
US 20140089601A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2014/0089601 A1

Jea et al. (43) Pub. Date: Mar. 27, 2014

(54) MANAGING A REGION CACHE Publication Classification

(71) Applicant: INTERNATIONAL BUSINESS (51) Int. Cl.
MACHINES CORPORATION, G06F 2/08 (2006.01)
Armonk, NY (US) (52) U.S. Cl.

CPC G06F 12/0815 (2013.01)
(72) Inventors: Tsai-Yang Jea, Poughkeepsie, NY (US); USPC .. 711A141

Zhi Zhang, Poughkeepsie, NY (US)

(73) Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION, (57) ABSTRACT
Armonk, NY (US)

(21) Appl. No.: 14/093,036 A method for managing a cache region including receiving a
9 new region to be stored within the cache, the cache including

(22) Filed: Nov. 28, 2013 multiple regions defined by one or more ranges having a p 9. y 9. 9.
O O starting index and an ending index, and storing the new region

Related U.S. Application Data in the cache in accordance with a cache invariant, the cache
(63) Continuation of application No. 13/323.938, filed on invariant ensuring that regions in the cache are not overlap

Dec. 13, 2011.

1OO 112

1. 16

PROCESSING
UNIT

124 122

I/O
DISPLAY INTERFACES

74

EXTERNAL
DEVICES

ping and that the regions are stored in a specified order.

COMPUTER SYSTEMISERVER
123

MEMORY

STORAGE
SYSTEM

NETWORKADAPTER

US 2014/0089601 A1 Mar. 27, 2014 Sheet 1 of 7 Patent Application Publication

SEO IAEO TV/NHE|| XE
A.

LIN[] WNELSÅS5) NISSE OOH•H
X\HOWNE W

["{OIH2A. A.

A.

00A.

US 2014/0089601 A1 Mar. 27, 2014 Sheet 2 of 7 Patent Application Publication

Patent Application Publication Mar. 27, 2014 Sheet 3 of 7 US 2014/0089601 A1

FIG. 3A

sus-C R1 | C2 || R2 cai R8 cell R4
320

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 Index

FIG. 3B

360 (c11c12c13
R121 c11 R1st cis 365

37o-C R11 R12 R15 R14
A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 Index

Patent Application Publication Mar. 27, 2014 Sheet 4 of 7 US 2014/0089601 A1

FIG. 4

400

Receive a Request to insert a
New Region

410

Perform a Binary Search on
Starting Index

420

Determine the POSition for Insertion

430

Perform a Second Binary Search on
Ending Index

-440
Determine the Last Region in Cache
Contained within the New Region

450
Linear Scan between Position for Insertion

and the Ending Position for Insertion
460

Process Gaps between Existing Regions

470

Perform Coalesce Operation

Patent Application Publication Mar. 27, 2014 Sheet 5 of 7 US 2014/0089601 A1

FIG. 5
450

Receive a Request to
Coalesce Regions

45045

Perform a Binary Searches
on the Region Cache

51

Identify Adjoining Regions

51

Combine Adjoining Regions

O

O

45

Patent Application Publication Mar. 27, 2014 Sheet 6 of 7 US 2014/0089601 A1

FIG. 6
60

Receive Reduest for a Cache Lookup
from an Application

O45 6

Search for the Position of the Region
Corresponding to the Request

67

Return the Region

O

O

-620
Determine that a

Cache Hit OCCurred
Can Returned Region
Contain the Requested

625
Return Region
to Application O

NO
63

Determine that a Cache Miss OCCurred

635
Notify the Application that a

Cache Miss OCCurred

640

Receive Resource Allocation Request
from the Application

45 6.

Store the Resource as a Region within
the Cache using an insertion Operation

Patent Application Publication Mar. 27, 2014 Sheet 7 of 7 US 2014/0089601 A1

FIG. 7
700

Receive Request to insert
a New Region

710

Perform a Binary Search on
Starting Index

720

Determine POSition for Insertion

730

Perform a Binary Search on
Ending Index

740

Determine Last Region in Cache
contained within the New Region

750

Linear Scan to Find First Gap

-760

Process Gap

770

Coalesce with Prior Region
if Adjoining

730

Linear Scan to Find Next Gap

790

Yes

NO

GEx)

US 2014/0089601 A1

MANAGING AREGON CACHE

0001. This application is a continuation of application Ser.
No. 13/323,938 filed Dec. 13, 2011 entitled “MANAGING A
REGION CACHE, the disclosure of which is incorporated
in its entirety herein by reference.
0002. This invention was made with United States Gov
ernment support under Agreement No. HR0011-07-9-0002
awarded by DARPA. The Government has certain rights in
the invention.

