
US 2006O190216A1 

(19) United States 
(12) Patent Application Publication (10) Pub. No.: US 2006/0190216 A1 

Boysworth (43) Pub. Date: Aug. 24, 2006 

(54) RETRO-REGRESSION RESIDUAL (52) U.S. Cl. .............................................................. T02/179 
REMEDIATION FOR SPECTRAL/SIGNAL 
IDENTIFICATION (57) ABSTRACT 

(76) Inventor: Marc Kenneth Boysworth, Alexandria, VA (US) An improved regression-based qualitative analysis algo 
rithm useful when the mixture to be analyzed contains a 
compound not in the library spectra, a so-called unknown. A 
regression of a measured spectrum is computed against the 
library spectra. This regression is referred to as a “master 
regression. Estimated mixing coefficients for an estimated 
spectrum are computed from the regression. Next, a residual 
error is computed between the estimated spectrum and the 

Correspondence Address: 
EDELL, SHAPIRO & FINNAN, LLC 
1901 RESEARCH BOULEVARD 
SUTE 4OO 
ROCKVILLE, MD 20850 (US) 

measured spectrum. Peaks in the residual error are identified 
(21) Appl. No.: 11/064,290 that extend in a direction opposite to that of peaks in the 
(22) Filed: Feb. 24, 2005 measured spectrum. These peaks are referred to as “nega 

tive peaks. A regression is performed on the peaks. This is 
Publication Classification referred to as a “retro-regression' to be distinguished from 

the master regression performed on the measured spectrum. 
(51) Int. Cl. Using information from the retro-regression, corrected mix 

G06F 7/18 (2006.01) ing coefficients are computed and the process repeats. 

MIXTURE 
TO BE 

ANALYED 

30 
ANALYSIS 
ALGORTHM 

50 
LIBRARY | 

MEMORY 

  



Patent Application Publication Aug. 24, 2006 Sheet 1 of 23 US 2006/O190216 A1 

MIXTURE 
TO BE 

ANALYLED 

30 ANALysis 
ALGORTHM 

50 

MEMORY 
LIBRARY 

FIG. 

  



US 2006/O190216 A1 Patent Application Publication Aug. 24, 2006 Sheet 2 of 23 

  



Patent Application Publication Aug. 24, 2006 Sheet 3 of 23 US 2006/O190216 A1 

30) 
SCANMIXTURE TO BEANALYLED TO 

300 PRODUCE MEASURED SPECTRUM 

IDENTIFY AND REMOVE 10 
ANY BASELINE EFFECTS 

IDENTIFY PEAKDIRECTION FIG.3 WITH RESPECT TOBASELINE 

330 
PERFORM "MASTER"REGRESSION 

AGAINST LIBRARY 

340 
COMPUTE ESTIMATED SPECTRUM FROMMXING 

COEFFICIENTS GENERATED BY MASTERREGRESSION 

350 
COMPUTERESIDUAL ERROR 

IDENTIFY PEAKS IN RESIDUALERRORTHAT ARE IN 
OPPOSITE DIRECTION TO PEAKS IN MEASURED SPECTRUM 

354 
SOLATE NEGATIVE PEAKS 

356 
REGRESS NEGATIVE PEAKS AGAINST LIBRARY 

(RETRO-REGRESSION) 
O 358 

COMPUTE CORRECTED MIXING COEFFICIENTS 
USING RETRO-REGRESSION COEFFICIENTS 

360 
REMOVE LIBRARY MEMBERS WITH 

MIXING COEFFICIENT BELOW THRESHOLD 362 

RE-COMPUTEMASTERREGRESSION IF LIBRARY MEMBERS REMOVED, 
COMPUTE NEW ESTIMATEDMIXING COEFFICIENTS 

REPEAT WITH CORRECTED MIXING COEFFICIENTS 364 
OR NEW ESTIMATED MIXING COEFFICIENTS 

NO 

35) 

REACHED 
2 

  

  

  

  





US 2006/O190216 A1 

AISueu Auerce 

  





Patent Application Publication Aug. 24, 2006 Sheet 7 of 23 US 2006/O190216 A1 

8 

| s 

RISUeu Age Cue 

  



Patent Application Publication Aug. 24, 2006 Sheet 8 of 23 US 2006/O190216 A1 

| 

T.I. 

s 
JuayeO3 flugu 

  



Patent Application Publication Aug. 24, 2006 Sheet 9 of 23 US 2006/O190216 A1 

au3Sec fuge 
aulie SequS O 

83 SEC 2. g 
eUlato 

auto Oleg 

aul Zep & E. 
auexa. 

epAuereulo 
aue1/e 
Oueg 

auataaoo,3g) 
au03OnSOZug 

auxaulo)) 
UAJ3 do OLO 

Jalalao IOOSIG 
auezuela 

8 Juo/Joe cas 

a JuC232 
aulage 

gugAx dam 
gue AXO 

S.3 
g 

S 

se 

cN t o co 
m O O 

lue OjeO) fuxu 

  



US 2006/O190216 A1 

r 
c 

L 
c 

co 
co 

r 
co 6 0 

Patent Application Publication Aug. 24, 2006 Sheet 10 of 23 

AISueu Jenque 

  



Patent Application Publication Aug. 24, 2006 Sheet 11 of 23 US 2006/O190216 A1 

s 

8 

AISueu Areque 

  



US 2006/O190216 A1 Patent Application Publication Aug. 24, 2006 Sheet 12 of 23 

lueogeOD 6tu)qu 

  



Patent Application Publication Aug. 24, 2006 Sheet 13 of 23 US 2006/O190216 A1 

autaseq6ue 

g a 3922 e. 
at 30 

Jin 
8L980O28) 

aueued 

auea OJOu3p | 
au) anSOZuap 

at exa3A) 
u3do O2 

uate/geolou3SG 
auaZuaq 

auguoude a 

s 

c- re- co co 
vas o o 

Ueloyeo) 5uqu 

  



US 2006/O190216 A1 

as - 1 - - we s. 1 

as e. e. a small 
settle 

Patent Application Publication Aug. 24, 2006 Sheet 14 of 23 

w 
O 

l? 
O 

AISueuil Ajenge 

  



Patent Application Publication Aug. 24, 2006 Sheet 15 of 23 US 2006/O190216 A1 

8 

co uo w co cN V 
O d d O d Os S 

AISueu AJeuce 

  



Patent Application Publication Aug. 24, 2006 Sheet 16 of 23 US 2006/O190216 A1 

s s g d 
go 
c 

U812 ye006UIXu 

  



Patent Application Publication Aug. 24, 2006 Sheet 17 of 23 US 2006/O190216 A1 

3ugged fuge 
guested fus 

augeS2O 2 
8terO 

J. 
8330JOreja 

aueued 

S. 

