US 20130117660A1

a2y Patent Application Publication o) Pub. No.: US 2013/0117660 A1

a9 United States

Fischer 43) Pub. Date: May 9, 2013
(54) AUTOMATED DOCUMENT REVISION (52) US.CL
MARKUP AND CHANGE CONTROL CPC oo, GO6F 17/2247 (2013.01)
USPC oo 715/234
(71) Applicant: International Business Machines
Corporation, Armonk, NY (US)
(57) ABSTRACT

(72) Inventor: Stephen E. Fischer, Wappingers Falls,

NY (US)

(73) Assignee: INTERNATIONAL BUSINESS

MACHINES CORPORATION,
Armonk, NY (US)

(21) Appl. No.: 13/736,137
(22) Filed: Jan. 8,2013

Related U.S. Application Data

(63) Continuation of application No. 13/290,492, filed on
Nov. 7, 2011, now Pat. No. 8,381,095.

Publication Classification

(51) Int.CL

GO6F 17/22 (2006.01)

Automated comparison of Darwin Information Typing Archi-
tecture (DITA) documents for revision mark-up includes
reading document data from first and second DITA docu-
ments into respective document object model trees of nodes,
and identifying and collapsing emphasis subtree nodes in the
trees into their parent nodes, the collapsing caching emphasis
data from the identified subtree nodes. A traversal transforms
the model trees into respective node lists and captures adja-
cent sibling emphasis subtree nodes as single text nodes. The
node lists are merged into a merged node list that recognizes
matches node pairs having primary sort key information and
document structure metadata meeting a match threshold, with
differences between matching tokens of the node pairs saved.
A merged document object model built from the refined
merged node list is transformed into a hypertext mark-up
language document.

101 _/i DOCUMENT 1 DITA |

| DOCUMENT 2 DITA |\
103

DITA:

I—DITA

102 _/i READ DITA INTO DOM |

| READ DITA INTO DOM |\ 104

106 ~ l—DOMJ

¢—DOM—I

IDENTIFY AND COLLAPSE
EMPHASIS SUBTREES

IDENTIFY AND COLLAPSE
EMPHASIS SUBTREES

=108

|—DOM—*

L —pom
110
i

109 —] PRE-ORDER NODE LIST

TRANSFORM DOM TREE INTO

TRANSFORM DOM TREE INTO
PRE-ORDER NODE LIST

I—NODE LIST:

— —

NODE LIST—,

112 -

MERGE CONTENT AND STRUCTURE DATA
VIA 1%T LEVEL FUZZY LCS COMPARE INTO
MERGED NODE LIST

|—MERGED NODE LIST.
i

114 -

REFINE TABLE COMPARISONS THROUGH 2"° LEVEL,
TABLE-SPECIFIC FUZZY LCS COMPARE

|—MERGED NODE LIST.
3

116

_/i ANNOTATE STRUCTURE CHANGES |

l_MERGED NODE LISTJ

BUILD DOM TREE
FROM MERGED

vy
18 NODE LIST

_,—DOM—P

,L_HTM" TREE INTO HTML

120

NORMALIZE

TABLES [L—DOM

1

TRANSFORM DOM

WEB _ 2
124 =] BROWSER

Patent Application Publication May 9, 2013 Sheet 1 of 5 US 2013/0117660 A1

ol DOCUMEE1 DITA DOCUMENT 2DITA . -
DITA N
¥ K’
READ DITA INTO DOM READ DITA INTO DOM
102~ ©Do N— 104
DOM— DOM—
106 ~ i v
DENTIFY AND COLLAPSE] [IDENTIFY AND COLLAPSE
EMPHASIS SUBTREES EMPHASIS SUBTREES [N 108
LDOM—* I—DOM—+ il
TRANSFORM DOM TREE INTO | | TRANSFORM DOM TREE INTO
10— PRE-ORDER NODE LIST PRE-ORDER NODE LIST
L NODELIST I LIST——

MERGE CONTENT AND STRUCTURE DATA
VIA 15T LEVEL FUZZY LCS COMPARE INTO

112 -
MERGED NODE LIST
|—MERGED NODE LIST—;
REFINE TABLE COMPARISONS THROUGH 2"° L EVEL,
114 -] TABLE-SPECIFIC FUZZY LCS COMPARE
L MERGED NODE LIST—¢
ANNOTATE STRUCTURE CHANGE
116 o) STRUCTURE CHANGES
———MERGED NODE LIST 120
\ 4 /_
BUILD DOM TREE NORMALIZE
DOM—»
11— FROMMERGED =5 TABLES [L-DOM
NODE LIST —l
TRANSFORM DOM
v HTML—— TREE INTO HTML
WEB N 1

FIG 1

124 —| BROWSER

Patent Application Publication May 9, 2013 Sheet 2 of 5 US 2013/0117660 A1

/—112

I—MERGED NODE LIST1

202
/_

SEPARATE OUT MERGED TABLE
TABLE SEGMENTS NODE LIST

v

RECOVER CACHED XML
MERGED NON-TABLE METADATA

NODE LIST
204 _/
TABLE 1 DITA TABLE 2 DITA

MATCH AND COMPARE
TABLES VIA 2"P LEVEL,
TABLE-SPECIFIC FUZZY

206 —" LCS

—P

A 4

EMBED REPROCESSED
208 —] TABLE DATA INTO
MERGED NODE LIST

MERGED TABLE
NODE LIST

|—MERGED NODE LIST— __
116

FIG 2

Patent Application Publication May 9, 2013 Sheet 3 of 5 US 2013/0117660 A1

DOCUMENT 1 TABLE 1 DITA DOCUMENT 2 TABLE 2 DITA R -
01 I—DITAj |—D|TA—+
142/ READ TABLE DITA INTO DOM READ TABLE DITA INTO DOM
IDOMJ I poM—— N\
NORMALIZE TABLE NORMALIZE TABLE
306—/] ATTRIBUTES ATTRIBUTES [N—308
|—Dow|—+ I—DOM—+ 30
TRANSFORM DOM TREE INTO | | TRANSFORM DOM TREE INTO
310—] PRE-ORDER NODE LIST PRE-ORDER NODE LIST
L_NoDE LsT— [NoDE LisT—
CONSTRUCT UNIQUE TABLE CONSTRUCT UNIQUE TABLE
314] HEADER LABELS HEADER LABELS
L___NoDE uisT 316

