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(57) ABSTRACT

Methods and systems for obstructive sleep apnea diagnosis
and prediction are disclosed. The methods and systems
include: obtaining a white noise contaminated sensor signal
for a patient; extracting a feature based on the white noise
contaminated sensor signal; determining a matrix based on
the feature; determining an intermittent forcing signal based
on the matrix; determining an overcomplete representation
of the intermittent forcing signal; and generating an obstruc-
tive sleep apnea indication based on the overcomplete
representation and a threshold. Other aspects, embodiments,
and features are also claimed and described.
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214 ~N
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220 ~
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FIG. 2



Patent Application Publication  Sep. 26, 2024 Sheet 3 of 17 US 2024/0315641 A1

s
=

iﬁmg*imi |

%
o

R

paf of v, {4
&

=
£

g

Time {1

F1G. 3B



Patent Application Publication  Sep. 26, 2024 Sheet 4 of 17 US 2024/0315641 A1

FIG. 4




Patent Application Publication

FI1G. SA

FIG. 5B

Sep. 26,2024 Sheet 5 of 17

FI1G. 5C .

Reogsracy = 190%

US 2024/0315641 A1

FIG. 5D

o NSR=U% n=d . d line L
SN b3 L343 i o
8 g P
. i..1iSolid et SR
Ei;&#t A 4. YA ] S48
: ~ line ¥,
Socurscy = 51.8%
BE w42 it Slfghtly fattatng
et . 8 5% e o
RS
# - o
&y ¥ 8 & g
& ;
. @ '{‘3 o 5%.* g 3 .
an : st ; v i N B, 3:(2? L
RHLIOn s ‘ usaty = 57 58% . LA .
152382 » 3%, 42 54948 RE SISOV 4 racd t A?;:aroxmmzeify Hewssian
Wi s - -
% - |
. 3 ; T
el = i § & o
i A :
. » % ¢ st b :
2 # ¥, wid® gt ', w0y 48T B wAR
} 3 . FEEE s  r ¥
NSR = 1%, 3o LI52B 8‘%?}&'&‘% Sk Appeesnately Sanesien
8 £33 o :
3. .
&N & ;g ?g\ﬁ
% :
- R '533’$ g
4 & " ®B & &i?éi B XA _‘53 fikid
“r wie® Accurncy = U5 I8 "
L g = 55 BE% s y
et RE R I2T6%, 1 . A;:woxémmeég Gaussian
g B 8"
o . 'é"f 4
wt
¥y owe® Fovsteg Ingetive! ¥,

e aeitieces Bntiee




Patent Application Publication  Sep. 26, 2024 Sheet 6 of 17 US 2024/0315641 A1

FIG.6A  FIG.6B FIG. 6C FI1G. 6D

& = 608, Wackegy o W HE = BT A%, red Monsepmrali: Appraximately Geussisy
LA ~ wan? Ao,
5y L2 . g
A 2B &
Fig L S : ;éss
E % o ¥ & :. E gt b g :
e . X ww® o ew® 482 8 a4
T4 2 Yy 4 ¥,
o = G4, staskmsx w41 RE 2 7 AT reg Apgox’smteiy Gaussian
st soig 51 1%
"
R
& s Z 19
)
. K &3
I 3 S &
il v ¥, Yyt

o = 500N, staukmsx = 50 RE = 138.1%. v =& MRighy sepasiie
- soag® *

N SN

Righly sparshic

@& 2§00, sinckamy » 198 BE = WHER ru R

S T R win® wig®
3 T 18
5§ 5 gE

O @ o EE




Patent Application Publication  Sep. 26, 2024 Sheet 7 of 17 US 2024/0315641 A1

Solid line

AR

- Fareping Sadbes

- Poagisinig st

vf thewnhol

Tirant

FIG. 7C |

4%
Time t

FI1G. 7D

Y
3

Feowgaancy (M2
&

N,

it
23

B45 bR s fedrd ek t0s3 LA R L8 R
Thant
"""""" Fangitude speetrons
wd {5'«'3 F I G . 7 E Einear dynariing
i : IoterasiBent Syaamics
ot unuamy




Patent Application Publication  Sep. 26, 2024 Sheet 8 of 17 US 2024/0315641 A1

Dotted FIG. 8A

HNne "\ prodiction seosmey
Fragicion aceuimgy = 1§

Faruing heotivs FIG- 8B

-~ Farsing Sotive
¥-3 .
L. Solid s

) ; line i
5405 ' : B.008

A

3BE S

H
H
H
H
H
H

am : : : b R S : I i
S B8 BBE BB 483 BOe 488 4SS o 4Bd B3 &8 483 B4 GRE 48 g
T Tt
. otEd PrasficBon socurety w BEE5% w3 Freaficting scourany » B443%

£

E:
s

LT Asnplitude
LT Asepiitade

& 3 N : L : ¥ H

Seslogram ol v,

Frompuney (He

488 486 Y 488 08F B38 B8¥ ARSI R SO 2 o 5 G

&wmplinds spusinme oly, st

Ampditute spedirum af v,

24

- danigsiiude spauium
S0l frmponany
Linest dynamics:
intennitiont dynaning

4

G

it
i

i




Patent Application Publication  Sep. 26, 2024 Sheet 9 of 17

FIG. 9A

Pattent 303, DFA fesbare

FIG. 9B

Conrelation » § 8803

wanties 1T

#

st

iy,

RS
i

# %

Sk

gt

Pl

B3

S

53 G
:’;’-

& A5

29 N
i
et

Torrslation = 4 7748

A

X

Loyvetation » § 8283

P

US 2024/0315641 A1

FIG. 9C

re %, wiacksay » 7

g

e A

S8 BT § B3 BER

i,
¥

ra %, stankegax e ¥

S EST & 88 888
¥,
o

v %, wackaay » 7

SRY 481§ 88 882

¥

ot sinckmay w7

B f”’»‘*’g"."""whl g
. ,‘\, :A.:b o

*f?.



Patent Application Publication  Sep. 26, 2024 Sheet 10 of 17  US 2024/0315641 A1

FIG. 10A FIG. 10B

LA snuctutions

L84 srvdatinns

s

Anga

& 2
st ] fet s S R S - ]
Tionw finat O L N i i}
g Coreetotinn # DAL D Farsing Astive Carstation = BRI
. -
o 3
w3
;.33‘.
! g
At
% ‘
i el ity il R S0
RE T
i ®
¥ «
B g
B3 0%
Z R Zat
o =7
K £
& Y
&

T G}
Kynpitide spectram of v,




US 2024/0315641 A1

Sep. 26,2024 Sheet 11 of 17

Patent Application Publication

IL"DIA
O paegegd BUBIOLBOY LA
bt G £8% 1% Bix 4 % 3 Bx S e / i

Buipiouseigy 10
Suminyvang m

{8 paged BUEPUSBI LA

B 412 L 22 ot bt / B

s
<3
BEIROD

@
=]
1O

........ i
N Sugoseng _mm.,

,

<
HEIREDD

“
e
L

g

— Bugeusens 6
i

mﬁm&@w ﬁw&wwwﬁm@wﬁw B wwﬁw mgﬁw%@ﬁ@w ﬁﬁ@ B %&,@wg UDHEIRLGTE



Patent Application Publication  Sep. 26, 2024 Sheet 12 of 17  US 2024/0315641 A1

 Shemdate date o maithosale spslem®  Noisy slow Lorenz
Noisy fast VDP attractor ~ Noisy slow Lorenz attractor Noisy fast VDP time series ,  time series

y; \ % .......

Pilter nolse snd estisnate da /s gf"

x, Sueudits :f

Xy LU

fekar s R g . GHE S L0 808 84
Time ¥ g T3

S

{{B(BI))~ dloglor(n) ~ At
l}?‘l

; y RS
5o : i 3

 Vipdade e DRL sampiing policy
DRL model

2 fy A 0g

Seids
pros
daidt

?ﬁ,ﬁ surngling puriad

R attime§

* System srates X, and X

i Sampled - .
st points | * Condition reamber x{B{1, 1)
- of “bast™  § o« ptutual ioforreation 1B )

Fend ORL 5 o meenmmteantion eror Buepy
i opolides

. % infogos

sr{ie' e

* Sample size :

* Robustness to noise
* SINDy coefficients stability ©
* Algorithm elapsed time 7
* Sampling ime

Rewar

FIG. 12



Patent Application Publication  Sep. 26, 2024 Sheet 13 of 17  US 2024/0315641 A1

Lritie states

FIG. 13

L lapers

Lritic stutes
Layer i

s e
by 7

Héaten %

2 e
BB NS RN

Sk e s e e A Ak i e ek N A o A B % s ke e

-




Patent Application Publication

FIG. 14A

anjeA pezIfeuton
%l = UGN

T Eerorpsy

B
£
&
L2
k=
9
«
&5
2
wnd
o

reedy ssmpling & iRandomized brute-forte suar |

f:d
=
&
£
a
£
&
Z
k)
R
b8
]
o

FIG. 14B

Sep. 26,2024 Sheet 14 of 17

FIG. 14C

Wy

SRRy

ey

SRS POTIRRLON
%00 = HEN

US 2024/0315641 A1

anfeA pazifeuon
%3170 = MBN



Patent Application Publication  Sep. 26, 2024 Sheet 15 of 17  US 2024/0315641 A1

"Fast” VDP system "Slow™ VDP sysiem
FI1G. 15A FIG 15B

NSR = 0%

NSR=0.1%

1%

P

NSR

§ = intinipoint > RBFS samples  * Rlsbased sampias§




US 2024/0315641 A1

Sep. 26,2024 Sheet 16 of 17

Patent Application Publication

SIYRA pazgge&}m

SEA POTHRLLION

= HEBN

KRS

HEN

o
R

RIOD

VoI "OId

SRA PIZHRLILION

%0 = HEN



Patent Application Publication  Sep. 26, 2024 Sheet 17 of 17  US 2024/0315641 A1

NER = 0%

NSR = 1%

NER = 0.1%

"Fast” VDP system "Slow” VDP system
FIG. 17A FIG. 17B

2 4 8 3 2 3 A0 o 14

40 8

§ % initialpoint » RBFSaamples * Ri-based sampiasiﬁ




US 2024/0315641 Al

NOISE-ROBUST SLEEP APNEA
DIAGNOSTIC SYSTEM AND RELATED
METHOD

CROSS-REFERENCE TO RELATED
APPLICATION(S)

[0001] This application is based on, claims priority to, and
incorporates herein by reference in their entirety U.S. Pro-
visional Application Ser. No. 63/488,021, filed Mar. 2, 2023.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH

[0002] This invention was made with government support
under Award numbers U54GM128729 by the National Insti-
tute of General Medical Sciences of the National Institutes
of Health and 2119691 by the National Science Foundation.
The government has certain rights in the invention.

BACKGROUND

[0003] Modeling complex systems dynamics, which
exhibit nonlinearity, chaos, intermittency, transience, and
uncertainty has become challenges in engineering and sci-
ence. Among these behaviors, intermittency is one of com-
mon phenomena observed in many complex processes
including pathophysiological processes. Intermittent
dynamics have been observed in neuromuscular events in
tremor, beta-oscillation synchronization events in Parkin-
son’s disease, and obstruction of the posterior nasopharynx
in obstructive sleep apnea. Although intermittency has been
widely observed, the modeling and analysis of such behav-
iors have been not well-investigated in complex nonlinear
systems with high-dimensional and nonlinear coupled
dynamic physiological systems. As the demand for treating
physiological obstruction (e.g., obstructive sleep apnea)
continues to increase, research and development continue to
advance obstructive sleep apnea detection and prediction
technologies.

SUMMARY

[0004] The following presents a simplified summary of
one or more aspects of the present disclosure, to provide a
basic understanding of such aspects. This summary is not an
extensive overview of all contemplated features of the
disclosure and is intended neither to identify key or critical
elements of all aspects of the disclosure nor to delineate the
scope of any or all aspects of the disclosure. Its sole purpose
is to present some concepts of one or more aspects of the
disclosure in a simplified form as a prelude to the more
detailed description that is presented later.

[0005] Insome aspects of the present disclosure, methods,
systems, and apparatus for obstructive sleep apnea diagnosis
are disclosed. These methods, systems, and apparatus for
agricultural monitoring may include steps or components
for: obtaining a white noise contaminated sensor signal for
a patient: extracting a feature based on the white noise
contaminated sensor signal: determining a matrix based on
the feature: determining an intermittent forcing signal based
on the matrix: determining an overcomplete representation
of the intermittent forcing signal; and generating an obstruc-
tive sleep apnea indication based on the overcomplete
representation and a threshold.

[0006] These and other aspects of the disclosure will
become more fully understood upon a review of the draw-
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ings and the detailed description, which follows. Other
aspects, features, and embodiments of the present disclosure
will become apparent to those skilled in the art, upon
reviewing the following description of specific, example
embodiments of the present disclosure in conjunction with
the accompanying figures. While features of the present
disclosure may be discussed relative to certain embodiments
and figures below, all embodiments of the present disclosure
can include one or more of the advantageous features
discussed herein. In other words, while one or more embodi-
ments may be discussed as having certain advantageous
features, one or more of such features may also be used in
accordance with the various embodiments of the disclosure
discussed herein. Similarly, while example embodiments
may be discussed below as devices, systems, or methods
embodiments it should be understood that such example
embodiments can be implemented in various devices, sys-
tems, and methods.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] FIG. 1 is a block diagram conceptually illustrating
a system for obstructive sleep apnea diagnosis according to
some embodiments.

[0008] FIG. 2 is a flow diagram illustrating an example
process for obstructive sleep apnea diagnosis according to
some embodiments.

[0009] FIGS. 3A and 3B illustrate examples of statistics of
intermittent phases and chaotic bursts, respectively accord-
ing to some embodiments.

[0010] FIG. 4 is a block diagram of an example process for
obstructive sleep apnea diagnosis according to some
embodiments.

[0011] FIGS. 5A-5D illustrate an embedded attractor
(FIG. 5A), a reconstructed attractor (FIG. 5B), a lobe
switching prediction (FIG. 5C), and a forcing distribution
(FIG. 5D) of an example noise-induced Lorenz system with
different noise levels according to some embodiments.
[0012] FIGS. 5A-5D illustrate an embedded attractor
(FIG. 6A), a reconstructed attractor (FIG. 6B), non-linear
regions (FIG. 6C), and a forcing distribution (FIG. 6D) of an
example noisy Lorenz system with different sampling peri-
ods according to some embodiments.

[0013] FIGS. 7A-7E illustrate an example Hankel Alter-
native View Of Koopman (HAVOK) analysis and Intermit-
tency analysis for noise-free chaotic Lorenz system. FIG. 7A
shows a time series coded by intermittent forcing, FIG. 7B
shows a Lobe switching prediction, FIG. 7C shows a wave-
let coefficients amplitude, FIG. 7D shows a magnitude
scalogram, and FIG. 7E shows a single-sided amplitude
spectrum.

[0014] FIGS. 8A and 8B show Hankel Alternative View
Of Koopman (HAVOK) analysis and intermittency analysis
for the noisy Lorenz system at 2 different noise to signal
ratio values (1% for FIG. 8A and 10% for FIG. 8B).
[0015] FIG. 9A shows an embedded attractor by obstruc-
tive sleep apnea annotation. FIG. 9B shows an embedded
attractor by active forcing. FIG. 9C shows a forcing distri-
bution.

[0016] FIGS. 10A and 10B show HAVOK analysis and
intermittency analysis for two different patients.

[0017] FIG. 11 shows correlation between the obstructive
sleep apnea (OSA) annotations scored by an expert and by
the intermittent forcing in OSA patients.
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[0018] FIG. 12 shows a schematic diagram of an example
Deep Reinforcement Learning (DRL) framework for opti-
mal sampling strategy according to some embodiments.
[0019] FIG. 13 shows a schematic neural network archi-
tecture according to some embodiments.