OUeau 

augu2OJOLOp 

UJodo OL3 
Jeua La OAOL3SC 

auazuaq I 
arguouse 

S. 

S 

N sm co co 
von O o S 

Juelayeo) fuxu 

  



US 2006/O190216 A1 

2Celess a 

ass 

Patent Application Publication Aug. 24, 2006 Sheet 18 of 23 

AISuelu AJe. Gue 

  



Patent Application Publication Aug. 24, 2006 Sheet 19 of 23 US 2006/O190216 A1 

3 S g O 

AISueu Reque 

  



Patent Application Publication Aug. 24, 2006 Sheet 20 of 23 US 2006/O190216 A1 

w 

O 
w 

t 

{d 

S. 
- --- 

O 

Sb 2 -9 3 & 5 
d 
r S2 
s 
d 
s 
ki N 

es 

O 
wer 

l 

O 
C t N cy S d c na 

C o o O o co 
O c c C c c 

Ueloyeo 6Ulquy 

  



Patent Application Publication Aug. 24, 2006 Sheet 21 of 23 US 2006/O190216 A1 

augeseq fuge 
augased fus 

au2S2O2 
euergo 

J. 

S. 

auauao ORuop 
guognSOZug 

at 2Xayo A) 
UJ3 dojou3 

Jataaoo,3SC 
eue Zuga i 

agguouse 

3. 

R 
aul O.83e 
3032 

auax d 
aua AXO 

du S. 

o 

c ve- o co 
vers co O s 

lueIDyeOO fuxu 

  



Patent Application Publication Aug. 24, 2006 Sheet 22 of 23 US 2006/O190216 A1 

eLiga SEC fune 
eue Sea 5us 

a US2C 2. 
auan (O) 

J) 
aLaLA30. One2 

2ueued 
gUOOU 

OU29U & s 

Ouedoids 
auze.p.AL 

aueXau 
ap/SuaeuO 

aua Wuga 
Ouela 

auauaououp 
auDaCIn SOZuacp 

8Lex8LOJA) 
ulu) douou 

Jauauao OuozSIC 
aua Zued 

Layouge 
a|UD22e 
auO2 Oe 

eueix d 
d 

k 
c 

i 

s 

O 
O) 
- 

c 

C 
O 
w 

1. 

auedo do 
auenCo 

  



US 2006/O190216 A1 Patent Application Publication Aug. 24, 2006 Sheet 23 of 23 

c - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - as s - - - - - - - - - 

as a a a a mas 

- a a - - - - - e. - a - a - a -- a 

pljeO) 6uxu Ue 

  

  

  
  

  

  

  



US 2006/O 190216 A1 

RETRO-REGRESSION RESIDUAL REMEDIATION 
FOR SPECTRAL/SIGNAL IDENTIFICATION 

BACKGROUND OF THE INVENTION 

0001. The present invention is directed to a method for 
improving performance of spectroscopic algorithms that are 
used to classify spectra, and more particularly to techniques 
to make spectroscopic algorithms more robust when ana 
lyzing data from unknown constituents. 
0002 Spectroscopy is a key technology for remote detec 
tion of biological or chemical constituents (such as biologi 
cal and chemical warfare agents). The common thread in all 
spectroscopies is that each chemical and/or biological Sub 
stance has a unique spectrum due to their unique structure. 
One of the goals of qualitative spectroscopy is to determine 
the component makeup of a substance given a library of the 
spectra of pure compounds. Quantitative analysis is not 
always necessary, and based on the sensors construction 
and its operation, may not be possible. The use of spectros 
copy requires algorithms that are capable of classification 
and de-convolution of spectra that arise from mixed Sub 
stances. Regression methods are commonly used for quali 
tative data analysis. Multiple Linear Regression (MLR) 
methods are extremely useful for classification and de 
convolution of mixed signals with a set of known library 
signals, called library spectra. Operationally, a library of 
spectra and a measured spectrum are input into the MLR 
model. The output is a vector called “mixing coefficients” 
that describes the quantities of the library spectra needed to 
linearly add the library spectra thereby generating a “best 
fit spectrum that is sufficiently close to the measured 
spectrum. Calculation of the mixing coefficients varies by 
model, and constraints may be employed. The advantages of 
MLR models for mixed signal identification include sim 
plicity of implementation and operation, simultaneous deter 
mination of multiple compounds, speed of operation and the 
ability to use “pure' library spectrum (rather than a popu 
lation of spectra to span the error space). In addition, most 
MLR models are based on rules that are consistent with the 
physics of spectroscopy in general. One particular advantage 
of many simple MLR models, including Classical Least 
Squares (CLS), is that no assumptions about the underlying 
probability densities of the signals need to be made or 
determined a priori. The importance of the contemporary 
algorithms cannot be overstated as these techniques are at 
the forefront of unmanned chemical and biological warfare 
detection. 

