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inverse-density exemplar selection for improved multivari-
ate anomaly detection are described. In one embodiment, a
method includes determining magnitudes of vectors from a
set of time series readings collected from a plurality of
sensors. And, the example method includes selecting exem-
plar vectors from the set of time series readings to train a
machine learning model to detect anomalies. The exemplar
vectors are selected by repetitively (i) increasing a first
density of extreme vectors that are within tails of a distri-
bution of amplitudes for the time series readings based on
the magnitudes of vectors, and (ii) decreasing a second
density of non-extreme vectors that are within a head of the
distribution based on the magnitudes of vectors. The rep-
etition continues until the machine learning model generates
residuals within a threshold in order to reduce false or
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EXEMPLAR SELECTION ALGORITHM FOR
INCREASED DENSITY OF EXTREME
VECTORS

BACKGROUND

[0001] Machine learning models may be used to detect
anomalies in time series readings. Vectors may be selected
from time series readings to train the machine learning
models to estimate what the time series readings are
expected to be.

BRIEF DESCRIPTION OF THE DRAWINGS

[0002] The accompanying drawings, which are incorpo-
rated in and constitute a part of the specification, illustrate
various systems, methods, and other embodiments of the
disclosure. It will be appreciated that the illustrated element
boundaries (e.g., boxes, groups of boxes, or other shapes) in
the figures represent one embodiment of the boundaries. In
some embodiments one element may be implemented as
multiple elements or that multiple elements may be imple-
mented as one element. In some embodiments, an element
shown as an internal component of another element may be
implemented as an external component and vice versa.
Furthermore, elements may not be drawn to scale.

[0003] FIG. 1 illustrates one embodiment of an inverse-
density exemplar selection system associated with inverse-
density exemplar selection for improved multivariate
anomaly detection.

[0004] FIG. 2 illustrates one embodiment of an inverse-
density exemplar selection method associated with inverse-
density exemplar selection for improved multivariate
anomaly detection.

[0005] FIG. 3 illustrates an example signal amplitude plot
of amplitude over time for one example signal, such as a
signal collected by one sensor.

[0006] FIG. 4 illustrates an example residual amplitude
plot of amplitude over time for residuals between ML
estimate values and actual measured values.

[0007] FIG. Sillustrates an example ranked amplitude plot
of signal amplitude values ranked or sorted in descending
order of amplitude for the one example signal.

[0008] FIG. 6 illustrates an example histogram showing a
distribution of residual magnitude (absolute value of
residual amplitude) with respect to signal amplitude at the
various observations.

[0009] FIG. 7 illustrates one embodiment of an iterative
exemplar vector reselection method associated with inverse-
density exemplar selection for improved multivariate
anomaly detection.

[0010] FIG. 8 illustrates an example plot of absolute
values of residuals between test values and ML estimates for
example signal.

[0011] FIG. 9 illustrates an example plot of filtered residu-
als resulting from application of one embodiment of an
inverse lensing filter.

[0012] FIG. 10 illustrates an example plot of a line that is
fit to filtered residuals.

[0013] FIG. 11 illustrates an example plot of (i) an
example mean cumulative function against a signal ampli-
tude axis and a mean cumulative function axis, and (ii) an
example derivative of the mean cumulative function against
the signal amplitude axis and a derivative of mean cumu-
lative function axis.
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[0014] FIG. 12 illustrates an embodiment of a computing
system configured with the example systems and/or methods
disclosed.

DETAILED DESCRIPTION

[0015] Systems, methods, and other embodiments are
described herein that provide for inverse-density exemplar
selection for improved multivariate anomaly detection. In
one embodiment, an inverse-density exemplar selection
system selects exemplar vectors for training a machine
learning (ML) model to include a larger proportion of
exemplar vectors that represent activity of a monitored asset
that is “extreme activity,” or activity near the edges of a
demand distribution (or demand profile) for the monitored
asset. This inverts density of exemplar selection, which
would otherwise primarily select exemplar vectors that
represent “non-extreme activity” near the middle of the
demand distribution for the monitored asset.

[0016] In one embodiment, an inverse-density exemplar
selection system initially finds a distribution of a set of time
series readings (vectors) that are available for use in training
an ML model. Magnitudes of the time series readings
(vectors) that indicate a level or extent of the activity by the
monitored asset are then determined. Then, the inverse-
density exemplar selection system iteratively selects exem-
plar vectors for training an ML model so as to include a
progressively larger and larger proportion of exemplar vec-
tors that represent extreme activity of a monitored asset. For
example, the density of extreme vectors (relatively higher
magnitude vectors sampled from the edges or “tails” of the
distribution) is incrementally increased in the selection and
the density of non-extreme vectors (relatively lower mag-
nitude vectors sampled from the middle or “head” of the
distribution) is incrementally decreased until performance of
the MLL model reaches a satisfactory level. In one embodi-
ment, selecting exemplar vectors as described herein
improves the accuracy of anomaly detection by the ML
model for extreme activity near edges of the demand profile
of the monitored asset. These and other improvements to the
technology of exemplar selection and machine learning are
discussed in more detail herein.

[0017] It should be understood that no action or function
described or claimed herein is performed by the human
mind, and cannot be practically performed in the human
mind. An interpretation that any action or function described
or claimed herein can be performed in the human mind is
inconsistent with and contrary to this disclosure.

Definitions

[0018] As used herein, the term “time series” refers to a
data structure in which a series of data points (such as
observations or sampled values) are indexed in time order.
In one embodiment, the data points of a time series may be
indexed with an index such as a point in time described by
a time stamp and/or an observation number. As used herein,
the terms “time series signal” and “time series” are synony-
mous. For example, a time series is one “column” or
sequence of observations over time from one of several
sensors used to monitor an asset.

[0019] As used herein, the term “vector” refers to a data
structure that includes a set of data points (such as obser-
vations or sampled values) from multiple time series at one
particular point in time, such as a point in time described by
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a time stamp, observation number, or other index. For
example, a “vector” is one row (timestamp) of observations
from all N sensors used to monitor an asset.

[0020] As used herein, the term “time series database”
refers to a data structure that includes one or more time
series that share an index (such as a series of points in time,
time stamps, time steps, or observation numbers) in com-
mon. As an example, time series may be considered “col-
umns” of a time series database, and vectors may be
considered “rows” of a time series database.

[0021] As used herein, the term “residual” refers to a
difference between a value (such as a measured, observed,
sampled, or resampled value) and an estimate, reference, or
prediction of what the value is expected to be. For example,
a residual may be a difference between an actual, observed
value and a machine learning (ML) prediction or ML
estimate of what the value is expected to be by an ML, model.
In one embodiment, a time series of residuals or “residual
time series” refers to a time series made up of residual values
between a time series of values and a time series of what the
values are expected to be.

[0022] As used herein, the terms “exemplar” or “exemplar
vector” refers to a vector used to train a multivariate ML
model (such as an ML anomaly detection model). An
exemplar vector may also be referred to as a “memory
vector.”

Example Inverse-Density Exemplar Selection System

[0023] FIG. 1 illustrates one embodiment of an inverse-
density exemplar selection system 100 associated with
inverse-density exemplar selection for improved multivari-
ate anomaly detection. Inverse-density exemplar selection
system 100 includes components for selecting exemplar
vectors from a training set of time series vectors that
increases the accuracy of predictions by ML models trained
with the selected exemplar vectors for activity of an asset
that is near the edges of the demand profile for the asset. In
one embodiment, components of inverse-density exemplar
selection system 100 may include distribution analyzer 105
and exemplar selector 110. In one embodiment, components
of inverse-density exemplar selection system 100 may fur-
ther include machine learning model trainer 115 and
machine learning model tester 120. In one embodiment each
of these components 105, 110, 115, and 120 of inverse-
density exemplar selection system 100 may be implemented
as software executed by computer hardware. For example,
components 105, 110, 115, and 120 may be implemented as
one or more intercommunicating software modules, rou-
tines, or services for performing the functions of the com-
ponents described herein.

[0024] In one embodiment, distribution analyzer 105 is
configured to determine magnitudes of vectors 125 by signal
amplitudes of the vectors from a set of time series readings
130 collected from a plurality of sensors. In one embodi-
ment, exemplar selector 110 is configured to select exemplar
vectors 135 from the set of time series readings 130 to train
a machine learning model. Exemplar selector 110 is config-
ured to select the exemplar vectors 135 by repetitively (i)
increasing a first density of extreme vectors that are within
tails of a distribution of amplitudes for the time series
readings 130 based on the magnitudes of vectors 125, and
(i) decreasing a second density of non-extreme vectors that
are within a head of the distribution of vectors based on the
magnitudes of the vectors 125. In one embodiment, exem-
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plar selection criteria 140 are iteratively adjusted to cause
selection of a progressively larger proportion of extreme
vectors over multiple iterations of exemplar selection. In one
embodiment, the exemplar vectors 135 selected by exemplar
selector 110 may be written to memory or storage as an
output of inverse-density exemplar selection system 100.
Exemplar vectors 135 may then be used to train a machine
learning model 145 to detect anomalies in the operation of
an asset monitored with the plurality of sensors.

[0025] In one embodiment, machine learning model
trainer 115 is configured to train the machine learning model
145 to detect anomalies based on the selected exemplar
vectors 135. In one embodiment the trained machine learn-
ing model 150 resulting from the training of the machine
learning model 145 by machine learning model trainer 115
may be written to memory or storage as an output of
inverse-density exemplar selection system 100. Trained
machine learning model 150 may then be used to generate
residuals from vectors supplied as inputs to the trained
machine learning model 150.

[0026] In one embodiment, machine learning model tester
120 is configured to analyze residuals generated from test
vectors 155 by the trained machine learning model 150 to
determine whether the residuals are within a threshold 160.
In one embodiment, the test vectors 155 are also selected
from set of time series readings 130. In one embodiment,
whether the residuals are within threshold 160 determines
whether the performance of the trained machine learning
model 150 is satisfactory with regard to test vectors 155 that
are selected from the edges or “tails” of the distribution of
the set of time series readings 130, or whether exemplar
selection criteria 140 should be further adjusted to increase
the proportion of extreme vectors to non-extreme vectors
used to train machine learning model 145.

[0027] Further details regarding inverse-density exemplar
selection system 100 are presented herein. In one embodi-
ment, the operation of inverse-density exemplar selection
system 100 will be described with reference to example
inverse-density exemplar selection methods 200 and 700
shown in FIGS. 2 and 7, respectively. A challenge resolved
by one embodiment of the inverse-density exemplar selec-
tion systems and methods described herein will be described
with reference to FIGS. 3-6. In one embodiment, an initial
filtering operation applied to a training set of vectors (such
as set of time series readings 130) will be described with
reference to FIGS. 8 and 9. In one embodiment, an analysis
of residuals to determine whether performance of a machine
learning model trained with exemplar vectors selected in
accordance with the inverse-density exemplar selection
method has satisfied a threshold is described with reference
to FIGS. 10 and 11.

Example Inverse-Density Exemplar Selection Method

[0028] FIG. 2 illustrates one embodiment of an inverse-
density exemplar selection method 200 associated with
inverse-density exemplar selection for improved multivari-
ate anomaly detection. As an overview, in one embodiment,
inverse-density exemplar selection method 200 determines
magnitudes of vectors from a set of time series readings
collected from a plurality of sensors. Then, inverse-density
exemplar selection method 200 selects exemplar vectors
from the set of time series readings to train a machine
learning model by repetitively (1) increasing a first density
of extreme vectors (in training data) that are within tails of
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a distribution of amplitudes for the set of time series
readings based on the magnitudes of the vectors and (2)
decreasing a second density of non-extreme vectors that are
within a head of the distribution based on the magnitudes of
the vectors until the machine learning model generates
residuals within a threshold. Inverse-density exemplar selec-
tion method 200 thus operates to reduce false or missed
detection of the extreme vectors (in monitored data) as
anomalous by the machine learning model. In one embodi-
ment, inverse-density exemplar selection method 200 selects
exemplar vectors from the set of time series readings to train
a machine learning model by further (3) training the
machine learning model to detect anomalies based on the
selected exemplar vectors and (4) analyzing the residuals
generated from test vectors by the trained machine learning
model to determine whether the residuals are within the
threshold.

[0029] In one embodiment, inverse-density exemplar
selection method 200 initiates at START block 205 in
response to an inverse-density exemplar selection system
(such as inverse-density exemplar selection system 100)
determining one or more of (i) that an inverse-density
exemplar selection system has received a set of time series
readings; (ii) that an instruction to perform inverse-density
exemplar selection method 200 on a set of time series
readings has been received (iii) a user or administrator of an
inverse-density exemplar selection system has initiated
inverse-density exemplar selection method 200; (iv) it is
currently a time at which inverse-density exemplar selection
method 200 is scheduled to be run; or (v) that inverse-
density exemplar selection method 200 should commence in
response to occurrence of some other condition. In one
embodiment, a computer system configured by computer-
executable instructions to execute functions of inverse-
density exemplar selection system 100 executes inverse-
density exemplar selection method 200. Following initiation
at start block 205, inverse-density exemplar selection
method 200 continues to process block 210.

Example Method-Determining Magnitudes of Vectors

[0030] At process block 210, inverse-density exemplar
selection method 200 determines magnitudes of vectors
from a set of time series readings collected from a plurality
of sensors. A magnitude of a vector represents an overall
level of intensity of operation for an asset at the time
represented by the vector. Vectors representing operation at
extremes (low, high) of a distribution of levels of intensity
of operation for the asset may be distinguished from vectors
representing operation at non-extremes (moderate) of the
distribution of levels of intensity of operation for the asset
based on the magnitude.

