
US 20200278835A1
INI

((19) United States
(12) Patent Application Publication (10) Pub . No .: US 2020/0278835 A1

Puranik et al . (43) Pub . Date : Sep. 3 , 2020

(54) TOURNAMENT TREE ROLLBACK FOR
PAYLOAD WRITE EXCEPTION

(52) U.S. CI .
CPC G06F 7/08 (2013.01) ; G06F 2201/84

(2013.01) ; G06F 16/2246 (2019.01) ; G06F
11/1469 (2013.01) (71) Applicant : International Business Machines

Corporation , Armonk , NY (US)

(57) ABSTRACT (72) Inventors : Aditya Nitin Puranik , Pune (IN) ;
Nidhi Chandak , Bangalore (IN) ;
Martin Recktenwald , Schoenaich (DE)

(21) Appl . No .: 16 / 288,193
(22) Filed : Feb. 28 , 2019

Publication Classification

Examples of techniques for tournament tree rollback for
payload write exception are described herein . An aspect
includes receiving a new record for a tournament sort .
Another aspect includes determining a winner node of the
tournament sort based on a tournament tree and the new
record . Another aspect includes , based on determining the
winner node of the tournament sort , writing out a payload of
the winner node . Another aspect includes , in parallel with
writing out the payload of the winner node , updating the
tournament tree .

(51) Int . Ci .
GO6F 7/08
G06F 11/14
GOOF 16/22

(2006.01)
(2006.01)
(2006.01)

200

RECEIVE NEW RECORD TO BE ADDED TO TREE ; STORE
NEW RECORD IN NEW ELEMENT LATCH

201

TRAVERSE UP THE TREE ; AT EACH LEVEL COMPARE KEY
OF NEW RECORD WITH KEY OF TREE NODE TO

DETERMINE WINNER AND POPULATE HAS_WON VECTOR
202

WRITE OUT PAYLOAD OF WINNER RECORD ;
SIMULTANEOUSLY UPDATE THE TREE BASED ON

HAS_WON VECTOR (FIG . 3)
203

YES PAYLOAD WRITE
COMPLETED

SUCCESSFULLY ?
204

NO

ROLL BACK TREE BASED ON HAS_WON VECTOR (FIG . 4)
205

UPDATE TOP NODE TO POINT TO NEXT ELEMENT OF
WINNER LIST

206

Patent Application Publication Sep. 3 , 2020 Sheet 1 of 6 US 2020/0278835 A1

100 so
1

Mass Storage 110
1

Software 111 Hard Disk 108 1

1

I / O Adapter
106

1
1
1

System
Memory 103 Network

112 Communications
Adapter
107

RAM
105 CPU 101a

CPU 101b

CPU 1010
ROM
104

System Bus 102

Interface Adapter
116

Display
Adapter

115 Keyboard
121

Mouse
122

Speaker
123

Display
119

FIG . 1

Patent Application Publication Sep. 3 , 2020 Sheet 2 of 6 US 2020/0278835 A1

200

RECEIVE NEW RECORD TO BE ADDED TO TREE ; STORE
NEW RECORD IN NEW ELEMENT LATCH

201

TRAVERSE UP THE TREE ; AT EACH LEVEL COMPARE KEY
OF NEW RECORD WITH KEY OF TREE NODE TO

DETERMINE WINNER AND POPULATE HAS_WON VECTOR
202

WRITE OUT PAYLOAD OF WINNER RECORD ;
SIMULTANEOUSLY UPDATE THE TREE BASED ON

HAS_WON VECTOR (FIG . 3)
203

YES PAYLOAD WRITE
COMPLETED

SUCCESSFULLY ?
204

NO

ROLL BACK TREE BASED ON HAS_WON VECTOR (FIG . 4)
205

UPDATE TOP NODE TO POINT TO NEXT ELEMENT OF
WINNER LIST

206

FIG . 2 .

