US 20240330194A1

a9y United States

a2y Patent Application Publication (o) Pub. No.: US 2024/0330194 A1
Oct. 3, 2024

Brewer et al.

(43) Pub. Date:

(54) EVICTING A CACHE LINE WITH PENDING
CONTROL REQUEST

(71) Applicant: Micron Technology, Inc., Boise, ID
(US)

(72) Inventors: Tony M. Brewer, Plano, TX (US);
Dean E. Walker, Allen, TX (US)

(21) Appl. No.: 18/741,235

(22) Filed: Jun. 12, 2024
Related U.S. Application Data

(63) Continuation of application No. 17/823,307, filed on
Aug. 30, 2022, now Pat. No. 12,013,788.

Publication Classification

(52) US.CL

GO6F 12/0891 (2013.01); GOGF 2212/60

CPC ...
(2013.01)

(57) ABSTRACT

System and techniques for evicting a cache line with pend-
ing control request are described herein. A memory
request—that includes an address corresponding to a set of
cache lines—can be received. A determination can be made
that a cache line of the set of cache lines will be evicted to
process the memory request. Another determination can be
made that a control request has been made to a host from the
memory device and that the control request pending when it
is determined that the cache line will be evicted. Here, a
counter corresponding to the set of cache lines can be
incremented (e.g., by one) to track the pending control
request in face of eviction. Then, the cache line can be

(51) Int. CL
GOG6F 12/0891 (2006.01) evicted.
150
SECOND MEWORY
DEVICE
7y
MEMORY SYSTEM. 55— TOWIC PROCESSING FIRSTMERORY 145
125 — CIRCUTTRY DEVICE
30 135
A A v - 149
CONTROLLER le»| BUFRER |e»l CACHE
Sy 3 -
105~
115)
N HOSTMEMORY ;
110
PROCESSOR ;
HOST
Vol O oo oomm o
7' | O mn oo
L} i : 4 Y
B s A4 B
b 130 ~— - 140
ﬂ - 135 i

Patent Application Publication Oct. 3,2024 Sheet 1 of 9 US 2024/0330194 A1

150
SECOND MEWORY
DEVICE
A
Y
MEMORY SYSTEM 155 — [KTOMIC PROCESSING FRSTHERORT |~ 145
125 CIRCUITRY DEVICE
Yo 1B 3 "
CONTROLLER |e»{ BUFER |e»| CACHE
— -
105 —
115 = \‘\ ,/l
[\ HOSTMEMORY p
110 —
\ PROCESSOR
HOST

U oo oo o

3 l D PHEEL TERHEEY
J [S
125~ s | -
130 140 [
e EU
150

FIG. 1

US 2024/0330194 A1l

¢

RONIHDINIG |_gp

Oct. 3,2024 Sheet 2 of 9

Patent Application Publication

7 DIAIGISOH
— —a —i1z
(©)1IA1¢
DT 0l 40SS10044
v [Hlﬁ H 1
AULINDYID HOLVHATIIOV
LD KLINDYE) JHOWAW < > KON
OI'IX0/30d NV IONTHIHOD JSOH
MOWIW TVY O ¥ ¥ 5 -)
H vz] NOWIN TV
< — — ¥ v v —
3 EU/
4 TVI0T TX)/AD4 A V90T T/ -
, Ald m_wn_) AHd A)d ISOH /
h
01— - _ai

—
- .
3 ¢ il w
T4l
2 v T DT
04N DTy
S i 100K vy m__[*
m VIVE e g (] v e
- 10V ope — ore —| W — IO | 004N
= gog— e — e - gzg
v mmm Y . ,ME, AEB
o g M
- TLM L0 - ONI 0 04N 034 WAWTY)
= Wl e < n P W+IN e %)
- 0w D m_m%a - « J
g w W o | |7 L /Ew « ,_gﬂ_/_mu
= _ JOWY INOTTLNAXT ¢ ¢ ot 01¢
m | LW 310N] 30N 0T M) _ no .
n, _ {034 O le LT AULRY
m | ITVITE T] no <l
[0RO IS e A0l
£ | IHSHdNAGAVANOLE |
E q1g— _ c ~
= MU] e T et
& _ 00 454 QVa]
= _ ————» SIDNAAIISH)] ¢
g oe— | 00 O34 W [
5 > CIOMIHGAVAN | ¢
2 Z 40D I R T —
= e > S WHCAVAID
N OWY INOT ot L
= c9¢
[P
5
=W

Patent Application Publication Oct. 3,2024 Sheet 4 of 9 US 2024/0330194 A1

oy
— 15
CACHE LINE WAY 0 TAG + DATA
CACHE LINE wyimcspam [
05— CACHESETO : s
(ADDRESS 00XXXX) CACHE LINE WAYZTAG+DATA [
— 440
CACHE LINE WAY 3 TAG « DATA
CACHE LINE WAY 0 TAG + DATA
M- oEST CACHE LINE WAY 1 TAG + DATA
(ADRESS 01XXAX) CACHE LINE WAY 2 TAG + DATA
CACHE LINE WAY 3 TAG + DATA
CACHE LINE WAY 0 TAG + DATA
RO R CACHE LINE WAY 1 TAG + DATA
(ADDRESS 10XXXX) CACHE LINE WAY 2 TAG + DATA
CACHE LINE WAY 3 TAG + DATA
CACHE LINE WAY 0 TAG + DATA
PP - CACHE LINE WAY 1 TAG + DATA
(ADDRESS 11XXXX) CACHE LINE WAY 2 TAG + DATA
CACHE LINE WAY 3 TAG + DATA

FIG. 4

Patent Application Publication

Oct. 3,2024 Sheet 5 of 9

US 2024/0330194 A1l

p— 500
HEAD POINTER 1 > s
REQUEST 1 -
TAIL POINTER 1 >
|~ 510
HEAD POINTER 2 > 515
REQUEST 2 a
TAIL POINTER 2 >
HEAD POINTER N > -
REQUEST N -
TAIL POINTER N >
p—525
— 535
CACHELINEWAY 0 TAG | [HEAD PTR. 1, TAILPTR. 1]
— 5140
CACHELINEWAY 1 TAG | [HEAD PTR 2, TAILPTR. 2]
CACHE SET
— 515
CACHELINEWAYNTAG | [HEAD PTR.N, TAIL PTR. N]

FIG.5

Patent Application Publication

Oct. 3,2024 Sheet 6 of 9

US 2024/0330194 A1l

600
605 I
N
. CACHE SET
"N COUNTER — 610
o0 (HEAD PTR. 1, TAILPTR.1]
TN HEAD PTR.I, TAILPTR. I CACHE LINE WAY 0 TAG |~ 615
625 [HEAD PTR. E, TALL PTR.E]
™ [HEAD PTR.E, TAIL PTR. E]
—630
EXTERNAL
HEAD POINTER E > — 635
REQUEST A
TAIL POINTER E >
———HEAD POINTER E-N 640
/—
REQUEST N
TAIL POINTER E ”
INTERNAL
HEAD POINTER I
650
REQUEST Z a
TALL POINTER | >
HEAD POINTER M -
f_'
REQUEST M
TAIL POINTER I-M >

FIG. 6

Patent Application Publication

Oct. 3,2024 Sheet 7 of 9

765 T }
=L RECEIVE REQUEST FOR CACHE SET J<

US 2024/0330194 A1l

YES

75~

ADD REQUEST TO CACHE WAY
QUELE

15 WAY EVICTED?

¥ES
|

INCREMENT COUNTER

B~ 4

BLOCK PROCESSING OF REQUESTS
FROM CACHE SET QUEUE

IS COUNTER ZERO?

FIG. 7

NO

135 —

ADD REQUEST TO CACHE SET QUEUE

ISRECALL COMPLETE?

YES

W |
DECREMENT COUNTER

I~ 4

ENABLING PROCESSING OF CACHE
SET QUEUE IF COUNTER IS ZERO

Patent Application Publication Oct. 3,2024 Sheet 8 of 9 US 2024/0330194 A1

p— 800

805
) RECEIVE FIRST MEMORY OPERATION FROM HOST

819
) DETERMINE THAT CACHE LINE OF CACHE SET WILL BE EVICTED

815
Y DETERMINE THAT A CONTROL REQUEST IS PENDING FOR THE CACHE LINE

820
) INCREMENT COUNTER FOR CACHE SET

825
) EVICT CACHE LINE

FIG. 8

Patent Application Publication Oct. 3,2024 Sheet 9 of 9 US 2024/0330194 A1

P 300
s 902 930
‘/ \<~ 910
PROCESSOR [
9
/e « > DISPLAY DEVICE
INSTRUCTIONS
912
o 4
i 7
| MAIN MEMORY ' P > INPUT DEVICE
} 1
i / < >
| INSTRUCTIONS ! 914
| i /7
{ {
i 906 §
* [’ < » UINAVIGATION DEVICE
| " < >
! STATIC MEMORY N
i T
! b 916
| INSTRUCTIONS |
* | g -
| 98 ! =
| 1 =
! ya | L .
| MASS STORAGE o
! 1T
gl . SENSOR(S)
{ Rk
{ / i
, INSTRUCTIONS ,
\ t— _________ Vi
920
922
- S~ 918
NETWORK INTERFACE DEVICE |
»| SIGNAL GENERATION DEVICE
926 / =
< > OUTPUT CONTROLLER

FIG. 9

US 2024/0330194 Al

EVICTING A CACHE LINE WITH PENDING
CONTROL REQUEST

PRIORITY APPLICATION

[0001] This application is a continuation of U.S. applica-
tion Ser. No. 17/823,307, filed Aug. 30, 2022, which is
incorporated herein by reference in its entirety.

