
US 20210234873A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2021/0234873 A1

Ling et al . (43) Pub . Date : Jul . 29 , 2021

Publication Classification (54) REASSEMBLY FREE DEEP PACKET
INSPECTION FOR PEER TO PEER
NETWORKS

(71) Applicant : SONICWALL US HOLDINGS INC . ,
Milpitas , CA (US)

(51) Int . Ci .
H04L 29/06 (2006.01)

(52) U.S. CI .
CPC H04L 63/1408 (2013.01) ; H04L 63/168

(2013.01) ; H04L 67/104 (2013.01) ; HO4L
63/0245 (2013.01) ; H04L 63/0254 (2013.01) (72) Inventors : Hui Ling , Shanghai (CN) ; Cuiping Yu ,

Shanghai (CN) ; Zhong Chen , Fremont ,
CA (US)

(21) Appl . No .: 17 / 174,182

(22) Filed : Feb. 11 , 2021

Related U.S. Application Data
(63) Continuation of application No. 16 / 853,360 , filed on

Apr. 20 , 2020 , now Pat . No. 11,005,858 , which is a
continuation of application No. 15 / 860,623 , filed on
Jan. 2 , 2018 , now Pat . No. 10,630,697 , which is a
continuation of application No. 14 / 965,866 , filed on
Dec. 10 , 2015 , now Pat . No. 9,860,259 .

(57) ABSTRACT

The present disclosure relates to a system , a method , and a
non - transitory computer readable storage medium for deep
packet inspection scanning at an application layer of a
computer . A method of the presently claimed invention may
scan pieces of data received out of order without reassembly
at an application layer from a first input state generating one
or more output states for each piece of data . The method may
then identify that the first input state includes one or more
characters that are associated with malicious content . The
method may then identify that the data set may include
malicious content when the first input state combined with
one or more output states matches a known piece of mali
cious content .

Output States 2-2 Identified
Input States

SCAN
B 2-2

310
$ * w ************************** wwwwwwwwwwwwwwwxN *******

Output States 1-2 Identified
Input States

SCAN
B 1-2 $

8

Output States 1-2 Output States 2-1 TH SCAN
B 2-1

320
* * * * * * * * * * *

Initial State SCAN
B 1-1

Output States 1-1
ww

Patent Application Publication Jul . 29 , 2021 Sheet 1 of 5 US 2021/0234873 A1

C2

C3

C1

130
120

C4
C5

Client Server
110

P1 ' 160
170

$ P2
180

P5

P3

P4 4

Peer to Peer
150

FIG . 1

Patent Application Publication Jul . 29 , 2021 Sheet 2 of 5 US 2021/0234873 A1

Piece 1 Piece 2

B 1-1 ? B 1-2 B 2-1 B 2-2

FIG . 2A

TIME

B 2-2 [B 1-2 [B 2-1 B 1-1

FIG . 2B

Patent Application Publication Jul . 29 , 2021 Sheet 3 of 5 US 2021/0234873 A1

Output States 2-2 Identified
Input States

SCAN
B 2-2

310
8
$ **

8
8

SCAN Output States 1-2 Identified
Input States B 1-2

8
8
8

8

8

8
8

&
3 Output States 1-2 Output States 2-1 SCAN

B 2-1
320

8
? ??? ?? ? ? ? ? ? ? ? ? ? ? ?

Initial State Output States 1-1 SCAN
B 1-1

www

FIG . 3

Patent Application Publication Jul . 29 , 2021 Sheet 4 of 5 US 2021/0234873 A1

SO A ?

$ 1 S6

a
?

* & www.wooowwwww * S2 SZ

? r

S3 S S8

420
S4

U 3 W ® ® e

S5

410 FIG . 4

Patent Application Publication Jul . 29 , 2021 Sheet 5 of 5 US 2021/0234873 A1

500

Processor
510

Output devices
550

Memory
520

Input
Devices
560

Mass
Storage
530

Display System
570

Antenna
540

Peripherals
580

590

FIG . 5

US 2021/0234873 Al Jul . 29 , 2021
1

REASSEMBLY FREE DEEP PACKET
INSPECTION FOR PEER TO PEER

NETWORKS

CROSS - REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation and claims the
priority benefit of U.S. patent application Ser . No. 16/853 ,
360 filed Apr. 20 , 2020 , which is a continuation and claims
the priority benefit of U.S. patent application Ser . No.
15 / 860,623 filed Jan. 2 , 2018 , now U.S. Pat . No. 10,630,697 ,
which is a continuation and claims the priority benefit of
U.S. patent application Ser . No. 14 / 965,866 filed Dec. 10 ,
2015 , now U.S. Pat . No. 9,860,259 , the disclosures of which
are incorporated herein by reference .

