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(57) ABSTRACT

Methods and systems are disclosed. The method include
generating a simulated seismic training dataset, where the
simulated seismic training dataset includes upgoing signals
and downgoing signals, each recorded on hydrophones and
geophones and training a deep learning network, using the
simulated seismic training dataset, to separate the upgoing
signals from the downgoing signals. The method also
includes obtaining field hydrophone data and field geophone
data pertaining to a subsurface region of interest, recorded
by a seismic acquisition system including hydrophones and
geophones, and separating the field hydrophone data and
field geophone data into predicted upgoing signals. The

Int. CL method further includes generating a seismic image of the
GO1V 1/34 (2006.01) subsurface region of interest based, at least in part, on the
GO1V 1/18 (2006.01) predicted upgoing signals.
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SYSTEMS AND METHODS FOR SEISMIC
IMAGE GENERATION USING DEEP
LEARNING NETWORKS

BACKGROUND

[0001] The oil and gas industry routinely uses seismic
surveys to create images of the subsurface and detect
potential hydrocarbon reservoirs. Seismic data must be
processed to produce seismic images and seismic imaging
methods typically assume the signals they are processing are
upward-propagating when recorded after being reflected at
subsurface layers. However, recorded marine seismic data
may also include downward propagating signals that,
although reflected by subsurface layers, were subsequently
reflected back down from the sea surface. Such signals may
be called ghosts. Ghosts will be recorded with opposite
polarity by hydrophone and geophone sensors. (The former
measuring pressure, P, the latter measuring vertical displace-
ment, Z.) Therefore, when appropriately scaled and added
together, the ghost events in the hydrophone and geophone
data should interfere destructively, whereas for an upgoing
signal, the seismic events should constructively interfere.
Thus summing the P and Z signals (“PZ summation”) should
strengthen upgoing signals while attenuating or removing
downgoing signals, thus improving the resulting quality of
a seismic image produced from the data. Typically, the PZ
summation method is implemented for multi-component
datasets acquired by an ocean bottom node (OBN) or ocean
bottom cable (OBC).

[0002] However, the implementation of PZ summation
can be difficult due to scaling issues, coupling discrepancies,
and sensitivity differences between the hydrophones and
geophones in field data. Moreover, in addition to the com-
pressional waves, shear-waves and Scholte-waves are also
recorded by the geophones which will lead to artifacts in the
resulting PZ summation. Thus, the conventional PZ sum-
mation requires pre-processing steps to properly calibrate
the P and Z data and to attenuate random noise, shear-waves
and Scholte-waves. These pre-processing steps are very
important for successful PZ summation and, for every
dataset separately, require effort to find the correct param-
eters.

[0003] Accordingly, there exists a need for a method that
bypasses the difficulties of conventional PZ summation to
remove ghost signals.

SUMMARY

[0004] This summary is provided to introduce a selection
of concepts that are further described below in the detailed
description. This summary is not intended to identify key or
essential features of the claimed subject matter, nor is it
intended to be used as an aid in limiting the scope of the
claimed subject matter.

[0005] In some aspects, the techniques described herein
relate to a method. The method includes generating a
simulated seismic training dataset, where the simulated
seismic training dataset includes upgoing signals and down-
going signals, each recorded on hydrophones and geo-
phones, and training a deep learning network, using the
simulated seismic training dataset, to separate the upgoing
signals from the downgoing signals. The method also
includes obtaining field hydrophone data and field geophone
data pertaining to a subsurface region of interest, recorded
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by a seismic acquisition system including hydrophones and
geophones, and separating the field hydrophone data and
field geophone data into predicted upgoing signals. The
method further includes generating a seismic image of the
subsurface region of interest based, at least in part, on the
predicted upgoing signals.

[0006] In some aspects, the techniques described herein
relate to a non-transitory computer-readable memory includ-
ing computer-executable instructions stored thereon that,
when executed on a processor, cause the processor to
perform steps. The steps include generating a simulated
seismic training dataset, where the simulated seismic train-
ing dataset includes upgoing signals and downgoing signals,
each recorded on hydrophones and geophones, and training
a deep learning network, using the simulated seismic train-
ing dataset, to separate the upgoing signals from the down-
going signals. The steps also include obtaining field hydro-
phone data and field geophone data pertaining to a
subsurface region of interest, recorded by a seismic acqui-
sition system including hydrophones and geophones, and
separating the field hydrophone data and field geophone data
into predicted upgoing signals. The steps further include
generating a seismic image of the subsurface region of
interest based, at least in part, on the predicted upgoing
signals.

[0007] In some aspects, the techniques described herein
relate to a system. The system includes a field hydrophone
and a field geophone, and a computer system, configured to
generate a simulated seismic training dataset that includes
upgoing signals and downgoing signals, each recorded on
hydrophones and geophones. The system further includes
training a deep learning network, using the simulated seis-
mic training dataset, to separate the upgoing signals from the
downgoing signals. Additionally, the system obtains field
hydrophone data and field geophone data pertaining to a
subsurface region of interest, recorded by a seismic acqui-
sition system including hydrophones and geophones, and
separates the field hydrophone data and field geophone data
into predicted upgoing signals using the trained deep learn-
ing network. Furthermore, the system generates a seismic
image of the subsurface region of interest based, at least in
part, on the predicted upgoing signals.

[0008] Other aspects and advantages of the claimed sub-
ject matter will be apparent from the following description
and the appended claims.

BRIEF DESCRIPTION OF DRAWINGS

[0009] Specific embodiments of the disclosed technology
will now be described in detail with reference to the accom-
panying figures. Like elements in the various figures are
denoted by like reference numerals for consistency.

[0010] FIG. 1 shows upgoing and downgoing waves
recorded by an ocean bottom cable in accordance with one
or more embodiments.

[0011] FIG. 2A shows a procedure for creating training
data in accordance with one or more embodiments.

[0012] FIG. 2B shows steps in the simulation procedure in
accordance with one or more embodiments.

[0013] FIG. 3 shows the procedure for adding noise to
training data in accordance with one or more embodiments.
[0014] FIG. 4 shows a flowchart for creating amplitude
distortion weighting in accordance with one or more
embodiments.
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[0015] FIG. 5A shows a flowchart for creating random
noise in accordance with one or more embodiments.
[0016] FIG. 5B shows a flowchart for creating random
noise in accordance with one or more embodiments.
[0017] FIG. 6 shows a single input/output element in a
training dataset in accordance with one or more embodi-
ments.

[0018] FIG. 7 shows a neural network in accordance with
one or more embodiments.

[0019] FIG. 8A shows a U-net neural network in accor-
dance with one or more embodiments.