BACKGROUND

0003 1. Technical Field
0004 The present invention relates generally to managing
computer data, and in particular, to a computer implemented
method and system for efficiently managing a region cache.
0005 2. Description of Related Art
0006. Many computing environments utilize a variety of
techniques for managing the storage and distribution of data.
Often this data may be transparently stored in a portion of
memory referred to as a cache for future high speed access.
There are many kinds of caches that are useful in a variety of
situations.

0007. One type of cache is a region cache. A region cache
is a Software structure that resides in memory and includes
one or more regions of data, each region having a starting
index and an ending index. A region cache may be stored
anywhere in memory accessible by the software that manages
oruses the region cache. A region cache may be implemented,
managed or used by an operating system, a web browser, an
application, or any other type of Software.

SUMMARY

0008. The illustrative embodiments provide a method for
managing a cache region including receiving a new region to
be stored within the cache, the cache including multiple
regions defined by one or more ranges having a starting index
and an ending index, and storing the new region in the cache
in accordance with a cache invariant, the cache invariant
ensuring that regions in the cache are not overlapping and that
the regions are stored in a specified order.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

0009. The novel features believed characteristic of the
invention are set forth in the appended claims. The invention
itself, further objectives and advantages thereof, as well as a
preferred mode of use, will best be understood by reference to
the following detailed description of illustrative embodi
ments when read in conjunction with the accompanying
drawings, wherein:
0010 FIG. 1 is a block diagram of a data processing sys
tem in which various embodiments may be implemented;
0011 FIG. 2 is a block diagram of a network of data
processing systems in which various embodiments may be
implemented;
0012 FIGS. 3A and 3B illustrate inserting a region into a
region cache in which various embodiments may be imple
mented;
0013 FIG. 4 is a flowchart of inserting a new region into a
region cache in accordance with a first embodiment;

Mar. 27, 2014

0014 FIG. 5 is a flowchart of coalescing regions that do
not meet the cache invariant into a single region in which
various embodiments may be implemented;
0015 FIG. 6 is a flowchart of performing a lookup opera
tion in which various embodiments may be implemented; and
0016 FIG. 7 is a flowchart of inserting a new region into a
region cache in accordance with a second embodiment.

DETAILED DESCRIPTION

0017 Steps may be taken to efficiently manage a region
cache. These steps may be taken as will be explained with
reference to the various embodiments below.
0018 FIG. 1 is a block diagram of a data processing sys
tem in which various embodiments may be implemented.
Data processing system 100 is only one example of a Suitable
data processing system and is not intended to Suggest any
limitation as to the scope of use or functionality of embodi
ments of the invention described herein. Regardless, data
processing system 100 is capable of being implemented and/
or performing any of the functionality set forth herein.
0019. In data processing system 100 there is a computer
system/server 112, which is operational with numerous other
general purpose or special purpose computing system envi
ronments or configurations. Examples of well-known com
puting systems, environments, and/or configurations that
may be suitable for use with computer system/server 112
include, but are not limited to, personal computer systems,
server computer systems, thin clients, thick clients, hand-held
or laptop devices, multiprocessor Systems, microprocessor
based systems, set top boxes, programmable consumer elec
tronics, network PCs, minicomputer systems, mainframe
computer systems, and distributed cloud computing environ
ments that include any of the above systems or devices, and
the like.
0020 Computer system/server 112 may be described in
the general context of computer system-executable instruc
tions, such as program modules, being executed by a com
puter system. Generally, program modules may include rou
tines, programs, objects, components, logic, data structures,
and so on that perform particular tasks or implement particu
lar abstract data types. Computer system/server 112 may be
practiced in distributed computing environments where tasks
are performed by remote processing devices that are linked
through a communications network. In a distributed comput
ing environment, program modules may be located in both
local and remote computer system storage media including
memory storage devices.
0021. As shown in FIG. 1, computer system/server 112 in
data processing system 100 is shown in the form of a general
purpose computing device. The components of computer sys
tem/server 112 may include, but are not limited to, one or
more processors or processing units 116, a system memory
128, and a bus 118 that couples various system components
including system memory 128 to processor 116.
0022. Bus 118 represents one or more of any of several
types of bus structures, including a memory bus or memory
controller, a peripheral bus, an accelerated graphics port, and
a processor or local bus using any of a variety of bus archi
tectures. By way of example, and not limitation, Such archi
tectures include Industry Standard Architecture (ISA) bus,
Micro Channel Architecture (MCA) bus, Enhanced ISA
(EISA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnects
(PCI) bus.

