US 20240338622A1

a9y United States

a2y Patent Application Publication (o) Pub. No.: US 2024/0338622 Al

Duggal et al.

43) Pub. Date: Oct. 10, 2024

(54) SYSTEMS AND METHODS FOR (52) US. CL
ALLOCATING DEVELOPMENT OF A CPC G060 10/06313 (2013.01); GOGF 8/10
DEVICE APPLICATION (2013.01); GO6Q 10/06398 (2013.01)
(71) Applicant: Engineer.ai Corp., Salt Lake City, UT
(US) (57) ABSTRACT
(72) Inventors: Sachin Dev Duggal, Salt Lake City, UT
(US); Rohan Patel, London (GB)
(73) Assignee: Engineer.ai Corp., Salt Lake City, UT .
US) Systems, methods, and computer readable storage mediums
for developing a device application are disclosed. An exem-
(21) Appl. No.: 18/295,844 plary embodiment is a method for developing device appli-
cations. The method includes receiving a set of features of
(22) Filed: Apr. 5, 2023 a 1°* device application and determining one or more subsets
L . . of the set of features where each subset is capable of
Publication Classification operating independently of the other subsets in the 1* device
(51) Int.CL application area. The method further includes determining a
G06Q 10/0631 (2006.01) production time for each subset. For each subset, the method
GOG6F 8/10 (2006.01) includes tasking a developer to complete the subset at a time
G06Q 10/0639 (2006.01) based on the production time.
1100 —y
Developer Specific
Timing Pricing AP| Provides Information
Time/Cost At Feature Level Function (CPE/ CTER
And Total Phase Levei Feedback, Skill Level,
1f - - - m—m———— L B -
I Swimlanes 11061 | Timing API 1116 11 Swimlane Resolver 1124 11 Allocation S&stem 1140 |
1 1 1 112 Iy 1142~ I
I i q198y [Time FrontEnd (Reacd - 'y [Modified !
1102~ | B - ! Swimlane 1 - ™ Time/Cost- : 115
Input:Machine 1} Swimanet Time i 1128 1y |_Swimlane 1 r————-— —_——
] 1 Swimlane 1 - | | I
reatfiable | N (] TimeBackEnd(ROR)- | Wodhed i |
specification i ¥ .
1 1120 I Swimlane | hy Time/Cost —> Compute Total !
110 I " | 1130~ | Swimlane 2 | N i
- Swimlane 2 l | . T!r}ne) i —Swrire 2. FerEd ~LL11_4 Project Time |
Swimlanes ! wirniane (Reac) i Todfed i /1 And Cost |
API h I ! Time/C I
I | 1132 i lme ost- I
i i 2 |_swimare2 | /1 | i
Each Build-card ! I\ Time Swimlane 2-Back |4 | bmm e
Consists Of : : : : End (ROR) | : |
Phases:
[Features] N | swimianes |11 H h 1148__\ :
! H Time Design ! | Mochf(ed
| 4190 T] Design |
| e ¥ h |
] Swimtane | 1] Time (Tt~ s s
I] Design |
i

US 2024/0338622 Al

Oct. 10,2024 Sheet 1 of 17

Patent Application Publication

SINPON
Aiojuanu|
pnoin

\g9}

anbojelen

191EM
pnod

g9}

|0uo)
9

o1

walsAS
pnon

o}

291

lojeBaibby
[00]

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| wWa)sAS
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| oot
|
|

807 senpuz uny

ool |
\op)

Aleiqr

ubiseq [mwm _mww
\gg1 ol

VO ENSIA |¢ mcmmcm
) \z1
auibug |,
abiopy |

\zs1

wioerd | ["ouibuz | &
apon 8pog |
\ost \op)
100 30BN

uoneao|y qu_hm_swo <
pnojy T

/wi 1)

90|19
Buiping

J0joRJa|

ST

J9jjonuo) A3

Noz ¢
jusuodwo?)

sonAjeuy

h 4

9INPOy

2dA10j0.14

9npayog

\p11

ozt

Jojoeiau

\pel

Wa)sAg uonenjeas wadxg

=g}

fN:

Japjing %8dg

auibug
uny

Wa)SAS JopJeoquQ

o}

907 susuodwo) aur Ajquiassy

<F]

N

foi

C01 seInpopy
uoneidepy Jasn

Patent Application Publication Oct. 10, 2024 Sheet 2 of 17 US 2024/0338622 A1

200~

Management Components 104

116
AN

Onboarder System

118
N\

Expert Evaluation System

120
\

Scheduler

122
\

BRAT

122
\

Analytics Component

T 124\

Entity Controller

I 126\

Interactor

Patent Application Publication

US 2024/0338622 Al

Oct. 10,2024 Sheet 3 of 17
Assembly Line Components 106 :
i
130

A 138 A
ERu.n Developer A"CIoutd :

ngine
J | Surface %%%fon :
|
134 140\ 150\ |
|
Building 9\ Code Code I
Blocks T3 | Engine Plaform i
|
152 |
Ay
. Merge I
’ Engine :
|
|
142\ 150
—>| Ul Engine |—>| Visual QA | |
|
136\ 144\ 156y :
|
Designer - '
Catalogue Design [
g — | Surface < Libragry !
146 '
\ :
|
N Tracker :

Patent Application Publication Oct. 10, 2024 Sheet 4 of 17 US 2024/0338622 A1

400—,

Run entities 108

160\

Tool Aggregator

162
\

Cloud System

164\

User Control System

166\

Cloud Wallet

168\

Cloud Inventory Entity

US 2024/0338622 Al

Oct. 10,2024 Sheet 5 of 17

Patent Application Publication

I
by
w “ suodwos uogeneas qor
PR B “ L8
| I
m subisa(m " m“ ysuodwo?) Juswubissy qor
I
_ \geg [“ " I \Gog
_ _ ! I} TS weyskg uogeneng qor
! si0)depy 0 T
|
_ _ I
_ Fomm “ " “ Jsuodwo) uonealisse|) uadx3
|
| [swevoduwod yoorg Buping | - N9
|
“ ,/mmm " m “ “ jJusuodwio?) BWSSassy 158
| B 596
I | il
| aImoapyaly uoeoyddy 8oineq | “ ! I Jueuodwiog uoneseusn 1so)
........ Ses 0 055
“ m “ 7¥G Wa)sAg uonenjeag 1se)
e e
GG uoneoyioads ajgepesay aulyoep 1“ “ %5 wa)sAg uonenens padx3

US 2024/0338622 Al

Oct. 10, 2024 Sheet 6 of 17

Patent Application Publication

ajnpoyy Buoog qor

965

§€C wauodwo) uonenjeay qor

1OA|0S9Y qor

/66

Jojaudioyu
uoneoyoads
a|qepeay sulyoe

\z66

7%G wauodwo) Juswubissy qor

77S WaIsAg uonenjeas qor

wsuodwo)
uoneosse|) Ladx3

l—t |

£96

295
walsAg bupjuey padx3

-

a|npojy buliodg 158
16

k4]
JUBUOdLOY) JUSLISSASSY 158 |

JojeIaUuas) 03PIA
\z2s
Jojessuag) Juswubissy
116
JojeJauss) zinp
Nzl

705 Jusuodwo) uopelausc) Jsa |

775 WaISAS uonenieAs 1sa |

US 2024/0338622 Al

Oct. 10,2024 Sheet 7 of 17

Patent Application Publication

v9 014

uonenjead
snujUoD

\z¢£9

ajo|dwio)
polied uojeqold 4O
%08 USYM

umopyea.g Jjnsey
JuslLissassy Bulpinold
104 Modsy alesln

\g19

829

sbupey $88IN07)
J8y] Jod
o s9)o|dLIo
8y UoNeoO|y v two__vm_ 0
suadx3
29

Buney Mok
Poepdn e Uk q LONeqoId-UON
21093 Hadx3 Lodx 0] 1senbay
Heod uopesoly

8¢9 969 g9

DOl UORESOlY 'C

Seyijusp| 1vdd

SOA

108foid
[BOjUD-UON

Juesled ssalboid 7
sulawIL
pieopling 'L
18pISUoD

0] sI0j084

158nboy
uonedo|y

029

pajosley

619 _

sjuslialinbay
[euonoun
1O uoheplieA

(ey0
wsueibelq)

Bupesyd
pajoadsng

Bugur 2
SOON
agnpleuos ‘|
oeyd
Ajlent 8pod

are@

A 909

a 909

Juswubissy JuswubIssy
sjenjeny s)wgng Wedx3
09 209
*~009

US 2024/0338622 Al

Oct. 10, 2024 Sheet 8 of 17

Patent Application Publication

g9 014

uadx3 ayeoo|ea('}

auwi] Jeulbuo JO
%0G [euolippy
104 papusixy
Uoneqold

ueby sjeao|ly
pu3

\-859

uofegold
{euIblio JO %05
104 uonedold pueixy
Jo4 38y

\p99

ON

81008 paule(
UIY < 81098 adx3
08y9 ‘uoneqoid JO

21008 pauLsQg
Ul < 21008 oIWeUAQ

uoneqold Jadojana(g °| MR Jedx3 J| %98YD oA
99 €59 |
299 oA

|
]

aAlellenDd
{agnbJeucs) I

SAljEIUEND
|
|

—059

Patent Application Publication Oct. 10, 2024 Sheet 9 of 17 US 2024/0338622 A1

700~

70& Receive One Or More Features For An Undeveloped Software Application

A 4

7041 Determine One Or More Resource Parameters For Development Of The
Undeveloped Software Application

706 | Optimize Human Development Resources Based On The One Or More
\ Resource Parameters

708
\ Allocate Human Development Resources Based On The Optimization

Fig. 7

Patent Application Publication Oct. 10,2024 Sheet 10 of 17 US 2024/0338622 A1l

800—,

802 | Determine One Or More Sub-Projects, Each Of The One Or More Sub-Projects
\{ Comprising A Development Of One Or More Components Applicable To A Device
Application

80& Determine A Timing To Develop The One Or More Sub-Projects

80& Determine An Expertise To Develop The One Or More Sub-Projects

h 4

80& Assign One Or More Developers To Develop The Sub-Project For Each Of The

One Or More Sub-Projects

810 Contact Each Of The One Or More Developers To Develop The Sub-Project Based
On The Timing For Each Of The One Or More Sub-Projects

Fig. 8

Patent Application Publication Oct. 10,2024 Sheet 11 of 17 US 2024/0338622 A1l

900~

902
4 Receive A Set Of Features Of A First Device Application

Y
004 | Determine One Or More Subsets Of The Set Of Features, Each
\J Subset Is Capable Of Operating Independently Of The Other
Subsets In The First Device Application

90& Determine A Production Time For Each Subset

908 | Task A Developer To Complete The Subset At A Time Based On
\{ The Production Time For Each Subset

Fig. 9

US 2024/0338622 Al

Oct. 10,2024 Sheet 12 of 17

Patent Application Publication

siledxJ e|ge|ieAy puy paesolieun

auibug In
‘poadg
osloid ‘@ousliadxy
Vedx3 ‘suozelu|
Jueyl) ‘edA
soeLlelu] 8ines-|

seseqeie]

\0101

Aynoeleuinp
‘oW 8po) ‘sbing

\z101

(eanpeuos)
abpnlepon

\g001

auozalil| Wadx3
‘8100g Jsuried
‘asiiedxg ‘©100g

Zinp suadxg

900}

uonesuIsse;)
wadxy

I

_ 81003 !
_ 201 |
ucieoso|ly | fmmov [
fewindo _ TOER |1
I S TR _ ¢ 25%8"“

|1 _ 81008
===l _ |" SHog3 Mwmm F T.“.

|

_H_ﬂ_ _Un_ _Hu_H_M “ | | Ay eipung puy oeloid “ I /.vmo r onjeyend | | |
== =Ei1EN ‘uoneqold ‘euozawi] usljD _ | //wmo_‘ I
|1 ‘Uoneso|es(] ‘esiiadx3 _ I |
— | | [AO Uohesiuiold 1ooeuoqiy | I uogeoojeag { | |
@ | P
@ T3 m j %vaov "A. _ PELSE Mmmmo_‘ ke
[1 || 1= — FCOLSS)
] = I uonejodisyul Jeaur _ |
|
“ “ fmqov " 188nbay |
0507 ‘enos Buwwelbold 1 _ uoleso|ly |
seaur] Jobojui poxiy | | 00T uonezyiiolid ledojeneq g 00 I
IIIIIIIIIIIIIIIIII _
0207 looL uopeao|ly sainosey Big -1vyd |
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII - |

