a2 United States Patent

Panikkar et al.

US012086643B2

US 12,086,643 B2
Sep. 10, 2024

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

CRITICAL WORKLOAD MANAGEMENT IN
CONTAINER-BASED COMPUTING
ENVIRONMENT

Applicant: Dell Products L.P., Round Rock, TX
(US)

Inventors: Shibi Panikkar, Bangalore (IN); Rohit

Gosain, Bangalore (IN); Dhilip S.

Kumar, Bangalore (IN)

Assignee: Dell Products L.P., Round Rock, TX

Us)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 490 days.

Appl. No.: 17/477,013
Filed: Sep. 16, 2021

Prior Publication Data

US 2023/0080300 Al Mar. 16, 2023

Int. CL.

GO6F 9/46 (2006.01)

GO6F 9/50 (2006.01)

U.S. CL

CPC ... GO6F 9/5038 (2013.01); GOGF 9/5044

(2013.01); GO6F 9/505 (2013.01); GO6F
9/5083 (2013.01); GO6F 2209/5022 (2013.01);
GO6F 2209/508 (2013.01)
Field of Classification Search

CPC GOGF 9/5038; GOGF 9/5044; GOGF 9/505;
GOGF 9/5083; GO6F 2209/5022; GOGF
2209/508

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

8,429,276 B1* 4/2013 Kumar GOG6F 9/5077

718/1

2019/0028407 Al* 1/2019 Perumal Vijayan ... HO4L 67/61

OTHER PUBLICATIONS

N. Yehia, “Kubernetes Self Remediation (AKA Poison Pill),” https://
www.openshift.com/blog/kubernetes-self-remediation-aka-poison-
pill, Nov. 18, 2020, 4 pages.

Github, “HPE CSI Driver for Kubernetes,” https://github.com/hpe-
storage/csi-driver, accessed Feb. 4, 2021, 3 pages.

Github, “Stork—Storage Operator Runtime for Kubernetes,” https://
github.com/libopenstorage/stork, accessed Feb. 4, 2021, 8 pages.

* cited by examiner

Primary Examiner — Gregory A Kessler
(74) Attorney, Agent, or Firm — Ryan, Mason & Lewis,
LLP

(57) ABSTRACT

Techniques for managing critical workloads in container-
based computing environments are disclosed. In one
example, a method determines a resource trigger threshold
associated with executing at least one containerized work-
load associated with a first service having a first criticality
level, the resource trigger threshold corresponding to a
resource capacity allocated to execute the first service. The
method determines when the resource capacity allocated to
execute the first service reaches the resource trigger thresh-
old, and then re-allocates resource capacity allocated to
execute at least one containerized workload associated with
a second service having a second criticality level to the first
service when the resource trigger threshold is reached. For
example, the first criticality level may be higher than the
second criticality level.

20 Claims, 7 Drawing Sheets

/500

DETERMINE A RESOURCE TRIGGER THRESHOLD
ASSOCTATED WITH EXECUTING AT LEAST ONE
CONTAINERIZED WORKLOAD ASSOCTATED WITH
A FIRST SERVICE HAVING A FIRST CRITICALITY
LEVEL, THE RESOURCE TRIGGER THRESHOLD
CORRESPONDING TO A RESOURCE CAPACITY
ALLOCATED 10 EXECUTE THE FIRST SERVICE

-~ 502

I

DETERMINE WHEN THE RESOURCE CAPACITY
ALLOCATED 10 EXECUTE THE FIRST SERVICE
REACHES THE RESOURCE TRIGGER THRESHOLD

1~ 504

!

RE-ALLOCATE RESOURCE CAPACITY ALLOCATED
T0 EXECUTE AT LEAST ONE CONTAINERIZED
WORKLOAD ASSOCIATED WITH A SECOND
SERVICE HAVING A SECOND CRITICALITY
LEVEL T0 THE FIRST SERVICE WHEN THE
RESOURCE TRIGGER THRESHOLD IS REACHED

I 506

!

REVERT THE RESOURCE CAPACITY
RE-ALLOCATED YO THE FIRST SERVICE
BACK T0 THE SECOND SERVICE WHEN

THE RESQURCE CAPACITY NEEDED BY THE
FIRST SERVICE TO EXECUTE FALLS BELOW
THE RESOURCE TRIGGER THRESHOLD

-~ 508

!

UPDATE THE RESQURCE TRIGGER
THRESHOLD AT A GIVEN TIME INTERVAL
AND/OR AT A GIVEN EVENT OCCURRENCE

510

US 12,086,643 B2

Sheet 1 of 7

Sep. 10, 2024

U.S. Patent

(Iyolig MOT) L313an
- NOILJINDSENS ISMONE

A\

M

~/

Nd/5004

== J0VE ONg
T

EWLIEY

o

7 -0
"y

AX0Hd 380

(IYoIMs MOT) L3T3any
~ 1404%3 ¥3080

(’

d.A

L N onow
\ T [T 0

nd0/3004
YOv¥9 ONISE

fd2/3G04

\ \Tmmw
AXO¥d 380 o
b
&
© ?g =
07l ~H S = Z M1l
= =
(WL HOMH) L3mEm | 8
- NOLLJIOSEnS | P
. ./
JAN3S
VTS

T

Mg

1

F0IAd3S 1dY

5

3

HALSYR SILIR3EMN

/

o1
K

US 12,086,643 B2

Sheet 2 of 7

Sep. 10, 2024

U.S. Patent

AXO¥d 380Y HOLYHINID 1SIND
i
Gd P - HOLVEETIVO
¥0z 7
L) SONILEIS ONRI3D9RL
(IVOLLEED HOTH) 757 7

13580 - NOLLDIDSENS

FINQOR NOLLYHEITYO

US 12,086,643 B2

Sheet 3 of 7

Sep. 10, 2024

U.S. Patent

. 9
r ~
£-90} Z-901
L L 0¥ TBNY -] | HOLYHINIS ISINDM
JXOud 380 AXONd 380 H0SSIO0U 5577
ol 10d . HOLYHETTVO
HOLYOY 408 mﬁ
7 SONILLTS ONTNIOONL
(WoLm0 M0T) ETTeny || | (WL Aot} L3vEny os agmwmw ﬁw%u —
|- z@m&%mmwm ot || - luods o0 | - L1 TIION NOLLYUENS
AA a1 7 01d
\. J
Nd)/500d
YOve ONENE
5004
IS gt
130 31ViS)
RS & O1d
LWL
Nogl

U.S. Patent

44

FIG.