—¢ rNODE LIST—|

COMPARE TABLE HEADERS VIA 2"° PHASE 2"P LEVEL,
318 -] TABLE-SPECIFIC FUZZY LCS COMPARE

——MERGED HEADER NODE LIST—

y

GENERATE COLUMN NAME MAPS FOR EACH TABLE 1
320 —| AND TABLE 2 INPUT FROM THEIR OLD COLUMN NAMES

— —

TABLE 1 COLUMN TABLE 1 COLUMN
321 -1 NAME MAP NAME MAP N 323

FIG 3

Patent Application Publication May 9, 2013 Sheet 4 of 5 US 2013/0117660 A1
TABLE 1 TABLE 1
DOCUMENT 1 COLUMN COLUMN DOCUMENT 2
TABLE 1 DITA NAME MAP NAME MAP TABLE 2 DITA
J 1 33 k
301 —DITA—¢ ¢—DITA— 303
MAP TO MERGED MAP TO MERGED
402 =] COLUMN NAMES COLUMN NAMES [N 404
I—DlTAl rDlTAJ /_ 408
READ TABLE DITA INTO DOM READ TABLE DITA INTO DOM
406 —/ I—DOM DOI\/I—| 412
3 v_ -
TRANSFORM DOM TREE INTO TRANSFORM DOM TREE INTO
410—/ PRE-ORDER NODE LIST PRE-ORDER NODE LIST
rNODE LIST—I I—NODE LIST—¢
CONSTRUCT UNIQUE COLUMN CONSTRUCT UNIQUE COLUMN
414 =" HEADER LABELS HEADER LABELS
——NODE LIST—¢ 416 —/ rNODE LIST—|
COMPARE COLUMN HEADER LABELS VIA 3°° PHASE
418 _/ 2"° | EVEL, TABLE-SPECIFIC FUZZY LCS COMPARE

MERGED TABLE NODE LIST

A

420 =1

NORMALIZE MERGED TABLE NODE LIST

ﬁNORMALIZED MERGED NODE LIST

N 116

FIG 4

Patent Application Publication May 9, 2013 Sheet Sof 5 US 2013/0117660 A1

COMPUTER SYSTEM

A
506 538
i > CPU /o

' MEMORY
| iNsTRUCTIONS W54y

o 3%
-«
|j<‘> i _— 520 532
FIG 5
N~ XML/DOM

602 —~] Transformer
Emphasis Identifier |[«—1—| Prcordcr Transformer

610
608\ /_

1* Level Longest Common 2" Level Longest Common
Subsequencer Subsequencer

612 614
N DOM Builder |[«——p| HTML Transformer <

FIG 6

US 2013/0117660 Al

AUTOMATED DOCUMENT REVISION
MARKUP AND CHANGE CONTROL

RELATED APPLICATIONS

[0001] This application is a continuation of U.S. applica-
tion Ser. No. 13/290,492, filed Nov. 7, 2011.

BACKGROUND

[0002] Embodiments of the present invention relate to
using automated processes to determine changes between
different versions of document files comprising text informa-
tion, and to indicate the determined changes to a user in a
useful manner.

[0003] It is known to use programmable device applica-
tions to compare different versions of document files to deter-
mine changes in document content. Often the determined
changes are indicated to user through inserting mark-ups
directly in a merged version combining two different docu-
ment versions, the mark-ups in a format indicating the nature
of the change, for example showing moved or deleted text
items in a strikethrough font, and added or inserted items in an
underlined font. Mark-ups are also often depicted in different
color fonts, in order to more readily recognize them in a color
contrast with the font of the unchanged document items.
[0004] While mark-up processes may be straightforward
and efficient in noting relative changes in text content, docu-
ments comprising constituent components organized in a
logical structural arrangement or schema present additional
challenges in efficient document comparison. Document
schema define methods for machine-to-machine communi-
cation of structured data, in one aspect enabling end user
display means to display document content with specified
emphasis (bold, italic font, etc.) or tables structures. Schema
support interoperable interaction within a given network or
service domain to enable consistent replication of a desired
document display format across a variety of end user display
applications and devices.

[0005] One commonly used schema is Darwin Information
Typing Architecture (DITA), an Extensible Markup Lan-
guage (XML) data model for design for capturing, authoring
and publishing document content. DITA provides opportuni-
ties to link processes for authoring, producing and delivering
information with underlying information technology infra-
structures that support content-related activities. In contrast
to book or chapter hierarchies, DITA document content is
mapped through links to pluralities of small topic items which
may be reused in other documents. DITA topics are organized
in a sequence in which they are intended to appear in a
finished document, wherein a DITA map defines a table of
contents for deliverables. Relationship tables in DITA maps
can also specity which topics link to each other.

[0006] Thus, DITA enables the reuse of modular topics in
different deliverables over a large variety of content contexts.
However, the topic-orientation of DITA documents renders
effective automated document comparison based on text
comparison problematic, for example often generating large
pluralities of unimportant or even spurious mark-ups due to
changes in document structure that may obfuscate document
content changes actually of interest.

BRIEF SUMMARY

[0007] In one embodiment of the present invention, a
method for automated comparison of Darwin Information

May 9, 2013

Typing Architecture (DITA) documents for revision mark-up
includes a processing unit reading document data from first
and second DITA documents into respective document object
model trees of nodes, and identifying and collapsing empha-
sis subtree nodes in the trees into their parent nodes, wherein
the collapsing caches emphasis data from the identified sub-
tree nodes. A traversal transforms the model trees into respec-
tive node lists, the listed nodes each having primary sort key
information and document structure metadata. The node lists
are merged into a merged node list that recognizes matches of
node pairs from each list that have primary sort key informa-
tion and document structure metadata meeting a match
threshold, and that saves differences between matching
tokens of the node pairs. A merged document object model
built from the refined merged node list is transformed into a
hypertext mark-up language document that displays the saved
differences between the matching tokens as word-level high-
lighting mark-ups within the refined tables.

