of an instance advisory
service according to an embodiment.

[0012] FIG. 2C shows components of an instance manager
according to an embodiment.

[0013] FIG. 2D illustrates an example implementation of
the instance advisory service and its interaction with a
metric service, an instance metadata service, a service
protection service, a performance cost configuration service
and an instance manager.

[0014] FIG. 3A is a flowchart of a method for automati-
cally identifying and rightsizing instances according to an
embodiment.

[0015] FIG. 3B is a flowchart of a method for evaluating
instances according to an embodiment.

DETAILED DESCRIPTION

[0016] Examples of systems, apparatus, computer-read-
able storage media, and methods according to the disclosed
implementations are described in this section. These
examples are being provided solely to add context and aid in
the understanding of the disclosed implementations. It will
thus be apparent to one skilled in the art that the disclosed
implementations may be practiced without some or all of the
specific details provided. In other instances, certain process
or method operations, also referred to herein as “blocks,”
have not been described in detail in order to avoid unnec-
essarily obscuring the disclosed implementations. Other
implementations and applications also are possible, and as
such, the following examples should not be taken as defini-
tive or limiting either in scope or setting.

[0017] Inthe following detailed description, references are
made to the accompanying drawings, which form a part of
the description and in which are shown, by way of illustra-
tion, specific implementations. Although these disclosed
implementations are described in sufficient detail to enable
one skilled in the art to practice the implementations, it is to
be understood that these examples are not limiting, such that
other implementations may be used and changes may be
made to the disclosed implementations without departing
from their spirit and scope. For example, the blocks of the
methods shown and described herein are not necessarily
performed in the order indicated in some other implemen-
tations. Additionally, in some other implementations, the
disclosed methods may include more or fewer blocks than
are described. As another example, some blocks described
herein as separate blocks may be combined in some other
implementations. Conversely, what may be described herein
as a single block may be implemented in multiple blocks in
some other implementations. Additionally, the conjunction
“or” is intended herein in the inclusive sense where appro-
priate unless otherwise indicated; that is, the phrase “A, B or
C” is intended to include the possibilities of “A,” “B,” “C,”
“Aand B,” “B and C,” “A and C” and “A, B and C.”

1. Example System Overview

[0018] FIG. 1A shows a block diagram of an example of
an environment 10 in which an on-demand database service
can be used in accordance with some implementations. The
environment 10 includes user systems 12, a network 14, a
database system 16 (also referred to herein as a “cloud-based

US 2024/0296071 Al

system”), a processor system 17, an application platform 18,
a network interface 20, tenant database 22 for storing tenant
data 23, system database 24 for storing system data 25,
program code 26 for implementing various functions of the
system 16, and process space 28 for executing database
system processes and tenant-specific processes, such as
running applications as part of an application hosting ser-
vice. In some other implementations, environment 10 may
not have all of these components or systems, or may have
other components or systems instead of, or in addition to,
those listed above.

[0019] In some implementations, the environment 10 is an
environment in which an on-demand database service exists.
An on-demand database service, such as that which can be
implemented using the system 16, is a service that is made
available to users outside of the enterprise(s) that own,
maintain or provide access to the system 16. As described
above, such users generally do not need to be concerned
with building or maintaining the system 16. Instead,
resources provided by the system 16 may be available for
such users’ use when the users need services provided by the
system 16; that is, on the demand of the users. Some
on-demand database services can store information from one
or more tenants into tables of a common database image to
form a multi-tenant database system (MTS). The term
“multi-tenant database system” can refer to those systems in
which various elements of hardware and software of a
database system may be shared by one or more customers or
tenants. For example, a given application server may simul-
taneously process requests for a great number of customers,
and a given database table may store rows of data such as
feed items for a potentially much greater number of cus-
tomers. A database image can include one or more database
objects. A relational database management system
(RDBMS) or the equivalent can execute storage and
retrieval of information against the database object(s).

[0020] Application platform 18 can be a framework that
allows the applications of system 16 to execute, such as the
hardware or software infrastructure of the system 16. In
some implementations, the application platform 18 enables
the creation, management and execution of one or more
applications developed by the provider of the on-demand
database service, users accessing the on-demand database
service via user systems 12, or third party application
developers accessing the on-demand database service via
user systems 12.

[0021] In some implementations, the system 16 imple-
ments a web-based customer relationship management
(CRM) system. For example, in some such implementations,
the system 16 includes application servers configured to
implement and execute CRM software applications as well
as provide related data, code, forms, renderable web pages
and documents and other information to and from user
systems 12 and to store to, and retrieve from, a database
system related data, objects, and Web page content. In some
MTS implementations, data for multiple tenants may be
stored in the same physical database object in tenant data-
base 22. In some such implementations, tenant data is
arranged in the storage medium(s) of tenant database 22 so
that data of one tenant is kept logically separate from that of
other tenants so that one tenant does not have access to
another tenant’s data, unless such data is expressly shared.
The system 16 also implements applications other than, or in
addition to, a CRM application. For example, the system 16

Sep. 5, 2024

can provide tenant access to multiple hosted (standard and
custom) applications, including a CRM application. User (or
third party developer) applications, which may or may not
include CRM, may be supported by the application platform
18. The application platform 18 manages the creation and
storage of the applications into one or more database objects
and the execution of the applications in one or more virtual
machines in the process space of the system 16.

[0022] According to some implementations, each system
16 is configured to provide web pages, forms, applications,
data and media content to user (client) systems 12 to support
the access by user systems 12 as tenants of system 16. As
such, system 16 provides security mechanisms to keep each
tenant’s data separate unless the data is shared. If more than
one MTS is used, they may be located in close proximity to
one another (for example, in a server farm located in a single
building or campus), or they may be distributed at locations
remote from one another (for example, one or more servers
located in city A and one or more servers located in city B).
As used herein, each MTS could include one or more
logically or physically connected servers distributed locally
or across one or more geographic locations. Additionally, the
term “server” is meant to refer to a computing device or
system, including processing hardware and process space(s),
an associated storage medium such as a memory device or
database, and, in some instances, a database application (for
example, OODBMS or RDBMS) as is well known in the art.
It should also be understood that “server system” and
“server” are often used interchangeably herein. Similarly,
the database objects described herein can be implemented as
part of a single database, a distributed database, a collection
of distributed databases, a database with redundant online or
offline backups or other redundancies, etc., and can include
a distributed database or storage network and associated
processing intelligence.