[0020] FIG. 8B shows the structure of a U-net neural
network in accordance with one or more embodiments.
[0021] FIG. 9 shows hydrophone data, geophone data, PZ
summation data, and result of application of a U-net in
accordance with one or more embodiments.

[0022] FIG. 10 shows hydrophone data, geophone data,
and the result from application of a U-net to both, all in the
frequency domain in accordance with one or more embodi-
ments.

[0023] FIG. 11 presents a workflow of the method in
accordance with one or more embodiments.

[0024] FIG. 12 shows a computer system in accordance
with one or more embodiments.

[0025] FIG. 13 shows a borehole and a drilling system in
accordance with one or more embodiments.

DETAILED DESCRIPTION

[0026] In one aspect, embodiments disclosed herein relate
to systems and a method for PZ summation using a artificial
intelligence (Al)-based deep learning approach trained with
a synthesized dataset. Embodiments of the present disclo-
sure may provide at least one of the following advantages:
The Al-based method does not require any parameters and
has a low computational cost to run. Furthermore, the
method to generate the training data is fast and uses ran-
domly defined parameters, thus allowing for the creation of
a large dataset and therefore better generalizability of the
deep learning method.

[0027] In the following detailed description of embodi-
ments of the disclosure, numerous specific details are set
forth in order to provide a more thorough understanding of
the disclosure. However, it will be apparent to one of
ordinary skill in the art that the disclosure may be practiced
without these specific details. In other instances, well-known
features have not been described in detail to avoid unnec-
essarily complicating the description.

[0028] Throughout the application, ordinal numbers (e.g.,
first, second, third, etc.) may be used as an adjective for an
element (i.e., any noun in the application). The use of ordinal
numbers is not to imply or create any particular ordering of
the elements nor to limit any element to being only a single
element unless expressly disclosed, such as using the terms
“before”, “after”, “single”, and other such terminology.
Rather, the use of ordinal numbers is to distinguish between
the elements. By way of an example, a first element is
distinct from a second element, and the first element may
encompass more than one element and succeed (or precede)
the second element in an ordering of elements.

[0029] It is to be understood that the singular forms “a,”
“an,” and “the” include plural referents unless the context
clearly dictates otherwise. Thus, for example, reference to
“seismic signal” includes reference to one or more of such
signals.
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[0030] Terms such as “approximately,” “substantially,”
etc., mean that the recited characteristic, parameter, or value
need not be achieved exactly, but that deviations or varia-
tions, including for example, tolerances, measurement error,
measurement accuracy limitations and other factors known
to those of skill in the art, may occur in amounts that do not
preclude the effect the characteristic was intended to pro-
vide.

[0031] It is to be understood that one or more of the steps
shown in the flowchart may be omitted, repeated, and/or
performed in a different order than the order shown. Accord-
ingly, the scope disclosed herein should not be considered
limited to the specific arrangement of steps shown in the
flowchart.

[0032] Although multiple dependent claims are not intro-
duced, it would be apparent to one of ordinary skill that the
subject matter of the dependent claims of one or more
embodiments may be combined with other dependent
claims.

[0033] In the following description of FIGS. 1-12, any
component described regarding a figure, in various embodi-
ments disclosed herein, may be equivalent to one or more
like-named components described regarding any other fig-
ure. For brevity, descriptions of these components will not
be repeated regarding each figure. Thus, each and every
embodiment of the components of each figure is incorpo-
rated by reference and assumed to be optionally present
within every other figure having one or more like-named
components. Additionally, in accordance with various
embodiments disclosed herein, any description of the com-
ponents of a figure is to be interpreted as an optional
embodiment which may be implemented in addition to, in
conjunction with, or in place of the embodiments described
regarding a corresponding like-named component in any
other figure.

[0034] PZ summation is a method to mitigate the delete-
rious effects that ghost signals (105) found in seismic data
have on seismic images. FIG. 1 shows one example of a
subsea geometry that would produce ghost signals. A seis-
mic source (101) is towed by a ship (100) on the sea surface
(102). This generates seismic waves (104) that travel down
through the sea floor (106) and are reflected by boundaries
between subsurface rock formations (108). These reflections
may propagate as upgoing signals (103) back to the sea
surface, and there reflect again and propagate as downgoing
signals (105) (ghosts) to the ocean floor where they may be
detected by an array of sensors (110) deployed in sensor
packages, such as ocean bottom nodes (OBN) or ocean
bottom cables (OBC). Each sensor may include a collocated
hydrophone and geophone.

[0035] The PZ summation adds the vertical component of
the geophone (7) signal (112) to the pressure component of
the hydrophone (P) signal (114); since the ghost signal (i.e.,
a downgoing multiple wave) is recorded with opposite
polarity by the hydrophone compared to the geophone, the
two signals should cancel each other out, resulting in the
summed signal (116). Conversely, the hydrophone and geo-
phone recordings of singly-reflected signals (103) have
identical polarity and should constructively interfere.
[0036] Practical implementation of PZ summation meth-
ods can be complicated by a number of factors. First,
pressure and particle velocity have different physical units
and a conversion factor, dependent on the mass density of
the material, must be defined. Second, the sensitivities of
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hydrophones and geophones may differ in frequency depen-
dent ways and these differences must be corrected. Further-
more, in addition to upgoing and downgoing compressional
(“primary”, “pressure”, or “P-"") waves, other modes, such as
shear waves and Scholte waves propagating along the sea-
bed may be recorded by the geophones. These other modes
must be identified and removed or attenuated prior to PZ
summation. Thus, conventional PZ summation may require
extensive pre-processing steps to properly calibrate the P
and Z data and attenuate random noise, shear waves, and
Scholte waves. These pre-processing steps are essential for
successful PZ summation and require significant effort to
manually tune adjustable parameters.

[0037] The embodiments disclosed herein that provide for
attenuating or removing ghosts using PZ summation are
enabled by a deep learning network trained with a synthetic
training dataset. This method may be faster and bypasses the
problems associated the conventional PZ summation
method, described above. As such, the disclosed embodi-
ments represent an improvement over the existing conven-
tion PZ summation for attenuating ghost signals.

[0038] The quality of the deep learning method depends
on two factors: the data used to train it and the type of neural
network. The more realistic the training data, and the larger
the quantity of them, the more accurate the results.

[0039] The goal of the trained neural network is to com-
pute robust PZ summation results on field data not seen in
the training procedure, a property known as generalization.
A network’s ability to generalize increases with the size and
variability of the training dataset. Without large quantities of
realistic training data, generalization of a network is hard to
achieve and, as a result, retraining of the network becomes
necessary when it is confronted with a new dataset.