[0031] In one embodiment, the inverse-density exemplar
selection method 200 receives, retrieves, obtains, or other-
wise acquires a set of time series readings. Readings are
values of output for a sensor at a given point in time. In one
embodiment, the time series readings are collected from the
plurality of sensors by recording or sampling values that are
output by the plurality of sensors at an interval of time. An
individual sensor is sampled to produce a time series signal
of sampled values or readings associated with that sensor
over a range of time. Thus, the plurality of sensors produces
a plurality of time series signals.

[0032] A time series vector for a point in time includes a
sampled value for the point in time for each of the time series
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signals. In one embodiment, the set of time series readings
is a time series database. The set of time series readings may
include time series signals of sensed values for a plurality of
sensors over time. And, the set of time series readings may
be a sequence of vectors of readings across the signals for a
plurality of sensors at an individual point in time. In one
embodiment, a point in time of an individual training vector
in the set of time series readings is discrete from the points
in time of other training vectors in the set of time series
readings. In other words, the individual training vectors in
the set of time series readings occur at different points in
time.

[0033] In one embodiment, the set of time series readings
may be a collection of time series vectors that are made
available for use to train an ML anomaly detection model.
The time series vectors in the set of time series readings may
also be referred to herein as training vectors. The set of time
series readings may include a quantity N of training vectors.
Thus, in one embodiment, a set of N available training
vectors are acquired.

[0034] Inone embodiment, a vector represents operational
characteristics of an asset at one point in time. The vector
represents the operation of the asset in a multivariate hyper-
space of values of amplitude sampled for each of the
sensors. In one embodiment, a magnitude of a vector rep-
resents an overall extent of operation of the asset. In other
words, the magnitude of a vector represents a level of
intensity of operation of an asset at a time point for the
vector.

[0035] In one embodiment, the magnitude is measured by
distance from an origin in the multivariate hyperspace
defined by the values in the vector for the sensors. In other
words, the magnitude of a vector represents a distance
between an origin or reference point and a point plotted by
the vector in a multivariate hyperspace. For example, this
distance may be referred to as the [.2 norm or Euclidean
distance. The .2 norm of a vector is the square root of the
sum of the squares of the values in the vector for the sensors.
Formally, the L2 norm Ivl, of a vector v=(v,, . . ., v,) is
given by VL=V >+..+v,>.

[0036] Thus, in one embodiment, the magnitudes of the
training vectors in the set of time series are determined by
finding the 1.2 norms of the training vectors. The [.2 norms
of the training vectors are used as the magnitudes of the
training vectors. To generate the magnitude (L2 norm) of a
training vector, the square root of the sum of the squares of
the signal amplitude values in the training vector is calcu-
lated.

[0037] Thus, in one embodiment, inverse-density exem-
plar selection method 200 determines magnitudes of vectors
from a set of time series readings collected from a plurality
of'sensors by obtaining a set of time series readings from the
plurality of sensors, determining the signal values of the
training vectors in the set of time series readings, and
generating the magnitudes of the vectors from the signal
values of the training vectors (for example by calculating the
L2 norms of each training vector to be the magnitudes).
Process block 210 then completes, and inverse-density
exemplar selection method 200 continues at process block
215. In one embodiment, the functions of process block 210
are performed by distribution analyzer 105 of inverse-
density exemplar selection system 100.
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Example Method-Exemplar Selection Loop

[0038] At process block 215, inverse-density exemplar
selection method 200 selects exemplar vectors from the set
of time series readings to train a machine learning model. In
one embodiment, the exemplar vectors are selected by
repeatedly iterating through steps of an exemplar selection
loop. In one embodiment, the exemplar selection loop
includes steps for increasing a first density of extreme
vectors that are within tails of the distribution; decreasing a
second density of non-extreme vectors that are within a head
of the distribution; training the machine learning model to
detect anomalies based on the selected exemplar vectors;
and analyzing residuals generated from test vectors by the
trained machine learning model to determine whether the
residuals are within a threshold.

[0039] A specific quantity (numVecs) of the training vec-
tors are selected to be exemplar vectors at each iteration of
the exemplar selection loop. In the exemplar selection loop,
a density of extreme vectors—those vectors having magni-
tudes in either the high or low extremes of the distribution
of magnitudes of training vectors in the set of time series
readings—is increased in the quantity of selected exemplar
vectors. And, in the exemplar selection loop, a density of
non-extreme vectors—those vectors having vectors in the
middle of the distribution of magnitudes of training vectors
in the set of time series readings—is decreased in the
quantity of selected exemplar vectors. The exemplar selec-
tion loop repeats until the machine learning model generates
the residuals within the threshold. Performing the exemplar
selection loop reduces false or missed detection of extreme
vectors as anomalous by the machine learning model.
[0040] As mentioned above, exemplar vectors are training
vectors that are chosen to be used to train the machine
learning model. In one embodiment, the exemplar vectors
are selected from the set of time series readings by choosing
training vectors to be exemplar vectors. For example, train-
ing vectors are selected to be exemplar vectors based on
selection criteria. Additional detail regarding the selection
criteria is discussed below, for example with reference to
process blocks 710, 745, 750, 755, and 760 of method 700.
In one embodiment, the machine learning model is a mul-
tivariate ML, anomaly detection model, for example as
discussed below under the heading “Multivariate ML
Anomaly Detection.”

[0041] Inverse-density exemplar selection method 200
continues at process block 220. In one embodiment, the
functions of process block 215 are performed by one or more
of exemplar selector 110, machine learning model trainer
115, and machine learning model tester 120 of inverse
density selection system 100.

[0042] Initially, exemplar vectors are selected from the
time series readings that have a given density of extreme
vectors and a given density of non-extreme vectors (as
discussed in additional detail at process blocks 220 and 225
below). The extreme vectors are vectors within tails of a
distribution of amplitudes for the time series readings based
on the magnitudes of the vectors. The non-extreme vectors
are vectors within a head of the distribution of amplitudes
based on the magnitude of the vectors.

Example Method-Increased Extreme Vector Selection

[0043] At process block 220, inverse-density exemplar
selection method 200 increases a first density of extreme
vectors that are within tails of the distribution.
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[0044] In one embodiment, training vectors that are
extreme are selected with heightened preferentiality relative
to training vectors that are non-extreme during exemplar
selection. The preference for extreme training vectors is
increased in selection criteria for each iteration of process
block 220 during the exemplar selection loop. Whether a
training vector is extreme and falls within the tails of a
distribution may be determined based on the magnitude of
the training vector.

[0045] The set of time series readings includes both
extreme and non-extreme vectors. In one embodiment,
extreme vectors are those vectors that are highest in mag-
nitude. Thus, vectors become progressively less extreme
starting from a vector of greatest magnitude and moving
downward in magnitude. In one embodiment, non-extreme
vectors are those vectors that that are least in magnitude.
Thus, vectors become progressively more extreme starting
from a vector of least magnitude and moving upward in
magnitude.

[0046] In one embodiment, a distribution of the training
vectors that are present in the set of time series readings may
be represented by a histogram of amplitude values for the
training vectors. The histogram represents how often train-
ing vectors having given signal amplitudes occur in the set
of time series readings. In one embodiment, the histogram is
multidimensional in order to represent the values of ampli-
tude for multiple sensors included in a training vector.

[0047] In one embodiment, references to the head, tails, or
other position of a vector in “the distribution” refers to a
position of the vector within the histogram. For example, a
vector that is “within a head of the distribution” is, in one
embodiment, a vector that has amplitude values that occur
within a head of a histogram of amplitude values of the
training vectors. Or, for example, a vector that is “within
tails of the distribution” is, in one embodiment, a vector that
has amplitude values that occur within one of the high or low
tails of the histogram of amplitude values of the training
vectors. Thus, in one embodiment, the distribution of the
vectors is determined based on the signal amplitudes of the
vectors. The distribution shows the relationship between the
training vectors in the set of time series readings with respect
to signal amplitudes of the training vector.

[0048] In one embodiment, the distribution of the training
vectors (in terms of signal amplitude) is approximately
bell-shaped or Gaussian in the multivariate hyperspace.
Thus, the distribution of the training vectors has a thick
“head” at the interior or middle of the distribution, which
tapers to a thin “tail” at the exterior or extremes of the
distribution. Vectors of signal values for moderate operation
of an asset occur at the middle or interior of the distribution.
The head indicates that there are more vectors with signal
values for moderate operation of the asset. Vectors of signal
values for extreme (low or high) operation of an asset occur
at the edges or extremes of the distribution. The tail indicates
that there are fewer vectors with signal values for extreme
operation of the asset.

[0049] Extreme vectors that occur within the tails of the
distribution have relatively larger magnitudes. Non-extreme
vectors that occur within the head of the distribution have
relatively smaller magnitudes. Thus, selections of higher
proportions of extreme vectors and lower proportions of
non-extreme vectors may be performed based on magnitude
of vectors.
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[0050] In one embodiment, density of a type of vector
(such as extreme or non-extreme) in a set of exemplar
vectors refers to a concentration or density of vectors of that
type in the set of exemplar vectors. In one embodiment, a
density of extreme vectors may be increased in a set of
exemplar vectors by selecting more of the extreme vectors.
To select more of the extreme vectors and thereby increase
the density of extreme vectors, more of the training vectors
that have higher magnitudes should be selected to be exem-
plar vectors. In other words, training vectors with high
magnitudes should be more preferentially selected to be
exemplar vectors. Thus, training vectors that have higher
magnitudes (that are associated with extreme vectors) are
selected with heightened preferentiality relative to training
vectors that have lower magnitudes (that are associated with
non-extreme vectors) during exemplar selection.

[0051] In one embodiment, an increased number of train-
ing vectors with higher magnitudes may be selected by
adjusting or changing a selection criteria to favor selection
of training vectors with higher magnitudes. The selection
criteria may be adjusted or changed incrementally to
increase a preference for higher magnitude training vectors
until all of the highest magnitude training vectors are
selected to be exemplars. Additional detail on selection
criteria for choosing exemplar vectors from the training
vectors is provided below, for example with reference to
process blocks 710, 745, 750, 755, and 760 of method 700.
[0052] In one embodiment, inverse-density exemplar
selection method 200 retrieves or otherwise accesses the
magnitudes of the training vectors that occur in the set of
time series readings. Inverse-density exemplar selection
method 200 also accesses an exemplar selection criteria. The
exemplar selection criteria describes an extent to which
vectors of higher magnitude (extreme vectors) are preferred
over vectors of lower magnitude (non-extreme vectors).
Inverse-density exemplar selection method 200 then selects
the quantity (numVecs) of exemplar vectors from the train-
ing vectors in accordance with the exemplar selection cri-
teria. In one embodiment, selected exemplars are copied to
a set of exemplar vectors. In one embodiment, selected
exemplars are labeled as exemplars in the set of time series
readings. In one embodiment, the selected exemplars are
written out to storage for subsequent use in training of
machine learning models.

[0053] In one embodiment, at an initial iteration of an
exemplar selection loop, the selected exemplars have a
greater average magnitude than a random selection of exem-
plars without regard to magnitude. At subsequent iterations
of the exemplar selection loop, the average magnitude of the
selected exemplars increases in each iteration.

[0054] Process block 220 then completes, and inverse-
density exemplar selection method 200 continues at process
block 225. In one embodiment, the functions of process
block 220 are performed by exemplar selector 110 of
inverse-density exemplar selection system 100. At the con-
clusion of process block 220, the density of extreme vectors
in the selected exemplars has been increased.

Example Method-Decreased Non-Extreme Vector Selection

[0055] At process block 225, inverse-density exemplar
selection method 200 decreases a second density of non-
extreme vectors that are within a head of the distribution. In
one embodiment, training vectors that are non-extreme are
selected with reduced preferentiality relative to training
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vectors that are extreme during exemplar selection. The
aversion to (that is, preference against) non-extreme training
vectors is increased in selection criteria for each iteration of
process block 225 during the exemplar selection loop.
Whether a training vector is non-extreme and falls within the
head of a distribution may be determined based on the
magnitude of the training vector.

[0056] In one embodiment, a density of non-extreme
vectors may be decreased in a set of exemplar vectors by
selecting fewer of the non-extreme vectors. To select fewer
of the non-extreme vectors and thereby decrease the density
of extreme vectors, fewer of the training vectors that have
lower magnitudes should be selected to be exemplar vectors.
In other words, training vectors with low magnitudes should
be less preferentially selected to be exemplar vectors. Thus,
training vectors that have lower magnitudes (that are asso-
ciated with non-extreme vectors) are selected with reduced
preferentiality relative to training vectors that have higher
magnitudes (that are associated with extreme vectors) during
exemplar selection.

[0057] Inone embodiment, a decreased number of training
vectors with lower magnitudes may be selected by adjusting
or changing a selection criteria to favor selection of training
vectors with higher magnitudes, as discussed with reference
to process block 220 above, and further with reference to
process blocks 710, 745, 750, 755, and 760 of method 700
below. In one embodiment decreasing the density of non-
extreme vectors that are within the head of the distribution
is performed contemporaneously and in a shared process
with increasing the density of extreme vectors that are
within the tails of the distribution discussed at process block
220 above. Thus, as discussed above, in one embodiment,
inverse-density exemplar selection method 200 accesses the
magnitudes of the training vectors that occur in the set of
time series readings and also accesses the exemplar selection
criteria, and selects the quantity (numVecs) exemplars in
accordance with the exemplar selection criteria.

[0058] Process block 225 then completes, and inverse-
density exemplar selection method 200 continues at process
block 230. In one embodiment, the functions of process
block 225 are performed by exemplar selector 110 of
inverse-density exemplar selection system 100. At the con-
clusion of process block 225, the density of non-extreme
vectors in the selected exemplars has been decreased.