STATEMENT REGARDING GOVERNMENT
SUPPORT

[0002] This invention was made with Government support
under Agreement No. DE-NA0003525, awarded by SAN-
DIA II. The Government has certain rights in the invention.

TECHNICAL FIELD

[0003] Embodiments described herein generally relate to
computer memory and more specifically to evicting a cache
line with pending control request.

BACKGROUND

[0004] Memory devices for computers or other electronic
devices can be categorized as volatile and non-volatile
memory. Volatile memory uses power to maintain its data
(e.g., is periodically refreshed), and includes random-access
memory (RAM), dynamic random-access memory
(DRAM), or synchronous dynamic random-access memory
(SDRAM), among others. Non-volatile memory generally
retains stored data in the absence of a power source, and
includes flash memory, read-only memory (ROM), electri-
cally erasable programmable ROM (EEPROM), static RAM
(SRAM), erasable programmable ROM (EPROM), resis-
tance variable memory, phase-change memory, storage class
memory, resistive random-access memory (RRAM), and
magnetoresistive random-access memory (MRAM), among
others. Persistent memory is an architectural property of the
system where the data stored in the media is available after
system reset or power-cycling. In an example, non-volatile
memory media can be used to build a system with a
persistent memory model.

[0005] Memory devices can be coupled to a host (e.g., a
host computing device) to store data, commands, or instruc-
tions for use by the host while the computer or electronic
system is operating. For example, data, commands, or
instructions can be transferred between the host and the
memory device during operation of a computing or other
electronic system.

[0006] Various protocols or standards can be applied to
facilitate communication between a host and one or more
other devices such as memory buffers, accelerators, or other
input/output devices. In an example, an unordered protocol,
such as Compute Express Link (CXL), can be used to
provide high-bandwidth and low-latency connectivity.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] Inthe drawings, which are not necessarily drawn to
scale, like numerals can describe similar components in
different views. Like numerals having different letter suf-
fixes can represent different instances of similar compo-
nents. The drawings illustrate generally, by way of example,
but not by way of limitation, various embodiments discussed
in the present document.

Oct. 3, 2024

[0008] FIG. 1 illustrates an example of an environment
including a system for evicting a cache line with pending
control request, according to an embodiment.

[0009] FIG. 2 illustrates an example of a host connected to
a CXL device, according to an embodiment.

[0010] FIG. 3 illustrates example components of a
memory device, according to an embodiment.

[0011] FIG. 4 illustrates an example of an associative
cache, according to an embodiment.

[0012] FIG. 5 illustrates an example of a memory includ-
ing several cache way defer queues and cache tags pointing
to the defer queues, according to an embodiment.

[0013] FIG. 6 illustrates an example of a cache set refer-
ence to cache-set defer queues divided by which interface
requests were received, according to an embodiment.
[0014] FIG. 7 illustrates an example of a processing flow
for evicting a cache line, according to an embodiment.
[0015] FIG. 8 illustrates a flow diagram of an example of
a method for evicting a cache line with pending control
request, according to an embodiment.

[0016] FIG. 9 illustrates an example of a machine with
which one or more embodiments can be implemented.

DETAILED DESCRIPTION

[0017] Compute Express Link (CXL) is an open standard
interconnect configured for high-bandwidth, low-latency
connectivity between host devices and other devices such as
accelerators, memory buffers, or smart input-output (1/O)
devices. CXL was designed to facilitate high-performance
computational workloads by supporting heterogeneous pro-
cessing and memory systems. CXL provides memory
semantics and mechanisms for cache coherency on top of
PCI Express (PCle)-based /O semantics for optimized
performance.

[0018] CXL can be used in applications such as artificial
intelligence, machine learning, analytics, cloud infrastruc-
ture, edge computing devices, communication systems, and
elsewhere, to provide flexible connectivity to memory or
accelerators for a host processor platform. Data processing
in such applications can use various scalar, vector, matrix, or
spatial architectures that can be deployed in CPU, GPU,
FPGA, smart NICs, or other accelerators that can be coupled
using a CXL link. Near memory accelerators, in which an
accelerator is collocated with memory, provide low latency
processing while expanding system capabilities.

[0019] CXL supports dynamic multiplexing using a set of
protocols that includes /O (CXL.io, based on PCle), cach-
ing (CXL.cache), and memory (CXL.memory) semantics. In
an example, CXL can be used to maintain a unified, coherent
memory space (e.g., cache coherence) between the CPU
(e.g., a host device or host processor) and any memory
managed (e.g., at) the CXL device. This configuration
enables the CPU and other device to share resources and
operate on the same memory region for higher performance,
reduced data-movement, and reduced software stack com-
plexity. In an example, the CPU is primarily responsible for
maintaining or managing coherency in a CXL environment.
Accordingly, CXL can be leveraged to help reduce device
cost and complexity, as well as overhead traditionally asso-
ciated with coherency across an 1/O link.

[0020] CXL devices that include both memory and an
accelerator can be termed “CXL type-2” devices. Although
the accelerators of such devices can be used by themselves
through the CXL interface, often these accelerators provide

US 2024/0330194 Al

near-memory compute to reduce round-trip latency to a host
processor. In accordance with current CXL standards, CL.X
memory requests (e.g., external requests) take priority over
other requests, such as network-on-chip (NOC) or other
internal requests. This priority requires CXL memory
requests to make forward progress independent of any other
device activity, such as activity by an accelerator. That is, a
CXL memory request cannot block indefinitely waiting for
a non-CXL memory request to complete. Separately man-
aging memory controller workflow with this restriction
when both CXL and non-CXL requests are being made can
be a complex process.

[0021] To address the complexity between CXL (or other
external) requests and accelerator (or other internal
requests), separate processing queues are maintained for
deferred requests. Requests that are not deferred proceed as
soon as they arrive in the memory controller because there
is no resource contention. Thus, in these cases, there is no
opportunity, for example, for an internal request to block the
progress of an external request. However, when resource
contention is present, the request will be deferred until the
contention is resolved. An elegant solution to managing the
different processing priorities of external and internal
requests includes queuing each in separate deferral queues,
whereby priority of the external requests can be easily
maintained by prioritizing extraction of requests from the
external queue. Moreover, order of operations on a memory
address can be maintained by judicious selection of requests
from the external and internal queues all while preventing an
internal request from blocking (e.g., preventing forward
progress on) an external request.

[0022] CXL coherency mechanisms provide control
semantics for cache elements in CXL and host devices. An
issue that can arise involves the time it can take to request
control of a cache line from a host in a CXL device and when
control is granted by the host to the CXL device. For
example, a memory address managed by the CXL device can
be reflected in a cache way of the CXL. memory device as
well as a cache way of a host processor. To modify the cache
way by the CXL device, control of the cache way is
requested from the host processor to enable the host pro-
cessor to perform cache maintenance on the cache managed
by the host processor. This procedure can be called a “recall”
of the cache line, such that control of the cache line is
recalled to the CXL device. The term “bias flip” also
references this procedure as bias flips from the host to the
CXL device upon a successful completion of the procedure.
In an example, the host signifies the exchange of control for
the cache line in CXL meta state of the CLX interface.

[0023] When an internal request specifies a memory line
that is not associated with a current way, a way is evicted.
However, if during the recall to evict the way, an external
request arrives, the line may be evicted immediately as it is
assumed that the host making the external request has
already addressed coherency issues in the cache. Accord-
ingly, a way can be designated for eviction to enable a
CXL.mem (e.g., external memory) request to make forward
progress. If, in a cache set (e.g., a set of cache lines or ways),
all ways are being recalled from the host, then a way with
a pending recall must be evicted to ensure forward progress.
The external request can complete before the pending recall
completes. Then, if a new internal request that matches the
same address is received while the line is waiting the
pending recall, a system unaware of the pending recall may

Oct. 3, 2024

process the new request. In this case, the order of request
processing cannot be guaranteed.

[0024] To address the order of request processing given
the above scenario, a counter associated with each cache set
is maintained to track pending recalls. The counter indicates
the number of ways evicted that were in a pending recall
state. If the counter is greater than zero, then new internal
requests are added to the cache set internal queue. Also, the
cache set internal queue is not processed (e.g., no new
requests are popped) while the counter is greater than zero.
This ensures in-order processing of requests for a memory
line in the presence of evicted pending recall states. Addi-
tional details and examples are provided below.

[0025] FIG. 1 illustrates an example of an environment
including a system for evicting a cache line with pending
control request, according to an embodiment. The system
includes a host device 105 and a memory system 125. The
host device 105 includes processor 110 (e.g., a central
processing unit (CPU)) and host memory 115. In an
example, the host device 105 is, or is part of, a host system
such as a server computer, workstation, personal laptop
computer, a desktop computer, a digital camera, a smart
phone, a memory card reader, or Internet-of-thing enabled
device, among others. The processor 110 can include one or
more processor cores, a system of parallel processors, or
other CPU arrangements.

