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ABSTRACT

The invention provides devices and methods for linked
multimodal measurements of individual particles using a
mass sensor and an additional sensor.
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CELLULAR MEASUREMENT,
CALIBRATION, AND CLASSIFICATION

TECHNICAL FIELD

[0001] The invention relates to methods of for multimodal
measurements of individual cells.

BACKGROUND

[0002] Cancer is a global health issue that causes millions
of deaths annually worldwide. While a cure is the ultimate
goal, a more practical near-term goal is to focus on disease
management. Other positive outcomes include complete or
partial remission in which the cancer has responded to a
treatment and is either significantly reduced (partial remis-
sion) or undetectable via radiological imaging or histologi-
cal examination (complete remission).

[0003] Unfortunately, remission is often temporary, and
cancer often recurs or progresses after initially responding to
treatment and maintenance therapies. Cancer cells can
change through continued mutation and cancers can often
develop resistance to previously-effective therapies. While
there is some effort to tailor treatment, there is limited ability
to effectively predict how an individual patient will respond
to a particular treatment. Moreover, traditional methods for
measuring cancer biomarkers after treatment do not provide
the requisite precision necessary to drive therapeutic choice,
which may lead to extended periods of time in which a
patient endures a treatment that simply isn’t working as
intended.

[0004] Cellular mass and density and changes in cellular
mass and density have emerged as critical biomarkers of cell
disease and response to treatment. Suspended microchannel
resonators (SMR) are an ideal means by which to obtain
these cellular measures at a single cell resolution. However,
due to the configuration and operation of SMRs, there have
not been measurement devices and methods that provide
multimodal measurements, which combine single cell mea-
surements performed by SMR sensors with other sensor
types and measurement modalities of single cells.

SUMMARY

[0005] The present invention provides methods and mea-
surement devices for precisely measuring particles using a
suspended microchannel resonator (SMR) in combination
with other measurements to provide multimodal measure-
ments. Measurement devices of the invention comprise a
measurement device having a channel through which a
stream of particles flows through a sensor to measure
particle mass and at least one additional sensor to measure
a property independent of mass. Preferably measurements
from each sensor are linked for each particle.

[0006] In a preferred embodiment, the particles are cells
and measurement devices and methods of the invention
identify the cells and determine their flow velocity and/or
trajectory through the SMR and/or by any other means
utilized for multi-modal measurement. In prior measurement
devices and methods, it was not possible to track cells or to
perform simultaneous, linked multimodal measurements as
cells flowed through an SMR. By identifying a cell with a
first type of sensor and determining the velocity and/or
trajectory of its flow through a microchannel, the presently
disclosed measurement devices and methods are able to
track an individual cell (or populations of cells) as it passes
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by (e.g., the SMR and an optical sensor) and correlate
measurements from those sensors with respect to a cell or
cells. Any particle or group of particles can be used in
practice of the invention and include, but are not limited to,
tissue debris, cell aggregates, bacteria, fungi, protein, pro-
tein aggregates, exosomes, and biologically functionalized
particles.

[0007] In methods and measurement devices of the inven-
tion, particles are introduced into a measurement device that
includes one or more microchannels through which the
particles flow. A sensor, such as a brightfield imager placed
in series with the SMR, provides data to a classifier that
identifies a particle that has flowed, or will flow, through an
SMR. The measurement device determines the velocity
and/or trajectory of the particle flowing through the micro-
channel. Using the flow velocity and/or trajectory, the mea-
surement device correlates measurements made using the
SMR and the additional sensor(s). As used herein, reference
will be made to a preferred embodiment in which cells are
the particles, but it is understood that any particles may be
used in the context of the invention as determined by the
user.

[0008] In certain aspects, measurement devices described
herein use the SMR to determine the flow velocity of a cell
passing through it. A single-cell mass measurement col-
lected with the SMR is derived from the magnitude of
frequency shift peaks caused by the cell traversing the
sensor. However, the temporal characteristics of that peak
may also be used to determine the velocity as well as flow
path of the cell traversing the sensor. The measurement
device may use this flow velocity and/or flow path to project
a time when a cell passed through a sensor region, either
upstream or downstream of the SMR. The measurement
device uses this projected time to correlate the SMR mea-
surement with the identity of a cell, which was obtained by
the classifier using data from a sensor (e.g., a brightfield
imager) as the cell passed through the sensor region. Thus,
the velocity provides a time shift that may be used to find the
corresponding measurement (e.g., image of a particular cell)
associated with a given mass measurement from the SMR.
[0009] Similarly, in certain aspects, measurement devices
provided herein may use correlation statistics to identify and
match measurements performed by multiple sensors (includ-
ing the SMR) serially connected in the measurement chan-
nel, without first calculating the flow velocity of a cell. By
using correlation between the time series of measurements
performed at each sensor, the measurements are linked with
high accuracy. In such measurement devices, the magnitude
of the measured signals in each sensor can be additionally
utilized to improve the accuracy of the process of matching
measurements of different sensors. One example is to use the
size calculated from a brightfield image to correlate with the
mass measured by the SMR in addition to using the time of
measurements of image capture and SMR measurement.

[0010] Similarly, in certain aspects, measurement devices
of the invention may use the sensor(s) in a sensor region to
provide data to a classifier that identifies a single cell and its
characteristics and determines its flow velocity. For
example, certain measurement devices and methods of the
invention use an imaging sensor, such as a brightfield sensor,
to provide data to a classifier. The classifier uses those data
to identify a cell that will or has passed through an SMR.
The sensor may obtain multiple measurements, such as
images with a brightfield sensor, to track the position of the
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identified cell at multiple time points to calculate its flow
velocity. Using the flow velocity, the measurement device
projects a time at which the identified cell passed through the
SMR. The measurement device correlates an SMR measure-
ment obtained near the projected time with the identity of the
cell. The time difference measured from multiple sensor
measurements, e.g., images, collected in succession for the
same cell are used to determine the cell velocity, which may
be used to project the time of a cell’s mass measurement for
data matching. Independent measurements by the sensors
are linked by correlating a time difference between mea-
surements of single particles across the mass sensors and
other sensors. These signals (and correlations based on
them) can be made in real time. In a preferred feature of the
invention, linked measurements from the sensors are used to
classify particles into groups based on orthogonal informa-
tion acquired from the linked measurements. The invention
is useful to categorize or group cells generally and may be
applied to identify cellular vs. non-cellular material and/or
living vs. dead cells. Sensors can be controlled by any means
necessary. However, in a preferred embodiment, one of the
sensors is an SMR and the sensors are controlled by a field
programmable gate array (FPGA).

[0011] In certain aspects, multimodal measurements
obtained using the measurement devices and methods of the
invention are used to reciprocally improve the quality or
interpretability of each data set (one from the SMR and the
other from the sensor in the sensing region) in isolation. For
example, brightfield imaging conducted upstream of an
SMR is useful to determine when multiple cells are entering
the SMR concurrently. Certain measurement devices and
methods of the invention use that information from the
imager to deconvolve the coupled mass peak obtained from
the SMR. Without that information, this type of multi-peak
mass measurement from an SMR would be uninterpretable
and need to be discarded. Similarly, imaging may be used to
determine the flow path of a cell entering the SMR. Certain
measurement devices and methods of the invention correct
SMR measurements for position-dependent error in certain
types of SMR-based mass readouts (e.g., first mode mass
sensing, second mode short channel sensing). Single-cell
mass measurements may also be used to improve the clas-
sification of single-cell image sets (e.g., specifying a mass
threshold or mass based “cost” of image classification for
live versus dead, or tumor versus immune cells).

[0012] Thus, the present invention provides methods and
measurement devices for assessing cellular properties. An
exemplary measurement device of the invention includes a
measurement device with a measurement channel through
which a cell flows, a sensor operating over a sensing region
in the channel, and a suspended microchannel resonator
(SMR). In certain aspects, the measurement device identifies
a cell flowing through the measurement channel utilizing
data from the sensor, determines a flow velocity of the cell,
and correlates a measurement obtained using the SMR with
the identity of the cell.

[0013] In certain aspects, the measurement device pro-
vides multi-modal measurements for a single cell that
include one or more of the cell’s mass, volume, diameter,
impedance, capacitance, optical properties, fluorescence
intensity, density, stiffness, surface friction, and deforma-
tion. In such measurement devices, the linked multi-modal
measurements may be used independently to provide an
additional dimension to the single-cell data, e.g., using a
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cell’s mass and optical properties, such as fluorescence
signal from specific surface markers. In other measurement
devices, the linked multi-modal measurements may be used
to calculate a dependent, yet otherwise inaccessible param-
eter of the cell, e.g., using linked mass and volume mea-
surements of a single cell to calculate cell’s density, or using
linked mass and deformation measurement of a single cell to
calculate cell’s stiffness. In other measurement devices, the
linked multi-modal measurements are used to calculate a
parameter that is correlated to a physical property of the cell,
e.g., using linked mass and optical diameter to calculate a
parameter that is proportional to cell’s volume and density.

[0014] A cell can flow through the sensor region prior to
or after the SMR. The measurement device may use the flow
velocity of the cell to project a time at which the cell flows
through the SMR for measurement. The measurement
device uses this projected time to correlate a measurement
obtained using the SMR with the identity of a cell.

[0015] In certain aspects, the sensor at the sensing region
is an imaging sensor. In certain aspects, the measurement
device identifies the cell using an image obtained with the
imaging sensor prior to or when the cell enters the SMR for
measurement. The imaging sensor may obtain a plurality of
images of the cell as it flows over the sensing region and the
measurement device determines the flow velocity of the cell
using a positional change of the cell between each of the
images. In certain measurement devices, the imaging sensor
images across multiple imaging fields. The multiple imaging
fields may include multiple sensing regions associated with
an SMR and/or serial SMRs.

[0016] In certain aspects, the measurement device incor-
porates a fluorescence sensor at the sensing region, e.g., a
fluorescence optics connected to a photomultiplier tube
sensor to detect the presence and/or measure the magnitude
of a fluorescence signal from the cell. In such measurement
devices, the fluorescence signal may be used to identify the
cell of origin, cell type, cell state, cell viability, activation
state, differentiation state, and used together with cell’s
mass.

[0017] Certain measurement devices of the invention
include a plurality of SMRs and/or sensor regions. In certain
aspects, each sensor region is associated with a different
SMR, and the sensor(s) (e.g., an imaging measurement
device) measures cells flowing in each sensor region. For
example, an imaging sensor may image multiple sensor
regions using a different field of view for each sensor region.

[0018] In certain aspects, the measurement device uses
data from the SMR to determine the flow velocity of the cell.
The measurement device may project a time at which a cell
flowed through the sensor region using the flow velocity.
The measurement device may correlate a measurement
obtained using the SMR with the identity of the cell using
the projected time. In certain measurement devices, the
measurement device determines flow velocity of the cell
using a width of frequency shift peaks measured by the SMR
as the cell flows through the SMR. In certain embodiments,
the measurement device determines the velocity of the cell
using the temporal variation of the frequency shift signal
measured by the SMR as the cell flows through the SMR.

[0019] In certain measurement devices, the velocity of the
cell is determined using the frequency shift signals from
multiple vibrational modes of the SMR. Use of multiple
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vibrational modes of the SMR provides an accurate mea-
surement of the flow path and thus reduces the variability on
the flow velocity estimate.

[0020] In certain aspects, the sensor detects the orientation
of the cell in the measurement channel. The measurement
device may use this orientation data to adjust a measurement
of the cell obtained using the SMR due to the detected
orientation of the cell. In certain aspects, the sensor detects
the cell entering the SMR with one or more other cells. The
measurement device uses data from the sensor to isolate a
mass measurement for each of the cells from a convoluted
frequency shift measurement obtained by the SMR, due to
the cell and the one or more other cells flowing through the
SMR.

[0021] In other measurement devices of the invention, the
SMR is connected to at least one measurement channel that
is larger in cross-section compared to the cross section of the
channel running through the SMR. A wide cross-section
channel in the sensor region reduces the flow velocity of
cells enabling higher quality measurements (e.g., imaging,
fluorescence, impedance, capacitance), while a narrow chan-
nel cross section in SMR increases SMR sensitivity for
measuring cell mass and decreases position dependent error
on velocity estimates.

[0022] In some measurement devices of the invention, the
SMR is placed in the middle of two measurement channels,
enabling linked multi-modal measurements at multiple sen-
sor regions before and after the cell is measured in the SMR.
[0023] In another embodiment of the invention, an array
of SMRs is placed in series with an array of measurement
channels. In such measurement devices, the SMRs and
sensors (e.g., fluorescence, impedance, capacitance) are
operated simultaneously but independently. In other mea-
surement devices, a single sensor (e.g., brightfield imaging)
can be placed to capture all measurement regions of the
array.

[0024] In certain measurement devices, both the SMR and
the sensor signals are measured and processed by a FPGA to
provide real-time linked measurements of a cell flowing in
the measurement channel.

[0025] In certain measurement devices, the measurement
channel is placed in between a sample channel and a waste
channel, to control flow into and out of the measurement
channel. In such measurement devices, an additional sensor
can be placed at the entrance and exit regions to identify
flow conditions in the sample and waste channels.

[0026] measurement devices of the invention are useful to
identify one or more biological property of the cell using a
combination of data from the sensor and the SMR.

[0027] In certain aspects, the measurement device deter-
mines whether the cell or any other debris in the sample
stops flowing through the measurement channel due to a
blockage.