Example Method-Training ML Model Using Selected
Exemplar Vectors

[0059] At process block 230, inverse-density exemplar
selection method 200 trains the machine learning model to
detect anomalies based on the selected exemplar vectors.
The machine learning model is trained to predict what signal
amplitude values in vectors are expected to be based on the
exemplar vectors. In one embodiment, the machine learning
model is a ML anomaly detection model.

[0060] In one embodiment, inverse-density exemplar
selection method 200 accesses the exemplar vectors that
were selected above and retrieves, loads, or obtains a
machine learning model (for example, an untrained machine
learning model) for training. To train the machine learning
model, inverse-density exemplar selection method 200
adjusts a configuration of the machine learning model based
on the exemplar vectors that have been selected to have
increased density of extreme vectors, and decreased density
of non-extreme vectors. The adjustments cause the model to



US 2024/0303530 Al

produce estimated amplitude values for signals of a vector
based on actual signal amplitude values for other signals of
the vector. Where actual signal amplitude values differ from
estimated signal values by too great a residual, an anomaly
will be detected by a detector (for example, a detector based
upon a sequential probability ratio test) that is monitoring a
sequence of magnitudes of residuals between the estimated
and actual values. The trained machine learning model that
has been trained with the selected exemplars may be stored
for subsequent use. In one embodiment, the trained machine
learning model that has been trained with the selected
exemplars may be used to detect anomalies with greater
accuracy (that is, with fewer false and missed detection of
anomalies) for extreme readings than a machine learning
model trained with other vectors.

[0061] Additional detail on training the machine learning
model to detect anomalies based on the selected exemplar
vectors is provided below, for example under the heading
“Multivariate ML, Anomaly Detection”.

[0062] Process block 230 then completes, and inverse-
density exemplar selection method 200 continues at process
block 235. In one embodiment, the functions of process
block 230 are performed by machine learning model trainer
115 of inverse-density exemplar selection system 100. At the
conclusion of process block 230, a machine learning model
has been trained to detect anomalies based on the selected
exemplars. The trained machine learning model may be used
to determine whether training using the selected exemplar
vectors satisfactorily reduces false or missed detection of
extreme vectors as anomalous.

Example Method-Analysis of ML Model Trained Using
Selected Exemplars

[0063] At process block 235, inverse-density exemplar
selection method 200 analyzes residuals generated from test
vectors by the trained machine learning model to determine
whether the residuals are within a threshold. In one embodi-
ment, inverse-density exemplar selection method 200 tests
the machine learning model that has been trained with the
selected exemplar vectors to determine whether the machine
learning model generates residuals within the threshold. The
trained machine learning model is operated and the results
examined to see if training using the selected exemplar
vectors satisfactorily reduces false or missed detection of
extreme vectors as anomalous.

[0064] In one embodiment, the trained machine learning
model is retrieved or otherwise accessed. Inverse-density
exemplar selection method 200 then tests the trained
machine learning model. For example, the trained machine
learning model is executed to generate estimates from test
vectors. In one embodiment, the test vectors are a set of
vectors other than the selected exemplar vectors. In one
embodiment, the test vectors may also be selected from the
set of test vectors. In one embodiment, the test vectors may
be drawn from an additional set of time series readings from
the sensors. The machine learning model produces estimates
for the signal amplitude values of the test vectors based on
the training using the selected exemplars. Inverse-density
exemplar selection method 200 then generates residuals
from the estimates produced by the machine learning model
during testing. For example, the machine learning model
generates residuals by calculating the differences between
actual and estimated signal amplitude values for the test
vectors.
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[0065] Inone embodiment, the residuals are then analyzed
to determine whether the residuals are within (or satisty) a
threshold. The threshold indicates whether or not training
using the selected exemplar vectors satisfactorily reduces
false or missed detection of extreme vectors as anomalous.
In one embodiment, the analysis is a graphical analysis of
the residuals in relation to corresponding (in terms of
variable or sensor) actual values of signal amplitude in the
test vectors. In one embodiment, the analysis includes
plotting absolute values of the residuals against the actual
values; filtering the plotted residuals using inverse lensing
filtering to reduce the quantity of plotted residuals in the
plot; fitting a curve (such as a spline curve) to the plotted,
filtered residuals; generating a mean cumulative function of
residual values that are on the fitted curve; generating a
numerical derivative of the mean cumulative function; deter-
mining a ratio between a maximum and minimum value of
the numerical derivative; and determining whether the ratio
satisfies the threshold. Where the ratio satisfies the thresh-
old, the residuals are within (or satisfy) the threshold,
indicating that accuracy of the trained machine learning
model is consistent between extreme test vectors that are
selected from the tails of the distribution and non-extreme
test vectors that are selected from the head of the distribu-
tion. Where accuracy of the machine learning model is
consistent between extreme and non-extreme test vectors,
the selected exemplar vectors satisfactorily train the
machine learning model in a way that reduces false or
missed detection of extreme vectors as anomalous. Addi-
tional detail regarding the analysis of the residuals is
described below with reference to blocks 725-735 of method
700.

[0066] Process block 235 then completes, and inverse-
density exemplar selection method 200 continues at decision
block 240. In one embodiment, the functions of process
block 235 are performed by machine learning model tester
120 of inverse-density exemplar selection system 100. At
the conclusion of process block 235, a machine learning
model trained using the selected exemplar vectors has been
analyzed to determine whether residuals generated by the
trained machine learning model satisfy a threshold for
consistency between residuals for extreme vectors and
residuals for non-extreme vectors. Satisfying the threshold
indicates that the selected exemplars result in a machine
learning model with sufficiently reduced false or missed
detection of extreme vectors as anomalous.

[0067] At decision block 240, inverse-density exemplar
selection method 200 determines whether the machine learn-
ing model is generating residuals that satisfy the threshold or
not. Where the machine learning model is generating residu-
als that do not satisfy the threshold (decision block 240:NO),
processing returns to process block 220 for another iteration
of the exemplar selection loop in which the density of
extreme vectors is further increased. Where the machine
learning model is generating residuals that do satisfy the
threshold (decision block 240:YES), the density of extreme
vectors is sufficient for satisfactory performance of the
machine learning model, and processing continues to END
block 245, where inverse-density exemplar selection method
200 concludes. Thus, in one embodiment, the increasing
(process block 220), decreasing (process block 225), train-
ing (process block 230), and analysis (process block 235)
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steps are repeated or performed repetitively until the
machine learning model generates residuals within the
threshold.

Further Embodiments
Selection Method

of Inverse-Density Exemplar

[0068] In one embodiment, the exemplar selection loop
discussed above with reference to process block 215
includes steps for training an ML, anomaly detection model
with the selected exemplar vectors, testing the ML, anomaly
detection model with additional training vectors, and deter-
mining whether residuals resulting from the testing indicate
the ML anomaly detection model was trained with a suffi-
cient density of extreme vectors. In one embodiment,
inverse-density exemplar selection method 200 includes
repetitively training the machine learning model with the
selected exemplar vectors (for example as described above
at process block 230). In one embodiment, inverse-density
exemplar selection method 200 also includes repetitively
generating the residuals with the trained machine learning
model for test vectors selected from the set of time series
readings (for example as described above at process block
235). And, in one embodiment, inverse-density exemplar
selection method 200 also includes repetitively analyzing
the residuals to determine whether the residuals are within
the threshold (for example as described above at process
block 235). Thus, the increasing, decreasing, training, and
analysis steps may be repeated until the machine learning
model generates residuals that satisfy the threshold. The
threshold has a pre-set value that indicates that accuracy of
the trained machine learning model is consistent between the
test vectors that are selected from the tails of the distribution
and the test vectors that are selected from the head of the
distribution. Additional detail on the threshold is discussed
below with reference to process block 725-735 of method
700.

[0069] In one embodiment, analyzing residuals to deter-
mine whether they are within or satisfy a threshold (as
discussed above at process block 235) includes a graphical
analysis of the residuals. Thus, in one embodiment, analyz-
ing the residuals to determine whether the residuals are
within the threshold includes generating a plot of the residu-
als against corresponding actual values for which the residu-
als were generated. The analysis of the residuals then fits a
spline curve to the plot of the residuals. In one embodiment,
fitting the spline curve generates fitted (or interpolated)
residuals on the spline curve. The analysis of the residuals
generates a mean cumulative function of fitted residuals that
are on the spline curve. In one example, the analysis of the
residuals generates the mean cumulative function of the
fitted residuals that are included on the spline curve by the
fitting of the spline curve. The analysis of the residuals then
generates a derivative of the mean cumulative function. The
analysis of the residuals then finds a maximum value of the
derivative of the mean cumulative function and a minimum
value of the derivative of the mean cumulative function. The
analysis of the residuals then determines whether a ratio of
the maximum value to the minimum value is below the
pre-set value to determine whether the residuals are within
the threshold. Additional details regarding analyzing residu-
als to determine whether they are within or satisty a thresh-
old are discussed below with reference to blocks 725-735 of
method 700.

Sep. 12, 2024

[0070] In one embodiment, the residuals are filtered to
reduce the quantity of plotted residuals in the plot. In one
embodiment, the residuals are filtered with an inverse lens-
ing filtering process. In one embodiment, a first quantity or
density of residuals in a zone at or near a middle or a mean
of the plot is reduced significantly, and a second quantity or
density of residuals in a zone at or near edges of the plot is
reduced little if at all. Additional gradations of an extent of
filtering may occur between the middle and edge zones, as
discussed below. Thus, in one embodiment, inverse-density
exemplar selection method 200 includes filtering the residu-
als to reduce the number of the residuals in the plot by a
greater extent at the middle of the plot and by a lesser extent
at an edge of the plot. In one embodiment, the filtering is
performed before fitting the spline curve to the plot of the
residuals. The inverse lensing filtering operates to reduce the
residuals in the plot that are from vectors that are within the
head of the distribution by a greater extent, and to reduce the
residuals in the plot that are from vectors that are within the
tails of the distribution by a lesser extent. The analysis of the
residuals may thus be further focused on the effect of
extreme vectors. Additional detail regarding inverse lensing
filtering is discussed below with reference to process block
730 of method 700.

[0071] In one embodiment, the magnitudes of the training
vectors are the L2 norms of the training vectors, as discussed
above at process block 210. An L2 norm for a vector is
determined from the component data points of the vector.
Therefore, in one embodiment, inverse-density exemplar
selection method 200 determines the magnitudes of the
vectors from the set of time series readings by calculating
the .2 norms of the vectors. And, the magnitudes of the
vectors are the L2 norms of the vectors. Selection of
exemplar vectors may be performed based on the [.2 norm
(that is, the magnitude of the vector), for example as
discussed below with reference to process blocks 710, 745,
750, 755, and 760 of method 700. In one embodiment,

[0072] In one embodiment, selection criteria for selecting
exemplar vectors (at process block 215) are iteratively
adjusted to cause progressively more dense concentrations
of extreme vectors (that is, vectors having magnitudes in the
extremes of the distribution of the set of time series read-
ings) to be selected from the set of time series readings. In
one embodiment, inverse-density exemplar selection
method 200 iteratively selects a progressively larger pro-
portion of extreme vectors to be included in the exemplar
vectors.

[0073] For example, in one embodiment, selecting the
exemplar vectors (at process block 215) includes in a first (or
initial) iteration, selecting a first set of vectors that are lowest
ranked by magnitude and that have both even-numbered
indexes and odd-numbered indexes to be the exemplar
vectors (for example as described with reference to process
block 710 of method 700). Selecting the exemplar vectors
also includes selecting incrementally more of the extreme
vectors than in the first iteration by, in a second iteration,
selecting a second set of vectors that are lowest ranked by
magnitude and that have one of either even-numbered
indexes or odd-numbered indexes to be the exemplar vectors
(for example as described with reference to process block
745 of method 700). Selecting the exemplar vectors also
includes selecting incrementally more of the extreme vectors
than in the second iteration by, in a third iteration, selecting
a third set of vectors that are in a middle range of magnitude
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and that have one of either even-numbered indexes or
odd-numbered indexes to be the exemplar vectors (for
example as described with reference to process block 750 of
method 700). Selecting the exemplar vectors also includes
selecting incrementally more of the extreme vectors than in
the third iteration by, in a fourth iteration, selecting a fourth
set of vectors that are highest ranked by magnitude and that
have one of either even-numbered indexes or odd-numbered
indexes to be the exemplar vectors (for example as described
with reference to process block 755 of method 700). And,
selecting the exemplar vectors further includes selecting
incrementally more of the extreme vectors than in the fourth
iteration by, in a fifth iteration, selecting a fifth set of vectors
that are highest ranked by magnitude and that have both
even-numbered indexes and odd-numbered indexes to be the
exemplar vectors (for example as described with reference
to process block 760 of method 700).

[0074] In one embodiment, the density of extreme vectors
is increased, and the density of non-extreme vectors is
decreased by re-selecting the extreme vectors in a way that
gathers progressively more extreme vectors and progres-
sively fewer non-extreme vectors. Therefore, in one embodi-
ment, increasing the first density of the extreme vectors that
are within the tails of the distribution (at process block 220)
and decreasing the second density of the non-extreme vec-
tors that are within the head of the distribution (at process
block 225) further comprises selecting a progressively larger
proportion of extreme vectors to be included in the exemplar
vectors. Selection of a progressively lager proportion of
extreme vectors is discussed in additional below with ref-
erence to method 700.

[0075] In one embodiment, the threshold is pre-set or
pre-provided (for example by a user or administrator) to
have the accuracy of the trained ML anomaly detection
model be sufficiently similar at both the head (middle) and
tails (extremes) of the distribution of asset operation (as
measured by vector magnitude). Therefore, in one embodi-
ment, the threshold has a pre-set value that indicates that
accuracy of the trained machine learning model is consistent
between the test vectors that are selected from the tails of the
distribution and the test vectors that are selected from the
head of the distribution. For example, a threshold ratio of a
maximum of a numerical derivative of the mean cumulative
function to a minimum of the numerical derivative of the
mean cumulative function may be stored. Additional detail
on the threshold is provided below with regard to decision
block 735 of method 700.