[0026] The memory system 125 includes a controller 130,
a buffer 135 (e.g., internal state memory), a cache 140, and
a first memory device 145. The first memory device 145 can
include, for example, one or more memory modules (e.g.,
single in-line memory modules, dual in-line memory mod-
ules, etc.). The first memory device 145 can include volatile
memory or non-volatile memory. The first memory device
145 can include a multiple-chip device that comprises one or
multiple different memory types or modules. In an example,
the system includes a second memory device 150 that
interfaces with the memory system 125 and the host device
105.

[0027] The host device 105 can include a system back-
plane and can include a number of processing resources
(e.g., one or more Processors, MiCroprocessors, or some
other type of controlling circuitry). The system can option-
ally include separate integrated circuits for the host device
105, the memory system 125, the controller 130, the buffer
135, the cache 140, the first memory device 145, the second
memory device 150, any one or more of which can comprise
respective chiplets that can be connected and used together.
In an example, the system includes a server system or a
high-performance computing (HPC) system or a portion
thereof. Embodiments of the host device 105 can be imple-
mented in Von Neumann or in non-Von Neumann architec-
tures, which can include one or more components (e.g.,
CPU, ALU, etc.) often associated with a Von Neumann
architecture, or can omit these components.

[0028] In an example, the first memory device 145 can
provide a main memory for the system, or the first memory
device 145 can comprise accessory memory or storage for
use by the system. In an example, the first memory device
145 or the second memory device 150 includes one or more
arrays of memory cells, e.g., volatile or non-volatile memory
cells. The arrays can be flash arrays with a NAND archi-
tecture, for example. Embodiments are not limited to a
particular type of memory device. For instance, the memory

US 2024/0330194 Al

devices can include RAM, ROM, DRAM, SDRAM,
PCRAM, RRAM, and flash memory, among others.

[0029] In embodiments in which the first memory device
145 includes persistent or non-volatile memory, the first
memory device 145 can include a flash memory device such
as a NAND or NOR flash memory device. The first memory
device 145 can include other non-volatile memory devices
such as non-volatile random-access memory devices (e.g.,
NVRAM, ReRAM, FeRAM, MRAM, PCM). Some
memory devices-such as a ferroelectric RAM (FeRAM)
devices that include ferroelectric capacitors-can exhibit hys-
teresis characteristics, such as a 3-D Crosspoint (3D XP)
memory device, or combinations thereof.

[0030] In an example, the interface 120 can include any
type of communication path, bus, interconnect, or the like,
that enables information to be transferred between the
processor 110, or other devices of the host device 105, and
the memory system 125. Non-limiting examples of inter-
faces can include a peripheral component interconnect (PCI)
interface, a peripheral component interconnect express
(PCle) interface, a serial advanced technology attachment
(SATA) interface, a Universal Serial Bus (USB) interface, a
Thunderbolt interface, or a miniature serial advanced tech-
nology attachment (mSATA) interface, among others. In an
example, the interface 120 includes a PCle 5.0 interface that
is compliant with the compute express link (CXL) protocol
standard. Accordingly, in some embodiments, the interface
120 supports transfer speeds of at least 32 GT/s.

[0031] CXL is a high-speed central processing unit
(CPU)-to-device and CPU-to-memory interconnect
designed to enhance compute performance. CXL. maintains
memory coherency between the CPU memory space (e.g.,
the host memory 115 or caches maintained by the processor
110) and memory on attached devices or accelerators (e.g.,
the first memory device 145 or the second memory device
150). This arrangement enables resource sharing at higher
performance, reduced software stack complexity, and lower
overall system cost than other interconnect arrangements.
CXL is an industry open standard interface for high-speed
communications to accelerators that are increasingly used to
complement CPUs in support of emerging data-rich and
compute-intensive applications such as artificial intelligence
and machine learning. The memory system 125 is illustrated
with atomic processing circuitry 155 as an accelerator in
order to perform near-memory operations. In general, the
atomic memory operations (AMOs) performed by the
atomic processing circuitry 155 include such small opera-
tions as incrementing a number at a memory address or
multiply number in two memory addresses, etc. While
AMOs are generally used for such operations, the manipu-
lation of memory is not so restricted. For example, modern
artificial neural network architectures generally involves the
application of small additive or multiplicative operations or
thresholding across vast swaths of artificial neurons.
Because the computations are usually simple, but the data
large, near memory execution of such operations is possible
and beneficial given the illustrated architecture.

[0032] In an example, the controller 130 comprises a
media controller such as a non-volatile memory express
(NVMe) controller. The controller 130 can be configured to
perform operations such as copy, write, read, error correct,
etc. for the first memory device 145. In an example, the
controller 130 can include purpose-built circuitry or instruc-
tions to perform various operations. That is, in some

Oct. 3, 2024

embodiments, the controller 130 can include circuitry or can
be configured to perform instructions to control movement
of data or addresses associated with data such as among the
buffer 135, the cache 140, or the first memory device 145 or
the second memory device 150.

[0033] In an example, at least one of the processor 110 or
the controller 130 comprises a command manager (CM) for
the memory system 125. The CM can receive, such as from
the host device 105, a read command for a particular logic
row address in the first memory device 145 or the second
memory device 150. In an example, the CM can determine
that the logical row address is associated with a first row
based at least in part on a pointer stored in a register of the
controller 130. In an example, the CM can receive, from the
host device 105, a write command for a logical row address,
and the write command can be associated with second data.
In an example, the CM can be configured to issue, to
non-volatile memory and between issuing the read com-
mand and the write command, an access command associ-
ated with the first memory device 145 or the second memory
device 150. In an example, the CM can issue, to the
non-volatile memory and between issuing the read com-
mand and the write command, an access command associ-
ated with the first memory device 145 or the second memory
device 150.

[0034] In an example, the buffer 135 comprises a data
buffer circuit that includes a region of a physical memory
used to temporarily store data, for example, while the data
is moved from one place to another. The buffer 135 can
include a first-in, first-out (FIFO) queue in which the oldest
(e.g., the first-in) data is processed first. In some embodi-
ments, the buffer 135 includes a hardware shift register, a
circular buffer, or a list.

[0035] Inan example, the cache 140 comprises a region of
a physical memory used to temporarily store particular data
from the first memory device 145 or the second memory
device 150. Generally, the cache provides faster access to
data than the backing memories. The cache 140 can include
a pool of data entries. In an example, the cache 140 can be
configured to operate according to a write-back policy in
which data is written to the cache without the being con-
currently written to the first memory device 145. Accord-
ingly, in some embodiments, data written to the cache 140
does not have a corresponding data entry in the first memory
device 145. This can occur when, for example, data is
written to the cache and deleted before a write-back is
triggered to write the data into the first memory device 145,
for example.

[0036] In an example, the cache 140 is implemented as a
multi-way associative cache. Here, cache entries are divided
by some portion of a memory address (e.g., a set number of
significant bits). A group of cache entries (e.g., cache lines
or ways), called a cache set herein, can be co-associated with
a same bit-set from the memory address. Usually, the
number of ways in a cache set is less than the total number
of memory addresses to which the ways are associated.
Thus, a way can be evicted to be associated with a new
memory address in the range at various points. FIG. 4
illustrates some elements of this type of associate cache.
[0037] In an example, the controller 130 can receive write
requests involving the cache 140 and cause data associated
with each of the write requests to be written to the cache 140.
The controller 130 can similarly receive read requests and
cause data that is stored in, for example, the first memory

US 2024/0330194 Al

device 145 or the second memory device 150, to be retrieved
and written to, for example, the host device 105 via the
interface 120. In an example, the controller 130 processes all
requests for memory it controls through the cache 140. Thus,
a read request will first check the cache 140 to determine if
the data is already cached. If not, a read to the first memory
device 145 is made to retrieve the data. The data is then
written to the cache 140. In an example, the data is then read
from the cache 140 and transmitted to the processor 110.
Working exclusively through the cache can simplify some
elements of the controller 130 hardware at the cost of a little
latency.

[0038] The following configuration is described from the
perspective of the controller 130 for the sake of simplicity.
However, the cache 140 can include circuitry to perform
some or all of these operations. The complexities of evicting
a cache line when there is a pending recall request are
addressed by the controller 130 maintaining and respecting
a counter for cache sets. Again, the complexity of pending
recall requests can involve receipt of a non-prioritized
request (e.g., an internal request) when the way was evicted.
Generally, there is no recall request, or bias flip, required
when the way is evicted due to the prioritized request
because the prioritized request originates from the entity
(e.g., the host processor 110) from which the recall is
requested. Accordingly, a recall request usually occurs when
an internal request provokes a way to be evicted. If the way
is evicted (e.g., due to necessity from an external request),
then internal requests can be stored in cache way queues for
the evicted way. However, during the pendency of the recall
request, the state of the way is in flux and pushing a new
internal request onto the cache way queue can result in
out-of-order execution. Accordingly, in this circumstance,
the controller 130 is configured to push the new internal
request to the cache set queue. The existence of this instance
is marked by the counter in the cache set. Whenever the
recall request is made, the counter is incremented. Thus, if
recall requests are made on three ways of the cache set, the
counter has a value of three. As the recall requests are
completed, the counter is decremented. Only when the
counter is zero can a new internal request but added to a
cache way queue.

[0039] To implement the above, the controller 130 is
configured to receive an external request (e.g., a memory
request is received on the external interface of the memory
system 125). The external request specifies an address
specific to a cache set but not a current way of the cache set.
Thus, the external request will provoke an eviction to a
current way of the cache set. Accordingly, the controller 130
is configured to determine, based on the circumstances of the
external request and the state of the cache set, that the cache
way will be evicted to process the external request. The
controller 130 is also configured to determine that a control
request (e.g., recall request or bias flip request) has been
made, for example, to the host processor 110. In an example,
the controller 130 is configured to recognize that the control
request is pending (e.g., not yet completed) when the deter-
mination is made that the cache way will be evicted.