[0028] In certain other aspects, the invention provides
methods for assessing patient response to a treatment. Pre-
ferred methods utilize measurements obtained by the SMR
measurement device as described above as a proxy for
clinical response; and then to use those results to train a
machine-learning algorithm to recognize patterns (e.g.,
expression levels and/or presence) of biomarkers indicative
of clinical response. In one example, a tumor sample is
evaluated in an SMR device as discussed above, and a
therapeutic is selected. After treatment with the selected
therapeutic, biomarkers present in a blood sample from the
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treated patient are assessed and the machine-learning algo-
rithm correlates the presence and/or amount (e.g., expres-
sion level) of the one or more biomarkers with the SMR-
determined therapy. In this way, the algorithm is trained to
identify effective biomarkers (or combinations of biomark-
ers) that are predictive of patient response based on the
correlation of those biomarkers to the validated SMR
results. Biomarkers include nucleic acids, proteins, polysac-
charides, cell-surface receptors, and the like. The biomark-
ers identified by the algorithm are useful for evaluating and
predicting therapeutic efficacy alone or in combination with
measurements from the SMR device.

[0029] Preferred machine-learning algorithms include, but
are not limited to, supervised, semi-supervised, unsuper-
vised and/or reinforcement algorithms. The exact nature of
the algorithm is selected for convenience. Some common
algorithms include decision trees, graph structures (includ-
ing cyclic and acyclic graphs), Bayesian algorithms, random
forest algorithms, gradient-boosting algorithms, and others.
[0030] Methods and devices of the invention are useful to
evaluate effectiveness of the cancer treatment and identify
malignant cancer cells in a blood or tissue sample from a
patient. Such methods and devices of the invention are used
as an ex vivo test of drug response, useful for therapeutic
selection. For example, optimized measurement of mass
accumulation rate (MAR) in cells provides a measure of
cancer in a patient. After treatment of a patient, optimized
cellular measurements are used to monitor recurrence,
remission, or relapse. Cancer cells may be obtained from a
patient pre-or post-treatment, and the measurement of MAR
by the methods and devices of the invention is used to
monitor the effectiveness of the cancer treatment. The
method may further comprise using a machine-learning
algorithm to assess and correlate the SMR measurements
regarding therapeutic outcome with the presence and/or
expression levels of one or more biomarkers. Thus, methods
ofthe invention are useful for the identification of biomarker
indicative, either alone or in combination with SMR or other
biomarkers, of therapeutic outcome. In one aspect, thera-
peutic outcome comprises the selection of one or more
therapeutics for treatment of the condition being addressed.
[0031] The machine-learning algorithm uses training data
to make inferences in order to generate a prediction on
previously unseen test data using machine learning. In
certain aspects, measurements obtained using measurement
devices and subsequent assays are used to reciprocally
improve the quality or interpretability of the training data
set. The method can further include iteratively updating the
training data set with the results of the subsequent assays
along with the patient’s data and any cancer data obtained
through additional assays, for example the presence and/or
expression levels of one or more biomarkers, for further
machine learning analysis.

BRIEF DESCRIPTION OF THE DRAWINGS

[0032] FIG. 1 diagrams an exemplary SMR used in the
invention.
[0033] FIG. 2 shows exemplary SMR waveform with

corresponding cell positions

[0034] FIG. 3 shows a suspended microchannel resonator
(SMR) device optimized for multimodal measurements.
[0035] FIG. 4 shows a serial suspended microchannel
resonator (sSMR) array.

[0036] FIG. 5 shows a cantilever of an SMR device.
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[0037] FIG. 6 shows loading live cells into an instrument
for an optimized cellular measurement.

[0038] FIG. 7 shows a measurement device useful for
performing methods of the disclosure.

[0039] FIG. 8 shows a schematic demonstrating linked
mass and imaging measurements along with exemplary data
for image curated mass measurements.

DETAILED DESCRIPTION

[0040] The present disclosure provides methods and mea-
surement devices for optimized multimodal measurements
of individual cells using a suspended microchannel resona-
tor (SMR) and one or more other sensors in order to
effectively detect biomarkers and other properties of cells.
The presently disclosed measurement devices and methods
combine the high-resolution capabilities of an SMR to
obtain accurate measurements, such as mass-, density-, and
velocity-based measurements of single cells with other
forms of measurement, such as optical measurements, to
provide high throughput means of obtaining multimodal
measurements for individual, living cells. Methods of the
invention are useful for the discovery of biomarkers that are
correlated with therapeutic choice and/or disease outcome
and may also be predictive of disease progression, relapse,
remission, and the like.

[0041] Measurement devices and methods of the invention
identify single cells flowing through a microchannel of a
measurement device. Measurement devices of the invention
identify an individual cell using a sensor as the cell flows
past a sensor region in a microchannel before and/or after the
cell passes through an SMR for measurement. The measure-
ment device may provide data from the sensor to a classifier
that identifies and tracks the cell through the measurement
device. Measurement devices and methods of the invention
include a step that determines the flow velocity of an
identified cell through a microchannel of the measurement
device. Using the flow velocity, the measurement device
correlates a measurement/identity of the cell from a sensor,
such as a brightfield imager, with a measurement obtained
for that same cell using the SMR.

[0042] Measurement devices of the invention may also
track individual cells as they flow past a series of sensor
regions and/or SMRs. In this way, measurement devices and
methods of the invention provide multimodal measurements
of a single cell over time, which may include SMR derived
measurements, such as cellular mass and density.

[0043] FIG. 1 diagrams an exemplary SMR device that is
used as the mass sensor in the methods and measurement
devices of the invention to provide a multimodal measure-
ment for single cells. The device includes a measurement
channel 102 through which cells flow. An SMR sensor 108,
which includes an integrated fluidic channel 114 running
through it, is placed along the measurement channel. The
device also includes one or more sensing regions 120, 130,
over which at least one additional sensor, which is not the
SMR, operates to obtain one or more measurements of a
single cell. For example, in exemplary measurement devices
of the invention, this additional sensor is an imaging sensor,
such as a brightfield sensor, which obtains one or more
images of the single cell.

[0044] In certain measurement devices of the invention,
the channel integrated in the SMR 114 has a smaller cross-
section than the measurement channel at either side of the
SMR, on which the sensor region(s) is located. A bigger
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cross-section channel in the sensor region proportionally
reduces the flow velocity of cells enabling higher quality
measurements (e.g., imaging), while a smaller channel
cross-section in the SMR increases sensor sensitivity and
decreases position dependent error. Similarly, the fluidic
channel within the sensor regions 120 and 130 may be
further configured to focus the flow of cells relative to the X,
Y, and Z dimensions to prevent cells from stacking or
passing one another in the microchannels of device. This
may help assure that a determined flow velocity remains
associated with a particular cell.

[0045] In certain aspects, the additional sensor provides
data or a signal as a cell passes through the sensing region
that the measurement device uses to classify an individual
cell vs cellular debris, cell aggregates or to identify if a cell
is alive or dead. As shown, the sensing regions may be
positioned across the measurement channel before 120 and/
or after 130 the SMR. In certain aspects, the additional
sensor uses measurements from the sensing regions to
determine the flow velocity of an identified cell. For
example, as shown in FIG. 1, the measurement device may
obtain measurements of a single cell at multiple time points
140, while the cell is in a sensing region 120 and/or 130. The
time difference 150 it takes for a cell between measurements
of the additional sensor is used to calculate the flow velocity
of an individual cell in the measurement channel 102. In
certain aspects, the sensor is an imaging sensor that obtains
multiple images of a single cell as it flows through the
sample channel.

[0046] The measurement device may use the flow velocity
data to project a time when a cell flows or flowed past the
SMR. Using this projection, the measurement device corre-
lates a mass measurement made by the SMR at or near the
projected time with the independent measurement(s) made
by the additional sensor(s). Thus, the measurement device is
able to track the path of an individual cell through an SMR
and one or more additional sensors to provide a multimodal
assessment of the cell. In certain aspects, the mass of a cell
measured by the SMR is linked with the identification of a
cell such as live vs dead or classification of a cell such as
single cell, aggregate or tissue debris.

[0047] In some embodiments, one of the additional sen-
sors in the measurement device is a fluorescent detector and
the mass of a cell measured by the SMR is linked with a
fluorescent marker of the cell reporting a cell property such
as cell origin, cell viability, cell type, cell-cycle state, cell
differentiation state, activation state, etc.

[0048] Optionally, one of the additional sensors in the
measurement device measures an additional independent
physical or mechanical property and the mass of a cell
measured by the SMR is linked with its density, volume, dry
density, deformability, elasticity or stiffness.

[0049] Measurement devices of the invention may use the
transient signal created by the SMR to determine the flow
velocity of a cell in the measurement channel. FIG. 2
provides an exemplary measurement of a single-cell mass
collected using an SMR. The signal locations 201-209
correspond to physical locations 161-169 on measurement
channel 102. The magnitude of frequency shift peaks in FIG.
2 are caused by the cell traversing the measurement channel
120 and the channel embedded in the SMR 114, and may
provide, for example, mass-and density-based measures of
the cell. However, the time dynamics of this peak such as its
full width, full width at half maximum or the shape may also
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be used to determine the velocity of the cell traversing the
SMR. The measurement device may use this flow velocity to
project a time when a cell passed or will pass through a
sensing region(s), upstream 120 and/or downstream 130 of
the SMR. The measurement device uses this projected time
to correlate the SMR measurement with the identity of a cell
determined using data from an additional sensor (e.g., an
imager) operating over the sensor region(s). Thus, the veloc-
ity provides a time difference that may be used to find the
corresponding measurement (e.g., image of a particular cell)
associated with a given mass measurement from the SMR.
[0050] In certain aspects, data from the additional sensor
operating over the sensor region is sent to a classifier trained
to identify single cells. When a cell flows into the sensing
region, which comprises a sensor operating over the sensing
region, data from the sensor may be provided to a classifier
which identifies the cell. In certain aspects, the classifier
uses data from the sensor to identify cellular, non-cellular
material, target cells, non-target cells, labels, and/or clogs in
the device. In certain aspects, the classifier determines the
flow velocity and correlates measurements from the SMR
with those obtained for a single cell using a sensor operating
over the sensor region.

[0051] FIG. 3 shows a suspended microchannel resonator
(SMR) device 301 of the disclosure. The measurement
device 301 includes a sample channel 309 and a secondary
channel 305. Cells are introduced into the sample channel
and flow through the sample channel 309 to a sensing region
anywhere along the channel accessible by a sensor 363. The
sensor 363 may operate over the sensing region and collect
data from an individual cell as if flows through the sensing
region. The measurement device uses data from the sensor
363 to identify the single cell. This may include providing
the data 371 to a classifier 370. The classifier may use the
data from the sensor 363 to identify and track individual
cells flowing through sensing region. The measurement
device determines the velocity at which the cell 329 flows,
for example, as it enters the measurement channel 305 for
measurement by the SMR 333. The flow rate through the
SMR device can be controlled based on the identification of
individual cells in the SMR device, using data 371 from
sensors 363 disposed over one or more sensor regions. This
data may be provided to a classifier 370, which is trained to
identify and track individual cells.

[0052] In certain respects, the classifier identifies cellular
and/or non-cellular material in the sample channel 309. The
measurement device may comprise a control measurement
device for receiving the identification from the classifier 370
and control and track the flow of individual cells through the
sample channel 309 and the measurement channel 305. The
measurement includes a suspended microchannel resonator
(SMR) 333, for making optimized single cellular measure-
ments, such as mass-, density, and velocity-based measure-
ments.

[0053] Cells in an eluate 317 flow through the upper
sample channel 309, wherein a portion of the eluate 317
collects in the upper sample channel waste reservoir 321.
The calibration method is being depicted. A cell 329 is
introduced into the channel 305. A portion of the eluate 317
including the cell 329 flows through the suspended micro-
channel 333. The particle has previously been identified by
a classifier, and the flow velocity through the suspended
microchannel 305 has been determined. The velocity may be
controlled by adjusting the pressure difference between the
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inlet and outlet of the channel to optimize measurement of
the particle of non-cellular material. Velocity may also be
controlled by providing channels of varying diameter.

[0054] In the exemplary device of FIG. 3, since the flow
cross section of the suspended microchannel 333 and mea-
surement channel 305 is about 70 times smaller than that of
the sample channel 305, the linear flow rate can be much
faster in the suspended microchannel than in the sample
channel, even though the pressure difference across the
suspended microchannel is small. Therefore, at any given
time, it is assumed that the SMR device 301 is measuring the
eluate that is present at the inlet of the suspended micro-
channel. This helps assure the projected time at which the
cell flows past the sensor or SMR can be accurately deter-
mined, as there is a constant measurement point.

[0055] The cell 329 flows through the suspended micro-
channel 305. The suspended microchannel 305 extends
through a cantilever 333 which sits between a light source
351 and a photodetector 363 connected to a chip 369 such
as a field programmable gate array (FPGA). The cantilever
333 is operated on by an actuator, or resonator 357. The
resonator 357 may be a piezo-ceramic actuator seated under-
neath the cantilever 333 for actuation. After the cell 329 is
introduced to the lower waste channel 313, the cell 329 is
collected in the lower waste collection reservoir 345. A cell
329 identified by the classifier flows from the upper sample
channel 309 to the inlet of the measurement channel 305,
through the suspended microchannel 333, and to the outlet
of the suspended microchannel toward the lower waste
channel 313. A buffer 341 flows through the lower bypass
channel towards a lower bypass channel collection reservoir
345.