[0040] There are several possible sources of a training
dataset. Field data examples may be used, synthetic hydro-
phone/geophone datasets may be created, or both types of
data may be combined. Field examples are limited in quan-
tity, thus limiting their usefulness in ensuring generalization
of trained deep learning network. Similarly, synthetic hydro-
phone/geophone datasets generated using numerical solu-
tions of the wave-equation are computationally intensive to
create. Embodiments disclosed herein provide a novel alter-
native to using field data or traditional synthetics datasets
from numerical wave-equation simulations. These embodi-
ments generate randomized training sets using canonical
seismic events that, in turn, produce diverse output data and
allow for the generalization of the trained U-net neural
network.

[0041] FIG. 2A presents the technique for simulating a
hydrophone/geophone dataset. It starts by initializing four
fields of seismic data, [1(x,t), 12(x,t), L1(x,t), and L2(x,t),
along with a counter j in Step 200. I1(x.t) is Input 1, and
corresponds to the input hydrophone signal (P), [2(x,t) is
Input 2, and corresponds to the input geophone signal (Z).
L1(x.t) is the expected linear superposition, i.e., the sum-
mation, of the P and Z signals, which approximates a P
upgoing signal, the desired output of the deep learning
method. L2(x,t) represents all the multiply reflected down-
going waves and will be referred to as the P downgoing
signal. L1 is the desired P upgoing portion of the seismic
wavefield that is conventionally required for further profess-
ing, including seismic imaging. L2 is the undesired P
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down-going portion of the wavefield in the aspect of the
de-ghosting process. Initially, I1, 12, L1, and 1.2 are all set
to zero.

[0042] Adding together the P upgoing and P downgoing
wavefields at the end of the procedure described below
should reproduce the P input. If it does not, artifacts have
been introduced by the machine learning algorithm. Thus,
keeping track of 1.2 is useful for quality control of the
method.

[0043] In Step 202, the number of events, N, in the seismic
data is randomly chosen. In Step 204, a center frequency and
a type of wavelet are randomly selected. From the center
frequency and wavelet type, a wavelet, f(t), is constructed as
a function of two-way time. In parallel with Step 204, Step
206 generates a field of reflectivity, r(x.t), in space and
two-way time by randomly creating curves in the reflectivity
field, randomly determining the amplitudes of the curves
(that is, how strongly the curved event deviates from the
background), randomly determining the variations in ampli-
tude along the curve, and randomly determining time statics
(i.e., vertical shifts in the seismic signals caused by variable
elevation and shallow low velocity zones at the sea floor).
[0044] The curves used in this embodiment are lines and
hyperbolas, and may be given by the following equations,
respectively:

t=axx+b

[0045] For suitably chosen constants, the location of these
two curves may be changed within the image. Although only
lines and hyperbolas are used in the examples presented
here, any parametrized curve may be used.

[0046] Continuing with the steps of the technique, in Step
208, the wavelet, f(t), is convolved in the time dimension
with the reflectivity field, r(x,t), to create seismic data,
A(x,t). In Step 210, a random number is generated between
0 and 1. If the random number is greater than 0.5, then Step
212 is implemented. Alternatively, if the random number is
less than or equal to 0.5, then Step 214 is implemented. If
Step 212 is implemented, the seismic data A(x,t) is added to
the dataset as an upgoing wavefield. As an upgoing wave,
A(x,t) is added to [1(x,t) (the hydrophone data), and it is
added to I2(x,t) (the geophone data). It is also added to
L1(x.t) (the Pupgoing data), since this is the ideal output of
a method for PZ summation.

[0047] If Step 214 is implemented, A(x,t) is added to the
dataset as a downgoing wavefield. Thus A(x,t) is added to
the hydrophone data, I1(x.t), but subtracted from the geo-
phone data, I2(x,t). This simulates the inversion of polarity
that particle motion undergoes when a wave is reflected back
down from a free surface (e.g., the sea surface). Since it is
a downgoing wave, A(x,t) is added to L2(x,t) which repre-
sents the dataset of downgoing waves.

[0048] Next, in Step 216, the counter j is incremented by
1. In Step 218, if j=N, the technique proceeds to Step 220
and the simulation stops. If j<N, Step 218 moves back to
Steps 204 and 206.

[0049] Summarizing, by the procedure of this simulation
technique as presented in FIG. 2A, at each iteration of the
loop a curve is created and added to the reflectivity field,
1(x,t), convolved with a random wavelet, f(t), and added to
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a training image as either an upgoing or a downgoing wave.
FIG. 2B shows an example of three loops (iterations) of the
technique displayed as three separate seismic images. Each
seismic image displays distance along the horizontal direc-
tion and two-way travel time on the vertical axis. When
written to I1 (hydrophone data), the grayscale value indi-
cates pressure. When written to 12 (geophone data), the
grayscale value indicates vertical displacement.

[0050] 1In the 1°* loop (240), an upgoing wave is created
which is manifested by a first hyperbola (242) in hydro-
phone data (Input 1). Since it is an upgoing wave, it is
manifested identically in the geophone data (Input 2). In the
2"?1oop (244), a second hyperbola (246) is manifested in the
hydrophone data (Input 1). But, since it is a downgoing
wave, it is manifested as an inverted polarity second hyper-
bola (248) in the geophone data (Input 2). In the 3’7 loop
(250), a third hyperbola (252) is manifested in hydrophone
data (Input 1). Since it is a downgoing wave, it is manifested
as an inverted third hyperbola (254) in the geophone data
(Input 2).

[0051] In order to increase the realism of the synthetic
data, noise is added separately to the hydrophone and
geophone data. The noise may be both coherent noise and
random noise. An amplitude distortion may also be incor-
porated into the data in the form of a point-by-point multi-
plicative weighting of the synthetic data. Incorporating the
noise and the amplitude distortion into the training data
makes a deep learning method more robust with respect to
noise found in real data.