[0076] In one embodiment, inverse-density exemplar
selection method 200 monitors a second set of time series
readings from an asset under surveillance for anomalous
activity using the trained ML anomaly detection model. And,
in response to detecting an anomaly during the monitoring,
inverse-density exemplar selection method 200 generates an
electronic alert that anomalous activity has been detected.
Additional detail on monitoring vectors of signal values in
the second set of time series readings for anomalies and
generating alerts is provided below under the heading “Mul-
tivariate ML Anomaly Detection.”

[0077] In one embodiment, a non-transitory computer-
readable medium may include stored thereon computer-
executable instructions that when executed by at least a
processor of a computer cause the computer to execute
method steps for selection of extreme vectors to be exem-
plars for training a machine learning model (such as an ML,
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anomaly detection model), such as the steps of inverse-
density exemplar selection method 200 or iterative exemplar
vector reselection method 700. In one embodiment, a com-
puting system may include at least a processor, a memory
operably connected to the processor, and a non-transitory
computer-readable medium operably connected to the pro-
cessor and memory and storing computer-executable
instructions. When executed by at least the processor access-
ing memory, the instructions cause the computing system to
execute method steps for selecting extreme vectors to be
exemplars for training a machine learning model, such as the
steps of inverse-density exemplar selection method 200 or
iterative exemplar vector reselection method 700.

Discussion and Additional Embodiments

[0078] Machine learning (ML) algorithms for multivariate
anomaly detection (also referred to as ML anomaly detection
models) monitor time series signals from assets deployed in
a variety of industries to detect the onset of anomalous
patterns in signals. Such detection enables predictive and
prescriptive analytics. Discovery of incipience or onset of
subtle developing anomalies allows the underlying faults to
be fixed before assets suffer expensive and possibly cata-
strophic failure events. In general, ML algorithms for mul-
tivariate anomaly detection ML are trained on training data
that is obtained from the asset when the asset is undegraded.
Exemplars are “training vectors” that are selected from the
Training Data and used to train the ML algorithm.

[0079] ML anomaly detection models consume and pro-
cess collections of multivariate time series (such as time
series databases) from sensors, such as Internet of things
(IoT) or other network-connected sensors. The size of col-
lections of multivariate time series have been growing both
in terms of numbers of sensors and in terms of sampling
rates. For example, a single commercial airliner may have
over 75,000 sensors, a modern oil refinery or a moderately-
sized data center may each have over one million sensors,
and these sensors may be sampled at millisecond or finer
intervals. Sensor counts have therefore grown exponentially
for sensor-monitored assets, and also sensor sampling rates
have grown at least linearly over the years as sensors and
associated data acquisition systems have become more
capable and more inexpensive.

[0080] In general, an ML anomaly detection model is
trained to produce estimates of what the values of input
variables should be based on training with time series
signals of sensor readings that represent normal or correct
operation of a monitored asset. The time series signals used
to train the ML anomaly detection model thus does not
represent degraded, abnormal or incorrect operation of the
monitored asset. That is, ML anomaly detection models are
trained with sensor signals from a “good” asset.

[0081] Were an ML anomaly detection model trained on
data that includes degraded or anomalous activity (as a
simple example, training the model on a 6-cylinder auto-
mobile that has a spark-plug problem and is only running 5
cylinders), then the ML anomaly detection model will not
detect such anomalous activity during surveillance. Or, if the
ML anomaly detection model trained on data that includes
anomalous activity, repairing the monitored asset will result
in normal operation being flagged as anomalous. (In the
simple example presented, if the defective sparkplug starts
working or is replaced, operation with all 6 cylinders will be
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flagged as anomalous by an ML anomaly detection model
trained on 5-cylinder operation.)

[0082] For training signals from an undegraded asset, one
could theoretically use 100% of the vectors (rows of values
from each sensor) as exemplars for training the ML anomaly
detection model. However, as the number of sensors has
grown, this practice of training with 100% of the exemplars
has become computationally intractable. Hence the training
data may be down-selected or down-sampled to retain a
subset of the vectors in the training data as exemplars, and
discard others. For example, one method of down-sampling
includes simply selecting 1 out of every so many vectors
(such as one out of 25 or 50 vectors) to use as exemplars. In
general, down-sampling exemplar selection substantially
reduces the compute burden of training the ML anomaly
detection model with little loss in accuracy of anomaly
detection.

[0083] But, down-sampling exemplar selection has been
found to create a challenge in which the ML anomaly
detection model provides more accurate prognostics for
asset operation near the middle or “head” of a bell-shaped
distribution of asset operation, and less accurate prognostics
near the extrema or thin “tails” of the bell-shaped distribu-
tion of asset operation. In other words, ML anomaly detec-
tion models are predicting better (with smaller residuals) for
moderate operation of assets, and worse (with larger residu-
als) for maximal and minimal operation of assets. Hence,
there is higher probability of detecting anomalies and with
lower false-alarm probabilities (FAPs) and missed alarm
probabilities (MAPs) when signals are in a moderate-de-
mand middle of the distribution of asset operation, and lower
probability of detecting anomalies and with somewhat
higher false-alarm and missed alarm probabilities when
signals are near the low-demand and high-demand extrema
of the distribution of asset operation.

[0084] Returning again to the example of the automobile,
down-sampling exemplar selection can cause an ML
anomaly detection model to provide higher prognostic accu-
racy (with lower false alarm and missed alarm probabilities)
when the automobile is driving at a moderate speed of 20-35
miles per hour, and lower prognostic accuracy (with higher
false alarm and missed alarm probabilities) when the auto-
mobile is idling, or when the automobile is moving at
freeway speeds. It is undesirable for an ML, anomaly detec-
tion model to lose anomaly detection performance when an
asset is operated in a low-demand range or high-demand
range outside of a moderate-demand range.

[0085] The underlying root cause of the loss of perfor-
mance of the ML anomaly detection model towards the
edges of the demand profiles for the assets is that vector
selection algorithms for choosing exemplars select far more
exemplars from the crowded “head,” “hump,” interior, or
middle of the bell-shaped distributions of asset operation,
and select too few exemplars from the sparser “thin tails,”
exterior, or extremes of the bell-shaped distributions of asset
operation. In other words, naive exemplar selection pro-
cesses choose too few vectors that represent extreme opera-
tion (either at a high or low level), and too many vectors that
represent moderate operation of an asset.

[0086] In one embodiment, as discussed above, a novel
inverse-density exemplar selection algorithm is presented
for systematically selecting fewer exemplar vectors from the
middle where the distribution of training vectors is denser,
and more exemplar vectors from the exterior where the
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training vectors are sparser. For example, inverse-density
exemplar selection algorithm iteratively shifts exemplar
selection from the middle or interior of the distribution of
asset operation to the exterior of the distribution until the
exemplars will result in satisfactory ML model performance.
Thus, the inverse-density exemplar selection algorithm sys-
tematically decreases the density of Exemplars near the
“middle” (in the multivariate vector hyperspace) of the
training data distribution, and systematically increases the
density of exemplars near the “thin tail” extrema of the
distributions.

[0087] In one embodiment, inverse-density exemplar
selection as taught herein has been shown experimentally to
result in higher prognostic performance for an ML algorithm
trained on the selected exemplar vectors. In particular, for
example, the improved prognostic performance includes
earlier detection of incipient anomalies, and reduced false-
alarm and missed-alarm probabilities. In one embodiment,
inverse-density exemplar selection systems and methods as
described herein retain the compute cost advantage of down-
selecting exemplars from the available universe of possible
exemplars, and further improves overall prognostic perfor-
mance for the ML anomaly detection model for earlier
detection of incipient anomalies with lower FAPs and
MAPs.

Example Plots

[0088] When a vector (or an observation) has a large
magnitude, it will have a relatively large residual from an
ML estimate for the vector when the ML anomaly detection
model is trained with too few exemplars from the extremes
of distributions of asset operation. As discussed above, a
vector contains an observation from each sensor at one time
step. Given N vectors in total that are available to use for
training, some of the N available vectors are selected as
exemplar vectors for training the ML anomaly detection
model, and other vectors of the N available vectors are
selected as test vectors for validating the ML anomaly
detection model. In this case, residuals between the true
observation with a large magnitude and an estimate for the
observation are large because the L.2 norms of the selected
exemplar vectors are too limited, and more particularly,
because the magnitude for individual sensor values in the
exemplar vectors are too limited. Therefore, when sensor
values in the test vectors have greater magnitudes than the
maximal magnitudes of the sensor values in the exemplar
vectors, the ML estimation will have large residuals com-
pared to the true observation because the ML anomaly
detection model does not predict values of an observation
that are outside of the training range.

[0089] FIGS. 3, 4, 5, and 6 illustrate an example use of a
graphical analysis to identify insufficient training of an ML
anomaly detection model with data representing extremes of
asset operation. In the example of FIGS. 3, 4, 5, and 6, an
ML anomaly detection model is naively trained with too few
exemplar vectors representing extremes of asset operation
(such as idling or maximum operation), and the ML anomaly
detection model is used to generate estimates for an example
signal. Note that though FIGS. 3, 4, 5, and 6 show the
magnitudes for just one example signal, the conclusions can
be safely extended to the L2 norms of vectors containing the
measurements at one time step for all signals. The conclu-
sions hold true because where the signals are correlated (as
is generally the case for multivariate analysis), a large
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magnitude for one signal at a given time step indicates a high
probability of large magnitudes in other signals at that time
step, and thus a large [.2 norm of that vector.

[0090] FIG. 3 illustrates an example signal amplitude plot
300 of amplitude over time for one example signal, such as
a signal collected by one sensor. In signal amplitude plot
300, ML estimate values 305 for the example signal are
plotted atop actual measured values 310 for the example
signal. ML estimate values 305 and actual measured values
310 are plotted against a time index axis 315 and a signal
amplitude axis 320. Actual measured values 310 are ampli-
tude values sensed by the one sensor. ML estimate values
305 are amplitude values predicted for the example signal by
an ML anomaly detection model. Time index axis 315 shows
a progression of time steps or observations for the example
signal. Signal amplitude axis 320 shows amplitude for the
example signal. Amplitude represents an extent or level of
operation of an asset sensed by the one sensor. Notice that
the ML estimate values 305 often fall short of actual
measured values 310 where the absolute value of the signal
amplitude is larger, for example where the absolute value of
the signal amplitude (or magnitude of the signal) is larger
than about 3. This indicates that the ML anomaly detection
model used to generate ML estimate values 305 was trained
using too few exemplars with larger magnitudes for the
example signal.

[0091] FIG. 4 illustrates an example residual amplitude
plot 400 of amplitude over time for residuals 405 between
ML estimate values 305 and actual measured values 310.
Residuals 405 are plotted against time index axis 315 and a
residual amplitude axis 410. Residual amplitude axis 410
shows amplitude for the residuals. Notice the occasional
spikes 415 in the residuals. Such spikes 415 should not occur
because the actual measured values 310 are test values that
represent correct or normal operation of an asset, and the
ML estimate values 305 are produced by an ML anomaly
detection model that has been trained with exemplar values
that represent correct or normal operation of the asset. But,
because the ML, anomaly detection model has been trained
with too few exemplars with signal values representing
extremes of asset operation, estimates for extremes may
result in improperly large residuals because the ML anomaly
detection model does not predict signal values outside of the
range included in the exemplars.

[0092] FIG. Sillustrates an example ranked amplitude plot
500 of signal amplitude values ranked or sorted in descend-
ing order of amplitude for the one example signal. Sorted
actual measured signal values 505 and sorted ML estimate
values 510 are plotted together in ranked amplitude plot 500
against a rankings of amplitudes in descending order axis
515 and a signal amplitude axis 520. The majority of the
sorted actual measured signal values 505 have an absolute
value (or magnitude of the signal) less than about 3, or have
an amplitude value between 3 and -3. For the majority of the
sorted actual measured signal values 505 falling in this
middle amplitude range between 3 and -3, the sorted ML
estimate values 510 are closely aligned with the sorted
actual measured signal values 505, as seen in a middle 525
of ranked amplitude plot 500. For a minority of the sorted
actual measured signal values 505 falling in extreme signal
amplitude ranges outside of the middle amplitude range
between 3 and -3, the sorted ML estimate values 510
diverge from the sorted actual measured signal values 505,
as seen at edges 530 of ranked amplitude plot 500.
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[0093] FIG. 6 illustrates an example histogram 600 show-
ing a distribution of residual magnitude 605 (absolute value
of residual amplitude) with respect to signal amplitude at the
various observations. Distribution of residual magnitude 605
is plotted against a signal amplitude axis 610 and an absolute
value of residual axis 615. Note that in the middle amplitude
range between 3 and -3, the magnitudes of the residuals are
relatively low, falling below a value of 0.2. And, outside of
the middle amplitude range between 3 and -3, the magni-
tudes of residuals climb rapidly. Distribution of residual
magnitude 605 thus clearly shows that where the ML
anomaly detection model is trained with too few exemplars
from the extremes of asset operation, measured signal values
that have a large magnitude with respect to other measured
signal values, the residuals produced by the ML anomaly
detection model for the measured signal values will be
relatively large. This indicates the ML anomaly detection
model trained with too few exemplars from the extremes of
asset operation is inaccurate when estimating values at the
extremes of asset operation.