BACKGROUND OF THE INVENTION

Field of the Invention
[0002] The present invention is generally directed to reas
sembly free scanning of files in a peer to peer network . More
specifically , the present invention scans file data without
reassembling a file even when parts of the file are received
out of order .

Description of the Related Art
[0003] Data communicated over computer networks today
pass through various layers in a computer system architec
ture . Typically data is received at a network interface of a
computer at a link layer . The link layer is a layer in the
architecture of a computer that includes physical hardware .
The link layer connects the computer to other computers in
a computer network . Link layers also are used to transmit
data from one computer to another over a computer network .
[0004] Other layers above the link layer in computer
system architectures commonly include a network layer , a
transport layer , and an application layer . The network layer
receives data packets from and provides data packets to the
link layer . The network layer may also receive data in
segments from the transport layer and send data in segments
to the transport layer . Commonly when the network layer
receives a segment of data from the transport layer it will
generate a packet or an internet protocol (IP) datagram for
transmission to another computer . This process may include
encapsulating the segmented data received from the trans
port layer and adding a header that includes a destination IP
address when generating an IP packet . In certain instances
more than one IP packet may be associated with a data
segment . The network layer may also receive IP packets
from the link layer and may pass segmented data to the
transport layer .
[0005] When a series of IP packets are used to transport
data to a computer , those packets may be received out of
order at the network layer . When this occurs , the transport
layer may re - order the data segments from a plurality of
packets before sending the re - ordered data to the application
layer . Conventionally data received at an application layer
must be received in - order (i.e. sequentially) . For example , in
a client - server environment file data received at the appli
cation layer of a client or a server must be in - order before it
can be processed . This is because the client - server environ
ment expects received data to be in order . While commu
nication transferred over a computer network according to

the Transmission Control Protocol (TCP) will re - order pack
ets , communications over other transport layer protocols ,
such as the User Datagram Protocol (UDP) do not .
[0006] Typically in a client - server environment a server
will send a data set or a file sequentially from the application
layer to the transport layer , the transport layer may then send
that data to the network layer . The network layer then
packetizes the data and sends a plurality of packets to a
client . Even though the packetized data may be sent out of
order , data contained in the packets will be re - ordered before
that data is received at the application layer at the client .
Because of this , application layers at a client or a server in
a client - server environment may never receive file data that
is out of order . Peer to peer (P2P) networks , however , do not
operate in the same way as a client - server environment . For
example P2P networks may receive data at an application
layer that is out of order . This is because P2P networks
fundamentally have a different type of architecture as com
pared to a client - server environment .
[0007] In a P2P network a computer accessing file data
may receive parts of data from a file from a plurality of
computers . A P2P network is capable of transmitting file
data in pieces where each piece of data may be transmitted
from a different computer . Because of this a first piece of
data received from a first computer may be out of order as
compared to a second piece of data received from a second
computer . When this occurs the network layer and the
transport layer at a receiving computer will not be aware that
the first data piece and the second data piece have been
received out of order . This is true even when packetized data
sent from the first computer (or the second computer) to the
receiving computer have been re - ordered . This is because
the network layer and the transport layer at the receiving
computer do not check whether application data received
from different peer computers are received in order . Con
ventionally , the network layer and the transport layer are
only capable of re - ordering packetized data that has been
transmitted from a single source computer to a destination
computer .
[0008] P2P networks may also break a file into a number
of pieces where each piece may include a pre - determined or
specific number of blocks . Information relating to a number
of pieces that a data file is broken into may be included in
metadata (or a metadata file) that is associated with the data
file . Once a number of pieces are identified , a file size
divided by the number of pieces will correspond to a number
of blocks that the file may be broken into in the P2P network .
[0009] Limitations included in the network layers and in
the transport layers of computers today mean that file data
received at an application layer of a computer cannot easily
scan the received data for malicious content (such as com
puter worms , viruses , or other attacking software) . Conven
tionally the scanning of data for malicious content at the
application layer in a P2P network either cannot be done
reliably or must be done in an inefficient manner . For
example , if data from a file is scanned out of order , the scan
can miss a virus contained within the data , because mali
cious content are characterized by a sequential ordered
series of characters , not an out of order series of characters .
In another example , when the application layer re - orders
received data before scanning it , data from the out of order
pieces must be stored until the data pieces can be re - ordered
and scanned . Thus , the first example is unreliable and the
second example is inefficient .