[0052] FIG. 3 shows an embodiment for adding both
coherent and random noise, as well as an amplitude distor-
tion, to the simulated seismic data, A(x,t). It begins in Step
300 with the same fields of data: I1(x,t), 12(x,t), L1(x,t), and
L2(x,t). In Step 302 a random number between 0 and 1 is
generated and compared with 0.95. If it is greater than 0.95,
the technique proceeds to Step 304. If less than or equal to
0.95, the technique proceeds to Step 312. In Step 304, a new
field of data, B(x,t), is created in the identical manner as
A(x,t). In Step 306, another random number between 0 and
1 is generated. If the number is greater than 0.5, the
technique proceeds to Step 308. If the number is less or
equal to than 0.5, the technique proceeds to Step 310.
[0053] In Step 308, the new field of coherent noise, B(x,t),
is added to I1(x,t) (the hydrophone data), L1(x,t), and
L2(x,t) as coherent noise. Alternatively, if Step 310 is
followed, the coherent noise, B(x,t), is added to 12(x,t) (the
geophone data). Following either Step 304, 308, or 310, Step
312 is implemented. In Step 312, an amplitude distortion
field, W(x,t), is simulated and then multiplied in a point-
by-point fashion with 12(x,t). Next, in Step 314, another
random number between 0 and 1 is generated. If that number
is greater than 0.8, the technique proceeds to Step 316,
where a field of random noise, N(x,t), is generated. Gaussian
white noise was used in the examples presented here, but
this is not a limitation of the method. Noise from other
statistical distributions will work, as well. Different signal-
to-noise ratios of the random noise may be set for each
training data.

[0054] If the random number from Step 314 is less than or
equal to 0.8, the technique proceeds to Step 320. Step 318
follows Step 316. In Step 318, the noise, N(x,t), is added to
the fields of hydrophone data, 11(x,t), as well as to the P
upgoing data, L1(x,t), and the P downgoing data, [.2(x,t). In
Step 320, another random number between O and 1 is
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generated. If the random number is greater than 0.8, the
technique proceeds to Step 321, where N(x,t) is replaced
with another field of random noise. Step 322 follows Step
320. In Step 322, N(x,t) is added to the geophone data,
12(x,t). If the random number in Step 320 is less than or
equal to 0.8, the technique proceeds to Step 324 and termi-
nates.

[0055] FIG. 4 outlines a flowchart for generating the
amplitude distortion field, W(x,t). First, in Step 400, the
distortion field, W(x,t), and several parameters, nt, nx, Mn,
Num, and i are initialized, nt is the number of iterations, nx
is the number of spatial samples, Mn is the maximum
number of trials, and i is the counter for each trial. W(x,t) is
initialized a field of all zeros. Mn is multiplied by a random
number between 0 and 1, 1 is added to that number, then
converted to an integer, and then assigned to a parameter
Num. Num is the number of iterations of a first loop.
[0056] In Step 402 iis compared to Num. If it is less than
or equal to Num, the flowchart proceeds to Step 404 and the
first loop begins. If i is greater than Num, the flowchart
proceeds to Step 414 and terminates. In Step 404, nx is
multiplied by a random number between 0 and 1 and added
to 1, then converted to an integer. This value is assigned to
x1. x1 is subtracted from nx, then multiplied by a random
number between 0 and 1 and added to x1, then converted to
an integer. This value is assigned to x2, nt is multiplied by
a random number between 0 and 1 and added to 1, then
converted to an integer. This value is assigned to tl. tl is
subtracted from nt, then multiplied by a random number
between 0 and 1, added to tl, and then converted to an
integer. This value is assigned to t2. x1 is assigned to a
variable x.

[0057] Next, a second and third loop are run. In Step 406,
x is compared with x2. If x is less than or equal to x2, t1 is
assigned to a variable t in Step 408 and the third loop is
entered. However, if x is greater than x2, the flowchart
returns to Step 402. After Step 408, the flowchart proceeds
to Step 410, where t is compared to t2. If t is less than or
equal to 2, the flowchart proceeds to Step 412. If t is greater
than t2, the flowchart returns to Step 406. In Step 412, a
random number between 0 and 1 is generated, added to a
small constant, E, and multiplied by the value W(x,t) at x
and t, and then overwrites the value W(x,t). After Step 412,
the flowchart returns to Step 410. In this way, through three
nested loops, each value in the field W(x,t) is visited Num
times and the value is modified through a multiplication.
[0058] FIG. 5A outlines part of a flowchart for generating
the random noise field, N(x,t). First, in Step 500, parameters
nt, nx, and Mn, are initialized, nt is the number of time
samples, nx is the number of spatial samples, and Mn is the
maximum number of trials. Furthermore, N(x,t) is initialized
to 0, and a random number between 0 and 1 is assigned to
a parameter o, and the field of either 11(x,t), 12(x,t), L1(x,t),
or L2(x,t) is assigned to a field D(x,t); which one depends on
which field is having noise added to it. (All fields receive
noise in the same way according to the technique shown in
FIG. 3.)

[0059] In Step 502, o is compared to 0.5. If a is greater
than 0.5, a first branch of the flowchart is executed, shown
in its entirety in FIG. S5A. If a is less than or equal to 0.5, the
flowchart proceeds to Step 504 and a second branch of the
flowchart is executed, presented in its entirety in FIG. 5B.
[0060] The first branch of the flowchart includes three
nested loops. In Step 506, Mn is multiplied by a random
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number between 0 and 1, added to 1, converted to an integer,
and assigned to Num. i is initialized to 1, and a variable amp
is created by multiplying a random number between 0 and
1 by 0.2 and the maximum absolute value of the field D.
[0061] The first nested loop of the first branch is from i=1
to i=Num. In Step 508, if i is less than or equal to Num, the
flowchart proceeds to Step 510. If i is greater than Num, the
flowchart proceeds to Step 520 and terminates. In Step 510,
nx is multiplied by a random number between 0 and 1, added
to one, the result converted to an integer, and that result
assigned to x1.x1 is subtracted from nx, the result multiplied
by a random number between 0 and 1, and that result added
to x1, then converted to an integer, and then assigned to x2,
nt is multiplied by a random number between 0 and 1, added
to one, the result converted to an integer, and then assigned
to tl. t1 is subtracted from nt, the result multiplied by a
random number between 0 and 1, that result added to t1, the
result of that converted to an integer, and assigned to t2. The
flowchart then proceeds to Step 512 and the second nested
loop of the first branch begins. It is a loop from x1 to x2. If
x is less than or equal to x2, the flowchart proceeds to Step
514. If x is greater than x2, the flowchart returns to Step 508.
[0062] Inside the second nested loop of the first branch, a
third nested loop of the first branch goes from tl to t2. In
Step 514, t1 is assigned to t, and X is incremented by 1. The
flowchart then proceeds to Step 516, where t is compared to
2. If t is less than or equal to 12, the flowchart proceeds to
Step 518. If t is less than t2, the flowchart returns to Step
512. In Step 518, 2 is multiplied by a random number
between 0 and 1, and then 1 is subtracted from the result.
The resulting value is assigned to b. amp is multiplied by b
and the result is added to N(x,t). This terminates all three
nested loops of the first branch.