[0008] In another embodiment, a method for providing a
service for automated comparison of Darwin Information
Typing Architecture (DITA) documents for revision mark-up
includes providing computer infrastructure that reads docu-
ment data from first and second DITA documents into respec-
tive document object model trees of nodes, and identifies and
collapses emphasis subtree nodes in the trees into their parent
nodes, the collapsing caching emphasis data from the identi-
fied subtree nodes. A traversal transforms the model trees into
respective node lists, the listed nodes each having primary
sort key information and document structure metadata. The
node lists are merged into a merged node list that recognizes
matches of node pairs from each list that have primary sort
key information and document structure metadata meeting a
match threshold, and that saves differences between match-
ing tokens of the node pairs. A merged document object
model built from the refined merged node list is transformed
into a hypertext mark-up language document that displays the
saved differences between the matching tokens as word-level
highlighting mark-ups within the refined tables.

[0009] In another embodiment, a system has a processing
unit, computer readable memory and a computer readable
storage medium device with program instructions, wherein
the processing unit, when executing the stored program
instructions reads document data from first and second DITA
documents into respective document object model trees of
nodes, and identifies and collapses emphasis subtree nodes in
the trees into their parent nodes, the collapsing caching
emphasis data from the identified subtree nodes. A traversal
transforms the model trees into respective node lists, the listed
nodes each having primary sort key information and docu-
ment structure metadata. The node lists are merged into a
merged node list that recognizes matches of node pairs from
each list that have primary sortkey information and document
structure metadata meeting a match threshold, and that saves
differences between matching tokens of the node pairs. A
merged document object model built from the refined merged
node list is transformed into a hypertext mark-up language
document that displays the saved differences between the
matching tokens as word-level highlighting mark-ups within
the refined tables.

[0010] In another embodiment, an article of manufacture
has a computer readable storage medium device with com-
puter readable program code embodied therewith, the com-
puter readable program code comprising instructions that,
when executed by a computer processor, cause the computer

US 2013/0117660 Al

processor to read document data from first and second DITA
documents into respective document object model trees of
nodes, and identify and collapse emphasis subtree nodes in
the trees into their parent nodes, the collapsing caching
emphasis data from the identified subtree nodes. A traversal
transforms the model trees into respective node lists, the listed
nodes each having primary sort key information and docu-
ment structure metadata. The node lists are merged into a
merged node list that recognizes matches of node pairs from
each list that have primary sortkey information and document
structure metadata meeting a match threshold, and that saves
differences between matching tokens of the node pairs. A
merged document object model built from the refined merged
node list is transformed into a hypertext mark-up language
document that displays the saved differences between the
matching tokens as word-level highlighting mark-ups within
the refined tables.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

[0011] These and other features of this invention will be
more readily understood from the following detailed descrip-
tion of the various aspects of the invention taken in conjunc-
tion with the accompanying drawings in which:

[0012] FIG.1is ablock diagram illustration of a method or
system according to the present invention for performing an
automated comparison of DITA documents for revision
mark-up.

[0013] FIG. 2 is a block diagram illustration of an embodi-
ment of the present invention method for performing an auto-
mated comparison of DITA documents for revision mark-up.
[0014] FIG. 3 is a block diagram illustration of an embodi-
ment of the present invention method for performing an auto-
mated comparison of DITA documents for revision mark-up.
[0015] FIG. 4 is a block diagram illustration of an embodi-
ment of the present invention method for performing an auto-
mated comparison of DITA documents for revision mark-up.
[0016] FIG. 5 is a block diagram illustration of a comput-
erized implementation of an embodiment of the present
invention.

[0017] FIG. 6 is a block diagram illustration of an article
according to the present invention.

[0018] The drawings are not necessarily to scale. The draw-
ings are merely schematic representations, not intended to
portray specific parameters ofthe invention. The drawings are
intended to depict only typical embodiments of the invention,
and therefore should not be considered as limiting the scope
of the invention. In the drawings, like numbering represents
like elements.

DETAILED DESCRIPTION

[0019] As will be appreciated by one skilled in the art,
aspects of the present invention may be embodied as a system,
method or computer program product. Accordingly, aspects
of the present invention may take the form of an entirely
hardware embodiment, an entirely software embodiment (in-
cluding firmware, resident software, micro-code, etc.) or an
embodiment combining software and hardware aspects that
may all generally be referred to herein as a “circuit,” “mod-
ule” or “system.” Furthermore, aspects of the present inven-
tion may take the form of a computer program product
embodied in one or more computer readable medium(s) hav-
ing computer readable program code embodied thereon.

May 9, 2013

[0020] Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec-
tronic, magnetic, optical, or semiconductor system, appara-
tus, or device, or any suitable combination of the foregoing.
More specific examples (a non-exhaustive list) of the com-
puter readable storage medium would include the following:
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), a portable compact disc read-only memory (CD-
ROM), an optical storage device, a magnetic storage device,
orany suitable combination of the foregoing. In the context of
this document, a computer readable storage medium may be
any tangible medium that can contain or store a program for
use by or in connection with an instruction execution system,
apparatus, or device.

[0021] A computer readable signal medium may include a
propagated data signal with computer readable program code
embodied therein, for example, in a baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

[0022] Program code embodied on a computer readable
medium may be transmitted using any appropriate medium,
including, but not limited to, wireless, wireline, optical fiber
cable, RF, etc., or any suitable combination of the foregoing.

[0023] Computer program code for carrying out operations
for aspects of the present invention may be written in any
combination of one or more programming languages, includ-
ing an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

[0024] Aspects of the present invention are described
below with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems) and computer pro-
gram products according to embodiments of the invention. It
will be understood that each block of the flowchart illustra-
tions and/or block diagrams, and combinations of blocks in
the flowchart illustrations and/or block diagrams, can be
implemented by computer program instructions. These com-
puter program instructions may be provided to a processor of
a general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-

US 2013/0117660 Al

cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

[0025] These computer program instructions may also be
stored in a computer readable medium that can direct a com-
puter, other programmable data processing apparatus, or
other devices to function in a particular manner, such that the
instructions stored in the computer readable medium produce
an article of manufacture including instructions which imple-
ment the function/act specified in the flowchart and/or block
diagram block or blocks.