4001

\001

eleq Jadojanaq

US 2024/0338622 Al

Oct. 10, 2024 Sheet 13 of 17

Patent Application Publication

NIE

Alleonewiony pajeao|ly aly subise(iy

|l L ey
| ubise() | _ ubisagy
e e | awily [1] euewmg
I ubiseq Al".._... ubBisaq] swi o L it
| poUIPol Fed ol H
| 11| souemms
I
_ (40¥) pu3 _ “ \z11)
bbb “)oeq - g eUBWIMG W ¥
’ .
“ so0jeu] cell “ I
paypOl (oeay) _
$00 pu
| m&__.woM_Mn_ AW PUT JUOI - Z SUBJLIMG SWI | couemg | 1] | Z SUBJWIMS
_ 1L Joe! | [Zouwmms Ly <0) et
| lejo] eindwion I el 1 I
(e 1800wl | | SUBJLUIMS ozl) Sy
_ et I H
| _ peypOly |20 pu3 oeg oy ¥
| SUBJWIMSG
S Uiyt 4 Fouewms | 1 ~8cll HV oy €T bouEMmS
8008I __ _ - | SUBJUIMG _ - _ _
“ DOLIP ¥ - (1989 pUT JUOI4 BWI| 1 \g111 I 8011
I I Il
“ Emmw rw;mog | “ Vel /L/%_Nohwwm ale|LLImS 11 9L} Idv Bujwi] | _wo: SeuBjUIMG

lone"] |IMS “Yoegpee
¥310 /AdD) uonoung
UoReULIojU]
alp0ads Jadojens(

loAe] 85eUd (101 PUY

[oA8T aINjes.] 1y 1800/8Ll |

$9PINOI [Buloud Buiwi)

[sainea]
'se8eYd
10 sjsIsue)
pleo-pling yoe3

IdV
SeuR[ULIMS

011

uonea|osds
8|qepea)
aulyoeIndu

2011

gz} bl

US 2024/0338622 Al

Oct. 10,2024 Sheet 14 of 17

Patent Application Publication

puzHuoi
_
¢SOl/pIoIpUY apnjou]
SIHOG SIHOG SOy Hol3 (10e9y) JH 001 S0Y
——— LoNeoiyoad D ——
-SAllEN J0BSY -J0BSY puzyoeg N .mu._cwmw/_ M_anmmmm - Uo3 pujjuold HoLd pu3yoegd
\- g6zl \- 9671 671 \- 2621
"~ osz1
N
Hoy5 puzyoeg
N 0121
A
Hoyg [oy |4 aInes
puzyoeg | puuoi- ¢PUBJUOIS
alinbay
\-90zL -$07, @meeq seoq \-z0z1
‘aUg|WIMG U} 2injes AJoAT Jo4
"~ o00z1

US 2024/0338622 Al

Oct. 10, 2024 Sheet 15 of 17

Patent Application Publication

i |
| L |
_ _ _ |
_ _ _ |
_ _ _ |
I _ ! |
_ “ ! i
| |

_
“ | “ salnjee4 G “
! | | | suB|UIIMS |
i salnea 0g sainjee (¢ “ | “
! Z SUBUIMG | suBluIMS _ ! sainjea 0} !
_ “ “ Z sUB|WIMS “
| [

| [
_ |

_ [
| _
_ 80} -90¢ ! _ o€l “z0¢) !
“ Z OLIeuasg I " | OLeUl9S I

—00¢!

US 2024/0338622 Al

Oct. 10, 2024 Sheet 16 of 17

Patent Application Publication

AR

|
|
|
I
|
|
I
|
|
|
I
|
! _ puzsoeg | puzuoid y SUBIWIMG
|
|
“ An““v i \yevl
|
! " puzjoeg | puzjuol4 € SUBJLIMG
" @ 1089y |
|
|
INO “ : -
| 0Eh1 | pu3toeg | pugosg 7 BUBJLING
i ! 2yl
|
“ @ “ puzyoeg | puzpuol | SUB|LIMG
|
_ @ xnin |
N =
|
| —
| g7t “ SoFT Ocvl 7OVt
“ | seuelwImg Juswdojensq SaLBWLIMG JusWdojeAs(]
|
|

_ ubiseq

uoneoysads

o|epesy
-auIjoRW

\z07)

—oop)

Patent Application Publication Oct. 10,2024 Sheet 17 of 17 US 2024/0338622 A1l

O
O
[Ye'
0
& >
Lo [433
P Z
[3]
> ©
s ®
-]
5] 3
&
Kl
O
D
e
0 Lo
5
m <~
-
O
C\ll O
o - —
w0
| |w ” L
Lo oy P
- o) £
[Nl c
SH= @
gl |¢e 2
S| |& 5
S
a = o
o
o
o

US 2024/0338622 Al

SYSTEMS AND METHODS FOR
ALLOCATING DEVELOPMENT OF A
DEVICE APPLICATION

FIELD OF THE INVENTION

[0001] This disclosure relates to software automation,
machine learning Al, and project management.

BACKGROUND

[0002] It is expected that a hired individual, be they an
employee or an independent contractor, is qualified for the
job to which they are hired. However, verifying a hiree’s
qualifications may be challenging. For instance, employees
may have embellished or exaggerated on their resumes. And
employees who have accurate resumes may still have skills
they have atrophied to the point that they are no longer
competent to do the same work. Further, employee skills
may change over time. For instance, employees gain expe-
rience and know-how as they work. On the other hand, some
employees’ work product may decline for various reasons
such as burnout or life changes.

[0003] Even when the skill level of employees are known,
it may be challenging to optimally use the employees’ skills
to best advantage. In the field of application development, it
may be difficult to organize an optimum division of work
based on project goals and employee skills.

[0004] There is a need in the art for a better way of
ascertaining a level of skill for an employee when they are
hired and during employment. There is a further need for a
way of utilizing the employee based on their level of skill.

SUMMARY

[0005] Systems, methods, and computer readable storage
mediums for developing a device application are disclosed.
An exemplary embodiment is a method for allocating
resources to develop a software application. The method
includes receiving one or more features for an undeveloped
software application and determining one or more resource
parameters for development of the undeveloped software
application. The method further includes optimizing human
development resources based on the one or more resource
parameters and allocating human development resources
based on the optimization. The one or more parameters may
include a development expertise. The one or more param-
eters may further include an area of expertise. Allocating the
human development resources may include determining a
competence of one or more developers and assigning a
subset of the one or more features to each of the one or more
developers based on the competence being greater than or
equal to the development expertise and the area of expertise.
Allocating the human development resources may further
include determining a production time for each subset of the
one or more features where assigning the subset of the one
or more features to each of the one or more developers is
performed at a time that is optimized based on the produc-
tion time for the subset. Receiving the one or more features
may include resolving the one or more features from a
machine readable specification. Allocating the human devel-
opment resources may include contacting one or more
developers by an automated computer system.

[0006] Another general aspect is a computer system that is
configured to develop a device application. The computer
system includes a processor coupled to a memory where the

Oct. 10, 2024

processor is configured to receive one or more features for
an undeveloped software application and determine one or
more resource parameters for development of the undevel-
oped software application. The processor is further config-
ured to optimize human development resources based on the
one or more resource parameters and allocate human devel-
opment resources based on the optimization. The one or
more parameters may include a development expertise. The
one or more parameters may further include an area of
expertise. The allocation of human development resources
may include the processor configured to determine a com-
petence of one or more developers and assign a subset of the
one or more features to each of the one or more developers
based on the competence being greater than or equal to the
development expertise and the area of expertise. The allo-
cation of human development resources may include the
processor configured determine a production time for each
subset of the one or more features where the processor is
configured to assign the subset of the one or more features
to each of the one or more developers at a time that is
optimized based on the production time for the subset. The
reception of the one or more features may include the
processor being configured to resolve the one or more
features from a machine readable specification.

[0007] An exemplary embodiment is a computer readable
storage medium having data stored therein representing
software executable by a computer. The software includes
instructions that, when executed, cause the computer read-
able storage medium to perform receiving one or more
features for an undeveloped software application and deter-
mining one or more resource parameters for development of
the undeveloped software application. The instructions fur-
ther cause the computer readable storage medium to perform
optimizing human development resources based on the one
or more resource parameters and allocating human devel-
opment resources based on the optimization. The one or
more parameters may include a development expertise. The
one or more parameters may further include an area of
expertise. Allocating the human development resources may
include determining a competence of one or more develop-
ers and assigning a subset of the one or more features to each
of the one or more developers based on the competence
being greater than or equal to the development expertise and
the area of expertise. Allocating the human development
resources may further include determining a production time
for each subset of the one or more features where assigning
the subset of the one or more features to each of the one or
more developers is performed at a time that is optimized
based on the production time for the subset. Allocating the
human development resources may include contacting one
or more developers by an automated computer system.

[0008] Another general aspect is a method for developing
components for a device application. The method includes
determining one or more subprojects where each of the one
or more subprojects include a development of one or more
components applicable to a device application and deter-
mining a timing to develop the one or more subprojects. The
method further includes determining an expertise to develop
the one or more subprojects. For each of the one or more
subprojects, the method further includes assigning one or
more developers to develop the subproject and contacting
each of the one or more developers to develop the subproject
based on the timing. The method further includes determin-
ing a competence of each of the one or more developers

US 2024/0338622 Al

prior to determining the one or more developers where the
competence of each developer is greater or equal to the
expertise for the subproject to which they were assigned.
Determining a competence for each developer may include
determining a score for the developer based on a job that was
assigned to the developer where determining comprises
evaluating the job automatically with a computer system.
Determining one or more subprojects may include resolving
the subprojects from a machine readable specification. The
method may further include determining a production time
for each of the one or more subprojects based on the
expertise where assigning the one or more developers is
based on the production time. The assigning may be opti-
mized to complete a first development application, which
incorporates at least one of the one or more components,
based on time. The assigning may be further optimized to
complete a second development application, which incor-
porates at least one of the one or more components, based on
time.

[0009] An exemplary embodiment is a computer system
configured to develop a device application. The computer
system includes a processor coupled to a memory. The
processor is configured to determine one or more subproj-
ects, each of the one or more subprojects includes a devel-
opment of one or more components applicable to a device
application and determining a timing to develop the one or
more subprojects. The processor is further configured to
determine an expertise to develop the one or more subproj-
ects. For each of the one or more subprojects, the processor
is further configured to perform an assignment of one or
more developers to develop the subproject and contact each
of the one or more developers to develop the subproject
based on the timing. The processor may be further config-
ured to determine a competence of each of the one or more
developers prior to determining the one or more developers
where the competence of each developer is greater or equal
to the expertise to for the subproject to which they were
assigned. Determining the competence for each developer
may include a processor configured to determine a score for
the developer based on a job that was assigned to the
developer and evaluate the job automatically with the com-
puter system. Determining the one or more subprojects may
include the processor being configured to resolve the sub-
projects from a machine readable specification. The proces-
sor may be further configured to determine a production
time for each of the one or more subprojects based on the
expertise where the processor is configured to perform the
assignment of the one or more developers based on the
production time. The assignment may be optimized to
complete a first development application, which incorpo-
rates at least one of the one or more components, based on
time. The assignment may be further optimized to complete
a second development application, which incorporates at
least one of the one or more components, based on time.

[0010] Another general aspect is a computer readable
storage medium having data stored therein representing
software executable by a computer. The software includes
instructions that, when executed, cause the computer read-
able storage medium to perform determining one or more
subprojects where each of the one or more subprojects
include a development of one or more components appli-
cable to a device application and determining a timing to
develop the one or more subprojects. The instructions fur-
ther cause the computer readable storage medium to perform

Oct. 10, 2024

determining an expertise to develop the one or more sub-
projects. For each of the one or more subprojects, the
instructions further cause the computer readable storage
medium to perform assigning one or more developers to
develop the subproject and contacting each of the one or
more developers to develop the subproject based on the
timing. The instructions may further cause the computer
readable storage medium to perform determining a compe-
tence of each of the one or more developers prior to
determining the one or more developers where the compe-
tence of each developer is greater or equal to the expertise
for the subproject to which they were assigned. Determining
the competence for each developer may include determining
a score for the developer based on a job that was assigned
to the developers where determining includes evaluating the
job automatically. Determining one or more subprojects may
include resolving the subprojects from a machine readable
specification. The instructions may further cause the com-
puter readable storage medium to perform determining a
production time for each of the one or more subprojects
based on the expertise where assigning the one or more
developers is based on the production time. The assigning
may be optimized to complete a 1% development application,
which incorporates at least one of the one or more compo-
nents, based on time.

[0011] An exemplary embodiment is a method for devel-
oping device applications. The method includes receiving a
set of features of a 1* device application and determining
one or more subsets of the set of features where each subset
is capable of operating independently of the other subsets in
the 1* device application area. The method further includes
determining a production time for each subset. For each
subset, the method includes tasking a developer to complete
the subset at a time based on the production time. The
method may further include determining internal dependen-
cies for each subset where the production time is determined
based on the internal dependencies. The method may further
include determining a difficulty of developing each feature
of the set of features where tasking the developer includes
correlating and expertise of the developer to the difficulty.
The expertise of the developer may be determined by an
automated valuation where the automated evaluation
includes determining a score for the developer and assigning
to the developer a job based on a machine readable speci-
fication. The machine readable specification may include
one or more jobs are completable by the developer. The
automated evaluation may further include receiving a com-
pleted job based on one of the one or more jobs and updating
the score based on an assessment of the completed job. The
score may be a classification that corresponds to a classifi-
cation of the job. The method may further include deter-
mining the classification of the job based on the machine
readable specification. Tasking the developer may include
automatically contacting, by a computer system, the devel-
oper to communicate a job to complete the subset.