US 2021/0234873 A1 Jul . 29 , 2021
2

BRIEF DESCRIPTION OF THE DRAWINGS [0010] Application data that includes interleaved out of
order data received at an application layer of a computer
system if scanned in the order received may result in missing
malicious content contained within the received interleaved
data . Furthermore , data received out of order may also result
in scanning software falsely detecting malicious content . For
example , when the character sequence of “ car ” is associated
a virus and two pieces of data that were received out of order
where a later piece of data ending with the character “ c ” is
scanned before an earlier piece of data that begins with “ ar , ”
malicious scanning software will falsely identify that these
pieces of data include the virus , when they do not .
[0011] What is needed to increase the reliability and
efficiency of P2P networks are systems and methods that
scan pieces of data received out of order at an application
layer without storing and re - ordering data pieces that have
been received out of order . What is also needed are systems
and methods that scan interleaved data reliably at an appli
cation layer . The reliable scanning of received data at an
application level increases the reliability of detecting mali
cious content while reducing the likelihood that malicious
content scanning software will falsely associate received
data with malicious content .

[0015] FIG . 1 illustrates computers in a client server
environment and computers in a peer to peer network (P2P) .
[0016] FIG . 2A illustrates an exemplary way in which data
parts from a data set may be separated into a plurality of data
blocks by computers in a P2P network .
[0017] FIG . 2B illustrates data blocks of a data set that are
received out of order at a peer computer .
[0018] FIG . 3 illustrates an exemplary sequence that data
blocks that were received out of order at an application layer
may be scanned for malicious content without re - ordering
and reassembling those data blocks .
[0019] FIG . 4 illustrates a state mapping that includes
malicious content .
[0020] FIG . 5 is a block diagram of a device for imple
menting the present technology .

DETAILED DESCRIPTION

SUMMARY OF THE PRESENTLY CLAIMED
INVENTION

[0012] The presently claimed invention relates to an appa
ratus , a method , and a non - transitory computer readable
storage medium for deep packet inspection scanning at an
application layer of a computer . A method of the presently
claimed invention may receive a portion of data at an
application layer of a computer system after which the
received portion of data may be scanned from a first input
state at the application layer . When the first input state
includes a portion of information known to be included in
malicious content , the method then identifies that the data set
can include malicious content after the received portion of
data has been scanned from the first input state .
[0013] The presently claimed invention may also be
implemented as a non - transitory computer readable storage
medium where a processor executing instructions out of a
memory receives a portion of data at an application layer of
a computer system after which the received portion of data
may be scanned from a first input state at the application
layer . When the first input state includes a portion of
information known to be included in malicious content , the
processor executing instructions out of the memory then
identifies that the data set can include malicious content after
the received portion of data has been scanned from the first
input state .
[0014] An apparatus of the presently claimed invention
may include a network interface that receives information , a
memory , and a processor . The processor executing instruc
tions out of the memory then receives a portion of a data set
at an application layer . The received portion of data is then
scanned at the application layer from a first input state .
When the first input state includes a portion of information
known to be included in a piece of malicious content , the
processor executing instructions out of the memory then
identifies that the data set can include malicious content after
the received portion of data has been scanned from the first
input state .

[0021] The present disclosure relates to an apparatus , a
method , and a non - transitory computer readable storage
medium for deep packet inspection scanning at an applica
tion layer of a computer . A method of the presently claimed
invention may scan data received at an application layer
from a first input state . The first input state including
information , such as , one or more characters that can be
associated with malicious content . The method may then
identify that the data set may include malicious content
when the first input state combined with the scan of the
received data matches a known piece of malicious content .
[0022] FIG . 1 illustrates computers in a client server
environment and computers in a peer to peer network . Client
computers C1 , C2 , C3 , C4 , and C5 each may communicate
with server 120 as indicated by the dark lines connecting
each of the client computers with the server 120 in the client
server environment 110 of FIG . 1. Line 130 illustrates the
server sending data to client computer Cl . In client server
environment servers send application data directly from the
server to a client computer in order .
[0023] The peer to peer (P2P) network illustrated 150 in
FIG . 1 includes a plurality of peer computers P1 , P2 , P3 , P4 ,
and P5 that may send data directly to each other as illustrated
by the dark lines connecting each peer computer with each
other peer computer . The dashed lines 160 , 170 , and 180
illustrate peer computers P2 , P4 , and P5 sending data to peer
computer P1 . In a peer to peer computing environment data
sent from a number of peer computers to a particular peer
computer may be data blocks from a data set or file that the
particular peer computer P1 wishes to receive and those data
blocks may be received at an application layer on peer
computer P1 in an out of order sequence .
[0024] FIG . 2A illustrates an exemplary way in which data
parts from a data set may be separated into a plurality of data
blocks by computers in a P2P network . A first piece of data
Piece 1 from a data set is separated into a first data block B
1-1 and a second data block B 1-2 . FIG . 2A also shows a
second piece of data Piece 2 from the data set being
separated into a first data block B 2-1 and a second data
block B 2-2 . In a P2P network each of these data blocks may
reside at any peer computer in the P2P network . In certain
instances one or more data blocks of a data set may be sent
to a requesting peer computer from a second peer computer ,