[0040] In an example, a response to the control request is
received, for example, from the host processor 110. In this
example, the response indicates that the cache way is under
the control of the memory system 125. In an example, the
response is a CX[. meta state that designates the memory
system 125 to be in control of memory lines that include the

Oct. 3, 2024

cache way. In an example, the CXL meta state specifically
indicates that the cache way is under the control of the
memory system 125.

[0041] The controller 130 is configured to decrement the
counter of the cache set by one for each received response
to a control request. Processing of internal memory requests
can resume, for example, on the cache way by the controller
130 when the counter reaches zero. Generally, as long as
there is a pending recall request, the internal requests will
not be added to a cache way queue or extracted from the
cache set queue.

[0042] As noted above, the controller 130 is configured to
increment the counter by one when the cache way has been,
or will be evicted, and a control request has been made. In
an example, the counter has a maximum value equal to a
cardinality of the set of cache lines. Thus, the counter cannot
be greater than the number of ways in the cache set. This
condition is sensible because there generally could not be
more pending recalls than ways.

[0043] The controller 130 is configured to evict the cache
way. Accordingly, once the housekeeping of incrementing
the counter is complete, the way can be evicted without
further record keeping. Thus, for this technique to operate,
there is no requirement that a record of which specific way
is evicted is tracked. Merely that there is some way for
which a pending control request is outstanding. This sim-
plifies the hardware needed to track this condition.

[0044] The following examples consider the controller
130 configuration that leads to the making of the control
request. Thus, in an example, the controller 130 is config-
ured to receive an internal memory request, for example on
an internal interface of the memory system 125. In this
example, the internal memory request includes an address
corresponding to a cache way that is under control of the
host processor 110 when the internal memory request is
received. The internal memory request is pushed onto the
cache way queue (e.g., the cache way internal queue) of
pending internal memory requests corresponding to the
cache way. The control request can then be transmitted to the
host processor 110 to gain control of the cache way from the
host processor 110.

[0045] With respect to evicting the cache way, the con-
troller is configured to copy tag data for the cache way into
request information memory corresponding to the address.
This example uses a request information repository, such as
the CM request information table 305, NI request informa-
tion table 315, or NI+CM request information table 330
illustrated in FIG. 3. In an example, this information is
written to the backing memory (e.g., the first memory device
145 or the second memory device 150) when the cache way
is evicted. In an example, the tag data includes a pointer to
the queue of pending internal memory requests correspond-
ing to the cache line. This example is similar to the arrange-
ment illustrated in FIG. 5 or in FIG. 6.

[0046] In an example, the controller 130 is configured to
receive a second internal request (e.g., another memory
request on an internal interface of the memory system 125).
In this example, the second internal request matches the
cache set. The controller 130 is configured to read the
counter of the cache set to determine that the counter is
greater than zero. If the counter is greater than zero, the
controller 130 is configured to push the second internal
request onto the cache set queue (e.g., cache set internal
queue), which is a deferred queue for the cache set.

US 2024/0330194 Al

[0047] Once the control requests have completed, and the
counter is back to zero, the controller 130 processes the
queues of the cache set and the cache ways as it would
normally process these queues. Thus, generally, the control-
ler is configured to drain the external queues of the current
cache ways, then the internal queues of the cache ways, and
then drain the queues of the cache set to load new ways and
clear the deferred quests of the cache set.

[0048] FIG. 2 illustrates an example of a host connected to
a CXL device, according to an embodiment. FIG. 2 illus-
trates generally an example of a CXL system 200 that uses
a CXL link 206 to connect a host device 202 and a CXL
device 204 via a host physical layer PCIE interface 208 and
a CXL client physical layer PCIE interface 210 respectively.
In an example, the host device 202 comprises or corresponds
to the host device 105 and the CXL device 204 comprises or
corresponds to the memory system 125 from the example of
the system in FIG. 1. A memory system command manager
can comprise a portion of the host device 202 or the CXL
device 204. In an example, the CXL link 206 can support
communications using multiplexed protocols for caching
(e.g., CXL.cache), memory accesses (e.g., CXL.mem), and
data input/output transactions (e.g., CXL.o0). CXL.io can
include a protocol based on PCle that is used for functions
such as device discovery, configuration, initialization, 1/O
virtualization, and direct memory access (DMA) using non-
coherent load-store, producer-consumer semantics. CXL.
cache can enable a device to cache data from the host
memory (e.g., from the host memory 212) using a request
and response protocol. CXL..memory can enable the host
device 202 to use memory attached to the CXL device 204,
for example, in or using a virtualized memory space. In an
example, CXL.memory transactions can be memory load
and store operations that run downstream from or outside of
the host device 202.

[0049] In the example of FIG. 2, the host device 202
includes a host processor 214 (e.g., comprising one or more
CPUs or cores) and 10 device(s) 228. The host device 202
can comprise, or can be coupled to, host memory 212. The
host device 202 can include various circuitry (e.g., logic)
configured to facilitate CXI.-based communications and
transactions with the CXL device 204. For example, the host
device 202 can include coherence and memory circuitry 218
configured to implement transactions according to CXL.
cache and CXL.mem semantics, and the host device 202 can
include PCle circuitry 220 configured to implement trans-
actions according to CXL.io semantics. In an example, the
host device 202 can be configured to manage coherency of
data cached at the CXL device 204 using, e.g., its coherence
and memory circuitry 218.

[0050] The host device 202 can further include a host
multiplexer 216 configured to modulate communications
over the CXL link 206 (e.g., using the PCle PHY layer). The
multiplexing of protocols ensures that latency-sensitive pro-
tocols (e.g., CXL.cache and CXIL..memory) have the same or
similar latency as a native processor-to-processor link. In an
example, CXI defines an upper bound on response times for
latency-sensitive protocols to help ensure that device per-
formance is not adversely impacted by variation in latency
between different devices implementing coherency and
memory semantics.

[0051] In an example, symmetric cache coherency proto-
cols can be difficult to implement between host processors
because different architectures can use different solutions,

Oct. 3, 2024

which in turn can compromise backward compatibility. CXL
can address this problem by consolidating the coherency
function at the host device 202, such as using the coherence
and memory circuitry 218.

[0052] The CXL device 204 can include an accelerator
device that comprises various accelerator circuitry 222. In an
example, the CXL. device 204 can comprise, or can be
coupled to, CXL. device memory 226. The CXL device 204
can include various circuitry configured to facilitate CXL.-
based communications and transactions with the host device
202 using the CXL link 206. For example, the accelerator
circuitry 222 can be configured to implement transactions
according to CXL.cache, CXL.mem, and CXL..i0 semantics.
The CXL device 204 can include a CXL device multiplexer
224 configured to control communications over the CXL
link 206. The accelerator circuitry 222 can be one or more
processors that can perform one or more tasks. Accelerator
circuitry 222 can be a general purpose processor or a
processor designed to accelerate one or more specific work-
loads.

[0053] FIG. 3 illustrates example components of a
memory device, according to an embodiment. The illus-
trated components are part of a memory controller, such as
those described above (e.g., the memory controller 130
illustrated in FIG. 1) implementing a memory-side cache
(MSC).The illustrated components include elements to
address internal (e.g., from a near-memory accelerator) and
external (e.g., received from a host via a CXL link) request
differences used to maintain CXL protocol requirements,
such as maintaining forward progress of CXI, memory (CM)
requests.

[0054] As illustrated, CM refers to CXI, memory or other
external requests and NI refers to requests coming from a
NOC interface or other internal requests. Requests from
CXL.mem are written to the CM Request Information Table
305. The entry in the CM Request Information Table 305 to
which a request is written is obtained from the CM Request
Information Table Pool 310. The CM Request Information
Table Pool 310 maintains a list of indices to CM Request
Information Table entries that are available (e.g., free, or
unused). Requests from an accelerator within the device are
written to the NI Request Information Table 315 using the
NI Request Information Table Pool 320 for the available
entry indices. The two pools—the CM Request Information
Table Pool 310 and the NI Request Information Table Pool
320—are configured such that accelerator requests (e.g.,
internal requests) cannot consume all table entries. Thus, for
example, if an additional NI request arrives and there is no
free entry indicated in the NI Request Information Table
Pool 320, the request fails.

[0055] CXL.mem requests from the CM queue 325 are
selected at higher priority than NI requests in the NI queue
327 to ensure forward progress of the CM requests. In an
example, as illustrated, when a request is selected from
either the CM queue 325 or the NI queue 327, the request
information is written into the NI+CM Request Information
Table 325. Hereafter, each request is represented in the
carious queues by an identifier (e.g., index) to an entry of the
NI+CM Request Information Table 330. This arrangement
can reduce the storage requirements and bandwidth in
transferring the request information among the various
queues at different processing points in the controller. When
an aspect of the request is needed by a processing point, such
as an address for a read, the identifier is used to reference the

US 2024/0330194 Al

entry in the NI+CM Request Information Table 330 and
retrieve the field of the request corresponding to the needed
aspect. As with the CM Request Information Table 305 and
the NI Request Information Table 315, a free list, or pool, of
entries can be used to quickly determine which entries are
available to store request information in the NI+CM Request
Information Table 330.