[0056] By flowing the cell 329 through the SMR device
301 a reading or measurement may be made. This measure-
ment is correlated with the identity of the cell to provide a
multimodal measurement. The dotted region 372 captures
the area depicted in FIG. 1. In certain aspects, the readout of
the measurement from the SMR may be adjusted based on
information provided by the sensor disposed over the sensor
region and/or the classifier. For example, the sensor may
detect the orientation of the cell in the sample channel, e.g.,
by using an image or set of images obtained from the sensor.
The measurement device or classifier may use this orienta-
tion data to adjust a measurement of the cell obtained using
the SMR, which would otherwise be inaccurate due to the
detected orientation of the cell. Similarly, the sensor may
detect the cell entering the SMR with one or more other
cells. A measurement made using the SMR as a number of
cells pass through it together can result in multi-peak
measurements. The measurement device or classifier may
use data from the sensor indicative of multiple cells travers-
ing the SMR to isolate a measurement for a particular cell
from a multi-peak measurement obtained by the SMR.

[0057] In certain measurement devices of the invention,
the SMR is suspended within the sample channel and a
diameter of a portion of the channel in which the SMR is
suspended is narrower than a diameter of a portion of the
channel in which the sensor region is located. A wide
diameter channel in the sensor region reduces the flow
velocity of cells for higher quality measurements (e.g.,
imaging), while a narrow channel diameter in SMR to
increases sensor sensitivity and decreases position depen-
dent error.
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[0058] In certain aspects, the classifier identifies one or
more biological property of the cell using a combination of
data from the sensor and the SMR.

[0059] Incertain aspects, the classifier determines whether
the cell stops flowing through the sample channel due to a
blockage.

[0060] The SMR device 301 when used with the measure-
ment devices and methods of the disclosure provides real-
time, high-throughput optimized monitoring of mass or
density of individual cells flowing therethrough and corre-
lates those measurements with the identity of a single cell.
Therefore, the cellular measurements, including mass and/or
mass changes (e.g., MAR), of a single cell can be precisely
measured. Such data can be stored and used in subsequent
analysis steps.

[0061] The measurement device may comprise an SMR
device 301 comprising an array of SMRs with a fluidic
channel passing 305 therethrough. For example, the mea-
surement device may comprise a serial SMR (sSMR) in
which fluid passes through an array of SMR devices, in
which each successive pair of SMR devices is separated by
a portion of the channel that provides a delay. The flow of
fluid in each SMR may be controlled based on a classifier
255 that identifies and tracks individual cells flowing
through the sSMR. The sSMR may include multiple SMRs
and sensor regions that are fluidically connected, such as in
series, and separated by delay channels for optimized cel-
lular measurements.

[0062] Devices used in certain methods and measurement
devices of the invention may comprise a suspended micro-
channel resonator (SMR) 301 or serial SMR (sSMR) for
precisely making cellular measurements, such as density and
mass and/or changes in density or mass, of materials flowing
through the device. The SMR device 301 comprises an
exquisitely sensitive scale that detects minor weight or
density changes in cells. The SMR device 301 includes a
structure such as a cantilever that contains a fluidic micro-
channel. Individual cells are flowed through the structure,
which is resonated, and its frequency of resonation is
measured. The frequency at which a structure resonates is
dependent on its mass. By measuring the frequency at which
the cantilever resonates when cell is at a first point along the
cantilever, the instrument may compute a mass/density, or
change in mass/density of the particle in the fluidic micro-
channel.

[0063] By measuring the deviation of the resonant fre-
quency at which the cantilever resonates when a cell is at a
second point along the cantilever, the instrument may com-
pute structural properties of the particle in the fluidic micro-
channel, and the data may be used by a classifier to identify
additional properties of an identified cell. In one aspect, the
measurement device determines flow velocity of the cell
using a width of frequency shift peaks measured by the SMR
as the cell flows through the SMR.

[0064] By flowing particles cellular and/or non-cellular
material through such devices, properties of the particles can
be observed. For example, by flowing cells through such
devices, it can be determined whether or not identified cells
are growing and accumulating mass and/or density. By
flowing non-cellular material through such devices, for
example reference material with a known property, mea-
surements and devices can be calibrated. The mass or
density accumulation or rate of mass or density accumula-
tion is a clinically important property and is used to indicate
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cellular identity and/or activity. The speed and sensitivity of
an SMR device 301 allows the SMR device 301 to detect, for
example, a cell’s response to a treatment modality while the
cell is still living. Suspended microchannel resonator
devices 301 are described in Cermak, 2016, High-through-
put measurement of single-cell growth rates using serial
microfiuidic mass sensor arrays, Nat Biotechnol, 34(10):
1052-1059, incorporated herein by reference.

[0065] FIG. 4 shows a serial suspended microchannel
resonator (sSMR) array 401. Instruments may include one or
more sSMR array 401 to make reliably sensitive and precise
measurements of mass and density or changes in mass and
density. Each individual SMR may include a sensing region
over which a sensor operates to obtain measurements, which
may be used to track a cell or measure its flow velocity.
[0066] Instead of a single suspended microchannel device
301, the instrument may include an sSSMR array 401, which
includes a plurality of cantilevers 449 and a plurality of
delay channels 453. A live cell may be identified by a
classifier and then introduced into a first bypass channel 457
through the cantilevers 449 and delay channels 453 to the
second bypass channel 461. Pressure differences in the first
bypass channel 457 are indicated by P1 and P2, and pressure
differences in the second bypass channel 461 are indicated
by P3 and P4. The pressure differences in the first and
second bypass channels may be controlled based on the
identification of the cell in the sSMR using one or more
sensors operating on one or more sensing regions of the
device.

[0067] The live cell flows through the sSSMR array 401,
which is resonated and its frequency of resonation is mea-
sured. In each cantilever in the array of cantilevers 449 the
frequency at which a structure resonates when the cell is at
a first point along the cantilever is dependent on its mass and
by measuring the frequency at which the cantilever reso-
nates, the instrument may compute, for example, a mass,
change in mass, density, change in density, and/or velocity
of a living cell using the SMR. By flowing a live malignant
cell through such devices, one may observe functions of
those cells, such as whether they are growing and accumu-
lating mass/density or not. The mass or density accumula-
tion or rate of mass or density accumulation may be related
to clinically important property such as the presence of a
cancer cell or the efficacy of a therapeutic on a cell. In each
cantilever in the array of cantilevers 449 the deviation of the
resonant frequency at which the structure resonates when the
cell is at a second point along the cantilever is dependent on
structural properties of the cell and can be used to identify
the cell as cellular material.

[0068] Various embodiments of SMR devices 301 and
sSMR instruments 401, as well as methods of use, include
those instruments/devices manufactured by Innovative
Micro Technology (Santa Barbara, CA) and described in
U.S. Pat. Nos. 8,418,535 and 9,132,294, all incorporated by
reference. Notably, SMR devices 301 and sSMR instruments
401 may be used together with a classifier 255 for optimized
cellular measurements.

[0069] Cantilevers of an SMR device 301 of sSSMR instru-
ment 401 may be housed in an on-chip vacuum cavity,
reducing damping and improving frequency (and thus mass)
resolution for optimized measurements, which may be cor-
related with the identity of a particular cell. As a particle cell
previously identified, including by a classifier, flows through
the interior of the cantilever, it transiently changes the
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resonant frequency of the cantilever in proportion to the
buoyant mass of the particle. SMR devices 301 may weigh
single mammalian cells with a resolution of 0.05 pg (0.1%
of a cell’s buoyant mass) or better. Where mass, MAR,
density, and/or density accumulation rate, is measured,
devices of the disclosure are provided that are capable of
measuring these properties within certain valuable sensitivi-
ties or times from the cells identified by a classifier.

[0070] For example, mass measurement instruments that
use a suspended microchannel resonator (SMR) device 301
are capable of measuring mass, mass change, or MAR with
a precision of at least about 0.01% of a cell mass. SMR-
based instruments are capable of measuring mass, mass
change, density, density change, density accumulation rate,
or MAR with a precision of at least about 0.1% per hour.

[0071] Embodiments of the technology use microchannel
resonators to precisely measure mass, density, mass
changes, and/or density changes in individual living cells
after identification of the cell the measurement device using
data from another sensor. The sSMR array 401 includes an
array of SMR devices fluidically connected in series and
separated by delay channels between each cantilever 449.
The delay channels give the cell time to grow as it flows
between cantilevers.

[0072] SMR devices 301 to be used together with a
classifier may be fabricated as described in Lee, 2011,
Suspended microchannel resonators, Lab Chip 11:645 and/
or Burg, 2007, Weighing of biomolecules, Nature 446:1066-
1069, both incorporated by reference. Large-channel devices
(e.g., useful for peripheral blood mononuclear cells (PBMC)
measurements) may have cantilever 333 interior channels of
15 by 20 um in cross-section, and delay channels 20 by 30
um in cross-section. Small-channel devices (useful for a
wide variety of cell types) may have cantilever 333 channels
3 by 5 um in cross-section, and delay channels 4 by 15 um
in cross-section. The tips of the cantilevers 449 in the sSSMR
array 401 may be aligned so that a single line-shaped laser
beam can be used for optical-lever readout. The cantilevers
may be arrayed such that the shortest (and therefore most
sensitive) cantilevers are at the ends of the array. Before use
for measuring, the sSMR array 401 may be cleaned with
piranha (3:1 sulfuric acid to 50% hydrogen peroxide) and
the channel walls may be passivated with polyethylene
glycol (PEG) grafted onto poly-L-lysine. In some embodi-
ments, a piezo-ceramic actuator seated underneath the
device is used for actuation. The SMR device 301 may
include low-noise photodetector, Wheatstone bridge-based
amplifier (for piezo-resistor readout), and high-current
piezo-ceramic driver. To avoid the effects of optical inter-
ference between signals from different cantilevers (produc-
ing harmonics at the difference frequency), the instrument
may include a low-coherence-length light source (675 nm
super-luminescent diode, 7 nm full-width half maximum
spectral width) as an optical lever. After the custom photo-
detector converts the optical signal to a voltage signal, that
signal is fed into an FPGA board, in which an FPGA
implements twelve parallel second-order phase-locked loops
which each both demodulate and drive a single cantilever.
The FPGA may be a Cyclone IV FPGA on a DE2-115
development board operating on a 100 MHz clock with /O
provided via a high-speed AD/DA card operating 14-bit
analog-to-digital and digital-to-analog converters at 100
MHz.
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[0073] To operate all cantilevers 449 in the sSMR array
401 in order to measure cell identified by the measurement
device, the resonator array transfer function is first measured
by sweeping the driving frequency and recording the ampli-
tude and phase of the array response. Parameters for each
phase-locked loop (PLL) are calculated such that each
cantilever-PLL feedback loop has a 50 or 100 Hz FM-signal
bandwidth. The phase-delay for each PLL may be adjusted
to maximize the cantilever vibration amplitude. The FM-
signal transfer function may be measured for each cantile-
ver-PLL feedback loop to confirm sufficient measurement
bandwidth (in case of errors in setting the parameters). That
transfer function relates the measured cantilever-PLL oscil-
lation frequency to a cantilever’s time-dependent intrinsic
resonant frequency. Frequency data for each cantilever may
be collected at 500 Hz, and may be transmitted from the
FPGA to a computer. The device may be placed on a copper
heat sink/source connected to a heated water bath, main-
tained at 37 degrees C.

[0074] The sample is loaded into the device from vials
pressurized under air or air with 5% CO2 through 0.009 inch
inner-diameter fluorinated ethylene propylene (FEP) tubing.
The sample may comprise cellular and/or non-cellular mate-
rial together. The pressurized vials may be seated in a
temperature-controlled sample-holder throughout the mea-
surement. FEP tubing allows the device to be flushed with
piranha solution for cleaning, as piranha will damage most
non-fluorinated plastics. To measure a sample of cells, the
sSMR array 401 may initially flushed with filtered media.
Particles of cellular and/or non-cellular material may be
identified by a classifier and then provided to the sSMR 401.
The flow velocity of identified cells through the sSMR 401
may be based on data from the sensors used to provide an
identification for the cell.

[0075] On large-channel devices, between one and two psi
may be applied across the entire array based on the identi-
fication of cell by the measurement device, yielding flow
rates on the order of 0.5 nl/s (the array’s calculated fluidic
resistance is approximately 3x10"16 Pa/(m3/s). For small-
channel devices, 4-5 psi may be applied across the array,
yielding flow rates around 0.1 nl./s based on the identifica-
tion of the cell by the measurement device. Additionally,
every several minutes new sample may be flushed into the
input bypass channel to prevent particles and cells from
settling in the tubing and device. Between experiments,
devices may be cleaned with filtered 10% bleach or piranha
solution. In certain aspects, the measurement devices detect
a drop in velocity of one or more cells through the device to
determine that a blockage exists.

[0076] For the data analysis, the recorded frequency sig-
nals from each cantilever 449 may be rescaled by applying
a rough correction for the different sensitivities of the
cantilevers. For example, particles of non-cellular reference
material identified by the measurement device may be used
to calibrate the cantilevers of the device. Cantilevers differ-
ing in only their lengths should have mass sensitivities
proportional to their resonant frequencies to the power
three-halves. Therefore, cach frequency signal is divided by
its carrier frequency to the power three-halves such that the
signals are of similar magnitude. To detect peaks, the data
are filtered with a low pass filter, followed by a nonlinear
high pass filter (subtracting the results of a moving quantile
filter from the data). Peak locations are found as local
minima that occur below a user-defined threshold. After



US 2024/0302263 Al

finding the peak locations, the peak heights may be esti-
mated by fitting the surrounding baseline signal (to account
for a possible slope in the baseline that was not rejected by
the high pass filter), fitting the region surrounding the local
minima with a fourth-order polynomial, and finding the
maximum difference between the predicted baseline and the
local minima polynomial fit. Identifying the peaks corre-
sponding to non-cellular reference materials identified by
the classifier allows one to estimate the mass sensitivity for
each cantilever, such that the modal mass for the particles is
equal to the expected modal mass. Peaks at different canti-
levers 449 that originate from the same cell are matched up
to extract single-cell growth information.