0003. These contemporary algorithms perform well 
against known compounds that are represented in the spec 
tral library but are limited in their ability to handle unknown 
constituents that are not present in the library. Typically Such 
unknowns will cause false alarms, as the algorithms attempt 
to use the library to describe the spectral features introduced 
by the unknowns. Historically, unknown spectral constitu 
ents are the Achilles heel of spectroscopic analysis. When 
performing spectroscopy in an uncontrolled setting (e.g., 
remote spectroscopic sensing of the environment) the 
assumption that the library contains everything that might 
generate a spectroscopic response is violated. At the onset, 
this puts conventional algorithms at a disadvantage, due to 
their inability to compensate for unknowns. Furthermore, 
many unknowns may share spectral similarity with any 
number of chemicals in the library, which further exacer 
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bates the false alarm problem. For example, the functional 
group phosphate is responsible for a characteristic Raman 
peak in many chemical warfare agents such as Sarin, Soman, 
and Tabun. Similar chemical structure and therefore similar 
spectral features may be found in many of the pesticides sold 
in retail gardening stores. Unknown signals are ubiquitous 
and frequently degrade the sensor's performance even on 
well characterized signals. Thus, when unknowns are 
present, they tend to cause false positive detections. This 
introduces type II errors (accepting a false hypothesis). 
0004. Due to the almost infinite number of substances 
that may be encountered, it is impossible to include every 
possible constituent in the library spectra. This leaves the 
qualitative spectroscopist with three choices: 
0005 1. Ignore the unknowns and hope that they do not 
affect the analysis. 
0006 2. Control the sample rigorously—this may mean 
that samples are pre-treated to separate out anything besides 
the items of interest. 

0007 3. Build algorithms and routines that are robust 
against unknowns. 
0008. The first choice is the most common solution: make 
the a priori assumption that unknowns will not be present or 
if they are present, they will not cause significant problems. 
Although this greatly simplifies the problem of identifica 
tion, for real world applications, those are dangerous 
assumptions to make. For these reasons, the second choice 
is often used in industrial settings, laboratory settings, and in 
environmental testing, where it is convenient to obtain a 
sample and perform the wet chemistry or preparative sepa 
ration on it prior to (and sometimes in conjunction with) 
spectroscopic analysis. Pre-treatment is not always the most 
desirable choice, especially if the samples being analyzed 
are dangerous or if the samples are being sensed at Such a 
distance, frequency, or under other circumstances that make 
pre-treating impossible. Thus, the better solution for per 
forming real-time or in-the field measurements of un-treated 
samples is to make algorithms and routines robust to 
unknowns. 

0009 Attempts have been made to overcome these prob 
lems by either adding the unknown features into a calibra 
tion library, or subtracting them from the sample. All of 
these techniques involve analysis of quantitative data, and 
seek to correct both for unknowns and for disturbances in the 
spectrum due to disparate environmental effects. These 
methods require extensive knowledge of the system being 
measured, which is not available when performing remote 
analysis of environmental samples, in which the sensor may 
contain some variance, and the samples analyzed are uncon 
strained with respect to chemical composition. Another 
disadvantage for these competing attempts is that they 
require expert knowledge, and frequently expert operation, 
which hinders the ability of the algorithm to work unas 
sisted, as a remote, real-time system would need to. 
0010 What is needed is a technique for automatically 
correcting spectroscopic analysis for unknown components 
present in the measured mixture. 

SUMMARY OF THE INVENTION 

0011 Briefly, a system and method are provided for 
improving regression-based qualitative analysis when the 
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mixture to be analyzed contains a compound not in the 
library spectra, a so-called unknown. A regression of a 
measured spectrum taken of a sample is computed against 
the library spectra. This regression is referred to as a 
“master regression. Estimated mixing coefficients of the 
sample are computed from the regression. Next, a vector of 
residual error is computed using the “best-fit” spectrum 
(generated using the library and the estimated mixing coef 
ficients) and the measured spectrum. Peaks in the residual 
error are identified that extend in a direction opposite to that 
of peaks in the measured spectrum. These peaks are referred 
to as “negative' peaks. A regression is performed on the 
“negative' peaks with the library. This is referred to as a 
“retro-regression.” to be distinguished from the master 
regression performed on the measured spectrum. The mix 
ing coefficients generated in the retro-regression are used to 
compensate for overprediction in previous steps. Using the 
retro-regression mixing coefficients, corrected mixing coef 
ficients are computed. This process repeats where the cor 
rected mixing coefficients replace the estimated mixing 
coefficients for a new estimated spectrum that is used to 
compute a new residual error. 
0012 Furthermore, the corrected mixing coefficients may 
be examined to determine whether there is a member of the 
library whose mixing coefficient is less than a threshold. If 
so, that member is removed from the library spectra and a 
new master regression is computed without that library 
member. The new estimated mixing coefficients are used for 
computing the residual error at the next iteration. 
0013 Termination of the process may occur when there 
are no more negative peaks in the residuals, there are no 
more members in the library spectra, or a maximum number 
of iterations are reached. 

0014. This retro-regression remediation technique makes 
MLR algorithms more robust to unknowns. Used in con 
junction with MLR techniques, estimates are generated in a 
manner that utilizes the error structure which arises from the 
constraints of spectroscopy to eliminate false alarms. Fur 
thermore, this approach allows for improved analysis of the 
unknown constituents. The known compounds may be iden 
tified, and removed, storing the best-unknown spectrum for 
further “forensic' chemical analysis on it at a later date. No 
knowledge is assumed about the composition of the sample. 
This algorithm works with minimum user input. It is as an 
add-on to other regression techniques (i.e. Classical Least 
Squares) to eliminate false positive errors. However, the 
techniques described herein may be generalized to improve 
performance of any other regression model that follows the 
basic assumptions of optical spectroscopy. 
0.015 The above and other objects and advantages will be 
more readily apparent when reference is made to the fol 
lowing description taken in conjunction with the accompa 
nying drawings. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0016 FIG. 1 is a block diagram of a spectroscopic 
analysis system. 
0017 FIG. 2 is general flow chart of a spectroscopic 
analysis process. 
0018 FIG. 3 is a flow chart depicting steps of the 
spectroscopic analysis process employing the retro-regres 
sion residual remediation algorithm. 
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0.019 FIG. 4 lists the members of the library spectra for 
an example described herein. 
0020 FIG. 5A is a plot showing a measured spectrum 
taken from a sample and the estimated or best-fit spectrum 
generated from the master regression coefficients. 
0021 FIG. 5B is a chart showing the mixing coefficients 
generated from the master regression computation. 
0022 FIG. 5C is a plot showing the residual error 
between the measured spectrum and the best-fit estimated 
spectrum shown in FIG. 5A. 
0023 FIG. 6A is a chart showing the retro-regression 
coefficients computed in iteration 1 from the residuals 
shown in FIG. S.B. 