[0012] Another general aspect is a computer system con-
figured to develop a device application. The computer
system includes a processor coupled to a memory where the
processor is configured to receive a set of features of a 1%
device application and determine one or more subsets of the
set of features where each subset is capable of operating
independently of the other subsets in the 1* device applica-
tion. The processor is further configured to determine a
production time for each subset. For each subset, the pro-

US 2024/0338622 Al

cessor is further configured to task a developer to complete
the subset at a time based on the production time. The
processor may be further configured to determine internal
dependencies for each subset where the production time is
determined based on the internal dependencies. The proces-
sor may be further configured to determine a difficulty of
developing each feature of the set of features where tasking
a developer comprises the processor configured to correlate
and expertise of the developer to the difficulty. The expertise
of the developer may be determined by an automated
evaluation where the automated evaluation includes a pro-
cessor being further configured to determine a score for the
developer and assign, to developers, a job based on a
machine-readable specification. The machine readable
specification may include one or more jobs that are com-
pletable by the developer. The automated evaluation may
further include receiving a completed job based on one of
the one or more jobs and updating the score based on an
assessment of the completed job. The score may be a
classification that corresponds to a classification of the job.
The processor may be further configured to determine the
classification of the job based on machine-readable specifi-
cation. Tasking the developer may include the process of
being configured to automatically contact the developer to
communicate a job to complete the subset.

[0013] An exemplary embodiment is a computer readable
storage medium having data stored therein representing
software executable by a computer. The software may
include instructions that when executed, cause a computer
readable storage medium to perform receiving a set of
features of a 1% device application and determining one or
more subsets of the set of features. Each subset may be
capable of operating independently of the other subsets in
the 1% device application. The instructions may further cause
the computer readable storage medium to perform determin-
ing a production time for each subset. For each subset, the
instructions may further cause the computer readable storage
medium to task a developer to complete the subset at a time
based on the production time. The instructions may further
cause the computer readable storage medium to perform
determining internal dependencies for each subset where the
production time is determined based on the internal depen-
dencies. The instructions may further cause the computer
readable storage medium to perform determining a difficulty
of developing each feature of the set of features where
tasking the developer includes correlating an expertise of the
developer to the difficulty. The instructions may further
cause the computer readable storage medium to perform
determining a score for the developer, assigning to the
developer, a job based on her machine-readable specification
where this machine-readable specification comprises one or
more jobs that are completable by the developer, receiving
a completed job based on the one or more jobs, and updating
the score based on an assessment of the completed job. The
score may be a classification that corresponds to a classifi-
cation of the job.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] FIG. 1 is a software building system illustrating the
components that may be used in an embodiment of the
disclosed subject matter.

[0015] FIG. 2 is a schematic illustrating an embodiment of
the management components of the disclosed subject matter.

Oct. 10, 2024

[0016] FIG. 3 is a schematic illustrating an embodiment of
an assembly line and surfaces of the disclosed subject
matter.

[0017] FIG. 4 is a schematic illustrating an embodiment of
the run entities of the disclosed subject matter.

[0018] FIG. 5A is a schematic of an embodiment of the
disclosed system for evaluating a developer.

[0019] FIG. 5B is a schematic of an embodiment of the
expert evaluation system.

[0020] FIGS. 6A-6B are a flow diagram of an embodiment
of the disclosed system for allocating resources to develop
a device application.

[0021] FIG. 7 is a flow diagram of an embodiment of the
disclosed subject matter.

[0022] FIG. 8 is a flow diagram of another embodiment of
the disclosed subject matter.

[0023] FIG. 9 is a flow diagram of yet another embodi-
ment of the disclosed subject matter.

[0024] FIG. 10 is a flow diagram of an embodiment of a
system for allocating developers to a job.

[0025] FIG. 11 is a flow diagram of an embodiment for
allocating developers based on a machine readable specifi-
cation.

[0026] FIGS.12A-12B are schematics of embodiments for
assessing effort required for a feature.

[0027] FIG. 13 is a schematic of an exemplary embodi-
ment for allocating resources to a job.

[0028] FIG. 14 is another schematic of an exemplary
embodiment for allocating resources to a job.

[0029] FIG. 15 is a schematic illustrating the computing
components that may be used to implement various features
of embodiments described in the disclosed subject matter.

DETAILED DESCRIPTION

[0030] The disclosed subject matter is a system, method,
and computer readable storage medium for allocating devel-
oper resources to development of a device application. The
term device application, as used herein, refers to an appli-
cation that runs on an electronic device. Examples of elec-
tronic devices that may run device applications include, but
are not limited to mobile phones, desktop computers, laptop
computers, television sets, loT devices, console devices
such as Xbox, airline media systems, and car media players.
Individuals that may work on a device application include,
but are not limited to developers of code that is configured
to run a device application, designers of various aspects of
the device application such as a user interface, and quality
engineers who test functionality of a device application. As
used herein, the term developer may refer to all such
individuals.

[0031] Inan exemplary embodiment, the disclosed subject
matter allocates one or more developer resources to one or
more jobs associated with development of a device appli-
cation. For example, a device application may require devel-
opment of a feature to include a relational database. The
disclosed subject matter may allocate an optimum developer
to complete the feature. In various embodiments, the dis-
closed subject matter may allocate multiple developers to
work on different portions of a device application. For
example, the disclosed subject matter may allocate a
designer to generate designs for a device application. Fur-
ther, the disclosed subject matter may allocate one or more
developers to develop a first series of components for the
device application. The disclosed subject matter may further

US 2024/0338622 Al

allocate one or more other developers to develop a second
series of components for the device application. The dis-
closed subject matter may resolve the first series of compo-
nents from the second series of components based on the two
series of components being capable of operating indepen-
dently of one another. Thus the two series of components
may be completed and tested in any order.

[0032] In an exemplary embodiment, the disclosed
resource allocating system determines a time to allocate jobs
to developers. For example, an evaluation system may
determine a score for the developer which may indicate a
speed at which the developer will likely complete a job.
Accordingly, the system may allocate the job to the devel-
oper based on the speed at which the developer works in
order to complete the job by a specific time.

[0033] The disclosed system may allocate developers to
develop features for more than one device application where
some of the features may be used by at least two device
applications. For example, if a first feature is required for
two separate device applications, the disclosed system may
allocate a job to develop the feature once and share the
feature between the two device applications.

[0034] In various embodiments, the disclosed system may
test developers to determine an expertise of the developer
prior to allocating jobs to the developer. The expertise of the
developer may include an area of expertise. Areas of exper-
tise for device application development include but are not
limited to backend development, front-end development,
mobile app security, user interface design, cross-platform
development, mobile application testing, and mobile appli-
cation deployment. Developers may be classified or ranked
for each area of expertise.

[0035] This goes subject matter may include a system that
reads the machine-readable specification to resolve one or
more jobs and determine a difficulty of the one or more jobs.
The system may further allocate the resolved jobs to devel-
opers based on the difficulty of the jobs and the expertise of
the developers. The system may time the allocation based on
a speed at which the developer works, a time at which a job
needs to be completed, and any dependencies associated
with the job. For example, a first feature may be dependent
on the second feature. In one instance a backend of a device
application may be dependent on the front-end. Thus, the
front-end would need to be completed before the backend.
Accordingly, the disclosed system would time the allocation
such that the front-end is completed before development of
the backend begins.

[0036] Referring to FIG. 1, FIG. 1 is a schematic of a
software building system 100 illustrating the components
that may be used in an embodiment of the disclosed subject
matter. The software building system 100 is an Al-assisted
platform that comprises entities, circuits, modules, and
components that enable the use of state-of-the-art algorithms
to support producing custom software.

[0037] A user may leverage the various components of the
software building system 100 to quickly design and com-
plete a software project. The features of the software build-
ing system 100 operate Al algorithms where applicable to
streamline the process of building software. Designing,
building and managing a software project may all be auto-
mated by the Al algorithms.

[0038] To begin a software project, an intelligent Al
conversational assistant may guide users in conception and
design of their idea. Components of the software building

Oct. 10, 2024

system 100 may accept plain language specifications from a
user and convert them into a computer readable specification
that can be implemented by other parts of the software
building system 100. Various other entities of the software
building system 100 may accept the computer readable
specification or buildcard to automatically implement it
and/or manage the implementation of the computer readable
specification.

[0039] The embodiment of the software building system
100 shown in FIG. 1 includes user adaptation modules 102,
management components 104, assembly line components
106, and run entities 108. The user adaptation modules 102
entities guide a user during all parts of a project from the
idea conception to full implementation. user adaptation
modules 102 may intelligently link a user to various entities
of the software building system 100 based on the specific
needs of the user.

[0040] The user adaptation modules 102 may include
specification builder 110, an interactor 112 system, and the
prototype module 114. They may be used to guide a user
through a process of building software and managing a
software project. Specification builder 110, the interactor
112 system, and the prototype module 114 may be used
concurrently and/or link to one another. For instance, speci-
fication builder 110 may accept user specifications that are
generated in an interactor 112 system. The prototype module
114 may utilize computer generated specifications that are
produced in specification builder 110 to create a prototype
for various features. Further, the interactor 112 system may
aid a user in implementing all features in specification
builder 110 and the prototype module 114.

[0041] Spec builder 110 converts user supplied specifica-
tions into specifications that can be automatically read and
implemented by various objects, instances, or entities of the
software building system 100. The machine readable speci-
fications may be referred to herein as a buildcard. In an
example of use, specification builder 110 may accept a set of
features, platforms, etc., as input and generate a machine
readable specification for that project. Specification builder
110 may further use one or more machine learning algo-
rithms to determine a cost and/or timeline for a given set of
features. In an example of use, specification builder 110 may
determine potential conflict points and factors that will
significantly affect cost and timeliness of a project based on
training data. For example, historical data may show that a
combination of various building block components create a
data transfer bottleneck. Specification builder 110 may be
configured to flag such issues.

[0042] The interactor 112 system is an Al powered speech
and conversational analysis system. It converses with a user
with a goal of aiding the user. In one example, the interactor
112 system may ask the user a question to prompt the user
to answer about a relevant topic. For instance, the relevant
topic may relate to a structure and/or scale of a software
project the user wishes to produce. The interactor 112
system makes use of natural language processing (NLP) to
decipher various forms of speech including comprehending
words, phrases, and clusters of phases

[0043] In an exemplary embodiment, the NLP imple-
mented by interactor 112 system is based on a deep learning
algorithm. Deep learning is a form of a neural network
where nodes are organized into layers. A neural network has
a layer of input nodes that accept input data where each of
the input nodes are linked to nodes in a next layer. The next

US 2024/0338622 Al

layer of nodes after the input layer may be an output layer
or a hidden layer. The neural network may have any number
otf'hidden layers that are organized in between the input layer
and output layers.

[0044] Data propagates through a neural network begin-
ning at a node in the input layer and traversing through
synapses to nodes in each of the hidden layers and finally to
an output layer. Each synapse passes the data through an
activation function such as, but not limited to, a Sigmoid
function. Further, each synapse has a weight that is deter-
mined by training the neural network. A common method of
training a neural network is backpropagation. Backpropa-
gation is an algorithm used in neural networks to train
models by adjusting the weights of the network to minimize
the difference between predicted and actual outputs. During
training, backpropagation works by propagating the error
back through the network, layer by layer, and updating the
weights in the opposite direction of the gradient of the loss
function. By repeating this process over many iterations, the
network gradually learns to produce more accurate outputs
for a given input.

[0045] Various systems and entities of the software build-
ing system 100 may be based on a variation of a neural
network or similar machine learning algorithm. For instance,
input for NLP systems may be the words that are spoken in
a sentence. In one example, each word may be assigned to
separate input node where the node is selected based on the
word order of the sentence. The words may be assigned
various numerical values to represent word meaning
whereby the numerical values propagate through the layers
of the neural network.

[0046] The NLP employed by the interactor 112 system
may output the meaning of words and phrases that are
communicated by the user. The interactor 112 system may
then use the NLP output to comprehend conversational
phrases and sentences to determine the relevant information
related to the user’s goals of a software project. Further
machine learning algorithms may be employed to determine
what kind of project the user wants to build including the
goals of the user as well as providing relevant options for the
user.

[0047] The prototype module 114 can automatically create
an interactive prototype for features selected by a user. For
instance, a user may select one or more features and view a
prototype of the one or more features before developing
them. The prototype module 114 may determine feature
links to which the user’s selection of one or more features
would be connected. In various embodiments, a machine
learning algorithm may be employed to determine the fea-
ture links. The machine learning algorithm may further
predict embeddings that may be placed in the user selected
features.