Example Iterative Exemplar Vector Reselection Method

[0094] FIG. 7 illustrates one embodiment of an iterative
exemplar vector reselection method 700 associated with
inverse-density exemplar selection for improved multivari-
ate anomaly detection. Iterative exemplar vector reselection
method 700 is one embodiment of an inverse-density exem-
plar selection method. Iterative exemplar vector reselection
method 700 includes a criterion or threshold to judge
whether the selection of the exemplar vectors is satisfactory.
In method 700, given a total number of exemplar vectors
(numVecs) to select from all the N available vectors, in
general the exemplar vectors are iteratively reselected to
make the selected exemplar vectors have larger .2 norms. In
each iteration, iterative exemplar vector reselection method
700 evaluates whether the selection is satisfactory based on
a smoothness of a “U-shape” of a derivative of a mean
cumulative function (AMCF) of residuals, as detailed below.
If the selection of exemplar vectors is satisfactory for
purposes of training an ML anomaly detection model, the
U-shape is sufficiently flat so as to be a nearly a horizontal
line approaching 0 everywhere. A sufficiently flat U-shape
indicates that there are no large residuals (i.e., the difference
between the true observation and its estimation) occurring in
testing of the ML anomaly detection model.

[0095] Inone embodiment, iterative exemplar vector rese-
lection method 700 initiates at START block 705 in response
to conditions similar to those which initiate inverse-density
exemplar selection method 200. Following initiation at start
block 705, processing continues to process block 707. At
process block 707, iterative exemplar vector reselection
method 700 acquires a set of N available training vectors
(for example as described in detail above with reference to
process block 210). Additionally, a count of iterations count
is initiated to indicate that there have been no prior iterations
of exemplar selection, for example by setting count to be 0.
[0096] At process block 710, iterative exemplar vector
reselection method 700 selects from the training vectors a
quantity (num Vecs) of the training vectors to be exemplar
vectors. In one embodiment, the quantity (numVecs) is
generally twice the number of signals or values in the vector.
The training vectors that are selected to be exemplar vectors
are those training vectors that have smallest .2 norms
regardless of whether the index of an exemplar vector is
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even or odd. In one embodiment, this initial selection of
exemplar vectors is performed as described above with
reference to process blocks 220-225.

[0097] At process block 715, iterative exemplar vector
reselection method 700 then trains an ML anomaly detection
model using the selected memory vectors. For example, the
ML anomaly detection model may be trained to generate
estimates of what a test vector should be based on the
exemplar vectors. In one embodiment, training the ML
anomaly detection model using the selected exemplar vec-
tors is performed as described above with reference to
process block 230 and below under the heading “Multivari-
ate ML Anomaly Detection”.

[0098] At process block 720, iterative exemplar vector
reselection method 700 then tests the trained ML anomaly
detection model. And, iterative exemplar vector reselection
method 700 generates residuals from estimates produced by
the ML anomaly detection model during testing. In one
embodiment, after training the ML anomaly detection
model, a set of test vectors are selected from the training
vectors that remain after the exemplar vectors are selected,
and the trained ML anomaly detection model is used to
generate estimates for the test vectors. In one embodiment,
testing of the ML anomaly detection model and generation
of residuals is performed as described above with reference
to process block 235.

[0099] At process block 725, iterative exemplar vector
reselection method 700 plots the absolute values of the
residuals against the observed (actual) values. In one
embodiment the plots are made on an individual signal basis.
That is, an individual plot is generated for residuals of an
individual signal. The absolute values of the residuals are
plotted with regard to the magnitude of observations. This
plot will be roughly a U-shape, in which the middle part is
thicker than the boundaries. Referring briefly to FIG. 8, FIG.
8 illustrates an example plot 800 of absolute values of
residuals 805 between test values and ML estimates for one
example signal. Absolute values of residuals 805 are plotted
against a signal amplitude axis 810 and an absolute value of
residual axis 815. Note the U-shape of the plot of the
absolute values of residuals 805. Note a thicker middle part
820 of absolute values of residuals 805. Note the thinner
boundaries 825 of absolute values of residuals 805.

[0100] Process block 730 provides a basis for determining
whether the ML anomaly detection model is satisfactorily
trained by the selected exemplar vectors. Iterative exemplar
vector reselection method 700 filters the absolute value of
the residuals using an inverse lensing filter. Then iterative
exemplar vector reselection method 700 fits a line to the
inverse lens filtered plot of the absolute values of the
residuals by spline fitting. Iterative exemplar vector reselec-
tion method 700 then generates a mean cumulative function
(MCF) of the residuals on the spline, and generates a
derivative of the mean cumulative function (dAMCF). In one
embodiment, the ML anomaly detection model is trained
and generates accurate measurements when a ratio between
the maximum and minimum of the dMCF is low enough to
satisfy a threshold.

[0101] Inone embodiment, an inverse lensing filter is used
to adjust the U-shape plot of residuals to have approximately
a same thickness across the plot. The inverse lensing filter
reduces the number of plotted residuals at thicker parts of the
plot to give the plot of residuals a similar thickness, for
example, by removing residuals and/or replacing residuals
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with averages of residuals. In one embodiment, the inverse
lensing filter is a moving average process. When a moving
average window is located near the boundaries or edges of
the plot of residuals, residuals in the moving average win-
dow are replaced with an average of residual samples from
relatively few samples (or even one sample). And, when the
moving average window is located near the middle of the
plot of residuals, residuals in the moving average window
are replaced with an average of relatively many samples (for
example, 20 or more samples). In one embodiment, the
U-shape thus becomes a plot of averaged residual samples
from windows with different sizes. In this way, the thickness
in the middle part of the U-shape is decreased.

[0102] Referring briefly to FIG. 9, FIG. 9 illustrates an
example plot 900 of filtered residuals 905. Filtered residuals
905 result from applying one embodiment of an inverse
lensing filter to absolute values of residuals 805 shown in
example plot 800. Filtered residuals 905 are plotted against
signal amplitude axis 810 and absolute value of residual axis
815. Note the U-shape of the plot of the filtered residuals
905. Note that a middle part 910 of the U-shape plot of the
filtered residuals 905 is relatively thinner after inverse
lensing filtering than a thicker middle part 820 shown in
example plot 800. Note that boundary areas 915 are reduced
very little in thickness, if at all, in comparison with bound-
aries 825 shown in example plot 800.

[0103] In one embodiment, the inverse lensing filter
adjusts plotted absolute values of residuals in differing ways
based on where a moving average window is positioned
relative to middle and edges of a plot of absolute values of
residuals. There may be multiple gradations of an extent of
filtering applied to the residuals based on zones within the
plot of absolute values of residuals. For example, there may
be three or more zones in which the moving average window
may be positioned: an outermost zone that includes a
rightmost and leftmost set of absolute values of residuals, an
innermost or middle zone centered on a middle of the plot
of absolute values of residuals, and one or more moderate
zones that includes absolute values of residuals between the
innermost and outermost zones. The moderate zone may be
further subdivided for additional fine control over adjust-
ments made within the moderate zone. The inverse lensing
filter accepts a set of absolute values of residuals (or
“points™) within the moving average window, and reports
out or generates an adjusted set of absolute values of
residuals (or “points™) based on the position of the moving
window within the zones.

[0104] Inone embodiment, an outermost zone includes the
left 5% and the right 5% of a range between the edges of the
plot. In one embodiment, the inverse lensing filter retains
each of the absolute values of residuals that are within a
moving average window in the outermost zone. In one
embodiment, a first moderate zone includes the next
5%-10% of the range inward from the outermost zone at left
and right. In one embodiment, for residuals that are within
a moving average window in the first moderate zone, inverse
lensing filter averages every two consecutive absolute values
of residuals and replaces the two consecutive absolute
values of residuals with an average of the consecutive
absolute values of residuals. In one embodiment, a second
moderate zone includes the next 10%-25% of the range
inward from the first moderate zone at left and right. In one
embodiment, for residuals that are within a moving average
window in the second moderate zone, inverse lensing filter
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averages every five consecutive absolute values of residuals
and replaces the five consecutive absolute values of residu-
als with an average of the five consecutive absolute values
of residuals. In one embodiment, a middle zone includes the
middle 25% to 75% (starting from the left) of the range
inward from the second moderate zone at left and right. In
one embodiment, for residuals that are within a moving
average window in middle zone, inverse lensing filter aver-
ages every ten consecutive absolute values of residuals and
replaces the ten consecutive absolute values of residuals
with an average of the ten consecutive absolute values of
residuals.

[0105] In one embodiment, the inverse lensing filter
moves along the plot of absolute values of residuals (for
example from left to right) and creates a more uniform
thickness of the plotted residuals from end to end. The more
uniform density more readily allows fitting of a curve. For
example, a moving window spline interpolation generates
uniform samples of the residuals in the plot. Note, the
uniform samples of the residuals on the spline may be
interpolated samples generated by the moving window
spline interpolation. Thus, in one embodiment, these inter-
polated, uniform samples of the residuals in are generated on
the spline curve by the process of fitting the spline curve to
the plotted residuals. The interpolated samples of residuals
on the curve may also be referred to herein as “fitted
residuals”. Because the fitted residuals are generated by the
spline fitting, the fitted residuals need not have overlapping
values or otherwise share values with the plotted residuals,
although they may.

[0106] Iterative exemplar vector reselection method 700
continues at process block 730 to fit a line (for example, a
curved line) to the inverse lensing filtered plot of the
absolute values of the residuals. In one embodiment, the line
is fit by spline fitting (or spline interpolation). In spline
fitting, relatively low-degree polynomials are fit piecewise
to subsets of the absolute values of the residuals (rather than
attempting to fit a high-degree polynomial to a full set of the
absolute values of the residuals). Other curve fitting methods
may also be used to fit the line to the inverse lens filtered plot
of the absolute values of the residuals.

[0107] In one embodiment, spline interpolation is imple-
mented on the averaged absolute values of residuals result-
ing from inverse lensing filtering. The spline interpolation
generates a smooth line showing interpolated samples of the
averaged absolute values of residuals. In one embodiment, a
spline fitting is chosen that provides interpolated samples at
x-coordinates that are evenly spaced at an interval. The
interpolated samples are densely and evenly spaced, in
contrast to the averaged absolute values of residuals result-
ing from inverse lensing filtering, which are not necessarily
evenly spaced. At the completion of fitting the line, a line has
been generated that has a satisfactory fit to the plotted data
points for the absolute values of the residuals in the inverse
lens filtered plot. The generated line may be defined by a
mathematical function.

[0108] Referring briefly to FIG. 10, FIG. 10 illustrates an
example plot 1000 of a line 1005 that is fit to filtered
residuals 905. Line 1005 is spline fit to filtered residuals 905.
Line 1005 is plotted against signal amplitude axis 810 and
absolute value of residual axis 815. Note the U-shape of line
1005 and the fit of line 1005 to the U-shaped plot of the
filtered residuals 905.
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[0109] Iterative exemplar vector reselection method 700
continues at process block 730 to generate a mean cumula-
tive function (MCF) of the fitted spline. In one embodiment,
the MCF of the samples on the fitted spline is calculated. For
example, the samples on the fitted spline for which the MCF
is calculated are the interpolated samples that are evenly
spaced with respect to x-coordinate (on a signal amplitude
axis). In one embodiment, the MCF value for a sample at a
given x-coordinate is the sum of residual values for all
samples at x-coordinates less than or equal to the given
x-coordinate. In other words, the value of the MCF is the
cumulative residual value as the signal amplitude increases.
The MCF denoises the fitted spline (an empirical function of
the plotted residuals) to create a curve for which numerical
derivatives are simpler or more well-behaved than the fitted
spline.

[0110] Iterative exemplar vector reselection method 700
then acquires the derivative of the mean cumulative function
(dMCF) for the fitted spline by calculating the dMCF from
the MCF. The dMCF provides a high-fidelity metric for
determining whether the residuals for extreme and non-
extreme vectors are sufficiently consistent (in other words,
whether the U-shape is sufficiently flat). As discussed below,
the metric may be a ratio of maximum to minimum value of
the dMCF.

[0111] Referring briefly to FIG. 11, FIG. 11 illustrates an
example plot 1100 of (i) an example MCF 1105 against
signal amplitude axis 810 and a mean cumulative function
axis 1110, and an example dMCF 1115 against signal
amplitude axis 810 and a derivative of mean cumulative
function axis 1120. Example MCF 1105 is the mean cumu-
lative function of line 1005 shown in example plot 1000.
Example dMCF 1115 is a numerical derivative of MCF
1105. A maximum value 1125 of dMCF 1115 and minimum
value 1130 of dMCF 1115 are shown.

[0112] Once the dMCF is generated, process block 730
completes, and iterative exemplar vector reselection method
700 proceeds to decision block 735. In one embodiment,
whether or not the selected exemplar vectors adequately
train the ML, anomaly detection model for accurate estimates
at extremes of asset operation may be determined based on
the maximum value and minimum value of the dMCF.
[0113] At decision block 735, iterative exemplar vector
reselection method 700 determines whether a U-shape of the
plot of absolute values of residuals is sufficiently flat. A
sufficiently flat plot of absolute values of residuals indicates
sufficient accuracy of ML estimates. The U-shape of the plot
of absolute values of residuals may be determined to be
sufficiently flat based on a derivative of a mean cumulative
function of a line fit to the plot of absolute values of
residuals.

[0114] Whether the U-shape is “sufficiently flat” can be
determined based on a ratio of maximal value of the dMCF
to minimal value of the dMCF. Lower values for the ratio
indicate greater flatness of the U-shape, while higher values
for the ratio indicate lesser flatness of the U-shape. The ratio
may be compared to a pre-set threshold or criterion. Iterative
exemplar vector reselection method 700 determines whether
or not the ratio satisfies the threshold or criterion indicates.
In one embodiment, the threshold may be a dMCF maxi-
mum:dMCF minimum ratio below a certain value. In one
embodiment, a threshold of 100:1 or lower has been shown
to significantly improve prognostic accuracy of ML, anomaly
detection models near the extrema of operational distribu-
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tions of assets. For example, thresholds for the ratio of
approximately 75:1, 50:1, and 25:1 each yield progressively
better prognostic accuracy of ML anomaly detection models
near the extrema of operational distributions.

