US 20240338329A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2024/0338329 A1

Adler et al.

43) Pub. Date: Oct. 10, 2024

(54)

(71)
(72)

(73)

@

(22)

(63)

(60)

260

INTEGRATED CIRCUIT GENERATION
WITH IMPROVED INTERCONNECT

Applicant: SiFive, Inc., Santa Clara, CA (US)

Inventors: Robert P. Adler, Santa Clara, CA (US);
David Parry, San Mateo, CA (US);
Rick H. Y. Chen, San Mateo, CA (US);
Henry Cook, Berkeley, CA (US)

Assignee: SiFive, Inc., Santa Clara, CA (US)

Appl. No.: 18/747,410

Filed: Jun. 18, 2024

Related U.S. Application Data

Continuation of application No. PCT/US2022/

051122, filed on Nov. 29, 2022.

Provisional application No. 63/292,882, filed on Dec.
22, 2021.

/- 202

Publication Classification

Int. Cl1.
GoO6r 13/16
GO6F 12/0888
U.S. CL
CPC ...

(51)
(2006.01)
(2006.01)
(52)
GOGF 13/1668 (2013.01); GOGF 12/0888

(2013.01); GO6F 2212/603 (2013.01)

&7

Disclosed are systems and methods that include accessing
design parameters to configure an integrated circuit design.
The integrated circuit design may include a transaction
source or processing node to be included in an integrated
circuit. The transaction source or processing node may be
configured to transmit memory transactions to memory
addresses. A compiler may compile the integrated circuit
design with the transaction source or processing node to
generate a design output. The design output may be config-
ured to route memory transactions based on their targeting
cacheable or non-cacheable memory addresses. The design
output may be used to manufacture an integrated circuit.

ABSTRACT

/2]4 /218

NETWORK
PROCESSOR PERIPHERALS COMMUNICATION
INTERFACE
/204
216 220
208 s a
some | [o
: SOURCE INTERFACE
210
APPLICATION /
DATA
212
OPERATING /
SYSTEM

\ 206

—
- I "OId
b
R
o)
e
>
=
o
>
o
wn
= TANLONYLSVIANI
IOIAMAS NOISHd
- LINDVUID AALVYOTLNI
- \
(=]
= 011
3
K-
wn
-
o
>
o
=)
3 WAAYHS WHAYES
< | wmanuovannvw [. __ AWA/VOdA /
0¢1
=] 0zl
£ | 901
[
b |
=
= |
=W
= \
2
5 L — — — —p| YIA¥ES ONLLSAL NODITIS
E \ (S)LINDEID v
« AALVIDALNI
= %T\ |
] i
z %TK 001

US 2024/0338329 Al

Oct. 10, 2024 Sheet 2 of 7

Patent Application Publication

¢ O

ADOVAEALINI
q4dsn

907 /

N

INALSAS
DNILVYddO

(44

~

40¥N0S
HIMOd

01¢

vivd
NOILLVOI'lddV

~

SNOILONYLSNI
HTdVILOO0dXd

807
077 K 917 &
14114 K
AOVAYHLINI
NOLLVOINOININOD STVYdHdIYAd d0SSdD00dd
AHOMLAN

wﬂm\\

14 ¥4 k

07 K

007

Patent Application Publication Oct. 10, 2024 Sheet 3 of 7 US 2024/0338329 A1

302

ACCESS A DESIGN PARAMETERS DATA STRUCTURE TO /
CONFIGURE AN INTEGRATED CIRCUIT DESIGN

304
ACCESS METADATA ASSOCIATED WITH THE INTEGRATED /
CIRCUIT DESIGN
306

COMPILE THE INTEGRATED CIRCUIT DESIGN TO GENERATE j
A DESIGN OUTPUT WITH IMPROVED INTERCONNECT

l 308

STORE AND/OR TRANSMIT THE DESIGN OUTPUT /

FIG. 3

US 2024/0338329 Al

Oct. 10, 2024 Sheet 4 of 7

Patent Application Publication

b "OId

JALNO™Y NOILDVSNVIL AGNODIS

ovy

09r

]