[0048] An example of the machine learning algorithm may
be a gradient boosting model. A gradient boosting model
may use successive decision trees to determine feature links.
Each decision tree is a machine learning algorithm in itself
and includes nodes that are connected via branches that
branch based on a condition into two nodes. Input begins at
one of the nodes whereby the decision tree propagates the
input down a multitude of branches until it reaches an output
node. The gradient boosted tree uses multiple decision trees
in a series. Each successive tree is trained based on errors of
the previous tree and the decision trees are weighted to
return best results.

Oct. 10, 2024

[0049] The prototype module 114 may use a secondary
machine learning algorithm to select a most likely starting
screen for each prototype. Thus, a user may select one or
more features and the prototype module 114 may automati-
cally display a prototype of the selected features.

[0050] The software building system 100 includes man-
agement components 104 that aid the user in managing a
complex software building project. The management com-
ponents 104 allow a user that does not have experience in
managing software projects to effectively manage multiple
experts in various fields. An embodiment of the management
components 104 include the onboarding system 116, an
expert evaluation system 118, scheduler 120, BRAT 122,
analytics component 124, entity controller 126, and the
interactor 112 system.

[0051] The onboarding system 116 aggregates experts so
they can be utilized to execute specifications that are set up
in the software building system 100. In an exemplary
embodiment, software development experts may register
into the onboarding system 116 which will organize experts
according to their skills, experience, and past performance.
In one example, the onboarding system 116 provides the
following features: partner onboarding, expert onboarding,
reviewer assessments, expert availability management, and
expert task allocation.

[0052] An example of partner onboarding may be pairing
auser with one or more partners in a project. The onboarding
system 116 may prompt potential partners to complete a
profile and may set up contracts between the prospective
partners. An example of expert onboarding may be a sys-
tematic assessment of prospective experts including receiv-
ing a profile from the prospective expert, quizzing the
prospective expert on their skill and experience, and facili-
tating courses for the expert to enroll and complete. An
example of reviewer assessments may be for the onboarding
system 116 to automatically review completed portions of a
project. For instance, the onboarding system 116 may ana-
lyze submitted code, validate functionality of submitted
code, and assess a status of the code repository. An example
of expert availability management in the onboarding system
116 is to manage schedules for expert assignments and
oversee expert compensation. An example of expert task
allocation is to automatically assign jobs to experts that are
onboarded in the onboarding system 116. For instance, the
onboarding system 116 may determine a best fit to match
onboarded experts with project goals and assign appropriate
tasks to the determined experts.

[0053] The expert evaluation system 118 continuously
evaluates developer experts. In an exemplary embodiment,
the expert evaluation system 118 rates experts based on
completed tasks and assigns scores to the experts. The scores
may provide the experts with valuable critique and provide
the onboarding system 116 with metrics with it can use to
allocate the experts on future tasks.

[0054] Scheduler 120 keeps track of overall progress of a
project and provides experts with job start and job comple-
tion estimates. In a complex project, some expert developers
may be required to wait until parts of a project are completed
before their tasks can begin. Thus, effective time allocation
can improve expert developer management. Scheduler 120
provides up to date estimates to expert developers for job
start and completion windows so they can better manage
their own time and position them to complete their job on
time with high quality.

US 2024/0338622 Al

[0055] The big resource allocation tool (BRAT 122) is
capable of generating optimal developer assignments for
every available parallel workstream across multiple projects.
BRAT 122 system allows expert developers to be efficiently
managed to minimize cost and time. In an exemplary
embodiment, the BRAT 122 system considers a plethora of
information including feature complexity, developer exper-
tise, past developer experience, time zone, and project
affinity to make assignments to expert developers. The
BRAT 122 system may make use of the expert evaluation
system 118 to determine the best experts for various assign-
ments. Further, the expert evaluation system 118 may be
leveraged to provide live grading to experts and employ
qualitative and quantitative feedback. For instance, experts
may be assigned a live score based on the number of jobs
completed and the quality of jobs completed.

[0056] The analytics component 124 is a dashboard that
provides a view of progress in a project. One of many
purposes of the analytics component 124 dashboard is to
provide a primary form of communication between a user
and the project developers. Thus, offline communication,
which can be time consuming and stressful, may be reduced.
In an exemplary embodiment, the analytics component 124
dashboard may show live progress as a percentage feature
along with releases, meetings, account settings, and ticket
sections. Through the analytics component 124 dashboard,
dependencies may be viewed and resolved by users or
developer experts.

[0057] The entity controller 126 is a primary hub for
entities of the software building system 100. It connects to
scheduler 120, the BRAT 122 system, and the analytics
component 124 to provide for continuous management of
expert developer schedules, expert developer scoring for
completed projects, and communication between expert
developers and users. Through the entity controller 126,
both expert developers and users may assess a project, make
adjustments, and immediately communicate any changes to
the rest of the development team.

[0058] The entity controller 126 may be linked to the
interactor 112 system, allowing users to interact with a live
project via an intelligent Al conversational system. Further,
the Interactor 112 system may provide expert developers
with up-to-date management communication such as text,
email, ticketing, and even voice communications to inform
developers of expected progress and/or review of completed
assignments.

[0059] The assembly line components 106 comprise
underlying components that provide the functionality to the
software building system 100. The embodiment of the
assembly line components 106 shown in FIG. 1 includes a
run engine 130, building block components 134, catalogue
136, developer surface 138, a code engine 140, a Ul engine
142, a designer surface 144, tracker 146, a cloud allocation
tool 148, a code platform 150, a merge engine 152, visual
QA 154, and a design library 156.

[0060] The run engine 130 may maintain communication
between various building block components within a project
as well as outside of the project. In an exemplary embodi-
ment, the run engine 130 may send HTTP/S GET or POST
requests from one page to another.

[0061] The building block components 134 are reusable
code that are used across multiple computer readable speci-
fications. The term buildcards, as used herein, refer to
machine readable specifications that are generated by speci-

Oct. 10, 2024

fication builder 110, which may convert user specifications
into a computer readable specification that contains the user
specifications and a format that can be implemented by an
automated process with minimal intervention by expert
developers.

[0062] The computer readable specifications are con-
structed with building block components 134, which are
reusable code components. The building block components
134 may be pretested code components that are modular and
safe to use. In an exemplary embodiment, every building
block component 134 consists of two sections-core and
custom. Core sections comprise the lines of code which
represent the main functionality and reusable components
across computer readable specifications. The custom sec-
tions comprise the snippets of code that define customiza-
tions specific to the computer readable specification. This
could include placeholder texts, theme, color, font, error
messages, branding information, etc.

[0063] Catalogue 136 is a management tool that may be
used as a backbone for applications of the software building
system 100. In an exemplary embodiment, the catalogue 136
may be linked to the entity controller 126 and provide it with
centralized, uniform communication between different ser-
vices.

[0064] Developer surface 138 is a virtual desktop with
preinstalled tools for development. Expert developers may
connect to developer surface 138 to complete assigned tasks.
In an exemplary embodiment, expert developers may con-
nect to developer surface from any device connected to a
network that can access the software project. For instance,
developer experts may access developer surface 138 from a
web browser on any device. Thus, the developer experts may
essentially work from anywhere across geographic con-
straints. In various embodiments, the developer surface uses
facial recognition to authenticate the developer expert at all
times. In an example of use, all code that is typed by the
developer expert is tagged with an authentication that is
verified at the time each keystroke is made. Accordingly, if
code is copied, the source of the copied code may be quickly
determined. The developer surface 138 further provides a
secure environment for developer experts to complete their
assigned tasks.

[0065] The code engine 140 is a portion of a code platform
150 that assembles all the building block components
required by the build card based on the features associated
with the build card. The code platform 150 uses language-
specific translators (LSTs) to generate code that follows a
repeatable template. In various embodiments, the LSTs are
pretested to be deployable and human understandable. The
LSTs are configured to accept markers that identify the
customization portion of a project. Changes may be auto-
matically injected into the portions identified by the mark-
ers. Thus, a user may implement custom features while
retaining product stability and reusability. In an example of
use, new or updated features may be rolled out into an
existing assembled project by adding the new or updated
features to the marked portions of the LSTs.

[0066] In an exemplary embodiment, the LSTs are state-
less and work in a scalable Kubernetes Job architecture
which allows for limitless scaling that provide the needed
throughput based on the volume of builds coming in through
a queue system. This stateless architecture may also enable
support for multiple languages in a plug & play manner.

US 2024/0338622 Al

[0067] The cloud allocation tool 148 manages cloud com-
puting that is associated with computer readable specifica-
tions. For example, the cloud allocation tool 148 assesses
computer readable specifications to predict a cost and
resources to complete them. The cloud allocation tool 148
then creates cloud accounts based on the prediction and
facilitates payments over the lifecycle of the computer
readable specification.

[0068] The merge engine 152 is a tool that is responsible
for automatically merging the design code with the func-
tional code. The merge engine 152 consolidates styles and
assets in one place allowing experts to easily customize and
consume the generated code. The merge engine 152 may
handle navigations that connect different screens within an
application. It may also handle animations and any other
interactions within a page.

[0069] The Ul engine 142 is a design-to-code product that
converts designs into browser ready code. In an exemplary
embodiment, the Ul engine 142 converts designs such as
those made in Sketch into React code. The Ul engine may
be configured to scale generated Ul code to various screen
sizes without requiring modifications by developers. In an
example of use, a design file may be uploaded by a devel-
oper expert to designer surface 144 whereby the Ul engine
automatically converts the design file into a browser ready
format.

[0070] Visual QA 154 automates the process of comparing
design files with actual generated screens and identifies
visual differences between the two. Thus, screens generated
by the Ul engine 142 may be automatically validated by the
visual QA 154 system. In various embodiments, a pixel to
pixel comparison is performed using computer vision to
identify discrepancies on the static page layout of the screen
based on location, color contrast and geometrical diagnosis
of elements on the screen. Differences may be logged as
bugs by scheduler 120 so they can be reviewed by expert
developers.

[0071] In an exemplary embodiment, visual QA 154
implements an optical character recognition (OCR) engine
to detect and diagnose text position and spacing. Additional
routines are then used to remove text elements before
applying pixel-based diagnostics. At this latter stage, an
approach based on similarity indices for computer vision is
employed to check element position, detect missing/spuri-
ous objects in the Ul and identify incorrect colors. Routines
for content masking are also implemented to reduce the
number of false positives associated with the presence of
dynamic content in the Ul such as dynamically changing
text and/or images.

[0072] The visual QA 154 system may be used for com-
puter vision, detecting discrepancies between developed
screens, and designs using structural similarity indices. It
may also be used for excluding dynamic content based on
masking and removing text based on optical character
recognition whereby text is removed before running pixel-
based diagnostics to reduce the structural complexity of the
input images.

[0073] The designer surface 144 connects designers to a
project network to view all of their assigned tasks as well as
create or submit customer designs. In various embodiments,
computer readable specifications include prompts to insert
designs. Based on the computer readable specification, the
designer surface 144 informs designers of designs that are
expected of them and provides for easy submission of

Oct. 10, 2024

designs to the computer readable specification. Submitted
designs may be immediately available for further customi-
zation by expert developers that are connected to a project
network.

[0074] Similar to building block components 134, the
design library 156 contains design components that may be
reused across multiple computer readable specifications.
The design components in the design library 156 may be
configured to be inserted into computer readable specifica-
tions, which allows designers and expert developers to
easily edit them as a starting point for new designs. The
design library 156 may be linked to the designer surface 144,
thus allowing designers to quickly browse pretested designs
for user and/or editing.

[0075] Tracker 146 is a task management tool for tracking
and managing granular tasks performed by experts in a
project network. In an example of use, common tasks are
injected into tracker 146 at the beginning of a project. In
various embodiments, the common tasks are determined
based on prior projects, completed, and tracked in the
software building system 100.

[0076] The run entities 108 contain entities that all users,
partners, expert developers, and designers use to interact
within a centralized project network. In an exemplary
embodiment, the run entities 108 include tool aggregator
160, cloud system 162, user control system 164, cloud wallet
166, and a cloud inventory module 168. The tool aggregator
160 entity brings together all third-party tools and services
required by users to build, run and scale their software
project. For instance, it may aggregate software services
from payment gateways and licenses such as Office 365.
User accounts may be automatically provisioned for needed
services without the hassle of integrating them one at a time.
In an exemplary embodiment, users of the run entities 108
may choose from various services on demand to be inte-
grated into their application. The run entities 108 may also
automatically handle invoicing of the services for the user.
[0077] The cloud system 162 is a cloud platform that is
capable of running any of the services in a software project.
The cloud system 162 may connect any of the entities of the
software building system 100 such as the code platform 150,
developer surface 138, designer surface 144, catalogue 136,
entity controller 126, specification builder 110, the interactor
112 system, and the prototype module 114 to users, expert
developers, and designers via a cloud network. In one
example, cloud system 162 may connect developer experts
to an IDE and design software for designers allowing them
to work on a software project from any device.