0024 FIG. 6B is a chart showing the corrected mixing 
coefficients for iteration 1 computed from the retro-regres 
sion coefficients shown in FIG. 6A. 

0025 FIG. 7A is a plot showing the measured spectrum 
and an estimated spectrum at iteration 2 that is generated 
from the corrected mixing coefficients from iteration 1. 
0026 FIG. 7B is a plot showing the residual error 
between the measured spectrum and the estimated spectrum 
shown in FIG. 7A for iteration 2. 

0027 FIG. 7C is a chart showing the retro-regression 
coefficients computed in iteration 2 from the residuals 
shown in FIG. 7B. 

0028 FIG. 7D is a chart showing the corrected mixing 
coefficients for iteration 2 computed from the retro-regres 
sion coefficients shown in FIG. 7C. 

0029 FIG. 8A is a plot showing the measured spectrum 
and an estimated spectrum at iteration 25 that is generated 
from the corrected mixing coefficients from iteration 24. 
0030 FIG. 8B is a plot showing the residual error 
between the measured spectrum and the estimated spectrum 
shown in FIG. 8A for iteration 25. 

0031 FIG. 8C is a chart showing the retro-regression 
coefficients computed in iteration 25 from the residuals 
shown in FIG. 8B. 

0032 FIG. 8D is a chart showing the corrected mixing 
coefficients for iteration 25 computed from the retro-regres 
sion coefficients shown in FIG. 8C. 

0033 FIG. 9A is a plot showing the measured spectrum 
and an estimated spectrum at iteration 26 that is generated 
from the corrected mixing coefficients from iteration 25. 
0034 FIG. 9B is a plot showing the residual error 
between the measured spectrum and the estimated spectrum 
shown in FIG. 9A for iteration 26. 

0035 FIG. 9C is a chart showing the retro-regression 
coefficients computed in iteration 26 from the residuals 
shown in FIG. 9B. 

0036 FIG. 9D is a chart showing the corrected mixing 
coefficients for iteration 26 computed from the retro-regres 
sion coefficients shown in FIG. 9C. 

0037 FIG. 10 is a plot showing a comparison of the 
corrected mixing coefficients generated using the retro 
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regression remediation techniques and the mixing coeffi 
cients generated without the retro-regression remediation 
techniques. 

0038 FIG. 11 is a plot showing how library members are 
removed from the library spectra in the retro-regression 
remediation process as their mixing coefficients fall below a 
threshold. 

DETAILED DESCRIPTION 

0.039 Referring first to FIG. 1, a spectroscopic analysis 
system 10 is shown comprising a sensor 100 coupled to a 
processor 120. Memory 130 is provided that stores the 
software that performs the analysis algorithm 140 and a 
library 150 that contains spectrum data associated with 
numerous chemicals against which the analysis algorithm 
140 operates. The sensor 100 scans or otherwise performs a 
spectroscopic measurement on a mixture 110 to be analyzed. 
The mixture 110 may be a solid, liquid or gas Substance. 

0040. As shown in FIG. 2, the spectroscopic analysis 
process involves executing the analysis algorithm 100 on the 
measured spectrum data produced by the sensor against the 
library spectra. The outputs of the analysis algorithm are 
qualitative spectrum analysis results on the mixture. 

0041 Certain assumptions are made when utilizing cur 
rent spectroscopic analysis algorithms, and when these 
assumptions are met everything works well and the algo 
rithm provides reliable results. The assumptions include 
linearity, linear additivity, all pure spectra known, unique 
ness, and non-negativity of physical quantities. However, 
when performing remote sensing, the all pure spectra known 
assumption is frequently violated, causing problems with 
how these algorithms handle unknowns. The typical result is 
an overestimation of “library' chemicals, often resulting in 
false positive alarms (Type II errors). 

0042 Assumptions may be made regarding error struc 
tures arising from regression-based techniques applied to 
spectroscopic data. Since a Substance may either be present 
in a certain quantity, or is absent, concentration quantities 
have a minimum of Zero. Unlike with time based signals 
Such as radar, there is no signal-based interference Such as 
phase mixing. For this reason, in conventional spectroscopy 
spectra may always add together, but will never cancel each 
other out, and therefore are never assigned negative con 
centration/intensity values in the absence of specific data 
pre-processing techniques not employed herein. Using these 
assumptions, the algorithm described herein functions as an 
add-on to other regression techniques that would eliminate 
false positive errors. If the residual error is defined as the 
modeled signal Subtracted from the original signal (spec 
trum) and the signal is one that extends in the positive 
direction, then errors that extend in the positive direction are 
portions of the original spectrum that are poorly modeled 
(i.e., an unknown spectrum or portions thereof) and errors in 
the negative direction are indicators that library spectra 
members are being erroneously used to model an unknown. 
Identification of the spectra causing the negative residuals, 
and removal of those spectra from the library will eliminate 
the major source of false positives in regression based 
classification models. This algorithm is referred to as a 
retro-regression residual removal (“R4') algorithm. 
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0043. The R4 algorithm may be an add-on to Multiple 
Linear Regression (MLR) type regression models that fol 
low the basic assumptions of optical spectroscopy. It has the 
following benefits: 
0044) 1. Eliminates of false alarms, 
0045 2. Operates in the presence of unknown constitu 
ents, 

0046 3. Improves quantitative accuracy (when desired), 
0047. Theory of R4 
0048 When using Classical Least Squares (CLS) for 
multiple component identification or quantification, the 
inherent assumptions made are: 
0049 Linearity: The relationship between the intensity of 
the signal vector and its concentration (i.e. quantity) is linear 
over the range measured. 
0050 Linear additivity: The signal response to a mixture 

is the same as if the signals were collected separately and 
added together Subsequent to collection. 
0051 All pure spectra known: The constituents of the 
mixture are all present in the library of signals. 
0052 Uniqueness/Non-Singularity: The library signals 
all have some degree of uniqueness, even if there are certain 
similar features between signals in the library, and none of 
the signals may be added such that the result is collinear with 
any other signal. 
0053 Non-Negativity: Although not a mathematical 
requirement, frequently the concentration or quantity values 
are constrained to non-negative estimates because negative 
values have no physical meaning when quantities of material 
are concerned. 