US 2021/0234873 A1 Jul . 29 , 2021
3

and other data blocks from the data set may be sent to the
requesting peer computer from one or more other peer
computers .
[0025] FIG . 2B illustrates data blocks of a data set that are
received out of order at a peer computer . Note that time in
FIG . 2B moves forward from left to right along the “ TIME ”
line in FIG . 2B . The ordering of received data blocks of FIG .
2B are : B 2-2 , B 1-2 , B 2-1 , and B 1-1 , where the in
sequence order of these data blocks are B 1-1 , B 1-2 , B 2-1 ,
and B 2-2 .
[0026] FIG . 3 illustrates an exemplary sequence that data
blocks that were received out of order at an application layer
may be scanned for malicious content without re - ordering
and reassembling those data blocks . Here again the data
blocks are received in the out of order sequence of B 2-2 , B
1-2 , B 2-1 , and B 1-1 . Each of the received data blocks are
scanned in a manner where each data block scanned has
identified input states and output states . The identified input
states may include a state for each and every possible state
that might be associated with malicious content . Identified
input states include one or more characters in a sequence of
characters that match content known to be associated with
malicious content .
[0027] For example , when malicious content is identified
as receiving the character “ c ” followed by character “ a ” that
is , in turn , followed by character “ r , " then the identified input
states associated with malicious content include state " C "
and the state “ ca. ” In the instance where a preceding data
block ends with characters “ ca ” and a following data block
begins with the character “ r , " then malicious code " car ” is
present in these data blocks . Similarly in the instance where
the preceding data block ends with the character “ c ” and the
following data block begins with characters “ ar , " then the
malicious code “ car ” is also present in these data blocks .
Malicious content “ car ” may correspond to a rule that
identifies “ car ” as being malicious content .
[0028] In the instance where characters “ car ” are associ
ated with malicious code by a rule when data block B 2-2 is
received and when data block B 2-1 has not yet been
received (as in FIG . 3.) . Identified input states an empty
string , “ c , ” and “ ca ” will then be used when identifying
whether data blocks B 2-2 and B 2-1 can include the
malicious code " car . ”
[0029] In an apparatus consistent with the presently dis
closed invention , malicious code can be associated with one
or more different sequences of characters . For example , the
character sequence of “ Apple ” may also be associated with
malicious content via a rule (R2) that identifies “ Apple ” as
being a virus . In the instance when “ Apple ” is associated
with malicious content , identified input states (sub - states)
may include an empty string “ A , ” “ Ap , ” " App , " and
“ Appl . ” .
[0030] After data block B 2-2 is scanned using each of the
identified input states in FIG . 3 , the scanning process outputs
output states 2-2 . Output states 2-2 may then be stored in
memory for later use . Since the next data block received in
FIG . 3 is B 1-2 and since data block B 1-1 has not yet been
scanned , the scanning process once again inputs the identi
fied input states when scanning data block B 1-2 , and the
scanning process outputs output states 1-2 . Output states 1-2
may then be stored in memory for later use . FIG . 3 then
shows data block B 2-1 being received . Note that data block
B 1-2 in FIG . 3 has already been scanned and that output
states 1-2 may be input into the scanning process of data

block B 2-1 from the memory . This is because these two data
blocks include contiguous (ordered) data and because output
states 1-2 were previously stored in memory . The outputs of
the scanning process of data block B 2-1 are output states
2-1 . The dotted line 310 in FIG . 3 indicates that the output
states 2-1 may be compared with the identified input states .
Any output state 2-1 that matches an identified input state
may then be used to identify whether the combined data
blocks 1-2 and 2-1 include malicious content . The process of
storing output states of a scanned data block and correlating
those output states to identified input states that may be
included in a subsequently received , previously ordered data
piece reduces an amount of memory required to identify
malicious content in a data set . This is because once an
output state from a second piece of data has been identified ,
a number of identified input states relating to a not yet
received first piece of data may be reduced . For example , the
second piece of data has the output state “ ca , ” the identified
input states that can include malicious content of " car ” are
limited to one possible identified input state of “ r . ” In such
instances identified input states including “ c , ” “ a , ” “ A , ”
“ Ap , ” “ App , ” and “ Appl ” may be eliminated from concern
when “ car ” and “ Apple ” are each associated with rules that
identify malicious content . As such , the storing of output
states of a previously scanned data block combined with
correlating those output states with identified input states
that may be included in a subsequently received , previously
ordered data block may be referred to as a “ reduction phase ”
consistent with the present disclosure . Processing phases of
the present disclosure related to the scanning of a data block
may be referred to as a “ scanning phase ” of the present
disclosure . Reduction phases and scanning phases may , thus ,
reduce memory utilization and increase the efficiency of a
computer .