[0023] The network 14 can be or include any network or
combination of networks of systems or devices that com-
municate with one another. For example, the network 14 can
be or include any one or any combination of a LAN (local
area network), WAN (wide area network), telephone net-
work, wireless network, cellular network, point-to-point
network, star network, token ring network, hub network, or
other appropriate configuration. The network 14 can include
a TCP/IP (Transfer Control Protocol and Internet Protocol)
network, such as the global internetwork of networks often
referred to as the “Internet” (with a capital “I””). The Internet
will be used in many of the examples herein. However, it
should be understood that the networks that the disclosed
implementations can use are not so limited, although TCP/IP
is a frequently implemented protocol.

[0024] The user systems 12 can communicate with system
16 using TCP/IP and, at a higher network level, other
common Internet protocols to communicate, such as HTTP,
FTP, AFS, WAP, etc. In an example where HTTP is used,
each user system 12 can include an HTTP client commonly
referred to as a “web browser” or simply a “browser” for
sending and receiving HTTP signals to and from an HTTP
server of the system 16. Such an HTTP server can be
implemented as the sole network interface 20 between the
system 16 and the network 14, but other techniques can be
used in addition to or instead of these techniques. In some
implementations, the network interface 20 between the
system 16 and the network 14 includes load sharing func-
tionality, such as round-robin HTTP request distributors to

US 2024/0296071 Al

balance loads and distribute incoming HTTP requests evenly
over a number of servers. In MTS implementations, each of
the servers can have access to the MTS data; however, other
alternative configurations may be used instead.

[0025] The user systems 12 can be implemented as any
computing device(s) or other data processing apparatus or
systems usable by users to access the database system 16.
For example, any of user systems 12 can be a desktop
computer, a work station, a laptop computer, a tablet com-
puter, a handheld computing device, a mobile cellular phone
(for example, a “smartphone”), or any other Wi-Fi-enabled
device, wireless access protocol (WAP)-enabled device, or
other computing device capable of interfacing directly or
indirectly to the Internet or other network. The terms “user
system” and “computing device” are used interchangeably
herein with one another and with the term “computer.” As
described above, each user system 12 typically executes an
HTTP client, for example, a web browsing (or simply
“browsing”) program, such as a web browser based on the
WebKit platform, Microsoft’s Internet Explorer browser,
Apple’s Safari, Google’s Chrome, Opera’s browser, or
Mozilla’s Firefox browser, or the like, allowing a user (for
example, a subscriber of on-demand services provided by
the system 16) of the user system 12 to access, process and
view information, pages and applications available to it from
the system 16 over the network 14.

[0026] Each user system 12 also typically includes one or
more user input devices, such as a keyboard, a mouse, a
trackball, a touch pad, a touch screen, a pen or stylus or the
like, for interacting with a graphical user interface (GUI)
provided by the browser on a display (for example, a
monitor screen, liquid crystal display (LCD), light-emitting
diode (LED) display, among other possibilities) of the user
system 12 in conjunction with pages, forms, applications
and other information provided by the system 16 or other
systems or servers. For example, the user interface device
can be used to access data and applications hosted by system
16, and to perform searches on stored data, and otherwise
allow a user to interact with various GUI pages that may be
presented to a user. As discussed above, implementations are
suitable for use with the Internet, although other networks
can be used instead of or in addition to the Internet, such as
an intranet, an extranet, a virtual private network (VPN), a
non-TCP/IP based network, any LAN or WAN or the like.

[0027] The users of user systems 12 may differ in their
respective capacities, and the capacity of a particular user
system 12 can be entirely determined by permissions (per-
mission levels) for the current user of such user system. For
example, where a salesperson is using a particular user
system 12 to interact with the system 16, that user system
can have the capacities allotted to the salesperson. However,
while an administrator is using that user system 12 to
interact with the system 16, that user system can have the
capacities allotted to that administrator. Where a hierarchical
role model is used, users at one permission level can have
access to applications, data, and database information acces-
sible by a lower permission level user, but may not have
access to certain applications, database information, and
data accessible by a user at a higher permission level. Thus,
different users generally will have different capabilities with
regard to accessing and modifying application and database
information, depending on the users’ respective security or
permission levels (also referred to as “authorizations”).

Sep. 5, 2024

[0028] According to some implementations, each user
system 12 and some or all of its components are operator-
configurable using applications, such as a browser, including
computer code executed using a central processing unit
(CPU) such as an Intel Pentium® processor or the like.
Similarly, the system 16 (and additional instances of an
MTS, where more than one is present) and all of its
components can be operator-configurable using application
(s) including computer code to run using the processor
system 17, which may be implemented to include a CPU,
which may include an Intel Pentium® processor or the like,
or multiple CPUs.

[0029] The system 16 includes tangible computer-read-
able media having non-transitory instructions stored
thereon/in that are executable by or used to program a server
or other computing system (or collection of such servers or
computing systems) to perform some of the implementation
of processes described herein. For example, computer pro-
gram code 26 can implement instructions for operating and
configuring the system 16 to intercommunicate and to
process web pages, applications and other data and media
content as described herein. In some implementations, the
computer code 26 can be downloadable and stored on a hard
disk, but the entire program code, or portions thereof, also
can be stored in any other volatile or non-volatile memory
medium or device as is well known, such as a ROM or
RAM, or provided on any media capable of storing program
code, such as any type of rotating media including floppy
disks, optical discs, digital versatile disks (DVD), compact
disks (CD), microdrives, and magneto-optical disks, and
magnetic or optical cards, nanosystems (including molecular
memory ICs), or any other type of computer-readable
medium or device suitable for storing instructions or data.
Additionally, the entire program code, or portions thereof,
may be transmitted and downloaded from a software source
over a transmission medium, for example, over the Internet,
or from another server, as is well known, or transmitted over
any other existing network connection as is well known (for
example, extranet, VPN, LAN; etc.) using any communica-
tion medium and protocols (for example, TCP/IP, HTTP,
HTTPS, Ethernet, etc.) as are well known. It will also be
appreciated that computer code for the disclosed implemen-
tations can be realized in any programming language that
can be executed on a server or other computing system such
as, for example, C, C++, HTML, any other markup lan-
guage, Java™, JavaScript, ActiveX, any other scripting
language, such as VBScript, and many other programming
languages as are well known may be used. (Java™ is a
trademark of Sun Microsystems, Inc.).