0054 The signals and quantities of interest include: 
0055 r unknown signal; 
0056 S=library of pure signals; and 
0057 c=concentrations or relative amounts of each signal 
in S 

0058. In the MLR model, if all of the assumptions hold, 
it may be stated that 

r’=CS 

and that S and r may be used to generate an estimate of c. 
c, in the following manner 

S-6 

where c is an estimate of c, whose fidelity is based on the 
completeness and accuracy of S, any error in the system, the 
computation of the pseudo-inverse of S, S', and the com 
pliance with the assumptions of MLR. The (unknown) signal 
of interest may be reconstructed using c and S. 

0059) The fidelity of this reconstruction, r, depends on 
the factors listed above. A vector of residual errors, e may be 
generated by looking at the difference between r and r. 

0060) If all of the assumptions hold, the vector of residual 
errorse should be the random noise in the system, and tends 
not to be intrinsically useful or interesting. However, if the 
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assumptions are violated, the residual error vectore contains 
information that is useful in determining the source of the 
violations. 

0061. If the errors are computed in the manner described 
above, the errors could be described as coming from three 
Sources. The first source is the signal that arises from noise 
in the instrument. This tends to be random and uninteresting 
for the sake of this analysis. The second source is the 
spectrum of peaks that were in the measured spectrum that 
are not fit by the library members. Peaks in this direction are 
typically indicative of under-predicted peaks which are 
caused either by the presence of an unknown, or by under 
prediction of known substances. The third source of error is 
due to over-prediction (and often mis-prediction) which 
occurs when library spectra are used to try to fit unknowns. 
The error caused by these peaks extends in the direction 
opposite to that of the original peaks in the measured 
spectrum. 
0062) Depending on the type of spectroscopy, peaks are 
portrayed in many ways. In emissive-type spectroscopy 
(Raman, Fluorescence, Mass Spectrometry) peaks extend 
upward from some baseline. In absorbance-type spectros 
copy (Active NIR, UV-Vis absorbance) the peaks extend 
down from some baseline or theoretical absolute (e.g., 100% 
transmission). Both of these types of spectroscopy could be 
deemed monotonic, since when peaks are observed, the 
peaks extend in only one direction. This is contrasted with 
passive IR which has peaks that extend in both directions. 
Therefore, when negative residuals are mentioned, the inten 
tion is to describe peaks that extend in the direction opposite 
to the normal extension of the peaks. 
0063 Referring to FIG. 3, the R4 process 300 will be 
described. In step 302, a mixture to be analyzed is scanned 
or monitored in order to collect measured spectrum data. 
Next, in step 310, any baseline effects in the measured 
spectrum are identified and removed. Baseline effects, such 
as CCD dark current, fluorescence in the case of Raman 
Spectroscopy, or non-coherent scattering in the case of NIR 
spectroscopy are phenomena which will introduce Some bias 
into the spectra. In order to determine the direction of the 
residuals relative to the original signal, this baseline must be 
identified. In step 320, the peak direction in the measured 
spectrum is identified with respect to the baseline. For 
example, it is determined whether the peaks in the measured 
spectrum are positive or negative with respect to the base 
line. Next, in step 330, a “master regression is performed 
on the measured spectrum against the library spectra. For 
example, an MLR regression may be used in step 330. In 
step 340, initial estimated (or best-fit) mixing coefficients are 
computed of the sample from the master regression. An 
estimated or “best-fit” spectrum is generated using the 
library and the estimated mixing coefficients. 
0064. A loop is defined by steps 350 through 364 during 
which corrected mixing coefficients are computed using a 
"retro-regression' computation. The corrected mixing coef 
ficients produced at the completion of an iteration through 
the loop replace the estimated mixing coefficients computed 
in step 350 for purposes of computing a new residual error. 
Loop control step 364 tests whether certain criteria are met 
to stop iterating through the loop, and if none of these 
criteria is met, another iteration is made through the loop. 
0065) More specifically, in step 350, the residual error 
between the estimated spectrum and the measured spectrum 
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is computed by Subtracting the estimated spectrum from the 
measured spectrum. The residual error is also referred to 
herein as the “residuals’. The first time into the loop 
(iteration 0), the estimated spectrum is the best-fit spectrum 
computed in step 340. In step 352, peaks are identified that 
extend in a direction opposite from the peaks in the mea 
Sured spectrum. These peaks may be referred to as “nega 
tive' peaks, but it should be understood that they may extend 
in a positive direction if the peaks in the measured spectrum 
extend in a negative direction. Next, in step 354, the 
negative peaks are isolated. Then, in step 356, a “retro 
regression' computation is performed. For example, the 
same regression method that was used to compute the master 
regression is used to compute the retro-regressions in order 
to remove specific deleterious effects that the master regres 
sion introduced. That is, the negative peaks are regressed 
against the library spectra to produce corrections to the 
originally over-predicted master mixing coefficients. In step 
358, the retro-regression coefficients computed in step 356 
are used to compute corrected mixing coefficients by Sub 
tracting the retro-regression mixing coefficients from the 
estimated mixing coefficients computed at the prior itera 
tion, or if the first iteration, then the mixing coefficients 
generated from the master regression in step 340. This 
corrects the master regression concentration estimates com 
puted during the first iteration. 
0066 Next, in step 360, any member in the library whose 
estimate in the corrected mixing coefficients is less than a 
threshold (typically the precision of the computer: 10') is 
removed. And in step 362, if a library member is removed 
in step 360, then the master regression (already once per 
formed in step 330) is re-computed for the measured spec 
trum against the (new) library that now does not include the 
library member(s) removed in step 360. New (estimated) 
mixing coefficients are consequently computed in step 362 
and used in the Subsequent steps in place of the corrected 
mixing coefficients computed at the prior iteration for pur 
poses of computing the residual error in step 350. 
0067. In the loop control step 364, a determination is 
made whether there are no more members of the library (as 
a result of the removal in step 360), no more negative peaks 
remain or a maximum number of iterations have been 
reached. If any of these criteria are met in step 364, the 
process 300 terminates and the estimated mixing coefficients 
computed up to this point represents the final mixing coef 
ficients of the analysis. Otherwise, steps 350 through 364 are 
repeated where the corrected mixing coefficients computed 
in step 358 (or the new estimated mixing coefficients com 
puted in step 362) replace the estimated mixing coefficients 
from the prior iteration that are used to generate the esti 
mated spectrum for the next iteration through the steps 350 
through 364. An example of a maximum number of itera 
tions is 100. An example of a “no more negative' peaks 
situation is when there are no regions at least five (5) 
contiguous points. Five or more contiguous negative 
residual points may be referred to as a contiguous block. 
Five is an arbitrarily selected value, and may be changed 
based on the resolution and noise characteristics of the 
system on which the R4 algorithm is applied. 
0068. Many of the computations in various steps of the 
process 300 may be performed using techniques known in 
the art. For example, “peak picker” routines are known to 
identify peaks in a signal. In step 352, negative peaks using 
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the criterion explained above of a certain number (e.g., five) 
of negative (or positive if the original measured spectrum is 
negative) contiguous points. To say it more generally, a peak 
is identified as at least a predetermined number of contigu 
ous points that are on the opposite side, with respect to a 
baseline, to peaks in the measured spectrum. The “negative' 
nature of a point may be based on area in a negative 
direction, length in a negative direction and/or angle relative 
to peaks in the measured spectrum. 