US 2014/0089601 A1

0023 Computer system/server 112 typically includes a
variety of computer system readable media. Such media may
be any available media that is accessible by computer system/
server 112, and it includes both volatile and non-volatile
media, removable and non-removable media.
0024 System memory 128 can include computer system
readable media in the form of Volatile memory, Such as ran
dom access memory (RAM) 130 and/or cache memory 132.
Computer system/server 112 may further include other
removable/non-removable, volatile/non-volatile computer
system storage media. By way of example only, storage sys
tem 134 can be provided for reading from and writing to a
non-removable, non-volatile magnetic media (not shown and
typically called a “hard drive”). Although not shown, a mag
netic disk drive for reading from and writing to a removable,
non-volatile magnetic disk (e.g., a "floppy disk’), and an
optical disk drive for reading from or writing to a removable,
non-volatile optical disk such as a CD-ROM, DVD-ROM or
other optical media can be provided. In Such instances, each
can be connected to bus 118 by one or more data media
interfaces.
0025 Memory 128 may include at least one program
product having a set (e.g., at least one) of program modules
that are configured to carry out the functions of embodiments
of the invention. Memory 128 may also include data that will
be processed by a program product. This data may be orga
nized in a variety of ways to allow efficient storage, manage
ment and retrieval of that data by one or more software appli
cations, whether local or remote to the data processing
system. One example would be a software cache Such as a
region cache to provide efficient access to data to multiple
Software applications. Such a region cache may be managed
by an application also stored in memory referred to herein as
a region cache manager.
0026. Program/utility 140, having a set (at least one) of
program modules 142, may be stored in memory 128 by way
of example, and not limitation, as well as an operating system,
one or more application programs, other program modules,
and program data. Each of the operating system, one or more
application programs, other program modules, and program
data or some combination thereof, may include an implemen
tation of a networking environment. Program modules 142
generally carry out the functions and/or methodologies of
embodiments of the invention.
0027 Computer system/server 112 may also communi
cate with one or more external devices 114 Such as a key
board, a pointing device, a display 124, etc.; one or more
devices that enable a user to interact with computer system/
server 112; and/or any devices (e.g., network card, modem,
etc.) that enable computer system/server 112 to communicate
with one or more other computing devices. Such communi
cation can occur via I/O interfaces 122. Still yet, computer
system/server 112 can communicate with one or more net
works such as a local area network (LAN), a general wide
area network (WAN), and/or a public network (e.g., the Inter
net) via network adapter 120. As depicted, network adapter
120 communicates with the other components of computer
system/server 112 via bus 118. It should be understood that
although not shown, other hardware and/or software compo
nents could be used in conjunction with computer system/
server 112. Examples, include, but are not limited to: micro
code, device drivers, redundant processing units, external
disk drive arrays, RAID systems, tape drives, and data archi
Val storage systems, etc.

Mar. 27, 2014

0028 FIG. 2 is a block diagram of a network of data
processing systems in which various embodiments may be
implemented. Data processing environment 200 is a network
of data processing systems such as described above with
reference to FIG. 1. Software applications may execute on
any computer or other type of data processing system in data
processing environment 200. Data processing environment
200 includes network 210. Network 210 is the medium used
to provide communications links between various devices
and computers connected together within data processing
environment 200. Network 210 may include connections
Such as wire, wireless communication links, or fiber optic
cables.