[0026] The computer program instructions may also be
loaded onto a computer, other programmable data processing
apparatus, or other devices to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple-
mented process such that the instructions which execute on
the computer or other programmable apparatus provide pro-
cesses for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.

[0027] Rapid and accurate visualization of proposed
changes is desirable for evaluation of proposed changes to a
DITA topic and also for comparing DITA topic versions.
However, comparison of normalized DITA XML text lines is
not generally intuitive but instead requires knowledge of the
underlying DITA XML structure. Manual comparison of two
documents in any format is error-prone and time consuming,
s0 automation provides great benefit. And although the DITA
can be converted into HyperText Mark-up Language
(HTML) or Portable Document Format (PDF) and compared
automatically using the prior art, the results are less than
ideal, resulting in false deltas and poor handling of emphasis
(bold/italic/etc.) and especially of tables. Similarly, the DITA
itself can be automatically compared using prior art tools, but
again the results are less than ideal and have similar issues.
More particularly, recognizing insertion or deletion of blocks
of text information is non-trivial in DITA comparison, and
prior art automated solutions typically generate many spuri-
ous “false delta” mark-ups that note format changes not rel-
evant to content semantics of interest. Thus, prior art process
often insert unwanted or useless mark-ups noting different
page splits or paragraph locations, the mark-ups causing
visual clutter hindering effective document comparison.
[0028] FIG. 1 illustrates one embodiment of a method or
process for automated comparison of DITA XML documents
for revision mark-up according to the present invention.
Document data from two respective DITA XML documents
101 and 103 is read into respective Document Object Model
(DOM) trees at 102 and 104. More particularly, DITA XML
text files comprise an inherent tree structure which encodes
the relative hierarchies of each section or topic within the
document, and this tree structure is read at 102/104.

[0029] Emphasis subtrees each are identified and collapsed
at 106 and 108. More particularly, at 106 and 108 all of the
XML DOM subtrees consisting entirely of text emphasis
nodes (for example, bold, italic, underline, subscript, super-
script, cross-reference, phrase, etc.) are found and saved as
parent node attributes. This supports atomic, specialized han-
dling of the emphasis subtrees, as the addition or removal of
emphasis tags is not seen as a change in structure, and wherein
the XML data is cached for each table for later use in special
table reprocessing as described below.

[0030] At 109 and 110 a preorder traversal is performed
that ravels or transforms the DOM trees of the respective

May 9, 2013

documents 101 and 103 into respective pre-order lists of
nodes each comprising primary sort key (comparison string)
information and document structure metadata. For example,
metadata may include “colname” column name data for all
entry children within a column in the DITA document to help
a later reconstruct process step keep them together. The pre-
order traversal transformation captures the adjacent sibling
emphasis subtrees saved as parent node attributes at 106/108
as a single text node, in one aspect so changes in emphasis
don’t look like changes in structure during document com-
parison.

[0031] At 112 a first-level fuzzy Longest Common Subse-
quence (LCS) process uses the pre-order node list primary
sort key information and some of the metadata for equiva-
lence comparison to merge the overall text content and struc-
ture of the two documents into a merged node list. Fuzzy
matches of node pairs are recognized through use of a token-
by-token LCS process, wherein if a number of tokens and a
percentage of match meets respective thresholds of the LCS
then compared nodes in the respective documents are deter-
mined to match in the merged node list. Differences between
said matching tokens (token-by-token deltas) are remem-
bered (saved) to supply word-level highlighting mark-ups to
a merged document output as desired and optimized through
further process described below.

[0032] At114a2"?level, table-specific fuzzy LCS process
use the XML metadata cached at 106/108 to refine table
comparisons in the merged node list. The 2" level process
may comprise a plurality of phases, each running in a variety
of comparison modes depending on where it is called with
respect to metadata data attributes: for example, requiring a
column name or a table header match. Though the embodi-
ment may be structured to call out only text content changes,
at 116 structure changes of interest may also be selected for
annotation through mark-up. At 118 a document object model
is built from the merged node list, and tables in the built DOM
are normalized as a function of the table metadata to correct
structural table issues at 120. At 122 the merged node list is
then transformed into a HTML to display text content
changes, and optionally some structure changes, through
inserting mark-ups in a merged document represented in a
web browser at 124.

[0033] By the use of multi-level LCS processes on pre-
order, linearized DOM tree transforms of the DITA data, the
embodiment of FIG. 1 merges structure and content data
simultaneously while still enabling the process to distinguish
between emphasis and other, structural markup tags. The
preorder traversal process reveals text content first, and then
the structural metadata as a function of the tree organization,
and this order is exploited to differentiate the handling of the
respective content and structure data. More particularly,
leaves of the DOM structure trees of the DITA documents 101
and 103 without children comprise the data content, wherein
the tree elements above these leaves show how the content is
organized, the structure of each DITA document (emphasis,
column and table locations, etc.).

[0034] Some prior art approaches sequence said leaves one
after another and apply L.CS or other comparison processes to
said leaf content data in order to find content deltas. However,
merely using the content deltas to reassemble merged data
into a mark-up document presents problems when structural
datais also changed between the compared documents, in one
aspect as structure data differences between the compared
documents will confuse reassembly processes. For example,

US 2013/0117660 Al

if a paragraph gets moved from one area of a document to
another, then overall document registration is disrupted as
one progresses through the document for word-level or block
level comparison: the same paragraph text blocks may now
have different paragraph numbering, or appear on different
pages. Further, because tables are stored row-by-row in DITA
document structures, column changes are extremely difficult
to visualize when reading line-by-line text comparison results
from normalized DITA XML text. In contrast, the present
embodiment uses additional, table-specific LCS processes to
maintain registration of other document elements surround-
ing a changed block area, thereby not only merging the struc-
ture with the content to compute delta on content and struc-
ture simultaneously, but also handling table structure changes
by merging the structures of the two tables to be compared.
More particularly, embodiments of the present invention
address the problem of automatically highlighting proposed
changes or deltas between two DITA XML format document
by generating strikethrough and addition markup highlight-
ing in a merged/combined document, given as input an origi-
nal and modified document (without any change markup) in
the DITA XML format. The result of the compare is a valid
DITA document that may be published (for example, to PDF,
to the web, etc.) in the same way that the original documents
may be published.