[0030] FIG. 1B shows a block diagram of example imple-
mentations of elements of FIG. 1A and example intercon-
nections between these elements according to some imple-
mentations. That is, FIG. 1B also illustrates environment 10,
but FIG. 1B, various elements of the system 16 and various
interconnections between such elements are shown with
more specificity according to some more specific implemen-
tations. Additionally, in FIG. 1B, the user system 12 includes
a processor system 12A, a memory system 12B, an input
system 12C, and an output system 12D. The processor
system 12A can include any suitable combination of one or
more processors. The memory system 12B can include any
suitable combination of one or more memory devices. The
input system 12C can include any suitable combination of
input devices, such as one or more touchscreen interfaces,

US 2024/0296071 Al

keyboards, mice, trackballs, scanners, cameras, or interfaces
to networks. The output system 12D can include any suitable
combination of output devices, such as one or more display
devices, printers, or interfaces to networks.

[0031] In FIG. 1B, the network interface 20 is imple-
mented as a set of HT'TP application servers 100,-100,.
Each application server 100, also referred to herein as an
“app server”, is configured to communicate with tenant
database 22 and the tenant data 23 therein, as well as system
database 24 and the system data 25 therein, to serve requests
received from the user systems 12. The tenant data 23 can be
divided into individual tenant storage spaces 112, which can
be physically or logically arranged or divided. Within each
tenant storage space 112, user storage 114 and application
metadata 116 can similarly be allocated for each user. For
example, a copy of a user’s most recently used (MRU) items
can be stored to user storage 114. Similarly, a copy of MRU
items for an entire organization that is a tenant can be stored
to tenant storage space 112.

[0032] The process space 28 includes system process
space 102, individual tenant process spaces 104 and a tenant
management process space 110. The application platform 18
includes an application setup mechanism 38 that supports
application developers’ creation and management of appli-
cations. Such applications and others can be saved as
metadata into tenant database 22 by save routines 36 for
execution by subscribers as one or more tenant process
spaces 104 managed by tenant management process 110, for
example. Invocations to such applications can be coded
using PL/SOQL 34, which provides a programming lan-
guage style interface extension to API 32. A detailed descrip-
tion of some PL/SOQL language implementations is dis-
cussed in commonly assigned U.S. Pat. No. 7,730,478, titled
METHOD AND SYSTEM FOR ALLOWING ACCESS TO
DEVELOPED APPLICATIONS VIA A MULTI-TENANT
ON-DEMAND DATABASE SERVICE, by Craig Weiss-
man, issued on Jun. 1, 2010, and hereby incorporated by
reference in its entirety and for all purposes. Invocations to
applications can be detected by one or more system pro-
cesses, which manage retrieving application metadata 116
for the subscriber making the invocation and executing the
metadata as an application in a virtual machine.

[0033] The system 16 of FIG. 1B also includes a user
interface (UI) 30 and an application programming interface
(API) 32 to system 16 resident processes to users or devel-
opers at user systems 12. In some other implementations, the
environment 10 may not have the same elements as those
listed above or may have other elements instead of, or in
addition to, those listed above.

[0034] Each application server 100 can be communicably
coupled with tenant database 22 and system database 24, for
example, having access to tenant data 23 and system data 25,
respectively, via a different network connection. For
example, one application server 100, can be coupled via the
network 14 (for example, the Internet), another application
server 100,, , can be coupled via a direct network link, and
another application server 100, can be coupled by yet a
different network connection. Transfer Control Protocol and
Internet Protocol (TCP/IP) are examples of typical protocols
that can be used for communicating between application
servers 100 and the system 16. However, it will be apparent
to one skilled in the art that other transport protocols can be
used to optimize the system 16 depending on the network
interconnections used.

Sep. 5, 2024

[0035] In some implementations, each application server
100 is configured to handle requests for any user associated
with any organization that is a tenant of the system 16.
Because it can be desirable to be able to add and remove
application servers 100 from the server pool at any time and
for various reasons, in some implementations there is no
server affinity for a user or organization to a specific
application server 100. In some such implementations, an
interface system implementing a load balancing function
(for example, an F5 Big-IP load balancer) is communicably
coupled between the application servers 100 and the user
systems 12 to distribute requests to the application servers
100. In one implementation, the load balancer uses a least-
connections algorithm to route user requests to the applica-
tion servers 100. Other examples of load balancing algo-
rithms, such as round robin and observed-response-time,
also can be used. For example, in some instances, three
consecutive requests from the same user could hit three
different application servers 100, and three requests from
different users could hit the same application server 100. In
this manner, by way of example, system 16 can be a
multi-tenant system in which system 16 handles storage of,
and access to, different objects, data and applications across
disparate users and organizations.

[0036] In one example storage use case, one tenant can be
a company that employs a sales force where each salesper-
son uses system 16 to manage aspects of their sales. A user
can maintain contact data, leads data, customer follow-up
data, performance data, goals and progress data, etc., all
applicable to that user’s personal sales process (for example,
in tenant database 22). In an example of a MTS arrangement,
because all of the data and the applications to access, view,
modify, report, transmit, calculate, etc., can be maintained
and accessed by a user system 12 having little more than
network access, the user can manage his or her sales efforts
and cycles from any of many different user systems. For
example, when a salesperson is visiting a customer and the
customer has Internet access in their lobby, the salesperson
can obtain critical updates regarding that customer while
waiting for the customer to arrive in the lobby.

[0037] While each user’s data can be stored separately
from other users’ data regardless of the employers of each
user, some data can be organization-wide data shared or
accessible by several users or all of the users for a given
organization that is a tenant. Thus, there can be some data
structures managed by system 16 that are allocated at the
tenant level while other data structures can be managed at
the user level. Because an MTS can support multiple tenants
including possible competitors, the MTS can have security
protocols that keep data, applications, and application use
separate. Also, because many tenants may opt for access to
an MTS rather than maintain their own system, redundancy,
up-time, and backup are additional functions that can be
implemented in the MTS. In addition to user-specific data
and tenant specific data, the system 16 also can maintain
system level data usable by multiple tenants or other data.
Such system level data can include industry reports, news,
postings, and the like that are sharable among tenants.