(0029 Server 220 and client 240 are coupled to network
210 along with storage unit 230. In addition, laptop 250 and
facility 280 (such as a home or business) are coupled to
network 210 including wirelessly such as through a network
router 253. A mobile phone 260 may be coupled to network
210 through a mobile phone tower 262. Data processing
systems, such as server 120, client 140, laptop 150, mobile
phone 160 and facility 180 contain data and have software
applications including Software tools executing thereon.
Other types of data processing systems such as personal digi
talassistants (PDAs), Smartphones, tablets and netbooks may
be coupled to network 210.
0030 Server 220 may include software application 224
Such as for storing, managing or accessing data Such as in a
region cache. Storage 230 may contain Software application
234 and a content source such as a region cache 236 for
storing data accessible by a variety of applications across
processing environment 200. Application 224 may serve as
the region cache manager for region cache 236. Region cache
236 is shown in an enlarged view 237. The region cache
includes multiple regions, each region including a starting
index and an ending index. These indexes may represent
memory addresses or other types of data depending on the use
of the region cache. Additional information may also be
stored in the region cache including additional information
about each region.
0031. Other software and content may be stored on storage
230 for sharing among various computer or other data pro
cessing devices. Client 240 may include Software application
244 and region cache 246. Laptop 250 and mobile phone 260
may also include software applications 254 and 264 and
region caches 256 and 266. Facility 280 may include software
application 284 and region cache 286. Other types of data
processing systems coupled to network 210 may also include
Software applications and region caches. Any of these soft
ware applications may serve as a region cache manager for
any other region cache depending on security and access
requirements. In addition, any of these software applications
may access any other region cache depending on security and
access requirements. Software applications could include a
web browser, email, or other software application that can
process sensor and maintenance information of an environ
mental control unit or other type of information to be pro
cessed. Region caches could be in any location in memory or
distributed across multiple locations within data processing
environment 200. Depending on security requirements and
interfacing capabilities, region caches may also be accessible
by Software applications across data processing environment
2OO.

0032 Server 220, storage unit 230, client 240, laptop 250,
mobile phone 260, and facility 280 and other data processing

US 2014/0089601 A1

devices may couple to network 210 using wired connections,
wireless communication protocols, or other Suitable data con
nectivity. Client 240 may be, for example, a personal com
puter or a network computer.
0033. In the depicted example, server 220 may provide
data, such as boot files, operating system images, and appli
cations to client 240 and laptop 250. Client 240 and laptop
250 may be clients to server 220 in this example. Client 240,
laptop 250, mobile phone 260 and facility 280 or some com
bination thereof, may include their own data, boot files, oper
ating system images, and applications. Data processing envi
ronment 200 may include additional servers, clients, and
other devices that are not shown.
0034. In the depicted example, data processing environ
ment 200 may be the Internet. Network 210 may represent a
collection of networks and gateways that use the Transmis
sion Control Protocol/Internet Protocol (TCP/IP) and other
protocols to communicate with one another. At the heart of
the Internet is a backbone of data communication links
between major nodes or host computers, including thousands
of commercial, governmental, educational, and other com
puter systems that route data and messages. Of course, data
processing environment 100 also may be implemented as a
number of different types of networks, such as for example,
an intranet, a local area network (LAN), or a wide area net
work (WAN). FIG. 2 is intended as an example, and not as an
architectural limitation for the different illustrative embodi
mentS.

0035 Among other uses, data processing environment
200 may be used for implementing a client server environ
ment in which the embodiments may be implemented. A
client server environment enables Software applications and
data to be distributed across a network Such that an applica
tion functions by using the interactivity between a client data
processing system and a server data processing system. Data
processing environment 100 may also employ a service ori
ented architecture where interoperable software components
distributed across a network may be packaged together as
coherent business applications.
0036 FIGS. 3A and 3B illustrate inserting a region into a
region cache in which various embodiments may be imple
mented. This region caching model can be used in any dimen
sional space. For the sake of simplicity, the following descrip
tion relates to a one dimensional space. However, this is only
an example and the present invention is not so limited.
0037. A region cache is utilized for memory registration. It

is not used as a form of memory allocation in the embodi
ments described herein, although it could be used to imple
menta form of memory allocation. That is, it is a bookkeeping
of the registration state of the memory regions, whether pre
viously registered or not. Inserting a new region onto existing
regions will not cause a memory violation. For example,
remote direct memory access (RDMA) can be directly per
formed on user buffers without intervention of the operating
system. RDMA requires pinning and registration of userbuff
ers to hardware prior to a data transfer to prevent the physical
memory from being Swapped out. If any portion of the user
buffer being accessed by RDMA has not been previously
registered, then that portion of the user buffer needs to be
registered by modifying the region entry into the region
cache.