[0077] Precision frequency detection following identifica-
tion of cells by a measurement device of the invention
allows the SMR device 301 to measure resonant frequency
and mass or density of single living cells. Precision is the
closeness of agreement between independent test results.
When determining SMR resonance frequency optically, the
use of an external laser and photodiode are required and
cannot be easily arrayed for multiplexed measurements.
Electronic detection of SMR resonance frequency may be
attained by fabricating piezo-resistive sensors using ion
implantation into single crystal silicon resonators. The mass
resolution achieved with piezo-resistive detection, such as
3.4 femtogram (fg) in a 1 kHz bandwidth, is comparable to
what can be achieved by a conventional optical detector
designed to weigh micron-sized particles and cells.

[0078] The use of an SMR device 301 together with the
classifier 255 provides the advantage of eliminating the need
for expensive, delicate optical components and provides
new uses for the SMR device 301 in multiplexed and field
deployable applications. For example, piezo-resistive sen-
sors eliminate the need for external components by measur-
ing deflection through the resistance change of a sensing
element integrated onto the cantilever. Microfluidic channels
are incorporated inside a cantilever resonator, which signifi-
cantly reduces viscous damping from fluid and allows
buoyant mass to be measured with high resolution. Use of a
classifier to identify particles before being introduced to the
SMR device 301 allows for flow through microfluidic chan-
nels to be controlled to optimize measurements.

[0079] Methods for optimized cellular measurement may
comprise introducing cells into a measurement device com-
prising a sample channel, a secondary channel, and a sensor
239 operating over a sensing region 235. Cells may be
introduced into the sample channel and flow through the
channel to the sensing region 235. The sensor 239 operating
over the sensing region 235 may then collect and provide
data to the measurement device, including to a classifier, to
identify the cell and determine its velocity through the
channel. Once a cell is identified, the flow of fluid in the
sample channel and the secondary channel may be con-
trolled in order to control the flow of the cell from the sample
channel into the secondary channel. Moreover, controlling
the flow helps assured that a determined velocity remains
consistent for a particular cell, which allows a more accurate
projected time for when the cells pass by either the SMR or
sensing region. The classifier may identify cells using sig-
nals from a sensor 239, frequency data from a resonator, or
any other method for discriminating between particles.
[0080] When the classifier uses signals from a sensor 239,
the sensor may be an imaging sensor, and may comprise an
array of sensor elements. Sensor elements may include
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photoelectric sensor elements. Imaging sensors collect data
about light or diffraction patterns incident upon sensor
elements from a cell in the sensing region 235. Upon
receiving a signal to capture an image from the sensing
region 235, incoming light from individual cells and/or
particles of cellular and non-cellular material reach an array
of sensor elements of the imaging sensor. Each sensor
element may collect and store photons from light as an
electrical signal. By having an array of sensor clements
configured to capture the individual cells and/or particles of
cellular and non-cellular material, the imaging sensor can
record a present state of the sensing region 235 for the
classifier. When sensing color images, the imaging sensor
may have a color filter array (CFA) that limits each sensor
element to only collect incoming light for a particular color,
for example cach sensor element may capture light that
corresponds to only one primary color.

[0081] After light exposure upon the array of sensor
elements, the electrical signal from the individual sensor
elements may then be used to reproduce the image of the
sensing region 235 by configuring the color and brightness
of matching pixels to the electrical signals. A computer may
be provided to match pixels to recreate the image. In some
instances, for every sensor element there may be a corre-
sponding pixel within the recreated image that reflects the
charge and color received at the sensor element from the
sensing region 235. The classifier may identify cells based
on the recreated image of the sensing region 235. The
classifier may also identify cells directly from the electrical
signals provided by the sensor. In certain aspects, the sensor
obtains a plurality of images, and the change in position of
the cell within the channel between images is used by the
measurement device to calculate flow velocity of a cell.

[0082] The imaging sensor may comprise a lens and/or
may comprise a camera such as a digital camera. The
imaging sensor may be a charge-coupled device (CCD) or
may be a complementary metal-oxide-semiconductor
(CMOS) sensor. CCD and CMOS sensors can be arranged
in a two-dimensional array to capture two-dimensional
image signals. Sensor size and/or the number of sensor
elements may be used to control the spatial resolution of the
image captured. The resolution may be pixel resolution.
Increasing the density of sensor elements increases spatial
resolution. Increasing the size of sensors increases the
amount of light incident on each sensor. Imaging detail may
be limited by optics due to lens blurs, lens aberration effects,
aperture diffractions, and optical blurring due to motion.

[0083] The imaging sensor may advantageously be a lens-
free imaging sensor, for example an imaging sensor that
does not comprise correction lenses or components. The
lens-free imaging may be on chip imaging using a digital
optoelectric sensor array, such as a CCD or CMOS chip.
Imaging chips and optical components provide the advan-
tage when used with the classifier of capturing very high-
resolution images. The chip may directly sample light trans-
mitted through a source without the use of any imaging
lenses between the source and the sensor planes. Lens-free
imaging sensors can advantageously comprise more com-
pact, lightweight, and simpler hardware than lens-based
sensors. Lens-free imaging sensors are described in Green-
baum, 2012, Imaging without lenses: achievements and
remaining challenges of wide-field on-chip microscopy, Nat
Methods, 9(9):889-895, incorporated by reference.
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[0084] The classifier may identify cells based on one or
more image of the sensing region(s) 235. The image may
have a pixel resolution. The classifier may also identify cells
directly from electrical signals provided by the sensor ele-
ments. The identification of cells by the classifier using data
from an imaging sensor may be used to calibrate and
optimize cellular measurements in real-time or may be used
to calibrate and optimize future measurements from cellular
or non-cellular materials.

[0085] A classifier may also identify cells using data from
a measurement device comprising at least one SMR device
301. Methods for optimized cellular measurement may also
comprise the steps of introducing cellular and/or non-cellu-
lar particles with overlapping size and/or mass distributions
to a measurement device comprising at least one suspended
microchannel resonator (SMR) device 301 and identifying
the sub-groups of particles in the mixture based on a
classifier that utilizes data from said measurement device.

[0086] Classification of sub-groups of particles, including
cells, using an SMR device 301 may be based on a “node-
deviation” signal from an SMR device 301. When measur-
ing deviation of resonant frequency using an SMR device
301, the SMR device 301 acts as an acoustic energy source
and scattered acoustic fields from particles provide a signal
that is used to monitor mechanical properties of the particles.
Vibration of the SMR device 301 varies along the length of
a cantilever 333, with one local maximum near the center,
referred to as an antinode, and a zero-minimum near the tip,
referred to as a node. When cellular or non-cellular particles
are at the antinode, the net change in mass of the particle
corresponds to the change in kinetic energy of the measure-
ment device and causes a shift in the resonant frequency of
the SMR device 301. As described above, by measuring the
frequency at which the cantilever 333 resonates, the instru-
ment computes a mass, density, or change in mass or density,
of a cellular and/or non-cellular particle in the fluidic
microchannel previously identified by a classifier. When the
particle is at the node of the cantilever 333, a net change in
mass had previously been theorized not to shift the fre-
quency at which the cantilever 333 resonates because the
vibration amplitude is zero and there is no change in kinetic
energy. In practice, however, resonant frequency shifts may
be consistently measured at the node, including when flow-
ing cells and polystyrene beads through the microfluidic
channel. This resonant frequency shift at the node is referred
to as node-deviation and corresponds to an energy change
due to acoustic scattering from a material’s surface depen-
dent on mechanical properties of the material. The SMR
device 301 may collect resonant frequency data at the node
of cantilever 333 for cellular and non-cellular flowing there-
through. The resonant frequency data from the SMR device
301 may be provided to the classifier and the classifier may
identify sub-groups of particles based on a node-deviation of
signal from the SMR device 301.

[0087] FIG. 5 shows a cantilever 333 of an SMR 301.
When an identified cell is at the antinode 505, the net change
in mass of the particle corresponds to the change in kinetic
energy of the measurement device and causes a shift in
resonant frequency. By measuring frequency at the antinode
505 the instrument computes the buoyant mass of the cell.
When the particle is at the node of the cantilever 509 the
resonant frequency shift at the node (the node deviation)
corresponds to an energy change due to acoustic scattering
from the material’s surface dependent on mechanical prop-
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erties of the cellular or non-cellular particle, such as surface
stiffness. Node-deviation data from the SMR device 301 can
be provided to a classifier that utilizes the data to identify
subgroups of particles, such as different types of cells. The
classifier may discriminate between cells, cellular and non-
cellular material based on surface stiffness. Non-cellular
particles with a known size and/or mass may be used as a
reference material to calibrate the measurement device in
real-time or calibrate the measurement device for future
measurements. Preferably, the reference material has an
overlapping size and/or mass with cellular material.

[0088] Node-deviation can be measured independently of
flow velocity and vibration amplitude. Therefore, by mea-
suring the resonant frequency shifts at the antinode and node
as materials flow through the SMR device 301, one can
simultaneously and independently quantify the buoyant
mass or density of the material and the node deviation for the
material. Node deviation may be influenced by a cell’s
volume. A volume correction may be applied to the mea-
sured node-deviation through size-normalized acoustic scat-
tering, with the appropriate correction determined through,
for example, finite element method (FEM) simulations for
fluid-structure acoustic interactions. Node-deviation may
further be influenced by the cell’s mass distribution and/or
orientation within a microfluidic channel. The mass distri-
bution for a particle of cellular or non-cellular material may
be acquired, for example, as bright-field images using a
sensor operating over a sensing region or may be known a
priori, and a mass distribution correction may be applied to
the measured node-deviation. Node-deviation can be used to
determine one or more mechanical properties of particles of
an identified cell. For example, node deviation may be used
to determine surface stiffness of the cell. When measuring
node-deviation in a cell, the measurement may be used to
determine cell surface stiffness or properties of the acto-
myosin cortex of the cell. For example, cell surface stiffness
varies throughout cell mitosis and node deviation may be
used to determine properties and stages of mitosis in the cell.
The classifier may identify sub-groups of particles, such as
cellular and/or non-cellular particles, based on surface stift-
ness and/or node-deviation data from an SMR device 301.
The identification of sub-groups of particles by the classifier
may be used to calibrate and optimize cellular measurements
in real-time or may be used to calibrate and optimize future
measurements of cellular or non-cellular particles by the
measurement device.

[0089] The classifier may be based on any suitable
machine learning measurement device trained to discrimi-
nate between cellular and non-cellular material using data
from the sensor operating over the sensor region. For
example, the machine learning measurement device may
learn in a supervised manner, an unsupervised manner, a
semi-supervised manner, or through reinforcement learning.

[0090] In supervised learning models, the machine learn-
ing measurement device is given training data categorized as
input variables paired with output variables from which to
learn patterns and make inferences in order to generate a
prediction on previously unseen test data. Supervised mod-
els replicate an identified mapping measurement device and
recognize and respond to patterns in data without explicit
instructions. Supervised models are advantageous for per-
forming discrete classification tasks, in which data inputs are
separated into categories. Supervised models are also advan-
tageous for continuous regression tasks, in which the output
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variable is a real value, such as a price or a volume. The
accuracy of a supervised model is easy to evaluate because
there is a known output variable to which the model is
optimizing. Supervised models are advantageous for train-
ing a classifier to separate cellular and non-cellular material
into respective categories when a suitable training data set
for cellular and non-cellular materials is available. For
example, a training set comprising labeled images of cellular
particles and non-cellular particles may be used by the
classifier to identify cellular and non-cellular particles in
imaging data provided by an imaging sensor.

[0091] In an unsupervised model or autonomous model,
the machine learning measurement device is only given
input training data without paired output data from which to
identify patterns autonomously. Unsupervised models iden-
tify underlying patterns or structures in training data to make
predictions for test data. Unsupervised models are advanta-
geous for clustering data, anomaly detection, and for inde-
pendently discovering rules for data. The accuracy of unsu-
pervised models is harder to evaluate because there is no
predefined output variable to which the measurement device
is optimizing. Autonomous models may employ periods of
both supervised and unsupervised learning in order to opti-
mize predictions. Unsupervised models are advantageous
for training a classifier to cluster data into clusters when
labeled training data is unavailable. The classifier may use
additional data to identify each cluster as cellular or non-
cellular material. For example, a classifier may identify
clusters of data from a signal provided by an imaging sensor.
The classifier may use previously collected node-deviation
data from an SMR device 301 to identify which clusters
identify cellular material and which clusters identify to
non-cellular material.

[0092] In semi-supervised models, the machine learning
measurement device is given training data comprising input
variables, with output variable pairs available for only a
limited pool of the input variables. The model uses the input
variables with output variable pairs and the remaining input
training data to learn patterns and make inferences in order
to generate a prediction on previously unseen test data. A
semi-supervised model may advantageously query the user
for additional paired output data based on unpaired data.
Semi-supervised models are advantageous for training a
classifier to separate cellular and non-cellular material into
respective categories when an incomplete training data set
for cellular and non-cellular materials is available. For
example, a training set comprising labeled images for some
cellular particles and some non-cellular particles may be
used by the classifier to correctly identify individual cells in
an image provided by a sensor 239 while also identifying
clusters of data from the image for particles it cannot
identify from the training data set.