[0020] FIGS. 14A-14C shows comparative analysis of
different sampling strategies with a noise-free scenario in
FIG. 14A, low noise conditions in FIG. 14B, and moderate
noise conditions in FIG. 14C.

[0021] FIGS. 15A-15F show visualization of samples
obtained from an example sampling strategy, where FIGS.
15A, 15C, and 15E depict the samples for the fast Van der
Pol (VDP) system under noise to signal ratio (NSR) settings
of 0%, 0.1%, and 1%, respectively while FIGS. 15B, 15D,
and 15F depict the samples for the slow VDP system under
NSR settings of 0%, 0.1%, and 1% respectively.

[0022] FIGS. 16A-16C shows comparative analysis of
different sampling strategies with a noise-free scenario in
FIG. 16A, low noise conditions in FIG. 16B, and moderate
noise conditions in FIG. 16C.

[0023] FIGS. 17A-17F show visualization of samples
obtained from an example sampling strategy, where FIGS.
17A, 17C, and 157E depict the samples for the fast Van der
Pol (VDP) system under noise to signal ratio (NSR) settings
of 0%, 0.1%, and 1%, respectively while FIGS. 17B, 17D,
and 17F depict the samples for the slow VDP system under
NSR settings of 0%, 0.1%, and 1% respectively.

DETAILED DESCRIPTION

[0024] The detailed description set forth below in connec-
tion with the appended drawings is intended as a description
of various configurations and is not intended to represent the
only configurations in which the subject matter described
herein may be practiced. The detailed description includes
specific details to provide a thorough understanding of
various embodiments of the present disclosure. However, it
will be apparent to those skilled in the art that the various
features, concepts and embodiments described herein may
be implemented and practiced without these specific details.
In some instances, well-known structures and components
are shown in block diagram form to avoid obscuring such
concepts.

[0025] Intermittency is defined as the erratic alternations
between periodic (i.e., regular and laminar) dynamics and
chaotic (i.e., irregular and turbulent), commonly character-
ized by short bursts in the signal. Intermittency also exists in
the other form of chaotic dynamics called crisis-induced
intermittency. However, the study of intermittent dynamics
is considerably challenging. Bifurcation analysis from the
governing equations is the classical approach to studying the
system behaviors as the parameters are perturbed. However,
there are increasing numbers of complex systems for which
abundant measurement data exists from sensors but the
underlying parameterized governing equations are
unknown. Hence, an interpretable data-driven method that
accurately models the intermittent dynamics of high-dimen-
sional complex systems with unknown governing equations
is needed. In the disclosed process, obstructive sleep apnea
having the intermittent dynamics is analyzed using a data-
driven model. DETAIL. AND BENEFIT

Example Obstructive Sleep Apnea Diagnostic System

[0026] FIG. 1 shows a block diagram illustrating a system
for obstructive sleep apnea diagnosis according to some
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embodiments. In some examples, a computing device 110
can obtain or receive a sensor signal 102 for a patient and
process the sensor signal 102 to generate an obstructive
sleep apnea indication 140.

[0027] The sensor signal 102 can include a raw sensor
signal or a white-noise contaminated sensor signal. In some
examples, the sensor signal 102 can include an electrocar-
diogram (ECG or EKG) signal produced by an electrocar-
diogram sensor. In some examples, the ECG sensor mea-
sures the electrical activity of the heart through repeated
cardiac cycles. In some examples, the sensor signal 102 may
be an electrogram of the heart which is a graph of voltage
versus time of the electrical activity of the heart using
electrodes placed on suitable places on the body of the
patient 104. In further examples, the sensor signal 102 can
be an white noise contaminated sensor signal where white
noise is added to the raw sensor signal. In other examples,
the sensor signal can be produced by any other suitable
sensor (e.g., heart sound sensor, vibrator, smart wrist band,
smart ankle band, an accelerometer, a gyroscope, an inertial
measurement unit (IMU) device, any other suitable sensors).
The computing device 110 can receive the sensor signal 102,
which is stored in a database, via communication network
130 and communications system 118 of computing device
110. For example, the sensor signal 102 can be a signal from
a wireless signal acquisition board on the patient’s body 104,
which acquire signals from ECG electrodes, a heart sound
sensor, a vibrator, and/or any other suitable sensor.

[0028] The computing device 110 can include a processor
112, a memory 114, a display 116, a communications system
118, and/or an input 120 to process the sensor signal 102 to
produce the obstructive sleep apnea indication. In some
embodiments, the processor 112 can be any suitable hard-
ware processor or combination of processors, such as a
central processing unit (CPU), a graphics processing unit
(GPU), an application specific integrated circuit (ASIC), a
field-programmable gate array (FPGA), a digital signal
processor (DSP), a microcontroller (MCU), etc.

[0029] The memory 114 can include any suitable storage
device or devices that can be used to store suitable data (e.g.,
sensor signal, obstructive sleep apnea indication, etc.) and
instructions that can be used, for example, by the processor
112 to obtain a white noise contaminated sensor signal for a
patient, extract a feature based on the white noise contami-
nated sensor signal, determine a matrix based on the feature,
determine an intermittent forcing signal based on the matrix,
determine an overcomplete representation of the intermittent
forcing signal, generate an obstructive sleep apnea indica-
tion based on the overcomplete representation and a thresh-
old, receive a sensor signal, add white noise in the sensor
signal for the white noise contaminated sensor signal, deter-
mine a level of the white noise to make the intermittent
forcing signal a Gaussian distribution, determine a burst
duration and an inter-burst duration between two adjacent
burst durations, determine an obstructive sleep apnea char-
acteristic for the patient based on the burst duration and the
inter-burst duration, determine multi-scale system dynam-
ics, and adaptively sample the sensor signal based on the
multi-scale system dynamics for the white noise contami-
nated sensor signal. The memory 114 can include any
suitable volatile memory, non-volatile memory, storage, or
any suitable combination thereof. For example, memory 114
can include random access memory (RAM), read-only
memory (ROM), -electronically-erasable programmable
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read-only memory (EEPROM), one or more flash drives,
one or more hard disks, one or more solid state drives, one
or more optical drives, etc. In some embodiments, the
processor 112 can execute at least a portion of process 200
described below in connection with FIG. 2.

[0030] The communications system 118 can include any
suitable hardware, firmware, and/or software for communi-
cating information over communication network 130 and/or
any other suitable communication networks. For example,
communications system 118 can include one or more trans-
ceivers, one or more communication chips and/or chip sets,
etc. In a more particular example, communications system
118 can include hardware, firmware and/or software that can
be used to establish a Wi-Fi connection, a Bluetooth con-
nection, a cellular connection, an Ethernet connection, etc.
[0031] In some examples, the computing device 110 can
receive or transmit information (e.g., the sensor signal 102,
the obstructive sleep apnea indication 140, etc.) and/or any
other suitable system over a communication network 130. In
some examples, the communication network 130 can be any
suitable communication network or combination of commu-
nication networks. For example, the communication net-
work 130 can include a Wi-Fi network (which can include
one or more wireless routers, one or more switches, etc.), a
peer-to-peer network (e.g., a Bluetooth network), a cellular
network (e.g., a 3G network, a 4G network, a 5G network,
etc., complying with any suitable standard, such as CDMA,
GSM, LTE, LTE Advanced, NR, etc.), a wired network, etc.
In some embodiments, communication network 130 can be
a local area network, a wide area network, a public network
(e.g., the Internet), a private or semi-private network (e.g., a
corporate or university intranet), any other suitable type of
network, or any suitable combination of networks. Commu-
nications links shown in FIG. 1 can each be any suitable
communications link or combination of communications
links, such as wired links, fiber optic links, Wi-Fi links,
Bluetooth links, cellular links, etc.

[0032] The display 116 can include any suitable display
devices, such as a computer monitor, a touchscreen, a
television, an infotainment screen, etc. to display the report,
the obstructive sleep apnea activity indication 140, or any
suitable result of obstructive sleep apnea detection or pre-
diction. The input 120 can include any suitable input devices
(e.g., a keyboard, a mouse, a touchscreen, a microphone,
etc.) and/or a sensor that can produce the sensor signal.
[0033] In some examples, the computing device 110 can
output a conductive thread (e.g., to a controllable oral
appliance, a controllable bed to adjust a body position of the
patient 104, an adaptive control CPAP (Continuous Positive
Airway Pressure). Thus, based on the obstructive sleep
apnea indication 140, the computing device 110 can provide
a control of any other suitable apparatus to correct the
obstructive sleep apnea or hypopnea.

Example Obstructive Sleep Apnea Diagnosis Process

[0034] FIG. 2 is a flow diagram illustrating an example
process 200 for obstructive sleep apnea diagnosis in accor-
dance with some aspects of the present disclosure. As
described below; a particular implementation can omit some
or all illustrated features/steps, may be implemented in some
embodiments in a different order, and may not require some
illustrated features to implement all embodiments. In some
examples, an apparatus (e.g., computing device 110, pro-
cessor 112 with memory 114, etc.) in connection with FIG.
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1 can be used to perform example process 200. However, it
should be appreciated that any suitable apparatus or means
for carrying out the operations or features described below
may perform process 200.

[0035] At step 212, the process 200 can obtain a white
noise contaminated sensor signal for a patient. The white
noise contaminated sensor signal can include an electrocar-
diogram (ECG) signal. In some examples, the process can
record the ECG signal for the patient from 7 hours to 10
hours to diagnose the obstructive sleep apnea. In further
examples, the white noise contaminated sensor signal can
include any other sensor signal detecting any intermittency.
The white noise can be artificially induced white noise or
natural noise in the raw sensor signal. For example, to obtain
the white noise contaminated sensor signal, the process 200
can receive a sensor signal (e.g., raw ECG sensor signal) and
add white noise in the sensor signal for the white noise
contaminated sensor signal. In some examples, the process
200 can further determine a level of the white noise to make
an intermittent forcing signal (e.g., determined at step 218 of
the process 200 below) a Gaussian distribution. For
example, the process can determine the level of the white
noise to be 0.1%, 1%, 10%, 50%, or any suitable level of a
noise-to-signal ratio (NSR). In further examples, the white
noise can be naturally included noise in the raw sensor
signal. In such examples, the white noise contaminated
sensor signal can be raw sensor signal with minimally
performing a pre-processing step to reduce noise. Even with
the minimal pre-processing, the process 200 can provide a
reliable and accurate diagnosis and prediction of obstructive
sleep apnea. In addition, due to the noise-robust process 200,
the process 200 can reduce the time to provide or provide in
near real-time the obstructive sleep diagnosis. Alternatively
or additionally, the process 200 can perform a signal pro-
cessing on the raw sensor signal (e.g., the ECG signal). For
example, a bandpass filter (e.g., a 5th order Butterworth
0.5-30 Hz bandpass filter) can be applied to the signal to
eliminate noise and baseline wandering. However, any other
suitable preprocessing can be performed to facilitate the
analysis of the intermittency of the sensor signal. In some
examples, the addition of white noise, which can be either
artificially induced or naturally present in the raw sensor
signal, helps in replicating real-world scenarios where sen-
sor data is often contaminated with various kinds of noise.
This approach enhances the robustness and reliability of the
diagnosis and prediction process for obstructive sleep apnea,
as it prepares the system to handle real-world, noisy data
effectively.

[0036] In other examples, the process 200 can receive the
white noise contaminated sensor signal over the communi-
cation network 130. For example, the process 200 can
receive the white noise contaminated sensor signal from a
database (e.g., the Apnea-ECG Database) over the commu-
nication network 130. Further, the process 200 can receive
the white noise contaminated sensor signal from any other
suitable source (e.g., a personal device of the patient, a
computing device for a physician, a sensor having the
computing and information transmission capability, etc.).

[0037] At step 214, the process 200 can extract a feature
based on the white noise contaminated sensor signal. For
example, the feature can include a heart rate variability
(VAR) feature to quantify time intervals between adjacent
heartbeats. Thus, the feature can quantify the fluctuation in
the time intervals between adjacent heartbeats, which arise
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from the neurocardiac functions, the heart-brain interac-
tions, and dynamic non-linear autonomic nervous system
(ANS) processes. For example, the feature can include, but
is not limited to, approximate entropy (ApEn), sample
entropy (SampEn), detrended fluctuation analysis (DFA), a
Poincaré plot standard deviation perpendicular the line of
identity (SD1), a Poincaré plot standard deviation along the
line of identity (SD2), an area of the ellipse which represents
total heart rate variability (S), a correlation dimension (D,),
a triangular index (TRI), etc. In some examples, the feature
can be more than one feature. For example, the process can
extract a set of multiple features (e.g., 18 features or any
other suitable features). In such examples, the process can
select the most appropriate feature among the multiple
features for the subsequent step (e.g., the step 216 of the
process 200). For example, the most appropriate feature can
be predetermined based on the strongest correlation between
the active forcing and hypopnea-apnea events. The most
appropriate feature can be predetermined for all patients or
determined based on each patient based on the medical
record or any other suitable information of the respective
patient. For example, the most appropriate feature for some
patients can be DFA while the most appropriate feature for
other patients can be TRL. In some examples, the most
suitable HRV feature can be the one the shows the strongest
correlation with the active forcing and hypopnea or apnea
events. This means identifying which HRV metrics most
accurately reflect the fluctuations in heart rate that are
associated with these respiratory events. In further
examples, the selection can be tailored based on individual
patient data. This implies that the most appropriate HRV
feature might vary from one patient to another, depending on
their medical history or specific characteristics of their heart
rate patterns. For some patients, a feature like DFA (De-
trended Fluctuation Analysis) might be more relevant, while
for others, TRI (Triangular Index) could be more appropri-
ate. Clustering algorithm is be used to determine the patient
group. The feature can include quantified spectral energy
and nonlinear patterns of the white noise contaminated
sensor signal. In some examples, the sliding window length
can be selected to be a predetermined time period (e.g., one
minute or any other suitable time period).

[0038] Atstep 216, the process 200 can determine a matrix
based on the feature. For example, the matrix can include a
Hankel matrix ( ¢ ) reconstructed from the extracted feature
(z(t)). The matrix can include a window length of the feature
(i.e., p) and a number of points in a trajectory of the feature
(i-e., q). Thus, the matrix ( #¢ ) can have the size of qxp from
the extracted feature, where g=N—p+1, N is the length of the
feature time series, and p is the window length. In some
examples, the g value can be chosen such that the maximum
periodicity of the underlying dynamics can be captured.
[0039] For example, the extracted feature can be denoted
as {z(t,)},_,”, where t, is a sampling time points. Next, the
eigen-time-delay coordinates can be computed from {z(t;)
}._,7 by taking the singular value decomposition (SVD) of
the Hankel matrix #¢ or the trajectory matrix p in singular
spectrum analysis (SSA) as:

) A . 2y
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where q is the number of points in the trajectory and p is the
window length. The window length, p, can determine the
extent to which a refined decomposition is obtained into
basic components and therefore improve the separability of
the dynamics. In other words, the window length p can
define the longest dynamics periodicity captured by the
Hankel matrix in the Hankel Alternative View Of Koopman
(HAVOK) model. The columns U and V can be arranged
hierarchically corresponding to the descending order of
singular values in ¥. [n addition, # often admits a low-rank
approximation by the truncation of the first r columns of U
and V. The low-rank approximation to 3£ can give rise to a
measurement subspace that is approximately invariant to
7 - Consequently, the matrix can be rewritten with the
Koopman operator ¢ :

z2)  Kzt) ... KPlz(n)
gi=| 0 sz(m o K
KT z(n) Kz(n) ... KT lz@)

The columns and rows of #¢ are well-approximated by the
first r truncated columns and rows of U and V respectively,
which are called an eigen time series, providing a Koopman-
invariant measurement system.

[0040] At step 218, the process 200 can determine an
intermittent forcing signal based on the matrix. For example,
the process 200 can determine the intermittent forcing signal
(i.e., v,(t)), which is in eigen time-delay coordinates, by
decomposing the matrix. In some examples, the process 200
can determine a hard threshold (i.e., Vr2 threshold), which
can be applied to the intermittent forcing signal to determine
an obstructive sleep apnea indication. This v, thresholding
approach can be useful and effective when the sensor signal
is without noise (i.e., 0% of NSR) or with minimal noise.