0038. In these embodiments, a cache invariant is enforced
where no region overlaps another region at any time. That is,
no region has a starting index value less than the starting index

Mar. 27, 2014

of another region and an ending index greater than or equal to
the starting index of the other region. In addition, the cache
invariant is enforced where no region should be contiguous to
another region. That is, no region should have a starting index
that is only one address higher than the ending index of
another region. In Such a case, the contiguous regions should
be coalesced into a single region. The cache invariant may
also be enforced where all regions in the region cache are
stored in a specified order. This may be by starting index of
each region or by ending index of each region. This cache
invariant provides for certain efficiencies when the indexes of
a request region are checked against the indexes of the cache
regions. An example of this usage would be memory regis
tration on a host fabric interface (HFI) in anticipation of a
remote direct memory access (RDMA).
0039 FIG.3A illustrates an existing set of regions 300 and
a region to be inserted 305. The existing regions include R1
with starting index of A1 and an ending index of A3 (e.g. R1
(A1, A3)), region R2 (A4, A5), region R3 (A6, A7) and region
R4 (A8 and A9). The region to be inserted includes region R5
(A2, A9). As described above, overlapping regions are not
allowed in accordance with the cache invariant. First R5 is
split into chunks 310 in two categories. The first set of chunks
includes those that overlap existing regions (C1, C3, C5 and
C7). As these chunks are already in existing regions, they do
not have to be processed as they have already been registered.
The second set of chunks includes those that do not overlap
existing regions (C2, C4 and C6), referred to herein as gaps.
As those are not in existing regions, they will need to be
processed. The result of that processing would pre-coalesced
regions R1, C2, R2, C4, R3, C6 and R4. Once processed, then
all contiguous regions would need to be coalesced, resulting
in region 315 shown as R6.
0040 FIG.3B illustrates an existing set of regions 350 and
a region to be inserted 355. The existing regions include R11
(A11, A12), R12 (A13, A14), R13 (A16, A17) and R14 (A19,
A20). The region to be inserted includes R14 (A15, A18).
These regions could be in the same region cache shown in
FIG. 3A. First R14 is split into chunks 360 in two categories.
The first set of chunks includes those that overlap existing
regions (C12). As these chunks are already in existing
regions, they do not have to be processed. The second set of
chunks includes those that do not overlap existing regions
(C11 and C13) referred to herein as gaps. As this chunk is not
in an existing region, it will need to be processed. The result
of that processing would pre-coalesced regions R11, R12,
C11, R13, C13 and R14. Once processed, then all contiguous
regions would need to be coalesced, resulting in regions 370
shown as R11, R12, R15 and R14.
0041. If the cache invariant was not enforced in the above
two examples, then then there may be more regions than
shown. For example, if the regions were allowed to overlap or
adjoin each other, then R2 of FIG. 3A may be composed of
multiple overlapping regions. As a result, inserting R5 may
involve comparing the range of that region against more pre
existing regions than currently shown in FIG. 3A, thereby
requiring more processing time.
0042 FIG. 4 is a flowchart of inserting a new region into a
region cache in accordance with a first embodiment. In a first
step 400 the region cache manager receives a request to insert
a new region into the region cache. This request may be
received from a software application that is local or across a
network. The request should include a starting index and an
ending index of the requested region to be inserted. In step

US 2014/0089601 A1

410, the region cache manager performs a binary search on
the current region cache to find the position of insertion. In
this embodiment, the current regions are sorted by starting
index, so the binary search is performed using that starting
index. Alternative embodiments may use alternative types of
searches or the regions may be sorted by ending index. If
sorted by ending index, then steps 410 and 430 may be
reversed so that the ending index of the current region cache
is searched first.

0043. The binary search does not search for an exact
match, but returns results based on criteria and assumptions
that are guaranteed by the cache invariant. The binary search
takes the starting index of the region to be inserted as input,
and returns a position. More specifically, in this one dimen
sional case, the regions are sorted by the starting index in
increasing order in the cache, and the binary search returns
the position of the region whose starting index is greatest but
Smaller than the starting index of the region to be inserted. In
an embodiment where the binary search is on the ending
index of the region to be inserted, the binary search returns the
region whose index is Smallest but greater than the ending
index of the region to be inserted. Because the region cache
manager ensures that the cache invariant holds true, the cache
is guaranteed to be free of regions that are entirely contained
within another region. Therefore, the simple binary search
criteria always return positive results, even though an exact
match is not always returned.
0044 Based on the binary search results, the position of
insertion is determined in step 420. However, if the starting
index of the region being inserted is less than the starting
index of the identified current region (i.e. there is no current
region with a lower starting index), then the starting index of
the region being inserted is used as the starting insertion
index. This starting position for insertion is referred to herein
as the first marked position. In the above described examples,
the result of this initial search would be A1 of region R1 in the
example of FIG. 3A and A13 of region R12 in the example of
FIG. 3B.