[0031] Finally after data block B 1-1 is received , data
block B 1-1 may be scanned from an initial state (such as a
null state) and output states 1-1 may be output . The dotted
line 320 indicates that output states 1-1 may be compared
with the identified input states when identifying whether the
combined data blocks B 1-2 and B 2-1 include malicious
content . Note that this process scans data blocks received out
of order for malicious content without reassembling the data
blocks . Instead a series of identified input states may be used
when scanning an out of order packet for malicious content .
The presently disclosed invention , thus , identifies malicious
content by comparing output states with identified input
states that may be included in a data block that has not yet
been received . Later when the out of order data block is
received , the out of order data block may be scanned
generating one or more output states . When an output state
of the out of order packet includes an identified input state
of a subsequently ordered data block , the two different data
blocks may include malicious content .
[0032] In certain instances one or more output states
associated with different pieces of a data set may be stored
in memory where each of these output states may be
associated with a possible identified input state associated
with yet other pieces of the data set . When one or more
output states and one or more possible identified input states
are stored in memory and an outstanding piece of the data set
is received , the outstanding piece of the data set may be
scanned generating an output state associated with the
outstanding piece of the data set . In such an instance , each

US 2021/0234873 A1 Jul . 29 , 2021
4

of the output states and possible identified input states may
be assembled in a chain when identifying that the data set
includes malicious content .
[0033] For example , when data blocks are received in the
order illustrated in FIG . 3 (i.e .: B 2-2 , B 1-2 , B 2-1 , and B
1-1) where data block B 2-2 consists of " pple , ” data block
B 1-2 consists of " aaaa , ” B 2-1 consists of “ araA , " and data
block B 1-1 consists of “ Appc . ” First data block B 2-2 is
scanned using the identified input states (i.e. all possible
input states that correspond to malicious content) generating
output states 2-2 . Since data block B 2-2 consists of “ pple , "
output states 2-2 may identify that the identified input state
of “ A ” from the not yet received data block B 2-1 will
indicate that malicious content of “ Apple ” spans data block
B 2-1 and B 2-2 when data block B 2-1 ends with the
character “ A. ” Since data block B 2-1 has not yet been
received , output states 2-2 will identify that the identified
input state of “ A ” preceding data block B 2-2 corresponds to
malicious content “ Apple . ”
[0034] Next data block B 1-2 is scanned using the iden
tified input states generating output states 1-2 . When rules
that identify malicious content as being “ car ” and “ Apple ”
the character sequences an empty string (i.e. an initial state) ,
" c , ” “ ca ” , “ A , ” “ Ap , ” “ App , ” and “ Appl ” each are identified
input states that are associated with malicious content . Since
data block B 1-2 consists of “ aaaa , ” the only output state that
corresponds to an identified input state that may be associ
ated with malicious content is the empty string (i.e. an initial
state) . This is because the character sequences of “ a , ” “ aa , ”
" aaa , " and " aaaa ” are not associated with malicious content
according to rules that identify “ Apple ” and “ car ” as being
malicious content . This means that data block B 2-1 may be
scanned from just the empty string . Thus , in this example ,
the process of reduction identifies that the only identified
input state of all of the identified input states that data block
B 2-1 should be scanned from is the empty string .
[0035] When data block B 2-1 is received , it is scanned
from only the empty string . After data block B 2-1 is
scanned , output states 2-1 will be generated . Since data
block B 2-1 consists of “ araA , ” the only output state that
corresponds to an identified input state is the identified
output state of “ A. ” Since data block B 2-2 has already been
scanned and identified as including “ pple , ” malicious con
tent of “ Apple ” will be detected in the data set when
preceding data block B 2-1 ends with the character “ A. ”
Since , in this example , the identified input state of “ A ”
precedes data block B 2-2 , the malicious content of “ Apple ”
is detected in the data set . Once malicious content has been
detected in the data set , the receipt of additional data blocks ,
such as data block B 1-1 , may be blocked . Note also that a
chain of only one possible identified input state of “ A ” of
data block B 2-2 and the output state " pple ” of output states
2-2 are used to identify malicious content in this example .
Note also that only a reduced number of input states coupled
with a number of output states 2-2 requires limited storage
as compared to storing the data blocks received .
[0036] The present disclosure is not limited to malicious
content spanning one or two data blocks , as methods con
sistent with the present disclosure may detect malicious
content that spans any number of data blocks in a data set ,
including all of the data blocks .
[0037] FIG . 4 illustrates a state mapping that includes
malicious content . Whether the mapping moves from one
particular state to another particular state depends on the