Patent Application Publication Sep. 3 , 2020 Sheet 3 of 6 US 2020/0278835 A1

300

START AT BOTTOM NODE OF TREE ; LEVEL = N - 1
301

HAS_WON [LEVEL] = 1 ?
302 NO

YES

SWAP CONTENTS OF NEW ELEMENT LATCH AND NODE AT
LEVEL
303

NO LEVEL = 0 ?
304

DECREMENT
LEVEL
305

YES

GO TO BLOCK 204 OF FIG . 2
306

FIG . 3

Patent Application Publication Sep. 3 , 2020 Sheet 4 of 6 US 2020/0278835 A1

400

START AT NODE 1 ; LEVEL = 1
401

HAS_WON [LEVEL] = 1 ?
402 NO

YES

SWAP CONTENTS OF NEW ELEMENT LATCH AND NODE AT
LEVEL
403

NO LEVEL = N - 1 ?
404

INCREMENT
LEVEL
405

YES

END
406

FIG . 4

Patent Application Publication Sep. 3 , 2020 Sheet 5 of 6 US 2020/0278835 A1

500
HAS WON = 1 0 1 1 0 3500

501 502 503

M M M
A D A
R R R
G G G
F F H
B B B

H H F

504 505 506

M M M

?. A ?. G

R R R

F F F

H H I

B B B

G G A

FIG . 5

Patent Application Publication Sep. 3 , 2020 Sheet 6 of 6 US 2020/0278835 A1

600
HAS WON = 1 0110 soolo

601 602 603 8602
M M M

G A D

R R

F F F

H H H

B B B

A G G

606
604 605

M M M

A A A ?.

R R R

G G G

H F ?

B B B

F H H

FIG . 6

US 2020/0278835 A1 Sep. 3 , 2020
1

TOURNAMENT TREE ROLLBACK FOR
PAYLOAD WRITE EXCEPTION

determining the winner node of the tournament sort , write
out a payload of the winner node . The apparatus can also
include can also program code executable by the processing
device to , in parallel with writing out the payload of the
winner node , update the tournament tree .

BACKGROUND

BRIEF DESCRIPTION OF THE DRAWINGS
[0001] The present techniques relate to computing sys
tems . More specifically , the techniques relate to tournament
tree rollback for payload write exception in a computing
system .
[0002] Computing systems are widely used to process and
sort data records stored in a database . A variety of sorting
algorithms have been developed to reduce sorting time for
improving the processing performance of the computing
system . One such sorting algorithm is referred to as tour
nament sort .
[0003] In general , a tournament tree sort is a binary - tree
based selection and replacement sort algorithm . Tournament
sort algorithms allow sorting of keys associated with respec
tive data records in a continuous streaming fashion . Incom
ing keys are entered into the leaf nodes of a tournament tree
and the keys exit , in sorted order , from the tree's root node .
For a set of input records that are initially populated into the
leaf nodes , pair - wise comparisons are performed at each tree
level until a winning record emerges at the tree root . After
the initial round of comparisons and populations , each
non - leaf node holds exactly one input key , except the
winning key which is sent out of the tree . During a con
tinuous sort , after a winner is removed from the tree , a new
input record is inserted at the previous winner's leaf node
and is compared and swapped , if needed) with exactly one
non - leaf node at each level , until the tree root is reached and
the new winner is determined .

[0007] FIG . 1 is a block diagram of an example computing
system for use in conjunction with tournament tree rollback
for payload write exception ;
[0008] FIG . 2 is a process flow diagram of an example
method for tournament tree rollback for payload write
exception ;
[0009] FIG . 3 is a process flow diagram of an example
method for updating a tournament tree for tournament tree
rollback for payload write exception ;
[0010] FIG . 4 is a process flow diagram of an example
method for rollback of a tournament tree based on a payload
write exception ;
[0011] FIG . 5 is a block diagram of an example imple
mentation of an example method for updating a tournament
tree for tournament tree rollback for payload write excep
tion ; and
[0012] FIG . 6 is a block diagram of an example imple
mentation of an example method for tournament tree roll
back based on a payload write exception .

DETAILED DESCRIPTION

SUMMARY

(0004] According to an embodiment described herein , a
system can include a processor to receive a new record for
a tournament sort . The processor can also determine a
winner node of the tournament sort based on a tournament
tree and the new record . The processor can also , based on
determining the winner node of the tournament sort , write
out a payload of the winner node . The processor can also , in
parallel with writing out the payload of the winner node ,
update the tournament tree .
[0005] According to another embodiment described
herein , a method can include receiving , by a processor , a
new record for a tournament sort . The method can also
include determining , by the processor , a winner node of the
tournament sort based on a tournament tree and the new
record . The method can also include , based on determining
the winner node of the tournament sort , writing out , by the
processor , a payload of the winner node . The method can
also include , in parallel with writing out the payload of the
winner node , updating , by the processor , the tournament tree
[0006] According to another embodiment described
herein , an apparatus can include a computer readable storage
medium having program instructions embodied therewith ,
the program instructions executable by a processing device
to cause the processing device to perform a method com
prising receiving a new record for a tournament sort . The
apparatus can also include can also program code executable
by the processing device to determine a winner node of the
tournament sort based on a tournament tree and the new
record . The apparatus can also include can also program
code executable by the processing device to , based on