[0038] In some implementations, the user systems 12
(which also can be client systems) communicate with the
application servers 100 to request and update system level
and tenant-level data from the system 16. Such requests and
updates can involve sending one or more queries to tenant
database 22 or system database 24. The system 16 (for

US 2024/0296071 Al

example, an application server 100 in the system 16) can
automatically generate one or more SQL statements (for
example, one or more SQL queries) designed to access the
desired information. System database 24 can generate query
plans to access the requested data from the database. The
term “query plan” generally refers to one or more operations
used to access information in a database system.

[0039] Each database can generally be viewed as a col-
lection of objects, such as a set of logical tables, containing
data fitted into predefined or customizable categories. A
“table” is one representation of a data object, and may be
used herein to simplify the conceptual description of objects
and custom objects according to some implementations. It
should be understood that “table” and “object” may be used
interchangeably herein. Each table generally contains one or
more data categories logically arranged as columns or fields
in a viewable schema. Each row or element of a table can
contain an instance of data for each category defined by the
fields. For example, a CRM database can include a table that
describes a customer with fields for basic contact informa-
tion such as name, address, phone number, fax number, etc.
Another table can describe a purchase order, including fields
for information such as customer, product, sale price, date,
etc. In some MTS implementations, standard entity tables
can be provided for use by all tenants. For CRM database
applications, such standard entities can include tables for
case, account, contact, lead, and opportunity data objects,
each containing pre-defined fields. As used herein, the term
“entity” also may be used interchangeably with “object” and
“table.”

[0040] Insome MTS implementations, tenants are allowed
to create and store custom objects, or may be allowed to
customize standard entities or objects, for example by cre-
ating custom fields for standard objects, including custom
index fields. Commonly assigned U.S. Pat. No. 7,779,039,
titled CUSTOM ENTITIES AND FIELDS IN A MULTI-
TENANT DATABASE SYSTEM, by Weissman et al.,
issued on Aug. 17, 2010, and hereby incorporated by refer-
ence in its entirety and for all purposes, teaches systems and
methods for creating custom objects as well as customizing
standard objects in a multi-tenant database system. In some
implementations, for example, all custom entity data rows
are stored in a single multitenant physical table, which may
contain multiple logical tables per organization. It is trans-
parent to customers that their multiple “tables” are in fact
stored in one large table or that their data may be stored in
the same table as the data of other customers.

II. Instance Advisory Service

[0041] The underutilization of instances that are provided
by an laa8S service in terms of their CPU/Memory/Storage
usage can be problematic from a cost perspective. In par-
ticular, when an instance is purchased on a per year basis the
full cost of the instance must be paid whether usage of the
resources associated with the instance is maximized or not.

[0042] An approach that addresses the shortcomings of
such approaches is disclosed and described herein. For
example, as part of a disclosed process, in an embodiment,
the underutilization of resources can be identified and a
more cost-effective instance type found. More specifically,
the instance type is automatically resized. In an embodi-
ment, the resulting reduced cost to serve, can be significant
if applied over a significant number of machines.

Sep. 5, 2024

[0043] In an embodiment, laaS space is utilized to moni-
tor/identify/downsize instances. For example, instance
usage, in particular, that related to the CPU, memory and
storage is monitored. In order to identify whether the
instance is eligible for resizing, metrics collected over an
extended period of time are compared to a % of the
maximum capacity that is available at the different dimen-
sions (CPU/memory/storage). In an embodiment, when a
service running on the instance is deemed to have acquired
more infrastructure than needed, leading to higher costs, a
more appropriate instance can be identified for use. In an
embodiment, a rolling restart of the service (e.g., CRM
service) can be performed to push the appropriate instance
type to production. In an embodiment, the resultant changes
in a services workload (optimizations) that reduce resource
usage, can be directly reflected in cost savings.

[0044] In an embodiment, the tenant management process
110 can include an instance advisory service 200 (see FIG.
1B). In an embodiment, the instance advisory service 200
can monitor the utilization of resources allocated to one or
more instances that are part of an application cluster that
provides a service, such as a CRM service to a user system
12. In an embodiment, as part of the monitoring, the instance
advisory service 200 can determine if there is an instance
type with a resource profile, for at least one of the one or
more instances that will result in a more optimal level of
performance and cost, than does a currently used instance
type. In an embodiment, the determination can be based at
least in part on resource utilization.

[0045] In an embodiment, the instance advisory service
200, can recommend that a current instance type be replaced
if an instance type that is available from the IaaS can be
identified that will provide a more optimal level of perfor-
mance as regards a service that is provided. In an embodi-
ment, in addition, the instance advisory service 200 can
request an evaluation of the recommended instance type. In
an embodiment, the evaluation can be performed as part of
a canary experiment. In an embodiment, based on the results
of the canary experiment, one or more instances can be
replaced or not replaced with a recommended instance type.
[0046] As used herein, the performance P of an instance is
intended to refer to the proximity of the utilization of its
resources to a predetermined baseline or optimal level of
resource utilization. In an embodiment, the resources allo-
cated to an instance are provided at a cost C that is based at
least in part on the amount of the resources that are allocated.
[0047] Inan embodiment, a more optimal instance type, is
an instance type that results in a level of resource utilization
per resource that is closer in terms of actual resource
utilization to a predetermined optimal level of resource
utilization, than does the current instance type.

[0048] In an embodiment, a heuristic can be used to
identify an instance type that can achieve a level of perfor-
mance that falls within an acceptable range of performance
levels that are representable as percentages of the baseline
level of performance. In an embodiment, such percentages
of the baseline level of performance can extend above and
below the baseline level of performance P. In an embodi-
ment, the baseline level of performance can have a corre-
sponding cost C. Moreover, in an embodiment, each level of
performance P within the acceptable range of performance
levels can have a corresponding cost C.