[0115] If the U-shape of the plot of absolute values of
residuals is sufficiently flat (735:YES), the selected exem-
plar vectors satisfactorily train the ML anomaly detection
model, and iterative exemplar vector reselection method 700
proceeds to END block 740 and concludes. If the U-shape
of the plot of absolute values of residuals is not sufficiently
flat (735:NO), the ML anomaly detection model is not
satisfactorily trained by the selected exemplar vectors, and
iterative exemplar vector reselection method 700 increases a
density of exemplar vectors that have higher [.2 norms in the
selected exemplar vectors and repeats the process of train-
ing, testing, plotting, filtering, fitting, generating the MCF
and dMCF. The repetition continues until the U-shape is
found to be sufficiently flat to indicate satisfactory training
of the ML model, or until a cap on iterations is reached.
[0116] In one embodiment, the cap on iterations is 5
iterations, where the value of count is greater than or equal
to 4. The cap on iterations means that no concentration of
extreme vectors can be selected that is denser than the
concentration selected in the previous iteration. In this
example, the cap is 5 and there are 4 changes of selection
criteria (described at process blocks 745, 750, 755, and 760)
for incrementally increasing the concentration of extreme
vectors beyond the concentration of initial selection at
process block 710. Where there are more or fewer changes
of selection criteria between an initial selection density (for
example as described at process block 710) for extreme
vectors and an ultimate selection density for extreme vectors
(for example as described at process block 760), the cap will
correspond to the number of changes to the selection criteria.
(The ultimate selection density indicates that the concentra-
tion of extreme vectors can get no greater in a selection of
exemplar vectors drawn from the training vectors in the set
of time series readings.)

[0117] In one embodiment, the U-shape of the plot of
absolute values of residuals may be further flattened—and
the prognostic performance of the ML anomaly detection
algorithm with regard to extreme asset activity may be
further improved—by incrementally moving the selected
exemplar vectors towards vectors that represent extreme
activity by the asset. For example, an average magnitude of
the selected exemplar vectors is iteratively increased. The
increases in average magnitude may be achieved by adjust-
ing selection criteria for selecting the exemplar vectors.
Iterative exemplar vector reselection method 700 iteratively
selects a progressively larger proportion of extreme vectors
to be included in the exemplar vectors over one or more
additional iterations.

[0118] As indicated at process block 710 above, the initial
selection criteria is to select as exemplar vectors those
training vectors that have smallest .2 norms regardless of
whether the index of an exemplar vector is even or odd.
Following a determination at decision block 735 that the
initially selected training vectors resulted in an insufficiently
accurate ML anomaly detection model (735:NO), the exem-
plar vectors will be reselected with adjusted or revised
selection criteria that cause selection of exemplar vectors
that represent incrementally more extreme activity. In one
embodiment, the extent to which the selection criteria
selects exemplar vectors that represent extreme activity by
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the asset is based on the number of times the selection
criteria have previously been adjusted. In other words, the
selection criteria are chosen based on a number of iterations
of adjustment, which is given by a current value the count
of iterations count. Process blocks 745, 750, 755, and 760
provide selection criteria that progressively increase the
density of more extreme vectors and reduce the density of
non-extreme vectors. Thus, in a first or initial iteration,
iterative exemplar vector reselection method 700 selects a
set of vectors that are lowest ranked by magnitude and that
have both even-numbered indexes and odd-numbered
indexes to be the exemplar vectors.

[0119] Exemplar vector reselection method 700 proceeds
to process block 745 when there have been no prior adjust-
ments to the selection criteria (count=0) and the U-shape is
not sufficiently flat (735:NO). At process block 745, exem-
plar vector reselection method 700 re-selects from the
training vectors the quantity (numVecs) of the training
vectors to be exemplar vectors. The training vectors that are
selected to be exemplar vectors are those training vectors
that have smallest .2 norms and odd-numbered indices. (Or,
alternatively, training vectors that are selected to be exem-
plar vectors are those training vectors that have smallest [.2
norms and even-numbered indices.) The average value of
the magnitude (measured by L2 norm) of the exemplar
vectors is thus increased.

[0120] The adjusted criteria moves the selected exemplar
vectors towards representing more extreme activity by
selecting every other vector in order of increasing vector
magnitude until quantity (numVecs) of exemplar vectors is
selected. The exemplar vectors selected in this manner will
include a greater density of extreme vectors (and a lower
density of non-extreme vectors) than is obtained when
selecting every vector in order of increasing vector magni-
tude until quantity (numVecs) of exemplar vectors is
selected (as in process block 710). Thus, in a second
iteration, iterative exemplar vector reselection method 700
selects a set of vectors that are lowest ranked by magnitude
and that have one of either even-numbered indexes or
odd-numbered indexes to be the exemplar vectors. Process-
ing then proceeds to process block 765.

[0121] Exemplar vector reselection method 700 proceeds
to process block 750 when there has been one prior adjust-
ment to the selection criteria (count=1) and the U-shape is
not sufficiently flat (735:NO). At process block 750, exem-
plar vector reselection method 700 re-selects from the
training vectors the quantity (numVecs) of the training
vectors to be exemplar vectors. The training vectors that are
selected to be exemplar vectors are those training vectors
that have odd-numbered indices and .2 norms ranked in the
middle of the training vectors. (Or, alternatively, the training
vectors that are selected to be exemplar vectors are those
training vectors that have even-numbered indices and 1.2
norms ranked in the middle of the training vectors.) For
example, the training vectors are ranked or sorted in order of
L2 norm, a midpoint of the sorted training vectors is
identified, and one half of the quantity (numVecs/2) training
vectors with odd-numbered (or alternatively, even-num-
bered) indices outward from the midpoint on either side are
selected to be exemplar vectors. The average value of the
magnitude (measured by 1.2 norm) of the exemplar vectors
is thus increased.

[0122] The adjusted criteria moves the selected exemplar
vectors towards representing more extreme activity by
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selecting every other vector on either side of the midpoint to
be exemplar vectors, working outward from the midpoint,
until quantity (numVecs) of exemplar vectors is selected.
The exemplar vectors selected in this manner will include a
greater density of extreme vectors (and a lower density of
non-extreme vectors) than is obtained when selecting every
other vector in order of increasing vector magnitude, starting
from the minimum vector magnitude, until quantity
(numVecs) of exemplar vectors is selected (as in process
block 745). Thus, in a third iteration, iterative exemplar
vector reselection method 700 selects a set of vectors that are
in a middle range of magnitude and that have one of either
even-numbered indexes or odd-numbered indexes to be the
exemplar vectors. Processing then proceeds to process block
765.

[0123] Exemplar vector reselection method 700 proceeds
to process block 755 when there have been two prior
adjustments to the selection criteria (count=2) and the
U-shape is not sufficiently flat (735:NO). At process block
755, exemplar vector reselection method 700 re-selects from
the training vectors the quantity (num Vecs) of the training
vectors to be exemplar vectors. The training vectors that are
selected to be exemplar vectors are those training vectors
that have largest [.2 norms and odd-numbered indices. (Or,
alternatively, training vectors that are selected to be exem-
plar vectors are those training vectors that have largest 1.2
norms and even-numbered indices.) The average value of
the magnitude (measured by L2 norm) of the exemplar
vectors is thus increased.

[0124] The adjusted criteria moves the selected exemplar
vectors towards representing more extreme activity by
selecting every other one of the highest-magnitude vectors
until quantity (numVecs) of exemplar vectors is selected.
The exemplar vectors selected in this manner will include a
greater density of extreme vectors (and a lower density of
non-extreme vectors) than is obtained when selecting every
other vector on either side of the midpoint to be exemplar
vectors, working outward from the midpoint until quantity
(numVecs) of exemplar vectors is selected (as in process
block 750). Thus, in a fourth iteration, iterative exemplar
vector reselection method 700 selects a set of vectors that are
highest ranked by magnitude and that have one of either
even-numbered indexes or odd-numbered indexes to be the
exemplar vectors. Processing then proceeds to process block
765.

[0125] Exemplar vector reselection method 700 proceeds
to process block 760 when there have been three prior
adjustments to the selection criteria (count=3) and the
U-shape is not sufficiently flat (735:NO). At process block
760, exemplar vector reselection method 700 re-selects from
the training vectors the quantity (num Vecs) of the training
vectors to be exemplar vectors. The training vectors that are
selected to be exemplar vectors are those training vectors
that have largest [.2 norms regardless of odd-numbered or
even numbered indices. In other words, the top numVecs
training vectors in terms of magnitude are selected to be
exemplar vectors. The average value of the magnitude
(measured by L2 norm) of the exemplar vectors is thus
increased.

[0126] The adjusted criteria moves the selected exemplar
vectors towards representing the most extreme activity by
selecting the top numVecs highest-magnitude vectors. The
exemplar vectors selected in this manner will include a
highest density of extreme vectors that are unique (and a
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lowest density of non-extreme vectors). The density of
extreme vectors is thus higher than is obtained when select-
ing every other one of the highest-magnitude vectors until
quantity (numVecs) of exemplar vectors is selected (as in
process block 755). Thus, in a fifth iteration, iterative
exemplar vector reselection method 700 selects a set of
vectors that are highest ranked by magnitude and that have
both even-numbered indexes and odd-numbered indexes to
be the exemplar vectors. Processing then proceeds to pro-
cess block 765.

[0127] At process block 765 the count of iterations count
is incremented, for example increased by 1. Processing then
returns to process block 715 to reiterate subsequent steps
with the re-selected exemplar vectors.

[0128] Experimentation has validated that, in general, the
U-shape of dMCF becomes iteratively flatter over the fore-
going the iterations. Selection of exemplar vectors as
described herein so as to flatten the U-shape of the absolute
value of residuals during ML model testing results in much
improved prognostic accuracy of ML anomaly detection
models near the extrema of operational distributions.

Multivariate ML, Anomaly Detection

[0129] In general, multivariate ML modeling techniques
used for ML anomaly detection predict or estimate what
each signal should be or is expected to be based on the other
signals in the database. The predicted signal may be referred
to as the “estimate”. A multivariate ML, anomaly detection
model is used to make the predictions or estimates for
individual variables based on the values provided for other
variables. For example, for Signal 1 in a database of N
signals, the multivariate ML, anomaly detection model will
compute an estimate for Signal 1 using signals 2 through N.
[0130] In one embodiment, the ML anomaly detection
model may be a non-linear non-parametric (NLNP) regres-
sion algorithm used for multivariate anomaly detection.
Such NLNP regression algorithms include auto-associative
kernel regression (AAKR), and similarity-based modeling
(SBM) such as the multivariate state estimation technique
(MSET) (including Oracle’s proprietary Multivariate State
Estimation Technique (MSET2)). In one embodiment, the
ML model may be another form of algorithm used for
multivariate anomaly detection, such as a neural network
(NN), Support Vector Machine (SVM), or Linear Regression
(LR). In one embodiment, the inverse-density exemplar
selection systems and methods described herein may be used
to improve prognostic accuracy for the aforementioned
algorithms.

[0131] The ML anomaly detection model is trained to
produce estimates of what the values of variables should be
based on training with a set of exemplar vectors that
represent normal or correct operation of a monitored asset.
To train the ML anomaly detection model, the exemplar
vectors are provided in turn to the ML anomaly detection
model. An exemplar vector includes one value for each
variable of the ML, anomaly detection model, one value from
each signal of a set, collection, or database of time series
signals at one time point. A configuration of correlation
patterns between the variables of the ML anomaly detection
model is automatically adjusted based on the values so as to
cause the ML anomaly detection model to produce accurate
estimates for each variable based on inputs to other vari-
ables. Sufficient accuracy of estimates to conclude the ML
anomaly detection model to be sufficiently trained may be
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determined by residuals being minimized below a pre-
configured training threshold. At the completion of training,
the ML anomaly detection model has learned correlation
patterns between variables that indicate that the monitored
system is operating normally or correctly.

[0132] Following training, the ML anomaly detection
model may be used to monitor vectors of signal values.
Subtracting an actual, measured value for each signal from
a corresponding estimate gives the residuals or differences
between the values of the signal and estimate. Where there
is an anomaly in a signal, the measured signal value departs
from the estimated signal value. This causes the residuals to
increase, triggering an anomaly alarm. Thus, the residuals
are used to detect such anomalies where one or more of the
residuals indicates such a departure, for example by becom-
ing consistently excessively large.

[0133] For example, the presence of an anomaly may be
detected by a sequential probability ratio test (SPRT) analy-
sis of the residuals. The SPRT calculates a cumulative sum
of the log-likelihood ratio for each successive residual
between an actual value for a signal and an estimated value
for the signal, and compares the cumulative sum against a
threshold value indicating anomalous deviation. Where the
threshold is crossed, an anomaly is detected, and an alert
indicating the anomaly may be generated.

[0134] Inone embodiment, an electronic alert is generated
to indicate when the presence of an anomaly has been
detected in the activity of a monitored asset. In one embodi-
ment, the electronic alert is generated by composing and
transmitting a computer-readable message. The computer
readable message may include content describing the
anomalous activity, such as time point at which the anoma-
lous activity occurred, as well as signal descriptions and
associated values at the time point and/or leading up to the
time point. The computer readable message may also
describe other information such as locations or operator
profiles for the asset being monitored by the trained ML
anomaly detection model. In one embodiment, an electronic
alert may be generated and sent in response to an initial
detection of anomalous activity. In one embodiment, a
continual stream of electronic alerts may be generated and
sent beginning with the initial detection of anomalous activ-
ity and continuing while the anomalous activity continues.
The electronic alert may be composed and then transmitted
for subsequent presentation on a display or other action.
[0135] In one embodiment, the electronic alert is a mes-
sage that is configured to be transmitted over a network,
such as a wired network, a cellular telephone network, wi-fi
network, or other communications infrastructure. The elec-
tronic alert may be configured to be read by a computing
device. The electronic alert may be configured as a request
(such as a REST request) used to trigger initiation of a
function in response to detection of the anomalous activity.
The electronic alert may be presented in a user interface such
as a graphical user interface (GUI) by extracting the content
of the electronic alert by a REST API that has received the
electronic alert.