[0013] Embodiments of tournament tree rollback for pay
load write exception are provided , with exemplary embodi
ments being discussed below in detail . Each record in a
tournament tree includes a respective key and a payload
associated with the key . The keys are used for comparisons
between records while sorting the nodes of the tournament
tree . When the winner key is determined for an iteration of
the tournament sort , the payload associated with the winner
key in the winner record (or node) is written out to a target
memory location . The tournament tree may be updated
based on the comparisons in parallel with the writing out of
the winner payload in order to reduce an amount of time
necessary to perform the tournament trees sort . During the
payload write , an exception (including but not limited to an
access exception , a data exception , or an amount of space
required for the payload write not being available at the
target memory location) may occur , so that the payload write
is not successfully completed . The payload write exception
may trigger a tree rollback in order to allow a correct restart
of the tournament sort .
[0014] A tournament sort including tournament tree roll
back for payload write exceptions may begin when a
record , including a key and an associated payload , is
obtained from an input list and stored in a new element latch .
An upward traversal of the tournament tree is then per
formed , starting at a leaf node that held a previous winner of
the tournament sort . The new record key may be compared
with the keys of the nodes in the tree to determine a winner
(e.g. , a smallest or largest key) key at each level up the tree .
The comparisons may be written into a has_won vector ,
which indicates , for each level of the tree , whether the record
stored in the new element latch won or lost the comparison
against the node located in the tree . At the end of the
comparisons , the has won vector may contain a respective
one or zero for each level of the tree . Once the top of the tree

new

US 2020/0278835 A1 Sep. 3 , 2020
2

is reached , the payload associated with the winning key is
written out , and the tournament tree may be simultaneously
updated based on the has_won vector . In order to update the
tournament tree , a traversal up the tree may be performed ,
and nodes are updated at each level of the tree based on the
has_won vector . For example , in some embodiment , if
has_won [level] is 1 , the node at the current level may be
swapped with the element in the new element latch , whereas
if has_won [level] is 0 , no swap may be performed . The top
node of the tree (e.g. , level = 0) may be updated to point to a
next element in a winner list after the payload of the winning
record is successfully written out .
[0015] If an exception occurs during the writing out of the
payload of the winning record , the has won vector may be
used to roll back the tree . While the payload write is
attempted , the tree update is completed , except for updating
of the top node of the tree (e.g. , level 0) . If an exception
occurs , the tree is traversed from level 1 (i.e. , the level one
below the top of the tree) downwards to the bottom of the
tree . At each level , swaps may be performed based on the
has_won vector . For example , in some embodiments , if
has_won [level] is 1 , the node at the current level is swapped
with the element in the new element latch , while if has_
won [level] is 0 , no swap is performed . Once the bottom of
the tree is reached , the tree is reverted . Because the top node
(e.g. , level 0) was not updated , it does not need to be
reverted . Therefore , in some embodiments , updating of the
top node in the tree may be performed based on the payload
write being successfully completed .
[0016] Turning now to FIG . 1 , a computer system 100 is
generally shown in accordance with an embodiment . The
computer system 100 can be an electronic , computer frame
work comprising and / or employing any number and com
bination of computing devices and networks utilizing vari
ous communication technologies , as described herein . The
computer system 100 can be easily scalable , extensible , and
modular , with the ability to change to different services or
reconfigure some features independently of others . The
computer system 100 may be , for example , a server , desktop
computer , laptop computer , tablet computer , or smartphone .
In some examples , computer system 100 may be a cloud
computing node . Computer system 100 may be described in
the general context of computer system executable instruc
tions , such as program modules , being executed by a com
puter system . Generally , program modules may include
routines , programs , objects , components , logic , data struc
tures , and so on that perform particular tasks or implement
particular abstract data types . Computer system 100 may be
practiced in distributed cloud computing environments
where tasks are performed by remote processing devices that
are linked through a communications network . In a distrib
uted cloud computing environment , program modules may
be located in both local and remote computer system storage
media including memory storage devices .
[0017] As shown in FIG . 1 , the computer system 100 has
one or more central processing units (CPU (s)) 101a , 101b ,
101c , etc. (collectively or generically referred to as proces
sor (s) 101) . The processors 101 can be a single - core pro
cessor , multi - core processor , computing cluster , or any num
ber of other configurations . The processors 101 , also
referred to as processing circuits , are coupled via a system
bus 102 to a system memory 103 and various other com
ponents . The system memory 103 can include a read only
memory (ROM) 104 and a random access memory (RAM)