oLy
. AHOVD
oy
\'\\\.\.\|\\.|,1
~ \
Os¥ YALNOY
NOILDVSNVHL
. LS4
0Tp
] FOUNOS
e NOLLOVSNVYL
01p

US 2024/0338329 Al

Oct. 10,2024 Sheet 5 of 7

Patent Application Publication

»
S "OIA
P THOVD
0€s
P O/1 AAddVIN AdOWHIN
oS P TOYLNOD FHOVD
07S
JALN0Y MALNOY
NOLLOVSNV Y.L QUIHL o . \.m\\/ NOILOVSNVYL ANOOIS
ST YALNOY NOLLOVSNVIL 1Suld
098
w \\)/
01S
| vHJON | cddoN 7 AAON | tdaon
yd ONISSTOOUd /] ONISSADONUd /7 oNISSEDOUd 7] oNISSADONd
aoss 008 q0ss Voss J

00s

US 2024/0338329 Al

Oct. 10,2024 Sheet 6 of 7

Patent Application Publication

9 O

059
(13NVY) FHOVD
T O/1 AAddVIN LJOWAN
0+9 Vo TOYILNOD dHOVD
029
MALNOY (FANIE JINVE HLIM) 491004
NOILLOVSNV YL QUIHL \/% 0 oL @\\/ NOLLOVSNVEL ANODAS
21 YALOOY NOLLOVSNVYL 1S¥14
099
— \)//
019
| pHJON] ¢ AAON 7 AAON I AAON
e ONISSEOOUd /7] ONISSTOOU 7] ONISSHOONd /] ONISSIDOU
aos9 D059 d0s9 V059 J

009

US 2024/0338329 Al

Oct. 10,2024 Sheet 7 of 7

Patent Application Publication

L O

\E‘? L 0€L
i
(I MINVE) HHOVD
\/ \/ > \\/ \\/
8 9 S 4 £ I
T TOULNOD HHOVD
0ZL
OINN)) e OININ N Y Y Y
H | D g \%
f q
Yo Z¥4ISNID P RS ERENAEN)
q401L VOIL

00L

US 2024/0338329 Al

INTEGRATED CIRCUIT GENERATION
WITH IMPROVED INTERCONNECT

CROSS-REFERENCES TO RELATED
APPLICATIONS

[0001] This application is a continuation of International
Application No. PCT/US2022/051122, filed Nov. 29, 2022,
which claims priority to U.S. Provisional Application No.
63/292,882, filed Dec. 22, 2021, the entire contents of which
are incorporated herein by references for all purposes.

FIELD OF TECHNOLOGY

[0002] This disclosure relates generally to integrated cir-
cuits, and more specifically, to integrated circuit generation
with improved interconnect.

BACKGROUND

[0003] Integrated circuits may be designed and tested in a
multi-step process that involves multiple specialized engi-
neers performing a variety of different design and verifica-
tion tasks on an integrated circuit design. A variety of
internal or proprietary (e.g., company-specific) integrated
circuit design tool chains may be used by these engineers to
handle different parts of the integrated circuit design work-
flow of using commercial electronic design automation
(EDA) tools.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] The disclosure is best understood from the follow-
ing detailed description when read in conjunction with the
accompanying drawings. It is emphasized that, according to
common practice, the various features of the drawings are
not to scale. On the contrary, the dimensions of the various
features are arbitrarily expanded or reduced for clarity.
[0005] FIG. 1 is a block diagram of an example of a
system for facilitating generation and manufacture of inte-
grated circuits.

[0006] FIG. 2 is a block diagram of an example of a
system for facilitating generation of integrated circuits.
[0007] FIG. 3 is a flow chart of an example of a process
for facilitating integrated circuit generation with improved
interconnect.

[0008] FIG. 4 is a block diagram of an example of an
integrated circuit design with improved interconnect.
[0009] FIG. 51is a block diagram of another example of an
integrated circuit design with improved interconnect.
[0010] FIG. 6is a block diagram of another example of an
integrated circuit design with improved interconnect.
[0011] FIG. 7 is a block diagram of another example of an
integrated circuit design with improved interconnect.