0069 Turning to FIGS. 4-11, with continued reference to 
FIG. 3, data produced at various points of the process 300 
will be described to illustrate how the process 300 operates 
for a simulation example. FIG. 4 shows lists the names of 
the compounds that are members in the exemplary library. In 
this simulation example, the unknown Substance is Carbaryl. 
That is, Carbaryl is not in the library spectra. A spectrum was 
generated by simulating a spectrum of Carbaryl, normaliz 
ing it, multiplying it by 0.5, adding it to a normalized 
spectrum of methanol (a member of the library spectra). The 
simulation was done to demonstrate the ability of the 
process 300 to reduce and/or reject predictions of anything 
except methanol. 

0070) 
0071 FIG. 5A shows the measured spectrum (dashed 
line) and the initial estimated or best-fit spectrum (solid line) 
generated from the master regression coefficients computed 
in step 330. FIG. 5B shows the mixing coefficients gener 
ated from the master regression computation of step 330. 
FIG. 5C shows the residual error between the measured 
spectrum and the best-fit spectrum shown in FIG. 5A. 

0072) 
0.073 FIG. 6A shows the retro-regression coefficients 
computed in step 356 computed by performing a regression 
on the negative peaks identified in the residuals shown in 
FIG. 5C. FIG. 6B is a chart showing the corrected mixing 
coefficients computed from the retro-regression coefficients 
shown in FIG. 6A and from the master regression coeffi 
cients shown in FIG. S.B. 

Iteration 0 

Iteration 1 

0074) Iteration 2 
0075 FIG. 7A is a plot showing the measured spectrum 
and an estimated spectrum computed from the corrected 
mixing coefficients shown in FIG. 6B. FIG. 7B is a plot 
showing the residuals computed for the estimated spectrum 
shown in FIG. 7A. FIG. 7C is a chart showing the retro 
regression coefficients computed for the negative peaks 
identified in the residuals shown in FIG. 7B. F.G. 7D is a 
chart showing the corrected mixing coefficients computed 
from the retro-regression coefficients shown in FIG. 7C and 
the corrected mixing coefficient shown in FIG. 6B for the 
prior iteration. 

0076. This process repeats for several iterations as 
described above. At the next iteration, residuals are com 
puted from the new mixing coefficients computed in step 
362 or the corrected mixing coefficients computed in 358 
from the prior iteration. Then the negative peaks are iden 
tified and isolated and a retro-regression is computed on the 
negative peaks. The corrected mixing coefficients are then 
computed by Subtracting the retro-regression coefficients 
from the estimated mixing coefficients from the prior itera 
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tion. In this example, the process terminates after the 26th 
iteration for reasons explained below. 
0.077 
0078 FIG. 8A shows the plots for the measured spec 
trum and an estimated spectrum generated from the cor 
rected mixing coefficients computed at iteration 24 (not 
shown). FIG. 8B shows the residuals computed using the 
estimated spectrum shown in FIG. 8A. FIG. 8C shows the 
retro-regression coefficients computed from the one remain 
ing negative peak of the residuals shown in FIG. 8B. FIG. 
8D is a chart showing the corrected mixing coefficients 
computed from the retro-regression coefficients shown in 
FIG. 8C and the corrected mixing coefficients at iteration 24 
(not shown). 
0079 
0080 FIG. 9A shows the measured spectrum and an 
estimated spectrum generated from the corrected mixing 
coefficients shown in FIG. 8D. FIG.9B shows the residuals 
computed using the estimated spectrum shown in FIG. 9A. 
FIG. 9C is a chart showing the retro-regression coefficients 
computed from the negative peaks of the residuals shown in 
FIG. 9D. Notice that there are no negative peaks in the 
residuals shown in FIG. 9C. FIG. 9D shows the corrected 
mixing coefficients computed from the retro-regression 
coefficients shown in FIG. 9C and the corrected mixing 
coefficients shown in FIG. 8D. Because there are no nega 
tive peaks in the residuals at the 26" iteration, the process 
now terminates. 