105. The ROM 104 is coupled to the system bus 102 and
may include a basic input / output system (BIOS) , which
controls certain basic functions of the computer system 100 .
The RAM is read - write memory coupled to the system bus
102 for use by the processors 101. The system memory 103
provides temporary memory space for operations of said
instructions during operation . The system memory 103 can
include random access memory (RAM) , read only memory ,
flash memory , or any other suitable memory systems .
[0018] The computer system 100 comprises an input /
output (I / O) adapter 106 and a communications adapter 107
coupled to the system bus 102. The I / O adapter 106 may be
a small computer system interface (SCSI) adapter that
communicates with a hard disk 108 and / or any other similar
component . The I / O adapter 106 and the hard disk 108 are
collectively referred to herein as a mass storage 110 .
[0019] Software 111 for execution on the computer system
100 may be stored in the mass storage 110. The mass storage
110 is an example of a tangible storage medium readable by
the processors 101 , where the software 111 is stored as
instructions for execution by the processors 101 to cause the
computer system 100 to operate , such as is described herein
below with respect to the various Figures . Examples of
computer program product and the execution of such
instruction is discussed herein in more detail . The commu
nications adapter 107 interconnects the system bus 102 with
a network 112 , which may be an outside network , enabling
the computer system 100 to communicate with other such
systems . In one embodiment , a portion of the system
memory 103 and the mass storage 110 collectively store an
operating system , which may be any appropriate operating
system , such as the z / OS or AIX operating system from IBM
Corporation , to coordinate the functions of the various
components shown in FIG . 1 .
[0020] Additional input / output devices are shown as con
nected to the system bus 102 via a display adapter 115 and
an interface adapter 116 and . In one embodiment , the
adapters 106 , 107 , 115 , and 116 may be connected to one or
more I / O buses that are connected to the system bus 102 via
an intermediate bus bridge (not shown) . A display 119 (e.g. ,
a screen or a display monitor) is connected to the system bus
102 by a display adapter 115 , which may include a graphics
controller to improve the performance of graphics intensive
applications and a video controller . A keyboard 121 , a mouse
122 , a speaker 123 , etc. can be interconnected to the system
bus 102 via the interface adapter 116 , which may include , for
example , a Super 1/0 chip integrating multiple device adapt
ers into a single integrated circuit . Suitable I / O buses for
connecting peripheral devices such as hard disk controllers ,
network adapters , and graphics adapters typically include
common protocols , such as the Peripheral Component Inter
connect (PCI) . Thus , as configured in FIG . 1 , the computer
system 100 includes processing capability in the form of the
processors 101 , and , storage capability including the system
memory 103 and the mass storage 110 , input means such as
the keyboard 121 and the mouse 122 , and output capability
including the speaker 123 and the display 119 .
[0021] In embodiments , the communications
adapter 107 can transmit data using any suitable interface or
protocol , such as the internet small computer system inter
face , among others . The network 112 may be a cellular
network , a radio network , a wide area network (WAN) , a
local area network (LAN) , or the Internet , among others . An
external computing device may connect to the computing

some

US 2020/0278835 A1 Sep. 3 , 2020
3

system 100 through the network 112. In some examples , an
external computing device may be an external webserver or
a cloud computing node .
[0022] It is to be understood that the block diagram of
FIG . 1 is not intended to indicate that the computer system
100 is to include all of the components shown in FIG . 1 .
Rather , the computer system 100 can include any appropri
ate fewer or additional components not illustrated in FIG . 1
(e.g. , additional memory components , embedded control
lers , modules , additional network interfaces , etc.) . Further ,
the embodiments described herein with respect to computer
system 100 may be implemented with any appropriate logic ,
wherein the logic , as referred to herein , can include any
suitable hardware (e.g. , a processor , an embedded controller ,
or an application specific integrated circuit , among others) ,
software (e.g. , an application , among others) , firmware , or
any suitable combination of hardware , software , and firm
ware , in various embodiments .
[0023] FIG . 2 is a process flow diagram of an example
method for tournament tree rollback for payload write
exception . The method 200 can be implemented with any
suitable computing device , such as the computer system 100
of FIG . 1 , and may be performed by , for example , software
111 operating on data that is stored in a memory such as hard
disk 108 in some embodiments . In block 201 , a new record
for a tournament tree , including a key and an associated
payload , is received . The new record may be stored in a
memory such as a new element latch in some embodiments .
In block 202 , the tournament tree is traversed . In some
embodiments , the tree is traversed upwards , starting at the
bottom of the tree at a leaf node that held the winning node
of the previous iteration of the tournament sort . At each level
of the tree , the key of the record in the new element latch is
compared to the key of the node located at the current level
of the tree , and a winner is determined based on the
comparison (e.g. , the smallest or largest of the two keys may
be determined to be the winner) . An entry in a has_won
vector may be updated to reflect each comparison . The
has_won vector may be a vector containing a number of
entries equal to the number of levels in the tree (e.g. , for a
tree having N levels , the entries in the has_won vector may
be numbered from 0 , representing the top of the tree , to N - 1 ,
representing the bottom of the tree) . Each of the N entries in
the has won vector is a one or a zero , indicating whether the
node in the tree won or lost the comparison at the level
corresponding to the entry in the has won vector . When the
traversal of block 202 reaches the top of the tree , the
has_won vector for the comparisons involving the new
record is fully populated , and a new winning record has been
determined . Flow then proceeds from block 202 to block