DETAILED DESCRIPTION

[0012] In a computing system, a processor core may
transmit memory transactions relating to storage of data
(e.g., read and/or write requests). Certain of these memory
transactions may be cacheable in a cache, such as a private
Level 2 (L2) cache associated with the core and/or a shared
Level 3 (L3) cache associated with multiple cores. In some
situations, a performance bottleneck may occur with the
memory transactions sent to or through a cache, such as
when multiple requests are sent close in time. For example,
a cache may have a certain capacity to process and/or

Oct. 10, 2024

forward memory transactions, and a number of memory
transactions may exceed that capacity. Thus, it may be
desirable to implement a system that alleviates a perfor-
mance bottleneck associated with the cache.

[0013] Described herein are techniques that may alleviate
a performance bottleneck associated with accessing a cache,
such as a private L2 cache. In some implementations, an
integrated circuit generator may access design parameters to
configure an integrated circuit design and may access meta-
data associated with the integrated circuit design. The inte-
grated circuit design may include a transaction source (e.g.,
a processor core or a direct memory access (DMA) control-
ler) to be included in an integrated circuit, such as an
application-specific integrated circuit (ASIC) or a system on
a chip (SoC). The transaction source may be configured to
transmit multiple memory transactions to memory addresses
(e.g., read and/or write requests), such as to cacheable
memory addresses (e.g., addresses cacheable in the private
L2 cache) and/or non-cacheable memory addresses (e.g.,
addresses associated with memory-mapped /O (input/out-
put), which are not cacheable in the private [.2 cache). The
integrated circuit generator may reference the metadata
which may indicate whether a memory transaction will
target a cacheable memory address or a non-cacheable
memory address. The integrated circuit design and the
metadata may be propagated to a compiler to compile the
integrated circuit design (using the metadata) to generate a
design output (e.g., a register transfer level (RTL) data
structure, such as Verilog). The design output may express
the design as synthesizable circuitry. In the design output, a
memory transaction that targets a non-cacheable memory
address may be routed to bypass a cache associated with the
transaction source when the metadata indicates the memory
transaction will target a non-cacheable memory address.

[0014] Insome implementations, a transaction router (e.g.,
an address decoder) may be included in the design to provide
a relatively early decode of addresses associated with
memory transactions from the transaction source. The trans-
action router may be implemented in the integrated circuit to
route memory transactions to cacheable memory addresses
or non-cacheable memory addresses. Accordingly, by using
the metadata, the integrated circuit design may be optimized
to reduce circuitry associated with the integrated circuit (and
therefore reduce the size of the integrated circuit), such as by
reducing resources of the cache based on a reduction of a
number of memory transactions to be supported by the
cache. For example, the metadata may enable reducing
circuitry at downstream units used to track request sources
(e.g., a downstream unit that only sends data to the cache
could have reduced circuitry).

[0015] Also described herein are techniques that may
alleviate a performance bottleneck associated with accessing
a cache, such as a shared L3 cache. In some implementa-
tions, a system may access design parameters to configure an
integrated circuit design. The integrated circuit design may
include one or more clusters of processing nodes (with a
processing node including a transaction source, such as a
processor core or a DMA controller, and a private [.2 cache)
to be included in an integrated circuit, such as an ASIC or
an SoC. A processing node may be configured to transmit
multiple memory transactions to memory addresses (e.g.,
read and/or write requests), such as to cacheable memory
addresses (e.g., addresses cacheable in the shared L3 cache)
and/or non-cacheable memory addresses (e.g., addresses