Iteration 25 

Iteration 26 

0081 Explanation of Simulation Results 
0082 FIG. 10 shows the original mixing coefficients 
computed at the master regression step 330 and the corrected 
mixing coefficients at the 26" iteration. 
0083. This figure essentially compares the performance 
of the R4 algorithm with a standard CLS algorithm used to 
analyze a mixture that has a compound that is not in the 
library spectra. Due to the peaks of Carbaryl, the unknown, 
several other chemicals, namely Acrolein, Acrylonitrile, and 
CX, are falsely identified as being present using a CLS 
algorithm, some at fairly high amounts. However, using the 
retro-regression remediation techniques described herein, 
the false positives of standard CLS are removed, and do not 
appear in the resulting mixing coefficients to any significant 
degree. Methanol appears in the corrected mixing coeffi 
cients, as it should, because it was present in the measured 
spectrum and is part of the library spectra. While Acrolein 
still appears in the corrected mixing coefficients, it is in 
Substantially lower amounts than without the retro-regres 
sion techniques. Its amount is so low that it would not trigger 
a false positive identification. 
0084. The R4 algorithm removes the residuals that are 
due to miss-identification of library members not present in 
the unknown spectrum. Upon complete removal of a library 
member a complete recalculation of the “master mixing 
coefficients is performed. This re-computation is performed 
because upon removal of a library member, the mixing 
coefficients may change. Thus, re-calculation is performed 
to yield a more accurate assessment of the composition of 
the sample. In the example data, it may be seen that 
performing the re-calculation upon removal of a library 
member does add extra computations and extends the time 
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required to iterate, but in the end superior rejection of 
spurious spectra is achieved. At each re-calculation the 
mixings are inflated, and the R4 algorithm works to reduce 
them. 

0085 FIG. 11 shows that several members of the library 
are removed over the retro-regression iterations (step 260 in 
FIG. 3). Upon termination, the coefficients are strong only 
for the true remaining members of the library. 
0.086 To summarize, a method for improving regression 
based spectroscopic analysis, comprising: (a) computing a 
residual error between an estimated spectrum and a mea 
Sured spectrum taken of a sample, wherein the estimated 
spectrum is derived from mixing coefficients for members of 
a library of spectra that are produced by computing a 
regression on the measured spectrum with the library; (b) 
identifying peaks in the residual error that extend in a 
direction opposite to that of peaks in the measured spectrum; 
(c) performing a regression on the peaks to produce retro 
regression coefficients; (d) computing corrected mixing 
coefficients based on the retro-regression coefficients; and 
(e) repeating (a) through (d) with the corrected mixing 
coefficients computed in (d) being used to generate a new 
estimated spectrum for computing the residual error in (a) at 
the next iteration. 

0087. Similarly, a processor readable medium is provided 
storing instructions that, when executed by a processor, 
cause the processor to: (a) compute a residual error between 
an estimated spectrum and a measured spectrum taken of a 
sample, wherein the estimated spectrum is derived from a 
mixing coefficients for members of a library of spectra that 
are produced by computing a regression on the measured 
spectrum with the library; (b) identify peaks in the residual 
error that extend in a direction opposite to that of peaks in 
the measured spectrum; (c) perform a regression on the 
peaks to produce retro-regression coefficients; (d) compute 
corrected mixing coefficients based on the retro-regression 
coefficients; and repeat (a) through (d) with the corrected 
mixing coefficients computed in (d) being used to generate 
a new estimated spectrum for computing the residual error 
in (a) at the next iteration. 
0088. In addition, a system for spectroscopic analysis 
comprising: a sensor that produces data from a mixture to be 
analyzed, and a processor coupled to the sensor, wherein the 
processor is programmed to: (i) generate a measured spec 
trum from the data produced by the sensor; (ii) perform a 
regression of the measured spectrum with a library of 
spectra; (iii) generate estimated mixing coefficients from the 
regression; (iv) compute a residual error between an esti 
mated spectrum generated from the estimated mixing coef 
ficients and the measured spectrum, (v) identify peaks in the 
residual error that extend in a direction opposite to that of 
peaks in the measured spectrum; (vi) perform a regression 
on the peaks to produce retro-regression coefficients; (vii) 
compute corrected mixing coefficients based on the retro 
regression coefficients; and (viii) repeat (iv) through (vii) 
with the corrected mixing coefficients computed in (vii) 
being used to generate a new estimated spectrum for com 
puting the residual error in (iv) at the next iteration. 
0089. Still further, a method is provided for processing 
spectroscopic measured data of a sample, comprising: (a) 
identifying peaks in a residual error between measured data 
and an estimated data computed from a regression per 
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formed on the measured data, wherein the peaks extend in 
a direction opposite to that of peaks in the measured data; (b) 
performing a regression on the peaks; (c) computing a 
corrected data based on the regression of the peaks; (d) 
computing a new residual error between the measured data 
and the corrected data; and (e) repeating (a) through (d) 
using the new residual error. 
0090 The system and methods described herein may be 
embodied in other specific forms without departing from the 
spirit or essential characteristics thereof. The foregoing 
embodiments are therefore to be considered in all respects 
illustrative and not meant to be limiting. 

What is claimed is: 
1. A method for improving regression-based spectro 

Scopic analysis, comprising: 

a. computing a residual error between an estimated spec 
trum and a measured spectrum taken of a sample, 
wherein the estimated spectrum is derived from mixing 
coefficients for members of a library of spectra that are 
produced by computing a regression on the measured 
spectrum with the library; 

b. identifying peaks in the residual error that extend in a 
direction opposite to that of peaks in the measured 
spectrum; 

c. performing a regression on the peaks to produce 
retro-regression coefficients: 

d. computing corrected mixing coefficients based on the 
retro-regression coefficients; and 

e. repeating (a) through (d) with the corrected mixing 
coefficients computed in (d) being used to generate a 
new estimated spectrum for computing the residual 
error in (a) at the next iteration. 

2. The method of claim 1, and further comprising (f)(1) 
removing a member of the library whose mixing coefficient 
in the corrected mixing coefficients is less than a threshold. 

3. The method of claim 2, wherein when a member of the 
library spectra is removed, further comprising (f)(2) per 
forming a regression of the measured spectrum with the 
library without the member that was removed to produce 
new mixing coefficients, and wherein (e) of repeating com 
prises repeating (a) through (f)(2) the new mixing coeffi 
cients being used to generate a new estimated spectrum for 
computing the residual error at the next iteration. 