sequence of characters in the data set . FIG . 4 illustrates a
mapping that moves from an initial state of So to state S1
when the character “ A ” is scanned in a data set . FIG . 4 also
shows the mapping moving from state SO to state S6 when
the character “ c ” is scanned in the data set . When the state
map is in state SO and the next character input is not an “ A ”
or a “ c ” , the mapping will stay in state SO . FIG . 4 identifies
two different rules that identify malicious content . Here the
first rule identifies that the character sequence of “ Apple ” is
associated with malicious content and the second rule iden
tifies that the character sequence " car ” is associated mali
cious content .
[0038] FIG . 4 also illustrates the state mapping moving
consistent with the present disclosure . FIG . 4 illustrates a
state mapping moving from state S1 to state S2 when a “ p ”
is scanned after an “ A , ” moving from state S2 to S3 when
a second “ p ” is scanned , moving from state S3 to S4 when
an “ 1 ” is scanned , and moving from state S4 to S5 when an
“ e ” is scanned . Note that state S5 is identified as item 410 .
Item 410 indicates that the malicious content “ Apple ” has
been identified according to the first rule in the data set .
[0039] Similarly state flow may move from state so to
state S6 when the character “ c ” is in the data set , then moves
to state S7 when a subsequent character “ a ” is encountered
in sequence in the data set , and then moves from state S7 to
state S8 when a subsequent character “ r ” is in the data set .
Note that state S8 is identified as item 420 in FIG . 4. Item
420 indicates that malicious content “ car ” has been detected
in the data set . Here again each character “ c , ” “ a , ” and “ r ”
must be sequential characters in the data set for the state
mapping to reach state S8 . Whenever a next character
identified in the data set does not follow the state mapping ,
the mapping will move from a current state to state SO .
When the state mapping moves from state S6 or S7 to state
SO (as indicated by the dotted lines in FIG . 4) , malicious
content has not been detected in the data set . After state S8
the state mapping moves back to initial state SO .
[0040) Dashed lines in FIG . 4 illustrate the state mapping
moving from each of states S1 , S2 , S3 , S4 , and S5 back to
state SO . In order to reach state S5 each of characters “ A , "
“ p , ” “ p , " “ 1 , ” and “ e ” must occur in order in the data set .
When a character in the data set does not agree with the state
mapping , malicious content is not detected in the data set
and the state mapping moves back to state SO .
[0041] FIG . 5 is a block diagram of a device for imple
menting the present technology . FIG . 5 illustrates an exem
plary computing system 500 that may be used to implement
a computing device for use with the present technology . The
computing system 500 of FIG . 5 includes one or more
processors 510 and memory 520. Main memory 520 may
store , in part , instructions and data for execution by proces
sor 510. Main memory can store the executable code when
in operation . The system 500 of FIG . 5 further includes a
storage 520 , which may include mass storage and portable
storage , antenna 540 , output devices 550 , user input devices
560 , a display system 570 , and peripheral devices 580 .
[0042] The components shown in FIG . 5 are depicted as
being connected via a single bus 590. However , the com
ponents may be connected through one or more data trans
port means . For example , processor unit 510 and main
memory 520 may be connected via a local microprocessor
bus , and the storage 530 , peripheral device (s) 580 and
display system 570 may be connected via one or more
input / output (1/0) buses .