[0035] FIG. 2 illustrates one embodiment of the 2% level,
table-specific fuzzy L.CS processes of 114 of FIG. 1. At 202
table segments in a merged node list input provided from the
1% level LCS at 112 are separated out, producing respective
table and non-table node list outputs. At 204 the XML meta-
data cached at 106/108 is recovered for each ofa Table 1 of the
Document 1 DITA 101 and a Table 2 of the Document 2 DITA
103 in the table node list output, and a table-specific LCS
process applied to the tables and their recovered metadata at
206 to match, compare and otherwise reprocess the document
tables in the merged table node list. At 208 the reprocessed
merged table node list is embedded into the merged node list
in combination with the non-table node list to generate a
refined merged node list output for use in the subsequent
processes 116 et seq of FIG. 1.

[0036] FIGS. 3 and 4 illustrate one embodiment of the
present invention that generate a mark-up merged document
by performing three phases of LCS compares: a first phase at
the 1%level (at 112, FIG. 1), and then two additional, different
second and third phases at the 2", table-specific LCS level (at
206, FIG. 2). More particularly, referring now to FIG. 3
respective DITA document 1 table 1 metadata 301 and docu-
ment 2 table 2303 metadata is read into DOM trees at 302 and
304, and table attributes of each normalized at 306 and 308.
Preorder traversals are performed at 310 and 312 to transform
the respective DOM trees into pre-order node list outputs, and
unique table header labels are constructed for the nodes in the
respective tables at 314 and 316. At 318 a 2" phase 2" level,
table-specific fuzzy L.CS process compares the constructed
header labels of the tables to generate a merged header node
list. At 320 the column header text is analyzed to distinguish
between new and modified columns, and column name maps
321 and 323 are generated from old column names for each
input table to the merged table column names.

[0037] Referring now to FIGS. 4, at 402 and 404 the DITA
document 1 table 1 metadata 301 and document 2 table 2 303
metadata is mapped to the merged node list column names via
the column name maps 321 and 323. The mapped data for
each document is read into respective DOM trees data at 406

May 9, 2013

and 408, and preorder traversals at 410 and 412 transform the
DOM trees into respective pre-order node list outputs.
Unique column header labels are constructed for the respec-
tive tables at 414 and 416, and at 418 a 3’ phase 2" level,
table-specific fuzzy L.CS process compares the constructed
column header labels of the tables to generate a merged table
node list, which is normalized as a function of the table
metadata to correct structural table issues at 420, the output
available for use in the subsequent processes 116 et seq of
FIG. 1.

[0038] The embodiment of FIGS. 3 and 4 transforms struc-
tural metadata within the DITA documents into column and
header text data that may be merged simultaneously and
easily compared through second level, table-specific LCS
processes to distinguish between new columns and modified
columns. The first LCS phase merges the overall content and
structure. The second LCS phase compares table headers so
matching columns can be tagged and aligned. The third LCS
phase re-merges tables with tagged columns, so the columns
stay aligned. The L.CS used also recognizes fuzzy matches; it
considers phrases as matching if a sufficient number of the
words match. When phrases fuzzy match, deltas may be indi-
cated on the word level. In addition, the embodiment handles
emphasis markup specially, so changes in emphasis do not
unnecessarily confuse the change markup.

[0039] Text comparison results may thus be clearly ren-
dered in mark-up generation by maintaining correct column
alignment in merged tables through the column name map-
ping based on column header analysis described above. Using
two levels of LCS, at each of respective text content and
structural metadata levels, enables document comparison at
both the node level and at the word level. As changes in table
structures are determined at a different level, a user may
choose to indicate such structure changes uniquely with
respect to text content change mark-ups where appropriate
(for example, with extra explanatory text/symbols, differ-
ently bracketed text, etc.), or the user may omit the noted
structural change to display only text content changes.
Embodiments of the present invention may be implemented
in a variety of code applications. Examples include Visual
Basic for Applications (VBA) and Java, and still others will be
apparent to one skilled in the art.

[0040] Referring now to FIG. 5, an exemplary computer-
ized implementation of an embodiment of the present inven-
tion includes a computer or other programmable device 522
in communication with one or more sources of DITA docu-
ments 506. Instructions 542 reside within computer readable
code in a computer readable storage system 532, or other
tangible computer readable storage medium that is accessed
through a computer network infrastructure 526 by a process-
ing unit (CPU) 538. Thus, the instructions, when imple-
mented by the processing unit (CPU) 538, cause the process-
ing unit (CPU) 538 to perform an automated comparison of
DITA documents from the sources 506 or other input/output
(I/0) devices 524 for revision mark-up as described above
with respect to FIG. 1, and in some embodiments of the
present invention also with respect to one or more of FIGS. 2,
3 and 4.

[0041] FIG. 6 illustrates an embodiment of an article 601
(forexample, a programmable device, system, etc.) according
to the present invention that performs an automated compari-
son of DITA documents for revision mark-up as described
above with respect to FIG. 1, and in some embodiments of the
present invention also with respect to one or more of FIGS. 2,

US 2013/0117660 Al

3, 4 and 5. One or more of the components of the article 301
are tangible devices that perform specific functions, for
example comprising the processing unit 538, computer read-
able memory 516 and tangible computer readable storage
medium 532 of FIG. 5. More particularly, a DITA XML/
DOM Transformer 602 reads document data from DITA
XML documents into respective DOM trees. An Emphasis
Identifier 604 identifies and collapses DOM subtrees consist-
ing of text emphasis nodes, saves them as parent node
attributes and caches their XML metadata.