[0093] In a reinforcement learning model, the machine
learning measurement device is given neither input variables
nor output variables. Rather, the model provides a “reward”
condition and then seeks to maximize the cumulative reward
condition by trial and error. A reinforcement learning model
is a Markov Decision Process. Supervised, unsupervised,
semi-supervised, and reinforcement models are described in
Jordan and Mirchell, 2015, Machine learning, Trends, per-
spectives, and prospects, Science 349(6245):255-260, incor-
porated by reference.

[0094] An example of a supervised learning model is a
“decision tree.” Decision trees are non-parametric super-
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vised learning models that use simple decision rules to infer
a classification for test data from the features in the test data.
In classification trees, test data take a finite set of discrete
values, or classes, whereas in regression trees, the test data
can take continuous values, such as real numbers. Decision
trees have some advantages in that they are simple to
understand and can be visualized as a tree starting at the root
(usually a single node) and repeatedly branch to the leaves
(multiple nodes) that are associated with the classification.
See Criminisi, 2012 Decemberision Forests: A unified
framework for classification, regression, density estimation,
manifold learning and semi-supervised learning, Founda-
tions and Trends in Computer Graphics and Vision 7(2-3):
81-227, incorporated by reference. Decision tree models can
be advantageous for the classifier to identify particles of
cellular or non-cellular material because the particles fall
into a discrete set of classes or categories, e.g., cellular or
non-cellular. For example, the classifier may identify that a
cell is in an image provided by a sensor 239 and using
training data to infer that the particle is a particular type of
cell, such as a cancer cell.

[0095] Another supervised learning model is a “support-
vector machine” (SVM) or “support-vector network.” SVMs
are supervised learning models for classification and regres-
sion problems. When used for classification of new data into
one of two categories, such as whether a particle is cellular
or non-cellular, an SVM creates a hyperplane in multidi-
mensional space that separates data points into one category
or the other. Although the original problem may be
expressed in terms that require only finite dimensional
space, linear separation of data between categories may not
be possible in finite dimensional space. Consequently, mul-
tidimensional space is selected to allow construction of
hyperplanes that afford clean separation of data points. See
Press, W. H. et al., Section 16.5. Support Vector Machines.
Numerical Recipes: The Art of Scientific Computing (3rd
ed.). New York: Cambridge University (2007), incorporated
herein by reference. Where output variable pairs are unavail-
able for input variables in the training data, SVMs can be
designed as unsupervised or semi-supervised learning mod-
els using support vector clustering. See Ben-Hur, 2001,
Support Vector Clustering, ] Mach Learning Res 2:125-137,
incorporated by reference. SVM models can be advanta-
geous for the classifier to identify cells. Additionally, SVM
models can be advantageous where only a limited set of
training data is available for the classifier.

[0096] Logistic regression analysis is another statistical
process that can be used by the classifier to find patterns in
training and test data to make predictions. It includes tech-
niques for modeling and analyzing relationships between
multiple variables. Specifically, regression analysis focuses
on changes in a dependent variable in response to changes
in single independent variables. Regression analysis can be
used to estimate the conditional expectation of the depen-
dent variable given the independent variables. The variation
of the dependent variable may be characterized around a
regression function and described by a probability distribu-
tion. Parameters of the regression model may be estimated
using, for example, least squares methods, Bayesian meth-
ods, percentage regression, least absolute deviations, non-
parametric regression, or distance metric learning. Like
SVM models, regression models are also advantageous for
the classifier to identify cells. Regression models also pro-
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vide the advantage of being effectively implemented by a
variety of tools and the model can be easily updated to
identify new cells.

[0097] Bayesian algorithms can also be used to find pat-
terns in training and test data to make predictions. Bayesian
networks are probabilistic graphical models that represent a
set of random variables and their conditional dependencies
via directed acyclic graphs (DAGs). The DAGs have nodes
that represent random variables that may be observable
quantities, latent variables, node unknown parameters or
hypotheses. Edges represent conditional dependencies;
nodes that are not connected represent variables that are
conditionally independent of each other. Each is associated
with a probability function that takes, as input, a particular
set of values for the node’s parent variables, and gives (as
output) the probability (or probability distribution, if appli-
cable) of the variable represented by the node. Like SVM
models and regression models, Bayesian models are also
advantageous for the classifier to identify cells. Bayesian
models provide the advantage of generally requiring less
training data than other models and can be used by the
classifier to identify individual cells quickly.

[0098] Some models rely on clustering training data and
test data to find patterns and make predictions. A “k-nearest
neighbor” (k-NN) model is a supervised non-parametric
learning model for classification and regression problems. A
k-nearest neighbor model assumes that similar data exists in
close proximity and assigns a category or value to cach data
point based on the k nearest data points. k-NN models may
be advantageous when the data has few outliers and can be
defined by homogeneous features. k-NN models can be
advantageous for the classifier to identify particles of cells
because the cells fall into a discrete set of classes or
categories, e.g., cancer and non-cancer cells. Moreover,
k-NN models provide the advantage of continuously learn-
ing from test data and do not require a training period before
identifying cells from training data.

[0099] Anexample of an unsupervised learning model that
uses clustering is a “k-means” clustering model. A k-means
model looks to find clusters of data in input data and test
data. K-means models are advantageous when a defined
number of clusters are known to exist in the data and are also
advantageous when the test data has few outliers and can be
defined homogeneous features. Additional models that clus-
ter training data include, for example, farthest-neighbor,
centroid, sum-of-squares, fuzzy k-means, and Jarvis-Patrick
clustering. k-means and other unsupervised clustering mod-
els are advantageous for use by the classifier to identify cells
when training data cells is unavailable or limited.

[0100] Trained machine learning models can become
“stable learners.” A stable learner is a model that is less
sensitive to perturbation of predictions based on new train-
ing data. Stable learners can be advantageous where test data
is stable but can be less advantageous where the measure-
ment device needs to continually improve performance to
accurately predict new test data that may be less stable.
Accordingly, a stable learning model may be advantageous
for use by the classifier when the types of cellular and
non-cellular material that may be introduced to the mea-
surement device are known and are unlikely to change.
[0101] Several machine learning measurement device
types can be combined into a final predictive model (an
ensemble). Ensembles can be divided into two types,
homogenous ensembles and heterogeneous ensembles.
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Homogenous ensembles combine multiple machine learning
models of the same type. Heterogeneous ensembles combine
multiple machine learning models of different types.
Ensembles can provide an advantage when used by the
classifier to identify cells because they can be more accurate
than any of the individual base member models (“mem-
bers”) in the ensemble. The number of members combined
in an ensemble may impact the accuracy of a final predic-
tion. Accordingly, it is advantageous to determine the opti-
mal number of members when designing an ensemble
measurement device for use by the classifier.

[0102] Ensembles used by the classifier may combine or
aggregate outputs from individual members by using “vot-
ing”-type methods for classification measurement devices
and “averaging”-type methods for regression measurement
devices. In a “majority voting” method, each member makes
a prediction as to the identification of cells in test data and
the prediction that receives more than half of the votes is the
final output for the ensemble. If none of the predictions
receives more than half of the votes, it may be determined
that the ensemble is unable to make a stable prediction. In
a “plurality voting” method the most voted prediction, even
if receiving less than half of the votes, may be considered the
final output for the ensemble. In a “weighted voting”
method, the votes of more accurate members are multiplied
by a weight afforded each member based on its accuracy. In
a “simple averaging” method, each member makes a pre-
diction for test data and the average of the outputs is
calculated. This method reduces overfit and can be advan-
tageous in creating smoother regression models. In a
“weight averaging” method, the prediction output of each
member is multiplied by a weight afforded each member
based on its accuracy. Voting methods, averaging methods,
and weighted methods can be combined to improve the
accuracy of ensembles used by the classifier.

[0103] Members within an ensemble used by the classifier
can each be trained independently, or new members can be
trained utilizing information from previously trained mem-
bers. In a “parallel ensemble”, the ensemble seeks to provide
greater accuracy than individual members by exploiting the
independence between members, for example, by training
multiple members simultaneously to identify individual
cells and/or cellular and non-cellular material and aggregat-
ing the outputs from members. In “sequential ensemble
measurement devices”, the ensemble seeks to provide
greater accuracy than individual members by exploiting the
dependence between members, for example, by utilizing
information from a first member regarding the identification
of individual cells and/or cellular and non-cellular material
to improve the training of a second member for identifying
individual cells and/or cellular and non-cellular material and
weighting outputs from members.

[0104] Overall accuracy for ensembles used by the clas-
sifier can also be optimized by using ensemble meta-algo-
rithms, for example a “bagging” algorithm to reduce vari-
ance, a “boosting” algorithm to reduce bias, or a “stacking”
algorithm to improve predictions.

[0105] Boosting algorithms reduce bias and can be used to
improve less accurate, or “weak learning” models. A mem-
ber may be considered a “weak learning” model if it has a
substantial error rate, but its performance is non-random, for
example an error rate of 0.5 for classifying a particle as
cellular or non-cellular. Boosting algorithms incrementally
build the ensemble by training each member sequentially
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with the same training data set, examining prediction errors
for test data (i.e., labeling a cell as a non-cellular particle),
and assigning weights to training data based on the difficulty
for members to make an accurate prediction. In each sequen-
tial member trained, the algorithm emphasizes training data
that previous members found difficult. Members are then
weighted based on the accuracy of their prediction outputs
in view of the weight applied to the training data. The
predictions from each member may be combined by
weighted voting-type or weighted averaging-type methods.
Boosting algorithms are advantageous when combining
multiple weak learning models. Boosting algorithms may,
however, result in over-fitting test data to training data.
Examples of boosting algorithms include AdaBoost, gradi-
ent boosting, eXtreme Gradient Boost (XGBoost). See Fre-
und, 1997, A decision-theoretic generalization of on-line
learning and an application to boosting, ] Comp Sys Sci
55:119; and Chen, 2016, XGBoost: A Scalable Tree Boost-
ing Measurement device, arXiv: 1603.02754, both incorpo-
rated by reference.

[0106] Bagging algorithms or “bootstrap aggregation”
algorithms reduce variance by averaging together multiple
estimates from members. Bagging algorithms provide each
member with a random sub-sample of a full training data set,
with each random sub-sample known as a “bootstrap”
sample. In the bootstrap samples, some data from the
training data set may appear more than once and some data
from the training data set may not be present. Because
sub-samples can be generated independently from one
another, training can be done in parallel. The predictions for
test data from each member are then aggregated, such as by
voting-type or averaging-type methods.

[0107] An example of a bagging algorithm that may be
used by the classifier to identify individual cells and/or
cellular and non-cellular material is a “random forest”
algorithm. In a random forest the ensemble combines mul-
tiple randomized decision tree models. Each decision trec
model is trained from a bootstrap sample from a training set
for identifying individual cells and/or cellular and non-
cellular material. The training set itself may be a random
subset of features from an even larger training set. By
providing a random subset of the larger training set at each
split in the learning process, spurious correlations that can
results from the presence of individual features that are
strong predictors for the output variable are reduced. By
averaging predictions for test data, variance of the ensemble
decreases resulting in an improved prediction to identify
individual cells and/or cellular and non-cellular material.
Random forests may be autonomous models and may
include periods of both supervised and unsupervised learn-
ing. Bagging may be less advantageous in optimizing an
ensemble combining stable learning measurement devices,
since stable learning measurement devices tend provide
generalized outputs with less variability over the bootstrap
samples. Random forests are advantageous for use by the
classifier to identify individual cells and/or cellular and
non-cellular material by providing a great degree of versa-
tility in identifying individual cells and/or cellular and
non-cellular material and reducing spurious identification by
the classifier. See Breiman, 2001, Random Forests, Machine
Learning 45:5-32, incorporated by reference.

[0108] Stacking algorithms or “stacked generalization”
algorithms improve predictions by using a meta-machine
learning model to combine and build the ensemble. In
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stacking algorithms, base member models are trained with a
training dataset and generate as an output a new dataset. This
new dataset is then used as a training dataset for the
meta-machine learning model to build the ensemble. Stack-
ing algorithms are generally advantageous for use by the
classifier to identify individual cells and/or cellular and
non-cellular material when building heterogeneous
ensembles. Ensembles are described in Villaverde et al.,
2019, On the adaptability of ensemble methods for distri-
bution classification measurement devices: A comparative
analysis, International Journal of Distributed Sensor Net-
works 15(7); and Heitor et al., 2017, A Survey of Ensemble
Learning for Data Stream Classification, 50(2): Art. 23, cach
incorporated by reference.