[0063] FIG. 5B presents a continuation of the flowchart of
FIG. 5A; the starting point is Step 530. The second branch
of the flowchart presented in FIG. 5B contains two nested
loops. Before beginning the nested loops, in Step 532, the
maximum absolute value of D(x,t) is multiplied by 0.2 and
a random number between 0 and 1. The resulting value is
assigned to amp. At this point the first nested loop of the
second branch begins. It is a loop from 1 to nx. In Step 534,
if x is less than or equal to nx, the flowchart proceeds to Step
536. If x is greater than nx, the flowchart proceeds to Step
542 and terminates. In Step 536, t is initialized to 1 and x is
incremented by 1. The flowchart then proceeds to Step 538.
In Step 538, if t is less than or equal to nt, the flowchart
proceeds to Step 540. If't is less than nt, the flowchart returns
to Step 534. In Step 540, the second nested loop of the
second branch begins. A random number between 0 and 1 is
multiplied by 2, and then 1 is subtracted from the result. The
resulting number is assigned to b. amp is multiplied by b and
the result is added to N(x,t). The result is reassigned to
N(x,1). t is then incremented by 1 and the flowchart returns
to Step 538.

[0064] FIG. 6 shows the results of the simulation proce-
dure depicted in FIGS. 2-5. Image 600 shows Input 1, which
is the simulated hydrophone data. Image 602 shows Input 2,
which is the geophone data. Image 604 shows the Label 1,
which is the P upgoing data. Image 606 shows the Label 2,
which is the downgoing P data. Features that reverse their
polarity between Image 600 and Image 602 are indicative of
downgoing multiples, and thus are not present in Image 604.
Image 604 represents the ideal output of a method that
removes multiples from seismic data by PZ summation. As
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mentioned above, adding Image 604 to Image 606 (Label 2)
should reproduce Image 600. If it does not, the simulation
method is producing artifacts and must be reassessed.
[0065] The features of FIG. 6 include linear and hyper-
bolic events (due to the exclusive use of these two curves in
creating a field of reflectivity values). There is also noise
present in the form of amplitude distortions, random noise,
and coherent noise (which is constructed by the same
simulation process as the hydrophone and geophone data).
This random noise may simulate the effect of static, near-
surface distortions in the seismic data.

[0066] It is useful to understand that in the case of noise-
free data, summing P upgoing with P downgoing wavefields
will result in the hydrophone data. This can be understood as
follows: Hydrophone data records both upgoing and down-
going P wave data. The geophone data switches the polarity
of the hydrophone data for events that result from downgo-
ing waves. Thus, summing the hydrophone and geophone
data will give a new dataset with the events that were caused
by downgoing waves being removed. This data is as if it
were composed only of events coming from upgoing P
waves (hence, the name ‘P upgoing’). This is the desired
seismic data for further processing; multiples have been
removed. The multiples that have been removed are pre-
cisely those that come from downgoing waves, which are
recorded in the P downgoing dataset. Recombining the P
downgoing with the P upgoing will therefore reproduce the
entire P wave dataset (i.e., the hydrophone data).

[0067] The simulation techniques presented above create
training data that will subsequently be used in a deep
learning procedure. For example, a training dataset with
10000 elements may be sufficient for the deep learning
method presented below. In some embodiments, an addi-
tional 500 elements of the training dataset set may be kept
aside for validation of the deep learning method. In other
embodiments more or less than 10,000 training elements and
more or less than 500 validation elements may be used
without limitation to the scope of the invention.

[0068] FIG. 7 shows a neural network, a common ML
architecture for prediction/inference. At a high level, a
neural network (700) may be graphically depicted as com-
prising nodes (702), where here any circle represents a node,
and edges (704), shown here as directed lines. The nodes
(702) may be grouped to form layers (705). FIG. 2A displays
four layers (708, 710, 712, 714) of nodes (702) where the
nodes (702) are grouped into columns, however, the group-
ing need not be as shown in FIG. 2A. The edges (704)
connect the nodes (702). Edges (704) may connect, or not
connect, to any node(s) (702) regardless of which layer
(705) the node(s) (702) is in. That is, the nodes (702) may
be sparsely and residually connected. A neural network
(700) will have at least two layers (705), where the first layer
(708) is considered the “input layer” and the last layer (714)
is the “output layer.” Any intermediate layer (710, 712) is
usually described as a “hidden layer”. A neural network
(700) may have zero or more hidden layers (710, 712) and
a neural network (700) with at least one hidden layer (710,
712) may be described as a “deep” neural network or as a
“deep learning method.” In general, a neural network (700)
may have more than one node (702) in the output layer
(714). In this case the neural network (700) may be referred
to as a “multi-target” or “multi-output” network.

[0069] Nodes (702) and edges (704) carry additional asso-
ciations. Namely, every edge is associated with a numerical
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value. The edge numerical values, or even the edges (704)
themselves, are often referred to as “weights” or “param-
eters”. While training a neural network (700), numerical
values are assigned to each edge (704). Additionally, every
node (702) is associated with a numerical variable and an
activation function. Activation functions are not limited to
any functional class, but traditionally follow the form:

A= (Zie(inmmmg)[(node value),(edge value)i]), M

where i is an index that spans the set of “incoming” nodes
(702) and edges (704) and f is a user-defined function.
Incoming nodes (702) are those that, when viewed as a
graph (as in FIG. 2A), have directed arrows that point to the
node (702) where the numerical value is computed. Some
functions for f may include the linear function f(x)=x,
sigmoid function

S =

1+e™’

and rectified linear unit function f(x)=max(0, x), however,
many additional functions are commonly employed in the
art. Every node (702) in a neural network (700) may have a
different associated activation function. Often, as a short-
hand, activation functions are described by the function f by
which it is composed. That is, an activation function com-
posed of a linear function f may simply be referred to as a
linear activation function without undue ambiguity.

[0070] When the neural network (700) receives an input,
the input is propagated through the network according to the
activation functions and incoming node (702) values and
edge (704) values to compute a value for each node (702).
That is, the numerical value for each node (702) may change
for each received input. Occasionally, nodes (702) are
assigned fixed numerical values, such as the value of 1, that
are not affected by the input or altered according to edge
(704) values and activation functions. Fixed nodes (702) are
often referred to as “biases” or “bias nodes” (706), displayed
in FIG. 2A with a dashed circle.