[0042] A Preorder Transformer 606 transforms DOM trees
via preorder traversal into respective pre-order lists of nodes
each comprising primary sort key information and document
structure metadata, and captures adjacent sibling emphasis
subtrees as a single text node. A 1% Level Longest Common
Subsequencer 608 uses the pre-order node list primary sort
key information and some of the metadata for equivalence
comparison to merge overall text content and structure of read
from two DITA documents into a merged node list, recogniz-
ing token-by-token fuzzy matches of node pairs and saving
differences between matching tokens. A 2”7 Level Longest
Common Subsequencer 610 uses table-specific fuzzy pro-
cesses to refine table comparisons in the merged node list as
a function of the cached XML metadata. A DOM Builder 612
builds a document object model from the merged node list,
and a HTML Transformer 614 transforms the built document
object models into a HTML document for display of the saved
differences between the matching tokens as text content
changes via mark-ups in a merged document in a browser.

[0043] Embodiments of the present invention may also per-
form process steps of the invention on a subscription, adver-
tising, and/or fee basis. That is, a service provider could offer
to perform an automated comparison of DITA documents for
revision mark-up as described above with respect to FIGS.
1-6. Thus, the service provider can create, maintain, and
support, etc., a computer infrastructure such as the computer
system 522, network environment 526, or parts thereof, or the
article 601, that perform the process steps of the invention for
one or more customers. In return, the service provider can
receive payment from the customer(s) under a subscription
and/or fee agreement and/or the service provider can receive
payment from the sale of advertising content to one or more
third parties. Services may comprise one or more of: (1)
installing program code on a computing device, such as the
computers/devices 522/601, from a tangible computer-read-
able medium device 520 or 532; (2) adding one or more
computing devices to a computer infrastructure; and (3)
incorporating and/or modifying one or more existing systems
of the computer infrastructure to enable the computer infra-
structure to perform the process steps of the invention.

[0044] The terminology used herein is for the purpose of
describing particular embodiments only and is not intended to
be limiting of the invention. As used herein, the singular
forms “a”, “an” and “the” are intended to include the plural
forms as well, unless the context clearly indicates otherwise.
It will be further understood that the terms “comprises” and/
or “comprising” when used in this specification, specify the
presence of stated features, integers, steps, operations, ele-
ments, and/or components, but do not preclude the presence
or addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.
Certain examples and elements described in the present
specification, including in the claims and as illustrated in the
Figures, may be distinguished or otherwise identified from

May 9, 2013

others by unique adjectives (e.g. a “first” element distin-
guished from another “second” or “third” of a plurality of
elements, a “primary” distinguished from a “secondary” one
or “another” item, etc.) Such identifying adjectives are gen-
erally used to reduce confusion or uncertainty, and are not to
be construed to limit the claims to any specific illustrated
element or embodiment, or to imply any precedence, ordering
orranking of any claim elements, limitations or process steps.

[0045] The corresponding structures, materials, acts, and
equivalents of all means or step plus function elements in the
claims below are intended to include any structure, material,
or act for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.

What is claimed is:

1. A method for automated comparison of Darwin Infor-
mation Typing Architecture (DITA) documents for revision
mark-up, the method comprising:

reading via a processing unit document data from a first
DITA document into a first document object model tree
comprising a plurality of nodes, and from a second DITA
document into a second document object model tree
comprising a plurality of nodes;

identifying and collapsing via the processing unit emphasis
subtree nodes in the first document object model tree
into their parent nodes in the first document object
model tree, and emphasis subtree nodes in the second
document object model tree into their parent nodes in the
second document object model tree, the collapsing com-
prising caching emphasis data from the identified sub-
tree nodes;

the processing unit transforming the first document object
model tree into a first node list, and the second document
object model tree into a second node list, the listed nodes
each comprising primary sort key information and docu-
ment structure metadata;

merging via the processing unit the first and second node
lists into a merged node list by recognizing matches of
node pairs from each list that have primary sort key
information and document structure metadata meeting a
threshold percentage of match, and that saves differ-
ences between matching tokens of the node pairs;

separating out table segments from the merged node list
into a table node list and a non-table node list;

recovering the cached emphasis data for the table segments
in the table node list;

building a merged document object model from the merged
node list and the non-table node list and the recovered
cached emphasis data for the table segments in the table
node list; and

transforming the built merged document object model into
a hypertext mark-up language document that displays

US 2013/0117660 Al

the saved differences between the matching tokens as
word-level highlighting mark-ups within the refined
tables.
2. The method of claim 1,
wherein the step of transforming the first document object
model tree into the first node list and transforming the
second document object model tree into the second node
list is via a preorder traversal that captures adjacent
sibling emphasis subtree nodes as single text nodes, and
wherein the first node list is a first pre-order node list and
the second node list is a second pre-order node list;

wherein the step of merging the first and second pre-order
node lists into a merged node list is via a first phase
longest common subsequence process; and

wherein the step of recovering the cached emphasis data

for the table segments in the table node list comprises
refining table comparisons in the merged node list via at
least one additional longest common subsequence pro-
cess.

3. The method of claim 2, wherein the step of refining table
comparisons in the merged node list via the at least one
additional longest common subsequence process comprises:

constructing unique table header labels for the table seg-

ments in the table node list;

comparing the constructed header labels of the tables via a

second phase longest common subsequence process to
generate column header text for merged table column
names in a merged header node list;

analyzing the column header text to distinguish between

new and modified columns; and

generating a first column name map for the first DITA

document and a second column name map for the sec-
ond DITA document from old column names for each
input table to the merged table column names.

4. The method of claim 3, wherein the step of refining table
comparisons in the merged node list via the at least one
additional longest common subsequence process further
comprises:

mapping first table metadata from the first DITA document

to the merged node list column names via the first col-
umn name map and from the second DITA document to
the merged node list column names via the second col-
umn name map;

constructing unique column header labels for the table

segments in the table node list; and

comparing the constructed column header labels of the

tables via a third phase longest common subsequence
process to generate a third phase merged table node list
for use in the step of building the merged document
object model from the merged node list and the refined
table comparisons.