[0109] Neural networks, modeled on the human brain,
allow for processing of information and machine learning.
The classifier for identifying individual cells and/or cellular
and non-cellular material may advantageously be based on
a neural network. Neural networks include nodes that mimic
the function of individual neurons, and the nodes are orga-
nized into layers. Neural networks include an input layer, an
output layer, and one or more hidden layers that define
connections from the input layer to the output layer. Mea-
surement devices and methods of the invention may include
any neural network that facilitates machine learning. The
measurement device may include a known neural network
architecture, such as Googl.eNet (Szegedy, et al. Going
deeper with convolutions, in CVPR 2015, 2015); AlexNet
(Krizhevsky, et al. Imagenet classification with deep con-
volutional neural networks, in Pereira, et al. Eds., Advances
in Neural Information Processing Measurement devices 25,
pages 1097-3105, Curran Associates, Inc., 2012); VGG16
(Simonyan & Zisserman, Very deep convolutional networks
for large-scale image recognition, CoRR, abs/3409.1556,
2014); or FaceNet (Wang et al., Face Search at Scale: 80
Million Gallery, 2015), each of the aforementioned refer-
ences are incorporated by reference. The advantage of using
a classifier to identify individual cells and/or cellular and
non-cellular material based on a neural network architecture
is that neural networks are able to learn patterns and corre-
lations by themselves and produce outputs that are not
limited to the training data provided to them. The neural
network architecture allows the classifier to learn from
examples of individual cells and/or cellular and non-cellular
particles and identify new particles in real-time. Addition-
ally, the neural network architecture allows the classifier to
identify multiple particles in parallel as they flow through a
measurement device. For example, a classifier based on a
neural network architecture may be provided image data
from an image sensor 239 and identify and track individual
cells in real time with increasing accuracy as the number of
images provided to the classifier increases.

[0110] Deep learning neural networks (also known as deep
structured learning, hierarchical learning or deep machine
learning) include a class of machine learning operations that
may be used by the classifier that use a cascade of many
layers of nonlinear processing units for feature extraction
and transformation. Each successive layer uses the output
from the previous layer as input. The algorithms may be
supervised or unsupervised and applications include pattern
analysis (unsupervised) and classification (supervised). Cer-
tain embodiments are based on unsupervised learning of
multiple levels of features or representations of the data.
Higher level features are derived from lower-level features
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to form a hierarchical representation. Deep learning by the
neural network includes learning multiple levels of repre-
sentations that correspond to different levels of abstraction;
the levels form a hierarchy of concepts. In some embodi-
ments, the neural network includes at least 5 and preferably
more than ten hidden layers. The many layers between the
input and the output allow the measurement device to
operate via multiple processing layers. For example, a
classifier based on a deep learning neural network may be
provided image data from an imaging sensor. Earlier hidden
layers in the network may identify the edges of cells and
their location in the image with later hidden layers identi-
fying the brightness of each cell. The two features together
may be used by a further hidden later to provide an output
prediction for each cell in the image to the classifier.

[0111] Within a neural network that may be used by the
classifier, nodes are connected in layers, and signals travel
from the input layer to the output layer. Each node in the
input layer may correspond to a respective feature from the
training data for individual cells and/or cellular and non-
cellular material. The nodes of the hidden layer are calcu-
lated as a function of a bias term and a weighted sum of the
nodes of the input layer, where a respective weight is
assigned to each connection between a node of the input
layer and a node in the hidden layer. The bias term and the
weights between the input layer and the hidden layer are
advantageously learned autonomously in the training of the
neural network. The network may include thousands or
millions of nodes and connections. Typically, the signals and
state of artificial neurons are real numbers, typically between
0 and 1. Optionally, there may be a threshold function or
limiting function on each connection and on the unit itself,
such that the signal must surpass the limit before propagat-
ing. Back propagation is the use of forward stimulation to
modify connection weights, and is sometimes done to train
the network using known correct outputs. See WO 2016/
182551, U.S. Pub. 2016/0174902, U.S. Pat. No. 8,639,043,
and U.S. Pub. 2017/0053398, cach incorporated by refer-
ence.

[0112] An image from an imaging sensor provided to a
classifier can be represented by a deep learning network in
many ways, such as a vector of intensity values per pixel in
the image, or in a more abstract way as a set of edges,
regions of particular shape, etc. Those features are repre-
sented at nodes in the network. Preferably, each feature is
structured as numerical feature or vector that represents the
image feature. This provides a numerical representation of
objects in the image since such representations facilitate
processing and statistical analysis. Numerical features are
often combined with weights using a dot product in order to
construct a linear predictor function that is used to determine
a score for making a prediction.

[0113] The vector space associated with those feature
vectors may be referred to as the feature space. In order to
reduce the dimensionality of the feature space, dimension-
ality reduction may be employed by networks used by the
classifier. Higher-level features can be obtained from
already available features and added to the feature vector, in
a process referred to as feature construction. Feature con-
struction is the application of a set of constructive operators
to a set of existing features resulting in construction of new
features. For example, a classifier based on a neural network
architecture may be provided image data from an image
sensor. Harly layers in the neural network may identify
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horizontal lines and vertical lines in the image data. Later
layers in the network may then use the lines identified to
obtain edges, a higher-level feature, for individual cells in
the image.

[0114] A convolutional neural network (CNN) is a class of
deep neural network generally designed for two-dimen-
sional image inputs in which a signal travels from the input
layer through hidden layers comprising “convolutional lay-
ers” and “fully connected layers” to the output layer.
Accordingly, a CNN is particularly advantageous for use by
the classifier when provided image inputs, for example from
an imaging sensor. In the input layer of a CNN, cach pixel
from an image is mapped. The input layer is connected to a
convolutional layer. In a convolutional layer, each node is
“sparsely connected”, that is connected to only a sub-matrix
of pixels or nodes from the previous layer. The connection
between the submatrix of nodes and the convolutional layer
is subject to a bias term as a set of weights designed detect
a given feature in the input. The submatrix and weights
together are known as a “filter,” “kernel,” or “feature detec-
tor”. For a given convolutional layer, each filter is the same
size and shape and applies the same set of weights. Each
node in the convolutional layer is provided a summary of the
weighted information from the filter as a scalar dot product.
The filters are staggered from one another and may overlap
such that each node in convolution layer provides a
weighted summary for a different sub-matrix from the
previous layer. A threshold function may be applied to each
node in the convolution layer to determine whether the node
will propagate the information from the filter, a function
known as “squashing.”

[0115] Sliding the filter across the entire input allows the
filter to discover a given feature anywhere in the input. This
provides the advantage of allowing a classifier based on a
CNN to identify individual cells anywhere in imaging data
provided to the classifier. The function of sliding the filter
over the entire image can be controlled by the number of
nodes over which the filter passes, known as the “stride” of
the convolutional layer. The stride determines the distance
that each filter is staggered from adjacent filters and the
degree of overlap between filters. The final two-dimensional
array of dot products of the convolutional layer is known as
the “convolved feature,” “activation map,” or “feature map.”

[0116] Filters may also have a given depth. For example,
color images have multiple channels, typically one for each
color channel, such as red, green, and blue. This means that
a single color image provided as an input to the input layer
is, in fact, three images. A filter must always have the same
number of channels as the input, referred to as “depth”. If an
input image has 3 channels then a filter applied to that image
must also have 3 channels, resulting in, for example, each
2x2 filter becoming a 2x2x3 filter (lengthxwidthxdepth).
Regardless of the depth of the input and depth of the filter,
the filter is applied to the input using a dot product operation
which results in a single value. This means that if a convo-
Iutional layer has 32 filters, these 32 filters are not just
two-dimensional for the two-dimensional image input, but
are also three-dimensional, having specific filter weights for
each of the three channels. Each filter contributes to a single
feature map. Accordingly, a classifier based on a CNN may
be advantageous where the data provided to the classifier
comprises color images and/or inputs with multiple chan-
nels.
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[0117] Different filters produce different feature maps. A
convolutional layer may apply a different filter depending on
the given input, with the types of filters available learned
during training of the network. For example, the network
may be trained to apply filters for a specific task the network
is trained to resolve, such as detecting whether an input
image contains a vertical line. The convolution layer may be
trained to apply any number of possible filters to an input
image.

[0118] In some instances, it may also be convenient to
“pad” an input to a convolutional layer with zero values
around the border of the input, a process known as zero-
padding. Zero-padding allows the size of feature maps to be
controlled. This can allow for the feature map to remain the
same size as the input through multiple layers of the CNN.
The function of adding zero-padding is known as “wide-
convolution” versus “narrow convolution” when no zero-
padding is added.

[0119] The use of multiple convolutional layers in the
network allows for hierarchical decomposition of the input.
Convolutional filters that operate directly on input values
may learn to extract low level features, such as lines.
Convolutional filters that operate on the output from carlier
convolution layers may learn to extract features that are
combinations of lower-level features, such as features that
comprise multiple lines to express shapes. The classifier can
use multiple convolution layers to reconstruct particles from
an input and thereafter identify individual cells.

[0120] A CNN used by a classifier may also comprise
nonlinear layers (ReLU). A ReLLU layer receives a feature
map and replaces any negative values in the feature map
with a zero. The purpose of the ReLLU layer is to introduce
non-linearity into the CNN and is advantageous when the
input data that the CNN is expected to learn and identity is
non-linear, including image features such as particles. The
non-linear output map from a Rel.U is known as a “recti-
fied” feature map. The CNN may also comprise pooling
layers. A pooling layer reduces the size of the feature map
or rectified feature map through dimensionality reduction in
a process known as “spatial pooling,” “subsampling,” or
“down sampling.” For example, each node in a pooling layer
may be sparsely connected to a sub-matrix of nodes from a
convolution or ReLLU layer. Each node in the pooling layer
may then provide, for example, only the highest value,
average of, or sum of the values in each submatrix. Pooling
layers can be advantageous to make input representations
smaller and more manageable, reduce the number of param-
eters and computations in the network, reduce the impact of
distortions in the input image, and/or help scale representa-
tion of the image. This provides the advantage of reducing
training time and controlling overfitting in the CNN used by
the classifier to identify and track individual cells.

[0121] The final output from the convolutional, Rel.U,
and/or pooling layers, for example the extraction of particle
features from imaging data, is provided to a fully connected
layer. The fully connected layers operate under the same
principles as a traditional neural network. In a fully con-
nected layer, each node in the layer is connected to all of the
nodes in a previous layer and all of the nodes in a succeeding
layer. The purpose of a fully connected layer is to classify
the features extracted by the convolutional layers, for
example using single vector machines (SVM) to classify the
particle features extracted by the previous layers. Back-
propagation in CNNs involves adjusting the weights of
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filters based on the error rate of the CNN, known as “loss.”
During backpropagation, the CNN determines the estimated
loss at every node in each convolutional layer and adjusts
filter weights accordingly to minimize loss. A CNN may be
trained by multiple rounds of backpropagation. Convolu-
tional Neural Networks are described in Haridas and Jyothi,
2019, Convolutional Neural Networks: A Comprehensive
Survey, 14(3):780-789, incorporated by reference. CNNs are
advantageous for use with the classifier for identifying and
track individual cells because they provide automatic feature
extraction from input data and autonomously learn the
features necessary to allow the classifier to identify and track
individual cells.

[0122] The classifier of the present invention may com-
prise a neural network architecture trained to use sensor 239
data to identify individual cells. For example, the classifier
may comprise a convolutional neural network (CNN). Iden-
tification of cells (and non-cellular materials) allows for
control of flow of fluid through the measurement device,
allowing for optimized cellular measurement, for example
mass or density accumulation rate. The classifier may advan-
tageously identify individual cells. The classifier may also
identify individual cells and/or cellular and non-cellular
material or sub-groups of particles and the identification
may be used to calibrate the measurement device for future
measurements.

[0123] The classifier may be trained using data from a
measurement device previously obtained from different sub-
groups of particles or cells. The sub-group of particles may
comprise individual cells and/or cellular and/or non-cellular
material. The classifier may be trained by backpropagation
using data from a measurement device previously obtained
from the sub-groups of cells and/or non-cellular material.
The classifier may be trained using a training data set
comprising imaging data, for example from an imaging
sensor. The classifier may be trained using resonant fre-
quency data, for example node-deviation.

[0124] The identification of individual cells in the device
allows for the selective flow of cellular and/or non-cellular
material from the sample channel into the secondary chan-
nel. By controlling the flow of cellular and non-cellular
material into the secondary channel, cellular and non-cellu-
lar materials can be loaded into the secondary channel at a
specified ratio. Cellular and non-cellular materials may be
loaded into the secondary channel at a ratio, for example,
such that non-cellular reference material periodically flows
into the second channel to recalibrate measurements for
cellular material or to recalibrate the measurement device.
Designation of cellular or non-cellular material may be
paired with the respective measurements collected for cel-
lular or non-cellular material. The measurements collected
for cellular and non-cellular material may be, for example,
mass, density, or MAR. The measurements may be collected
by an SMR device 301. The identification of particles of
cellular and non-cellular materials or sub-groups of particles
may be in real time, for example, where the particles flow
through a device and data is collected from the particles and
the classifier identifies the particles based on the data as the
particles flow through the device. Data may also be collected
from the particles and later provided to a classifier which
identifies the particles, with the data used for training a
classifier or for calibrating the measurement device.

[0125] Cellular material can include cellular material
selected from the group consisting of cells, cell aggregates,
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exosomes, extracellular vesicles, cellular components, cel-
Iular fragments, organelles, organoids, proteins and protein
aggregates, DNA, and RNA. Cells can comprise any bio-
logical cells, such as bacterial cells or mammalian cells.
Mammalian cells, for example, can include cancer cells,
such as tumor cells, glioblastoma cells, or leukemia cells.
Mammalian cells can also include immune cells and cancer
related immune cells including T cells such as CD8+ T cells.
Cells can also be living cells. The classifier 255 may identify
the cellular material as a specific type of cellular material,
for example, cells, cell aggregates, exosomes, extracellular
vesicles, cellular components, cellular fragments, organ-
elles, organoids, proteins and protein aggregates, DNA, and
RNA. Notably, methods of the invention analyze the sample
without destroying the cells. The advantage of using living
cells is that the cells are available for further analysis, such
as genome sequencing, flow cytometry, or other measure-
ments.