[0041] In some examples, the rows of V can be considered
as a set of coordinates to construct a linear dynamical
system. However, a linear model cannot fully capture mul-
tiple fixed points, periodic orbits, and the unpredictable
chaos with a positive Lyapunov exponent. To overcomie, a
forced linear system has been proposed after applying the
dynamic mode decomposition (DMD) algorithm to the delay
coordinates and obtaining an excellent linear fit for the first
r—1 variables but a bad fit for v,. Particularly, the connection
between the eigentime-delay coordinates and the Koopman
operator, g¢ , shown above induce a linear regression model,
in which a linear model is built on the first r—1 variables in
V and consider v, as an intermittent forcing signal or term as
follows:

v v
d v o n dl | e ™
dtv([) =Av(t)+ Bv,. (1) = - = [ 0 0] H R
V-1 V-1
vy vy
where v=[v; vy ... v,;]¥

is a vector of the first r—1 eigen time-delay coordinates. In
principle, the eigen time-delay variables can be separated
into r—s high-energy modes for the linear model and s
low-energy intermittent forcing modes if v,(t) may not
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sufficient to model the intermittent forcing. The partition of
nonlinear dynamics into deterministic linear dynamics and
chaotic dynamics was proposed. The truncated rank, r, can
be estimated by the optimal hard threshold for singular
values. The HAVOK model extends the dynamics splitting
concept to fully chaotic systems, in which the Koopman
operators have continuous spectra. The matrices A and B can
be estimated as follows:

>

W@ v(q-n] /_[vm N v(’:’)]
BT (o IR RYC IR R |
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T
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V', is the 1-step time advanced eigen time-delay coordinates
of V,. These matrices, V, and V',, are related by a best-fit
linear operator, .4 , that minimizes the Frobenius norm error
V' = A V| and V,T is the pseudo-inverse computed via
the SVD of V,. The estimates a and b are considered a bad
fit for v, and approximate to zero. For complex systems of
relatively large dimension, operator .4 is also large; there-
fore, the DMD method or more advanced methods (e.g., the
sparse identification of nonlinear dynamical systems
(SINDy) method can be applied to consider only the leading
eigen-decomposition of A4 .

[0042] In some examples, the process 200 can determine
a burst duration and an inter-burst duration between two
adjacent burst durations. For example, the two adjacent burst
durations can include a first burst duration (e.g., which is a
prior burst duration in time) and a second burst duration
(e.g., which is a subsequent burst duration in time). Thus, the
inter-burst duration can include a duration between an end
time of the first burst duration and a starting time of the
second burst duration. The process 200 can determine an
obstructive sleep apnea characteristic for the patient based
on the burst duration and the inter-burst duration. For
example, a burst represents a period of abnormal respiratory
activity or other physiological changes indicative of obstruc-
tive sleep apnea events. By calculating the start and end
times of these bursts, the process can precisely identify when
these abnormal events occur. The duration of these bursts
and the time intervals between them (inter-burst duration)
can provide insight into the severity and frequency of apnea
events. Longer bursts or shorter inter-burst durations may
indicate more severe apnea. In other examples, the burst-
related time and duration can be separately calculated based
on the CWT threshold. The burst-related times and durations
determined by each method could differ based on their
respective abnormal respiratory activity or other physiologi-
cal changes they capture and sensitivity to signal variations.

[0043] HAVOK analysis can be applied to many nonlinear
dynamical systems including analytical systems, stochastic
magnetic field reversal, and real-world systems. The distri-
bution of the intermittent forcing v,(t) in those examples was
shown to be nearly symmetric with fat tails, i.e., the distri-
butions are non-Gaussian. The distribution of the burst
durations can be denoted as T, (k)€ (0,00), with k=1, ..., N,
as the burst index. First, a hard threshold for detecting the
active forcing (i.e., intermittent bursts) is selected such that
if v, 2()>ymax{v,*(1)It=0} then the forcing is active, where
iis a tuning parameter. The y parameter can be adjusted to
achieve the best alignment with the intermittent behaviors of
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the system, e.g., lobe switching in the chaotic Lorenz system
or disease onsets in pathophysiological processes. However,
the statistics of the intermittent forcing are not adequate to
characterize the mode switching of nonlinear dynamics and
the fat-tailed non-Gaussian distribution originated from
high-frequency bursts and rarely observed intermittent
switching events. Therefore, additional statistics can be
defined to better characterize the intermittent phases and
chaotic bursts: the starting and ending time of the bursts as
t,(k) and t (k) and the burst duration as T,(k): =t (k)—t (k).
Next, the inter-burst duration can be defined as T,,=t,
(K)—t(k—-1) for k=2, . .. . N,.

[0044] These statistics of intermittent phases and chaotic
bursts are illustrated in FIGS. 3A and 3B, respectively. FIG.
3A shows the long-tail non-Gaussian distribution of the
forcing term v,(t) for the Lorenz system. FIG. 3B illustrates
the estimation of burst duration, T, and inter-burst duration,
T, in v,(t), where t; (k) and t (k) are the starting time and
ending time of the bursts. In some examples, the long-tail
non-Gaussian distribution of the intermittent forcing signal
can be shown when noise of the sensor signal is removed
(i.e., NSR=0%). On the other hand, when the white noise is
added for the NSR of the sensor signal to be 1%, 10%, or
even 50%, the intermittent forcing signal may have an
approximate Gaussian distribution.

[0045] At step 220, the process 200 can determine an
overcomplete representation of the intermittent forcing sig-
nal. For example, the overcomplete representation is deter-
mined by applying a continuous wavelet transform to the
intermittent forcing signal. In some examples, the continu-
ous wavelet transform can be defined as:

1 i _(t—-b
Xwla, b) = Izzl_”z[m v,(t)zﬁ(T)dt,

[0046] where X, is the continuous wavelet transform
(CWT), (t) is a continnous mother wavelet function and v is
a complex conjugate, a is a scale, b is a translational value,
and v,(t) is the intermittent forcing signal. An objective of
the mother wavelet is to provide a function to generate the
translated and scaled versions (called “daughter” wavelets)
of the mother wavelet.

[0047] In some examples, for displaying the results of the
CWT, the scalogram can be used to represent the absolute
value of the CWT of a signal, which is plotted as a function
of frequency and time. For the intermittency analysis, the
scalogram representation is well suited to analyze the inter-
mittent forcing v,(t) that occurs at different frequency scales.
The scalogram computes the modulus of CWT coefficients
(i.e.. IX,, 1), and time-localization can be obtained for short-
duration, high-frequency burst events, and better separate
them from low-frequency components and longer-duration
events. To determine the active forcing, the threshold (e.g.,
a hard threshold) can be defined as X, (a, b)l2 Yepr
max|X, (a, b)l, where Y.+ is a tuning parameter. For
example, a hard threshold is defined such that if 1X (a*,
b)2y oy maxiX, (a*, b)l then the forcing is active, where
Wy and a* are the tuning parameter and the optimal scale
to achieve the highest forcing prediction accuracy. In other
examples, the threshold can be dynamic and adjusted for
each patient based on the patient’s data (e.g., body mass
index (BMI), circumference of the neck, etc.).
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[0048] At step 222, the process 200 can generate an
obstructive sleep apnea indication based on the overcom-
plete representation and a threshold. For example, the
obstructive sleep apnea indication can be a binary indication
indicative of normal breathing or disordered breathing. In
some examples, the binary indication can be determined
based on a threshold number of apneas per hour. In further
examples, the obstructive sleep apnea indication can further
include a number of apneas or hypopneas per hour, an
average duration of apneas or hypopneas, a severity level of
apneas or hypopneas, or any other suitable indication.
[0049] In some examples, the process 200 can predict the
obstructive sleep apnea. For example, although the obstruc-
tive sleep apnea indication may indicate normal breathing,
the number of apneas or hypopneas per hour can be lower
that the threshold to be disordered breathing but higher than
a second threshold to be potential disordered breathing. In
further examples, the CWT threshold can have two thresh-
olds where a first CWT threshold is for the disorder breath-
ing and a second CWT threshold is for a potential disordered
breathing. In other examples, the process 200 can predict the
obstructive sleep apnea by determining the obstructive sleep
apnea indication several times for a certain period of time.
For example, if the number of apneas or hypopneas per hour
to be disordered breathing is five, the patient had two apneas
per hour two months ago and had four apneas per hour a
week ago. In such examples, the obstructive sleep apnea
indication may indicate normal breathing. However, the
process 200 can indicate that the patient is likely to expe-
rience disordered breathing within two months.

[0050] In some examples, the obstructive sleep apnea can
be predicted by applying dual CWT thresholds, analyzing
patterns with normal indications, or longitudinal monitoring.
In some examples, the obstructive sleep apnea can be
predicted by applying dual CWT thresholds. For example,
the CWT (Continuous Wavelet Transform) method can be
used with two thresholds. The first threshold identifies
disordered breathing (indicative of OSA), while the second,
possibly lower threshold, marks potential disordered breath-
ing. This allows for the identification of patients who are on
the borderline of developing OSA. Thus, the dual CWT
thresholds can differentiate between sleep disorder and
potential disorder. Also, for patients whose apnea/hypopnea
frequency is above the lower threshold but below the higher
threshold, there is an indication of potential disordered
breathing. This can serve as an early warning, suggesting a
need for closer monitoring or preventive measures.

[0051] In further examples, the obstructive sleep apnea
can be predicted by analyzing patterns despite normal indi-
cations. For example, in cases where the obstructive sleep
apnea indication may show normal breathing, but there is a
consistent presence of apneas or hypopneas (though below
the threshold for disordered breathing), the process can
predict a likelihood of developing OSA. This is particularly
relevant for patients whose apnea/hypopnea frequency is on
an upward trajectory.

[0052] In other examples, the obstructive sleep apnea can
be predicted by longitudinal monitoring. For example, pre-
dictions can be made by analyzing the obstructive sleep
apnea indications repeatedly over a certain period. This
longitudinal approach helps in understanding the progres-
sion of the condition and can indicate an increasing likeli-
hood of developing OSA. Also, the process might also
integrate various other physiological indicators (like heart
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rate variability, oxygen saturation levels, etc.) along with
apnea/hypopnea frequency to make a more comprehensive
prediction.

[0053] Insome examples, process 200 can further provide
a notification or report including the obstructive sleep apnea
indication to the patient. For example, when the obstructive
sleep apnea indication is indicative of disordered breathing,
the process 200 can provide a notification to a healthcare
provider or a hospital. In further examples, when the sever-
ity level of the obstructive sleep apnea indication is worse
than a predetermined level or the duration of the intermit-
tency is longer than a predetermined time period, the process
200 can provide a notification to the patient and/or a
notification to a healthcare provider or a hospital.

[0054] FIG. 4 is a block diagram summarizing the
example process 200 for obstructive sleep apnea diagnosis.
The first step is to perform the HAVOK analysis including
two sub-steps: (1) state space reconstruction (see steps
212-216 of the process 200) and (2) forced linear dynamical
system representation (see step 218 of the process 200). In
particular, a state space is reconstructed from the Hankel
matrix to obtain eigen time-delay coordinates using the
physiological measurement time series z(t). Consequently, a
forced linear system using the eigen coordinates was built to
model the linear and chaotic intermittent dynamics. The
second step is to perform the intermittency analysis, which
includes two steps: (1) intermittent phases and chaotic bursts
analysis (see step 218 of the process 200) and (2) spectral
analysis and wavelet analysis of the intermittent forcing
component (see steps 220 and 222 of the process 200).

Example Noise-Robust Obstructive Sleep Apnea Diagnostic
Data

[0055] In this section, the numerical validation of the
proposed methods is presented on a typical analytical cha-
otic system, the Lorenz system. The results for the validation
include the measure of sensitivity of the Lorenz lobe switch-
ing prediction accuracy to the noise level and sampling
period, and the intermittency analysis using the v, thresh-
olding from the HAVOK analysis and the CWT threshold-
ing. Subsequently, the implementation of the methods is
demonstrated for the OSA example.

[0056] Numerical validation on a noise-induced chaotic
Lorenz system: The Lorenz system was considered as a
canonical example of an analytical chaotic dynamical sys-
tem with intermittency dynamics, with the addition of
Gaussian white noise to perform the sensitivity analysis for
the HAVOK model and the disclosed intermittency analysis
methods. The governing equations for the noisy Lorenz
system are given as follows:

Knotsy = 0 (¥ = X) + Wy

Proisy = X0 =2) = y + w3

Znotsy = Xy = Pz + W,
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where w=[w, w, w_[€ R 3, w~ (0, Q). Q is the process
noise covariance matrix:
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[0057] For simplicity of the sensitivity analysis, Q=nl;
(ie., 6,°=0,’=G_*=1), in which 1, is a 3x3 identity matrix
and 1 denotes the noise level. The notion of noise to signal
ratio (NSR) can be defined as NSR=c%/p?, where p is the
signal amplitude and 6 is the time-invariant noise variance.
However, due to the dramatic change in the Lorenz state
amplitude scale and because the time series obtained by
measuring X denoted by {%.},_,™** is considered, a more
robust estimate of NSR is considered, which is:

; ]
. tsamples |’
{xk}kzl

where Med[*] is the median operator that estimates the
median of a time series and n is the number of X samples.
Next, the sensitivity analysis was performed to investigate
the uncertainty of the Lorenz lobe switching prediction
accuracy induced by the variances in the NSR and sampling
rate.

[0058] Measure of sensitivity of the Lorenz lobe switching
prediction accuracy to NSR: The dependence of the Lorenz
lobe switching prediction performance on NSR was ana-
lyzed by setting the NSR at different levels (0%, 0.1%, 1%,
10%, 50%). The sensitivity analysis results are demonstrated
in FIGS. 5A-5D. FIGS. 5A-5D illustrates an embedded
attractor (FIG. 5A), a reconstructed attractor (FIG. 5B), a
lobe switching prediction (FIG. 5C), and a forcing distribu-
tion (FIG. 5D) of an example noise-induced Lorenz system
with different noise levels (0%, 0.1%, 1%, 10%, 50%). In
FIG. 5A, the Lorenz embedded attractor reconstructed by
the first three eigen time-delay coordinates, v,, v,, and vy:
the number of rows of the Hankel matrix q=100 (.e.,
stackmax=100) is set. In FIG. 5B, the Lorenz reconstructed
attractor built from the intermittently forced linear system.
The reconstruction error (RE) and the truncated rank, r,
values are also provided: the reconstruction error is com-
puted to be the mean absolute percentage error (MAPE)
between the first eigen time-delay trajectory, v,, and the
reconstructed trajectory, ¥;. The formula is

app = 100% S| 1147 P
n k=1

Vik

In FIG. 5C, the Lorenz lobe switching prediction demon-
strated by the v, trajectory. The active intermittent forcing
corresponding to the lobe switching event is dotted lines,
and the linear dynamics or inactive forcing is represented by
the solid lines, which corresponds to the orbits around one
attractor lobe. The prediction accuracy is estimated by the
ratio of the sum of true positives and true negatives to the
total number of predictions in the test data. The true posi-
tives and negatives are the outcomes where the HAVOK
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model correctly predicts the active forcing and inactive
forcing respectively. In FIG. 5D, the v, forcing distribution,
in which fat tails correspond to rare forcing events in the
noise-free case, and the approximate Gaussian forcing dis-
tributions for the noisy Lorenz system due to white noise.