5. The method of claim 4, further comprising:

the second phase longest common subsequence process

comparing table headers; and

tagging and aligning matching columns as a function of the

comparing table headers.

6. The method of claim 5, further comprising:

the third phase longest common subsequence process re-

merging table data with tagged columns so the tagged
columns stay aligned.

7. The method of claim 6, wherein the step of comparing
via the first phase longest common subsequence process fur-
ther comprises:

May 9, 2013

determining that word phrases in the node text content
match if a threshold number of words of compared
phrases match; and

indicating word level differences as word-level highlight-
ing mark-ups within matching compared phrases.

8. A method for deploying an application for automated

comparison of Darwin Information Typing Architecture
(DITA) documents for revision mark-up, the method com-
prising:

providing a computer infrastructure that:

reads document data from a first DITA document into a first
document object model tree comprising a plurality of
nodes, and from a second DITA document into a second
document object model tree comprising a plurality of
nodes;

identifies and collapses emphasis subtree nodes in the first
document object model tree into their parent nodes in the
first document object model tree, and emphasis subtree
nodes in the second document object model tree into
their parent nodes in the second document object model
tree, the collapsing comprising caching emphasis data
from the identified subtree nodes;

transforms the first document object model tree into a first
node list, and the second document object model tree
into a second node list, the listed nodes each comprising
primary sort key information and document structure
metadata;

merges the first and second node lists into a merged node
list by recognizing matches of node pairs from each list
that have primary sort key information and document
structure metadata meeting a threshold percentage of
match, and that saves differences between matching
tokens of the node pairs;

separates out table segments from the merged node list into
a table node list and a non-table node list;

recovers the cached emphasis data for the table segments in
the table node list;

builds a merged document object model from the merged
node list and the non-table node list and the recovered
cached emphasis data for the table segments in the table
node list; and

transforms the built merged document object model into a
hypertext mark-up language document that displays the
saved differences between the matching tokens as word-
level highlighting mark-ups within the table compari-
sons.

9. The method of claim 8, wherein the computer infrastruc-

ture further:

transforms the first document object model tree into the
first node list and the second document object model tree
into the second node list via a preorder traversal that
captures adjacent sibling emphasis subtree nodes as
single text nodes, and wherein the first node list is a first
pre-order node list and the second node list is a second
pre-order node list;

merges the first and second pre-order node lists into the
merged node list via a first phase longest common sub-
sequence process; and

recovers the cached emphasis data for the table segments in
the table node list by refining table comparisons in the
merged node list via at least one additional longest com-
mon subsequence process.

US 2013/0117660 Al

10. The method of claim 9, wherein the computer infra-
structure refines the table comparisons in the merged node list
via the at least one additional longest common subsequence
process by:

constructing unique table header labels for the table seg-
ments in the table node list;

comparing the constructed header labels of the tables via a
second phase longest common subsequence process to
generate column header text for merged table column
names in a merged header node list;

analyzing the column header text to distinguish between
new and modified columns; and

generating a first column name map for the first DITA
document and a second column name map for the sec-
ond DITA document from old column names for each
input table to the merged table column names.

11. The method of claim 10, wherein the computer infra-
structure refines the table comparisons in the merged node list
via the at least one additional longest common subsequence
by:

mapping first table metadata from the first DITA document
to the merged node list column names via the first col-
umn name map and from the second DITA document to
the merged node list column names via the second col-
umn name map;

constructing unique column header labels for the table
segments in the table node list; and

comparing the constructed column header labels of the
tables via a third phase longest common subsequence
process to generate a third phase merged table node list
for use in the step of building the merged document
object model from the merged node list and the refined
table comparisons.

12. The method of claim 11, wherein the computer infra-

structure further:

determines that word phrases in the node text content
match if a threshold number of words of compared
phrases match in the first phase longest common subse-
quence comparison process, and indicates word level
differences as word-level highlighting mark-ups within
matching compared phrases;

compares table headers in the second phase longest com-
mon subsequence process, and tags and aligns matching
columns as a function of comparing the table headers;
and

re-merges table data with tagged columns in the third phase
longest common subsequence process so that the tagged
columns stay aligned.

13. A system, comprising:

a processing unit;

a memory coupled to the processing unit, the memory
storing computer instructions that, when executed by the
processing unit, cause the processing unit to:

read document data from a first Darwin Information Typ-
ing Architecture (DITA) document into a first document
object model tree comprising a plurality of nodes, and
from a second DITA document into a second document
object model tree comprising a plurality of nodes;

identify and collapse emphasis subtree nodes in the first
document object model tree into their parent nodes in the
first document object model tree, and emphasis subtree
nodes in the second document object model tree into
their parent nodes in the second document object model

May 9, 2013

tree, the collapsing comprising caching emphasis data
from the identified subtree nodes;

transform the first document object model tree into a first

node list, and the second document object model tree
into a second node list, the listed nodes each comprising
primary sort key information and document structure
metadata;

merge the first and second node lists into a merged node list

by recognizing matches of node pairs from each list that
have primary sort key information and document struc-
ture metadata meeting a threshold percentage of match,
and that saves differences between matching tokens of
the node pairs;
separate out table segments from the merged node list into a
table node list and a non-table node list;

recover the cached emphasis data for the table segments in

the table node list; build a merged document object
model from the merged node list and the non-table node
list and the recovered cached emphasis data for the table
segments in the table node list; and

transform the built merged document object model into a

hypertext mark-up language document that displays the
saved differences between the matching tokens as word-
level highlighting mark-ups within the refined tables.

14. The system of claim 13, wherein the processing unit,
when executing the program instructions stored on the com-
puter-readable storage medium via the computer readable
memory, further:

transforms the first document object model tree into the

first node list and the second document object model tree
into the second node list via a preorder traversal that
captures adjacent sibling emphasis subtree nodes as
single text nodes, and wherein the first node list is a first
pre-order node list and the second node list is a second
pre-order node list;

merges the first and second pre-order node lists into the

merged node list via a first phase longest common sub-
sequence process; and

recovers the cached emphasis data for the table segments in

the table node list by refining table comparisons in the
merged node list via at least one additional longest com-
mon subsequence process.