target memory location of the payload write . If there was
determined to be an exception during the payload data write
in block 204 , flow proceeds from block 204 to block 205 , in
which the tree is reverted based on the has won vector .
Block 205 is discussed in further detail with respect to
method 400 of FIG . 4. If it was determined that the payload
write was successfully completed , with no exceptions , in
block 204 , flow proceeds from block 204 to block 206. In
block 206 , the top node of the tree is updated to point to a
next element of the winner list , and method 200 ends .
Method 200 may then be repeated for a next new element .
[0025] The process flow diagram of FIG . 2 is not intended
to indicate that the operations of the method 200 are to be
executed in any particular order , or that all of the operations
of the method 200 are to be included in every case . Addi
tionally , the method 200 can include any suitable number of
additional operations .
[0026] FIG . 3 is a process flow diagram of an example
method for updating a tournament tree for tournament tree
rollback for payload write exception . The method 300 can be
implemented with any suitable computing device , such as
the computer system 100 of FIG . 1. Method 300 may be
performed in parallel with the payload write in block 203 of
FIG . 2. In block 301 of method 300 of FIG . 3 , the traversal
of the tree starts at the bottom of the tree , e.g. , a current level
of the tree is set to N - 1 , where N is the number of levels in
the tournament tree , and the levels are numbered from 0 (the
top of the tree) to N - 1 (the bottom of the tree) . In block 302 ,
it is determined whether the entry in the has_won vector
corresponding to the current level is equal to 1. If it is
determined in block 302 that the entry in the has_won vector
corresponding to the current level is equal to 1 , flow
proceeds from block 302 to block 303 , in which the record
stored in the new element latch is swapped with the record
located at the current level in the tree . Flow then proceeds
from block 303 to block 304. If it is determined in block 302
that the entry in the has won vector corresponding to the
current level in the tree is not equal to 1 , flow proceeds
directly from block 302 to block 304 , and no swap is
performed . In block 304 , it is determined whether the
traversal has reached the top of the tree , e.g. , whether the
current level is equal to zero . If it is determined in block 304
that the top of the tree has not been reached , flow proceeds
from block 304 to block 305 , and the current level of the tree
is decremented . Flow then proceeds from block 305 back to
block 302 , in which the has_won vector entry for the current
level is used to determine whether there should be a swap at
the current level according to blocks 302 and 303. Block
302 , and optionally block 303 , are performed for each level
of the tree until it is determined in block 304 that the top of
the tree has been reached (e.g. , the current level is zero) .
When the top of the tree is reached in block 304 , flow
proceeds back to block 204 of FIG . 2. Blocks 302 and 303
are not performed for the top level node of the tree . Method
300 of FIG . 3 may be completed regardless of any exception
occurring during the payload data write of block 203 of FIG .
2 .

[0027] FIG . 3 is shown for illustrative purposes only . For
example , a zero or a one in a has_won vector entry may
indicate either a win or a loss for either the node in the tree
or the record in the new element latch in various embodi
ments . Further , the levels of a tournament tree may be
numbered in any appropriate manner in various embodi
ments . The process flow diagram of FIG . 3 is not intended

203 .
[0024] In block 203 , the payload associated with the
winning record is written out to a target memory location ,
and the tournament tree is updated based on the has_won
vector in parallel with the payload write . The tree update
may be performed as described below with respect to
method 300 of FIG . 3. The top node of the tournament tree
is not updated in block 203. Flow then proceeds to block
204 , in which it is determined whether the payload write has
successfully completed (i.e. , there were no exceptions dur
ing the payload data write) . Exceptions that may occur
during the payload data write include but are not limited to
an access exception , a data exception , or an amount of space
required for the payload write not being available at the