US 2021/0234873 A1 Jul . 29 , 2021
5

[0043] Storage device 530 , which may include mass stor
age implemented with a magnetic disk drive or an optical
disk drive , may be a non - volatile storage device for storing
data and instructions for use by processor unit 510. Storage
device 530 can store the system software for implementing
embodiments of the present invention for purposes of load
ing that software into main memory 510 .
[0044] Portable storage device of storage 530 operates in
conjunction with a portable non - volatile storage medium ,
such as a floppy disk , compact disk or Digital video disc , to
input and output data and code to and from the computer
system 500 of FIG . 5. The system software for implementing
embodiments of the present invention may be stored on such
a portable medium and input to the computer system 500 via
the portable storage device .
[0045] Antenna 540 may include one or more antennas for
communicating wirelessly with another device . Antenna 540
may be used , for example , to communicate wirelessly via
Wi - Fi , Bluetooth , with a cellular network , or with other
wireless protocols and systems . The one or more antennas
may be controlled by a processor 510 , which may include a
controller , to transmit and receive wireless signals . For
example , processor 510 execute programs stored in memory
520 to control antenna 540 transmit a wireless signal to a
cellular network and receive a wireless signal from a cellular
network .
[0046] The system 500 as shown in FIG . 5 includes output
devices 550 and input device 560. Examples of suitable
output devices include speakers , printers , network inter
faces , and monitors . Input devices 560 may include a touch
screen , microphone , accelerometers , a camera , and other
device . Input devices 560 may include an alpha - numeric
keypad , such as a keyboard , for inputting alpha - numeric and
other information , or a pointing device , such as a mouse ,
trackball , stylus , or cursor direction keys .
[0047] Display system 570 may include a liquid crystal
display (LCD) , LED display , or other suitable display
device . Display system 570 receives textual and graphical
information , and processes the information for output to the
display device .
[0048] Peripherals 580 may include any type of computer
support device to add additional functionality to the com
puter system . For example , peripheral device (s) 580 may
include a modem or a router .
[0049] The components contained in the computer system
500 of FIG . 5 are those typically found in computing system ,
such as but not limited to a desk top computer , lap top
computer , notebook computer , net book computer , tablet
computer , smart phone , personal data assistant (PDA) , or
other computer that may be suitable for use with embodi
ments of the present invention and are intended to represent
a broad category of such computer components that are well
known in the art . Thus , the computer system 500 of FIG . 5
can be a personal computer , hand held computing device ,
telephone , mobile computing device , workstation , server ,
minicomputer , mainframe computer , or any other computing
device . The computer can also include different bus con
figurations , networked platforms , multi - processor platforms ,
etc. Various operating systems can be used including Unix ,
Linux , Windows , Macintosh OS , Palm OS , and other suit
able operating systems .
[0050] Actions taken when the content included in a data
set or file received at an application level at a peer device
may vary and may depend on one or more actions identified

by a user of the peer computer . In certain instances , user
preferred actions may be selected in a user interface dis
played on a display at the peer computer . In other instances
actions taken after detecting malicious content may be
according to a set of pre - defined or default actions set in an
application program . Actions that may be taken after detect
ing malicious content in a data set include , yet are not
limited to marking the data set or file as including malicious
content , blocking reception of data associated with the data
set or file , and resetting one or more TCP connections
associated with the data set or file .
[0051] When the data set or file is marked as including
malicious content , that marking may be stored in a table or
database at the peer computer that received and detected the
malicious data . The data set or file may be identified by a
name (i.e. by a filename) or may be identified using a Hash
function or checksum of information that identifies the data
set . Once a data file has been identified subsequent attempts
to download the file may be blocked .
[0052] Hash functions identifying a data set or file may be
generated from metadata downloaded from a peer when
downloading a portion of a data set . In certain instances the
downloaded metadata may include a peer identifier , an
internet protocol (IP) address , a domain name , or a port
number .
[0053] As soon as a file is identified as being associated
with malicious content , one or more communication ses
sions associated with the file may be reset . This may include
resetting communications sessions between a plurality of
peer computers that are providing parts of the file .
[0054] The presently disclosure is not limited to files
received over a peer to peer network as file data received in
an interleaved (out of order) sequence at the application
level may also be scanned according to the present disclo
sure . For example , interleaved data received using the server
message block (SMB) 2.0 standard may be scanned in order
without reassembly at the application layer of a computer for
malicious content .
[0055] Embodiments of the present disclosure may be
implemented by a non - transitory computer readable storage
medium by a processor executing instructions out of a
memory , by a DPI scanner implemented in a field program
mable gate array (FPGA) .
[0056] The presently disclosed invention may be imple
mented in software (i.e. as a non - transitory computer read
able storage medium executable by a processor) , may be
implemented in whole or in part in a field programmable
gate array , may be implemented in whole or in part in a
hardware state machine , or may be implemented in a com
bination of hardware and software .
[0057] The various methods may be performed by soft
ware operating in conjunction with hardware . For example ,
instructions executed by a processor , the instructions other
wise stored in a non - transitory computer readable medium
such as memory . Various interfaces may be implemented
both communications and interface . One skilled in the art
will appreciate the various requisite components of a mobile
device and integration of the same with one or more of the
foregoing figures and / or descriptions .
[0058] The foregoing detailed description of the technol
ogy has been presented for purposes of illustration and
description . It is not intended to be exhaustive or to limit the
technology to the precise form disclosed . Many modifica
tions and variations are possible in light of the above

a

US 2021/0234873 A1 Jul . 29 , 2021
6

teaching . The described embodiments were chosen in order
to best explain the principles of the technology , its practical
application , and to enable others skilled in the art to utilize
the technology in various embodiments and with various
modifications as are suited to the particular use contem
plated . It is intended that the scope of the technology be
defined by the claim .
What is claimed is :
1. A method for scanning computer data , the method

comprising :
scanning a first out of order portion of a dataset from an

input state associated with malware , wherein the first
out of order portion is sent to a destination after the
scanning ;

generating a pattern that identifies the malware as a result
of the scanning the first out of order portion

generating an output state by scanning a second out of
order portion of the dataset that immediately precedes
the first out of order portion of the dataset ;

identifying that the ase udes the set of malware
based on matching of the input and output state ; and

blocking the second out of order portion of the dataset
from being sent to the destination based on the identi
fication that the dataset includes the malware .