[0049] In an embodiment, the baseline or optimal level of
performance can be defined before a determination is made

US 2024/0296071 Al

regarding whether a more optimal instance type is available.
The choice of the baseline level or optimal level of perfor-
mance can be based on a variety of factors such as but not
limited to a desire to accommodate peak resource utilization
periods and to minimize underutilization. For example,
consider an embodiment, where a baseline or optimal level
of performance of 80 percent of the maximum capacity of a
resource provided by an instance is selected based on such
a consideration. In such an embodiment, resource utilization
that falls below 80 percent of the maximum capacity can be
detected and the heuristic used to determine if there is a
more optimal instance type. In other embodiments, the
baseline or optimal level of performance can be other
percentages of the maximum capacity.

Operation

[0050] FIG. 2A illustrates the operation of the instance
advisory service 200 of FIG. 1B. FIG. 2A shows instance
advisory service 200, application cluster 210, metrics ser-
vice 220, instance metadata service 230, and instance man-
ager 240. In FIG. 2A, the operations A-G illustrate the
interaction of the instance advisory service 200 with other
components as a part of automatically identitying and right-
sizing instances.

[0051] Referring to FIG. 2A, at A, the instance advisory
service 200 queries an laaS provider’s (or other type service
provider’s) instance type endpoint, such as the instance
metadata service 230, in order to maintain a current list of
prices per instance type. As examples, as service provider
can offer various instance type products that can include
features such as but not limited to term length, reservation
policy, and so forth. In some examples, instances are sepa-
rate stacks of hardware and software on which various
resources may be operated. It should be noted that instance
types can include resources that have different CPU quality
(e.g., make/model) and quantity, memory, storage, and net-
working capabilities. In an embodiment, based on the que-
ries, the instance advisory service 200 can maintain a
comprehensive list of the pricing catalog and stock keeping
unit (SKU) types.

[0052] At B, metrics related to the instance type are
streamed to the metrics service 220 from the application
cluster 210. In an embodiment, the application cluster 210
includes multiple instances of containers that run an appli-
cation that provides a service such as a CRM service. In an
embodiment, applications typically run across one or more
containers. A container is mapped to an instance type. Each
resource that is used in the instance type including CPU,
memory, storage, and network has a corresponding set of
metrics. In an embodiment, the metrics are continuously
streamed to the metrics service.

[0053] At C, the instance advisory service 200 acquires
the metrics related to service that is provided by the appli-
cation cluster 210 and applies a heuristic to determine based
on the workload patterns of the service, characterized by
CPU, memory, storage and network usage, if there is a more
optimal instance type for one or more instances of the
application cluster 210. It should be appreciated that details
related to an exemplary heuristic is described with reference
to FIG. 2D. In an embodiment, decisions between candidate
instance types can be based on tradeoffs between P and C
where, for example, among candidate instance types a first
candidate may provide the highest performance at a first
cost, a second candidate an intermediate performance at a

Sep. 5, 2024

second cost, and a third candidate the lowest performance at
a third cost. In an embodiment, performance P and cost C
percentages can have a default value, however, a service,
e.g., a CRM service, etc., can override the default values
based on what is important to the service. In an embodiment,
the instance advisory service 200 continuously feeds the
metric stream as well as the pricing catalog and performance
and cost features into the heuristic, which produces a rec-
ommended instance type as an output (see FIG. 2D).
[0054] At D, the instance advisory service 200 determines
if the recommended instance type is different than one or
more of the instance types that the current service, e.g.,
CRM service, etc., is using. In an embodiment, if the
recommended instance type is different than the instance
type that the current service is using, the instance advisory
service 200 can request that the instance manager 240 run a
canary experiment for purposes of evaluating the recom-
mended instance type. In an embodiment, the instance
manager 240 can manage any failures and rollbacks related
to the canary experiment.

[0055] At E, the instance advisory service 200 sends a
request to the instance manager 240 to run the canary
experiment using the instance type that is recommended. In
an embodiment, as part of the request, the instance advisory
service 200 provides the instance manager 240 with an
identifier of the service (e.g., CRM service or other service
being provided) and an identifier of the instance type that is
recommended. In response to the request, the instance
manager 240 can provision one or more instances of the type
that is recommended. In an embodiment, the provisioned
instances are then directed to service the work that is fed to
the application cluster 210 on a trial basis. In an embodi-
ment, the metrics from the provisioned instances are pro-
vided to the metrics service 220. In an embodiment, the
instance advisory service 200 can create an experimental
entity to track the results of the experiment.

[0056] At F, after a predetermined period of time the
instance advisory service 200 checks the results of the
experiment. In an embodiment, as part of checking the
results of the experiment, the instance advisory service 200
queries the experiment records to identify the service and the
instance type that is being evaluated. Thereafter, the instance
advisory service 200 can access metrics to examine the
performance and cost of the proposed instance types, and
compare them to the performance and cost of the instance
types currently being used. In an embodiment, if the experi-
ment is designed to identify the best performance within a
selected range of costs, and results show that an identified
best performance is better than the performance of the
current instance type, then the current instance type can be
replaced. In addition, if the experiment is designed to
optimize cost within a selected range of performances, and
the identified cost is lower than that of the current instance
type, then the current instance type can be replaced. In
contrast, if the results show that the optimization goal is not
being met, the experiment can be stopped.

[0057] At G, the instance advisory service 200 indicates to
the instance manager 240 the number of instances of the
application cluster 210 that should be migrated (or not
migrated) to the recommended instance type, based on the
results of the canary experiment. In an embodiment, the
indication can be based on the results of a variety of
iterations of the canary experiment. In an embodiment, the
instance advisory service 200 and the instance manager 240

US 2024/0296071 Al

can continue a canary experiment until either, the entire
application cluster 210 is running on the proposed instance
type, or the optimization criteria cannot be met.

[0058] FIG. 2B shows components of the instance advi-
sory service 200 according to an embodiment. In the FIG.
2B embodiment, the instance advisory service 200 includes
resource monitor 201, instance type determiner 203, and
instance type recommender 205.

[0059] Referring to FIG. 2B, the resource monitor 201
monitors characteristics of resource utilization and cost that
are associated with one or more instances that are part of a
set of resources and/or part of an application cluster (e.g.,
application cluster 210 in FIG. 2A). In an embodiment, the
resource monitor 201 can monitor workload metrics (e.g.,
CPU, memory, average page time (APT), etc.), instance
pricing specifications, throttling events, and desired perfor-
mance and cost configurations. Additionally or alternatively,
the resource monitor 201 can monitor other types of metrics
and metadata.