[0078] The user control system 164 is a system requiring
the user to have input over every feature of a final product
in a software product. With the user control system 164,
automation is configured to allow the user to edit and modify
any features that are attached to a software project regardless
as to the coding and design by developer experts and
designer. For example, building block components 134 are
configured to be malleable such that any customizations by
expert developers can be undone without breaking the rest of
a project. Thus, dependencies are configured so that no one
feature locks out or restricts development of other features.
[0079] Cloud wallet 166 is a feature that handles transac-
tions between various individuals and/or groups that work
on a software project. For instance, payment for work
performed by developer experts or designers from a user is
facilitated by cloud wallet 166. A user need only set up a

US 2024/0338622 Al

single account in cloud wallet 166 whereby cloud wallet
handles payments of all transactions.

[0080] A cloud allocation tool 148 may automatically
predict cloud costs that would be incurred by a computer
readable specification. This is achieved by consuming data
from multiple cloud providers and converting it to domain
specific language, which allows the cloud allocation tool
148 to predict infrastructure blueprints for customers’ com-
puter readable specifications in a cloud agnostic manner. It
manages the infrastructure for the entire lifecycle of the
computer readable specification (from development to after
care) which includes creation of cloud accounts, in predicted
cloud providers, along with setting up CI/CD to facilitate
automated deployments.

[0081] The cloud inventory module 168 handles storage of
assets on the run entities 108. For instance, building block
components 134 and assets of the design library are stored
in the cloud inventory entity. Expert developers and design-
ers that are onboarded by onboarding system 116 may have
profiles stored in the cloud inventory module 168. Further,
the cloud inventory module 168 may store funds that are
managed by the cloud wallet 166. The cloud inventory
module 168 may store various software packages that are
used by users, expert developers, and designers to produce
a software product.

[0082] Referring to FIG. 2, FIG. 2 is a schematic 200
illustrating an embodiment of the management components
104 of the software building system 100. The management
components 104 provide for continuous assessment and
management of a project through its entities and systems.
The central hub of the management components 104 is
entity controller 126. In an exemplary embodiment, core
functionality of the entity controller 126 system comprises
the following: display computer readable specifications con-
figurations, provide statuses of all computer readable speci-
fications, provide toolkits within each computer readable
specification, integration of the entity controller 126 with
tracker 146 and the onboarding system 116, integration code
repository for repository creation, code infrastructure cre-
ation, code management, and expert management, customer
management, team management, specification and demon-
stration call booking and management, and meetings man-
agement.

[0083] In an exemplary embodiment, the computer read-
able specification configuration status includes customer
information, requirements, and selections. The statuses of all
computer readable specifications may be displayed on the
entity controller 126, which provides a concise perspective
of the status of a software project. Toolkits provided in each
computer readable specification allow expert developers and
designers to chat, email, host meetings, and implement 3rd
party integrations with users. Entity controller 126 allows a
user to track progress through a variety of features including
but not limited to tracker 146, the Ul engine 142, and the
onboarding system 116. For instance, the entity controller
126 may display the status of computer readable specifica-
tions as displayed in tracker 146. Further, the entity con-
troller 126 may display a list of experts available through the
onboarding system 116 at a given time as well as ranking
experts for various jobs.

[0084] The entity controller 126 may also be configured to
create code repositories. For example, the entity controller
126 may be configured to automatically create an infrastruc-
ture for code and to create a separate code repository for

Oct. 10, 2024

each branch of the infrastructure. Commits to the repository
may also be managed by the entity controller 126.

[0085] Entity controller 126 may be integrated into sched-
uler 120 to determine a timeline for jobs to be completed by
developer experts and designers. The BRAT 122 system may
be leveraged to score and rank experts for jobs in scheduler
120. A user may interact with the various entity controller
126 features through the analytics component 124 dash-
board. Alternatively, a user may interact with the entity
controller 126 features via the interactive conversation in the
interactor 112 system.

[0086] Entity controller 126 may facilitate user manage-
ment such as scheduling meetings with expert developers
and designers, documenting new software such as generat-
ing an API, and managing dependencies in a software
project. Meetings may be scheduled with individual expert
developers, designers, and with whole teams or portions of
teams.

[0087] Machine learning algorithms may be implemented
to automate resource allocation in the entity controller 126.
In an exemplary embodiment, assignment of resources to
groups may be determined by constrained optimization by
minimizing total project cost. In various embodiments a
health state of a project may be determined via probabilistic
Bayesian reasoning whereby a causal impact of different
factors on delays using a Bayesian network are estimated.

[0088] Referring to FIG. 3, FIG. 3 is a schematic 300
illustrating an embodiment of the assembly line components
106 of the software building system 100. The assembly line
components 106 support the various features of the man-
agement components 104. For instance, the code platform
150 is configured to facilitate user management of a soft-
ware project. The code engine 140 allows users to manage
the creation of software by standardizing all code with
pretested building block components. The building block
components contain LSTs that identify the customizable
portions of the building block components 134.

[0089] The machine readable specifications may be gen-
erated from user specifications. Like the building block
components, the computer readable specifications are
designed to be managed by a user without software man-
agement experience. The computer readable specifications
specify project goals that may be implemented automati-
cally. For instance, the computer readable specifications may
specify one or more goals that require expert developers.
The scheduler 120 may hire the expert developers based on
the computer readable specifications or with direction from
the user. Similarly, one or more designers may be hired
based on specifications in a computer readable specification.
Users may actively participate in management or take a
passive role.

[0090] A cloud allocation tool 148 is used to determine
costs for each computer readable specification. In an exem-
plary embodiment, a machine learning algorithm is used to
assess computer readable specifications to estimate costs of
development and design that is specified in a computer
readable specification. Cost data from past projects may be
used to train one or more models to predict costs of a project.

[0091] The developer surface 138 system provides an easy
to set up platform within which expert developers can work
on a software project. For instance, a developer in any
geography may connect to a project via the cloud system 162
and immediately access tools to generate code. In one

US 2024/0338622 Al

example, the expert developer is provided with a precon-
figured IDE as they sign into a project from a web browser.
[0092] The designer surface 144 provides a centralized
platform for designers to view their assignments and submit
designs. Design assignments may be specified in computer
readable specifications. Thus, designers may be hired and
provided with instructions to complete a design by an
automated system that reads a computer readable specifica-
tion and hires out designers based on the specifications in the
computer readable specification. Designers may have access
to pretested design components from a design library 156.
The design components, like building block components,
allow the designers to start a design from a standardized
design that is already functional.

[0093] The UI engine 142 may automatically convert
designs into web ready code such as React code that may be
viewed by a web browser. To ensure that the conversion
process is accurate, the visual QA 154 system may evaluate
screens generated by the Ul engine 142 by comparing them
with the designs that the screens are based on. In an
exemplary embodiment, the visual QA 154 system does a
pixel to pixel comparison and logs any discrepancies to be
evaluated by an expert developer.

[0094] Referring to FIG. 4, FIG. 4 is a schematic 400
illustrating an embodiment of the run entities 108 of the
software building system. The run entities 108 provides a
user with 3"/ party tools and services, inventory manage-
ment, and cloud services in a scalable system that can be
automated to manage a software project. In an exemplary
embodiment, the run entities 108 is a cloud-based system
that provides a user with all tools necessary to run a project
in a cloud environment.

[0095] For instance, the tool aggregator 160 automatically
subscribes with appropriate 3’7 party tools and services and
makes them available to a user without a time consuming
and potentially confusing set up. The cloud system 162
connects a user to any of the features and services of the
software project through a remote terminal. Through the
cloud system 162, a user may use the user control system
164 to manage all aspects of a software project including
conversing with an intelligent Al in the interactor 112
system, providing user specifications that are converted into
computer readable specifications, providing user designs,
viewing code, editing code, editing designs, interacting with
expert developers and designers, interacting with partners,
managing costs, and paying contractors.

[0096] A user may handle all costs and payments of a
software project through cloud wallet 166. Payments to
contractors such as expert developers and designers may be
handled through one or more accounts in cloud wallet 166.
The automated systems that assess completion of projects
such as tracker 146 may automatically determine when jobs
are completed and initiate appropriate payment as a result.
Thus, accounting through cloud wallet 166 may be at least
partially automated. In an exemplary embodiment, pay-
ments through cloud wallet 166 are completed by a machine
learning Al that assesses job completion and total payment
for contractors and/or employees in a software project.
[0097] Cloud inventory module 168 automatically man-
ages inventory and purchases without human involvement.
For example, cloud inventory module 168 manages storage
of data in a repository or data warehouse. In an exemplary
embodiment, it uses a modified version of the knapsack
algorithm to recommend commitments to data that it stores

Oct. 10, 2024

in the data warehouse. Cloud inventory module 168 further
automates and manages cloud reservations such as the tools
providing in the tool aggregator 160.

[0098] Referring to FIG. 5, FIG. 5 is a schematic 500 of
an embodiment of the disclosed system for evaluating a
developer 510. The developer 510 may be any individual
that contributes to the development of a device application.
The developer 510 may be a software developer, a designer,
a quality engineer, or the like. The disclosed system may be
used to classify one or more developers that are working on
a device application. The classification may be used to
assess the quality of work that employees are capable of
performing. In various embodiments, the classification may
be further used to match employees or developers to jobs
that they are capable of performing.

[0099] In various embodiments, the disclosed subject mat-
ter may include a machine readable specification 515 for a
device application. The machine-readable specification 515
may include information necessary to define one or more
jobs that can be performed by the developer to contribute to
the device application. For instance, the machine-readable
specification 515 may include details necessary to build a
building block component for the device application.
[0100] The disclosed system may include an expert evalu-
ation system 540 that is capable of evaluating a developer
510 and evaluating jobs completed by the developer 510. In
the exemplary embodiment shown in the schematic 500, the
expert evaluation system 540 includes a test evaluation
system 542, an expert classification component 560, and a
job evaluation system 544.

[0101] The test evaluation system 542 may be used to test
a developer 510 to determine the developer’s 510 ability
level. For instance, the test evaluation system 542 may give
the developer 510 one or more tests for the developer to
complete. Once completed, the test evaluation system 542
may grade the one or more tests to classify the developer
510. The test evaluation system 542 may include a test
generation component 550 and a test assessment component
555. The test generation component 550 may be configured
to generate one or more tests for the developer 510. In an
exemplary embodiment, the test generation component 550
may generate one or more quizzes based on a developer’s
experience. The developer’s experience may be determined
based on a resume, an interview with the developer, or the
like. An example of a quiz may be a test comprising one or
more questions for which there is at least one correct answer.
In addition to quizzes, the test generation component 550
may generate one or more assignments for the developer. An
example of an assignment may be a task to complete a
building block component. Another example of an assign-
ment may be a task to design a user interface for a screen.
Another example of a task may be to quality test a device
application. An assignment for a developer that is a quality
engineer may include conducting an analysis of a device
application to identify defects or bugs in the device appli-
cation. Another assignment for a developer that is a quality
engineer may include making one or more improvements to
a functionality of a device application or portion of a device
application.

[0102] The test evaluation system 542 may transmit one or
more quizzes or assignments that are generated by the test
generation component 550 to the developer 510 for the
developer to complete. Once completed, the developer 510
may transmit the completed quiz or assignment back to the

US 2024/0338622 Al

test evaluation system 542. The test assessment component
555 may evaluate the completed quiz or assignment to
determine a score or rank for the developer 510. For
example, the test assessment component 555 may determine
whether the developer 510 answered questions in the one or
more quizzes correctly. In addition to grading quizzes, the
test assessment component 555 may also evaluate assign-
ments that are completed by the developer 510. For
example, the test assessment component 555 may evaluate
a completed assignment for various criteria to determine a
score for the completed assignment. For instance, the test
assessment component 555 may use a machine learning
algorithm to evaluate a quality of an assignment to develop
a software component or device application. An example of
a machine learning algorithm is a neural network. In the
example given above, the machine learning algorithm may
evaluate a structure of the completed assignment to deter-
mine whether the structure conforms to standard industry
practice. For instance, the machine learning algorithm may
evaluate whether the developer 510 adhered to an entity
component pattern that was called for in the assignment. The
machine learning algorithm may further evaluate output
based on various input for the completed assignment. For
instance, if the assignment was to develop a component that
accepts one or more user logins and sorts them into a
database, the machine learning algorithm may test the com-
pleted component with one or more user logins to determine
whether the completed assignment works properly.