[0136] In one embodiment, the detection of the anomalous
activity and generation of alerts may be completed live, in
real-time (or near real-time) so as to generate the electronic
alert at a time substantially immediately following the
occurrence of the anomalous activity. In one embodiment, as
used herein “real-time” refers to substantially immediate
operation that keeps pace with a throughput of a stream of
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data. In one embodiment, real-time operations are subject
only to a minimal delay or latency that is acceptable in the
context of live surveillance of an asset, which may vary
based on the nature of the surveilled asset. In one embodi-
ment, the detection of the anomalous activity and generation
of the electronic alert may be performed at a later period in
time in one or more batches.

Cloud or Enterprise Embodiments

[0137] In one embodiment, the present system (such as
inverse-density exemplar selection system 100) is a com-
puting/data processing system including a computing appli-
cation or collection of distributed computing applications for
access and use by other client computing devices that
communicate with the present system over a network. In one
embodiment, inverse-density exemplar selection system 100
is a component of a time series data service that is config-
ured to gather, serve, and execute operations on time series
data. The applications and computing system may be con-
figured to operate with or be implemented as a cloud-based
network computing system, an infrastructure-as-a-service
(IAAS), platform-as-a-service (PAAS), or software-as-a-
service (SAAS) architecture, or other type of networked
computing solution. In one embodiment the present system
provides at least one or more of the functions disclosed
herein and a graphical user interface to access and operate
the functions. In one embodiment, inverse-density exemplar
selection system 100 is a centralized server-side application
that provides at least the functions disclosed herein and that
is accessed by many users by way of computing devices/
terminals communicating with the computers of inverse-
density exemplar selection system 100 (functioning as one
or more servers) over a computer network. In one embodi-
ment inverse-density exemplar selection system 100 may be
implemented by a server or other computing device config-
ured with hardware and software to implement the functions
and features described herein.

[0138] In one embodiment, the components of inverse-
density exemplar selection system 100 may be implemented
as sets of one or more software modules executed by one or
more computing devices specially configured for such
execution. In one embodiment, the components of inverse-
density exemplar selection system 100 are implemented on
one or more hardware computing devices or hosts intercon-
nected by a data network. For example, the components of
inverse-density exemplar selection system 100 may be
executed by network-connected computing devices of one or
more computer hardware shapes, such as central processing
unit (CPU) or general-purpose shapes, dense input/output
(I/0) shapes, graphics processing unit (GPU) shapes, and
high-performance computing (HPC) shapes.

[0139] In one embodiment, the components of inverse-
density exemplar selection system 100 intercommunicate by
electronic messages or signals. These electronic messages or
signals may be configured as calls to functions or procedures
that access the features or data of the component, such as for
example application programming interface (API) calls. In
one embodiment, these electronic messages or signals are
sent between hosts in a format compatible with transmission
control protocol/internet protocol (TCP/IP) or other com-
puter networking protocol. Components of inverse-density
exemplar selection system 100 may (i) generate or compose
an electronic message or signal to issue a command or
request to another component, (ii) transmit the message or
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signal to other components of inverse-density exemplar
selection system 100, (iii) parse the content of an electronic
message or signal received to identify commands or requests
that the component can perform, and (iv) in response to
identifying the command or request, automatically perform
or execute the command or request. The electronic messages
or signals may include queries against databases. The que-
ries may be composed and executed in query languages
compatible with the database and executed in a runtime
environment compatible with the query language.

[0140] In one embodiment, remote computing systems
may access information or applications provided by inverse-
density exemplar selection system 100, for example through
a web interface server. In one embodiment, the remote
computing system may send requests to and receive
responses from inverse-density exemplar selection system
100. In one example, access to the information or applica-
tions may be effected through use of a web browser on a
personal computer or mobile device. In one example, com-
munications exchanged with inverse-density exemplar
selection system 100 may take the form of remote repre-
sentational state transfer (REST) requests using JavaScript
object notation (JSON) as the data interchange format for
example, or simple object access protocol (SOAP) requests
to and from XML servers. The REST or SOAP requests may
include API calls to components of inverse-density exemplar
selection system 100.

Software Module Embodiments

[0141] In general, software instructions are designed to be
executed by one or more suitably programmed processors
accessing memory. Software instructions may include, for
example, computer-executable code and source code that
may be compiled into computer-executable code. These
software instructions may also include instructions written
in an interpreted programming language, such as a scripting
language.

[0142] In a complex system, such instructions may be
arranged into program modules with each such module
performing a specific task, process, function, or operation.
The entire set of modules may be controlled or coordinated
in their operation by an operating system (OS) or other form
of organizational platform.

[0143] In one embodiment, one or more of the compo-
nents described herein are configured as modules stored in
a non-transitory computer readable medium. The modules
are configured with stored software instructions that when
executed by at least a processor accessing memory or
storage cause the computing device to perform the corre-
sponding function(s) as described herein.

Computing Device Embodiment

[0144] FIG. 12 illustrates an example computing system
1200 that is configured and/or programmed as a special
purpose computing device with one or more of the example
systems and methods described herein, and/or equivalents.
The example computing system 1200 may include a com-
puter 1205 that includes at least one hardware processor
1210, a memory 1215, and input/output ports 1220 operably
connected by a bus 1225. In one example, the computer
1205 may include inverse-density exemplar-selection logic
1230 configured to facilitate increased selection of exemplar
vectors representing extremes of asset activity to increase
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accuracy of ML estimates for extreme activity, similar to
logic, systems methods, and other embodiments shown in
and described with reference to FIGS. 1, 2, and 7-11.
[0145] In different examples, the logic 1230 may be imple-
mented in hardware, a non-transitory computer-readable
medium 1237 with stored instructions, firmware, and/or
combinations thereof. While the logic 1230 is illustrated as
a hardware component attached to the bus 1225, it is to be
appreciated that in other embodiments, the logic 1230 could
be implemented in the processor 1210, stored in memory
1215, or stored in disk 1235.

[0146] In one embodiment, logic 1230 or the computer is
a means (e.g., structure: hardware, non-transitory computer-
readable medium, firmware) for performing the actions
described. In some embodiments, the computing device may
be a server operating in a cloud computing system, a server
configured in a Software as a Service (SaaS) architecture, a
smart phone, laptop, tablet computing device, and so on.
[0147] The means may be implemented, for example, as
an ASIC programmed to increase selection of exemplar
vectors representing extremes of asset activity to increase
accuracy of ML estimates for extreme activity, for example
as shown and described herein. The means may also be
implemented as stored computer executable instructions that
are presented to computer 1205 as data 1240 that are
temporarily stored in memory 1215 and then executed by
processor 1210.

[0148] Logic 1230 may also provide means (e.g., hard-
ware, non-transitory computer-readable medium that stores
executable instructions, firmware) for performing increased
selection of exemplar vectors representing extremes of asset
activity to increase accuracy of ML estimates for extreme
activity, for example as shown and described herein.
[0149] Generally describing an example configuration of
the computer 1205, the processor 1210 may be a variety of
various processors including dual microprocessor and other
multi-processor architectures. A memory 1215 may include
volatile memory and/or non-volatile memory. Non-volatile
memory may include, for example, ROM, PROM, and so
on. Volatile memory may include, for example, RAM,
SRAM, DRAM, and so on.

[0150] A storage disk 1235 may be operably connected to
the computer 1205 via, for example, an input/output (I/O)
interface (e.g., card, device) 1245 and an input/output port
1220 that are controlled by at least an input/output (I/O)
controller 1247. The disk 1235 may be, for example, a
magnetic disk drive, a solid-state drive, a floppy disk drive,
a tape drive, a Zip drive, a flash memory card, a memory
stick, and so on. Furthermore, the disk 1235 may be optical
storage such as a CD-ROM drive, a CD-R drive, a CD-RW
drive, a DVD ROM, and so on. The memory 1215 can store
a process 1250 and/or a data 1240, for example. The disk
1235 and/or the memory 1215 can store an operating system
that controls and allocates resources of the computer 1205.
[0151] The computer 1205 may interact with, control,
and/or be controlled by input/output (I/O) devices via the
input/output (I/O) controller 1247, the I/O interfaces 1245,
and the input/output ports 1220. Input/output devices may
include, for example, one or more displays 1270, printers
1272 (such as inkjet, laser, or 3D printers), audio output
devices 1274 (such as speakers or headphones), text input
devices 1280 (such as keyboards), cursor control devices
1282 for pointing and selection inputs (such as mice, track-
balls, touch screens, joysticks, pointing sticks, electronic
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styluses, electronic pen tablets), audio input devices 1284
(such as microphones or external audio players), video input
devices 1286 (such as video and still cameras, or external
video players), image scanners 1288, video cards (not
shown), disks 1235, network devices 1255, and so on. The
input/output ports 1220 may include, for example, serial
ports, parallel ports, and USB ports.

[0152] The computer 1205 can operate in a network
environment and thus may be connected to the network
devices 1255 via the I/O interfaces 1245, and/or the 1/O
ports 1220. Through the network devices 1255, the com-
puter 1205 may interact with a network 1260. Through the
network, the computer 1205 may be logically connected to
remote computers 1265. Networks with which the computer
1205 may interact include, but are not limited to, a LAN, a
WAN, and other networks.

[0153] In one embodiment, the computer may be con-
nected to sensors 1290 through 1/O ports 1220 or networks
1260 in order to receive information about physical states of
monitored machines, devices, systems, or facilities (collec-
tively referred to as “assets™). In one embodiment, sensors
1290 are configured to monitor physical phenomena occur-
ring in or around an asset. The assets generally include any
type of machinery or facility with components that perform
measurable activities. In one embodiment, sensors 1290 may
be operably connected or affixed to assets or otherwise
configured to detect and monitor physical phenomena occur-
ring in or around the asset. The sensors 1290 may be
network-connected sensors for monitoring any type of
physical phenomena. The network connection of the sensors
1290 and networks 1260 may be wired or wireless.

[0154] In one embodiment, computer 1205 is configured
with logic, such as software modules, to collect readings
from sensors 1290 and store them as observations in a time
series data structure such as a time series database. In one
embodiment, the computer 1205 polls sensors 1290 to
retrieve sensor telemetry readings. In one embodiment, the
sensor telemetry readings may be a time series of vectors
with sensed values for each of sensors 1290. In one embodi-
ment, the computer 1205 passively receives sensor telemetry
readings actively transmitted by sensors 1290. In one
embodiment, the computer 1205 receives one or more
collections, sets, or databases of sensor telemetry readings
previously collected from sensors 1290, for example from
storage 1235 or from remote computers 1265.

Definitions and Other Embodiments

[0155] In another embodiment, the described methods
and/or their equivalents may be implemented with computer
executable instructions. Thus, in one embodiment, a non-
transitory computer readable/storage medium is configured
with stored computer executable instructions of an algo-
rithm/executable application that when executed by a
machine(s) cause the machine(s) (and/or associated compo-
nents) to perform the method. Example machines include
but are not limited to a processor, a computer, a server
operating in a cloud computing system, a server configured
in a Software as a Service (SaaS) architecture, a smart
phone, and so on. In one embodiment, a computing device
is implemented with one or more executable algorithms that
are configured to perform any of the disclosed methods.

[0156] In one or more embodiments, the disclosed meth-
ods or their equivalents are performed by either: computer
hardware configured to perform the method; or computer
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instructions embodied in a module stored in a non-transitory
computer-readable medium where the instructions are con-
figured as an executable algorithm configured to perform the
method when executed by at least a processor of a comput-
ing device.

[0157] While for purposes of simplicity of explanation,
the illustrated methodologies in the figures are shown and
described as a series of blocks of an algorithm, it is to be
appreciated that the methodologies are not limited by the
order of the blocks. Some blocks can occur in different
orders and/or concurrently with other blocks from that
shown and described. Moreover, less than all the illustrated
blocks may be used to implement an example methodology.
Blocks may be combined or separated into multiple actions/
components. Furthermore, additional and/or alternative
methodologies can employ additional actions that are not
illustrated in blocks. The methods described herein are
limited to statutory subject matter under 35 U.S.C § 101.
[0158] The following includes definitions of selected
terms employed herein. The definitions include various
examples and/or forms of components that fall within the
scope of a term and that may be used for implementation.
The examples are not intended to be limiting. Both singular
and plural forms of terms may be within the definitions.
[0159] References to “one embodiment”, “an embodi-
ment”, “one example”, “an example”, and so on, indicate
that the embodiment(s) or example(s) so described may
include a particular feature, structure, characteristic, prop-
erty, element, or limitation, but that not every embodiment
or example necessarily includes that particular feature,
structure, characteristic, property, element or limitation.
Furthermore, repeated use of the phrase “in one embodi-
ment” does not necessarily refer to the same embodiment,
though it may.

[0160] A “data structure”, as used herein, is an organiza-
tion of data in a computing system that is stored in a
memory, a storage device, or other computerized system. A
data structure may be any one of, for example, a data field,
a data file, a data array, a data record, a database, a data table,
a graph, a tree, a linked list, and so on. A data structure may
be formed from and contain many other data structures (e.g.,
a database includes many data records). Other examples of
data structures are possible as well, in accordance with other
embodiments.