0045. The region cache manager then performs a second
binary search on the ending index of the new region in step
430. In step 440, the region cache manager determines the last
region in the cache that is at least partially contained within
the region to be inserted. In this example, the search returns
the ending index of a current region in the cache with the
greatest starting index that is Smaller than the ending index of
the new region requested to be inserted. However, if the
ending index of the region being inserted is greater than the
ending index of the identified current region, then the ending
index of the region being inserted is used as the ending inser
tion index. This ending index for insertion is referred to herein
as the second marked position. In the above described
examples, the result of this second search would be A10 of
region R4 in the example of FIG. 3A and A17 of region R12
in the example of FIG.3B.
0046. In step 450, the area between the first marking posi
tion and the second marking position is scanned linearly to
identify gaps within that are not currently occupied by exist
ing regions. In the above described examples, the result of this
identification would be C2, C4 and C5 in the example of FIG.
3A and C11 and C12 in the example of FIG. 3B. These gaps
are processed in step 460 to register those gaps. The type of
processing or registration would depend on the use of the
region cache. For example, if the region cache is used for
RDMA data transfers, the registration would be for pinning

Mar. 27, 2014

memory to prevent the physical memory from being Swapped
out. Areas already occupied by existing regions do not need to
be processed because those areas are already registered. This
processing of gaps results in the new region being inserted
into the region cache, albeit piecemeal.
0047 Finally, in step 470, a coalescing operation is per
formed as shown in either FIG. 5A or 5B. This removes all
continuous regions and reduces the number of regions to be
searched in additional region insertion operations or future
cache lookup operations.
0048 FIG. 5 is a flowchart of coalescing regions that do
not meet the cache invariant into a single region in which
various embodiments may be implemented. This reduces the
number of regions in the region cache and reduces the amount
of searching needed to look up or inserta region. In a first step
500 the region cache manager receives a request for coalesc
ing regions in the cache. This request may be an internal call
from the region cache manager Such as at the end of an
insertion process. The request may include a range to search
including the starting index and the ending index as described
above with reference to FIG. 4. In this example, the regions in
the cache are sorted by the starting index of each region, as
shown in the examples of FIGS. 3A and 3B above.
0049. The region cache manager then performs binary
searches in step 505 using the starting index and the ending
index to identify the starting of the first potential region to be
combined and the ending index of the last potential region to
be combined. In the above described examples, the result of
this identification would be R1 and R4 in the example of FIG.
3A and R12 and C13 in the example of FIG. 3B. The region
cache manager then identifies the adjoin regions to be com
bined in step 510. In the above described examples, the result
of this identification would be R1, C2, R2, C4, R3, C6 and R4
in the example of FIG. 3A and C11, R13 and C13 in the
example of FIG. 3B. The region cache manager then com
bines these adjoining regions in step 515. Alternative methods
of coalescing regions may be used including a full linear Scan
of the region cache for adjoining regions.
0050 FIG. 6 is a flowchart of performing a lookup opera
tion in which various embodiments may be implemented.
This lookup operation assumes a cache invariant is in effect
whereby no regions are overlapping or continuous to each
other. In a first step 600 the region cache manager receives a
request for a cachelookup. This request may be received from
a software application that is local or across a network. In this
example, the regions in the cache are sorted by the starting
index of each region, as shown in the examples of FIGS. 3A
and 3B described above.
0051. In step 605, the region cache manager then searches
the region cache for the position of the region corresponding
to the request using a binary search, as explained above. In
step 610, the requested region is returned. Because the cache
invariant is guaranteed, a single lookup using the binary
search described above yields the region of interest. Also,
because the regions are sorted by starting index, the search
returns the position of the region with a starting index that is
closest to the starting index of the request, but still Smaller
than the starting index of the request.
0.052 The region cache manager then determines if the
returned region can contain the requested region in step 615.
If the result of this determination is positive, then in step 620
the region cache manager determines that a cache hit
occurred. Subsequently, in Step 625, the region cache man
ager returns the requested region to the requesting applica

US 2014/0089601 A1

tion. If the result of the determination in step 615 is negative,
then the region cache manager determines that a cache miss
has occurred in step 630. The region cache manager then
notifies the requesting application of the cache miss in step
635. Next, the region cache manager will receive an alloca
tion request from the requesting application in step 640. The
region cache manager then stores this resource into the region
cache as a region using the insertion operation described
above with reference to FIG. 4.