[0103] The test assessment component 555 may generate
a score that may be used by an expert classification com-
ponent 560 to determine a classification or rank of the
developer 510. The expert classification component 560
may use any combination of quiz scores and assignment
scores to determine a classification for the developer 510. In
various embodiments, the expert classification component
560 may weight one or more quizzes or assignments based
on various criteria. For instance, the expert classification
component 560 may weight a quiz that is related to a
developers 510 expertise more than other quizzes or assign-
ments. In another example, the expert classification compo-
nent 560 may weight one or more quizzes or one or more
assignments based on jobs that are available from the
machine-readable specification 515. For instance, the expert
classification component 560 may weight quizzes or assign-
ments related to databases if there are pending jobs that
require database work. A pending job may be a job that is yet
to be completed. The term “pending machine readable
specification”, as used herein, is a machine readable speci-
fication that includes one or more pending jobs.

[0104] The job evaluation system 544 transmits jobs to the
developer 510 and assesses completed jobs that are received
from the developer 510. In an exemplary embodiment, the
job evaluation system 544 may include a job assignment
component 565 and a job evaluation component 570. The
job assignment component 565 may accept one or more jobs
based on a machine-readable specification 515. In an exem-
plary embodiment, the machine-readable specification 515
may include one or more building block components 525,
one or more adapters 530 that are designed to link the
building block components 525, and one or more designs
535 for a device application. Additionally, the machine-
readable specification 515 may include a device application
architecture 520 that defines a structure for the building
block components 525, the adapters 530, and designs 535.

Oct. 10, 2024

[0105] One or more jobs may be resolved from the
machine-readable specification 515. The jobs may be then
passed by the job assessment component 565 to a developer
510 to be completed. Once completed, the developer 510
may transmit the completed job back to the job evaluation
system 544. The job evaluation component 570 may assess
the quality of the completed job. In an exemplary embodi-
ment, the job evaluation component 570 comprises a
machine learning algorithm that is configured to evaluate
completed jobs. In various embodiments, different machine
learning algorithms or models may be configured based on
a type of job. For example, a machine learning algorithm
may be configured to evaluate completed user interface
components for device applications. For instance, a job to
develop a building block component 525 that allows a user
to select one or more items for purchase on a device
application may be assigned to a developer 510. Once the
job is completed, the job evaluation component 570 may
evaluate the completed job using a machine learned algo-
rithm that is trained to evaluate components related to user
input.

[0106] Referring to FIG. 5B, FIG. 5B is a schematic of an
embodiment of the expert evaluation system 575. The expert
evaluation system 575 may be used to score or classify
developers that work on various aspects of a device appli-
cation. In an exemplary embodiment that is shown in FIG.
5B, the expert evaluation system 575 includes a test evalu-
ation system 542, an expert ranking system 567, and a job
evaluation system 544. The test evaluation system 542
generates tests for developers 510 and grades tests once they
are completed by developers 510. In an example embodi-
ment, the test evaluation system 542 includes a test genera-
tion component 507 and a test assessment component 527.
[0107] The test generation component 507 generates quiz-
zes, assignments, and/or videos for the developer 510. In an
exemplary embodiment, the test generation component 507
may include a video generator 522 that generates videos for
the developer 510 to view. The videos may be educational or
part of the test. For example, the video generator 522 may
generate one or more videos based on a content of quizzes
or assignments that will be transmitted to the developer 510.
For example, a video generator 522 may generate a video
that includes a code structure tutorial for the developer 510
to view before working on an assignment. Accordingly, the
developer 510 could be tasked to adhere to a structure based
on the video as the developer 510 works on the assignment.
[0108] The quiz generator 512 may generate quizzes for
developers 510. In an exemplary embodiment, quiz ques-
tions are selected based on the experience level of the
developer 510. For example, if the developer’s resume
shows expert level experience in using cloud platforms, the
quiz generator 512 may test the developer’s 510 experience
with questions related to cloud providers such as AWS and
Azure. In another example, the quiz generator 512 may
generate quiz questions based on pending jobs. For example,
the quiz generator 512 may generate a ratio of quiz questions
based on the ratio of job types that are pending. An example
ratio of job types may comprise 30% of jobs related to SQL
databases. Accordingly, the quiz generator 512 may generate
questions related to SQL databases for approximately 30%
of the questions on the quiz.

[0109] The assignment generator 517 may generate
assignments for the developer 510 that can be graded by the
test assessment component 527. The assignment generator

US 2024/0338622 Al

517 may be configured to generate assignments that are
capable of being graded or scored. For instance, the assign-
ment generator 517 may generate assignments directing a
developer to produce a component that performs a specific
function based on specific input. For example, the assign-
ment generator, 517 may direct a developer 510 to produce
a component that interacts with a bank API to perform a
transaction. Accordingly, the test scoring module 514 of the
test assessment component 527 may be capable of verifying
a correct output of the component based on the bank API of
the assignment. In various embodiments, the assignment
generator 517 may be configured to assign a developer 510
assignments that are related to the developer’s experience.

[0110] The test assessment component 527 may grade
completed quizzes and completed assignments with the test
scoring module 514 to determine a score for the developer
510. In various embodiments, the test scoring module 514
comprises a machine learning algorithm that is trained to
grade quizzes and/or assignments. Various machine learning
algorithms may be used for the test scoring model 514. In an
exemplary embodiment, the machine learning algorithm is a
neural network that uses natural language processing to
analyze completed assignments and determine a quality of
the completed assignment. Thus, completed quizzes and
assignments may be assigned a score that is passed on to the
expert ranking system 567. The expert ranking system 567
may pass scores through the expert classification component
562 to determine a rank or classification of the developer
510 based on scores determined by the test assessment
component 527. In an exemplary embodiment, the expert
classification component 562 classifies a developer 510 as
one of either beginner, intermediate, or expert. In various
embodiments, the expert classification component 562
determines a classification for each developer in multiple
areas. For instance, a developer 510 may be classified as
intermediate in relational databases and classified as a
beginner in NoSQL databases.

[0111] The job evaluation system 544 assigns jobs to
developers and evaluates completed jobs from developers
510. The job evaluation system 544 may include a job
assignment component 547 and a job evaluation component
544. The job assignment component 547 may determine one
or more jobs from a machine-readable specification to be
assigned to a developer 510. The job evaluation component
547 may assess completed jobs to determine a score that is
passed to the expert ranking system 567.

[0112] The job assessment component 547 may include a
machine readable specification interpreter 552 and a job
resolver 557. The machine-readable specification interpreter
may be configured to extract all related information from
machine-readable specifications. For instance, the machine-
readable specification interpreter 552 may extract informa-
tion related to one or more components, designs, and adapt-
ers. The job resolver 557 may determine one or more jobs
based on the components, designs, and adapters specified in
the machine-readable specification. In an exemplary
embodiment, the job resolver 557 may resolve jobs based on
links between components as defined by the machine-
readable specification. In various embodiments, the
machine-readable specification may define links between
various features and components in the device application.
The job resolver may select one or more components based
on the links. In one example, the job resolver may resolve a
job to develop two components that communicate with one

Oct. 10, 2024

another. An example of components that communicate with
one another comprises a first component that generates a
message that is transmitted through the run engine and
received by a second component.

[0113] In various embodiments, the job resolver 557 may
determine a difficulty of the job. For example, the job
resolver 557 may comprise a machine learning algorithm
that is configured to determine a difficulty of a job. The
machine learning algorithm may be trained, for example, on
difficulties of previous jobs. In one example, the difficulty
may be determined based on an amount of work to be
performed for a job. An amount of work may be correlated
to a number of linkages between components for a job to
complete a building block component. For example, a
building block component that is linked to two or more other
building block components may be classified as expert level
difficulty. A building block component that is linked to one
other building block component may be classified as an
intermediate difficulty. And a building block component that
has no links to other building block components may be
classified as a beginner level difficulty.

[0114] Once a developer 510 completes a job, the com-
pleted job is passed to the job evaluation component 538.
The job scoring module 536 may assign a score to the
completed job based on a quality of the completed job. In an
exemplary embodiment, the job scoring module may use a
machine learning algorithm to analyze the completed job to
determine the quality of the job. For example, the job
scoring module may use a neural network that makes use of
natural language processing to assess code that is submitted
by the developer to develop a building block component for
a device application. In another example, the job scoring
module 536 may use a neural network to analyze a design
for a user interface. For instance, the neural network may be
trained to determine a score for various types of designs such
as hero images, navigation menus, car layouts, and modal
window designs. In one example, the neural network may be
configured to evaluate a hero image based on an L-shaped
pattern whereby interactive portions of the image are limited
to two adjacent sides of the screen. The job scoring module
536 may output a score that may be evaluated by the expert
ranking system 567 to determine a rank or update the
rank/classification for the developer 510.

[0115] Referring to FIGS. 6A-6B, FIGS. 6A-6B together
show portions of a single flow diagram of an embodiment of
the disclosed system for allocating resources to develop a
device application. FIG. 6A shows a first flow diagram 600
of a system for allocating resources. The system for allo-
cating resources may select one or more developer resources
to work on a job to contribute to generation of a device
application. Various jobs may include, but are not limited to
developing a building block component, designing an inter-
face, and testing a quality of the device application. In
various embodiments, the system for allocating resources
may receive one or more jobs from the job resolver 557 and
determine the optimal developer(s) to complete each job.
The system for allocating resources may further automati-
cally contact the developer and manage the timing at which
jobs are completed.

[0116] At step 602, an expert submits an assignment to the
system. In various embodiments, the assignment is received
by the test evaluation system 542. At step 604, the test
assessment component 527 may evaluate the assignment to
determine a score for the assignment.

US 2024/0338622 Al

[0117] In the exemplary embodiment shown in FIG. 6A,
the test assessment component 527 may perform a variety of
checks on the assignment. The type of check may depend on
the type of work that was performed for the job. For
example, a job to develop a new component may be checked
according to the steps shown in the first flow diagram 600.
At step 606, the test assessment component 527 may check
a quality of a development code. An exemplary embodiment
the quality may be checked by analyzing SonarQube metrics
and linting the code. Both the SonarQube metrics and linting
are ways to check code for various errors and conforming to
various standards. Further, at step 608, the test assessment
component 527 may do a plagiarism check on the submitted
code. And at step 610, the test assessment component 527
may validate the functional requirements of the code. The
functional requirements may be verified by a machine
learned algorithm that analyzes the completed assignment.
At step 614, the test assessment component 527 may deter-
mine a final score for the assignment. If the score doesn’t
meet a minimum threshold, the assignment will be rejected
at step 616. At step 618, the system may create a report
providing a breakdown of the score. And at step 619, the
system may determine whether the developer completed all
courses and including tests and assignments. In various
embodiments, a developer may be required to complete a
minimum number of courses or assignments including quiz-
zes, tests, or the like before being verified to work on a job.
In an exemplary embodiment, developers that complete
around of courses will be placed on probation whereby they
are further evaluated based on completed job assignments.

[0118] At step 620, the system for allocating resources
may receive an allocation request to complete one or more
tasks related to generating a device application. At step 622,
the big resource allocation tool may determine whether the
allocation request is related to a noncritical project. A
noncritical project may be any project that has a low priority.
In an exemplary embodiment only projects that are noncriti-
cal are low priority. If the job is determined to be noncritical,
a developer or expert that is on probation may be considered
for the job. If the job is considered to be critical however,
only non-probation developers are considered.

[0119] At step 634, the system for allocating resources
may allocate a job based on the allocation request to a
non-probation developer. The job may be determined by the
job resolver 557 by interpreting a machine-readable speci-
fication. Once the developer completes the job, the job may
be evaluated by the job evaluation component 547 at step
636. At step 638, the score determined by the job evaluation
component 547 is updated.

[0120] At step 624, where it the system determined that an
allocation request was noncritical, probationary and non-
probationary developers may be considered. The classifica-
tion or score of the developers may be considered to assign
their job. In various embodiments developers that are on
probation are assigned jobs that are one rank lower than their
classification. For example, a developer that is on probation
may be assigned jobs that have a difficulty that is below their
level of classification. At step 628, a probationary period is
tracked for the developer that if the developer is in a
probationary period. An exemplary embodiment, the proba-
tionary period may be for an amount of time, a number of
projects, or combination thereof. In the embodiment shown
in the first flow diagram 600, developers that are within their

Oct. 10, 2024

probationary period are continually evaluated at step 632
until they reach 80% of their probation period.

[0121] Referring to FIG. 6B, FIG. 6B shows a second flow
diagram 650 of a system for allocating resources. In the
exemplary embodiment where the probationary developer
has reached 80% of their probationary period and step 632,
the system for allocating resources may check if their score
meets a minimum threshold at step 652. The minimum
threshold may be set to any arbitrary number that represents
a minimum level of expertise required for the developer. If
the developer does not meet the minimum threshold, the
probation period may be extended for an amount of time. In
the exemplary embodiment shown in the second flow dia-
gram 650, the probationary period may be extended by 50%
at step 658 based on a request at step 656.

[0122] At step 660, the system for allocating resources
may determine whether the developer’s score meets a mini-
mum threshold. If the score does meet the minimum thresh-
old, the developer’s probation will end at step 662 and the
developer’s rating will be updated at step 638. If the
developer does not meet the minimum threshold, the devel-
oper may be the deallocated and not considered for further
jobs at step 664.