Sep. 10, 2024

Sheet 4 of 7

US 12,086,643 B2

L TR LS o T A - - o Ty T T - O
e »““\N Wy | me3 | oo e REN RIS
= ey | M3 e] Py

oo A | D))
bad S 6B | ey o et
E&C} & | a3 Faid [Y]
o ae 5 & | M2 o])

«l&nm SR | Y 3 2]
P = w3y Wy o0
== £] LD - [ola)
R s TRV B o S Ve T il I
L,a_,g R RS RN R
an

[R o,

HEYD

e & L S

-
ng
=E o
T e e o | oR <o M3 -
&y bad [0 B e T o B IR S SS B R RN)
poot R B e e T B apnne § o | apann
b 2
o
=
umg
S o
€S
[i g
£ wy fuy |y Uy ey e e
L2l D | ol icm]{ol o
i T of
58
=i
<
o e SRS I I e S BN B T T O I
[T gy Dl D B e {00 0
mﬁ e e N B B IS RSN I]
e &
=L B o0y
€3 o
Lad o=
[oy
Eseo SR oo T I oo 0 B e S8 I oo BRI oo B vor B Y s
v, = | D DS NN D
el TN R N N
LD fomn
b o
=F
Ll i
&
L IR T L TR L B - - - A T]
o 82
g oo
mg
=
=%
ot |
%)
b= ixixzixizx xmixix
proed R IED IR D[RR | €S| €D
oo 3 poood | ouoed § pouod B oosd 1 jouod § buooed L oo
&3 bl e el e vl B ol B ol e ol B el e v
i xixizizizziz
[T I 0 v T o 0 B T e T B T e
oo § boood | oo § boood) ool) joool | boood | Joood
] [ARSR) s) S) VR) Sl SR Sy I we
= PN W o YO WU B WA =W B Y B~ W
Saand 3 daand | faaasd] daaad B sl 1 baaadd | haaat 1 Saaaa)
=L a7 N = Vel B Y B O R 7 B Yo
= CI1EI |2 €3 e €3 1e2 i 2D
B R R AR R i R s R i)
Lt M oo icalosl on
&3 DD I DD I DI D
= L BB i e
% el | bl] Rt) R b Rwad ! sl] Red) sl
& ARV Ol [Tl) Vel [W B e B e I v
B v o W B B o e I
Sl | olad] Lad fadd | Lad b sl) Badd Y Sad
P O Bl Bl B o ol B v o
€ {LD I [EI[R2 | €312 €3

U.S. Patent Sep. 10,2024 Sheet 5 of 7 US 12,086,643 B2

[ad
QKQ L
SR IZEE-
i""'
B &
= = o B &2
ol i O
Stk g G oy
2d o 3 U &5
3 i :}ma‘s
33 55 P Yo J
ad e tad 873
L e x5
¥ 0w
SIEIBeT RS E B3B8
&%N & | a3 w2 23
s g 3 | My] (=3 By
Lt £ o 2 | ney o 5 ey
C?;ﬁﬁt:) o> | M Ty [T By
& Bt GRS & | w3 r3 2 #ed
STE & | e mc3 > ey
& o= = bl Bt o) o0 D
i <5 | we ool o =
el ire e i | o e o |
b b R RS R RIS B e o |
< 32
£03 Sy B oomven
R
E&QWW
o
fod
pe-
P N [ea TR Mo B o R ol e v BN e B A o B LD | e
3 el ch i | D leg e |« on o |
ey qrone § wgnen | oqumo § owgenwe] oageen | ogeene boogom a1 O
e 3
-
=
==
R oo
= W3 L2 Ly Ly ey | o |y B Wy
— i e | Dicalaiacic < en
puiios R i
O .3
=
il
m g
¥ had “p e le— ol lot]m|on|n s e
& £ ES i s (Dl ied | B
o e b o | g | e § oamee | oweee | owen | N e
L:m@w
s = o
Lo @
fad
by o =3
ix,* S, Rlieaic i oioiclolc &3 e
b D DS @ & | o5
a3 o
=5
o=
&
P e N LT IS B B SR - S IR A T R WY
=
mg
=
=%
Sn
[
oo
oS
Snannd
— Tixixixzimixcixoix o sulll s
= 2 e iIB | €niinicales | in 5 1 §5
B § poooad N oot} jowed § booed) boool 3 pusesd B ool [T I e}
3 il i el e
AREEEHEBERE S HE
bt g g i g e [e) Sl e b | B
= P I Y O W I WO I W O W W I & | O
pownd | opvenr | dwuwt | beeed § Rewed | foved | ews | pueed Powad 1 powed
=X itc i ig ool or o
= 2 e 1 e 1431831421312 23 | €5
i I D ien x93 | O &8 | L
Lad i ito i imidmos £ | oo
3 el B S B B s B B S BB oo O =S
= I B IN I3 r | [¥
B bk | |t | b b | bt | s | bt | p
w3 <l | wE | oL | =L | W | ek | e | oL el
fad | oRasad | Lol § Sl oLl b oReld b Rl | Lad Bad 1 L
it G dside o B2 & b
L2 €SI | €3 1T R3] €31¢2 3 €3