[0060] Instance type determiner 203 determines if there is
an instance type with a resource profile, for at least one of
the one or more instances that will provide a more optimal
level of performance and cost, based at least in part on
resource utilization, than does the current instance type. In
an embodiment, the instance type determiner 203 applies a
heuristic to determine based on the workload patterns of a
service (e.g., CRM service or other type service), charac-
terized by CPU, memory, storage and network usage, if there
is a more optimal instance type. In an embodiment, deci-
sions between proposed instance types can be based on
tradeoffs between P and C where for example among pro-
posed instance types a first proposed instance type may
provide the highest performance at a first cost, a second
proposed instance type an intermediate performance at a
second cost, and a third proposed instance type the lowest
performance at a third cost. In an embodiment, performance
P and cost C percentages can have a default value, however,
services (e.g., CRM services or other type services) can
override these default values based on what is important to
them.

[0061] Instance type recommender 205 recommends an
instance type replacement for the at least one of the one or
more instances, if an instance type that can provide a more
optimal level of performance and cost, is identified that is
different from the instance type that the current service (e.g.,
CRM service or other type service that is being provided) is
using. In an embodiment, the instance type recommender
205 can request a canary experiment to be executed for
purposes of evaluating the recommended instance type.
[0062] FIG. 2C shows components of the instance man-
ager 240 according to an embodiment. In the FIG. 2C
embodiment, the instance manager 240 includes evaluation
request receiver 241 and instance type provisioner 243.
[0063] Referring to FIG. 2C, the evaluation request
receiver 241 receives (or otherwise accesses) a request to
perform an evaluation of the recommended instance type
from instance type recommender 205. In an embodiment, as
part of the request, the evaluation request receiver 241
receives or accesses an identifier of the service for which the
instance type will be evaluated and an identifier of the
instance type that will be evaluated.

[0064] The instance type provisioner 243 provisions, as
part of an experiment, one or more instances of the recom-
mended instance type to service work associated with an

Sep. 5, 2024

application cluster (e.g., 210 in FIG. 2A). In an embodiment,
the instance type provisioner 243 can provision one or more
instances of the recommended type as part of a canary
experiment. In an embodiment, the metrics from the
instances provisioned as part of the canary experiment are
provided to the metrics service (e.g., 220 in FIG. 2A).
[0065] In an embodiment, an experiment entity can be
created (e.g., by instance advisory service 200) to track the
results of the canary experiment. For example, in an embodi-
ment, after predetermined periods of time, an experiment
entity of the instance advisory service 200 can access the
results of the canary experiment. In an embodiment, if the
experiment is designed to optimize performance within a
selected range of costs, and results show that an instance
type identified as providing the best performance provides a
performance better than the performance of the current
instance type, then the current instance type can be replaced.
In addition, if the experiment is designed to optimize cost
within a selected range of performances, and the instance
type identified provides a cost that is lower than that of the
current instance type, then the current instance type can be
replaced. However, if the results show that the optimization
goal is not being met, the experiment can be stopped.
[0066] FIG. 2D illustrates an example implementation of
the instance advisory service 200 and the interaction of
instance advisory service 200 with other components such as
metric service 220, instance metadata service 230, instance
manager 240, performance cost and configuration service
250, and service protection service 260.

[0067] At node 1 in FIG. 2D, resource monitor 201
receives inputs from metrics service 220, instance metadata
service 230, performance cost configuration service 250 and
service protection service 260. As examples, the inputs to
the resource monitor 201 can include but are not limited to
workload metrics (e.g., CPU (e.g., processor usage or utili-
zation, processor idle time, host system memory usage,
processor time, processor time ratio, processor non-idle wait
times, processor power usage or consumption, and/or the
like), memory (e.g., memory utilization, memory access
wait times, memory response time, storage area network
(SAN) input/output (I0) measurements/metrics such as 10
operations per second (IOPS)), a size of each 10 request
size, 1O response times and/or 1O latency times, IO queue
sizes, and/or the like), average page time (APT), number of
transactions, number or user requests, average size or user
requests, average size of DB queries, number of user
responses, average response time, number of requests to
access individual resources or tenant data, number of inci-
dents (failures, errors, and the like), and/or the like), instance
pricing specification, throttling events, desired performance
and cost configurations, and/or other metrics and/or meta-
data. These inputs are ingested from respective sources 220,
230, and 250. At node 2 in FIG. 2D, the inputs are provided
to a feature engineering component 201a of the resource
monitor 201. In an embodiment, the received dataset is
de-noised, correlated, and vectorized into an expected for-
mat and then persisted (e.g., stored) in a datastore 2015 of
the resource monitor 201.

[0068] Atnode 3 in FIG. 2D, the instance type determiner
203 receives feature vectors from the resource monitor 201.
In an embodiment, the feature vectors are processed by an
ensemble of machine learning (ML) models of the instance
type determiner 203 to understand various workload pat-
terns. In an embodiment, reinforcement learning (RL) mod-

US 2024/0296071 Al

els 203 a ingest or otherwise receive the current workload
state and reward (e.g., P/C configuration), and based on the
state and/or rewards, at node 4 recommends an action that is
designed to maximize the reward. In an embodiment, the
reward is a desired performance (P) and cost (C). Addition-
ally or alternatively, recurrent neural networks (RNNs) 2035
ingest or otherwise receive the vectorized data and uses the
vectorized data to understand workload patterns. The recur-
rent neural networks 2035 understands or learns the work-
load patterns by storing the state information and performing
predictions. Additionally or alternatively, baseline models
203c¢ provide insights into the regular workload patterns and
sets the baseline that RNNs 2035 to consume or otherwise
use to identify seasonal workload patterns. At node 4 in FIG.
2D, the RLL models 203a provide the recommended actions
to a recommendation engine 205¢ of an instance type
recommender 205, and at node 5, the RNNs 2035 provide
the scores (e.g., identifying instance types that are more
optimal than currently implemented instance types) as input
to the recommendation engine 2054 of the instance type
recommender 205. The instance type recommender 205 (or
recommendation engine 205a) uses this information as
generated by the ensemble/weighted techniques of instance
type determiner 203 to recommend an instance type to the
instance manager 240. At node 6 in FIG. 2D, the instance
manager 240 provides a recommended instance type to a
user, org, developer, or the like. Additionally or alterna-
tively, the instance manager 240 triggers or otherwise causes
a current instance type (e.g., a currently implemented con-
figuration of an instance) to be replaced with a recom-
mended instance type (e.g., a recommended instance con-
figuration for the instance). It should be appreciated that in
other embodiments, other implementations of the instance
advisory service 200 can be used.