[0123] Referring to FIG. 7, FIG. 7 is a flow diagram 700
of an embodiment of the disclosed subject matter. The
disclosed subject matter may be used to allocate human
development resources to one or more jobs on a device
application. In an exemplary embodiment, the job may be to
work on an undeveloped software application. At step 702,
the system to allocate resources may receive one or more
features for an undeveloped software application. In various
embodiments, the features may be supplied by a user or
client. The system may be tasked by the user or client to
incorporate the features into a device application. The fea-
tures may be incorporated into a machine-readable specifi-
cation whereby the job resolver 557 may resolve one or
more jobs from the machine-readable specification.

[0124] At step 704, the system to allocate resources may
determine one or more resource parameters for development
of'the undeveloped software application. Various parameters
may include a development expertise needed for one or
more jobs, an area of expertise, and a time needed for
development of the undeveloped software application. As
used herein, the term development expertise may refer to a
total level of experience of a developer. The total level of
experience may be in a specific area of expertise, a total
experience, or combination thereof. For example, a devel-
oper may be classified as a level II developer for front-end
systems and classified as a level I for backend systems. The
developer may also be classified as a level II developer
overall.

[0125] At step 706, the system to allocate resources may
optimize human development resources based on the one or
more resource parameters. For example the system may
determine a best developer to develop the undeveloped
software application based on the one or more resource
parameters. In various embodiments, more than one devel-
oper may be determined to develop the undeveloped soft-
ware application at step 706. In an exemplary embodiment,
and optimization algorithm may be used to determine the
one or more developers based on the one or more resource
parameters.

[0126] At step 708, the system to allocate resources may
allocate human development resources based on the opti-

US 2024/0338622 Al

mization. For example, the system to allocate resources may
contact the one or more developers that were selected at step
706. In various embodiments, the system may further assign
the one or more developers specific jobs to develop though
undeveloped software application based on jobs that were
determined by the job resolver 557.

[0127] Referring to FIG. 8, FIG. 8 is a flow diagram 800
of another embodiment of the disclosed subject matter. At
step 802, the system to allocate resources may determine one
or more subprojects, where each of the one or more sub-
projects includes a development of one or more components
that are applicable to a device application. For example one
or more components may include a login component for a
device application. In another example, the one or more
components may include a database that stores user logins
for a device application. In various embodiments the one or
more subprojects may include checking the quality of a
device application. In various embodiments the one or more
subprojects may include designing a user interface for the
device application. In various embodiments, the one or more
subprojects may include checking the quality, designing the
user interface, and developing various components such as
a database for a device application.

[0128] At step 804, the system to allocate resources may
determine a timing to develop the one or more subprojects.
For example, the system to allocate resources may deter-
mine that the component that logs user logins for a database
is dependent on a design for the user interface. Accordingly,
the system may determine that the user interface should be
completed in eight within a first time and that the database
be completed within a second time. Further, the system may
determine various times development of the various sub-
projects should begin.

[0129] At step 806, the system to allocate resources may
determine an expertise to develop the one or more subproj-
ects. For example, the expertise may be an area of expertise
or a total development expertise or combination thereof. In
various embodiments, the system may determine more than
one expertise for a subproject. In one example, the system
may determine that it requires a rank 2 developer in front-
end development as well as a rank 2 developer in cross-
platform development.

[0130] At step 808, the system to allocate resources may
assign one or more developers to develop a subproject for
each of the one or more subprojects. The one or more
developers may be selected based on the expertise deter-
mined at step 806 and the timing determined at step 804. The
system may further optimize selection of the developer
based on the expertise and timing. For example, the system
may allocate a developer with a high classification to
perform a difficult subproject and allocate a lower ranked
developer for a less difficult subproject.

[0131] At step 810, the system to allocate resources may
contact each of the one or more developers to develop the
subproject based on the timing for each of the one or more
subprojects. In an exemplary embodiment, the one or more
developers may be contacted via an automated communi-
cation that is initiated by a computing system. For example,
the one or more developers may be emailed by a computing
system where the email specifies the timing that is deter-
mined in step 804. In various embodiments, the computing
system may communicate with the one or more developers
by various other means. For example, the computing system
may call the one or more developers using a bot that

Oct. 10, 2024

communicates with the one or more developers. The system
to allocate resources may further refine the time to develop
the one or more subprojects based on a response from the
one or more developers. For example, the one or more
developers may communicate a time conflict that will cause
the system to allocate resources to update the timing.
[0132] Referring to FIG. 9, FIG. 9 is a flow diagram 900
of yet another embodiment of the disclosed subject matter.
At step 902, the system to allocate resources may receive a
set of features of a 1% device application. In various embodi-
ments, the 1% set of features may be supplied by a client user,
a computer system, or developer. In an exemplary embodi-
ment, a user may describe a device application in ordinary
language. The described computing system may convert the
users ordinary language into a set of features that are
received in step 902.

[0133] At step 904, the system to allocate resources may
determine one or more subsets of the set of features where
each subset is capable of operating independently of the
other subsets in the 1% device application. In an exemplary
embodiment, the system determines features that are depen-
dent on one another and separates them into groups. For
example, a backend for a login user interface feature may be
dependent on a front-end for the login user interface feature.
Accordingly, the front-end and backend of the login user
interface may be grouped together in a subset of the set of
features. However, a geo-mapping feature may operate
independently of the login user interface and may be
grouped into a separate subset from the login user interface
feature.

[0134] At step 906, the system to allocate resources may
determine a production time for each subset. In various
embodiments, the production time may comprise a total time
to complete the subset. In an exemplary embodiment, the
production time further comprises a time to begin the subset.
For example, the system to allocate resources may deter-
mine a beginning time for each subset such that each of the
subsets are completed before a deadline.

[0135] At step 908, the system to allocate resources may
task a developer to complete the subset at a time based on
the production time for each subset. In an exemplary
embodiment, the system may automatically contact a devel-
oper to complete the subset. The system to allocate resources
may determine an optimal developer based on the feature or
features in the subset. The optimal developer may be
selected based on various criteria such as the area of
expertise of the developer the total experience of the devel-
oper, the difficulty of the subset, and the time zone of the
developer.

[0136] Referring to FIG. 10, FIG. 10 is a flow diagram
1000 of an embodiment of a system for allocating develop-
ers to a job. The system to allocate developers to a job may
include a big resource allocation tool 1020 which is also
referred herein as BRAT 122. The big resource allocation
tool 1020 may accept an allocation request 1022 to perform
work that can be applied to one or more device applications.
To allocate one or more developers to the work, the big
resource allocation tool 1020 may accept various developer
data.

[0137] As shown in FIG. 10, an exemplary embodiment of
the developer data may include expert classification 1002
data, automated code analysis data such as Codejudge 1006
or SonarQube data, database 1012 data, and knowledge
graph data. Developer data for designer developers and

US 2024/0338622 Al

quality analysis developers may vary from the developer
data shown in FIG. 10. The expert classification 1002 data
may include expert quiz scores, expertise of developers,
partner scores for developers, and time zones in which the
developer resides, which are together referred to as classi-
fication data 1004. The automated code analysis data may
include various bugs 1008, code smell, and vulnerability of
code for developers that write code. In an exemplary
embodiment the database data 1010 may include a feature
interface type, a client time zone, a developer’s experience,
the expected speed of the project, and a user interface
engine. Examples of feature interface types included navi-
gation interfaces, and input interface, a settings interface,
and immediate interface. Examples of user interface engines
include, but are not limited to React Native, Flutter, Xama-
rin, and Ionic.

[0138] The developer data may be used by the big
resource allocation tool 1020 to determine an expert score
1024. In an exemplary embodiment, a calculated expert
score 1034 is determined based on an allocation state 1026
of the developer, a qualitative score 1028 of the developer,
a quantitative score 1030 of a developer, and a quiz score
1032 of a developer. The allocation state 1026 of the
developer may comprise the current status of the developer.
For example, if a developer is working on a job and is
unavailable, the developer would be in a state of “allocated.”
The qualitative score 1028 of the developer may be a score
based on a quality of the developers work. For example, a
developer’s Codejudge 1006 analysis may be factored into
the qualitative score 1028. The quantitative score 1030 may
comprise the developer’s experience, the total number proj-
ects that the developer worked on, the amount of time that
the developer has worked with a client, the amount of time
that the developer has worked on a development area, or a
combination thereof. The quiz score 1032 may be a score as
determined by the test evaluation system 542.

[0139] The developer prioritization component 1040 may
determine the amount of time that should be taken to
develop the various features of the allocation request 1022.
The developer prioritization component 1040 may further
determine a time to start the development of each feature.
The developer prioritization component 1040 may prioritize
various subprojects in the allocation request using linear
interpolation 1042 followed by Fibonacci prioritization
1044. The linear interpolation 1042 may prioritize various
tasks in the allocation request by determining their relative
importance and value.

[0140] The Fibonacci prioritization 1044 may further pri-
oritize tasks by differentiating tasks that have similar values
in the linear interpolation. Criteria used in the Fibonacci
request prioritization include expertise of the developer,
allocation status of the developer, client time zone, devel-
oper time zone probation status of the developer, and project
and bundle affinity of the developer. Project and bundle
affinity of the developer refers to a quality of developers
work for a specific client or for a specific project. Data from
the developer prioritization component 1040 may be fed into
a mixed integer linear programming (MILP) solver 1050
determine an optimal allocation 1052. The MILP solver
1052 may use the prioritization data for each subproject and
determine a time frame for completion of each subproject.
Groups of features may be separated into the various swim
lanes or subprojects based on their interdependence.

Oct. 10, 2024

[0141] Referring to FIG. 11, FIG. 11 is a flow diagram
1100 of an embodiment for allocating developers based on
a machine readable specification. As shown in the flow
diagram 1100, the system for allocating resources may
include a swim lanes API 1104 that resolves one or more
swim lanes from a machine readable specification 1102. The
term swim lane, as used herein, may refer to one or more
subprojects within a project to develop a device application.
Each of the subprojects or swim lanes is assumed to operate
independently of the other swim lanes. The swim lanes API
1104 resolves features of the machine readable specification
1102 to determine which features operate independently of
one another. The swim lanes API 1104 may further distribute
work among swim lanes such that developers allocated to
the various swim lanes finish at an optimized time, which
may be determined by a variety of parameters.

[0142] As stated above, the swim lanes API 1104 resolves
work from a machine-readable specification into multiple
swim lanes 1106. In various embodiments, the swim lanes
API 1104 may resolve jobs from multiple machine readable
specifications 1102. As shown in the flow diagram, swim
lanes may comprise a 1* swim lane 1108, a 2"¢ swim lane
1110, and an Nth swim lane 1112. Further, the swim lanes
API 1104 may resolve a design swim lane 1114, which
includes design work that was resolved from the machine
readable specification 1102. The swim lanes of 1106 may
also include, but are not shown in FIG. 11, one or more swim
lanes comprising quality control jobs.

[0143] Based on the swim lanes 1106, the system to
allocate resources may include a timing API 1116 that
optimizes swim lanes based on a predicted time of comple-
tion for each swim lane. The timing API may determine a
time of completion based on a difficulty of the job and
experience of the developer. In various embodiments a
machine learning algorithm may be used to predict a time for
jobs the are resolved from the machine-readable specifica-
tion. Training data to determine completion time for jobs
resolved from the machine-readable specification may
include historical data from previous jobs. As shown in the
flow diagram 1100, the timing API 1116 may determine a
completion time for a 1° swim lane 1118, a 2"¢ swim lane
1120, and a design swim lane 1122.

[0144] The system to allocate resources may further
resolve swim lanes based on developer parameters. Accord-
ingly, jobs within a swim lane may be optimally distributed
to developers. In the example shown in the flow diagram
1100, swim lanes are divided by a swim lane resolver 1124
based on an area of expertise. The 1°* swim lane is divided
into front-end development 1126 and backend development
1128. In an exemplary embodiment, front-end development
may be coded in React Native and backend development
may be coded in Ruby on Rails. Thus, jobs for swim lane 1
may be divided between developers that specialize in React
Native and developers that specialize in Ruby on Rails. The
system to allocate resources may determine optimal timing
to allocate the jobs divided from a single swim lane as one
may be dependent on the other. Accordingly, in the example
shown in the flow diagram 1100, and allocation system 1140
may schedule front-end development 1126 to be completed
at an earlier time 1142 than the backend development 1128.
[0145] In various embodiments, the allocation system
1140 may determine a number of developers that are needed
to be allocated for each swim lane and/or each divided swim
lane. In the example shown in the flow diagram 1100, the

US 2024/0338622 Al

allocation system 1140 may consolidate a front-end version
of the 2" swim lane 1130 and a backend version of the 2"¢
swim lane 1132 into development by a single developer that
can be allocated at a single time 1146. The allocation system
1140 may further determine a time to allocate one or more
developers to complete one or more designs 1148. At step
1150, the system to allocate resources may compute a total
project time and cost based on developer allocations and the
difficulty of the jobs resolved from the machine readable
specification 1102.