US 2024/0338329 Al

associated with memory-mapped 1/O, which are not cache-
able in the shared [.3 cache). The integrated circuit design
may be compiled by a compiler to generate a design output
(e.g., a register transfer level (RTL) data structure, such as
Verilog). The design output may express the design as
synthesizable circuitry. The design output may include a first
transaction router (e.g., first address decoder) and a second
transaction router (e.g., second address decoder). The first
transaction router may receive memory transactions from
the processing nodes. The first transaction router may deter-
mine whether a received memory transaction is targeting a
cacheable memory address or a non-cacheable memory
address. Accordingly, the first transaction router may pro-
vide a relatively early decode of addresses associated with
memory transactions from the processing nodes. This may
provide a performance benefit for the integrated circuit by
separating possibly lower performance memory transactions
targeting non-cacheable memory addresses (e.g., addresses
associated with memory-mapped 110) from possibly higher
performance memory transactions targeting cacheable
memory addresses (e.g., addresses associated with the
cache). This may also provide a performance benefit for the
integrated circuit by preventing possibly lower performance
memory transactions targeting non-cacheable memory
addresses (e.g., the addresses associated with memory-
mapped 110) from blocking possibly higher performance
memory transactions targeting cacheable memory addresses
(e.g., the addresses associated with the cache).

[0016] The second transaction router may receive memory
transactions targeting cacheable memory addresses from the
first transaction router. The second transaction router may
determine a block of cacheable memory addresses (e.g., a
bank of cache) to route a memory transaction to cache.
Accordingly, the second transaction router may provide a
further relatively early decode of addresses to determine an
interface to route the transactions to cache. The transaction
router(s) may permit reduced circuitry associated with the
integrated circuit (and therefore a reduced size of the inte-
grated circuit) by reducing and/or shortening wires associ-
ated with routing memory transactions to cache (e.g., an
improved physical design). In some implementations, the
second transaction router may include cache bank binding
(e.g., address decoding associated with a cache bank) to
permit a further reduction of wiring between the processing
nodes and the cache. For example, in a system with eight
processing nodes and eight blocks of cacheable memory
addresses (e.g., eight banks), the second transaction router
may include cache bank binding to reduce sixty-four pos-
sible buses (e.g., a bus between each processing node and
each bank) to sixteen buses.

[0017] Insome implementations, a third transaction router
may receive memory transactions targeting non-cacheable
memory addresses from the first transaction router. The third
transaction router may route memory transactions through
an interface associated with memory-mapped I/O addresses.
In some implementations, metadata associated with the
integrated circuit design may be propagated to the compiler
to compile the integrated circuit design to generate the
design output including the transaction router(s). For
example, using the metadata may permit optimizing a pro-
cessing node.

[0018] FIG. 1 is a block diagram of an example of a
system 100 for generation and manufacture of integrated
circuits having improved interconnect. The system 100

Oct. 10, 2024

includes a network 106, an integrated circuit design service
infrastructure 110 (e.g., integrated circuit generator), a field
programmable gate array (FPGA)/emulator server 120, and
a manufacturer server 130. For example, a user may utilize
a web client or a scripting application program interface
(API) client to command the integrated circuit design ser-
vice infrastructure 110 to automatically generate an inte-
grated circuit design based on a set of design parameter
values selected by the user for one or more template inte-
grated circuit designs. In some implementations, the inte-
grated circuit design service infrastructure 110 may provide
metadata associated with the integrated circuit design. In
some implementations, the integrated circuit design service
infrastructure 110 may be configured to generate an inte-
grated circuit design like the integrated circuit design 400
shown in FIG. 4, the integrated circuit design 500 shown in
FIG. 5, the integrated circuit design 600 shown in FIG. 6,
and/or the integrated circuit design 700 shown in FIG. 7.

[0019] The integrated circuit design service infrastructure
110 may include a register-transfer level (RTL) service
module configured to generate an RTL data structure for the
integrated circuit based on a design parameters data struc-
ture. For example, the RTL service module may be imple-
mented as Scala code. For example, the RTL service module
may be implemented using Chisel (available at https.//
people.eecs.berkeley.edu/~jrb/papers/chisel-dac-2012-cor-
rected.pdf). For example, the RTL service module may be
implemented using FIRRTL (flexible intermediate represen-
tation for register-transfer level) (available at https://aspire.
eecs.berkeley.edu/wp/wp-content/uploads/2017/11/Specifi-
cation-for-the-FIRRTL-Language-Izraelevitz.pdf). For
example, the RTL service module may be implemented
using Diplomacy (available at https://carrv.github.i0/2017/
papers/cook-diplomacy-carrv2017.pdf). For example, the
RTL service module may enable a well-designed chip to be
automatically developed from a high level set of configu-
ration settings using a mix of Diplomacy, Chisel, and
FIRRTL. The RTL service module may take the design
parameters data structure (e.g., a java script object notation
(JSON) file) as input and output an RTL data structure (e.g.,
a Verilog file) for the chip.