[0069] In an embodiment, the instance advisory service
200 continuously collects data related to the current state
(e.g., current performance and cost metrics) and desired state
(e.g., desired and/or optimal performance and cost states)
that are provided to the ensemble of models of instance type
determiner 203 which learn and use feedback to recommend
scaling options (instance types) to the instance type recom-
mender 205 that can improve both performance and cost.

[0070] FIG. 3A is a flowchart of a method for automati-
cally identifying and rightsizing instances according to an
embodiment. The method includes, at 301 monitoring a
resource utilization of a set of resources of one or more
instances, the resource utilization corresponding to a first
level of performance and cost. At 303, based on the resource
utilization, determining if there is an instance type with a
resource profile, for at least one of the one or more instances
that will provide a second level of performance and cost that
is closer to a default or optimal level of performance and
cost than the first level of performance and cost. If there is
an instance type with a resource profile, for at least one of
the one or more instances that will provide a second level of
performance and cost, that is closer to a default or optimal
level of performance and cost than the first level of perfor-
mance and cost, the process proceeds to 305. If there is not
an instance type with a resource profile, for at least one of
the one or more instances that will provide a second level of
performance and cost, that is closer to a default or optimal
level of performance and cost than the first level of perfor-
mance and cost, the process proceeds to stop. At 305, based
on the determining at 303, determining if the instance type

Sep. 5, 2024

is different from a current instance type of the at least one of
the one or more instances. If the instance type is different
from the current instance type of the at least one of the one
or more instances the process proceeds to 307 where a
recommendation is made to replace the current instance type
with the more optimal instance type. If the instance type is
not different from a current instance type of the at least one
of'the one or more instances the process proceeds to stop. At
311, an evaluation of the recommended instance type
replacement is requested.

[0071] FIG. 3B is a flowchart of a method for performing
an evaluation of a recommended instance type according to
an embodiment. The method includes, at 309, receiving a
request for an instance type evaluation. At 311, provisioning
instances of the recommended type to service work associ-
ated with the application cluster.

[0072] The specific details of the specific aspects of imple-
mentations disclosed herein may be combined in any suit-
able manner without departing from the spirit and scope of
the disclosed implementations. However, other implemen-
tations may be directed to specific implementations relating
to each individual aspect, or specific combinations of these
individual aspects.

[0073] Additionally, while the disclosed examples are
often described herein with reference to an implementation
in which an on-demand database service environment is
implemented in a system having an application server pro-
viding a front end for an on-demand database service
capable of supporting multiple tenants, the present imple-
mentations are not limited to multi-tenant databases or
deployment on application servers. Implementations may be
practiced using other database architectures, i.e.,
ORACLE®, DB2© by IBM and the like without departing
from the scope of the implementations claimed.

[0074] It should also be understood that some of the
disclosed implementations can be embodied in the form of
various types of hardware, software, firmware, or combina-
tions thereof, including in the form of control logic, and
using such hardware or software in a modular or integrated
manner. Other ways or methods are possible using hardware
and a combination of hardware and software. Additionally,
any of the software components or functions described in
this application can be implemented as software code to be
executed by one or more processors using any suitable
computer language such as, for example, Java, C++ or Perl
using, for example, existing or object-oriented techniques.
The software code can be stored as a computer- or processor-
executable instructions or commands on a physical non-
transitory computer-readable medium. Examples of suitable
media include random access memory (RAM), read only
memory (ROM), magnetic media such as a hard-drive or a
floppy disk, or an optical medium such as a compact disk
(CD) or DVD (digital versatile disk), flash memory, and the
like, or any combination of such storage or transmission
devices.

[0075] Computer-readable media encoded with the soft-
ware/program code may be packaged with a compatible
device or provided separately from other devices (for
example, via Internet download). Any such computer-read-
able medium may reside on or within a single computing
device or an entire computer system, and may be among
other computer-readable media within a system or network.
A computer system, or other computing device, may include

US 2024/0296071 Al

a monitor, printer, or other suitable display for providing any
of the results mentioned herein to a user.

[0076] While some implementations have been described
herein, it should be understood they have been presented by
way of example only, and not limitation. Thus, the breadth
and scope of the present application should not be limited by
any of the implementations described herein, but should be
defined only in accordance with the following and later-
submitted claims and their equivalents.

What is claimed is:

1. A system to provide a compute optimization service for
recommending compute resource usage, the system com-
prising:

memory circuitry to store program code of a resource

analyzer, an instance type determiner, and an instance
type recommender; and

processor circuitry connected to the memory circuitry,

wherein:

the processor circuitry is to operate the resource analyzer

to analyze resource utilization metrics of a set of
resources belonging to a set of instances, the resource
utilization metrics corresponding to a first level of
performance or cost;

the processor circuitry is to operate the instance type

determiner to determine, based on the resource utiliza-

tion metrics, a recommended instance type of the set of

instances that is predicted to provide at least a second

cost that is defined as more optimal by a user; and

the processor circuitry is to operate the instance type

recommender to:

cause evaluation of the at least one instance having the
recommended instance type when the recommended
instance type is different from a current instance type
of the at least one instance, and

provide, based on the evaluation, a recommendation to
facilitate a replacement or resizing of the at least one
instance having the current instance type with the at
least one instance having the recommended instance
type,

wherein the processor circuitry is configured to cause
evaluation by one or more machine learning (ML)
models based on the resource utilization metrics to
determine workload patterns of the at least one
instance,

wherein the one or more ML models further determine
the recommendation based on a current workload
data of the at least one instance, the determined
workload patterns, and a range of desired perfor-
mances and costs based on configured performance
characteristics including utilization,

wherein, based on the recommendation, the at least one
instance having the current instance type is replaced
with or resized based on the at least one instance
having the recommended instance type, and

wherein one or more workloads of the at least one
instance are executed using the recommended
instance type.