U.S. Patent

Sep. 10, 2024 Sheet 6 of 7

FIiG. 5

US 12,086,643 B2

DETERMINE A RESOURCE TRIGGER THRESHOLD
ASSOCIATED WITH EXCCUTING AT LEAST ONE
CONTAINERIZED WORKLOAD ASSOCIATED WITH
A FIRST SERVICE HAVING A FIRST CRITICALITY
LEVEL, THE RESOURCE TRIGGER THRESHOLD
CORRESPONDING TO A RESOURCE CAPACTTY
ALLOCATED 1O EXECUTE THE FIRST SERVICE

DETERMINE WHEN THE RESOURCE CAPACHTY
ALLOCATED 10 EXECUTE THE FIRST SERVICE
REACHES THE RESOURCE TRIGGER THRESHOLD

5%
<>
o

RE-ALLOCATE RESOURCE CAPACITY ALLOCATED
T0 EXECUTE AT LEAST ONE CONTAINEREZED
WORKLOAD ASSOCIATED WITH A SECOND
SERVICE HAVING A SECOND CRITICALITY
LEVEL O THE FIRST SERVICE WHEN THE
RESOURCE TRIGGER THRESHOLD IS REACHED

[&)
]
[+

REVERT THE RESQURCE CAPACTTY
RE~ALLOCATED TO THE FIRST SERVICE
BACK TO THE SECOND SERVICE WHEN

THE RESOURCE CAPACITY NEEDED BY THE
FIRST SERVICE TO EXECUTE FALLS BELOW
THE RESOURCE TRIGGER THRESHOLD

UPDATE THE RESOURCE TRIGGER
THRESHOLD AT A GIVEN TIME INTERVAL
AND/OR AT A GIVEN EVENT OCCURRENCE

U.S. Patent Sep. 10,2024 Sheet 7 of 7 US 12,086,643 B2

FIG., 6
500
610-1 §10~2 §10-1 J
4 4 4
APPS APPS APPS
CONTAINER | [coNTAINER |/ 022 ['contamvr | ¢,
802-1 ~1 SET ¢ SET 2 SET L
VIRTUALIZATION INFRASTRUCTURE -~ 604
PHYSICAL TNFRASTRUCTURE L~ 605
FiG, 7
Aj/?ﬁ@
£ 7021
PROCESSING DEVICE 702-2
L | PROCESSING
INTERFACE (023
(710 PROCESSING
PROCESSOR DEVICE
(712 N
WMEMORY 102K
| PROCESSING
DEVICE

US 12,086,643 B2

1
CRITICAL WORKLOAD MANAGEMENT IN
CONTAINER-BASED COMPUTING
ENVIRONMENT

FIELD

The field relates generally to information processing
systems, and more particularly to container-based micros-
ervice management in such information processing systems.

BACKGROUND

Information processing systems increasingly utilize
reconfigurable virtual resources to meet changing user needs
in an efficient, flexible and cost-effective manner. For
example, cloud-based computing and storage systems
implemented using virtual resources in the form of contain-
ers have been widely adopted. Such containers may be used
to provide at least a portion of the virtualization infrastruc-
ture of a given information processing system. However,
significant challenges arise in efficiently managing container
environments.

SUMMARY

Tlustrative embodiments provide techniques for manag-
ing critical workloads in container-based computing envi-
ronments.

For example, in an illustrative embodiment, a method
comprises the following steps. The method determines a
resource trigger threshold associated with executing at least
one containerized workload associated with a first service
having a first criticality level, the resource trigger threshold
corresponding to a resource capacity allocated to execute the
first service. The method determines when the resource
capacity allocated to execute the first service reaches the
resource trigger threshold, and then re-allocates resource
capacity allocated to execute at least one containerized
workload associated with a second service having a second
criticality level to the first service when the resource trigger
threshold is reached. For example, the first criticality level
may be higher than the second criticality level.

In an additional illustrative embodiment, the method may
revert the resource capacity re-allocated to the first service
back to the second service when the resource capacity
needed by the first service to execute falls below the
resource trigger threshold. Further, the method may update
the resource trigger threshold at a given time interval and/or
at a given event occurrence.

Further illustrative embodiments are provided in the form
of a non-transitory computer-readable storage medium hav-
ing embodied therein executable program code that when
executed by a processor causes the processor to perform the
above steps. Still further illustrative embodiments comprise
an apparatus with a processor and a memory configured to
perform the above steps.

Advantageously, illustrative embodiments enable segre-
gation of criticality of service workloads in a container-
based computing environment. Further, illustrative embodi-
ments enable calibrating and re-calibrating critical services
to find the probable tripping resource state (i.e., resource
trigger threshold). Still further, illustrative embodiments
enable a microservice environment wherein a critical service
manager module receives telemetry from a critical service
and manages resource re-allocation from less critical and/or
non-critical services. While such container management
techniques are particularly effective in pod-based container

10

15

20

25

30

35

40

45

50

55

60

65

2

environments, it is to be appreciated that the techniques can
be implemented in other container-based computing envi-
ronments.

These and other illustrative embodiments include, without
limitation, apparatus, systems, methods and computer pro-
gram products comprising processor-readable storage
media.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a pod-based container environment with
critical service management functionality according to an
illustrative embodiment.

FIG. 2 illustrates details of a calibration module in a
pod-based container environment with critical service man-
agement functionality according to an illustrative embodi-
ment.

FIG. 3 illustrates details of a sidecar module in a pod-
based container environment with critical service manage-
ment functionality according to an illustrative embodiment.

FIGS. 4A and 4B illustrate an example of critical service
management for a pod-based container environment accord-
ing to an illustrative embodiment.

FIG. 5 illustrates a critical service management method-
ology for a pod-based container environment according to
an illustrative embodiment.

FIGS. 6 and 7 show examples of processing platforms that
may be utilized to implement at least a portion of an
information processing system with a pod-based container
environment with critical service management functionality
according to one or more illustrative embodiments.