[0056] When a request is selected, a cache tag 335 for a
cache line (e.g., cache way) corresponding to an address in
the request is checked to determine whether the requests will
be deferred (e.g., processed later). Deferral of the request is
generally required when there is no free way line entry in a
cache set for the address in the request. If no deferral will
occur, the cache data can be read 340 or modified 345 (e.g.,
for a write), and the way tag can be modified 350. Modifying
the tag 350 or the cache data 345 can respectively be written
to backing memory, such as in writing the tag data 355 and
the cache way data 360.

[0057] When the request is deferred, the request the
request entry identifier (e.g., from the NI+CM Request
Information Table 330) is pushed to either the CM or NI
defer queues 365. The way defer queues 365 are used when
there is a way corresponding to the address in the request but
the way is busy (e.g., waiting for another command to
complete). The set defer queues 365 are used when there is
no way that corresponds to the address. The request remains
queued until a way is available (e.g., not busy). In an
example, there are separate CM and NI defer queues 365 for
each cache set within the cache.

[0058] The external control queues 370 manage external
responses to the cache, such as responses to reads or writes
to the backing memory, memory controller (MC) requests,
or CXL recalls. A CXL recall is a request by the memory
device to regain control of a cache way from the host. The
recall is requested of the host and the host communicates the
control of the cache way to the memory controller, for
example, in CXL. meta state. This procedure can be called a
bias flip as the control bias for the cache way is flipped from
the host to the controller or vice versa. This technique is used
to enable cache coherency between any host cache and the
memory device.

[0059] The command queues 375 track requests through a
variety of processing points, such as whether to push or pop
requests from defer queues 365, whether a CXL recall is
initiated, memory controller requests, executing a command,
or executing an atomic memory operation (AMO). The
reference to a long AMO is an AMO that cannot complete
within a single execution cycle (e.g., a clock cycle). An
AMO is a near-memory operation completed by an accel-
erator of the memory controller.

[0060] The illustrated control and data paths are config-
ured such that separate storage, queuing, and request priori-
tization enables forward progress on CM requests while
executing in the presence of NI requests. Thus, CM requests
will not be delayed by an NI request.

[0061] FIG. 4 illustrates an example of an associative
cache 400, according to an embodiment. Here, the associa-
tive cache 400 includes four cache sets, cache set zero 405,
cache set one 410, cache set two 415, and cache set three
420. Note that each cache set corresponds to a memory
address range. Thus, cache set one corresponds to all
memory elements with an address prefixed by 00 while
cache set three 415 corresponds to all memory elements with
an address prefixed by 10. The cache lines within each cache

Oct. 3, 2024

set represent a storage element (e.g., register) sized for an
element in the memory. Each cache line can also be called
a “way.” Thus, as illustrated, the associated cache 400 is a
four-way associative cache because four ways can be used
for each cache set. Generally, memory requests with
addresses in one cache set will load a way until all of the
ways are used. With the arrival of another memory request,
a process to evict a way to load the new data can be
undertaken to free the way for the new memory request.

[0062] The associative cache 400 can maintain metadata
for the ways. Thus, as illustrated, the associative cache 400
includes a tag (e.g., metadata) in addition to the way data,
resulting in the way zero tag and data 425, the way one tag
and data 430, the way two tag and data 435, and the way
three tag and data 440. Examples of tag data can include a
dirty bit to indicate whether the way is out-of-sync with the
backing memory, whether there is an operation to synchro-
nize the way with host memory (e.g., a host recall is
underway), or CXL, meta-state, request state, among others.
In an example, whether the source (e.g., internal, or external)
of the request impacts operation of the memory controller,
the tag data can include designation of whether the request
is internal or external as well as, for example, whether the
request is internal and deferred, or external and deferred.

[0063] The following is an example of a data structure
(e.g., C-style struct) to hold tag data that applies to an entire
cache set (e.g., not specific to a single way in the cache set):

struct MscSet {
bool m_bRetryPend;
uint32_t m_evHashMask;
SimCount m_evRecallCnt;
SimMscReqList m_niDeferList;
SimMscReqList m_cmDeferList;

b

[0064] The following is an example of a data structure
(e.g., C-style struct) to hold tag data for a given way in a
cache set:

struct MscWay {
struct MscWayTag {

uint64_t m_addr;

std::bitset m_validMask;
std::bitset m_dirtyMask;
std::bitset m_mBusyMask;
bool m_bRetryPend;
bool m_bRecallPend;
uintl6_t m_recallRid;
MetaState m_memMetaState;
MetaState m_curMetaState;

SimMscReqList
SimMscReqList
} m_tag;
uint8_t

1

m_niDeferList;
m_cmDeferList;

m_data;

[0065] FIG. 5 illustrates an example of a memory 500
including several cache way defer queues and cache tags
525 pointing to the defer queues, according to an embodi-
ment. As illustrated, the memory 500 is used to implement
several queues. The queues each occupy a contiguous range
of the memory 500, with the specific boundaries of the
queue defined by a head a tail pointer. In this example, the
queue is implemented as a linked list or a double-linked list.
The former enables traversal starting at the head, although

US 2024/0330194 Al

enqueueing can be accomplished merely by updating the tail
element with a new tail location and placing the new item at
the new tail location. A double linked list enables traversal
of the list from either the head or the tail.

[0066] The queues correspond to a cache way by storage
of the head and tail pointers in the tag data. Thus, in the
cache set 530, the way zero tag 535 maintains the head and
tail pointer for the queue 505 (illustrated as holding request
one). The empty entry 510 is part of the contiguous memory
range corresponding to the queue 505. Thus, if a second
request were enqueue, the tail pointer would be moved to the
entry 510. Similarly, the way one tag 540 holds the head and
tail pointer for the queue 515, and the way N tag 545
maintains the head and tail pointer for the queue 520.

[0067] An alternative configuration of the queue can lever-
age, if it exists, the request directory entries (e.g., as illus-
trated in element 330 of FIG. 3). Here, the queue is simply
a head pointer into the directory to designate the first request
in the queue and a tail pointer into the directory to designate
the last request in the queue. The queue, in this example, is
a linked-list in which the elements (e.g., directory entries for
the requests) point to each other. In a simple implementa-
tion, the links are one-way from the head to the tail. Thus,
the directory entry for each element in the list links to the
next element in the list. To add a new element, the “next
element” pointer in the directory entry indicated by the tail
pointer is updated to the new entry and the tail pointer is also
updated to the new entry. In an example, the linked list can
be bi-directional, in which each directory entry has a pointer
to a previous element as well as a next element. The queue
is traversed by entering the queue using the head pointer, for
example, to get to a directory entry. The next element pointer
can then be used to get to the next element of the queue. This
process can be repeated until the next element pointer is
empty, indicating the end of the queue.

[0068] FIG. 6 illustrates an example of a cache set refer-
ence 600 to cache-set defer queues divided by which inter-
face requests were received, according to an embodiment.
Specifically, the external defer queues 630 hold requests, or
identifiers of requests, for CM requests and the internal defer
queues 645 hold NI requests. FIG. 6 differs from the
arrangement illustrated in FIG. 5 by separating the queues
between the external queues 630 and the internal queues
645. Thus, the way zero tag data includes a field 610 storing
the head and pointer for external queue 635 as well as the
field 615 for the head pointer of the internal queue 650.

[0069] Another difference from the arrangement illus-
trated in FIG. 5 includes the inclusion of the field 620, the
field 625, and the counter 607 in the cache set 605. Here, the
field 620 holds a head and tail pointer for an external queue
of the cache set 605 and the field 625 holds a head and tail
pointer for an internal queue of the cache set 605. If a way
is instantiated for an address in the request, but the way is
busy, the request is deferred into the appropriate defer queue
for the way. Thus, if the request A is an external request and
has an address that corresponds to the current way zero, but
way zero is busy, then request A is enqueued into the queue
635 for the way zero. However, if there is no way that
corresponds to the address in the request, then the request is
deferred at the cache set level. Accordingly, because request
M is an internal request with an address that does not match
any current way—and all ways are busy—the request M is
deferred by being placed on the internal defer queue 655.

Oct. 3, 2024

Similarly, external request N is deferred at the cache set level
in queue 640 for similarly reasons given for request M.
[0070] The counter 607 tracks the number of pending
recall operations. Thus, as a recall is requested by the
memory device, the counter is incremented. As the recall is
returned (e.g., via a CXL meta state change to the way or to
the cache set), the counter is decremented. The counter is
used to defer internal requests while there are any pending
recalls. Thus, if the way is evicted but the counter is not zero,
all new internal requests will be stored in the internal defer
queue 645 for the cache set 605 as controlled by the field
620.