[0071] In some implementations, the neural network (700)
may contain specialized layers (705), such as a normaliza-
tion layer, or additional connection procedures, like concat-
enation. One skilled in the art will appreciate that these
alterations do not exceed the scope of this disclosure.
[0072] As noted, the training procedure for the neural
network (700) comprises assigning values to the edges
(704). To begin training, the edges (704) are assigned initial
values. These values may be assigned randomly, assigned
according to a prescribed distribution, assigned manually, or
by some other assignment mechanism. Once edge (704)
values have been initialized, the neural network (700) may
act as a function, such that it may receive inputs and produce
an output. As such, at least one input is propagated through
the neural network (700) to produce an output. Recall that a
given dataset will be composed of inputs and associated
target(s), where the target(s) represent the “ground truth”, or
the otherwise desired output. The neural network (700)
output is compared to the associated input data target(s). The
comparison of the neural network (700) output to the
target(s) is typically performed by a so-called “loss func-
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tion”; although other names for this comparison function
such as “error function” and “cost function” are commonly
employed. Many types of loss functions are available, such
as the mean-squared-error function. However, the general
characteristic of a loss function is that it provides a numeri-
cal evaluation of the similarity between the neural network
(700) output and the associated target(s). The loss function
may also be constructed to impose additional constraints on
the values assumed by the edges (704), for example, by
adding a penalty term, which may be physics-based, or a
regularization term. Generally, the goal of a training proce-
dure is to alter the edge (704) values to promote similarity
between the neural network (700) output and associated
target(s) over the dataset. Thus, the loss function is used to
guide changes made to the edge (704) values, typically
through a process called “backpropagation.”

[0073] FIG. 8A shows the architecture of the particular
kind of neural network used for PZ summation: the U-net.
The U-net has a linked neural network structure in the shape
of a U. Going down the left side of the U, a sequence of
operations are applied to an input array (800) starting with
a subroutine called ConvBlock (804). ConvBlock (804) is
itself divided into a sequence of subroutines beginning with
a Conv2D (806), a 2D convolution of both of two input
images (the hydrophone and geophone data) with a 3-by-3
kernel, followed by a calculation of batch norms with the
Batch Norm (808) subroutine, followed by passing the result
through the leaky rectified linear wunit subroutine
LeakyReLU (810). The flowchart arrow directed towards
the right denotes the ConvBlock (804) operation throughout
FIG. 8A. ConvBlock (804) is repeated twice at every level
of the U-net, both descending and ascending. The convolu-
tion function, Conv2D (806), has an input parameter con-
trolling number of input channels and output channels.
Conv2D (806) is a convolutional process using user speci-
fied number of kernels. The user may increase or decrease
the 3™ dimension (the channel size) of the data being
convolved. The kernel used in the convolution differ in their
size, i.e., 3-by-3, 2-by-3, etc.

[0074] The input arrays (800) to U-net are two 256-by-256
images (802), viz, the hydrophone and the geophone data.
They are both placed into a single 256-by-256-by-2 array.
Subroutine ConvBlock (804) convolves these images with
kernels of different sizes, resulting in a larger third dimen-
sion (going from 2 to 34 for this particular example). After
ConvBlock (804), a max pool procedure is performed with
the subroutine MaxPool (812), which determines the maxi-
mum value in windows of four values coming out of the
ConvBlock (804) procedure, thus allowing for a reduction in
the amount of data. In this way, the input coming out of
ConvBlock (804) at the first stage as a 256-by-256-by-64
array enters the second stage as a 128-by-128-by-64 array.
The combined operation of ConvBlock (804) and MaxPool
(812) is repeated three more times down the left side and to
the cusp of the U-net structure, but, in practice, the number
of stages may be increased or decreased. The subroutine
ConvBlock (804) is applied to the 16-by-16-by-512 image at
cusp, and the output is a 16-by-16-by-1024 image. (The size
of input and output arrays is variable and may depend on the
application.)

[0075] For clarity, in FIG. 8A, the size of the arrays being
processed at each step is listed along each side of the
rectangle representing the array. The size of the rectangles
representing the arrays is also proportional to the size of the
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arrays. For instance, the input array (802) is of size 256-
by-256-by-2, which is a long, thin rectangle. Through opera-
tion with the ConvBlock (804) subroutine, the third dimen-
sion is increased to create a second array (803) of size
256-by-256-by-64. After applying the MaxPool (812) sub-
routine, the dimensions are reduced along the first two
dimensions to produce a third array (805) of size 128-by-
128-by-64. After another application of ConvBlock (804),
the third dimension is extended to produce a fourth array
(807) with size 128-by-128-by-128. This process continues
both down and back up the U-shaped structure of the U-net.
[0076] Returning up the other side of the U-net, the
process is reversed. The transpose of the convolution sub-
routine, Conv2DTranspose (814), is performed on the
images, which has the effect of both convolving and upscal-
ing the image to a larger grid. The upscaling is performed by
using a 2-by-2 convolution kernel to interpolate between
samples. The result of this convolution is concatenated to the
max pooled data coming from the other side of the U-net
with the Concatenate (816) subroutine. ConvBlock (804) is
then applied to this result. This procedure continues three
more times up the right side of the U-net until an output
array (818) is reached that has the same size as the original
input array.

[0077] FIG. 8B relates FIG. 8A to FIG. 7. The architecture
of the U-net neural network is as if two networks were
connected side-by-side. The input goes down the left side
connected network (850) of the U-net and returns up the
right side connected network (852). Furthermore, there are
cross-connections (854) at every level of the U-net between
one side and the other. The node weights that are determined
are the weights applied to the output of the convolutions at
each level of the U-net in FIG. 8A. Training the U-net
involves being given many input and output images (i.e.,
many pairs of hydrophone and geophone data as input and
P upgoing and P downgoing data as output), and learning the
weights for convolution outputs that optimally that map
between them

[0078] FIG. 9 shows the application of the trained U-net to
a real dataset. The first real data image (900) shows a CMP
gather obtained from hydrophone data only. The second real
data image (902) shows the CMP gather obtained from
geophone data only. The third real data image (904) shows
a CMP gather obtained from hydrophone and geophone data
after a conventional PZ summation method was applied. The
fourth real data image (906) shows a CMP gather produced
after the U-net was applied to the hydrophone and geophone
data. In a first box (908) and a second box (910), the output
from the convention PZ summation method and application
of the U-net may be compared. The U-net performs as good
as or better than the PZ summation, judged by how clearly
reflectors appear in each box.

[0079] FIG. 10 shows the results of the method after
transforming the CMPs to the frequency domain. Image
1000 shows the hydrophone CMP data in the frequency
domain, image 1002 shows the PZ summation results of the
seismic data in frequency domain, and image 1004 shows
the results from applying the U-net to the seismic data in the
frequency domain. The area in the larger dashed rectangle
(1006) crossing all three plots shows key differences. First,
energy has been retained in the results from applying the
U-net to the data that was either lost or obscured by the
traditional PZ summation method. Second, there are notch
regions in the smaller curved-edged rectangles (1008) within
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the second and third images. Notching occurs when two or
more seismic pulses (such as a primary reflection and its
multiples) superimpose upon each other and destructively
interfere at certain frequencies. The interference causes the
amplitude spectrum of the recorded data to have one or more
pronounced gaps (i.e., notches) at discrete frequencies.
Thus, better results present themselves as notches separating
areas of greater energy.