DETAILED DESCRIPTION

Tustrative embodiments will be described herein with
reference to exemplary information processing systems and
associated computers, servers, storage devices and other
processing devices. It is to be appreciated, however, that
embodiments are not restricted to use with the particular
illustrative system and device configurations shown.
Accordingly, the term “information processing system” as
used herein is intended to be broadly construed, so as to
encompass, for example, processing platforms comprising
cloud and/or non-cloud computing and storage systems, as
well as other types of processing systems comprising vari-
ous combinations of physical and/or virtual processing
resources. An information processing system may therefore
comprise, by way of example only, at least one data center
or other type of cloud-based system that includes one or
more clouds hosting tenants that access cloud resources.

As the term is illustratively used herein, a container may
be considered lightweight, stand-alone, executable software
code that includes elements needed to run the software code.
The container structure has many advantages including, but
not limited to, isolating the software code from its surround-
ings, and helping reduce conflicts between different tenants
or users running different software code on the same under-
lying infrastructure. The term “user” herein is intended to be
broadly construed so as to encompass numerous arrange-
ments of human, hardware, software or firmware entities, as
well as combinations of such entities.

In illustrative embodiments, containers may be imple-
mented using a Kubernetes container orchestration system.
Kubernetes is an open-source system for automating appli-
cation deployment, scaling, and management within a con-
tainer-based environment comprised of components referred
to as pods, nodes and clusters, as will be further explained

US 12,086,643 B2

3

below. Types of containers that may be implemented or
otherwise adapted within the Kubernetes system include, but
are not limited to, Docker containers or other types of Linux
containers (LXCs) or Windows containers. Kubernetes has
become the prevalent container orchestration system for
managing containerized workloads. It is rapidly being
adopted by many enterprise-based information technology
(IT) organizations to deploy its application programs (appli-
cation). By way of example only, such applications may
include both newly architected stateless or inherently redun-
dant scale-out applications, as well as existing stateful
applications. Non-limiting examples of stateful applications
may include legacy databases such as Oracle, MySQL, and
PostgreSQL, as well as other stateful applications that are
not inherently redundant. While the Kubernetes container
orchestration system is used to illustrate various embodi-
ments, it is to be understood that alternative container
orchestration systems can be utilized.

Some terminology associated with the Kubernetes con-
tainer orchestration system will now be explained. In gen-
eral, for a Kubernetes environment, one or more containers
are part of a pod. Thus, the environment may be referred to,
more generally, as a pod-based system, a pod-based con-
tainer system, a pod-based container orchestration system, a
pod-based container management system, or the like. As
mentioned above, the containers can be any type of con-
tainer, e.g., Docker container, etc. Furthermore, a pod is
typically considered the smallest execution unit in the
Kubernetes container orchestration environment. A pod
encapsulates one or more containers. One or more pods are
executed on a worker node. Multiple worker nodes form a
cluster. A Kubernetes cluster is managed by a master node.
By way of example, pods represent the respective processes
running on a cluster. A pod may be configured as a single
process wherein one or more containers execute one or more
functions that operate together to implement a service. Pods
may each have a unique Internet Protocol (IP) address
enabling pods to communicate with one another, and for
other system components to communicate with each pod.
Further, pods may each have persistent storage volumes
associated therewith. Configuration information (configura-
tion objects) indicating how a container executes can be
specified for each pod.

Container-based microservice architectures have pro-
foundly changed the way development and operations teams
test and deploy modern software. Containers help compa-
nies modernize by making it easier to scale and deploy
applications. By way of example, Kubernetes helps devel-
opers and microservice operations teams because it manages
the container orchestration well. However, Kubernetes is
more than a container orchestrator, as it can be considered an
operating system for cloud-native applications in the sense
that it is the platform that applications run on, (e.g., just as
desktop applications run on MacOS, Windows, or Linux).

Furthermore, Kubernetes aims to reduce the burden of
orchestrating underlying compute, network, and storage
infrastructure, and enable application operators and devel-
opers to focus entirely on container-centric workflows for
self-service operation. More particularly, Kubernetes allows
developers to build customized workflows and higher-level
automation to deploy and manage applications composed of
multiple containers.

One of the main features of Kubernetes in the networking
side is pod creation. As explained above, pods are the
smallest deployable units of computing that can be created
and managed in Kubernetes. A pod can be as small as a
single service with a single container or may be large with

20

25

30

35

40

45

4

a plurality of containers. Users can define how many pods
need to run for a service using a replica set. When the
container loads, the defined number of pods will be loaded
for that service. More pods means more resource allocation.
One can define how much memory and central processing
unit (CPU) the container can use for a service and in turn the
pods. For example, if a maximum memory resource con-
sumption occurs, then the service will throw an out-of-
memory exception.

In a Kubernetes-based microservices platform, services
are load balanced among pods. It is realized herein that,
currently, if some less (or non) critical services are running
with a considerable amount of resource utilization, and at the
same time a critical service request came in, there is a
possibility that critical service pods will not have enough
resources to execute and will eventually cause an out-of-
memory exception and halt the operation. Moreover, when
less critical services are consuming a finite set of resources
(e.g., processing capacity, memory capacity, etc.), critical
service response time may violate a service level agreement
(SLA).

TMustrative embodiments address the above and other
challenges in container-based microservice platforms such
as, but not limited to, a Kubernetes platform. For example,
illustrative embodiments define a criticality for each specific
microservice such that critical service pods (e.g., most or
highly critical service pods in a defined criticality scale) are
given resource priority over pods executing services of
lower criticality. In one or more illustrative embodiments,
low priority service pods are instructed to free-up resources
if needed for critical service pods based on machine learning
(e.g., behavior of critical microservice) and calibration/re-
calibration of resources required for that service in produc-
tion is performed. A microservice architecture arranges an
application as a collection of loosely-coupled services.
However, as illustratively used herein, a microservice is one
example of a service.