4. The method of claim 3, wherein (e) repeating comprises 
repeating (a) through (f)(2) until no members of the library 
remain. 

5. The method of claim 1, wherein (h) repeating com 
prises repeating (a) through (d) until there are no more peaks 
in the residual error. 

6. The method of claim 1, wherein (b) identifying com 
prises identifying a peak as at least a predetermined number 
of contiguous points that are on the opposite side, with 
respect to a baseline, to peaks in the measured spectrum. 

7. The method of claim 6, wherein (e) repeating comprises 
repeating (a) through (d) until there are no more regions in 
the residual error having at least the predetermined number 
of contiguous points. 

8. The method of claim 1, wherein (d) computing cor 
rected mixing coefficients comprises subtracting the retro 
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regression coefficients from the mixing coefficients for the 
estimated spectrum used in computing the residual error in 
the current iteration. 

9. A processor readable medium storing instructions that, 
when executed by a processor, cause the processor to: 

a. compute a residual error between an estimated spec 
trum and a measured spectrum taken of a sample, 
wherein the estimated spectrum is derived from a 
mixing coefficients for members of a library of spectra 
that are produced by computing a regression on the 
measured spectrum with the library; 

b. identify peaks in the residual error that extend in a 
direction opposite to that of peaks in the measured 
spectrum; 

c. perform a regression on the peaks to produce retro 
regression coefficients; 

d. compute corrected mixing coefficients based on the 
retro-regression coefficients; and 

e. repeat (a) through (d) with the corrected mixing coef 
ficients computed in (d) being used to generate a new 
estimated spectrum for computing the residual error in 
(a) at the next iteration. 

10. The processor readable medium of claim 9, and 
further comprising instructions stored on the medium that, 
when executed, cause the processor to (f)(1) remove a 
member of the library whose mixing coefficient in the 
corrected mixing coefficients is less than a threshold. 

11. The processor readable medium of claim 10, and 
further comprising instructions stored on the medium that, 
when executed, cause the processor to (f)(2) perform a 
regression of the measured spectrum with the library without 
the member that was removed to produce new mixing 
coefficients, and that cause the processor to (e) repeat (a) 
through (f)(2) are repeated with the new mixing coefficients 
being used to generate a new estimated spectrum for com 
puting the residual error at the next iteration. 

12. The processor readable medium of claim 11, and 
further comprising instructions stored on the medium that, 
when executed, cause the processor to repeat (a) through 
(f)(2) until no members of the library remain. 

13. The processor readable medium of claim 9, and 
further comprising instructions stored on the medium that, 
when executed, cause the processor to repeat (a) through (d) 
until there are no more peaks in the residual error. 

14. The processor readable medium of claim 9, and 
further comprising instructions stored on the medium that, 
when executed, cause the processor to identify a peak as at 
least a predetermined number of contiguous points that are 
on the opposite side, with respect to a baseline, to peaks in 
the measured spectrum. 

15. The processor readable medium of claim 9, and 
further comprising instructions stored on the medium that, 
when executed, cause the processor to repeat (a) through (d) 
until there are no more regions in the residual error having 
at least the predetermined number of contiguous points. 

16. The processor readable medium of claim 9, and 
further comprising instructions stored on the medium that, 
when executed, cause the processor to (d) compute corrected 
mixing coefficients by Subtracting the retro-regression coef 
ficients from the mixing coefficients for the estimated spec 
trum used in computing the residual error in the current 
iteration. 
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17. A system for spectroscopic analysis comprising: 

a. a sensor that produces data from a mixture to be 
analyzed; and 

b. a processor coupled to the sensor, wherein the proces 
Sor is programmed to: 

i. generate a measured spectrum from the data produced 
by the sensor: 

ii. perform a regression of the measured spectrum with 
a library of spectra; 

iii. generate estimated mixing coefficients from the 
regression; 

iv. compute a residual error between an estimated 
spectrum generated from the estimated mixing coef 
ficients and the measured spectrum; 

V. identify peaks in the residual error that extend in a 
direction opposite to that of peaks in the measured 
spectrum; 

vi. perform a regression on the peaks to produce 
retro-regression coefficients; 

vii. compute corrected mixing coefficients based on the 
retro-regression coefficients; and 

viii. repeat (iv) through (vii) with the corrected mixing 
coefficients computed in (vii) being used to generate 
a new estimated spectrum for computing the residual 
error in (iv) at the next iteration. 

18. The system of claim 17, wherein the processor is 
programmed to remove a member of the library whose 
mixing coefficient in the corrected mixing coefficients is less 
than a threshold. 

19. The system of claim 18, wherein the processor is 
programmed to perform a regression of the measured spec 
trum with the library without the member that was removed 
to produce new mixing coefficients, and repeating (iv) 
through (vii) with the new mixing coefficients being used to 
generate a new estimated spectrum for computing the 
residual error at the next iteration. 

20. The system of claim 17, wherein the processor is 
programmed to compute the corrected mixing coefficients 
by Subtracting the retro-regression coefficients from the 
mixing coefficients for the estimated spectrum used in 
computing the residual error in the current iteration. 

21. A method for processing spectroscopic measured data 
of a sample, comprising: 

a. identifying peaks in a residual error between measured 
data and an estimated data computed from a regression 
performed on the measured data, wherein the peaks 
extend in a direction opposite to that of peaks in the 
measured data; 

b. performing a regression on the peaks; 

c. computing a corrected databased on the regression of 
the peaks; 

d. computing a new residual error between the measured 
data and the corrected data; and 

e. repeating (a) through (d) using the new residual error. 
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22. The method of claim 21, wherein (a) identifying regions in the residual error having at least the predeter 
comprises identifying a peak as at least a predetermined mined number of contiguous points. 
number of contiguous points that are on the opposite side, 24. The method of claim 21, wherein (c) computing 
with respect to a baseline, to peaks in the measured signal. comprises Subtracting the retro-regression coefficients from 

23. The method of claim 22, wherein (e) repeating com- mixing coefficients for the estimated data. 
prises repeating (a) through (d) until there are no more k . . . . 