[0071] FIG. 7 illustrates an example of a processing flow
to synchronize requests, according to an embodiment. In
general, when an internal request is received and there is no
current way that corresponds to the address in the internal
request, some pending way will be evicted to load the
memory line for the address. If all of the ways have been
servicing external requests, then a recall request will be
made to the host in order to ensure that the way is in a
consistent state before being written back to the memory, or
otherwise evicted. Because the recall can take some time,
the internal request can wait while an external request comes
in. Now, in the case of a CXL memory external request,
eviction cannot wait because waiting for the recall will result
in blocking, or a lack or forward progress, for the external
request. The pending recalls and cache way queues are
stored. For example, the evicted way tag state is stored in the
request info table associated with the recalled way and the
way along with the tag state are written to the backing
memory. In an example, the cache set associated with the
recalled way is marked indicating a recalled line was
evicted. The marking can take the form of a counter, where
each pending recall increments the counter and returned
recalls decrement the counter. Accordingly, the counter can
be called the evicted recalled line counter. If the counter is
greater than zero, there is currently at least one evicted
recalled way associated with the cache set. In this case,
future internal requests are pushed to the cache set queue.
[0072] When the recall is completed with an evicted way,
the evicted way is read from memory and the tag state, and
the data is restored in the cache. In an example, the tag state
is restored from the request information table. Once the way
is restored, the evicted recalled line counter is decremented,
for example, back to zero—enabling requests in the cache
set internal queue to be popped—and enabling the internal
request that originally caused the host recall to be com-
pleted.

[0073] Following the above in the illustrated process, the
internal request is received (operation 705) and a determi-
nation is made as to whether the evicted line recall counter
for the cache set is zero (decision 710). If yes, the request is
added to the cache way queue (operation 715) assuming that
the cache way queue is not empty, or the cache way is busy.
If the way is not evicted before the request is popped
(decision 720), the request is performed. If the way is
evicted before the request is popped from the cache way
queue, then the evicted recalled line counter is incremented
(operation 725) and no further processing of the cache set
internal queue occurs (operation 730).

[0074] If the evicted recalled line counter was not zero
(decision 710), then the internal request is added to the cache
set internal queue (operation 735). When the recall is
complete (decision 740), the counter is decremented (opera-

US 2024/0330194 Al

tion 745) and processing of the cache set internal queue can
continue if the counter is at zero (operation 750).

[0075] FIG. 8 illustrates a flow diagram of an example of
a method 800 for evicting a cache line with pending control
request, according to an embodiment. The operations of the
method 800 are performed by computational hardware, such
as that described above or below (e.g., processing circuitry).
[0076] At operation 805, a memory request is received on
an external interface of a memory device. In an example, the
memory request includes an address corresponding to a set
of cache lines.

[0077] At operation 810, it is determined that a cache line
of the set of cache lines will be evicted to process the
memory request.

[0078] At operation 815, it is determined that a control
request has been made to a host from the memory device.
Here, the control request is pending when the determination
is made that the cache line will be evicted.

[0079] In an example, a response to the control request is
received from the host. In this example, the response indi-
cates that the cache line is under the control of the memory
device. Processing of internal memory requests can then
resume on the cache line and the counter is decremented by
one.

[0080] At operation 820, a counter corresponding to the
set of cache lines is incremented by one. In an example, the
counter has a maximum value equal to a cardinality of the
set of cache lines.

[0081] At operation 825, the cache line is evicted. In an
example, the method 800 includes receiving an internal
memory request on an internal interface of the memory
device. In this example, the internal memory request
includes an address corresponding to a cache line that is
under control of the host when the internal memory request
is received. The internal memory request is pushed onto a
queue of pending internal memory requests corresponding to
the cache line. The control request can then be transmitted
to the host to gain control of the cache line from the host. In
an example, evicting the cache line includes copying tag
data for the cache line into request information memory
corresponding to the address. In an example, the tag data
includes a pointer to the queue of pending internal memory
requests corresponding to the cache line.

[0082] In an example, the method 800 can receive a
second memory request on an internal interface of the
memory device. In this example, the second memory request
includes a second address corresponding to the set of cache
lines. The counter can be read to determine that the counter
is greater than zero and, in response to the counter being
greater than zero, the second memory request is pushed on
a deferred queue for the set of cache lines. In an example, the
deferred queue corresponds to the internal interface of the
memory device.

[0083] FIG. 9 illustrates a block diagram of an example
machine 900 with which any one or more of the techniques
(e.g., methodologies) discussed herein can perform.
Examples, as described herein, can include, or can operate
by, logic or a number of components, or mechanisms in the
machine 900. Circuitry (e.g., processing circuitry) is a
collection of circuits implemented in tangible entities of the
machine 900 that include hardware (e.g., simple circuits,
gates, logic, etc.). Circuitry membership can be flexible over
time. Circuitries include members that can, alone or in
combination, perform specified operations when operating.

Oct. 3, 2024

In an example, hardware of the circuitry can be immutably
designed to carry out a specific operation (e.g., hardwired).
In an example, the hardware of the circuitry can include
variably connected physical components (e.g., execution
units, transistors, simple circuits, etc.) including a machine
readable medium physically modified (e.g., magnetically,
electrically, moveable placement of invariant massed par-
ticles, etc.) to encode instructions of the specific operation.
In connecting the physical components, the underlying
electrical properties of a hardware constituent are changed,
for example, from an insulator to a conductor or vice versa.
The instructions enable embedded hardware (e.g., the execu-
tion units or a loading mechanism) to create members of the
circuitry in hardware via the variable connections to carry
out portions of the specific operation when in operation.
Accordingly, in an example, the machine readable medium
elements are part of the circuitry or are communicatively
coupled to the other components of the circuitry when the
device is operating. In an example, any of the physical
components can be used in more than one member of more
than one circuitry. For example, under operation, execution
units can be used in a first circuit of a first circuitry at one
point in time and reused by a second circuit in the first
circuitry, or by a third circuit in a second circuitry at a
different time. Additional examples of these components
with respect to the machine 900 follow.

[0084] In alternative embodiments, the machine 900 can
operate as a standalone device or can be connected (e.g.,
networked) to other machines. In a networked deployment,
the machine 900 can operate in the capacity of a server
machine, a client machine, or both in server-client network
environments. In an example, the machine 900 can act as a
peer machine in peer-to-peer (P2P) (or other distributed)
network environment. The machine 900 can be a personal
computer (PC), a tablet PC, a set-top box (STB), a personal
digital assistant (PDA), a mobile telephone, a web appli-
ance, a network router, switch or bridge, or any machine
capable of executing instructions (sequential or otherwise)
that specify actions to be taken by that machine. Further,
while only a single machine is illustrated, the term
“machine” shall also be taken to include any collection of
machines that individually or jointly execute a set (or
multiple sets) of instructions to perform any one or more of
the methodologies discussed herein, such as cloud comput-
ing, software as a service (SaaS), other computer cluster
configurations.

[0085] The machine (e.g., computer system) 900 can
include a hardware processor 902 (e.g., a central processing
unit (CPU), a graphics processing unit (GPU), a hardware
processor core, or any combination thereof), a main memory
904, a static memory (e.g., memory or storage for firmware,
microcode, a basic-input-output (BIOS), unified extensible
firmware interface (UEFI), etc.) 906, and mass storage 908
(e.g., hard drives, tape drives, flash storage, or other block
devices) some or all of which can communicate with each
other via an interlink (e.g., bus) 930. The machine 900 can
further include a display unit 910, an alphanumeric input
device 912 (e.g., a keyboard), and a user interface (UI)
navigation device 914 (e.g., a mouse). In an example, the
display unit 910, input device 912 and Ul navigation device
914 can be a touch screen display. The machine 900 can
additionally include a storage device (e.g., drive unit) 908,
a signal generation device 918 (e.g., a speaker), a network
interface device 920, and one or more sensors 916, such as

US 2024/0330194 Al

a global positioning system (GPS) sensor, compass, accel-
erometer, or other sensor. The machine 900 can include an
output controller 928, such as a serial (e.g., universal serial
bus (USB), parallel, or other wired or wireless (e.g., infrared
(IR), near field communication (NFC), etc.) connection to
communicate or control one or more peripheral devices
(e.g., a printer, card reader, etc.).

[0086] Registers of the processor 902, the main memory
904, the static memory 906, or the mass storage 908 can be,
or include, a machine readable medium 922 on which is
stored one or more sets of data structures or instructions 924
(e.g., software) embodying or utilized by any one or more of
the techniques or functions described herein. The instruc-
tions 924 can also reside, completely or at least partially,
within any of registers of the processor 902, the main
memory 904, the static memory 906, or the mass storage 908
during execution thereof by the machine 900. In an example,
one or any combination of the hardware processor 902, the
main memory 904, the static memory 906, or the mass
storage 908 can constitute the machine readable media 922.
While the machine readable medium 922 is illustrated as a
single medium, the term “machine readable medium” can
include a single medium or multiple media (e.g., a central-
ized or distributed database, or associated caches and serv-
ers) configured to store the one or more instructions 924.

[0087] The term “machine readable medium” can include
any medium that is capable of storing, encoding, or carrying
instructions for execution by the machine 900 and that cause
the machine 900 to perform any one or more of the tech-
niques of the present disclosure, or that is capable of storing,
encoding or carrying data structures used by or associated
with such instructions. Non-limiting machine readable
medium examples can include solid-state memories, optical
media, magnetic media, and signals (e.g., radio frequency
signals, other photon based signals, sound signals, etc.). In
an example, a non-transitory machine readable medium
comprises a machine readable medium with a plurality of
particles having invariant (e.g., rest) mass, and thus are
compositions of matter. Accordingly, non-transitory
machine-readable media are machine readable media that do
not include transitory propagating signals. Specific
examples of non-transitory machine readable media can
include: non-volatile memory, such as semiconductor
memory devices (e.g., Electrically Programmable Read-
Only Memory (EPROM), Electrically Erasable Program-
mable Read-Only Memory (EEPROM)) and flash memory
devices; magnetic disks, such as internal hard disks and
removable disks; magneto-optical disks; and CD-ROM and
DVD-ROM disks.