US 2020/0278835 A1 Sep. 3 , 2020
4

to indicate that the operations of the method 300 are to be
executed in any particular order , or that all of the operations
of the method 300 are to be included in every case . Addi
tionally , the method 300 can include any suitable number of
additional operations .
[0028] FIG . 4 is a process flow diagram of an example
method for rollback of a tournament tree based on a payload
write exception . The method 400 can be implemented with
any suitable computing device , such as the computer system
100 of FIG . 1. Method 400 may be performed in block 205
of FIG . 2 , based on an exception being determined during
the payload data write in block 204 of FIG . 2. In block 401
of method 400 of FIG . 4 , a downward traversal of the tree
is started at the level one below the top of the tree (e.g. , the
current level is 1) . In block 402 , it is determined whether the
entry in the has_won vector corresponding to the current
level is equal to 1. If it is determined in block 402 that the
entry in the has_won vector corresponding to the current
level is equal to 1 , flow proceeds from block 402 to block
403 , in which the record stored in the new element latch is
swapped with the record located at the current level in the
tree . Flow then proceeds from block 403 to block 404. If it
is determined in block 402 that the entry in the has_won
vector corresponding to the current level is not equal to 1 ,
flow proceeds directly from block 402 to block 404 , and no
swap is performed . In block 404 , it is determined whether
the traversal has reached the bottom of the tree , e.g. , whether
the current level is equal to N - 1 . If it is determined in block
404 that the bottom of the tree has not been reached , flow
proceeds from block 404 to block 405 , and the current level
of the tree is incremented . Flow then proceeds from block
405 back to block 402 , in which the has_won vector entry
for the current level is used to determine whether there
should be a swap at the current level according to blocks 402
and 403. Block 402 , and optionally block 403 , are performed
for each level of the tree until it is determined in block 404
that the bottom of the tree has been reached (e.g. , the current
level is N - 1) . When the bottom of the tree is reached in
block 404 , the tree is rolled back , and flow proceeds from
block 404 to block 406 , in which method 400 ends . Method
200 may then be restarted using the rolled back tournament
tree for a next new record .
[0029] FIG . 4 is shown for illustrative purposes only . For
example , a zero or a one in a has_won vector entry may
indicate either a win or a loss for either the node in the tree
or the record in the new element latch in various embodi
ments . Further , the levels of a tournament tree may be
numbered in any appropriate manner in various embodi
ments . The process flow diagram of FIG . 4 is not intended
to indicate that the operations of the method 400 are to be
executed in any particular order , or that all of the operations
of the method 400 are to be included in every case . Addi
tionally , the method 400 can include any suitable number of
additional operations .
[0030] FIG . 5 is a block diagram 500 illustrating an
example of updating of a tree according to method 300 of
FIG . 3 , as is performed in block 203 of FIG . 2. The example
is shown in FIG . 5 is for a 6 level tree (i.e. , N = 6) , and
includes a has_won vector comprising 5 entries indexed
from 1 to 5 (e.g. , [1 0 1 1 0]) that was constructed by the
comparisons of the tournament sort in block 202 of FIG . 2 .
A tournament tree is a binary tree , having 2 ̂ N nodes at each
level of the tree (e.g. , 1 node at level 0 , 2 nodes at level
1 , etc .) . The nodes shown in diagram 500 are the nodes that

are in the path of the new elements directly up the tree ; other
leaf nodes are not shown in FIG . 5. Before the updating of
the tree is begun , as shown by the initial tree state 501 , the
new element latch contains a new record H , and the tree
contains record B (leaf node at the bottom of the tree , level
5) , record F (level 4) , record G (level 3) , record R (level 2) ,
record A (level 1) , and record M (at the top of the tree , level
0) . Each record may include , in some embodiments , a key
that is used for comparisons , and an associated data payload .
[0031] In the first iteration 502 , the current level is set to
N - 1 in block 301 of FIG . 3 , and it is determined in block 302
that has_won [5] is equal to zero , so there is no swap in the
first iteration 502. In the second iteration 503 , it is deter
mined that has_won [4] is equal to 1 in block 302 , so there
is a swap according to block 303 , i.e. , record H is swapped
with record F at the fourth level of the tree . In the third
iteration 504 , it is determined that has_won [3] is equal to 1
in block 302 , so there is a swap according to block 303 , i.e. ,
record F is swapped with record G at the third level of the
tree . In the fourth iteration 505 , it is determined that has_
won [2] is equal to zero in block 302 , so there is no swap in
the fourth iteration 505. In the fifth iteration 506 , it is
determined that has_won [1] is equal to 1 in block 302 , so
there is a swap according to block 303 , i.e. , record G is
swapped with record A at the second level of the tree .
Method 300 is then complete , because record M at the top
of the tree is not updated by method 300 of FIG . 3 .
[0032] The example of FIG . 5 is shown for illustrative
purposes only . A tournament tree may include any appro
priate number of nodes , and those nodes may include any
appropriate data having any appropriate size in various
embodiments .
[0033] FIG . 6 is a block diagram 600 illustrating an
example of rolling back of a tree according to method 400
of FIG . 4. A rollback of a tree , such as is illustrated by
diagram 600 , is performed based on an exception occurring
during the payload write of the winner node (e.g. , the
payload of node M) . The example tree shown in FIG . 6
corresponds to the tree that was updated in FIG . 5 , i.e. , the
initial tree state 601 of the tree of FIG . 6 is the same as the
tree after the fifth iteration 506 shown in FIG . 5. The
has_won vector also corresponds to the has_won vector
shown in FIG . 5. Before the rolling back of the tree is begun ,
as shown by the initial tree state 601 , the new element latch
contains record A , and the tree contains record B (at the
bottom of the tree , level 5) , record H (level 4) , record F
(level 3) , record R (level 2) , record G (level 1) , and record
M (at the top of the tree , level 0) . Each record may include ,
in some embodiments , a key that is used for comparisons ,
and an associated data payload .
[0034] In the first iteration 602 , the current level is set to
1 in block 401 of FIG . 4 , and it is determined that has_won
[1] is equal to 1 in block 402 , so there is a swap according
to block 403 , i.e. , record A is swapped with record G at the
second level of the tree . In the second iteration 603 , it is
determined that has_won [2] is equal to zero in block 402 , so
there is no swap in the second iteration 603. In the third
iteration 604 , it is determined that has_won [3] is equal to 1
in block 402 , so there is a swap according to block 403 , i.e. ,
record G is swapped with record F at the third level of the
tree . In the fourth iteration 605 , it is determined that has_
won [4] is equal to 1 in block 402 , so there is a swap
according to block 403 , i.e. , record F is swapped with record
H at the fourth level of the tree . In the fifth iteration 606 , it