[0059] Measure of sensitivity of the Lorenz lobe switching
prediction accuracy to the sampling rate: The dependence of
the Lorenz lobe switching prediction performance on NSR
was analyzed by setting the sampling period at different
values (0.05, 0.01, 0.005, 0.001, 0.0005) with NSR=0.1%.
The sensitivity analysis results are presented in FIGS.
6A-6D. FIGS. 6A-6D show an embedded attractor, recon-
structed attractor, nonlinear regions, and forcing distribution
of the noisy Lorenz system at different sampling periods
(0.05, 0.01, 0.005, 0.001, 0.0005) with NSR=0.1%. In FIG.
6A, the Lorenz embedded attractor. The “stackmax” value
corresponds to the number of rows, g, of the Hankel matrix.
In FIG. 6B, the Lorenz reconstructed attractor, which
showed poor reconstruction errors for the first three sce-
narios (dt=0.05, 0.01, 0.005). In FIG. 6C, nonlinear regions.
The trajectories represented by the gray color correspond to
small (inactive) forcing or linear dynamics, and the trajec-
tories in red represent active forcing or nonlinear dynamics
corresponding to large forcing. The linear and nonlinear
regions are well-separated in the last three cases (dt=0.005,
0.001,0.0005). In FIG. 6D, the forcing distributions of v,,
which are fat-tailed in the last three scenarios when the
nonlinear dynamics are highly separable.

[0060] Intermittency analysis for the noisy chaotic Lorenz
system: To decompose chaos and represent chaos as an
intermittently forced linear system, the HAVOK analysis
described above was performed. The decomposition of the
Hankel matrix provides the eigen time-delay coordinates,
and a hard threshold for v,* was determined for predicting
the Lorenz lobe switching events. Afterwards, the spectral
analysis and wavelet analysis of the intermittent forcing, v,,
were implemented. The results for these steps are summa-
rized in FIGS. 7TA-7E. In FIG. 7A, the v, trajectory, in which
the active forcing is the dotted lines, and the inactive forcing
is represented by the solid lines. In FIG. 7B, the lobe
switching prediction using the v,? thresholding (r=15), the
period over which

Vi m%u)({vf(t)lt =0}, y = 0.0027
vp(Z

is considered the active forcing period. This threshold was
chosen by trial and error to optimally separate the linear and
nonlinear regions of the Lorenz attractor. In FIG. 7C, the
CWT coefficients amplitude 1X,,| at the scale f=14.54 Hz.
The frequency, f, and the hard threshold for IX,| were
chosen to yield the best lobe switching prediction accuracy,
at 97.34%. In FIG. 7D, the magnitude scalogram of the
intermittent forcing, v,, for analyzing v, at different time and
frequency scales, which showed high values of CWT coef-
ficients 1X,, | during the lobe switching events. In FIG. 7E,
the single-sided amplitude spectrum of v, that represents the
low-frequency region corresponding to linear dynamics and
the high-frequency region associated with chaotic dynamics.
The frequency that yielded the best prediction accuracy in
the CWT thresholding approach serves as the cut-off fre-
quency for the dynamics separation.
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[0061] To demonstrate the robustness of the intermittency
analysis methods for noisy complex systems, the same
procedure was applied to the noisy Lorenz system at two
different NSR values, 1% and 10%. The results are demon-
strated in FIGS. 8A and 8B. HAVOK analysis and intermit-
tency analysis for the noisy Lorenz system at 2 different
NSR values, 1% for FIG. 8A and 10% for FIG. 8B. The v,
trajectory by active forcing with dotted lines, the lobe
switching prediction using v,> and CWT thresholding, the
scalogram of v,, and the amplitude spectrum of v, for
NSR=1% and NSR=10%. As shown, the CWT thresholding
method is more robust to noise than the v, thresholding
approach: the prediction accuracy estimates using the first
method are 95.65% (NSR=1%) and 94.63% (NSR=10%) as
opposed to 88.10% (NSR=1%) and 79.82% (NSR=10%)
when using the latter method. In addition, the higher the
noise level, the lower the prediction accuracy. The scalo-
gram demonstrates the high values of CWT coefficients IX |
during the lobe switching events, indicated by green lines.
The linear and nonlinear dynamics separation in the fre-
quency spectrum is also plotted in the last row.

[0062] To characterize the intermittent dynamics, the sta-
tistics of intermittent phases and chaotic bursts can be
estimated for the Lorenz system as presented above. After
the bursts were located, the burst duration statistic was
estimated to be T,=0.4121+0.1461, and the inter-burst dura-
tion statistic was T,,=1.5757+1.4781.

[0063] Obstructive Sleep Apnea (OSA) Examples: In
some examples of the pathophysiological processes in
obstructive sleep apnea (OSA), three steps were performed:
(1) signal processing and feature extraction, (2) HAVOK
analysis using HRV features, and (3) intermittent forcing
analysis using v, 2 thresholding and CWT thresholding.
[0064] Signal processing and feature extraction: Signal
preprocessing and feature extraction were performed on the
electrocardiogram (ECG) signals. First, a 5% order Butter-
worth 0.5-30 Hz bandpass filter was applied to the signal to
eliminate noise and baseline wandering. Subsequently, the
Hamilton-Tompkins algorithm was employed to detect R
peaks and compute RR intervals. A set of 18 features was
extracted from Heart Rate Variability (HRV) Tool, an open-
source MATL AB Toolbox that quantifies the spectral energy
and nonlinear patterns of the HRV signals. Heart rate vari-
ability (HRV) features quantify the fluctuation in the time
intervals between adjacent heartbeats, which arise from the
neurocardiac functions, the heart-brain interactions, and
dynamic non-linear autonomic nervous system (ANS) pro-
cesses. Previous studies have shown that power spectral
features extracted from HRV signals are clinically signifi-
cant for obstructive sleep apnea diagnosis and prediction.
Next, the sliding window length was selected to be one
minute, corresponding to the 1-minute OSA annotations.
[0065] HAVOK Analysis for the OSA Examples: First, the
Hankel matrix, 7¢, of the size qxp was constructed from a
measurement (i.e., extracted HRV feature) time series,
where q=N-p+1, N is the length of the feature time series,
and p is the window length as described above. The q value
(i.e., “stackmax” parameter) was chosen such that the maxi-
mum periodicity of the underlying dynamics can be cap-
tured. The most appropriate HRV feature can be selected to
construct the Hankel matrix and obtain eigen-time-delay
coordinates v(t). The HAVOK analysis results for 4 repre-
sentative patients are illustrated in FIGS. 9A-9C. Embedded
attractor coded by OSA annotated by the experts and by
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predicted active forcing, and the forcing distribution of
representative patients a03, a05, a08, and al3. In FIG. 9A,
the embedded attractor coded by OSA annotations recon-
structed by the coordinates v,, v,, and v; by decomposing
the Hankel matrix obtained from a chosen HRV feature. The
feature was selected to achieve the strongest correlation
(measured by the Pearson correlation coefficient, r) between
the active forcing and hypopnea-apnea events. The
detrended fluctuation analysis (DFA) feature was chosen for
patient a03, while the TRI feature was selected for the other
3 patients. The DFA feature is a method for capturing the
statistical self-affinity of the HRV signal, which is useful for
analyzing time series that have long-memory processes,
while the TRI feature computes the triangular index from the
RR-interval histogram. In FIG. 9B, the embedded attractor
coded by active forcing. The attractor was also reconstructed
from v,, v,, and v;, and the correlation coefficient, r, was
reported for comparison. In FIG. 9C, the forcing distribu-
tions of v, (solid line) and the approximate Gaussian (dashed
line) in all 4 cases.

[0066] Intermittency analysis for the OSA Examples:
Next, spectral and wavelet analysis can be performed on v,.
The results for two representative patients, a03 and a05 are
shown in FIGS. 10A and 10B. FIGS. 10A and 10B show
HAVOK analysis and intermittency analysis for representa-
tive patients a03 and a05, respectively. For each patient, the
1-minute OSA annotations were plotted corresponding to
each 1-minute window of the ECG record. Next, the hypo-
pnea-apnea event prediction results using v, and CWT
thresholding are presented, followed by the Pearson corre-
lation between the active forcing and the 1-minute OSA
annotations. The hard thresholds applied in both methods
were determined to maximize the correlation coefficient.
Since the slow-time-scale dynamics are considered, the
characteristics of the intermittent forcing corresponding to
OSA events exhibit high-amplitude waves and low-fre-
quency bursts. The CWT coefficients amplitude 1X, | is
plotted at f=3.8 mHz and f=4.1 mHz for patients a03 and a05
respectively. The frequency, f, was chosen to yield the
strongest correlation, which is similar to the hard threshold
selection method. For both patients, the v > thresholding
method appears to perform better that the CWT thresholding
method. This result can be partially explained by the indis-
tinguishable noisy values of IX,,| that correspond to normal
breathing and OSA events depicted in the scalogram of v,.
The amplitude spectra of v,, which show that the cut-off
frequencies, f, were in the “low-energy” region, are also
provided for both patients. However, nonlinear and linear
dynamics are still not guaranteed to be separable using that
cut-off frequency because of the non-desirable correlation
coeflicient values.

[0067] To better compare the performance of v,> and CWT
thresholding approaches, the correlation between the OSA
annotations and the intermittent forcing was estimated for 22
OSA patients as shown in FIG. 11. Correlation between the
OSA annotations scored by an expert and by the intermittent
forcing in 22 OSA patients. Here, the hard threshold is
obtained for predicting the intermittent forcing using two
methods, namely v, thresholding and CWT thresholding;
the HRV features used for each approach are also given. The
correlation coeflicients estimated from the first method are
represented by the green bars, and those estimated from the
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latter are represented by the orange bars. Overall, the v,>
thresholding approach mostly outperforms the CWT thresh-
olding method.

[0068] The HAVOK analysis and the intermittent forcing
analysis were performed on 22 OSA patients. The results are
summarized in Table 1.

TABLE 1
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temporal properties of different intermittent dynamics
modes are analyzed. Further, the intermittent nonlinear
dynamics of obstructive sleep apnea (OSA) is demonstrated
as a case study.

[0071] Regarding the numerical simulation validation
results, the sensitivity of the Lorenz lobe switching predic-

Summary of the HAVOK analysis and the intermittent forcing analysis for 22
OSA patients. Here, the patient ID, their corresponding AHI, the truncated rank, r, the
energy captured by intermittent forcing v,, the burst duration T,, and the inter-burst
duration T,, can be reported. The overall statistics were estimated for each column.

T, in mins

Patient Rank v, energy (mean = T in mins
D AHI T #Cols p (%) SD) (mean = SD)
a03 39.1 1 7 61.23 14.80 = 13.50 19.36 + 16.14
a05 41 1 7 67.37 26.18 = 26.88 14.40 = 13.99
a06 24.7 1 7 48.64 27.83 = 28.80 10.45 = 7.89
a07 63 1 7 37.00 48.63 = 90.48 11.14 = 3.44
a08 42 1 7 63.56 1991 £ 1556 23.30 = 16.17
all 14 1 7 68.87 20.58 = 20.01 16.64 = 21.36
al3 42 1 7 65.02 19.08 = 21.69 16.36 = 15.93
al9 34 1 4 74.30 14.62 £ 10.99 2525 x19.21
b03 24 1 4 49.22 6.64 = 9.06 35.00 = 25.50
x02 37.7 1 10 59.35 23.63 £20.28  28.00 = 17.16
x05 34 1 10 61.37 32.80 = 28.72 15.00 = 11.29
x07 21 1 4 73.78 11.53 = 16.92 15.50 = 17.21
x08 48 1 4 73.42 41.63 £33.94  22.57 = 32.25
x09 18.5 1 10 53.56 28.63 = 30.83  27.86 = 26.88
x10 10 1 4 58.78 7.73 £9.32 41.10 = 66.80
x13 18.7 1 10 53.36 34.10 = 38.58 17.22 £ 13.30
x15 15.9 1 16 31.53 2529 £9.29 54.00 = 28.33
x16 24 1 4 65.69 7.21 £5.34 31.15 = 40.12
x21 19 1 4 61.30 7.11 £ 9.84 19.18 = 14.81
x23 14.3 1 16 34.67 60.50 = 0.71 203 £0
x25 48 1 7 65.69 3144 = 3324 23.75 £ 27.30
x32 15.1 1 7 53.27 101.50 = 105.46 28 £ 2524
Mean + SI 2945 = 1+0 741 £3.50 5823 = 27.79 = 2153 31.74 = 39.60
(median)  14.14 11.16 (24.46) (22.94)

(24.35) (61.27)

[0069] According to Table 1, the estimated truncated rank,
r, from the SVD of the Hankel matrix was consistently equal
to 1, which shows a consistent rank for reconstructing the
dynamics. In addition, the percentage of the energy captured
by the forcing, v,(t), which corresponds to the highest
energy mode of the dynamics, was 58.23%=11.16 (61.27%)
across patients. The pooled means and standard deviations
of the burst duration, T,, and the inter-burst duration, T,,,
were also calculated to be 27.79+21.53 (24.46) minutes and
31.74+39.60 (22.94) minutes, respectively. The inter-patient
and intra-patient variances in the estimated pooled statistics
are significantly high, which shows the large variation in the
burst and inter-burst durations during the apnea-hypopnea
events.

[0070] Sensor-based and data-driven modeling of the
intermittency dynamics in real-life complex systems is chal-
lenging because the governing equations are usually
unknown. The HAVOK model was proposed to model a
chaotic system as an intermittently forced linear system, a
method that has been successfully applied to many nonlinear
dynamical systems including analytical systems, stochastic
magnetic field reversal, and real-world systems. In this
disclosure, the noise-robustness of the HAVOK model is
validated and a noise-robust intermittency analysis method
is developed based on the HAVOK analysis. Therefrom, the
intermittent phases, the chaotic bursts, and the spectral-

tion accuracy to the noise level and the sampling rate is
analyzed. As seen in FIGS. SA-SD, the lobe switching
prediction accuracies were 87.20%, 87.68%, 78.09%, and
85.95%, which respectively correspond to the NSR values of
0.1%, 1%, 10%, and 50%. This result is a little counterin-
tuitive because the prediction accuracy did not monotoni-
cally decrease as the Gaussian white noise level increased.
Interestingly, this result can be explained by the variation in
the optimal truncated rank, r, estimated by the optimal rank
selection methods. The truncated rank, r, values correspond-
ing to 4 different mentioned NSR values were r=4, r=4, r=3,
and r=3; hence, the energy captured by the v, component
was different in each scenario. Moreover, the distribution of
the energy for the v, modes (k=1, . . . q) depends signifi-
cantly on the Gaussian white noise contamination and the
resulting matrix, V, from the Hankel matrix decomposition,
which caused the prediction accuracy to fluctuate in
response to the amount of energy that v, captured. The
sensitivity of the accuracy may also be partially reflected in
the variations in the reconstruction errors that quantify the
mean absolute percentage error (MAPE) between the first
eigen time-delay trajectory, v,, and the reconstructed trajec-
tory, v, which show that the higher the energy accounted for
by v,, the lower the reconstruction error. The contamination
by white noise also affected the probability distribution of v,,
which caused it to be approximately Gaussian since the
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high-frequency high-amplitude intermittent bursts were
gradually mixed with and then dominated by the broad-
frequency-band noise as the NSR is increased. The measure
of the sensitivity of the prediction accuracy to the sampling
period, dt, demonstrated in FIGS. 6 A-6D shows that the dt
value must be sufficiently small (i.e., a fine time scale) with
an appropriate “stackmax” value to capture the intermittent
dynamics and separate the linear and nonlinear regions. The
forcing distribution of v, can be a reliable indicator to
determine the identifiability of the intermittent dynamics
using the HAVOK model. This result was confirmed by the
appearance of the fat-tailed Gaussian distribution after
exceeding a certain threshold of dt.