[0088] In an example, information stored or otherwise
provided on the machine readable medium 922 can be
representative of the instructions 924, such as instructions
924 themselves or a format from which the instructions 924
can be derived. This format from which the instructions 924
can be derived can include source code, encoded instructions
(e.g., in compressed or encrypted form), packaged instruc-
tions (e.g., split into multiple packages), or the like. The
information representative of the instructions 924 in the
machine readable medium 922 can be processed by process-
ing circuitry into the instructions to implement any of the
operations discussed herein. For example, deriving the
instructions 924 from the information (e.g., processing by
the processing circuitry) can include: compiling (e.g., from
source code, object code, etc.), interpreting, loading, orga-

Oct. 3, 2024

nizing (e.g., dynamically or statically linking), encoding,
decoding, encrypting, unencrypting, packaging, unpackag-
ing, or otherwise manipulating the information into the
instructions 924.

[0089] In an example, the derivation of the instructions
924 can include assembly, compilation, or interpretation of
the information (e.g., by the processing circuitry) to create
the instructions 924 from some intermediate or preprocessed
format provided by the machine readable medium 922. The
information, when provided in multiple parts, can be com-
bined, unpacked, and modified to create the instructions 924.
For example, the information can be in multiple compressed
source code packages (or object code, or binary executable
code, etc.) on one or several remote servers. The source code
packages can be encrypted when in transit over a network
and decrypted, uncompressed, assembled (e.g., linked) if
necessary, and compiled or interpreted (e.g., into a library,
stand-alone executable etc.) at a local machine, and executed
by the local machine.

[0090] The instructions 924 can be further transmitted or
received over a communications network 926 using a trans-
mission medium via the network interface device 920 uti-
lizing any one of a number of transfer protocols (e.g., frame
relay, internet protocol (IP), transmission control protocol
(TCP), user datagram protocol (UDP), hypertext transfer
protocol (HTTP), etc.). Example communication networks
can include a local area network (LAN), a wide area network
(WAN), a packet data network (e.g., the Internet), LoRa/
LoRaWAN, or satellite communication networks, mobile
telephone networks (e.g., cellular networks such as those
complying with 3G, 4G LTE/LTE-A, or 5G standards), Plain
Old Telephone (POTS) networks, and wireless data net-
works (e.g., Institute of Electrical and Electronics Engineers
(IEEE) 802.11 family of standards known as Wi-Fi®, IEEE
802.15.4 family of standards, peer-to-peer (P2P) networks,
among others. In an example, the network interface device
920 can include one or more physical jacks (e.g., Ethernet,
coaxial, or phone jacks) or one or more antennas to connect
to the communications network 926. In an example, the
network interface device 920 can include a plurality of
antennas to wirelessly communicate using at least one of
single-input multiple-output (SIMO), multiple-input mul-
tiple-output (MIMO), or multiple-input single-output
(MISO) techniques. The term “transmission medium” shall
be taken to include any intangible medium that is capable of
storing, encoding or carrying instructions for execution by
the machine 900, and includes digital or analog communi-
cations signals or other intangible medium to facilitate
communication of such software. A transmission medium is
a machine readable medium.

Additional Notes & Examples

[0091] Example 1 is an apparatus for evicting a cache line
with pending control request, the apparatus comprising: an
external interface configured to received message from an
external entity; a cache including a set of cache lines; and
processing circuitry configured to: receive a memory request
on the interface of a memory device, the memory request
including an address corresponding to the set of cache lines;
determine that a cache line of the set of cache lines will be
evicted to process the memory request; determine that a
control request has been made to a host from the apparatus,
the control request pending when it is determined that the

US 2024/0330194 Al

cache line will be evicted; increment a counter correspond-
ing to the set of cache lines by one; and evict the cache line.
[0092] In Example 2, the subject matter of Example 1,
comprising an internal interface configured to receive a
second message from an entity of the apparatus, wherein the
processing circuitry is configured to: receive, a second
memory request on the internal interface, the second
memory request including a second address corresponding
to the set of cache lines; read the counter to determine that
the counter is greater than zero; and push, in response to the
counter being greater than zero, the second memory request
on a deferred queue for the set of cache lines.

[0093] In Example 3, the subject matter of Example 2,
wherein the deferred queue corresponds to the internal
interface of the memory device.

[0094] In Example 4, the subject matter of any of
Examples 1-3, wherein the processing circuitry is configured
to: receive a response, via the external interface, to the
control request from the host, the response indicating that
the cache line is under the control of the memory device;
resume processing of internal memory requests on the cache
line; and decrement the counter by one in response to
resuming processing of the internal memory requests.
[0095] In Example 5, the subject matter of any of
Examples 1-4, comprising an internal interface configured to
receive a second message from an entity of the apparatus,
wherein the processing circuitry is configured to: receive an
internal memory request on the internal interface, the inter-
nal memory request including an address corresponding to a
cache line that is under control of the host when the internal
memory request is received; push the internal memory
request onto a queue of pending internal memory requests
corresponding to the cache line; and transmit, via the exter-
nal interface, the control request to the host to gain control
of the cache line from the host.

[0096] In Example 6, the subject matter of Example 5,
wherein, to evict the cache line, the processing circuitry is
configured to copy tag data for the cache line into request
information memory corresponding to the address.

[0097] In Example 7, the subject matter of Example 6.,
wherein the tag data includes a pointer to the queue of
pending internal memory requests corresponding to the
cache line.

[0098] In Example 8, the subject matter of any of
Examples 1-7, wherein the counter has a maximum value
equal to a cardinality of the set of cache lines.

[0099] Example 9 is a method for evicting a cache line
with pending control request, the method comprising:
receiving a memory request on an external interface of a
memory device, the memory request including an address
corresponding to a set of cache lines; determining that a
cache line of the set of cache lines will be evicted to process
the memory request; determining that a control request has
been made to a host from the memory device, the control
request pending when it is determined that the cache line
will be evicted; incrementing a counter corresponding to the
set of cache lines by one; and evicting the cache line.

[0100] In Example 10, the subject matter of Example 9,
comprising: receiving a second memory request on an
internal interface of the memory device, the second memory
request including a second address corresponding to the set
of cache lines; reading the counter to determine that the
counter is greater than zero; and pushing, in response to the

Oct. 3, 2024

counter being greater than zero, the second memory request
on a deferred queue for the set of cache lines.

[0101] In Example 11, the subject matter of Example 10,
wherein the deferred queue corresponds to the internal
interface of the memory device.

[0102] In Example 12, the subject matter of any of
Examples 9-11, comprising: receiving a response to the
control request from the host, the response indicating that
the cache line is under the control of the memory device;
resuming processing of internal memory requests on the
cache line; and decrementing the counter by one in response
to resuming processing of the internal memory requests.
[0103] In Example 13, the subject matter of any of
Examples 9-12, comprising: receiving an internal memory
request on an internal interface of the memory device, the
internal memory request including an address corresponding
to a cache line that is under control of the host when the
internal memory request is received; pushing the internal
memory request onto a queue of pending internal memory
requests corresponding to the cache line; and transmitting
the control request to the host to gain control of the cache
line from the host.

[0104] In Example 14, the subject matter of Example 13,
wherein evicting the cache line includes copying tag data for
the cache line into request information memory correspond-
ing to the address.

[0105] In Example 15, the subject matter of Example 14.,
wherein the tag data includes a pointer to the queue of
pending internal memory requests corresponding to the
cache line.

[0106] In Example 16, the subject matter of any of
Examples 9-15, wherein the counter has a maximum value
equal to a cardinality of the set of cache lines.

[0107] Example 17 is a machine readable medium includ-
ing instructions for evicting a cache line with pending
control request, the instructions, when executed by process-
ing circuitry, cause the processing circuitry to perform
operations comprising: receiving a memory request on an
external interface of a memory device, the memory request
including an address corresponding to a set of cache lines;
determining that a cache line of the set of cache lines will be
evicted to process the memory request; determining that a
control request has been made to a host from the memory
device, the control request pending when it is determined
that the cache line will be evicted; incrementing a counter
corresponding to the set of cache lines by one; and evicting
the cache line.

[0108] In Example 18, the subject matter of Example 17,
wherein the operations comprise: receiving a second
memory request on an internal interface of the memory
device, the second memory request including a second
address corresponding to the set of cache lines; reading the
counter to determine that the counter is greater than zero;
and pushing, in response to the counter being greater than
zero, the second memory request on a deferred queue for the
set of cache lines.

[0109] In Example 19, the subject matter of Example 18,
wherein the deferred queue corresponds to the internal
interface of the memory device.

[0110] In Example 20, the subject matter of any of
Examples 17-19, wherein the operations comprise: receiving
a response to the control request from the host, the response
indicating that the cache line is under the control of the
memory device; resuming processing of internal memory

US 2024/0330194 Al

requests on the cache line; and decrementing the counter by
one in response to resuming processing of the internal
memory requests.

[0111] In Example 21, the subject matter of any of
Examples 17-20, wherein the operations comprise: receiving
an internal memory request on an internal interface of the
memory device, the internal memory request including an
address corresponding to a cache line that is under control of
the host when the internal memory request is received;
pushing the internal memory request onto a queue of pend-
ing internal memory requests corresponding to the cache
line; and transmitting the control request to the host to gain
control of the cache line from the host.