[0126] Non-cellular material can include material selected
from the group consisting of synthetic particles, inorganic
particles, and debris. The classifier 255 may identify the
non-cellular material as a specific type of non-cellular
material, for example synthetic particles, inorganic particles,
or debris. Non-cellular material may include reference mate-
rial with a known property. The known property of the
reference material may be size, mass, and/or density. The
reference material may be a synthetic particle and the
synthetic particle may be a bead. Beads may be micro-
spheres and may have a known property, such as size, mass,
and/or density for use as a reference material for calibrating
measurements or measurement devices. For example, beads
may have a known mass which can be used to calibrate a
measurement device prior to taking measurements or may be
used to adjust measurements that have been previously
made. Beads may be selected to approximate the size,
emission wavelength, and intensity of a biological sample.
Beads may include polystyrene beads or silica beads.
Debris, such as cell debris, may also be included in a sample.
Debris once identified may be rejected from entering or
removed from the measurement device. Debris may also be
loaded with the sample into the measurement device and any
measurements from debris excluded.

[0127] Cellular and non-cellular material may be intro-
duced into the measurement device separately or together in
the same sample. For example, the cellular and non-cellular
material may be introduced together into the sample channel
as a single fluid or as separate fluids. A sensor 239 operating
over the sensing region 235 provides data to a classifier that
utilizes the data to control flow in the sample and secondary
channels based on the identification of an individual cell
and/or non-cellular material in the fluid or fluids. For
example, cells and polystyrene beads may be introduced into
the measurement device at the same time and the classifier
may identify the cells as cells and the polystyrene beads as
polystyrene beads. Loading cells together with polystyrene
beads provides the advantage of allowing real-time density
estimates of the fluid where cells and beads flow together
through the device. Once identified, particles of cellular
and/or non-cellular material may additionally be introduced
into the secondary channel and/or into a measurement
device at different flow rates optimized for measuring one or
more properties of the cells and/or non-cellular material, for
example mass or mass accumulation rate.
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[0128] FIG. 6 shows introducing 129 a sample 601 com-
prising cellular and or non/cellular material 625 into an
instrument 629 capable of making 651 optimized cell mea-
surements 625. The sample 601 may include one or more
live cells, such as a cancer cell or an immune cell. Samples
may be collected and stored in their own container 605, such
as a tube or flask such as the 1.5 mL. micro-centrifuge tube
sold under the trademark EPPENDORF FLEX-TUBES by
Eppendort, Inc. (Enfield, CT). The instrument 629 is oper-
able to make optimized cell measurements in the one or
more live cells, such as single-cell biophysical properties,
including, but not limited to, mass, density, growth rate, and
mass accumulation of an individual living cell using an
SMR in the instrument. These measurements may be cor-
related by the instrument with the identity of an individual
cells as determined by another sensor of the instrument.

[0129] The instrument 629 may use a classifier that uses
data from a sensor or from a suspended microchannel
resonator (SMR) device 301 to identify and control the flow
of individual cells though the device, such as through a
sample channel 229 and a secondary channel 269. Cells may
be loaded into a secondary channel for measurement by the
SMR device 301. The SMR device 301 may be used to
precisely measure biophysical properties, such as mass and
density and/or mass and density changes, of a single cell
flowing therethrough. The mass change may be mass accu-
mulation rate (MAR). Upon passing through the instrument
629, single cells remain viable and can be isolated down-
stream from the instrument 629 and are available to undergo
subsequent assays. As shown, a sample 609 of the one or
more live cells having undergone the first assay (i.e., passing
through the instrument 629) are collected in a suitable
container 613 and are then available to undergo a second
assay.

[0130] The mass accumulation, density accumulation,
and/or rates of mass/density accumulation can be a clinically
important property that is used to indicate the presence of
cancer cells or the efficacy of a therapeutic on cancer cells.
Cancer cells may be obtained from a patient and introduced
into the measurement device of the present invention for an
optimized cell measurement. Cells may be from a biological
sample obtained from a patient by any suitable means.
Examples of obtaining the sample include fine needle aspi-
ration, blood draw, and biopsy.

[0131] Fine needle aspiration and bone marrow biopsy
provide a solid biological sample from the patient, providing
the ability to sample from pleural effusions and ascites.
Accordingly, the sample does not need to be in liquid form.
Solid biological samples, for example from fine needle
aspiration, may preferably be disaggregated and/or added to
a buffer prior to introduction to the instrument. Accordingly,
optimized cellular measurements may be obtained from cells
from a tissue sample obtained from a solid tumor and the
tumor can be from one selected from the group consisting of
a bone, bladder, brain, breast, colon, esophagus, gastroin-
testinal tract, urinary tract, kidney, liver, lung, nervous
measurement device, ovary, pancreas, prostate, retina, skin,
stomach, testicles, and uterus of a subject. The methods may
be used to obtain tumors or cancers of any suitable type.
Methods may include accessing a tumor in a patient via fine
needle aspirate to take a biological sample comprising
cancer cells, disaggregating the biological sample to isolate
at least one living cell. The solid biological sample may then
be suspended in a media and introduced to the measurement
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instrument. Non-limiting examples of media include saline,
nutrient broth, and agar medium. Examples of biopsies that
may provide cells for optimized cellular measurement using
measurement devices and methods described herein can
include, needle biopsy, bone biopsy, bone marrow biopsy,
liver biopsy, kidney biopsy, aspiration biopsy, prostate
biopsy, skin biopsy, or surgical biopsy.

[0132] A tissue sample may include a mass of connected
cells and/or extracellular matrix material, e.g. skin tissue,
hair, nails, nasal passage tissue, CNS tissue, neural tissue,
eye tissue, liver tissue, kidney tissue, placental tissue, mam-
mary gland tissue, placental tissue, mammary gland tissue,
gastrointestinal tissue, musculoskeletal tissue, genitourinary
tissue, bone marrow, and the like, derived from, for example,
a human or other mammal and includes the connecting
material and the liquid material in association with the cells
and/or tissues.

[0133] Liquid material derived from, for example, a
human or other mammal such as body fluids may also be
utilized. Such body fluids include, but are not limited to,
mucous, blood, plasma, serum, serum derivatives, bile,
blood, maternal blood, phlegm, saliva, sputum, sweat, amni-
otic fluid, menstrual fluid, mammary fluid, follicular fluid of
the ovary, fallopian tube fluid, peritoneal fluid, urine, semen,
and cerebrospinal fluid (CSF), such as lumbar or ventricular
CS. A sample also may be media containing cells or bio-
logical material. A sample may also be a blood clot, for
example, a blood clot that has been obtained from whole
blood after the serum has been removed. In certain embodi-
ments, the sample is blood, saliva, or semen collected from
the subject.

[0134] Any suitable sample may be obtained for optimized
cellular measurements by the methods and measurement
devices of the invention. For example, the sample may
include immune cells or cancer cells. The sample may
include tissue of any type including healthy tissue or bodily
fluid of any type. In some embodiments, the tissue sample is
obtained from a pleural effusion in a subject. A pleural
effusion is excess fluid that accumulates in the pleural cavity,
the fluid-filled space that surrounds the lungs. This excess
fluid can impair breathing by limiting the expansion of the
lungs. Various kinds of pleural effusion, depending on the
nature of the fluid and what caused its entry into the pleural
space, may be sampled. A pneumothorax is the accumulation
of air in the pleural space, and is commonly called a
“collapsed lung”. In certain embodiments, the tissue sample
is obtained from ascetic fluid in a subject. Ascites is the
accumulation of fluid (usually serous fluid which is a pale
yellow and clear fluid) that accumulates in the abdominal
cavity. The abdominal cavity is located below the chest
cavity, separated from it by the diaphragm. The accumulated
fluid can have many sources such as liver disease, cancers,
congestive heart failure, or kidney failure.

[0135] The biological sample may include a fine needle
aspirate or a biopsy from a tissue known to be, or suspected
of being, cancerous. The sample may include a bodily fluid
from a patient either known to include, or suspected of
including, cancer cells or cancer-related cells (i.e., immune
cells).

[0136] Accordingly, the cancer cell may be from a patient
having or suspected of having a cancer. Types of cancer are
characterized by the cells from which they originate. Cancer
types include carcinomas such as breast, prostate, lung,
pancreatic, and colon cancers that arise from epithelial cells.
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Sarcomas are derived from connective tissue (e.g., bone,
cartilage, fat, or nerve cells). Lymphoma and leukemia arise
from hematopoietic cells and are found in the lymph nodes
and blood of afflicted patients. Cancer of plasma cells
(myeloma) is another cancer found in blood. Germ cell
cancers derived from pluripotent cells and blastomas from
precursor cells or embryonic tissue are other types of cancer.
Cancers may be categorized by those detectable in body
fluids, for example, lymphoma, leukemia, or multiple
myeloma, as well as those detectable in solid tumors, for
example carcinomas or sarcomas. Optimized measurements
of the present measurement devices and methods may be
used to measure cancers detectable in body fluids or cancers
detectable in solid tumors. Accordingly, the cancer may be
a leukemia, a lymphoma, a myeloma, a melanoma, a carci-
noma, or a sarcoma. In certain embodiments, the cancer
involves a solid tumor of, for example, the esophagus,
kidneys, uterus, ovaries, thyroid, breast, liver, gallbladder,
stomach, pancreas, or colon.

[0137] Optimized measurements of individual cells for
properties, such as mass and density changes measured in
cells, can reveal, for example, if the cells are growing,
stationary, or atrophying. Those features of cellular life may
be hallmarks of health, cancer, or drug response, and thus
methods and devices of the disclosure are valuable tools for
precision medicine. Precision Medicine refers to the tailor-
ing of medical treatment to individual characteristics of a
patient and the ability to classify individuals into subpopu-
lations that differ in their susceptibility to a particular disease
or treatment. Precision medicine often involves genomic or
molecular analysis of an individual patient’s disease at the
molecular level and the selection of targeted treatments to
address that individual patient’s disease process. In theory,
therapeutic interventions are concentrated on those who will
benefit, sparing expense and side effects for those who will
not. Historically, next-generation sequencing (NGS) tech-
nologies make up the core of precision medicine. Clinicians
use NGS technologies to screen for cancer-associated muta-
tions or to study gene expression levels. Now, when coupled
with existing approaches based on next-generation sequenc-
ing, functional measurements according to the invention
provide for multi-dimensional precision medicine with ben-
efits in disease areas such as oncology.

[0138] Methods and devices of the invention may be used
to identify malignant cancer cells in a blood or tissue sample
from a patient. Those tools may also be used as an ex vivo
test of drug response, useful for therapeutic selection. For
example, optimized measurement of MAR in cells provides
a measure of cancer in a patient. After treatment of a patient,
optimized cellular measurements may be used to monitor
recurrence, remission, or relapse. Thus, the invention pro-
vides for the improvement of patient care, greater chances of
successful cancer treatment, and increased patient life spans.
Cancer cells may be obtained from a patient treated for
cancer, and the measurement of MAR by the methods and
devices of the invention may be used to monitor the effec-
tiveness of the cancer treatment.

[0139] Methods and devices of the disclosure are useful
for precisely and rapidly measuring growth rates of living
individual cells using a small amount of a sample. Only a
small amount of a sample may be used to observe and
measure a single cell, as opposed to observing a population
of cells in traditional methods. Therefore, a small amount of
cells can be obtained directly from a subject, suspended in
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media, and then introduced to a measurement instrument
without the need to add additional time-consuming steps,
such as culturing the cells. In the invention, the cells from
the biological sample are separated when flowing through a
microfiuidic channel of the measurement instrument and the
growth rate of individual cells is measured.

[0140] A small sample size may be required as compared
to sample sizes necessary in other measurement methods.
For example, the sample may comprise about 500 or fewer
cells. A small amount of cells may be used because of the
precision of the methods of measurement. Therefore, the
optimized measurement of the present invention may be
advantageous when limited tissue samples are available for
testing and measurement. For example, a tissue sample may
comprise about 10,000 cells. Such a tissue sample does not
have enough cells present in the sample for traditional
measurement methods, such as optics measurement meth-
ods. Therefore, because 500 or fewer cells may be used, if
a sample of about 10,000 cells is provided 20 different test
conditions may be tested. For example, 500 cells may be
dosed with a first drug to determine the effects of the drug
on mass accumulation rate of the cells. Therefore, as many
as 20 different drugs may be tested with a sample containing
10,000 cells.

[0141] FIG. 7 shows an exemplary measurement device
701 useful for performing methods of the disclosure. Pref-
erably, the measurement device provides an instrument 629
capable of making optimized cell measurements and at least
one computer 725. The measurement device 701 also pref-
erably includes at least one server 719. The instrument
includes a sensor 239 which provides data to a classifier 255
and an SMR 301. The classifier may operate in real-time,
and the identification individual cells may be used to control
flow through the instrument 629. Either or both of the
computer 725 and the server 719 may include and provide
the classifier 255. The measurement device 701 may option-
ally also include any one or more of a storage 713, a
sequencing instrument 705, and any additional analysis
instruments 709 for performing additional assays on the one
or more cells downstream of the initial multimodal mea-
surements obtained by the instrument.