[0072] After performing the sensitivity analysis, the inter-
mittency analysis methods using v, 2 thresholding and CWT
thresholding approaches were performed in the noise-free
and noise-induced chaotic Lorenz system. The results from
FIGS. 7A-7E, 8A, and 8B demonstrate that the disclosed
CWT thresholding method is a more reliable, noise-robust,
alternative method to predicting lobe switching events that
correspond to the nonlinear dynamics. This result can be
confirmed by the low-variance prediction accuracy using the
CWT thresholding method (97.34% for the noise-free case,
95.65% when NSR=1%, and 94.63% when NSR=10%).
These values for the noisy cases are higher than the values
reported when applying the v, thresholding method (88.
10% when NSR=1% and 79.82% when NSR=10%). The
high values of X, | showed in the v, scalogram over the
lobe-switching periods demonstrate the active forcing pre-
diction capability of the CWT thresholding. In addition, the
v, frequency spectrum shows the frequency bands associated
with the linear dynamics and nonlinear dynamics, in which
the linear and nonlinear dynamics regions are separated by
a cut-off frequency. This cut-off frequency was chosen to
achieve the optimal\lobe switching prediction accuracy. The
cut-off frequency is validated by applying a bandpass filter
on v, to filter out the low-frequency components correspond-
ing to the linear dynamics: as a result, only the high-
frequency high-amplitude bursts remained in the signal.

[0073] The HAVOK analysis using HRV features and the
intermittent forcing analysis results for the OSA case study
are presented. The embedded attractors shown in FIGS.
9A-9C were coded by both the OSA annotations and the
predicted active forcing; and the correlation coefficients
between the active forcing and the hypopnea-apnea events
of four representative patients were significantly high. This
result validates the intermittent forcing identifiability using
the disclosed methods and shows a strong association
between the active forcing and hypopnea-apnea events. The
forcing distributions are approximately Gaussian in all four
representative cases, which potentially results from the low
sampling period since the HRV features are extracted for
each 1-minute time window. Therefore, the HAVOK analy-
sis captures only the slow-time-scale dynamics and not the
fast-time-scale dynamics in the Lorenz system, and the
forcing distribution is not necessarily fat-tailed. Moreover,
the AHI values of all four patients are substantially high
(AHI=39.1, 41, 42, and 42), so the hypopnea-apnea events
are no longer rare events that contribute to the fat tails of the
distribution. The comparison of the v 2 thresholding and
CWT thresholding methods is illustrated in FIGS. 10A, 10B,
and 11, which show that the v,? thresholding approach
outperformed the alternative method for most of the
patients. However, the CWT thresholding method can still
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be improved by using an adaptive threshold, selecting a
more appropriate “mother wavelet,” and combining the
prediction results at multiple frequencies if the forcing has
a broad frequency band and one frequency cannot com-
pletely characterize the intermittent dynamics. In FIGS. 10A
and 10B, the linear and nonlinear dynamics regions are not
separated since the correlation between the active forcing
predicted by the CWT thresholding method and OSA events
was non-desirable: hence, the validity of the cut-off fre-
quency value could not be justified. From FIG. 11, the
correlation coefficients obtained from the CWT thresholding
are higher than the those for the other method for patients
a06 (AHI=24.7), a07 (AHI=63), all (AHI=14), x09
(AHI=18.5), and x10 (AHI=10); interestingly, these AHI
values correspond to “mild,” “slightly moderate,” and
“extremely severe” OSA severity cases. A satisfactory
explanation for this result requires deeper analysis. Addi-
tionally, the correlation values reported for all patients in
FIG. 11 confirm the applicability of the HAVOK and inter-
mittency analysis methods for the OSA case study. The
means and the variances of the correlation coefficients
obtained from the v 2 thresholding and CWT thresholding
methods are 0.8288+0.0813 and 0.7776+0.0831 respec-
tively.

[0074] The intermittent phase and chaotic burst statistics
were estimated for both the Lorenz system and the OSA case
study. For the Lorenz system, the burst duration statistics
were estimated to be T,=0.412120.1461, and the inter-burst
duration statistics were computed to be T,,=1.5757+1.4781.
The burst duration that corresponds to the lobe switching
period has fairly low variance; however, the inter-burst
duration has significantly high variance, which indicates the
spontaneous occurrence of the lobe switching events in the
Lorenz chaotic system. With regard to the OSA case study,
the burst duration and inter-burst duration statistics varied
dramatically from patient to patient, which can be attributed
to inter-patient variability in terms of the OSA conditions
and the cardiovascular comorbidities’ causing the major
differences in the intermittent dynamics. The fluctuations in
the inter-patient statistics may correspond to different inter-
mittent behaviors arising from a mixture of hypopnea and
different types of apnea: obstructive apnea, central apnea,
and complex apnea. Despite the high inter-patient variations
in the statistics for the intermittent phases and chaotic bursts,
the truncated rank, r, was consistently equal to 1 for all
patients, and the percentage of the energy captured by v, was
58.23%=11.16, which is a relatively low variance. This
result indicates that the highest energy mode is suitable for
capturing the active forcing that results from the slow-time-
scale dynamics. The validation of this finding in other case
studies (e.g., paroxysmal atrial fibrillation or an epileptic
seizure) is highly necessitated. In this case study, the
selected HRV features reflect the activities and effects of a
mixture of both sympathetic and parasympathetic systems,
e.g., vagal-mediated modulation of heart rate. However,
HRV features can be insufficient to provide information
about respiration-related paroxysmal events such as hypo-
pnea-apnea events; therefore, many studies have combined
HRYV features with ECG-derived respiratory signals (EDR)
to improve the richness of the features and the model
accuracy. In some examples, the intermittent forcing signal
obtained from the Hankel matrix built from the HRV fea-
tures captures the long-time-scale dynamics of the sympa-
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thetic and parasympathetic effects, but more investigation
into this hypothesis is necessary.

[0075] When applying the HAVOK model, the selection
of model hyperparameters should be carefully considered.
First, the number of rows, q, in the Hankel matrix should be
selected to obtain an appropriate delay embedding basis, U,
and the time delay, T, should be chosen based on the
embedding dimension, p, to enforce the independence of the
time series. The truncated rank, r, can be estimated by the
optimal hard threshold for singular values. However, in
principle, the eigen time-delay variables can be separated
into r—s high-energy modes for the linear model and s
low-energy intermittent forcing modes if v,(t) is not suffi-
cient to model the intermittent forcing. In addition, the high
model performance sensitivity to hard threshold selection in
the v, and the CWT thresholding methods can be alleviated
by adopting an adaptive thresholding method, selecting a
more appropriate “mother wavelet.” and combining the
prediction results at multiple frequencies if the forcing has
a broad frequency band.

[0076] In summary, the disclosed system and method
provide an intermittency analysis method that systematically
decomposes and analyzes the intermittent forcing obtained
from the HAVOK model. The disclosure provides (1)
numerical validation of the HAVOK model’s robustness
with respect to the noise level and sampling rate, (2) a
noise-robust intermittency analysis framework to character-
ize the intermittent phases, the chaotic bursts, and the
spectral-temporal properties of different intermittent dynam-
ics modes, and (3) an attempt to characterize chaos in
pathophysiological processes as an intermittently forced
linear system and thoroughly analyze the intermittent forc-
ing. In particular, in addition to the distribution of the
intermittent forcing, additional statistics such as burst start-
ing-ending time and burst and inter-burst duration quantifi-
ers to better characterize the intermittent phases and chaotic
bursts are disclosed. Moreover, the frequency spectrum of
the intermittent forcing signal estimated from the Discrete
Fourier transform were used to characterize the spectral
properties of the intermittent forcing. The adaptive continu-
ous-time wavelet analysis with different types of mother
wavelets chosen to match the morphological features of the
bursts was performed to extract local spectral and temporal
information simultaneously. To validate the disclosed meth-
ods, the intermittency analysis methods were performed on
both the Lorenz system and an OSA case study. This is the
first attempt in the literature to characterize chaos in patho-
physiological processes in a sleep disorder like OSA. In the
OSA case study, the forcing signal can predict the intermit-
tent transient events, such as the transition from normal to
hypopnea-apnea episodes. Spectral decomposition and
wavelet analysis of intermittent forcing was used to inves-
tigate the composition of the forcing terms, which is poten-
tially related to the long time-scale dynamics of the sym-
pathetic and parasympathetic effects regulated by the human
bodies. An understanding of intermittent dynamics facili-
tates the development of interpretable and robust domain-
knowledge, data-driven methods for complex systems that
exhibit intermittent and chaotic behaviors.

Example Noise-Robust Sampling

[0077] Several sampling strategies have been introducing,
including burst sampling, delay spacing, and iterative mod-
eling, which were designed to optimally collect data for
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SINDy and HAVOK models in various noise-free multi-
scale systems. However, there were several limitations: (1)
the data-sampling strategies lack robustness, which were
designed and evaluated for noise-free scenarios, (2) the
specification of parameters, such as sampling period, burst
size, and burst locations for burst sampling strategy, is
challenging when system dynamics are not well understood
and poses the problem of adaptability, (3) the proposed
sampling strategies are heuristic sampling methods, which
are not supported a formalized underlying theory, and (4) it
is difficult to scale up to high-dimensional systems, where
the complexity and computational demands increase signifi-
cantly. Hence, it motivates the development of efficient,
noise-robust, scalable algorithms for optimal sampling strat-
egies to address the limitations of the foregoing methods.

[0078] In addressing the identified limitations in existing
data sampling methods, the disclosure introduces an inno-
vative approach incorporating the SINDY algorithm with a
deep Q-learning agent within a reinforcement learning
framework to design a noise-robust optimal data sampling
strategy for multi-scale complex systems discovery. The
disclosed method is designed to overcome the foremen-
tioned limitations through three key innovative elements:
adaptability, robustness, and scalability. Firstly, it employs
an adaptive sampling strategy that leverages reinforcement
learning. Unlike traditional uniform-sampling strategies, the
disclosed approach can dynamically modify the sampling
policy based on the evolving multi-scale dynamics of the
system. This innovation ensures greater accuracy and effi-
ciency in data acquisition by catering to the specific
demands of the system at any given point in time. Secondly,
the disclosed approach incorporates a novel design for the
state space, observation space, and reward signals, which is
grounded on active learning principles and information
theory. The design aims to minimize the impact of noise,
model output variance, generalization error, and solution
instability on model identification and reconstruction. This
element enhances the robustness of the disclosed method,
ensuring that the disclosed methodology can withstand and
adapt to different types and levels of uncertainties and
instabilities. Lastly, the disclosed method and system use a
deep Q-learning algorithm that is capable of scaling to
high-dimensional systems. This feature significantly broad-
ens the utilization of the method to model complex system
types irrespective of their dimensionality. This innovation,
therefore, addresses a major limitation of previous methods
and establishes the disclosed methodology as a novel solu-
tion in the field. Two analytical systems are chosen as
numerical studies to validate the disclosed methods: (1) Two
coupled fast and slow Vander Pol oscillators, and (2) a noisy
fast Van der Pol oscillator coupled with a noisy slow Lorenz
system. These cases were selected as they collectively
represent a range of complexities and challenges in multi-
scale dynamics and provide a comprehensive assessment of
the disclosed method’s effectiveness.

[0079] Two-time-scale deterministic coupled systems:
The disclosure focuses on the complex systems that exhibit
dynamics on multiple time scales. A simplified version of
such multi-scale systems that features linear coupling and
two distinct time scales can be defined as: T, 0={(u)+Cv,
and T, v=g(v)+Du, where T, and ,,,, are two parameters
that control the time resolution of the fast and slow dynam-
ics, u®) E M ,=R” and vVODEM =R ' are the set of “fast”
and “slow” variables on two manifolds M, and M,
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respectively, f (*) and g(*) are the “fast” and “slow” flow map
operators. The linear coupling effects between u and v are
represented by the matrices Ce | 1 and De R 7™, which
captures the coupling between the fast and slow dynamics of
the complex system. The time scale separation can be
quantified by the ratio 01=t,,,,/T,,,,, between the “fast” and
“slow” scales of u and v. This simplified system serves as a
starting point for the development of the disclosed reinforce-
ment learning-based data sampling strategy aiming to cap-
ture the multi-scale dynamics in a more general context.
[0080] The disclosed method includes two computational
components: the SINDy algorithm for multi-scale model
discovery and the reinforcement learning framework for the
optimal sampling strategy. The SINDy algorithm to discover
the multi-scale models is introduced. Via the algorithm, the
behavior of complex systems across multiple scales can be
predicted. The disclosure details how to formulate the prob-
lem, develop the sparse regression, and discover the gov-
erning equations. The reinforcement learning framework
focuses on the design and optimization of sampling strategy.
The process of data sampling is desirable for the success of
any data-driven model, and the use of reinforcement learn-
ing techniques can effectively sample high-dimensional
complex spaces. The reinforcement learning framework
section can be divided into several subsections: an overview
of the framework, the environment, action, and state spaces
definitions, the reward signal and terminal conditions, and
the reinforcement learning algorithm employed. Together,
the disclosed frameworks can handle the challenges of
multi-scale interpretability and high dimensionality of com-
plex systems.

[0081] SINDy algorithm for multi-scale model discovery:
Based on the extant SINDy algorithm, this algorithm can be
extended to search for a parsimonious model that approxi-
mates the multi-scale dynamics f(*) and g(*), represented by
the functions f(*) and g(*). The estimated functions contain
only a few active terms (i.e . . . they are sparse in a basis of
possible candidate functions) corresponding to predominant
dynamics. In this framework, the model discovery problem
is cast as a sparse regression problem, in which the snap-
shots of system states (u, v) and their derivatives (11, v) are
available or computed from data. The snapshots are usually
stacked to form two data matrices X and X sampled at
different time points t,, t,, . . ., t,, as follows:

() ... uy(t) nit) ... owilt)
:[u(tl) u(tm)]T: ul(.tz) un(.tz) vl(.tz) v,(.tz)
vt1) ... vitm) : . : : : :
U (ty) oo Unl) VIlm) - Viltw)
() ... a(ty) M) ... Wit
X:[u(m e tlt) | [ e) () 1) e Rl

) ... Vtw) : ' : : ' :

Uy (tm) v Up(n) V1) ..o Viltm)

where X, Xe g "™, Next, a library &(X) of K possible
candidate functions (e.g., constant, polynomial, and trigo-
nometric functions) is constructed, in which each column
corresponds to one function:

[ I
. sin(X) cos(X) ...

|
e =[1 x
|
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Based on the “sparsity” assumption for f and g, the SINDy
algorithm applies the thresholded least squares method to
learn a sparse coefficient vector =: =[§, &, . . . .. ]e
R ©“*D which indicates which nonlinear terms are active.
The sparse regression problem is given as: X=0(X)Z. Once
E has been learned, the governing equations can be discov-
ered as follows:

= OW)E, =0, ..., iy = 0K,

¥ = O, V2 = OWEma, .., = O )y

where ®(x) is a vector of symbolic functions of elements of
x=[u” v7].

[0082] Reinforcement learning framework for optimal
sampling strategy. To address the challenge of optimal
sampling in multi-scale model discovery, a reinforcement
learning (RL) framework can be adopted.

[0083] The disclosure describes a new deep reinforcement
learning (DRL) framework to establish an optimal sampling
strategy capable of sampling the data for discovering multi-
scale system dynamics. The block diagram of the proposed
methods consisting of 5 steps is illustrated in FIG. 12. FIG.
12 shows a schematic illustration of the disclosed Deep
Reinforcement Learning (DRL) framework for optimal sam-
pling strategy. This diagram illustrates the five steps
involved: (1) data simulation from multi-scale complex
systems, (2) noise filtering from state measurements and
derivative estimation, (3) and (4) creating training samples
from data simulation and update the policy iteratively update
until terminal conditions are met, and finally (5) benchmark-
ing the developed policy against other methods. FIG. 12 also
depicts the formulation of the DRL environment, including
the action space, state space, and reward function, demon-
strating how each plays a significant role in the learning
process. It serves as a visual guide to understanding the
intricate workflow and interactions within the proposed
DRL framework.