[0080] FIG. 11 presents a high-level workflow of the
method, comprising: At step 1100, generating a simulated
seismic training dataset, wherein the simulated seismic
training dataset comprises upgoing signals and downgoing
signals, each recorded on hydrophones and geophones; at
step 1102, training a deep learning network, using the
simulated seismic training dataset, to separate the upgoing
signals from the downgoing signals; at step 1104, obtaining
field hydrophone data and field geophone data pertaining to
a subsurface region of interest, recorded by a seismic
acquisition system comprising hydrophones and geophones;
at step 1106, separating the field hydrophone data and field
geophone data into predicted upgoing signals; at step 1108,
generating a seismic image of the subsurface region of
interest based, at least in part, on the predicted upgoing
signals.

[0081] FIG. 12 depicts a block diagram of a computer
system (1202) used to provide computational functionalities
associated with described algorithms, methods, functions,
processes, flows, and procedures as described in this disclo-
sure, according to one or more embodiments. The illustrated
computer (1202) is intended to encompass any computing
device such as a server, desktop computer, laptop/notebook
computer, wireless data port, smart phone, personal data
assistant (PDA), tablet computing device, one or more
processors within these devices, or any other suitable pro-
cessing device, including both physical or virtual instances
(or both) of the computing device. Additionally, the com-
puter (1202) may include a computer that includes an input
device, such as a keypad, keyboard, touch screen, or other
device that can accept user information, and an output
device that conveys information associated with the opera-
tion of the computer (1202), including digital data, visual, or
audio information (or a combination of information), or a
GUL

[0082] The computer (1202) can serve in a role as a client,
network component, a server, a database or other persis-
tency, or any other component (or a combination of roles) of
a computer system for performing the subject matter
described in the instant disclosure. The illustrated computer
(1202) is communicably coupled with a network (1230). In
some implementations, one or more components of the
computer (1202) may be configured to operate within envi-
ronments, including cloud-computing-based, local, global,
or other environment (or a combination of environments).

[0083] At a high level, the computer (1202) is an elec-
tronic computing device operable to receive, transmit, pro-
cess, store, or manage data and information associated with
the described subject matter. According to some implemen-
tations, the computer (1202) may also include or be com-
municably coupled with an application server, e-mail server,
web server, caching server, streaming data server, business
intelligence (BI) server, or other server (or a combination of
servers).

[0084] The computer (1202) can receive requests over
network (1230) from a client application (for example,
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executing on another computer (1202) and responding to the
received requests by processing the said requests in an
appropriate software application. In addition, requests may
also be sent to the computer (1202) from internal users (for
example, from a command console or by other appropriate
access method), external or third-parties, other automated
applications, as well as any other appropriate entities, indi-
viduals, systems, or computers.

[0085] Each of the components of the computer (1202)
can communicate using a system bus (1203). In some
implementations, any or all of the components of the com-
puter (1202), both hardware or software (or a combination
of hardware and software), may interface with each other or
the interface (1204) (or a combination of both) over the
system bus (1203) using an application programming inter-
face (API) (1212) or a service layer (1213) (or a combination
of the API (1212) and service layer (1213). The API (1212)
may include specifications for routines, data structures, and
object classes. The API (1212) may be either computer-
language independent or dependent and refer to a complete
interface, a single function, or even a set of APIs. The
service layer (1213) provides software services to the com-
puter (1202) or other components (whether or not illus-
trated) that are communicably coupled to the computer
(1202). The functionality of the computer (1202) may be
accessible for all service consumers using this service layer.
Software services, such as those provided by the service
layer (1213), provide reusable, defined business function-
alities through a defined interface. For example, the interface
may be software written in JAVA, C++, or other suitable
language providing data in extensible markup language
(XML) format or another suitable format. While illustrated
as an integrated component of the computer (1202), alter-
native implementations may illustrate the API (1212) or the
service layer (1213) as stand-alone components in relation to
other components of the computer (1202) or other compo-
nents (whether or not illustrated) that are communicably
coupled to the computer (1202). Moreover, any or all parts
of the API (1212) or the service layer (1213) may be
implemented as child or sub-modules of another software
module, enterprise application, or hardware module without
departing from the scope of this disclosure.

[0086] The computer (1202) includes an interface (1204).
Although illustrated as a single interface (1204) in FIG. 6,
two or more interfaces (1204) may be used according to
particular needs, desires, or particular implementations of
the computer (1202). The interface (1204) is used by the
computer (1202) for communicating with other systems in a
distributed environment that are connected to the network
(1230). Generally, the interface (1204) includes logic
encoded in software or hardware (or a combination of
software and hardware) and operable to communicate with
the network (1230). More specifically, the interface (1204)
may include software supporting one or more communica-
tion protocols associated with communications such that the
network (1230) or interface’s hardware is operable to com-
municate physical signals within and outside of the illus-
trated computer (1202).

[0087] The computer (1202) includes at least one com-
puter processor (1205). Although illustrated as a single
computer processor (1205) in FIG. 6, two or more proces-
sors may be used according to particular needs, desires, or
particular implementations of the computer (1202). Gener-
ally, the computer processor (1205) executes instructions
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and manipulates data to perform the operations of the
computer (1202) and any algorithms, methods, functions,
processes, flows, and procedures as described in the instant
disclosure.

[0088] The computer (1202) also includes a memory
(1206) that holds data for the computer (1202) or other
components (or a combination of both) that can be con-
nected to the network (1230). For example, memory (1206)
can be a database storing data consistent with this disclosure.
Although illustrated as a single memory (1206) in FIG. 6,
two or more memories may be used according to particular
needs, desires, or particular implementations of the com-
puter (1202) and the described functionality. While memory
(1206) is illustrated as an integral component of the com-
puter (1202), in alternative implementations, memory
(1206) can be external to the computer (1202).

[0089] The application (1207) is an algorithmic software
engine providing functionality according to particular needs,
desires, or particular implementations of the computer
(1202), particularly with respect to functionality described
in this disclosure. For example, application (1207) can serve
as one or more components, modules, applications, etc.
Further, although illustrated as a single application (1207),
the application (1207) may be implemented as multiple
applications (1207) on the computer (1202). In addition,
although illustrated as integral to the computer (1202), in
alternative implementations, the application (1207) can be
external to the computer (1202).