By way of example only, illustrative embodiments may
define applications for different types of services based on
criticality as follows:

(1) Low criticality (e.g., Excel Export from a report. This

service is ok to fail, client can retry after some time);

(i1) Medium criticality (e.g., Viewing Subscription Sum-
mary. There will be some impact, if this service is
down. If the customer later retries, and can view the
subscription summary, the customer should be fine);
and

(ii1) High criticality (e.g., Operation with SLA-defined
response time. We cannot allow this to fail. If failed,
there will be significant impact to the customer.
Another example may be a subscription placement
microservice which needs to be prioritized, for
example, to maintain customer satisfaction).

The scale or level of criticality above (low, medium, and
high) is intended as an example embodiment. Other criti-
cality scales/levels, e.g., numeric or otherwise, can be imple-
mented in alternative embodiments.

In an application, all of these services (and internally
pods) will be up and running and will be used. Assume the
following scenario:

(1) Some users are exporting Excel spreadsheets (low
critical) and consuming a significant amount of
resources (e.g., CPU and memory).

(i1) At the same time, assume some users are trying to
place subscriptions (highly critical/high criticality ser-
vice). Since low priority pods consume significant
resources, there is a high probability that the highly

US 12,086,643 B2

5

critical services may fail by giving an out of memory
exception unless the underlying virtual processing
entity has that much CPU and memory to allocate to all
services.

Tlustrative embodiments provide that in order to achieve
smooth operation of critical pods in a resource-limited
scenario, a critical service manager can communicate with
low criticality pods to have the low criticality service reduce
their resource consumption or terminate such that the
resources can be re-allocated to highly critical pods. Advan-
tageously, if the low criticality service can reduce its
resource consumption, a high criticality service will acquire
those resources and can then successfully complete the task.

FIG. 1 illustrates a pod-based container environment 100
with critical service management functionality according to
an illustrative embodiment. As shown, pod-based container
environment 100 is based on a Kubernetes microservice
architecture. As such, pod-based container environment 100
comprises master node 102, an application programming
interface (API) service 104, and worker nodes 106-1, 106-2
and 106-3 (collectively referred to herein as worker nodes
106 and individually as worker node 106). While three
worker nodes 106 are shown, it is to be understood that this
is for illustration purposes only and more or less worker
nodes can be part of a cluster managed by master node 102.
Similarly, illustrative embodiments provide for critical ser-
vices across more than one cluster and master node. In
general, API service 104 exposes a Kubernetes API, which
is the front end of the Kubernetes container orchestration
system.

As illustrated, each worker node 106 corresponds to a
service, e.g., worker node 106-1 corresponds to a subscrip-
tion service that is implemented by software code executed
as one or more workloads (containers) of one or more pods
associated with worker node 106-1; worker node 106-2
corresponds to an order export service that is implemented
by software code executed as one or more workloads
(containers) of one or more pods associated with worker
node 106-2; and worker node 106-3 corresponds to a browse
subscription service that is implemented by software code
executed as one or more workloads (containers) of one or
more pods associated with worker node 106-3. As illustra-
tively used herein, a pod may be considered an example of
a containerized workload. A criticality level is defined for
these services wherein the subscription service implemented
on worker node 106-1 is considered high critical, while the
order export service implemented on worker node 160-2 and
the browse subscription service implemented on worker
node 106-3 are considered low critical (i.e., less critical then
a high critical service). Each worker node 106 has a kubelet
and kube proxy. A kubelet is the primary node agent that
runs on each node and registers the node with API service
104. A kube proxy is a network proxy that runs on each node
in a cluster and maintains network rules on nodes which
allow network communication to pods from network ses-
sions inside or outside of the cluster.

As further shown, pod-based container environment 100
comprises three modules that enable critical service man-
agement functionality: calibration module 110, sidecar mod-
ule 120, and critical service manager module 130. As will be
explained in further detail below, calibration module 110
calibrates/re-calibrates the critical service, i.e., subscription
service implemented by worker node 160-1, to determine
the tripping resource state (i.e., resource trigger threshold)
for the service in that environment. Sidecar module 120, also
implemented in the worker node executing the critical
service (i.e., 106-1) collects the current resource consump-

10

15

20

25

30

35

40

45

50

55

60

65

6

tion data (status information or state of critical service) and
sends this data to critical service manager module 130 at the
time of a tripping resource state. Critical service manager
module 130: (a) allows an administrator (user) to classify
services as high critical and low critical (or based on
whatever criticality scale is used); (b) receives the status
information from the high critical service (i.e., 106-1) at the
tripping resource state and re-allocates resources from one
or more low critical services (i.e., 106-2 and 106-3) to the
high critical service; and (c) reverts the re-allocated
resources back to normal when the critical service recovers
from the need for the additional resources. Critical service
manager module 130 may be implemented on a worker node
106, master node 102, and/or some other computing node of
pod-based container environment 100.

It is assumed that each critical service (i.e., 106-1) knows
what resources it needs for smooth execution (e.g., expected
performance, SLLA-compliance, etc.) for anticipated parallel
requests in real-time (online) conditions. Accordingly, illus-
trative embodiments provide for calibration of the services
in a production environment via calibration module 110. It
is further realized that, in each environment, resource avail-
ability will be different. Thus, initially, a calibration service
is run in production for a predefined time (e.g., one month
or for a number of breakeven points) along with all other
services.

As the platform increases the number of pods, more
requests can be served. However, more pods mean more
resource consumption requested of the resource provider.
Since resources cannot be extended after a point of time
(e.g., a finite set of resources), it is important to evaluate
resource scenarios with all other services running in the
system. Thus, in illustrative embodiments, calibration mod-
ule 110 ramps up requests to determine the tripping point
where response time starts deteriorating for the critical
service. This is called the resource tripping state or resource
trigger threshold. Once the critical service reaches the cali-
brated triggering point, the critical service sends its status
information to critical service manager module 130 via
sidecar module 120. Critical service manager module 130
reacts, for example, by reducing the pods running one or
more less critical and/or non-critical services.