0053 FIG. 7 is a flowchart of inserting a new region into a
region cache in accordance with a second embodiment. In a
first step 700 the region cache manager receives a request to
insert a new region into the region cache. This request may be
received from a software application that is local or across a
network. The request should include a starting index and an
ending index of the requested region to be inserted. In step
710, the region cache manager performs a binary search on
the current region cache to find the position of insertion. In
this embodiment, the current regions are sorted by starting
index, so the binary search is performed using that starting
index. Alternative embodiments may use alternative types of
searches or the regions may be sorted by ending index. If
sorted by ending index, then steps 710 and 730 may be
reversed so that the ending index of the current region cache
is searched first.

0054 The binary search does not search for an exact
match, but returns results based on criteria and assumptions
that are guaranteed by the cache invariant. The binary search
takes the starting index of the region to be inserted as input,
and returns a position. More specifically, in this one dimen
sional case, the regions are sorted by the starting index in
increasing order in the cache, and the binary search returns
the position of the region whose starting index is greatest but
Smaller than the starting index of the region to be inserted. In
an embodiment where the binary search is on the ending
index of the region to be inserted, the binary search returns the
region whose index is Smallest but greater than the ending
index of the region to be inserted. Because the region cache
manager ensures that the cache invariant holds true, the cache
is guaranteed to be free of regions that are entirely contained
within another region. Therefore, the simple binary search
criteria always return positive results, even though an exact
match is not always returned.
0055 Based on the binary search results, the position of
insertion is determined in step 720. However, if the starting
index of the region being inserted is less than the starting
index of the identified current region (i.e. there is no current
region with a lower starting index), then the starting index of
the region being inserted is used as the starting insertion
index. This starting position for insertion is referred to herein
as the first marked position. In the above described examples,
the result of this initial search would be A1 of region R1 in the
example of FIG. 3A and A13 of region R12 in the example of
FIG. 3B.

0056. The region cache manager then performs a second
binary search on the ending index of the new region in step
730. In step 740, the region cache manager determines the last
region in the cache that is at least partially contained within
the region to be inserted. In this example, the search returns
the ending index of a current region in the cache with the
greatest starting index that is Smaller than the ending index of
the new region requested to be inserted. However, if the
ending index of the region being inserted is greater than the
ending index of the identified current region, then the ending

Mar. 27, 2014

index of the region being inserted is used as the ending inser
tion index. This ending index for insertion is referred to herein
as the second marked position. In the above described
examples, the result of this second search would be A10 of
region R4 in the example of FIG. 3A and A17 of region R12
in the example of FIG.3B.
0057. In step 750, the area between the first marking posi
tion and the second marking position is scanned linearly to
identify a first gap not currently occupied by existing regions.
In the above described examples, the result of this identifica
tion would be C2 in the example of FIG. 3A and C11 in the
example of FIG.3B. This gap is then processed in step 760 to
register that gap. The type of processing or registration would
depend on the use of the region cache. For example, if the
region cache is used for RDMA data transfers, the registration
would be for pinning memory to prevent the physical memory
from being Swapped out. Areas already occupied by existing
regions do not need to be processed because those areas are
already registered. This processing of gaps results in the new
region being inserted into the region cache, albeit piecemeal.
In step 770, a coalescing operation is performed as shown in
either FIG. 5A or 5B to coalesce the processed gap region
with the prior current region(s) if they are adjoining. This can
be up to two prior regions to be coalesced with the processed
gap if this is the second or third gap to be processed for the
region being inserted. This removes the gap as a separate
region and reduces the number of regions to be searched in
additional region insertion operations or future cache lookup
operations.
0058. In step 780, the area between the first marking posi
tion and the second marking position is continued to be
scanned linearly to identify another gap not currently occu
pied by existing regions. If no further gap is found them
processing can cease for this region insertion. If a gap is
found, then processing can continue to step 760 described
above.
0059 Although the above embodiments illustrate manag
ing a one dimensional region caching model, region caches
with two or more dimensions may be similarly managed with
the same cache invariant.

0060. The invention can take the form of an entirely soft
ware embodiment, or an embodiment containing both hard
ware and software elements. In a preferred embodiment, the
invention is implemented in Software or program code, which
includes but is not limited to firmware, resident software, and
microcode.
0061. As will be appreciated by one skilled in the art,
aspects of the present invention may be embodied as a system,
method or computer program product. Accordingly, aspects
of the present invention may take the form of an entirely
hardware embodiment, an entirely software embodiment (in
cluding firmware, resident Software, microcode, etc.) or an
embodiment combining software and hardware aspects that
may all generally be referred to herein as a “circuit,” “mod
ule' or “system.” Furthermore, aspects of the present inven
tion may take the form of a computer program product
embodied in one or more computer readable medium(s) hav
ing computer readable program code embodied thereon.
0062) Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec
tronic, magnetic, optical, electromagnetic, infrared, or semi