[0090] There may be any number of computers (1202)
associated with, or external to, a computer system contain-
ing computer (1202), wherein each computer (1202) com-
municates over network (1230). Further, the term “client,”
“user,” and other appropriate terminology may be used
interchangeably as appropriate without departing from the
scope of this disclosure. Moreover, this disclosure contem-
plates that many users may use one computer (1202), or that
one user may use multiple computers (1202).

[0091] FIG. 13 illustrates systems in accordance with one
or more embodiments. Specifically, FIG. 13 shows a well
(1302) that may be drilled by a drill bit (1304) attached by
a drillstring (1306) to a drill rig (1300) located on the surface
of the earth (1316). The borehole (1318) corresponds to the
uncased portion of the well (1302). The borehole (1318) of
the well may traverse a plurality of overburden layers (1310)
and one or more cap-rock layers (1312) to a hydrocarbon
reservoir (1314). The seismic data processed with the U-net
neural network presented above will provide an improved
seismic image that may be interpreted to find the hydrocar-
bon reservoir (1314). The improved seismic image may
identify, using a seismic interpretation workstation, a drill-
ing target based, at least in part, on the seismic image. A
borehole trajectory may then be planned, using a borehole
planning system, based, at least in part, on the drilling target.
A borehole (1318) may then be drilled, guided by the
planned borehole trajectory, using a drilling system.

[0092] Although only a few example embodiments have
been described in detail above, those skilled in the art will
readily appreciate that many modifications are possible in
the example embodiments without materially departing
from this invention. Accordingly, all such modifications are
intended to be included within the scope of this disclosure as
defined in the following claims.
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What is claimed:

1. A method, comprising:

generating a simulated seismic training dataset, wherein

the simulated seismic training dataset comprises upgo-
ing signals and downgoing signals, each recorded on
hydrophones and geophones;

training a deep learning network, using the simulated

seismic training dataset, to separate the upgoing signals
from the downgoing signals;

obtaining field hydrophone data and field geophone data

pertaining to a subsurface region of interest, recorded
by a seismic acquisition system comprising hydro-
phones and geophones;

separating the field hydrophone data and field geophone

data into predicted upgoing signals; and

generating a seismic image of the subsurface region of

interest based, at least in part, on the predicted upgoing
signals.

2. The method of claim 1, wherein generating the simu-
lated seismic training dataset comprises:

creating, using a random number generator, a plurality of

reflectivity surfaces; and

convolving a wavelet with the plurality of reflectivity

surfaces.

3. The method of claim 1, wherein the deep learning
network is a U-net neural network.

4. The method of claim 3, further comprising at least one
operation selected from the group consisting of: a convolu-
tion, a max pooling, a transpose convolution, and a concat-
enation.

5. The method of claim 1, wherein generating the simu-
lated seismic training dataset further comprises at least one
selected from the group consisting of: creating coherent
noise, random noise, and amplitude distortion.

6. The method of claim 1, wherein the simulated seismic
training dataset further comprises:

an input dataset, comprising a linear superposition of

upgoing signals and downgoing signals;

a first output dataset comprising upgoing signals; and

a second output dataset comprising downgoing signals.

7. The method of claim 1, wherein the hydrophones and
geophones are arranged in collocated pairs, each pair com-
prising one hydrophone and one geophone.

8. The method of claim 1, wherein the seismic acquisition
system comprises ocean bottom cables.

9. The method of claim 2, wherein the plurality of
reflectivity surfaces comprises hyperbolas.

10. The method of claim 1, further comprising:

identifying, using a seismic interpretation workstation, a

drilling target based, at least in part, on the seismic
image; and

planning a planned borehole trajectory, using a borehole

planning system, based, at least in part, on the drilling
target.

11. The method of claim 10, comprising:

drilling, using a drilling system, a borehole guided by the

planned borehole trajectory.

12. A non-transitory computer-readable memory compris-
ing computer-executable instructions stored thereon that,
when executed on a processor, cause the processor to
perform steps comprising:

generating a simulated seismic training dataset, wherein

the simulated seismic training dataset comprises upgo-
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ing signals and downgoing signals, each recorded on
hydrophones and geophones;

training a deep learning network, using the simulated

seismic training dataset, to separate the upgoing signals
from the downgoing signals;

obtaining field hydrophone data and field geophone data

pertaining to a subsurface region of interest, recorded
by a seismic acquisition system comprising hydro-
phones and geophones;

separating the field hydrophone data and field geophone

data into predicted upgoing signals; and

generating a seismic image of the subsurface region of

interest based, at least in part, on the predicted upgoing
signals.

13. The non-transitory computer-readable memory of
claim 12, wherein generating the simulated seismic training
dataset comprises:

creating, using a random number generator, a plurality of

reflectivity surfaces; and

convolving a wavelet with the plurality of reflectivity

surfaces.

14. The non-transitory computer-readable memory of
claim 12, wherein the deep learning network is a U-net
neural network.

15. The non-transitory computer-readable memory of
claim 12, wherein generating the simulated seismic training
dataset further comprises at least one selected from the
group consisting of: creating coherent noise, random noise,
and amplitude distortion.

16. The non-transitory computer-readable memory of
claim 12, wherein the simulated seismic training dataset
further comprises:

an input dataset, comprising a linear superposition of

upgoing signals and downgoing signals; and

an output dataset comprising separate upgoing signals and

downgoing signals.

17. The non-transitory computer-readable memory of
claim 12, wherein the hydrophones and geophones are
arranged in collocated pairs, each pair comprising one
hydrophone and one geophone.

18. The non-transitory computer-readable memory of
claim 12, further comprising:

identifying, using a seismic interpretation workstation, a

drilling target based, at least in part, on the seismic
image; and

planning a planned borehole trajectory, using a borehole

planning system, based, at least in part, on the drilling
target.

19. A system, comprising:

a field hydrophone and a field geophone; and

a computer system, configured to:

generate a simulated seismic training dataset, wherein
the simulated seismic training dataset comprises
upgoing signals and downgoing signals, each
recorded on hydrophones and geophones,

train a deep learning network, using the simulated
seismic training dataset, to separate the upgoing
signals from the downgoing signals,

obtain field hydrophone data and field geophone data
pertaining to a subsurface region of interest,
recorded by a seismic acquisition system comprising
hydrophones and geophones,
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separate the field hydrophone data and field geophone
data into predicted upgoing signals using the trained
deep learning network, and
generate a seismic image of the subsurface region of
interest based, at least in part, on the predicted
upgoing signals.
20. The system of claim 19, wherein the deep learning
network is a U-net neural network.
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