US 2020/0278835 A1 Sep. 3 , 2020
5

is determined that has_won [5] is equal to zero in block 402 ,
so there is no swap in the fifth iteration 606. Record M at the
top of the tree was not updated by method 300 , and does not
need to be rolled back . After the fifth iteration 606 , the
tournament tree matches the initial tree state 501 of FIG . 5 .
The tournament sort may then be restarted according to
method 200 of FIG . 2 using the rolled back tree and a new
record .
[0035] The example of FIG . 6 is shown for illustrative
purposes only . A tournament tree may include any appro
priate number of nodes , and those nodes may include any
appropriate data having any appropriate size in various
embodiments .
[0036] The present techniques may be a system , a method
or an apparatus . The flowchart and block diagrams in the
Figures illustrate the architecture , functionality , and opera
tion of possible implementations of systems , methods , and
apparatus according to various embodiments of the present
techniques . In this regard , each block in the flowchart or
block diagrams may represent a module , segment , or portion
of logic for implementing the specified logical function (s) .
In some alternative implementations , the functions noted in
the block may occur out of the order noted in the figures . For
example , two blocks shown in succession may , in fact , be
executed substantially concurrently , or the blocks may
sometimes be executed in the reverse order , depending upon
the functionality involved . It will also be noted that each
block of the block diagrams and / or flowchart illustration ,
and combinations of blocks in the block diagrams and / or
flowchart illustration , can be implemented by special pur
pose hardware - based systems that perform the specified
functions or acts or carry out combinations of special
purpose hardware and computer instructions .
[0037] The descriptions of the various embodiments of the
present techniques have been presented for purposes of
illustration , but are not intended to be exhaustive or limited
to the embodiments disclosed . Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments . The terminology used herein was
chosen to best explain the principles of the embodiments , the
practical application or technical improvement over tech
nologies found in the marketplace , or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein .

based on determining an exception during the writing out
of the payload of the winner node , roll back the update
of the tournament tree .

4. The system of claim 3 , wherein the updating of the
tournament tree and the rolling back of the update of the
tournament tree are performed based on a vector , wherein
the vector comprises a plurality of entries , each entry
corresponding to a level of the tournament tree .

5. The system of claim 4 , wherein the new record is stored
in a latch , and wherein updating the tournament tree com
prises performing an upward traversal of the tournament
tree , and , for each level of the tournament tree :

determining whether an entry in the vector corresponding
to the level in the tournament tree indicates a swap ; and

based on determining that the entry in the vector corre
sponding to the level in the tournament tree indicates a
swap , swapping contents of the latch with a node
located at the level in the tournament tree ;

wherein a top level node of the tournament tree is not
updated .

6. The system of claim 4 , wherein the new record is stored
in a latch , and wherein rolling back the tournament tree
comprises performing a downward traversal of the tourna
ment tree , and , for each level of the tournament tree :

determining whether an entry in the vector corresponding
to the level in the tournament tree indicates a swap ; and

based on determining that the entry in the vector corre
sponding to the level in the tournament tree indicates a
swap , swapping contents of the latch with a node
located at the level in the tournament tree ;

wherein a top level node of the tournament tree is not
rolled back .

7. The system of claim 4 , wherein the vector is determined
by the determining of the winner node of the tournament
sort .

8. A computer - implemented method , comprising :
receiving , by a processor , a new record for a tournament

sort ;
determining , by the processor , a winner node of the

tournament sort based on a tournament tree and the new
record ;

based on determining the winner node of the tournament
sort , writing out , by the processor , a payload of the
winner node ; and

in parallel with writing out the payload of the winner
node , updating , by the processor , the tournament tree .