15. The system of claim 14, wherein the processing unit,
when executing the program instructions stored on the com-
puter-readable storage medium via the computer readable
memory, further refines the table comparisons in the merged
node list via the at least one additional longest common
subsequence process by:

constructing unique table header labels for the table seg-

ments in the table node list;

comparing the constructed header labels of the tables via a

second phase longest common subsequence process to
generate column header text for merged table column
names in a merged header node list;

analyzing the column header text to distinguish between

new and modified columns; and

generating a first column name map for the first DITA

document and a second column name map for the sec-
ond DITA document from old column names for each
input table to the merged table column names.

16. The system of claim 15, wherein the processing unit,
when executing the program instructions stored on the com-
puter-readable storage medium via the computer readable

US 2013/0117660 Al

memory, further refines the table comparisons in the merged
node list via the at least one additional longest common
subsequence by:

mapping first table metadata from the first DITA document

to the merged node list column names via the first col-
umn name map and from the second DITA document to
the merged node list column names via the second col-
umn name map;

constructing unique column header labels for the table

segments in the table node list; and

comparing the constructed column header labels of the

tables via a third phase longest common subsequence
process to generate a third phase merged table node list
for use in the step of building the merged document
object model from the merged node list and the refined
table comparisons.

17. The system of claim 16, wherein the processing unit,
when executing the program instructions stored on the com-
puter-readable storage medium via the computer readable
memory, further:

determines that word phrases in the node text content

match if a threshold number of words of compared
phrases match in the first phase longest common subse-
quence comparison process, and indicates word level
differences as word-level highlighting mark-ups within
matching compared phrases;

compares table headers in the second phase longest com-

mon subsequence process, and tags and aligns matching
columns as a function of comparing the table headers;
and

re-merges table data with tagged columns in the third phase

longest common subsequence process so that the tagged
columns stay aligned.

18. An article of manufacture, comprising:

acomputer readable tangible storage medium having com-

puter readable program code embodied therewith, the
computer readable program code comprising instruc-
tions that, when executed by a computer processor,
cause the computer processor to:

read document data from a first DITA document into a first

document object model tree comprising a plurality of
nodes, and from a second DITA document into a second
document object model tree comprising a plurality of
nodes;

identify and collapse emphasis subtree nodes in the first

document object model tree into their parent nodes in the
first document object model tree, and emphasis subtree
nodes in the second document object model tree into
their parent nodes in the second document object model
tree, the collapsing comprising caching emphasis data
from the identified subtree nodes;

transform the first document object model tree into a first

node list, and the second document object model tree
into a second node list, the listed nodes each comprising
primary sort key information and document structure
metadata;

merge the first and second node lists into a merged node list

by recognizing matches of node pairs from each list that
have primary sort key information and document struc-
ture metadata meeting a threshold percentage of match,
and that saves differences between matching tokens of
the node pairs;
separate out table segments from the merged node list into a
table node list and a non-table node list;

May 9, 2013

recover the cached emphasis data for the table segments in
the table node list; build a merged document object
model from the merged node list and the non-table node
list and the recovered cached emphasis data for the table
segments in the table node list; and

transform the built merged document object model into a

hypertext mark-up language document that displays the
saved differences between the matching tokens as word-
level highlighting mark-ups within the refined table
comparisons.

19. The article of manufacture of claim 18, wherein the
computer readable program code instructions, when executed
by the computer processor, further cause the computer pro-
cessor to:

transform the first document object model tree into the first

node list and the second document object model tree into
the second node list via a preorder traversal that captures
adjacent sibling emphasis subtree nodes as single text
nodes, and wherein the first node list is a first pre-order
node list and the second node list is a second pre-order
node list;

merge the first and second pre-order node lists into the

merged node list via a first phase longest common sub-
sequence process; and

recover the cached emphasis data for the table segments in

the table node list by refining table comparisons in the
merged node list via at least one additional longest com-
mon subsequence process.

20. The article of manufacture of claim 19, wherein the
computer readable program code instructions, when executed
by the computer processor, further cause the computer pro-
cessor to refine the table comparisons in the merged node list
via the at least one additional longest common subsequence
process by:

constructing unique table header labels for the table seg-

ments in the table node list;

comparing the constructed header labels of the tables via a

second phase longest common subsequence process to
generate column header text for merged table column
names in a merged header node list;

analyzing the column header text to distinguish between

new and modified columns; and

generating a first column name map for the first DITA

document and a second column name map for the sec-
ond DITA document from old column names for each
input table to the merged table column names.

21. The article of manufacture of claim 20, wherein the
computer readable program code instructions, when executed
by the computer processor, further cause the computer pro-
cessor to refine the table comparisons in the merged node list
via the at least one additional longest common subsequence
by:

mapping first table metadata from the first DITA document

to the merged node list column names via the first col-
umn name map and from the second DITA document to
the merged node list column names via the second col-
umn hame map;

constructing unique column header labels for the table

segments in the table node list; and

comparing the constructed column header labels of the

tables via a third phase longest common subsequence
process to generate a third phase merged table node list

US 2013/0117660 Al

for use in the step of building the merged document
object model from the merged node list and the refined
table comparisons.

22. The article of manufacture of claim 21, wherein the
computer readable program code instructions, when executed
by the computer processor, further cause the computer pro-
cessor to:

determines that word phrases in the node text content

match if a threshold number of words of compared
phrases match in the first phase longest common subse-
quence comparison process, and indicates word level
differences as word-level highlighting mark-ups within
matching compared phrases;

compares table headers in the second phase longest com-

mon subsequence process, and tags and aligns matching
columns as a function of comparing the table headers;
and

re-merges table data with tagged columns in the third phase

longest common subsequence process so that the tagged
columns stay aligned.

#* #* #* #* #*

May 9, 2013