[0084] In the disclosed DRL framework for optimal sam-
pling strategy, the first step includes data simulation from
multi-scale complex systems. An adaptive Runge-Kutta
method can be employed to solve the system’s ordinary
differential equations and subsequently introduce Gaussian
noise to simulate real-world uncertainties. For real-life sys-
tems with state measurements from sensors, complete data-
sets or employ state estimation techniques are directed used,
such as Kalman filter or particle filter, for incomplete data.
Additionally, based on observed real-life data, a “digital
twin” environment simulator is created. This simulator,
modeled after the actual system using techniques like system
identification, serves as a controlled training ground for the
DRL agent, ensuring the strategies developed are adaptable
and robust for both simulated and real-world scenarios.
Next, a low-pass filter can be used to reduce the noise with
high frequencies and estimate the state derivatives dx/dt,
where x=[u” v7], via the explicit fourth-order central finite
difference scheme [46]. For the highly noise-distorted state
measurements, the total variation regularized derivative
estimation methods can provide more accurate derivative
estimates. The third and fourth steps develop training expe-
riences for the RL agent to learn the sampling policy, which
is for generating the SINDy algorithm’s training data. The
last step is to benchmark the policy 7,(s) obtained from
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DRL framework against other methods in terms of sample
size, robustness to noise, stability of the estimated param-
eters, and sampling time. The environment is a multi-scale
deterministic coupled system, incorporating the sampling
period T, and the state space S. The action space 4 consists
of three potential actions: up-sampling, down-sampling, or
maintaining. The actions adjust T, based on the system’s
states and the current sample characteristics, generating an
intermediate reward R,. The state space includes the recon-
struction error €g,5, the condition number K(®(D,)), the
multivariate mutual information of I(D,), and the trace of the
information matrix tr((®7@®)™"). The reward signal, integral
to improving the SINDy algorithm’s convergence, is a
weighted sum of 3 components: k(@(D))), tr(®7®)™"), and
the current system time t. The terminal conditions are based
on a tolerance rate or when the number of training episodes
surpasses predetermined threshold n,,. In real-world com-
plex systems, where E* is generally unknown, the condition
number’s convergence can serve as an alternative criterion
for determining the terminal condition.

[0085] Environment: Following the overall framework,
the environment component governs the optimal sampling
policy learning process. Without loss of generality, the
environment is defined as a two-time-scale deterministic
coupled system corrupted by Gaussian noise to represent
real-world uncertainties and random fluctuations. The sys-
tem dynamics are characterized by two different temporal
scales-fast and slow-representing the behavior of two sets of
variables, respectively denoted as u(t) and v(t). The math-
ematical form of the deterministic coupled system with two
distinct timescales, corrupted by the Gaussian noise, is
expressed as follows:

Taath = f)+Cv+eg,

Tgow?V = gv) + Dt + &,

where €, g " and €, R’ represent the Gaussian noise
affecting each of the states in u(t) and v(t) respectively. Each
of these noise terms is modeled as a multivariate Gaussian
distribution with zero mean and a covariance matrix, which
means €~ (0, 1,7T) and &~ (0, 1,71, where I,
denotes the identity matrix of size k, and 1, R ” and 1, €
R ’ represent the variances of the noise associated with the
“fast” and “slow” variables, respectively. To quantify the
impact of this noise on the dynamics of the system, the
concept of the noise-to-signal ratio (NSR) can be introduced
for each state variable. The NSR is calculated as the ratio of
the variance of the noise (noise power) to the expected
power of the signal, which provides a measure of the relative
strength of the noise in comparison to the signal, serving as
a factor in the design and evaluation of the sampling policy.
Thus, the NSR for the state variable xeu\/v is defined as
NSR:=1 /F [x?], where E [x,] and 1, are the expected value
of x and the variance of the state x. A higher NSR indicates
that the noise power is high compared to the signal power,
which can make it more challenging for the RL agent to
learn an optimal sampling policy. In contrast, a lower NSR
suggests that the signal power dominates over the noise
power, making it potentially easier for the RL agent to learn
from the system’s dynamics.

[0086] Action space (A : For the disclosed deep RL frame-
work, a discrete action space .4 can be defined such that the
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discrete action space includes three possible actions. The
choice to employ a discrete action space instead of a
continuous one originates from the practical nature of the
optimal sampling strategy task for the multi-scale dynamics
discovery, in which the sampling periods typically use
adjustments by integer multiples to capture the dynamics
across various scales. Such changes are well-represented
through a discrete action space, which consists of simple and
definite actions such as doubling, halving, remaining the
current sampling period. These discrete actions are compu-
tationally efficient and easy to implement, making the task
of managing and discovering multi-scale dynamics more
streamlined and manageable. Each action alters the sam-
pling period, T,, thereby influencing the multi-scale dynam-
ics of the system. At each transition, the three possible
sampling actions A € .4 are: (1) A=1 (double T, for down-
sampling). (2) A,=0 (remain the same T,), and (3) A=-1
(halve T, for up-sampling). At each transition, the sampling
action A, decides the location of the next sampled point of
X. The initial sample in X is X, and the initial sampling
period T, is pre-specified. These actions are mathematically
represented as:

Topn1 +20, if 4i=1A2T; 2 Thigh

Ar - Ts,r+1 + Ts,r if Ar =0

Tor . Tos
Ts,r+1+7 1fAr=_1/\TSTIGW

[0087] In the equation above, the effects of each action are
conditioned by the current sampling period and the thresh-
olds T,,,, and T,,,,, which are the lower and upper limits of
T,, respectively. The action space 4 is a component that
directly drives the evolution of the system dynamics through
the sampling strategy, affecting the learning process of the
agent. In the subsequent sections, other significant compo-
nents of the reinforcement learning framework (e.g., the
state space, the reward function, the terminal conditions, and
the RL algorithm for updating the optimal sampling policy)
exist. The interactive component of the environment, the
“sampling action” A,, carries out three potential tasks. Each
action directly influences the sampling period T, subse-
quently modifying the multi-scale dynamics that the system
experiences. These actions are not arbitrary: instead, they
are driven by the current sample characteristics and the
system states. As a response to these actions, an intermediate
reward R, gets generated, which guides the learning process
of the agent. This generated reward gives feedback on the
efficiency of the sampling strategy, thus informing the
learning agent on how to refine its future decisions. Next, the
characteristics of the state space, and reward signal are
described in detail below.

[0088] State space S: The state space defines the input
variables for the Deep Q-network that approximate the
state-action-value function Q(s, o). The space S can include
the SINDy reconstruction error €g,,, , the condition number
[48], k(®(D,)), of the matrix &(D,), where D, is the current
sample of X after the transition t, the multivariate mutual
information I(D,), and the trace of the information matrix
(i.e., inverse of the variance matrix) tr ((@(D,)”®(D))™).
The state space can be defined to include the important input
variables that can approximate well the state-action-value
function Q(s, o). Table 1 presents a description of each of
these variables, which illustrates their notations, mathemati-
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cal formulations, and the functions within the state space.
From direct representations of system dynamics to measure-
ments of information sharing and algorithmic performance,
these variables collectively facilitate effective approxima-
tion of the state-action-value function Q(s, ).
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(k(®(D,)) log(tr(I)), where I=(®(D,)"®(D,))"", and the cur-
rent system time t. The disclosed framework’s reward signal
formulation can address the challenges of multi-scale
dynamics discovery, with each component representing a
distinct objective. The logarithm of the condition number

TABLE 2

Description of the variables in the RL state space for multi-scale dynamics discovery

State
variables Notation Mathematical formulation Description
System states X, and X, X, = [uT() vI(1)] These variables serve as the
and Xt ENHORAG) elements of the system’s
derivatives where u(t) and v(t) “fast” and dynamics.
“slow” variables at time t
SIND,, Esinvpy(Dy) EsinDy = ”éDx - B2 The SINDy algorithm uses a
reconstruction where =, and Z* are the thresholded least squares
error estimated and true sparse method to find sparse
coefficient vectors, and Il-1l is coefficient vectors Z :=
the Frobenius norm operator. [€, &, ... &kl that solves the
sparse regression problem X =
X))z,
Condition K(®D,) K(O®D,) = 6,,.{(0)c,,.,(0) The condition number of ® can
number where 6,,,.(®) and G,,..(©) quantify the stability of the
are the maximum and minimum  estimated ét after solving X =
singular values of the matrix ® BX)Z
Multivariate D, X, Xs ..., Xy = It measures the amount of
mutual IIX) —ZKX, Xp) + ... + information shared by the
information X, X L X samples in D,
Information  tr((®70)!) = tr(I) The trace of the inverse of the

matrix trace

R CORNELOE Zl,,
=1

information matrix I computes
the average variance of Z,

where I is the information
matrix and I, denotes the
diagonal elements of L.

The state space variables are carefully selected based on
their relevance to the optimal sampling task. System states
and derivatives (X, and X,) provide real-time understanding
of the system dynamics, helping predict future evolution and
guide optimal sampling decisions. SINDy reconstruction
error €g,vp (D,) quantifies the algorithm’s performance,
informing the agent about the quality of the sparse coeffi-
cient vector approximation. Condition number k(®(D,))
serves as an indicator of the stability of the solution, alerting
the agent to sensitivity in the sparse regression problem and
prompting it to seek stability-enhancing actions. Multivari-
ate mutual information I(D,) measures the mutual depen-
dence among the samples, guiding the agent to maintain
diversity in sampling and optimize the solution. Lastly, the
trace of the information matrix tr(I) offers an estimate of the
uncertainty inherent in the sparse coefficient vector estima-
tion, which encourages the agent to minimize this uncer-
tainty. Each of these components contributes vital informa-
tion to the state space S, enhancing the agent’s ability to
make informed and effective decisions.

[0089] Reward signal and terminal conditions: In some
examples, the reinforcement learning is to maximize a
cumulative reward, which serves as a measure of the agent’s
success in achieving its goal. In the disclosed framework,
the reward signal is designed to encourage the efficient
discovery of multi-scale dynamics while maintaining stabil-
ity and precision in the sparse coefficient estimation. The
reward function is formulated as: R=—A,Jog(x(®(D,—-A,
log(tr(D—At, where A, A, and A, are the non-negative
weights that balance the importance of the three terms: log

log (k(®(D,))), a measure of a matrix’s sensitivity to errors,
is included in the reward to encourage stability of the SINDy
algorithm, as lower condition numbers lead to more stable
coefficient estimations. The logarithm transforms the mul-
tiplicative condition number into an additive factor, com-
patible with the additive nature of Q-values in RL, while
inversely associating high condition numbers with lower
rewards. For the log(tr(I)) term, the high trace of the
information matrix tr(I), indicating the inverse of the aver-
age variance of the sparse coefficient estimates X, at the time
t, can be penalized. By inversely associating high trace with
lower rewards, the RL agent is motivated to explore dynamic
and diverse samples, leading to greater variability in the
multi-scale system dynamics. The direct inclusion of the
current system time t promotes the efficiency with actions
facilitating faster discovery of multi-scale dynamics leading
to shorter time periods and higher rewards. Together, these
components target the stability, the dynamical variability,
and the efficiency with weighting factors A, A, and A,
providing a mechanism to fine-tune the reward function
based on specific problem requirements, which adds an extra
layer of versatility to the RL framework.

[0090] In terms of terminal conditions, an episode termi-
nates when the number of training episodes exceeds the
predefined limit E,,, . or when the reconstruction error of the
SINDy model €g,,,, falls below a certain threshold €,,,.
First, the incorporatfon of E,, ., guarantees computational
feasibility and reflects the real-world constraints, which
compels the agent to find an optimal strategy within a finite
timeframe. Second, the terminal condition based on Esivp,
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aligns with an objective to achieve a precise sparse dynami-
cal model. This error measures the discrepancy between the
sparse dynamical system derived from the data sampled by
the agent and the true underlying dynamical system. When
this error falls below the threshold €, it signifies that the
agent has collected enough useful data samples that yield an
accurate model of the system’s dynamics. Thus, the episode
knowing that the agent has accomplished its objective can be
terminated. However, in real-world scenarios, the rare
access to the true sparse coefficient vectors E* of complex
systems makes it impossible to evaluate €g,,,, directly. In
such cases, the convergence of the condition number (®
(D,)) can be an alternative criterion. The condition number
measures the stability of the estimated sparse coefficient
vectors after solving the sparse regression problem. A con-
verging condition number suggests that the regression solu-
tion has stabilized, which implies the agent’s data sampling
has become effective enough to capture the underlying
dynamics. Thus, it is a practical and viable indicator of when
the agent should terminate the episode. In summary, these
terminal conditions are designed to guide the agent towards
a robust and efficient learning process, even when dealing
with complex real-world systems.

[0091] Deep Q-network agent creation and training: In the
disclosed methodology, the next stage is the creation and
training of the DQN agent. A deep Q-network algorithm can
be used to design an optimal sampling policy. As a variant
of Q-learning, the DQN agent serves as a reinforcement
learning component trained to maximize the expected cumu-
lative reward and accomplish efficient sampling in a two-
time-scale deterministic coupled system corrupted with
Gaussian noise. The creation of the DQN agent involves
initializing the critic and target critic that will approximate
the value function. Here, the critic is denoted as Q(s, o; ¢)
and the target critic as Q,(s,, 0. ¢,), where ¢ and 0, are the
critic parameters. The critic and target critic are created as
deep neural networks that map the environment states and
selected sampling action to the expected cumulative reward.
The schematic architecture of the deep Q-network is illus-
trated in FIG. 13. FIG. 13 shows a schematic neural network
architecture for the DQN agent. The architecture starts with
an input layer that involves the states of the environment,
followed by L fully connected layers that represent critic
states with n, (k=1, . . ., L) nodes each. Both fully connected
layers utilize ReLU activation functions. The network’s
output layer corresponds to the Q-values for each action in
the action space.

[0092] Following the initialization of these critic function
approximators, the configuration of the DQN agent is per-
formed. The DQN agent is designed to adopt an epsilon-
greedy exploration strategy during its training phase. Here,
at each decision point, the agent either randomly explores a
new action with a probability E, or exploits the action that
maximizes the current value function with a probability of
1—€. This strategic balance of exploration and exploitation
aids in the robust and comprehensive learning of the optimal
sampling policy within the noise-infused environment. In
the training phase of the DQN agent, the Q-Learning algo-
rithm that is tailored to the environment with its specific
multi-scale deterministic coupled system and noise charac-
teristics is implemented. At each training time step, the agent
selects an action o according to its current state s, and the
action o is subsequently executed resulting in an immediate
reward r and a new state observation s'. This sequence
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creates totally n, experience tuples {(s,, &, 1;, ;) },_,",, where
(s, O, T,, 8',) represents the i”* sampled experience tuple,
which will be stored in a circular buffer known as the
experience replay buffer. A mini-batch of experiences is then
sampled randomly from this buffer to provide the data for
updating the value function targets Q*(s;, o). If the sampled
next state s'; is a terminal state, Q*(s,, ;) is set to the
immediate reward r;. Otherwise, derived from the Bellman
equation, the following equation is computed: Q*(s;, &) as:

Ox (55, a) = R; +7Q,(s§, argmax Q(s;, a; ¢); ¢r]-

[0093] Here, Q*(s,, o) represents the expected cumulative
reward or the true Q-value for taking action o, in state s;, Y
is the discount factor and

argmax O(s), a ¢)
.

represents the best action at s', according to the critic’s
current parameters ¢. In the training phase, by comparing
this Q*(s;, a,) with the Q-value approximated by the neural
network Q(s;, o;; 0), the critic’s approximations are itera-
tively redefined to the optimal Q-values that represent the
true expected returns. The critic’s parameters @ are then
updated by minimizing the mean squared loss between Q'(s,,
o;) and Q(s;, o; 0) over all experiences in the sampled
mini-batch as follows:

L@ =53 @0 a) - iz 0,

where M is the size of the mini-batch. After ¢ is updated, the
target critic parameters ¢, are estimated based on the selected
target update method, which may include smoothing, peri-
odic, or periodic smoothing techniques. Concurrently, as
training progresses, the probability threshold & is gradually
reduced for choosing a random action. This is adjusted
according to a pre-defined decay rate, balancing the explo-
ration and exploitation dynamics during the learning pro-
cess. Hence, the DQN agent is trained to learn the optimal
sampling policy by considering the intricate dynamics of the
multi-scale deterministic coupled system and its inherent
noise properties.