2. The method of claim 1 , further comprising storing a
state mapping in memory that identifies a plurality of states
associated with the malware .

3. The method of claim 2 , wherein of the state mapping
associates each respective state of the plurality of states with
a set of characters .

4. The method of claim 1 , further comprising identifying
a plurality of input states of the malware , the plurality of
input states including the input state .

5. The method of claim 1 , further comprising scanning a
first data packet from each of a plurality of input states
including the input state .

6. The method of claim 5 , further comprising :
receiving a second data packet that immediately precedes

the first data packet ; and
scanning the second data packet from the plurality of

input states .
7. The method of claim 6 , further comprising :
generating an output state when scanning the second data

packet ; and
identifying that a combination of the second data packet

and the first data packet include the malware based on
an identification that the output state matches the input
state .

8. The method of claim 5 , further comprising :
scanning a plurality of additional data packets ;
identifying an output state for each of the plurality of

additional data packets ; and
identifying that a combination of the plurality of addi

tional data packets and the first data packet include the
malware based on evaluating each of the identified
output states .

9. The method of claim 1 , further comprising storing a
plurality of state mappings in memory , wherein each of the
plurality of state mappings correspond to a respective set of
malicious program code .

10. A method for identifying malicious program code , the
method comprising :

storing a state mapping in memory , wherein the state
mapping associates a first group of characters with a
first state and a second group of characters with a
second state ;

identifying that a first portion of the dataset includes the
second group of characters based on scanning the first
portion of a dataset from the first state ;

comparing the first state with an output state that was
generated when a second portion of the dataset was
scanned ;

identifying that the dataset includes the set of malware
based on the output state matching the first state ; and

blocking data from being sent to a destination based on
the identification that the dataset includes the set of
malware .

11. The method of claim 10 , further comprising :
receiving a first data packet , wherein the first portion of

the dataset is included in the first data packet , and
receiving a second data packet , wherein the second por

tion of the dataset is included in the second data packet .
12. A non - transitory computer - readable storage medium

having embodied thereon a program executable by a pro
cessor for implementing a method for scanning computer
data , the method comprising :

scanning a first out of order portion of a dataset from an
input state associated with malware , wherein the first
out of order portion is sent to a destination after the
scanning ;

generating a pattern that identifies the malware as a result
of the scanning the first out of order portion

generating an output state by scanning a second out of
order portion of the dataset that immediately precedes
the first out of order portion of the dataset ;

identifying that the dataset includes the set of malware
based on matching of the input and output state ; and

blocking the second out of order portion of the dataset
from being sent to the destination based on the identi
fication that the dataset includes the malware .

13 . The non - transitory computer - readable storage
medium of claim 12 , the program further executable to store
a state mapping in memory that identifies a plurality of states
associated with the malware .

14. The non - transitory computer - readable storage
medium of claim 13 , wherein of the state mapping associates
each respective state of the plurality of states with a set of
characters .

15. The non - transitory computer - readable storage
medium of claim 12 , the program further executable to
identify a plurality of input states of the malware , the
plurality of input states including the input state .

16. The non - transitory computer - readable storage
medium of claim 12 , the program further executable to scan
a first data packet from each of a plurality of input states
including the input state .

17. The non - transitory computer - readable storage
medium of claim 16 , the program further executable to :

receive a second data packet that immediately precedes
the first data packet ; and

scan the second data packet from the plurality of input
states .

18. The non - transitory computer - readable storage
medium of claim 17 , the program further executable to :

generate an output state when scanning the second data
packet ; and

US 2021/0234873 A1 Jul . 29 , 2021
7

identify that a combination of the second data packet and
the first data packet include the malware based on an
identification that the output state matches the input
state .

19. The non - transitory computer - readable storage
medium of claim 17 , the program further executable to :

scan a plurality of additional data packets ;
identify an output state for each of the plurality of

additional data packets ; and
identify that a combination of the plurality of additional

data packets and the first data packet include the
malware based on evaluating each of the identified
output states .

The non - transitory computer - readable storage
medium of claim 1 , the program further executable to store
a plurality of state mappings in memory , wherein each of the
plurality of state mappings correspond to a respective set of
malicious program code .