FIG. 2 illustrates details of calibration module 110 of
worker node 106-1 according to an illustrative embodiment.
Calibration module 110, as shown, comprises a triggering
settings storage 202, a calibrator 204 and a request generator
206. Thus, calibration module 110 uses calibrator 204 and
request generator 206 in a feedback manner to determine the
resource point at which the critical service deteriorates (trips
or triggers) to an unacceptable (or SLA violative) threshold.
This tripping or triggering resource point is stored in trig-
gering settings storage 202.

FIG. 3 illustrates details of a sidecar module 120 of
worker node 106-1 according to an illustrative embodiment.
Sidecar module 120, as shown, comprises a propagator 302
and a processor 304. In one illustrative embodiment, pro-
cessor 304 reads the data in triggering settings storage 202
of calibration module 110. In an alternative illustrative
embodiment, calibration module 110 reports all or parts of
the data stored in triggering settings storage 202 to processor
304. As described above, once the critical service reaches
the calibrated triggering point (resource trigger threshold)
and processor 304 becomes aware of this condition, propa-
gator 302 of sidecar module 120 sends status information.
Note that status information (state of service) may, for
example, include raw and/or processed status data from
calibration module 110 and/or a message generated by

US 12,086,643 B2

7

processor 304 indicating that the critical service executed by
worker node 106-1 needs additional resources. Critical ser-
vice manager module 130 reacts, for example, by reducing
the pods running one or more less critical and/or non-critical
services, e.g., diverting CPU and/or memory resources from
services run by pods of worker node 106-2 and/or worker
node 106-3 to the critical service run by pods of worker node
106-1. This may involve temporarily suspending or termi-
nating pods running on worker nodes 106-2 and/or 106-3.
When the resources needed by the critical service run by
worker node 106-1 fall back below the trigger threshold (as
reported by sidecar module 120 to critical service manager
module 130), resources are re-allocated back to a state where
the services of worker nodes 106-2 and/or 106-3 operate
again as normal (i.e., prior to the re-allocation or some other
resource capacity state).

FIGS. 4A and 4B illustrate an example via tables 400 and
410, respectively, of critical service management for a
pod-based container environment according to an illustra-
tive embodiment. Assume that three services with defined
criticality are running in a Kubernetes cluster of worker
nodes (e.g., 106-1, 106-2 and 106-3 described above): (i)
Subscription Creation (High Critical); (i) Export Order
(Low Ceritical); and (iii) Search/Browse Subscription (Low
Critical).

In table 400, it can be seen that 5 pods with 160 requests/
minute and a response time variation from an initial
response (150 milliseconds) goes to 89% (more than 50%).
It is also evident that CPU usage is well under 500 Milli
Core. Then, for the next set of requests (180 request/minute)
the response time variation shoots up to 288+% and avail-
able free memory is only 7 Megabytes. Thus, the next surge
will result in an out of memory exception for the critical
service. Thus, the critical service management system will
determine the point where there is >80% variation in
response time and <10 MB memory space. This is accom-
plished by calibration module 110, as explained above. Now
the service is calibrated for optimal service as: 160 Request/
Min, 0.5 CPU, 4 PODs, <8 MB Free Memory. This will be
the triggering point for communicating to other services to
free up memory (or required CPU).

Once the critical service reaches the calibrated triggering
point, it starts telemetry to the critical service manager
module 130 using the above-described sidecar implementa-
tion. Critical service manager module 130 is aware of all low
critical services, and reduces pods running by terminating or
suspending pods one by one using the following command:
kubectl delete pod<—alllpod name>.

As shown in table 410, critical service manager module
130 can also set the pod limit to 1, until the critical service
is stable and back to normal. When the request/minute
becomes normal and the number of pods in the critical
service and free memory is back to normal, critical service
manager module 130 resets the low critical service pod
settings.

FIG. 5 illustrates a critical service management method-
ology 500 for a pod-based container environment according
to an illustrative embodiment. It is to be understood that, in
illustrative embodiments, methodology 500 is performed by
pod-based container environment 100 of FIG. 1.

As shown, step 502 determines a resource trigger thresh-
old associated with executing at least one containerized
workload associated with a first service having a first
criticality level, the resource trigger threshold corresponding
to a resource capacity allocated to execute the first service.
Step 504 determines when the resource capacity allocated to
execute the first service reaches the resource trigger thresh-

10

20

25

30

40

45

50

55

60

65

8

old. Step 506 re-allocates resource capacity allocated to
execute at least one containerized workload associated with
a second service having a second criticality level to the first
service when the resource trigger threshold is reached.
Resource re-allocation from the second service may, for
example, include terminating one or more pods while leav-
ing one or more other pods executing, reducing CPU capac-
ity (consumption) to a minimum, and/or raising the excep-
tion to a user (e.g., notify that a critical service is executing
and thus to expect delays in other services). Step 508 reverts
the resource capacity re-allocated to the first service back to
the second service when the resource capacity needed by the
first service to execute falls below the resource trigger
threshold. Step 510 updates the resource trigger threshold at
a given time interval and/or at a given event occurrence.

The particular processing operations and other system
functionality described in conjunction with the diagrams
described herein are presented by way of illustrative
example only, and should not be construed as limiting the
scope of the disclosure in any way. Alternative embodiments
can use other types of processing operations and messaging
protocols. For example, the ordering of the steps may be
varied in other embodiments, or certain steps may be per-
formed at least in part concurrently with one another rather
than serially. Also, one or more of the steps may be repeated
periodically, or multiple instances of the methods can be
performed in parallel with one another.