[0094] 3.2.7. RL-based and heuristic approaches for find-
ing the optimal sampling policy. After the establishment and
training of the DQN agent, the RL algorithm can be imple-
mented for seeking the optimal sampling policy. This algo-
rithm is specifically formulated to work in conjunction with
the trained DQN agent and leverages the knowledge
acquired during the training phase. The purpose of this RL
algorithm is to navigate the unique complexities of the
multi-scale deterministic coupled system and utilize this
understanding to produce a parametrized sampling policy
that optimizes the chosen reward function, even in the
presence of inherent noise. The reinforcement learning algo-
rithm for finding the optimal sampling policy is outlined as
Algorithm 1 below:
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Algorithm 1: Reinforcement learning for SINDy optimal sampling

policy in noisy multi-scale complex systems

Output: optimized RL-based parametrized sampling policy mwy™*(s)
Initialize environment:

Initialize parameters to build the environment

Create DQN agent specifying network architecture and
hyperparameters

Set training options (maximum training episodes E,, .

and stopping criteria)

[ N T S

[N

Input: A, S, Epges Noos My Ts™, €101, Koy B, ©, My N, Ay, Ay, and A,

7 fori € {1, ..., E,uy) do
8 | Reset the environment:
9 i .
| Sample initia] data D, = {X(k)}kl:); starting at x, with T, f(u), g(v),
| where x = [uf v1]
10 | Introduce Gaussian noise to x(t) and %(t) with noise levels 1,,, 0,
W3 < x0) + £, ¥(0) < fx(0) + £, 8, ~ N (0,0,71,),
I e, ~(0,1,T)
12 | Estimate é, agd €7Dy, from X(t), ;(t) using SINDy algorithm &g, ,
I |8 - 2%
13 | while (egnp,., < &) and (1, < max,,,) do
41 T Dy = Dy + 1
15 | | Select action a, € A at current state s using €-greedy policy
I | derived from critic Q()
16 | | Update sampling period T_ according to action a, using Equation
1 (3.6)
17 | | Update t according to action a, t < t + T,
18 || Sample new X(t) and }(t) from noisy multi-scale system and
I | append them to D,
19 | | Estimate new Z, and ggpyp,, , using SINDy algorithm
20 | | Calculate states k(©(D,)), tr(I), and I(D,)
21 | | Calculate intermediate reward r, using Equation (3.7)
22 | | Store experience (s, a, t,, s') in buffer B
23 | | Sample mini-batch of experiences from B and compute target y;
24 | | Update critic parameters ¢ by minimizing loss function in Equation
1 (39
25 | | Every N steps, update target critic parameters ¢, = ¢
26 | | Update current state: s' <= s
27 | end
28 end .
29 Return optimized sampling policy 7y *(s), where W is generic parameters

of DQN network

[0095] In the disclosure, apart from the RIL-based
approach (Algorithm 1), 2 other algorithms are developed
for finding the optimal sampling policy (Algorithms 1S and
28 in Sl file), which are provided in the supplementary file.
These methods are the benchmarks to evaluate the perfor-
mance of the RL-based strategy. Algorithm 1S employs a
randomized brute-force search to determine the optimal
sampling policy. The central premise of this method is the
execution of M simulations, each implementing a different
random sampling strategy =, where the action for the
current state is selected randomly. After the terminal con-
ditions are satisfied, the algorithm evaluates the performance
of each policy m; by calculating the loss function £ (), and
the optimal sampling policy is obtained by selecting the best
7, that minimizes £ (it;). In Algorithm 2S, a greedy sampling
method can be used for finding the optimal sampling policy.
This method differs from the first two by continuously
choosing the best available action, driven by a defined
optimality-criteria function ®(D,) based on optimal design
theory. Unlike Algorithm 1S, which randomly selects an
action, this method samples the new data within the search
range A, according to the optimality-criteria ®(D,). After the
terminal conditions are met, the optimal sampling policy can
be acquired. In addition to those 3 algorithms, the traditional
uniform sampling strategy was utilized for comparison. The
uniform sampling strategy operates under a fixed sampling

rate, disregarding the state of the system. Therefore, its
limitation lies in its inability to adapt to the state dynamics,
making it potentially sub-optimal when dealing with sys-
tems that exhibit complex, multi-scale behaviors. The dis-
closed method with the RL-based and heuristic sampling
strategies provides the benefits of adaptive, state-aware
sampling in dealing with the unique challenges posed by the
multi-scale deterministic coupled system.

[0096] Comparative analysis of sampling strategies in
multi-scale complex systems: To demonstrate the efficacy
and versatility of the disclosed reinforcement learning-based
approach for optimal sampling policy in complex systems,
a series of experiments were conducted across two numeri-
cal studies. Thus, an evaluation of the performance of the
disclosed approach is performed and the disclosed approach
is contrasted against the other proposed sampling strategies:
randomized brute-force search, greedy sampling, and the
traditional uniform sampling method. The chosen numerical
studies represent multi-scale complex systems, specifically,
the coupled fast and slow Van der Pol oscillator and a noisy
fast Van der Pol oscillator coupled with a noisy slow Lorenz
system. Both these systems present distinct complexities and
challenges that make them ideal for a thorough assessment
of the various sampling strategies.

[0097] The evaluation can start by setting up each experi-
ment and determining the appropriate parameters for the
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system under examination. Next, the four different sampling
strategies were applied to the system. Consistency is main-
tained in the approach while other factors were kept constant
to allow for a fair comparison. The application of each
strategy was methodically carried out, and the results were
documented. Subsequently, the results were synchronized to
evaluate the performance of each strategy on each system.
This was done by assessing 6 evaluation metrics: sample
size n, ES,ND,log(K(G)(DT ), log (tr(I(D4,__})), total train-
ing time T, and total elapsed time of the sampling
algorithm T, ., Where D;. _is the final sample obtained
when the SINDy sampling process converges. Firstly, the
sample size n provides an insight into the quantity of data
points used by the algorithm to accurately identify the
system’s dynamics. A smaller sample size generally indi-
cates greater data efficiency of the sampling process. Esinp,
represents the error associated with the SINDy model,
reflecting the accuracy of the identified models. The evalu-
ation metric log(k(®(D7, ))) measures the condition num-
ber of the matrix associated with the sampled data, which
plays a critical role in determining the stability and reliabil-
ity of the system identification process. log(tr(l(D7, )))
quantifies the trace of the information matrix for the sanffﬁed
data, serving as an indicator of the data’s informative
content. Total training time T,,,, is a direct measure of the
computational cost associated with the training process
using the sampled data. Lastly, total elapsed time of the
sampling algorithm T,,, ., offers an overview of the effi-
ciency and speed of the sampling algorithm itself.

[0098] Example 1: Two noisy coupled Vander Pol oscil-
lators: In this example, the example 2 coupled fast and slow
Van der Pol oscillators described by the following system of
ordinary differential equations (ODEs) is considered:

train?®

TrasXl = X2 T C1H3 + &y

. 2
Tk = ,ul(l —xl)xz — X1 +&u,

TsiowX3 = X4 + C2X1 + &y

. 2
Totowts = p2(1 =33 )54 — x3 + &4,

The variables x, and x, represent the fast dynamics, while x;
and x, represent the slow dynamics of the system. The
parameters c,; and c, serve to couple the two dynamical
systems, the time constants T, , and T, differentiate the
fast and slow dynamics, respectively. Here, €, ~ x (0, 1,),
€,~N 0.n,).E ~N(@O,n,), ande, ~n (0,n,) are Gauss-
ian noise terms with zero mean added to each of the state
variables to reflect the presence of noise and uncertainty.
The noise levels 1, and 1), are set in accordance with the
chosen noise-to-signal ratio (NSR) for each experiment. The
initial condition was set as x,=(2,0,0,2), the coupling con-
stants ¢,;=0.005, c,=1, the coefficients pn,=p,=5, and the time
constants t,,,=0.2, T, =1.

[0099] Implementing and evaluating the sampling poli-
cies: Given the system dynamics and initial settings outlined
above, 4 distinct sampling strategies were implemented and
compared for the two coupled Van der Pol oscillator sys-
tems, namely: (1) Uniform Sampling, (2) Greedy Sampling,
(3) Brute-Force Search, and (4) Reinforcement Learning
(RL), under three levels of Noise-to-Signal Ratios (NSR)-
0%, 0.1%, and 1%. The results of these comparisons are
presented in FIGS. 14A-14C. FIGS. 14A-14C show com-
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parative analysis of 4 different sampling strategies under 3
noise-to-signal ratio (NSR) settings. FIG. 14A shows noise-
free scenario (NSR=0%), FIG. 14B shows low noise con-
ditions (NSR=0.1%), and FIG. 14C shows moderate noise
conditions (NSR=1%). In FIG. 14A, 6 sampling policy
evaluation metrics were considered: sample size n, Esinp,
log(k(@(Dr, ). log(tr(I(D7, ))), total training time T
and total elapsed time of the samphng algorithm T,z
Where D, is the final sample obtained when the SINDy
sampling process converges. For the noisy systems repre-
sented in FIGS. 14B and 14C, an additional metric was
introduced called convergence rate, defined as the percent-
age of simulations among 100 simulations where the SINDy
sampling process converges under noise conditions. The
error bars represent the standard deviations of the metric
values across 100 simulation runs.

[0100] In the noise-free environment (NSR=0%, FIG.
14A), the sample size varied significantly across the four
methods. The brute-force search resulted in the smallest
sample size of 22, showcasing its efficiency in sample
minimization, despite its extensive computational demand.
The uniform and RL-based strategies produced a slightly
larger sample size (30 and 34, respectively), while the
greedy sampling strategy achieved an even smaller sample
size of 24. Regarding the accuracy of learned dynamics
measured by Esinp, all strategies demonstrated comparably
low values, suggestlng that they could accurately capture the
system dynamics. Remarkably, the RL-based strategy
achieved the lowest Esivp, value, signifying superlor learn-
ing accuracy despite its moderately larger sample size. The
log(k(®)) and log(tr(I)), indicative of the diversity and
information content of the samples, were highest for the
uniform sampling strategy, followed by the R1.-based strat-
egy, and then the greedy sampling strategy. The brute-force
search fell last in this metric, signaling less diverse sam-
pling. When considering the computational time, the uni-
form sampling strategy proved to be the most efficient, with
the shortest T,;,,..., whereas the brute-force search was the
most computationally demanding.

[0101] In FIG. 14B, when NSR=0.1%, the uniform and
RL-based strategies maintained high convergence rates of
95% and 61%, respectively. Despite the increased noise
level, both methods effectively learned the system dynamics
as reflected in the relatively low Esinp, values. However, the
sample sizes used by these methods increased markedly
compared to the noise-free scenario. On the other hand, the
greedy sampling method, which performed well under
noise-free conditions, could not be evaluated due to the
inability to ensure convergence in the presence of noise. This
result underscores the sensitivity of the greedy method to
noise disturbances. Upon further increase of the noise level
to NSR=1%, the convergence rates for the uniform and
RL-based strategies dropped to 79% and 31%, respectively.
The RL-based method exhibited a larger Esivn, value and
used an increased sample size, indicating that learmng the
system dynamics became more challenging in the presence
of higher noise. Yet, it maintained a reasonably low log(x
(®)) and log(tr(I})), highlighting the diversity of the samples
collected. On the other hand, the uniform sampling method
used a larger sample size but displayed a considerably larger
Esinn, which signifies compromised learning accuracy
under high noise conditions.

[0102] To further illuminate the effectiveness of the dis-
closed sampling strategies in adapting to varying noise

train?®
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levels, the samples obtained by the most effective strategy
are visually represented—the randomized brute-force
search, as well as the RL-based sampling policy. FIGS.
15A-15F provide a comprehensive view of the sampling
patterns of both strategies under three noise scenarios
(NSR=0)%, 0.1%, and 1%), revealing their robustness and
adaptability. As illustrated, each strategy is tasked with
capturing the dynamical behavior of both the fast and slow
VDP systems under varying noise conditions, offering an
interesting perspective on their functionality. FIGS. 15A-
15F show visualization of samples obtained from the best
sampling strategy—randomized brute-force search (RBFS)
and the RL-based sampling policy under varying noise
conditions for the coupled “fast” and “slow” Van der Pol
(VDP) systems. FIGS. 15A, 15C, and 15E depict the
samples for the fast VDP system under NSR settings of 0%,
0.1%, and 1% respectively. FIGS. 15B, 15D, and 15F mirror
these NSR settings for the “slow” VDP system. In each
scatter plot, the squares represent samples obtained from the
RL-based method, and the circles represent samples
obtained from the RBFS. The black trajectories were recon-
structed from the simulated samples derived from solving
ODE:s of the coupled “fast” and “slow” VDP systems. The
box depicts the high-resolution of the trajectories and
samples.

[0103] FIGS. 15A-15E visualize the similarities in the
sampling strategies of the randomized brute-force search
(RBFS), deemed as the optimal approach, and the RL-based
sampling policy under varying noise conditions for the
coupled fast and slow Van der Pol (VDP) systems. In the
noise-free scenario (NSR=0%), FIGS. 15A and 15B, both
the RL-based and the randomized brute-force search meth-
ods primarily maintained or doubled T, reflecting a mutual
understanding of the system’s dynamics and confirming the
RL-based approach’s strategy in mimicking the optimal
strategy. For the low noise level (NSR=0.1%), shown in
FIGS. 15C and 15D, the RL-based policy’s adaptability
became evident. It mirrored the RBFS strategy of maintain-
ing or doubling the sampling period for the fast and slow
dynamics. This indicates the RL-based method’s ability to
adjust to system complexity changes, matching the sampling
actions of the optimal approach. With a further increase in
noise level to NSR=1%, the RL-based sampling policy
continued to mirror the optimal approach effectively, as seen
in FIGS. 15E and 15F. Both strategies primarily maintained
or doubled the sampling period, reflecting their adaptability
to the increased system complexity introduced by higher
noise levels.

[0104] In addition, the Van der Pol (VDP) system is a
nonlinear oscillator that exhibits a limit cycle behavior,
which means that its state variables oscillate around a stable
equilibrium. In the VDP system, there is an “excitation” or
“bursting” region characterized by rapid changes in the
system’s state variables. This region typically occurs when
the system is initially perturbed or excited and can exhibit
chaotic or irregular behavior. On the other hand, the “limit
cycle” region is characterized by slower oscillations, where
the dynamics are more predictable and less chaotic. In FIGS.
15A-15F, both RBFS and RL-based sampling approaches
align with the inherent properties of the VDP system. In the
limit cycle region, the system exhibits periodic oscillations,
thereby necessitating more frequent sampling for an accu-
rate depiction of the system dynamics. On the contrary, the
transient region is characterized by a rapid movement
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towards the limit cycle, which may not necessitate a dense
sampling strategy due to its short duration and quick con-
vergence to the stable state. Therefore, it highlights the
method’s ability to capture and adapt to the complexities of
multi-scale dynamical systems.

[0105] Example 2: A noisy fast Van der Pol oscillator
coupled with a noisy slow Lorenz system: In this example,
a more complex coupled system that involved a fast Van der
Pol oscillator and a slow Lorenz system was considered. The
Van der Pol oscillator represents a system with nonlinear
dynamics and a limit cycle, while the Lorenz system,
famous for its butterfly-like chaotic behavior, introduces an
additional level of complexity. The interplay between the
oscillatory behavior of the fast dynamics and the chaotic
behavior of the slow dynamics makes the problem more
challenging and provides a robust test for the sampling
algorithms. The coupled system of differential equations was
as follows:

TfastX1 = X2 +€C1X3 + €uy

. 2
T fastX2 = .“1(1 —X1)Xz — X1t Eyy

TsiowX3 = O (X4 = X3) + C2X1 + &,
TsiowXs = X3(0 = X5) — X4 + &,

TsiowXs = X3X4 = X5 + &,

The system parameters included the coupling constants
¢,=0.01, c,=10, the coefficients =10, p=28, p=8/3, and
p=5. The choice of these parameters was made to ensure that
the system dynamics remain interesting and non-trivial,
while the influence of both the fast and slow variables is
significant. Here, €,~N ©, n,). €, ~N ©, n,). €,~N 0,
N, &.~N (0, m,), and €, ~ 3 (0, M,) are Gaussian noise
terms with zero mean. The initial condition was set to
X,=(2.0,—8.8.27), which represents the starting point of the
system. In the subsequent section, the sampling strategies on
this system was implemented and evaluated with noise
levels (NSR) at 0%, 0.1%, and 1%.