[0146] Referring to FIGS. 12A-12B, FIGS. 12A-12B are
schematics of embodiments for assessing the effort required
for a feature to be completed. FIG. 12A is a schematic 1200
showing how a system for allocating resources may break
down a feature into multiple jobs. The swim lane resolver
1124 and allocation system 1140 combined to break a
feature, swim lane, or subproject, into subparts. In various
embodiments, the allocation system determines the amount
of effort required to complete every feature in a swim lane.
The allocation system 1140 determines one or more depen-
dencies for every feature. For instance, the allocation system
may determine whether a front-end is required for any
feature. The term front-end as used herein refers to a part of
a device application that is configured to accept input from
a user. For instance, any part of a device application that
directly interacts with a user may be considered a front-end
portion of the device application. On the other hand, por-
tions of a device application that did not accept input or
interact with a user may be considered a backend. Many, but
not all, backend portions of a device application are depen-
dent on input that is accepted from the front-end.

[0147] In various embodiments, the swim lane resolver
1124 may determine various interdependencies within a
feature. In the example shown in the schematic 1200, the
system for allocating resources may determine whether a
feature 1202 requires a front-end. If the feature 1202 does
require a front-end, the effort required to complete the
feature 1202 may be broken up into front-end effort 1204
and backend effort 1206. If the feature 1202 does not require
a front-end, work to complete the feature may be limited to
backend effort 1210. In various embodiments, jobs to pro-
duce a front-end or backend may require different expertise.
For example, a developer may prefer that a front-end be
coded in React Native and that a backend be coded in Ruby
on Rails. Accordingly, different developers may specialize in
either front-end, backend development, or both. The system
for allocating resources may allocate developers based on
the interdependencies for each feature and determine timing
for when interdependent portions of a feature are developed.
For example, the system for allocating resources may sched-
ule a front-end to be developed for a backend.

[0148] Referring to FIG. 12B, FIG. 12B is a schematic
1250 showing how a feature may be further divided into
subparts based on dependencies. As shown in the schematic
1250, a feature may be divided into a backend effort 1252
and a front-end effort 1254. If for example the machine-
readable specification includes compatibility with android/
108, the front-end may be further divided into a front-end
that is encoded in React 1256 and a front-end that is coded
in React Native 1258.

[0149] Referring to FIG. 13, FIG. 13 is a schematic 1300
of an exemplary embodiment for allocating resources to a
job. As shown in FIG. 11, resource allocation system may
establish subprojects or swim lanes based at least partly on

Oct. 10, 2024

an amount of effort required to complete a swim lane. For
example 2 features that are not dependent on one another
may be arbitrarily placed in any swim lane relative to one
another. When the resource allocation system determines an
optimal allocation of developers to complete a job with
multiple swim lanes, the allocation system may generate
swim lanes based on various criteria.

[0150] For example, the system for allocating resources
may generate swim lanes based on the amount of effort
required to complete each swim lane. As shown in scenario
1 in the schematic 1300, a 1** swim lane 1302 includes 50
features and a 2"¢ swim lane 1304 includes 10 features. The
system may generate swim lane shown in scenario 1 when
it determines that each of the swim lanes may require the
same amount of effort. For example the effort required to
complete all the features in the 2" swim lane 1304 may be
the same as the effort to complete the 50 features in the 1%
swim lane 1302. The system for allocating resources may
factor difficulty of features, a timeline needed to complete
the features, and the relative speed of the developers will be
allocated complete the swim lane. For example, a relatively
inexperienced developer may be expected to develop at a
slow speed, which may be considered in generating the
swim lanes.

[0151] Inan exemplary embodiment, as shown in scenario
2 system for allocating resources may distribute features
equally between swim lanes. Accordingly, the 1 swim lane
1306 and 2"¢ swim lane 1308 may be generated with an
equal number of 30 features. Additional embodiments may
consider additional criteria for adding features to swim
lanes.

[0152] Referring to FIG. 14, FIG. 14 is another schematic
1400 of an exemplary embodiment for allocating resources
to a job. As shown in FIG. 11, the system for allocating
resources may convert a machine-readable specification into
multiple swim lanes or subprojects that each include a
predicted amount of time to complete. Accordingly, the
machine-readable specification 1402 of the schematic 1400
is converted into multiple development swim lanes 1404.
[0153] And as shown in FIG. 12A, the system to allocate
resources may further resolve features in each swim lane
based on various criteria such as developer expertise. For
instance, the development swim lanes 1406 may include
swim lanes that are resolved into a front-end and a backend.
The system to allocate resources may then allocate one or
more developers from a developers pool 1426 to work on the
resolved jobs from the development swim lanes 1406. For
instance, one or more designer developers from a designer
pool 1428 may be allocated to a design swim lane 1420 or
design subproject. If the front-end jobs in the development
swim lanes 1406 comprise coding in React, one or more
developers from a development pool of React developers
1430 may be allocated to complete a front-end project from
one or more of the development swim lanes.

[0154] When there are more jobs than there are develop-
ers, the system to allocate resources may use various criteria
to select which job gets completed first. For example as
shown in the schematic 1400, the front-end 1422 of swim
lane 2, which has the highest development effort as evi-
denced by the horizontal length of swim lane 2, may be
selected to be completed first. Other criteria may be used as
well. For instance, if a backend system requires a front-end
before it can be properly developed, the system to allocate
resources may be forced to wait and tell a front-end is

US 2024/0338622 Al

developed until backend developers can be allocated to work
on a backend job. However, if one or more front-ends are
already developed based on other projects or other machine-
readable specifications, their associated backends can begin
development immediately. For example, if swim lane 4 has
a front-end that is already developed, the system to allocate
resources may allocate one or more backend developers
1432 who specialize in Ruby on Rails to begin development
on a backend project 1424 for swim lane 4.

[0155] Referring to FIG. 15, FIG. 15 is a schematic
illustrating a computing system 1500 that may be used to
implement various features of embodiments described in the
disclosed subject matter. The terms components, entities,
modules, surface, and platform, when used herein, may refer
to one of the many embodiments of a computing system
1500. The computing system 1500 may be a single com-
puter, a co-located computing system, a cloud-based com-
puting system, or the like. The computing system 1500 may
be used to carry out the functions of one or more of the
features, entities, and/or components of a software project.
[0156] The exemplary embodiment of the computing sys-
tem 1500 shown in FIG. 15 includes a bus 1505 that
connects the various components of the computing system
1500, one or more processors 1510 connected to a memory
1515, and at least one storage 1520. The processor 1510 is
an electronic circuit that executes instructions that are
passed to it from the memory 1515. Executed instructions
are passed back from the processor 1510 to the memory
1515. The interaction between the processor 1510 and
memory 1515 allow the computing system 1500 to perform
computations, calculations, and various computing to run
software applications.

[0157] Examples of the processor 1510 include central
processing units (CPUs), graphics processing units (GPUs),
field programmable gate arrays (FPGAs), complex program-
mable logic devices (CPLDs), and application specific inte-
grated circuits (ASICs). The memory 1515 stores instruc-
tions that are to be passed to the processor 1510 and receives
executed instructions from the processor 1510. The memory
1515 also passes and receives instructions from all other
components of the computing system 1500 through the bus
1505. For example, a computer monitor may receive images
from the memory 1515 for display. Examples of memory
include random access memory (RAM) and read only
memory (ROM). RAM has high speed memory retrieval and
does not hold data after power is turned off. ROM is
typically slower than RAM and does not lose data when
power is turned off.

[0158] The storage 1520 is intended for long term data
storage. Data in the software project such as computer
readable specifications, code, designs, and the like may be
saved in a storage 1520. The storage 1520 may be stored at
any location including in the cloud. Various types of storage
include spinning magnetic drives and solid-state storage
drives.

[0159] The computing system 1500 may connect to other
computing systems in the performance of a software project.
For instance, the computing system 1500 may send and
receive data from 3’7 party services such as Office 365 and
Adobe. Similarly, users may access the computing system
1500 via a cloud gateway 1530. For instance, a user on a
separate computing system may connect to the computing
system 1500 to access data, interact with the run entities 108,
and even use 3" party services 1525 via the cloud gateway.

Oct. 10, 2024

[0160] Many variations may be made to the embodiments
of the software project described herein. All variations,
including combinations of variations, are intended to be
included within the scope of this disclosure. The description
of the embodiments herein can be practiced in many ways.
Any terminology used herein should not be construed as
restricting the features or aspects of the disclosed subject
matter. The scope should instead be construed in accordance
with the appended claims.

1. A method for developing device applications, the
method comprising:

receiving a set of features of a first device application;

determining one or more subsets of the set of features,

each subset is capable of operating independently of
other subsets in the first device application;
determining a production time for each subset; and

for each subset, tasking a developer to complete the subset

at a time based on the production time.

2. The method of claim 1, further comprising determining
internal dependencies for each subset; and

wherein the production time is determined based on the

internal dependencies.

3. The method of claim 1, further comprising determining
a difficulty of developing each feature of the set of features;
and

wherein tasking the developer comprises correlating an

expertise of the developer to the difficulty.

4. The method of claim 3, wherein the expertise of the
developer is determined by an automated evaluation, the
automated evaluation comprising:

determining a score for the developer;

assigning, to the developer, a job based on a machine

readable specification, the machine readable specifica-
tion comprising one or more jobs that are completable
by the developer; and

receiving a completed job based on one of the one or more

jobs; and

updating the score based on an assessment of the com-

pleted job.

5. The method of claim 4, wherein the score is a classi-
fication that corresponds to a classification of the job.

6. The method of claim 5, further comprising determining
the classification of the job based on the machine readable
specification.

7. The method of claim 1, wherein tasking the developer
comprises automatically contacting, by a computer system,
the developer to communicate a job to complete the subset.

8. A computer system configured to develop a device
application, the computer system comprising:

a processor coupled to a memory, the processor config-

ured to:

receive a set of features of a first device application;

determine one or more subsets of the set of features,
each subset is capable of operating independently of
other subsets in the first device application;

determine a production time for each subset; and

for each subset, task a developer to complete the subset
at a time based on the production time.

9. The computer system of claim 8, wherein the processor
is further configured to determining internal dependencies
for each subset; and

wherein the production time is determined based on the

internal dependencies.

US 2024/0338622 Al

10. The computer system of claim 8, wherein the proces-
sor is further configured to determine a difficulty of devel-
oping each feature of the set of features; and

wherein task a developer comprises the processor config-

ured to correlate an expertise of the developer to the
difficulty.

11. The computer system of claim 10, wherein the exper-
tise of the developer is determined by an automated evalu-
ation, the automated evaluation comprising the processor
further configured to:

determine a score for the developer;

assign, to the developer, a job based on a machine

readable specification, the machine readable specifica-
tion comprising one or more jobs that are completable
by the developer; and

receive a completed job based on one of the one or more

jobs; and

update the score based on an assessment of the completed

job.

12. The computer system of claim 11, wherein the score
is a classification that corresponds to a classification of the
job.

13. The computer system of claim 12, wherein the pro-
cessor is further configured to determine the classification of
the job based on the machine readable specification.

14. The computer system of claim 8, wherein task the
developer comprises the processor being configured to auto-
matically contact the developer to communicate a job to
complete the subset.

15. A computer readable storage medium having data
stored therein representing software executable by a com-
puter, the software comprising instructions that, when
executed, cause the computer readable storage medium to
perform:

receiving a set of features of a first device application;

determining one or more subsets of the set of features,

each subset is capable of operating independently of
other subsets in the first device application;

Oct. 10, 2024

determining a production time for each subset; and

for each subset, tasking a developer to complete the subset

at a time based on the production time.

16. The computer readable storage medium of claim 15,
wherein the instructions further cause of the computer
readable storage medium to perform determining internal
dependencies for each subset; and

wherein the production time is determined based on the

internal dependencies.

17. The computer readable storage medium of claim 15,
wherein the instructions further cause of the computer
readable storage medium to perform determining a difficulty
of developing each feature of the set of features; and

wherein tasking the developer comprises correlating an

expertise of the developer to the difficulty.

18. The computer readable storage medium of claim 17,
wherein the instructions further cause of the computer
readable storage medium to perform determining a difficulty
of developing each feature of the set of features; and

wherein tasking the developer comprises correlating an

expertise of the developer to the difficulty.

19. The computer readable storage medium of claim 18,
wherein the instructions further cause of the computer
readable storage medium to perform:

determining a score for the developer;

assigning, to the developer, a job based on a machine

readable specification, the machine readable specifica-
tion comprising one or more jobs that are completable
by the developer; and

receiving a completed job based on one of the one or more

jobs; and

updating the score based on an assessment of the com-

pleted job.

20. The computer readable storage medium of claim 19,
wherein the score is a classification that corresponds to a
classification of the job.

#* #* #* #* #*