Advantageously, as explained herein, illustrative embodi-
ments provide many advantages, for example: (i) segrega-
tion of criticality of service pods in a Kubernetes-based
microservice environment; (ii) calibration and re-calibration
of critical services to find the probable tripping resource
state; and (iii) critical service manager in a Kubernetes
microservice node to receive status information from a
critical service and manages the resource re-allocation from
the low critical services.

It is to be appreciated that the particular advantages
described above and elsewhere herein are associated with
particular illustrative embodiments and need not be present
in other embodiments. Also, the particular types of infor-
mation processing system features and functionality as illus-
trated in the drawings and described above are exemplary
only, and numerous other arrangements may be used in other
embodiments.

Tustrative embodiments of processing platforms utilized
to implement functionality for managing critical service
workloads in container environments will now be described
in greater detail with reference to FIGS. 6 and 7. Although
described in the context of systems/module/processes of
FIGS. 1-5, these platforms may also be used to implement
at least portions of other information processing systems in
other embodiments.

FIG. 6 shows an example processing platform comprising
cloud infrastructure 600. The cloud infrastructure 600 com-
prises a combination of physical and virtual processing
resources that may be utilized to implement at least a portion
of the pod-based container environment 100. The cloud
infrastructure 600 comprises multiple container sets 602-1,
602-2, . . . 602-L implemented using virtualization infra-
structure 604. The virtualization infrastructure 604 runs on
physical infrastructure 605, and illustratively comprises one
or more hypervisors and/or operating system level virtual-
ization infrastructure.

The cloud infrastructure 600 further comprises sets of
applications 610-1, 610-2, . . . 610-L running on respective
ones of the container sets 602-1, 602-2, . . . 602-L under the

US 12,086,643 B2

9

control of the virtualization infrastructure 604. The con-
tainer sets 602 may comprise respective sets of one or more
containers.

In some implementations of the FIG. 6 embodiment, the
container sets 602 comprise respective containers imple-
mented using virtualization infrastructure 604 that provides
operating system level virtualization functionality, such as
support for Kubernetes-managed containers.

As is apparent from the above, one or more of the
processing modules or other components of pod-based con-
tainer environment 100 may each run on a computer, server,
storage device or other processing platform element. A given
such element may be viewed as an example of what is more
generally referred to herein as a “processing device.” The
cloud infrastructure 600 shown in FIG. 6 may represent at
least a portion of one processing platform. Another example
of such a processing platform is processing platform 700
shown in FIG. 7.

The processing platform 700 in this embodiment com-
prises a portion of pod-based container environment 100 and
includes a plurality of processing devices, denoted 702-1,
702-2, 702-3, . . . 702-K, which communicate with one
another over a network 704.

The network 704 may comprise any type of network,
including by way of example a global computer network
such as the Internet, a WAN, a LAN, a satellite network, a
telephone or cable network, a cellular network, a wireless
network such as a WiFi or WiIMAX network, or various
portions or combinations of these and other types of net-
works.

The processing device 702-1 in the processing platform
700 comprises a processor 710 coupled to a memory 712.

The processor 710 may comprise a microprocessor, a
microcontroller, an application-specific integrated circuit
(ASIC), a field-programmable gate array (FPGA) or other
type of processing circuitry, as well as portions or combi-
nations of such circuitry elements.

The memory 712 may comprise random access memory
(RAM), read-only memory (ROM), flash memory or other
types of memory, in any combination. The memory 712 and
other memories disclosed herein should be viewed as illus-
trative examples of what are more generally referred to as
“processor-readable storage media” storing executable pro-
gram code of one or more software programs.

Articles of manufacture comprising such processor-read-
able storage media are considered illustrative embodiments.
A given such article of manufacture may comprise, for
example, a storage array, a storage disk or an integrated
circuit containing RAM, ROM, flash memory or other
electronic memory, or any of a wide variety of other types
of computer program products. The term “article of manu-
facture” as used herein should be understood to exclude
transitory, propagating signals. Numerous other types of
computer program products comprising processor-readable
storage media can be used.

Also included in the processing device 702-1 is network
interface circuitry 714, which is used to interface the pro-
cessing device with the network 704 and other system
components, and may comprise conventional transceivers.

The other processing devices 702 of the processing plat-
form 700 are assumed to be configured in a manner similar
to that shown for processing device 702-1 in the figure.

Again, the particular processing platform 700 shown in
the figure is presented by way of example only, and systems/
modules/processes of FIGS. 1-5 may include additional or
alternative processing platforms, as well as numerous dis-
tinct processing platforms in any combination, with each

20

25

30

40

45

50

55

65

10

such platform comprising one or more computers, servers,
storage devices or other processing devices.

It should therefore be understood that in other embodi-
ments different arrangements of additional or alternative
elements may be used. At least a subset of these elements
may be collectively implemented on a common processing
platform, or each such element may be implemented on a
separate processing platform.

As indicated previously, components of an information
processing system as disclosed herein can be implemented at
least in part in the form of one or more software programs
stored in memory and executed by a processor of a process-
ing device. For example, at least portions of the functionality
as disclosed herein are illustratively implemented in the
form of software running on one or more processing devices.

In some embodiments, storage systems may comprise at
least one storage array implemented as a Unity™, Power-
Max™, PowerFlex™ (previously ScalelO™) or Power-
Store™ storage array, commercially available from Dell
Technologies. As another example, storage arrays may com-
prise respective clustered storage systems, each including a
plurality of storage nodes interconnected by one or more
networks. An example of a clustered storage system of this
type is an XtremlO™ storage array from Dell Technologies,
illustratively implemented in the form of a scale-out all-flash
content addressable storage array.