[0106] Implementing and evaluating the sampling poli-
cies: Following the same methodological process as with the
previous two noisy coupled Vander Pol oscillators, the 4
sampling strategies were evaluated on the noisy coupled fast
Van der Pol oscillator and noisy slow Lorenz system. FIGS.
16A-16C illustrate the performance outcomes across the
same set of evaluation metrics under varying NSR levels. As
the metrics and methods of evaluation are identical to those
in Example 1, the same notation and interpretation are
maintained FIG. 16A-16C show comparative analysis of
sampling strategies on the coupled Van der Pol oscillator and
slow Lorenz system.

[0107] Under noise-free conditions (NSR=0%, FIG. 16A),
while the brute-force search yielded the smallest sample size
of 51, it was closely followed by the uniform and greedy
sampling strategies which achieved sample sizes of 55. The
RL strategy, however, maintained a balance with a slightly
larger sample size of 68. The RL strategy and the brute-force
search achieved the smallest €,,,, , indicating the best fit to
the true model. Notably, the greed}y/ sampling strategy led in
log(x(®)) and log(tr(I)) values, indicating the best-condi-
tioned ® matrix and the most informative sample set.
However, the brute-force search demanded a significantly
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higher elapsed time. In FIG. 16B, upon introducing a low
noise level (NSR=0. l%) all strategies showed an increase in
EstvD, and sample size, and a decrease in log(k(®)) and
log(tr(I)) values. Among them, the RL. approach exhibited
the least increase in Esvp, and sample size and the least
decrease in log(K(G))) and log(tr()), demonstrating its
robustness against noise. Despite the noise, the convergence
rate for the RL strategy was 91%, significantly higher than
the uniform sampling method, which fell to 1%.

[0108] When the noise level was increased to NSR=1%
(FIG. 16C), every method experienced further escalation in
esvp. and sample size, and a drop in log(k(®)) and log(tr
D). The RL approach however, retained the lowest rise in
Esivp, and sample size and the smallest reduction in log(i
(©) and log(tr(I)). Moreover, it had an 84% convergence
rate, the highest among the strategies, while the uniform
sampling method could only achieve 85%. Regarding time-
related metrics at different noise levels, while the brute-force
search yielded the smallest sample sizes and low EsinD,; it
used the longest elapsed times. Conversely, the RL strategy
provided a balance of relatively small sample sizes, com-
petitive EstnD, log(x(0®)), log(tr(I)) values, high conver-
gence rates, and significantly shorter elapsed times than the
randomized brute-force search. To further illuminate the
behavior of the sampling strategies, FIGS. 17A-17E com-
pare the samples obtained from the RL-based policy and the
randomized brute-force search—the most efficient strategy-
under three noise conditions (NSR=0%, 0.1%, and 1%).
[0109] FIGS. 17A-17E show visualization of samples
acquired through the RBFS and RL.-based techniques for the
“fast” Van der Pol oscillator coupled with the “slow” Lorenz
system under distinct noise scenarios. Squares and circles in
FIGS. 17A, 17C, and 17E demonstrate samples from the
RL-based method and RBFS respectively, for the “fast” Van
der Pol oscillator at NSR levels of 0%, 0.1%, and 1%.
Similarly, FIGS. 17B, 17D, and 17F use the same symbols
to showcase the “slow” Lorenz system samples under iden-
tical NSR conditions. The black trajectories were recon-
structed from the simulated samples derived from solving
ODEs of the multi-scale coupled system. The box depicts
the high-resolution of the trajectories and samples.

[0110] For the noise-free scenario (NSR=0%, FIGS. 17A
and 17B), both RL and RBFS strategies aligned by opting to
keep the sampling period consistent. This signified a shared
approach in both strategies, indicating the tendency to adapt
to slower system dynamics. In FIGS. 17C and 17D, with a
slight increase in noise level (NSR=0.1%), both strategies
continued to uphold this decision, suggesting a common
resilience against minor disturbances. This trend continued
even at the higher noise level (NSR=1%, FIGS. 17E and
17F), revealing the robustness of both methods when faced
with increased uncertainty. Intriguingly, there were sampling
actions where the RL strategy deviated from the RBFS
strategy. Under certain circumstances, the RL strategy chose
to decrease the sampling period, an action that the RBFS
strategy did not take. This decision underscores an extra
layer of flexibility inherent to the RL strategy, highlighting
its adaptability to swiftly changing system dynamics.
[0111] In this example, the VDP oscillator part of the
system maintains its inherent ‘limit cycle’ and ‘excitation’
dynamics, while the slower Lorenz system adds another
layer of complexity with its chaotic behavior. Notably, both
the RL and RBFS strategies cleverly adapted to these
dynamics. Similar to the results of the previous numerical
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study, in the “limit cycle” region of the VDP oscillator, the
strategies used a higher sampling frequency to accurately
capture the persistent oscillations. Conversely, during the
“excitation” phase of the VDP oscillator, characterized by
swift progression towards the limit cycle, the strategies
opted for less dense sampling. The “slow” Lorenz system
added further intricacy with its chaotic dynamics and slower
time scale. Despite this, the R[ and RBFS strategies adeptly
adjusted the sampling methods to capture the complex
interactions between the two systems. Both strategies con-
tinued to exhibit less intensive sampling in regions where
the Lorenz system’s dynamics remain relatively unchanged,
while intensifying their sampling frequency in regions of
chaotic behavior. As the noise scenario increased, both the
RL and RBFS strategies demonstrate impressive adaptabil-
ity. Despite the increased noise, the strategies maintained
their characteristic frequent sampling in the limit cycle
region and less dense sampling during the excitation phase
of the VDP oscillator. At the same time, they adjusted their
sampling methods to capture the intricate dynamics of the
slower Lorenz system.

[0112] The disclosure is situated at the intersection of
system identification, sampling strategy optimization, and
machine learning. In the disclosure a comprehensive evalu-
ation of various sampling strategies was conducted, specifi-
cally uniform sampling, greedy sampling. RBFS, and RL.-
based sampling, for SINDy algorithm when applied to noisy
multi-scale coupled deterministic systems. SINDy could
succinctly express the governing equations of a dynamical
system from noisy data. However, their work’s exploration
of sampling strategies was limited, mainly employing uni-
form or random sampling, leaving room for further optimi-
zation. A burst sampling method was proposed for the
SINDy algorithm that focused on discovering nonlinear
multi-scale dynamical systems from data. The disclosure
investigates the potential of deep reinforcement learning for
optimizing the sampling strategy in SINDy algorithm. While
‘relied on more traditional mathematical approaches to
sample selection, the disclosed method leverages the power
of reinforcement learning to choose the most informative
samples under various noise scenarios adaptively.

[0113] The comprehensive results provide us with impor-
tant implications about the applicability and performance of
these methods in different NSR situations. Uniform sam-
pling emerged as an efficient strategy in terms of computa-
tional speed across all NSR scenarios. However, the down-
side of this method is its relative need for accuracy in
generating SINDy models, as suggested by higher modeling
errors. Therefore, uniform sampling might be beneficial
when an approximate understanding of system dynamics is
needed, but not necessarily perfect, and some degree of
modeling error is tolerable. On the other hand, greedy
sampling performed impressively in minimizing sample
sizes, especially under noise-free conditions. This attribute
can be highly beneficial when data collection is costly,
time-consuming, or challenging. Nevertheless, the method’s
performance markedly deteriorated under noisy conditions,
indicating that its applicability might be limited to ideal or
controlled environments. The RBFS method employs a
random yet comprehensive search across the sample space
to identify critical data points at high computational cost,
allowing for efficient capture of the crucial dynamics of the
system. The results indicate that the RBFS method retains
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robust performance even in various noise conditions, mak-
ing it a versatile choice for dealing with complex, real-world
scenarios.

[0114] The performance comparison of the four different
sampling strategies uncovers some interesting insights
regarding their respective capabilities and potential applica-
tion areas. Uniform sampling exhibited impressive speed in
processing time across all NSR scenarios, which under-
scores its utility in applications where swift computation is
a priority. However, it underperformed in terms of generat-
ing accurate SINDy models, as indicated by higher errors.
This characteristic makes it more suitable for contexts where
an immediate, although not perfect, understanding of system
dynamics is desirable, and a certain degree of modeling error
is tolerable. Contrastingly, greedy sampling excelled in
minimizing sample sizes under noise-free conditions, an
attribute that can prove beneficial in cases where data
collection is costly or otherwise challenging. Despite this
advantage, its efficacy noticeably declined in noisy environ-
ments. This suggests that, while the Greedy method can be
highly efficient under ideal conditions, its performance
might be compromised when dealing with real-world sys-
tems that often include some level of noise. Both the
RL-based sampling strategy and the RBFS method stood out
for their ability to better capture system dynamics, as
substantiated by their lower log(k(®)) and log(tr(I)) values.
These metrics signify the generated samples’ diversity and
informativeness, and lower values indicate a more compre-
hensive and accurate representation of the underlying sys-
tem dynamics. Therefore, these two strategies are more
adept at dealing with complex or high-dimensional systems
where capturing a wider range of behaviors is crucial. The
RL-based sampling strategy, which is the novel contribution
of the disclosed method and system, exhibited robust and
efficient performance across a range of noise conditions. The
RL-based sampling strategy adapts and adjusts to different
scenarios, showing a robust performance, whether in the
presence or absence of noise. Its key strength lies in its
ability to learn and adapt to the system’s dynamics, enabling
it to efficiently sample crucial points in its trajectory, thus
generating accurate SINDy models.

[0115] In conclusion, the disclosure contributes signifi-
cantly to the field of multi-scale system identification, shed-
ding light on the complexity of modeling such systems and
the need for efficient, data-driven algorithms. a deep
Q-learning based reinforcement learning framework was
applied to capture this multi-scale complexity. The agent’s
reward signals were designed to reflect the complex dynam-
ics, enabling the agent to sample data optimally, thereby
revealing crucial multi-scale behaviors of the system. In the
disclosed methodology, Sparse Identification of Nonlinear
Dynamics (SINDy) played a key role in discovering and
predicting system dynamics. The disclosed framework was
assessed in two numerical studies: (1) the coupled fast and
slow Van der Pol oscillator, and (2) a noisy fast Van der Pol
oscillator coupled with a noisy slow Lorenz system. In each
scenario, the reinforcement learning model showcased its
ability to autonomously determine the optimal data sam-
pling strategy to capture the multi-scale dynamics effec-
tively. Importantly, the learned policy was intricate, assisting
in addressing challenges of non-convergence, reducing the
sample size, and improving SINDy’s robustness to noise.
These results constitute a significant advancement in the
development of data-efficient reinforcement learning meth-
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ods for multi-scale complex systems. The potential impli-
cations of the disclosure extend beyond system identifica-
tion, with potential applications in diverse fields where
understanding and manipulating complex system dynamics
are paramount. By facilitating a more accurate understand-
ing and efficient control of these systems, the disclosure
paves the way for future advancements in multi-scale mod-
eling.

[0116] In the foregoing specification, implementations of
the disclosure have been described with reference to specific
example implementations thereof. It will be evident that
various modifications may be made thereto without depart-
ing from the broader spirit and scope of implementations of
the disclosure as set forth in the following claims. The
specification and drawings are, accordingly, to be regarded
in an illustrative sense rather than a restrictive sense.

What is claimed is:

1. A method for obstructive sleep apnea detection com-
prising:

obtaining a white noise contaminated sensor signal for a

patient;

extracting a feature based on the white noise contami-

nated sensor signal;

determining a matrix based on the feature;

determining an intermittent forcing signal based on the

matrix;

determining an overcomplete representation of the inter-

mittent forcing signal; and

generating an obstructive sleep apnea indication based on

the overcomplete representation and a threshold.

2. The method of claim 1, wherein the white noise
contaminated sensor data comprises an electrocardiogram
signal.

3. The method of claim 1, wherein the obtaining of the
white noise contaminated sensor signal comprises:

receiving a sensor signal; and

adding white noise in the sensor signal for the white noise

contaminated sensor signal.

4. The method of claim 1, further comprising:

determining a level of the white noise to make the

intermittent forcing signal a Gaussian distribution.
5. The method of claim 1, wherein the feature comprises
a heart rate variability feature to quantify time intervals
between adjacent heartbeats.
6. The method of claim 1, wherein the matrix comprises
a window length of the feature and a number of points in a
trajectory of the feature.
7. The method of claim 1, further comprising:
determining a burst duration and an inter-burst duration
between two adjacent burst durations; and

determining an obstructive sleep apnea characteristic for
the patient based on the burst duration and the inter-
burst duration.

8. The method of claim 7, wherein the two adjacent burst
durations comprise a first burst duration and a second burst
duration, and

wherein the inter-burst duration comprises a duration

between an end time of the first burst duration and a
starting time of the second burst duration.

9. The method of claim 1, wherein the overcomplete
representation is determined by applying a continuous wave-
let transform to the intermittent forcing signal.
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10. The method of claim 9, wherein the continuous
wavelet transform is defined as:

1 i _(t—b
Xyla, b) = ml_l/zj:oo VV(I)W(T)W,

where X, is the continuous wavelet transform, W(t) is a
continuous mother wavelet function and Y is a complex
conjugate, a is a scale, b is a translational value, and v (t) is
the intermittent forcing signal.

11. The method of claim 10, wherein the threshold is
defined as:

1X,.(a, b)I2y .y maxIX, (a, b)l, where Y+ is a tuning

parameter.

12. The method of claim 1, wherein the obstructive sleep
apnea indication comprises a binary indication indicative of
normal breathing or disordered breathing.

13. The method of claim 1, further comprising:

receiving a sensor signal;

determining multi-scale system dynamics; and

adaptively sampling the sensor signal based on the multi-

scale system dynamics for the white noise contami-
nated sensor signal.

14. A system for obstructive sleep apnea detection com-
prising:

a memory; and

a processor communicatively coupled to the memory;

wherein the memory stores a set of instructions which,

when executed by the processor, causes the processor

to:

obtain a white noise contaminated sensor signal for a
patient;

extract a feature based on the white noise contaminated
sensor signal;

determine a matrix based on the feature;

determine an intermittent forcing signal based on the
matrix;

Sep. 26, 2024

determine an overcomplete representation of the inter-
mittent forcing signal; and

generate an obstructive sleep apnea indication based on
the overcomplete representation and a threshold.

15. The system of claim 14, wherein the white noise
contaminated sensor data comprises an electrocardiogram
signal.

16. The system of claim 14, wherein the feature comprises
a heart rate variability feature to quantify time intervals
between adjacent heartbeats.

17. The system of claim 14, wherein the overcomplete
representation is determined by applying a continuous wave-
let transform to the intermittent forcing signal.

18. The system of claim 17, wherein the continuous
wavelet transform is defined as:

t—b
a

1 bl _
ol b= g f A v,(ow( )dz,

where X, is the continuous wavelet transform, Wy(t) is a
continuous mother wavelet function and Y is a complex
conjugate, a is a scale, b is a translational value, and v (f) is
the intermittent forcing signal.
19. The system of claim 18, wherein the threshold is
defined as:
IX,.(a, b)l2y - maxiX, (a, b)l, where 0,5 is a tuning
parameter.
20. The system of claim 14, wherein the set of instructions
further causes the processor to:
receive a sensor signal;
determine multi-scale system dynamics; and
adaptively sample the sensor signal based on the multi-
scale system dynamics for the white noise contami-
nated sensor signal.

* * * * *