9. The computer - implemented method of claim 8 ,
wherein a top level node of the tournament tree is updated
based on completion of the writing out of the payload of the
winner node , wherein completion of the writing out of the
payload of the winner node comprises no exception being
determined during the writing out of the payload of the
winner node .

10. The computer - implemented method of claim 8 , fur
ther comprising :

based on determining an exception during the writing out
of the payload of the winner node , rolling back the
update of the tournament tree .

11. The computer - implemented method of claim 10 ,
wherein the updating of the tournament tree and the rolling
back of the update of the tournament tree are performed
based on a vector , wherein the vector comprises a plurality
of entries , each entry corresponding to a level of the tour
nament tree .

What is claimed is :
1. A system , comprising a processor configured to :
receive a new record for a tournament sort ;
determine a winner node of the tournament sort based on

a tournament tree and the new record ;
based on determining the winner node of the tournament

sort , write out a payload of the winner node ; and
in parallel with writing out the payload of the winner
node , update the tournament tree .

2. The system of claim 1 , wherein a top level node of the
tournament tree is updated based on completion of the
writing out of the payload of the winner node , wherein
completion of the writing out of the payload of the winner
node comprises no exception being determined during the
writing out of the payload of the winner node .

3. The system of claim 1 , wherein the processor is further
configured to :

US 2020/0278835 A1 Sep. 3 , 2020
6

12. The computer - implemented method of claim 11 ,
wherein the new record is stored in a latch , and wherein
updating the tournament tree comprises performing an
upward traversal of the tournament tree , and , for each level
of the tournament tree :

determining whether an entry in the vector corresponding
to the level in the tournament tree indicates a swap ; and

based on determining that the entry in the vector corre
sponding to the level in the tournament tree indicates a
swap , swapping contents of the latch with a node
located at the level in the tournament tree ;

wherein a top level node of the tournament tree is not
updated .

13. The computer - implemented method of claim 11 ,
wherein the new record is stored in a latch , and wherein
rolling back the tournament tree comprises performing a
downward traversal of the tournament tree , and , for each
level of the tournament tree :

determining whether an entry in the vector corresponding
to the level in the tournament tree indicates a swap ; and

based on determining that the entry in the vector corre
sponding to the level in the tournament tree indicates a
swap , swapping contents of the latch with a node
located at the level in the tournament tree ;

wherein a top level node of the tournament tree is not
rolled back .

14. The computer - implemented method of claim 11 ,
wherein the vector is determined by the determining of the
winner node of the tournament sort .

15. An apparatus comprising :
a computer readable storage medium having program

instructions embodied therewith , the program instruc
tions executable by a processing device to cause the
processing device to perform a method comprising :
receiving a new record for a tournament sort ;
determining a winner node of the tournament sort based
on a tournament tree and the new record ;

based on determining the winner node of the tourna
ment sort , writing out a payload of the winner node ;
and

in parallel with writing out the payload of the winner
node , updating the tournament tree .

16. The apparatus of claim 15 , wherein a top level node
of the tournament tree is updated based on completion of the
writing out of the payload of the winner node , wherein
completion of the writing out of the payload of the winner
node comprises no exception being determined during the
writing out of the payload of the winner node .

17. The apparatus of claim 15 , comprising program code
executable by the processing device to :

based on determining an exception during the writing out
of the payload of the winner node , roll back the update
of the tournament tree .

18. The apparatus of claim 17 , wherein the updating of the
tournament tree and the rolling back of the update of the
tournament tree are performed based on a vector , wherein
the vector comprises a plurality of entries , each entry
corresponding to a level of the tournament tree .

19. The apparatus of claim 18 , wherein the new record is
stored in a latch , and wherein updating the tournament tree
comprises performing an upward traversal of the tournament
tree , and , for each level of the tournament tree :

determining whether an entry in the vector corresponding
to the level in the tournament tree indicates a swap ; and

based on determining that the entry in the vector corre
sponding to the level in the tournament tree indicates a
swap , swapping contents of the latch with a node
located at the level in the tournament tree ;

wherein a top level node of the tournament tree is not
updated .

20. The apparatus of claim 18 , wherein the new record is
stored in a latch , and wherein rolling back the tournament
tree comprises performing a downward traversal of the
tournament tree , and , for each level of the tournament tree :

determining whether an entry in the vector corresponding
to the level in the tournament tree indicates a swap ; and

based on determining that the entry in the vector corre
sponding to the level in the tournament tree indicates a
swap , swapping contents of the latch with a node
located at the level in the tournament tree ;

wherein a top level node of the tournament tree is not
rolled back .