It should again be emphasized that the above-described
embodiments are presented for purposes of illustration only.
Many variations and other alternative embodiments may be
used. For example, the disclosed techniques are applicable
to a wide variety of other types of information processing
systems, host devices, storage systems, container monitoring
tools, container management or orchestration systems, con-
tainer metrics, etc. Also, the particular configurations of
system and device elements and associated processing
operations illustratively shown in the drawings can be varied
in other embodiments. Moreover, the various assumptions
made above in the course of describing the illustrative
embodiments should also be viewed as exemplary rather
than as requirements or limitations of the disclosure. Numer-
ous other alternative embodiments within the scope of the
appended claims will be readily apparent to those skilled in
the art.

What is claimed is:

1. An apparatus comprising:

at least one processing platform comprising at least one
processor coupled to at least one memory, the at least
one processing platform, when executing program
code, is configured to:

calibrate a resource trigger threshold for at least a first
service of one or more services by increasing requests
for the one or more services in order to determine the
resource trigger threshold associated with executing at
least one containerized workload associated with the
first service having a first criticality level, the resource
trigger threshold corresponding to a resource capacity
allocated to execute the first service wherein a response
time for the first service begins deteriorating past the
resource trigger threshold;

determine when the resource capacity allocated to execute
the first service reaches the resource trigger threshold;
and

re-allocate resource capacity allocated to execute at least
one containerized workload associated with a second
service having a second criticality level to the first
service when the resource trigger threshold is reached.

US 12,086,643 B2

11

2. The apparatus of claim 1, wherein the first criticality
level is higher than the second criticality level.

3. The apparatus of claim 1, wherein the processing
platform, when executing program code, is further config-
ured to revert the resource capacity re-allocated to the first
service back to the second service when the resource capac-
ity needed by the first service to execute falls below the
resource trigger threshold.

4. The apparatus of claim 1, wherein the processing
platform, when executing program code, is further config-
ured to update the resource trigger threshold at a given time
interval and/or at a given event occurrence.

5. The apparatus of claim 1, wherein the resource capacity
corresponding to the resource trigger threshold is the
resource capacity above which the first service is at risk of
not executing as anticipated.

6. The apparatus of claim 1, wherein the containerized
workload of the first service is executable as one or more
pods on a first worker node, while the containerized work-
load of the second service is executable as one or more pods
on a second worker node.

7. The apparatus of claim 6, wherein re-allocating
resource capacity allocated to execute the containerized
workload associated with the second service to the first
service when the resource trigger threshold is reached fur-
ther comprises re-allocating at least one of processing capac-
ity and memory capacity associated with the one or more
pods of the second worker node to the one or more pods of
the first worker node.

8. The apparatus of claim 6, wherein re-allocating
resource capacity allocated to execute the containerized
workload associated with the second service to the first
service when the resource trigger threshold is reached is
performed by a service manager module.

9. The apparatus of claim 8, wherein the determining the
resource trigger threshold associated with executing the
containerized workload associated with the first service, and
determining when the resource capacity allocated to execute
the first service reaches the resource trigger threshold are
performed by the first worker node.

10. The apparatus of claim 9, wherein the first worker
node comprises a calibration module for performing the
calibration, determination and re-allocation, and a sidecar
module for notifying the service manager module that the
resource trigger threshold has been reached.

11. A method comprising:

calibrating a resource trigger threshold for at least a first

service of one or more services by increasing requests
for the one or more services in order to determine the
resource trigger threshold associated with executing at
least one containerized workload associated with the
first service having a first criticality level, the resource
trigger threshold corresponding to a resource capacity
allocated to execute the first service wherein a response
time for the first service begins deteriorating past the
resource trigger threshold;

determining when the resource capacity allocated to

execute the first service reaches the resource trigger
threshold; and

re-allocating resource capacity allocated to execute at

least one containerized workload associated with a
second service having a second criticality level to the
first service when the resource trigger threshold is
reached.

10

20

25

30

35

40

45

50

55

60

12

12. The method of claim 11, wherein the first criticality
level is higher than the second criticality level.

13. The method of claim 11, further comprising reverting
the resource capacity re-allocated to the first service back to
the second service when the resource capacity needed by the
first service to execute falls below the resource trigger
threshold.

14. The method of claim 11, further comprising updating
the resource trigger threshold at a given time interval and/or
at a given event occurrence.

15. The method of claim 11, wherein the resource capacity
corresponding to the resource trigger threshold is the
resource capacity above which the first service is at risk of
not executing as anticipated.

16. The method of claim 11, wherein the containerized
workload of the first service is executable as one or more
pods on a first worker node, while the containerized work-
load of the second service is executable as one or more pods
on a second worker node.

17. The method of claim 16, wherein re-allocating
resource capacity allocated to execute the containerized
workload associated with the second service to the first
service when the resource trigger threshold is reached fur-
ther comprises re-allocating at least one of processing capac-
ity and memory capacity associated with the one or more
pods of the second worker node to the one or more pods of
the first worker node.

18. The method of claim 16, wherein re-allocating
resource capacity allocated to execute the containerized
workload associated with the second service to the first
service when the resource trigger threshold is reached is
performed by a service manager module.

19. The method of claim 18, wherein the determining the
resource trigger threshold associated with executing the
containerized workload associated with the first service, and
determining when the resource capacity allocated to execute
the first service reaches the resource trigger threshold are
performed by the first worker node.

20. A computer program product comprising a non-
transitory processor-readable storage medium having stored
therein program code of one or more software programs,
wherein the program code when executed by at least one
processing platform causes the at least one processing
platform to:

calibrate a resource trigger threshold for at least a first

service of one or more services by increasing requests
for the one or more services in order to determine the
resource trigger threshold associated with executing at
least one containerized workload associated with the
first service having a first criticality level, the resource
trigger threshold corresponding to a resource capacity
allocated to execute the first service wherein a response
time for the first service begins deteriorating past the
resource trigger threshold;

determine when the resource capacity allocated to execute

the first service reaches the resource trigger threshold;
and

re-allocate resource capacity allocated to execute at least

one containerized workload associated with a second
service having a second criticality level to the first
service when the resource trigger threshold is reached.

#* #* #* #* #*