[0112] In Example 22, the subject matter of Example 21,
wherein evicting the cache line includes copying tag data for
the cache line into request information memory correspond-
ing to the address.

[0113] In Example 23, the subject matter of Example 22.,
wherein the tag data includes a pointer to the queue of
pending internal memory requests corresponding to the
cache line.

[0114] In Example 24, the subject matter of any of
Examples 17-23, wherein the counter has a maximum value
equal to a cardinality of the set of cache lines.

[0115] Example 25 is a system for evicting a cache line
with pending control request, the system comprising: means
for receiving a memory request on an external interface of
a memory device, the memory request including an address
corresponding to a set of cache lines; means for determining
that a cache line of the set of cache lines will be evicted to
process the memory request; means for determining that a
control request has been made to a host from the memory
device, the control request pending when it is determined
that the cache line will be evicted; means for incrementing
a counter corresponding to the set of cache lines by one; and
means for evicting the cache line.

[0116] In Example 26, the subject matter of Example 25,
comprising: means for receiving a second memory request
on an internal interface of the memory device, the second
memory request including a second address corresponding
to the set of cache lines; means for reading the counter to
determine that the counter is greater than zero; and means
for pushing, in response to the counter being greater than
zero, the second memory request on a deferred queue for the
set of cache lines.

[0117] In Example 27, the subject matter of Example 26,
wherein the deferred queue corresponds to the internal
interface of the memory device.

[0118] In Example 28, the subject matter of any of
Examples 25-27, comprising: means for receiving a
response to the control request from the host, the response
indicating that the cache line is under the control of the
memory device; means for resuming processing of internal
memory requests on the cache line; and means for decre-
menting the counter by one in response to resuming pro-
cessing of the internal memory requests.

[0119] In Example 29, the subject matter of any of
Examples 25-28, comprising: means for receiving an inter-
nal memory request on an internal interface of the memory
device, the internal memory request including an address
corresponding to a cache line that is under control of the host
when the internal memory request is received; means for
pushing the internal memory request onto a queue of pend-
ing internal memory requests corresponding to the cache

Oct. 3, 2024

line; and means for transmitting the control request to the
host to gain control of the cache line from the host.

[0120] In Example 30, the subject matter of Example 29,
wherein the means for evicting the cache line include means
for copying tag data for the cache line into request infor-
mation memory corresponding to the address.

[0121] In Example 31, the subject matter of Example 30,
wherein the tag data includes a pointer to the queue of
pending internal memory requests corresponding to the
cache line.

[0122] In Example 32, the subject matter of any of
Examples 25-31, wherein the counter has a maximum value
equal to a cardinality of the set of cache lines.

[0123] Example 33 is at least one machine-readable
medium including instructions that, when executed by pro-
cessing circuitry, cause the processing circuitry to perform
operations to implement of any of Examples 1-32.

[0124] Example 34 is an apparatus comprising means to
implement of any of Examples 1-32.

[0125] Example 35 is a system to implement of any of
Examples 1-32.

[0126] Example 36 is a method to implement of any of
Examples 1-32.

[0127] The above detailed description includes references
to the accompanying drawings, which form a part of the
detailed description. The drawings show, by way of illus-
tration, specific embodiments that can be practiced. These
embodiments are also referred to herein as “examples.” Such
examples can include elements in addition to those shown or
described. However, the present inventors also contemplate
examples in which only those elements shown or described
are provided. Moreover, the present inventors also contem-
plate examples using any combination or permutation of
those elements shown or described (or one or more aspects
thereof), either with respect to a particular example (or one
or more aspects thereof), or with respect to other examples
(or one or more aspects thereof) shown or described herein.

[0128] All publications, patents, and patent documents
referred to in this document are incorporated by reference
herein in their entirety, as though individually incorporated
by reference. In the event of inconsistent usages between
this document and those documents so incorporated by
reference, the usage in the incorporated reference(s) should
be considered supplementary to that of this document; for
irreconcilable inconsistencies, the usage in this document
controls.

[0129] In this document, the terms “a” or “an” are used, as
is common in patent documents, to include one or more than
one, independent of any other instances or usages of “at least
one” or “one or more.” In this document, the term “or” is
used to refer to a nonexclusive or, such that “A or B”
includes “A but not B,” “B but not A,” and “A and B,” unless
otherwise indicated. In the appended claims, the terms
“including” and “in which” are used as the plain-English
equivalents of the respective terms “comprising” and
“wherein.” Also, in the following claims, the terms “includ-
ing” and “comprising” are open-ended, that is, a system,
device, article, or process that includes elements in addition
to those listed after such a term in a claim are still deemed
to fall within the scope of that claim. Moreover, in the
following claims, the terms “first,” “second,” and “third,”
etc. are used merely as labels, and are not intended to impose
numerical requirements on their objects.

US 2024/0330194 Al

[0130] The above description is intended to be illustrative,
and not restrictive. For example, the above-described
examples (or one or more aspects thereof) can be used in
combination with each other. Other embodiments can be
used, such as by one of ordinary skill in the art upon
reviewing the above description. The Abstract is to enable
the reader to quickly ascertain the nature of the technical
disclosure and is submitted with the understanding that it
will not be used to interpret or limit the scope or meaning of
the claims. Also, in the above Detailed Description, various
features can be grouped together to streamline the disclo-
sure. This should not be interpreted as intending that an
unclaimed disclosed feature is essential to any claim. Rather,
inventive subject matter can lie in less than all features of a
particular disclosed embodiment. Thus, the following claims
are hereby incorporated into the Detailed Description, with
each claim standing on its own as a separate embodiment.
The scope of the embodiments should be determined with
reference to the appended claims, along with the full scope
of equivalents to which such claims are entitled.

1. An apparatus comprising:

a memory configured to maintain a counter of recall

requests, a recall request being a request to a host for

a memory device to control a cache line of the memory

device, the memory device including the apparatus; and

processing circuitry configured to:

receive a memory request from a component of the
memory device for the cache line;

evaluate the counter in response to receipt of the
memory request to determine that the counter is
greater than zero; and

push, in response to the counter being greater than zero,
the memory request onto a deferred queue that
corresponds to a set of cache lines that includes the
cache line.

2. The apparatus of claim 1, comprising:

an external interface to communicate with the host; and

an internal interface to communicate with components of

the memory device.

3. The apparatus of claim 2, wherein memory request is
received via the internal interface, and wherein the process-
ing circuitry is configured to evaluate the counter to deter-
mine whether to push a request onto the deferred queue only
when the request is received via the internal interface.

4. The apparatus of claim 2, wherein the deferred queue
is exclusive to the internal interface, and wherein the
memory device includes an external deferred queue that is
exclusive to the external interface.

5. The apparatus of claim 4, wherein the deferred queue
and the external deferred queue correspond to a cache set of
the cache line, and wherein other internal deferred queues
and external deferred queues are maintained that correspond
to other cache sets of the memory device.

6. The apparatus of claim 2, wherein the external interface
conforms to a Compute Express Link (CXL) family of
standards.

7. The apparatus of claim 1, wherein the processing
circuitry is configured to increment the counter for each
recall request made to the host by the memory device, a
recall request being a request from the memory device for
cache line control of a given cache line to switch from the
host to the memory device.

Oct. 3, 2024

8. The apparatus of claim 7, wherein the processing
circuitry is configured to decrement the counter for each
recall that is returned from the host, a returned recall being
a transfer of control of a given cache line from the host to
the memory device made in response to a corresponding
recall request.

9. The apparatus of claim 1, wherein the component of the
memory device is atomic processing circuitry.

10. The apparatus of claim 9, wherein the memory request
is part of an atomic memory operation.

11. A method comprising:

maintaining, at a controller of a memory device, a counter

of recall requests, a recall request being a request to a
host for the memory device to control a cache line of
the memory device;
receiving, by the controller, a memory request from a
component of the memory device for the cache line;

evaluating the counter in response to receipt of the
memory request to determine that the counter is greater
than zero; and

pushing, in response to the counter being greater than

zero, the memory request onto a deferred queue that
corresponds to a set of cache lines that includes the
cache line.

12. The method of claim 11, wherein the controller
includes an external interface to communicate with the host
and an internal interface to communicate with components
of the memory device.

13. The method of claim 12, wherein memory request is
received via the internal interface, and wherein the counter
is evaluated for determining whether to push a request onto
the deferred queue only when the request is received via the
internal interface.

14. The method of claim 12, wherein the deferred queue
is exclusive to the internal interface, and wherein the
memory device includes an external deferred queue that is
exclusive to the external interface.

15. The method of claim 14, wherein the deferred queue
and the external deferred queue correspond to a cache set of
the cache line, and wherein other internal deferred queues
and external deferred queues are maintained that correspond
to other cache sets of the memory device.

16. The method of claim 12, wherein the external inter-
face conforms to a Compute Express Link (CXL) family of
standards.

17. The method of claim 11, comprising incrementing the
counter for each recall request made to the host by the
controller, a recall request being a request from the control-
ler for cache line control of a given cache line to switch from
the host to the controller.

18. The method of claim 17, comprising decrementing the
counter for each recall that is returned from the host, a
returned recall being a transfer of control of a given cache
line from the host to the controller made in response to a
corresponding recall request.

19. The method of claim 11, wherein the component of the
memory device is atomic processing circuitry.

20. The method of claim 19, wherein the memory request
is part of an atomic memory operation.

#* #* #* #* #*