[0161] “Computer-readable medium” or “computer stor-
age medium”, as used herein, refers to a non-transitory
medium that stores instructions and/or data configured to
perform one or more of the disclosed functions when
executed. Data may function as instructions in some
embodiments. A computer-readable medium may take
forms, including, but not limited to, non-volatile media, and
volatile media. Non-volatile media may include, for
example, optical disks, magnetic disks, and so on. Volatile
media may include, for example, semiconductor memories,
dynamic memory, and so on. Common forms of a computer-
readable medium may include, but are not limited to, a
floppy disk, a flexible disk, a hard disk, a magnetic tape,
other magnetic medium, an application specific integrated
circuit (ASIC), a programmable logic device, a compact disk
(CD), other optical medium, a random access memory
(RAM), a read only memory (ROM), a memory chip or card,
amemory stick, solid state storage device (SSD), flash drive,
and other media from which a computer, a processor or other
electronic device can function with. Each type of media, if
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selected for implementation in one embodiment, may
include stored instructions of an algorithm configured to
perform one or more of the disclosed and/or claimed func-
tions. Computer-readable media described herein are limited
to statutory subject matter under 35 U.S.C § 101.

[0162] “Logic”, as used herein, represents a component
that is implemented with computer or electrical hardware, a
non-transitory medium with stored instructions of an execut-
able application or program module, and/or combinations of
these to perform any of the functions or actions as disclosed
herein, and/or to cause a function or action from another
logic, method, and/or system to be performed as disclosed
herein. Equivalent logic may include firmware, a micropro-
cessor programmed with an algorithm, a discrete logic (e.g.,
ASIC), at least one circuit, an analog circuit, a digital circuit,
a programmed logic device, a memory device containing
instructions of an algorithm, and so on, any of which may be
configured to perform one or more of the disclosed func-
tions. In one embodiment, logic may include one or more
gates, combinations of gates, or other circuit components
configured to perform one or more of the disclosed func-
tions. Where multiple logics are described, it may be pos-
sible to incorporate the multiple logics into one logic.
Similarly, where a single logic is described, it may be
possible to distribute that single logic between multiple
logics. In one embodiment, one or more of these logics are
corresponding structure associated with performing the dis-
closed and/or claimed functions. Choice of which type of
logic to implement may be based on desired system condi-
tions or specifications. For example, if greater speed is a
consideration, then hardware would be selected to imple-
ment functions. If a lower cost is a consideration, then stored
instructions/executable application would be selected to
implement the functions. Logic is limited to statutory sub-
ject matter under 35 U.S.C. § 101.

[0163] An “operable connection”, or a connection by
which entities are “operably connected”, is one in which
signals, physical communications, and/or logical communi-
cations may be sent and/or received. An operable connection
may include a physical interface, an electrical interface,
and/or a data interface. An operable connection may include
differing combinations of interfaces and/or connections suf-
ficient to allow operable control. For example, two entities
can be operably connected to communicate signals to each
other directly or through one or more intermediate entities
(e.g., processor, operating system, logic, non-transitory
computer-readable medium). Logical and/or physical com-
munication channels can be used to create an operable
connection.

[0164] “User”, as used herein, includes but is not limited
to one or more persons, computers or other devices, or
combinations of these.

[0165] While the disclosed embodiments have been illus-
trated and described in considerable detail, it is not the
intention to restrict or in any way limit the scope of the
appended claims to such detail. It is, of course, not possible
to describe every conceivable combination of components or
methodologies for purposes of describing the various
aspects of the subject matter. Therefore, the disclosure is not
limited to the specific details or the illustrative examples
shown and described. Thus, this disclosure is intended to
embrace alterations, modifications, and variations that fall
within the scope of the appended claims, which satisty the
statutory subject matter requirements of 35 U.S.C. § 101.
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[0166] To the extent that the term “includes” or “includ-
ing” is employed in the detailed description or the claims, it
is intended to be inclusive in a manner similar to the term
“comprising” as that term is interpreted when employed as
a transitional word in a claim.

[0167] To the extent that the term “or” is used in the
detailed description or claims (e.g., A or B) it is intended to
mean “A or B or both”. When the applicants intend to
indicate “only A or B but not both” then the phrase “only A
or B but not both” will be used. Thus, use of the term “or”
herein is the inclusive, and not the exclusive use.

What is claimed is:

1. A computer-implemented method, comprising:

determining magnitudes of vectors from a set of time

series readings collected from a plurality of sensors;

selecting exemplar vectors from the set of time series

readings to train a machine learning model to detect

anomalies by:

increasing a first density of extreme vectors that are
within tails of a distribution of amplitudes for the
time series readings based on the magnitudes of the
vectors;

decreasing a second density of non-extreme vectors
that are within a head of the distribution based on the
magnitudes of the vectors; and

training the machine learning model with the selected
exemplar vectors;

wherein the increasing, decreasing, and training are per-

formed repetitively until the machine learning model
generates residuals within a threshold.

2. The computer-implemented method of claim 1, further
comprising, repetitively:

generating the residuals with the trained machine learning

model for test vectors selected from the set of time
series readings; and
analyzing the residuals to determine whether the residuals
are within the threshold, wherein the threshold has a
pre-set value that indicates that accuracy of the trained
machine learning model is consistent between the test
vectors that are selected from the tails of the distribu-
tion and the test vectors that are selected from the head
of the distribution.
3. The computer-implemented method of claim 2,
wherein analyzing the residuals to determine whether the
residuals are within the threshold further comprises:
generating a plot of the residuals against corresponding
actual values for which the residuals were generated;

fitting a spline curve to the plot of the residuals, wherein
fitting the spline curve generates fitted residuals on the
spline curve;

generating a mean cumulative function of the fitted

residuals that are on the spline curve;

generating a derivative of the mean cumulative function;

finding a maximum value of the derivative of the mean

cumulative function and a minimum value of the
derivative of the mean cumulative function; and
determining whether a ratio of the maximum value to the
minimum value is below the pre-set value to determine
whether the residuals are within the threshold.

4. The computer-implemented method of claim 3, further
comprising, before fitting the spline curve to the plot of the
residuals, filtering the residuals to reduce the residuals in the
plot by a greater extent at the middle of the plot and by a
lesser extent at an edge of the plot.
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5. The computer-implemented method of claim 1, further
comprising determining the magnitudes of the vectors from
the set of time series readings by calculating the [.2 norms
of the vectors, wherein the magnitudes of the vectors are the
L2 norms of the vectors.

6. The computer-implemented method of claim 1,
wherein selecting the exemplar vectors further comprises:

in a first iteration, selecting a first set of vectors that are

lowest ranked by magnitude and that have both even-
numbered indexes and odd-numbered indexes to be the
exemplar vectors;

in a second iteration, selecting a second set of vectors that

are lowest ranked by magnitude and that have one of
either even-numbered indexes or odd-numbered
indexes to be the exemplar vectors;

in a third iteration, selecting a third set of vectors that are

in a middle range of magnitude and that have one of
either even-numbered indexes or odd-numbered
indexes to be the exemplar vectors;

in a fourth iteration, selecting a fourth set of vectors that

are highest ranked by magnitude and that have one of
either even-numbered indexes or odd-numbered
indexes to be the exemplar vectors; and

in a fifth iteration, selecting a fifth set of vectors that are

highest ranked by magnitude and that have both even-
numbered indexes and odd-numbered indexes to be the
exemplar vectors.

7. The computer-implemented method of claim 1,
wherein increasing the first density of the extreme vectors
that are within the tails of the distribution and decreasing the
second density of the non-extreme vectors that are within the
head of the distribution further comprises selecting a pro-
gressively larger proportion of extreme vectors to be
included in the exemplar vectors.

8. A non-transitory computer-readable medium that
includes stored thereon computer-executable instructions
that when executed by at least a processor of a computer
system cause the computer system to:

determine magnitudes of vectors from a set of time series

readings collected from a plurality of sensors;

select exemplar vectors from the set of time series read-

ings to train a machine learning model to detect anoma-

lies by repetitively:

increasing a first density of extreme vectors that are
within tails of a distribution of amplitudes for the
time series readings based on the magnitudes of the
vectors;

decreasing a second density of non-extreme vectors
that are within a head of the distribution based on the
magnitudes of the vectors; and

testing the machine learning model trained with the
selected exemplar vectors to determine whether the
machine learning model generates residuals within a
threshold in order to reduce false or missed detection
of the extreme vectors as anomalous by the machine
learning model.

9. The non-transitory computer-readable medium of claim
8, further comprising instructions that when executed by at
least the processor cause the computer system to, repeti-
tively:

train the machine learning model with the selected exem-

plar vectors;
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generate the residuals with the trained machine learning
model for test vectors selected from the set of time
series readings; and

analyze the residuals to determine whether the residuals

are within the threshold, wherein the threshold has a
pre-set value that indicates that accuracy of the trained
machine learning model is consistent between the test
vectors that are selected from the tails of the distribu-
tion and the test vectors that are selected from the head
of the distribution.

10. The non-transitory computer-readable medium of
claim 9, wherein the instructions to analyze the residuals to
determine whether the residuals are within the threshold
further cause the computer system to:

generate a plot of the residuals against corresponding

actual values for which the residuals were generated;
fit a spline curve to the plot of the residuals;

generate a mean cumulative function of fitted residuals

that are on the spline curve;

generate a derivative of the mean cumulative function;

find a maximum value of the derivative of the mean

cumulative function and a minimum value of the
derivative of the mean cumulative function; and
determine whether a ratio of the maximum value to the
minimum value is below the pre-set value to determine
whether the residuals are within the threshold.

11. The non-transitory computer-readable medium of
claim 10, further comprising instructions that when executed
by at least the processor cause the computer system to,
before fitting the spline curve to the plot of the residuals,
filter the residuals to reduce the residuals in the plot by a
greater extent at the middle of the plot and by a lesser extent
at an edge of the plot.

12. The non-transitory computer-readable medium of
claim 8, further comprising instructions that when executed
by at least the processor cause the computer system to
determine the magnitudes of the vectors from the set of time
series readings by calculating the 1.2 norms of the vectors,
wherein the magnitudes of the vectors are the [.2 norms of
the vectors.

13. The non-transitory computer-readable medium of
claim 8, wherein the instructions to select the exemplar
vectors further cause the computer system to:

in a first iteration, select a first set of vectors that are

lowest ranked by magnitude and that have both even-
numbered indexes and odd-numbered indexes to be the
exemplar vectors;

in a second iteration, select a second set of vectors that are

lowest ranked by magnitude and that have one of either
even-numbered indexes or odd-numbered indexes to be
the exemplar vectors;

in a third iteration, select a third set of vectors that are in

a middle range of magnitude and that have one of either
even-numbered indexes or odd-numbered indexes to be
the exemplar vectors;

in a fourth iteration, select a fourth set of vectors that are

highest ranked by magnitude and that have one of
either even-numbered indexes or odd-numbered
indexes to be the exemplar vectors; and

in a fifth iteration, select a fifth set of vectors that are

highest ranked by magnitude and that have both even-
numbered indexes and odd-numbered indexes to be the
exemplar vectors.



US 2024/0303530 Al

14. The non-transitory computer-readable medium of
claim 8, wherein the instructions for increasing the first
density of the extreme vectors that are within the tails of the
distribution and decreasing the second density of the non-
extreme vectors that are within the head of the distribution
further cause the computing system to select a progressively
larger proportion of extreme vectors to be included in the
exemplar vectors.

15. A computing system, comprising:

at least one processor connected to at least one memory;

a non-transitory computer readable medium including

instructions stored therecon that when executed by at

least the processor cause the computing system to:

determine magnitudes of vectors from a set of time
series readings collected from a plurality of sensors;

select exemplar vectors from the set of time series
readings that have a first density of extreme vectors
and a second density of non-extreme vectors,
wherein the extreme vectors are within tails of a
distribution of amplitudes for the time series read-
ings based on the magnitudes of the vectors, and
wherein the non-extreme vectors are within a head of
the distribution of amplitudes based on the magni-
tude of the vectors;

increase the first density of the extreme vectors in the
selected exemplar vectors;

decrease the second density of the non-extreme vectors
in the selected exemplar vectors;

train the machine learning model to detect anomalies
based on the selected exemplar vectors; and

analyze residuals generated from test vectors by the
trained machine learning model to determine
whether the residuals are within a threshold.

16. The computing system of claim 15, wherein the
instructions further cause the computing system to repeat
performing the increasing, decreasing, training, and analysis
until the machine learning model generates residuals within
the threshold, wherein the threshold has a pre-set value that
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indicates that accuracy of the trained machine learning
model is consistent between the test vectors that are selected
from the tails of the distribution and the test vectors that are
selected from the head of the distribution.

17. The computing system of claim 15, wherein the
instructions to analyze the residuals further cause the com-
puting system to:

generate a plot of the residuals against corresponding

actual values for which the residuals were generated;
fit a spline curve to the plot of the residuals;

generate a mean cumulative function of fitted residuals

that are included on the spline curve by the fitting of the
spline curve;

generate a derivative of the mean cumulative function;

find a maximum value of the derivative of the mean

cumulative function and a minimum value of the
derivative of the mean cumulative function; and
determine whether a ratio of the maximum value to the
minimum value is below the pre-set value to determine
whether the residuals are within the threshold.

18. The computing system of claim 17, wherein the
instructions further cause the computing system to, before
fitting the spline curve to the plot of the residuals, filter the
residuals to reduce the residuals in the plot by a greater
extent at the middle of the plot and by a lesser extent at an
edge of the plot.

19. The computing system of claim 15, wherein the
instructions further cause the computing system to deter-
mine the magnitudes of the vectors from the set of time
series readings by calculating the 1.2 norms of the vectors,
wherein the magnitudes of the vectors are the [.2 norms of
the vectors.

20. The computing system of claim 15, wherein the
instructions to select the exemplar vectors further cause the
computing system to iteratively select a progressively larger
proportion of extreme vectors to be included in the exemplar
vectors.