2. The system of claim 1, wherein the evaluation includes
an evaluation of a performance or cost of the recommended
instance type using workload data of the at least one
instance.

3. The system of claim 1, wherein the recommendation
includes one or more recommendations to reduce a cost of

Sep. 5, 2024

the current instance type or one or more recommendations to
improve a performance of one or more workloads of the at
least one instance.

4. The system of claim 1, wherein the processor circuitry
is to operate the instance type determiner to operate the one
or more ML models to determine the recommended instance

type.

5. The system of claim 4, wherein the evaluation includes
a comparison of the first level of performance or cost with
the second level of performance or cost, and a decision to
replace the at least one instance having the recommended
instance type is made based on the comparing.

6. The system of claim 1, wherein the second level of
performance or cost that is more optimal than the first level
of performance or cost is identified from a specified range of
performances or a specified range of costs.

7. The system of claim 1, wherein the second level of
performance or cost that is more optimal than the first level
of performance or cost is identified from a specified perfor-
mance and a specified range of costs.

8. The system of claim 1, wherein the recommended
resource type includes a resource profile, and the resource
profile includes a specified amount of resources to be
allocated to each resource with the recommended instance

type.

9. A non-transitory computer-readable memory (NT-
CRM) comprising instructions stored thereon that, in
response to execution by a processor, are operable to cause
the processor to:

analyze resource utilization metrics of a set of resources

belonging to a set of instances, wherein the resource
utilization metrics correspond to a first level of perfor-
mance or cost;
determine, based on the analysis, a recommended instance
type of the set of instances that is predicted to provide
at least a second cost that is defined as more optimal by
a user;

cause evaluation of the at least one instance with the
recommended instance type when the recommended
instance type is different from a current instance type of
the at least one instance;

provide, based on the determination, a recommendation to

facilitate a replacement or resizing of the current
instance type of the at least one instances with the
recommended instance type for the at least one
instance;

based on the resource utilization metrics, cause evaluation

by one or more machine learning (ML) models to
determine workload patterns of the at least one
instance;

determine, with the one or more ML models, the recom-

mendation based on a current workload data of the at
least one instance, the determined workload patterns,
and a range of desired performances and costs based on
configured performance characteristics including utili-
zation;

replace, based on the recommendation, the at least one

instance having the current instance type with or
resized based on the at least one instance having the
recommended instance type; and

execute one or more workloads of the at least one instance

using the recommended instance type.

US 2024/0296071 Al

10. The NTCRM of claim 9, wherein the determination of
the recommended resource type is based on outputs of the
one or more ML models.

11. The NTCRM of claim 9, wherein:

the evaluation includes an evaluation of a performance or

cost of the recommended instance type using workload
data of the at least one instance; and

the recommendation includes one or more recommenda-

tions to reduce a cost of the current instance type or one
or more recommendations to improve a performance of
one or more workloads of the at least one instance.

12. The NTCRM of claim 9, wherein execution of the
instructions is to cause the processor to compare the first
level of performance or cost with the second level of
performance or cost.

13. The NTCRM of claim 12, wherein a decision to
replace the one or more instances is made based on the
comparing.

14. The NTCRM of claim 9, wherein the second level of
performance or cost that is more optimal than the first level
of performance or cost is identified from a specified range of
performances or a specified range of costs.

15. The NTCRM of claim 9, wherein the second level of
performance or cost that more optimal than the first level of
performance or cost is identified from a specified perfor-
mances and a specified range of costs.

16. The NTCRM of claim 9, wherein the recommended
resource type includes a resource profile, and the resource
profile includes a specified amount of resources to be
allocated for each resource having the recommended
resource type.

17. A computer-implemented method for providing a
compute optimization service for recommending compute
resource usage, the method comprising:

analyzing resource utilization metrics of a set of resources

belonging to a set of instances, wherein the resource
utilization metrics correspond to a first level of perfor-
mance or cost;

determining, based on the analyzing, a recommended

instance type of the set of instances that is predicted to
provide at least a second cost that is defined as more
optimal by a user;

causing evaluation of the at least one instance having the

recommended instance type when the recommended
instance type is different from a current instance type of
the at least one instance;

provide, based on the determining, a recommendation to

facilitate a replacement or resizing of the at least one

Sep. 5, 2024

instance having the current instance type with the at
least one instance having the recommended instance
type;

based on the resource utilization metrics, cause evaluation

by one or more machine learning (ML) models to
determine workload patterns of the at least one
instance;

determine, with the one or more ML models, the recom-

mendation based on a current workload data of the at
least one instance, the determined workload patterns,
and a range of desired performances and costs based on
configured performance characteristics including utili-
zation;

replace or resize, based on the recommendation, the at

least one instance having the current instance type
based on the at least one instance having the recom-
mended instance type; and

execute one or more workloads of the at least one instance

using the recommended instance type.

18. The method of claim 17, further comprising:

operating the one or more ML models to determine the

recommended instance type.

19. The method of claim 17, wherein:

the evaluation includes an evaluation of a performance or

cost of the recommended instance type using workload
data of the at least one instance; and

the recommendation includes one or more recommenda-

tions to reduce a cost of the current instance type or one
or more recommendations to improve a performance of
one or more workloads of the at least one instance.

20. The method of claim 17, further comprising:

comparing the first level of performance and cost with the

second level of performance or cost.

21. The method of claim 20, wherein a decision to replace
the one or more instances is made based on the comparing.

22. The method of claim 17, wherein the second level of
performance or cost that is more optimal than the first level
of performance or cost is identified from a specified range of
performances and the specified cost.

23. The method of claim 17, wherein the second level of
performance or cost that is more optimal than the first level
of performance or cost is identified from a specified perfor-
mance and the specified range of costs.

24. The method of claim 17, wherein the recommended
resource type includes a resource profile, and the resource
profile includes a specified amount of resources that should
be allocated for each resource of an instance having the
recommended resource type.

#* #* #* #* #*