[0142] Any of those elements may interoperate via a
network 729. Any one of the instruments may include its
own built-in or connected computer which may connect to
the network 729 and/or the server 729. The instrument 629,
for example, may have its own computer or server which
provides the classifier 255. The computer 725 may include
one or more processors and memory as well as an input/
output mechanism. Where methods of the invention employ
a client/server architecture, steps of methods of the invention
may be performed using the server 729, which includes one
or more of processors and memory, capable of obtaining
data, instructions, etc., or providing results via an interface
module or providing results as a file. The server 719 may be
provided by a single or multiple computer devices, such as
the rack-mounted computers sold under the trademark
BLADE by Hitachi. The server 719 may be provided as a set
of servers located on or off-site or both. The server 719 may
be owned or provided as a service. The server 719 or the
storage 713 may be provided wholly or in-part as a cloud-
based resources such as Amazon Web Services or Google.
The inclusion of cloud resources may be beneficial as the
available hardware scales up and down immediately with
demand. The actual processors—the specific silicon chips—
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performing a computation task can change arbitrarily as
information processing scales up or down. In an embodi-
ment, the server 619 includes one or a plurality of local units
working in conjunction with a cloud resource (where local
means not-cloud and includes or off-site). The server 719
may be engaged over the network 729 by the computer 725.
[0143] In the measurement device 701, each computer
preferably includes at least one processor coupled to a
memory and at least one input/output (I/0) mechanism. A
processor will generally include a chip, such as a single core
or multi-core chip, to provide a central processing unit
(CPU). A processor may be provided by a chip from Intel or
AMD.

[0144] Memory can include one or more machine-read-
able devices on which is stored one or more sets of instruc-
tions (e.g., software) which, when executed by the processor
(s) of any one of the disclosed computers can accomplish
some or all of the methodologies or functions described
herein. The software may also reside, completely or at least
partially, within the main memory and/or within the proces-
sor during execution thereof by the computer measurement
device. Generally, each computer includes a non-transitory
memory such as a solid-state drive, flash drive, disk drive,
hard drive, etc. While the machine-readable devices can in
an exemplary embodiment be a single medium, the term
“machine-readable device” should be taken to include a
single medium or multiple media (e.g., a centralized or
distributed database, and/or associated caches and servers)
that store the one or more sets of instructions and/or data.
These terms shall also be taken to include any medium or
media that are capable of storing, encoding, or holding a set
of instructions for execution by the machine and that cause
the machine to perform any one or more of the methodolo-
gies of the present invention. These terms shall accordingly
be taken to include, but not be limited to one or more
solid-state memories (e.g., subscriber identity module (SIM)
card, secure digital card (SD card), micro-SD card, or
solid-state drive (SSD)), optical and magnetic media, and/or
any other tangible storage medium or media.

[0145] A computer of the invention will generally include
one or more 1/O device such as, for example, one or more of
a video display unit (e.g., a liquid crystal display (LCD) or
a cathode ray tube (CRT)), an alphanumeric input device
(e.g., a keyboard), a cursor control device (e.g., a mouse), a
disk drive unit, a signal generation device (e.g., a speaker),
a touchscreen, an accelerometer, a microphone, a cellular
radio frequency antenna, and a network interface device,
which can be, for example, a network interface card (NIC),
Wi-Fi card, or cellular modem.

[0146] The measurement device 701 or components of
measurement device 701 may be used to perform methods
described herein. Instructions for any method step may be
stored in memory and a processor may execute those
instructions, including use and training of a classifier for
identifying cellular and non-cellular material.

The measurement device 701 thus includes at least one
computer (and optionally one or more instruments) operable
to identify one more live cell(s) isolated from a sample of a
patient, wherein the one or more live cells comprise at least
one of a cancer cell and a cancer-related immune cell. The
measurement device 701 is further operable to calculate the
flow velocity of a cell and correlate the identity of the cell
with an SMR measurement. The measurement device 701 is
optionally further operable to perform a second assay on the
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one or more live cells having undergone the first assay. The
measurement device 701 is further operable to analyze data
from the second assay and the optimized measurement from
the first assay to determine at least a stage or progression of
the cancer. Using the computer 701, the measurement device
is operable to provide a report comprising any suitable
patient information including identity along with informa-
tion related to the cancer evaluation, including, but not
limited to, specific data associated with the first and second
assays, a determination of a stage or progression of cancer,
and personalized treatment tailored to an individual patient’s
cancet.

[0147] In some embodiments, methods of the invention
involve using an SMR for measuring the mass of tumor cells
from a cancer patient. The method may further comprise
measuring the mass of the tumor cells after administration of
a therapeutic and detecting one or more biomarkers. The
method may further comprise using a machine-learning
algorithm to assess and correlate the SMR measurements
regarding therapeutic efficacy with the one or more bio-
markers. Such methods enable measurements of the mass
and/or growth rate to be linked to biomarkers at the single-
cell level and are useful for the prediction of therapeutic
efficacy. As previously discussed, using a computer, the
measurement device is operable to provide a report com-
prising any suitable patient information including identity
along with information related to the cancer evaluation,
including, but not limited to, specific data associated with
multiple assays (e.g. detection of biomarkers), a determina-
tion of a stage or progression of cancer, and personalized
treatment tailored to an individual patient’s cancer. The
measurement device is given training data and make infer-
ences in order to generate a prediction on previously unseen
test data using machine learning. In certain aspects, multi-
modal measurements obtained using measurement devices
and methods of the invention are used to reciprocally
improve the quality or interpretability of training data sets.
The method can further include iteratively updating the
training data set with the results of the assays (e.g. detection
of biomarkers) along with the patient’s data and any cancer
data obtained through additional assays for further machine
learning analysis. Real world outcomes for the patient
including responsiveness to the treatment can also be
tracked and fed back into the training data set for refined
database queries or for machine learning analysis. As more
information is obtained and analyzed, the patterns identified
by a machine learning algorithm result in improved ability
to use biomarkers for the therapeutic selection and predict-
ing patient outcome.

[0148] Methods of the disclosure are performed using a
sample (e.g., liquid biopsy sample). A liquid biopsy sample,
for instance a blood sample, can contain various cell types
and cell products including circulating tumor cells, circu-
lating nucleic acids and cell-free DNA, as well as cell-free
RNAs, extracellular vesicles, tumor-secreted vesicles,
tumor-educated platelets, proteins, and metabolites.

[0149] In some embodiments, the biomarker is or includes
one or more molecular signature or molecular biomarker. A
signature may encompass any gene, protein, or epigenetic
element (e.g. epigenetic modifications) whose expression
level or presence is associated with a specific cell type,
subtype, or cell state (e.g., malignant cells, immune evading
tumor cells, immunotherapy resistant tumor cells, tumor
infiltrating lymphocytes, and macrophages). Epigenetic ele-
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ments can be any changes, which can be heritable, in gene
activity caused by something other than DNA (or genome)
sequence changes, and include without limitation, DNA
methylation, DNA-protein interactions, chromatin accessi-
bility, and histone isoforms, modifications, and location
(occupancy) in genome regions.

[0150] The biomarker may also be used to suggest for
particular therapies or treatments. The biomarkers of the
present invention may be discovered by correlating the SMR
measurements regarding therapeutic outcome with the pres-
ence and/or expression levels of one or more gene, protein,
or epigenetic clements from samples (e.g. tumor samples).

[0151] The one of more biomarkers may indicate a treat-
ment outcome. The one of more biomarkers may be indica-
tive of a particular response to treatment, such as including
increased or decreased susceptibility to treatment. The one
of more biomarkers may be indicative of a particular patho-
logical condition associated with cancer or a particular
outcome or progression of the cancer, or a particular
response to treatment of the cancer (e.g. resistance to par-
ticular therapies).

[0152] Insome embodiments, the one or more biomarkers
can be measured or detected using a multiomics analysis. In
some embodiments, such a multiomic approach can be a
single-cell multiomic approach, which includes multilevel
single-cell data (e.g., single-cell genomics data and single
cell protein data, and epigenome transcriptome data). In
some embodiments, the one or more biomarkers can be
measured or detected by analyzing gene expression, protein
expression, and/or other data based on single cell analyses
(e.g. single cell RNA sequencing)

[0153] FIG. 8 Shows a schematic representation of the
SMR platform that allows for brightfield images to be linked
with high resolution single-cell mass measurements. Using
measurements of MDA-MB-361 cells, a human breast can-
cer cell line, images of various event types including live
cells, dead cells, malformed cells, debris, and aggregates
were identified. These manually curated image sets were
then used to successfully train a convolution neural network
(CNN) based image classification model. After applying this
model to annotate additional single-cell mass measurements,
there were clear signatures consistent with event types
including a higher mass for particles classified as aggregates
and lower mass for events classified as debris or dead cells.

Incorporation by Reference

[0154] References and citations to other documents, such
as patents, patent applications, patent publications, journals,
books, papers, web contents, have been made throughout
this disclosure. All such documents are hereby incorporated
herein by reference in their entirety for all purposes.

Equivalents

[0155] The invention may be embodied in other specific
forms without departing from the spirit or essential charac-
teristics thereof. The foregoing embodiments are therefore
to be considered in all respects illustrative rather than
limiting on the invention described herein. Scope of the
invention is thus indicated by the appended claims rather
than by the foregoing description, and all changes which
come within the meaning and range of equivalency of the
claims are therefore intended to be embraced therein.
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What is claimed is:

1. A measurement device for assessing properties of
particles suspended in a fluid, the measurement device
comprising:

a measurement channel comprising a sensor to measure
particle mass and at least one additional sensor to
measure an additional particle property.

2. The measurement device of claim 1, further comprising
means for linking multiple measurements of particles flow-
ing within the device.

3. The measurement device of claim 1, wherein the
particle is a cell.

4. The measurement device of claim 1, wherein the
particle is selected from the group consisting of tissue
debris, cell aggregates, bacteria, fungi, protein, protein
aggregates, exosomes, biologically functionalized particles.

5. The measurement device of claim 1, wherein either the
mass sensor or the additional sensor signal is used to link
independent measurements across sensors.

6. The measurement device of claim 1, wherein indepen-
dent measurements across sensors are linked by correlating
a time difference between measurements of single particles
across mass sensors and other sensors.

7. The measurement device of claim 1, wherein the
particle property is measured as a velocity and/or a trajec-
tory.

8. The measurement device of claim 2, wherein the
signals are obtained in real time.

9. The measurement device of claim 2, wherein the linked
measurements are used to classify single particles into
groups based on orthogonal information acquired from the
linked measurements.

10. The measurement device of claim 1, wherein the
sensor to measure particle mass is an SMR.

11. The measurement device of claim 1, wherein the
sensors are controlled by an FPGA.

12. The measurement device of claim 5, wherein the
linked single particle measurements are used to identify cells
versus non-cellular material/particles.

13. The measurement device of claim 5, wherein the
linked particle measurements are used to identify live cells
versus dead cells.

14. The measurement device of claim 1, wherein a clas-
sifier uses data from the mass sensor and/or the additional
sensor to determine one or more of the particle’s mass,
volume, diameter, impedance, capacitance, resistance, opti-
cal properties, density, stiffness, surface friction, deforma-
tion, cell-cycle state, viability, differentiation state, activa-
tion state, fluorescent properties.

15. The measurement device of claim 1, wherein the
particle flows through the sensor region prior to or after the
mass sensor.

16. The measurement device of claim 15, wherein the
measurement device uses the flow velocity of the particle to
project a time at which the particle flows through the mass
sensor for measurement.

17. The measurement device of claim 16, wherein the
measurement device correlates a measurement obtained
using the mass sensor with the identity of a particle based on
the projected time.

18. The measurement device of claim 17, wherein the
sensor is an imaging sensor.
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19. The measurement device of claim 18, wherein the
measurement device identifies the particle using an image
obtained using the imaging sensor prior to or when the
particle enters the mass sensor for measurement.

20. The measurement device of claim 19, wherein the
imaging sensor obtains a plurality of images of the particle
as it flows over the sensing region and the measurement
device determines the flow velocity of the particle using a
positional change of the particle between each of the images.

21. The measurement device of claim 18, wherein the
imaging sensor images multiple imaging fields.

22. The measurement device of claim 20, wherein the
measurement device comprises a plurality of mass sensors
and additional sensor regions, wherein each sensor region is
associated with a different mass sensor, and the imaging
measurement device images particles flowing in each sensor
region using a different field of view for each sensor region.

23. The measurement device of claim 15, wherein the
measurement device uses data from the mass sensor to
determine the flow velocity of the particle.

24. The measurement device of claim 23, wherein the
measurement device projects the time at which the particle
flowed through the sensor region using the flow velocity.

25. The measurement device of claim 24, wherein the
measurement device correlates a measurement obtained
using the mass sensor with the identity of the particle using
the projected time.

26. The measurement device of claim 23, wherein the
measurement device determines the flow velocity of the
particle using a width of frequency shift peaks measured by
the mass sensor as the particle flows through the mass
sensor.

27. The measurement device of claim 1, wherein the
sensor detects the orientation of the particle in the sample
channel.

28. The measurement device of claim 27, wherein the
measurement device adjusts a measurement of the particle
obtained using the mass sensor due to the detected orienta-
tion of the particle.

29. The measurement device of claim 1, wherein the
additional sensor detects the particle entering the mass
sensor with one or more other particles.

30. The measurement device of claim 29, wherein the
measurement device uses data from the sensor to isolate a
measurement for the particle from a multi-peak measure-
ment obtained by the mass sensor due to the particle and the
one or more other particles flowing through the mass sensor.

31. The measurement device of claim 1, wherein the mass
sensor is suspended within the sample channel and a diam-
eter of a portion of the channel in which the mass sensor is
suspended is narrower than a diameter of a portion of the
channel in which the additional sensor region is located.

32. The measurement device of claim 1, wherein the
measurement device identifies one or more biological prop-
erty of the particle using a combination of data from the
additional sensor and the mass sensor.

33. The measurement device of claim 1, wherein the
measurement device determines whether the particle stops
flowing through the sample channel due to a blockage.
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