US 2014/0089601 A1

conductor System, apparatus, or device, or any Suitable com
bination of the foregoing. More specific examples (a non
exhaustive list) of the computer readable storage medium
would include the following: an electrical connection having
one or more wires, a portable computer diskette, a hard disk,
a random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM), or Flash memory, an optical fiber, a portable com
pact disc read-only memory (CD-ROM), an optical storage
device, a magnetic storage device, or any suitable combina
tion of the foregoing. In the context of this document, a
computer readable storage medium may be any tangible
medium that can contain, or store a program for use by or in
connection with an instruction execution system, apparatus,
or device.

0063 A computer readable signal medium may include a
propagated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electromag
netic, optical, or any Suitable combination thereof. A com
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.
0064 Program code embodied on a computer readable
medium may be transmitted using any appropriate medium,
including but not limited to wireless, wireline, optical fiber
cable, RF, etc., or any Suitable combination of the foregoing.
Further, a computer storage medium may contain or store a
computer-readable program code such that when the com
puter-readable program code is executed on a computer, the
execution of this computer-readable program code causes the
computer to transmit another computer-readable program
code over a communications link. This communications link
may use a medium that is, for example without limitation,
physical or wireless.
0065. A data processing system suitable for storing and/or
executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage media, and cache memories, which provide tempo
rary storage of at least some program code in order to reduce
the number of times code must be retrieved from bulk storage
media during execution.
0.066 A data processing system may act as a server data
processing system or a client data processing system. Server
and client data processing systems may include data storage
media that are computer usable. Such as being computer
readable. A data storage medium associated with a server data
processing system may contain computerusable code such as
a region cache manager. A client data processing system may
download that computer usable code. Such as for storing on a
data storage medium associated with the client data process
ing system, or for using in the client data processing system.
The server data processing system may similarly upload com
puterusable code from the client data processing system Such
as a content Source. The computer usable code resulting from
a computer usable program product embodiment of the illus
trative embodiments may be uploaded or downloaded using
server and client data processing systems in this manner.

Mar. 27, 2014

0067. Input/output or I/O devices (including but not lim
ited to keyboards, displays, pointing devices, etc.) can be
coupled to the system either directly or through intervening
I/O controllers.
0068 Network adapters may also be coupled to the system
to enable the data processing system to become coupled to
other data processing systems or remote printers or storage
devices through intervening private or public networks.
Modems, cable modem and Ethernet cards are just a few of
the currently available types of network adapters.
0069. The description of the present invention has been
presented for purposes of illustration and description, and is
not intended to be exhaustive or limited to the invention in the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art. The embodiment
was chosen and described in order to explain the principles of
the invention, the practical application, and to enable others
of ordinary skill in the art to understand the invention for
various embodiments with various modifications as are Suited
to the particular use contemplated.
0070 The terminology used herein is for the purpose of
describing particular embodiments only and is not intended to
be limiting of the invention. As used herein, the singular
forms “a”, “an and “the are intended to include the plural
forms as well, unless the context clearly indicates otherwise.
It will be further understood that the terms “comprises' and/
or “comprising, when used in this specification, specify the
presence of stated features, integers, steps, operations, ele
ments, and/or components, but do not preclude the presence
or addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.
0071. The corresponding structures, materials, acts, and
equivalents of all means or step plus function elements in the
claims below are intended to include any structure, material,
or act for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.

1. A method of managing a cache region comprising:
receiving a new region to be stored within the cache, the

cache including multiple regions defined by one or more
ranges having a starting index and an ending index; and

storing the new region in the cache in accordance with a
cache invariant, the cache invariant ensuring that regions
in the cache are not overlapping and that the regions are
stored in a specified order.

2. The method of claim 1 further comprising coalescing
contiguous regions into a single region.

3. The method of claim 2 wherein the cache invariant
ensures that regions in the cache are not contiguous to each
other.

4. The method of claim 1 wherein only portions of the new
region that are not overlapping the multiple regions are pro
cessed.

US 2014/0089601 A1

5. The method of claim 1 wherein the multiple regions are
stored according to starting index.

6. The method of claim 5 wherein the cache invariant
ensures that regions are stored in by starting index.

7. The method of claim 1 wherein the multiple regions are
stored according to ending index.

8. The method of claim 7 wherein the cache invariant
ensures that regions are stored by ending index.

9-24. (canceled)

Mar. 27, 2014