[0020] In some implementations, the integrated circuit
design service infrastructure 110 may invoke (e.g., via
network communications over the network 106) testing of
the resulting design that is performed by the FPGA/emula-
tion server 120 that is running one or more FPGAs or other
types of hardware or software emulators. For example, the
integrated circuit design service infrastructure 110 may
invoke a test using a field programmable gate array, pro-
grammed based on a field programmable gate array emula-
tion data structure, to obtain an emulation result. The field
programmable gate array may be operating on the FPGA/
emulation server 120, which may be a cloud server. Test
results may be returned by the FPGA/emulation server 120
to the integrated circuit design service infrastructure 110 and
relayed in a useful format to the user (e.g., via a web client
or a scripting API client).

[0021] The integrated circuit design service infrastructure
110 may also facilitate the manufacture of integrated circuits
using the integrated circuit design in a manufacturing facil-
ity associated with the manufacturer server 130. In some
implementations, a physical design specification (e.g., a
graphic data system (GDS) file, such as a GDSII file) based
on a physical design data structure for the integrated circuit

US 2024/0338329 Al

is transmitted to the manufacturer server 130 to invoke
manufacturing of the integrated circuit (e.g., using manu-
facturing equipment of the associated manufacturer). For
example, the manufacturer server 130 may host a foundry
tape-out website that is configured to receive physical design
specifications (e.g., such as a GDSII file or an open artwork
system interchange standard (OASIS) file) to schedule or
otherwise facilitate fabrication of integrated circuits. In
some implementations, the integrated circuit design service
infrastructure 110 supports multi-tenancy to allow multiple
integrated circuit designs (e.g., from one or more users) to
share fixed costs of manufacturing (e.g., reticle/mask gen-
eration, and/or shuttles wafer tests). For example, the inte-
grated circuit design service infrastructure 110 may use a
fixed package (e.g., a quasi-standardized packaging) that is
defined to reduce fixed costs and facilitate sharing of reticle/
mask, wafer test, and other fixed manufacturing costs. For
example, the physical design specification may include one
or more physical designs from one or more respective
physical design data structures in order to facilitate multi-
tenancy manufacturing.

[0022] In response to the transmission of the physical
design specification, the manufacturer associated with the
manufacturer server 130 may fabricate and/or test integrated
circuits based on the integrated circuit design. For example,
the associated manufacturer (e.g., a foundry) may perform
optical proximity correction (OPC) and similar post-tape-
out/pre-production processing, fabricate the integrated cir-
cuit(s) 132, update the integrated circuit design service
infrastructure 110 (e.g., via communications with a control-
ler or a web application server) periodically or asynchro-
nously on the status of the manufacturing process, perform
appropriate testing (e.g., wafer testing), and send to a
packaging house for packaging. A packaging house may
receive the finished wafers or dice from the manufacturer
and test materials and update the integrated circuit design
service infrastructure 110 on the status of the packaging and
delivery process periodically or asynchronously. In some
implementations, status updates may be relayed to the user
when the user checks in using the web interface, and/or the
controller might email the user that updates are available.

[0023] In some implementations, the resulting integrated
circuit(s) 132 (e.g., physical chips) are delivered (e.g., via
mail) to a silicon testing service provider associated with a
silicon testing server 140. In some implementations, the
resulting integrated circuit(s) 132 (e.g., physical chips) are
installed in a system controlled by the silicon testing server
140 (e.g., a cloud server), making them quickly accessible to
be run and tested remotely using network communications
to control the operation of the integrated circuit(s) 132. For
example, a login to the silicon testing server 140 controlling
a manufactured integrated circuit(s) 132 may be sent to the
integrated circuit design service infrastructure 110 and
relayed to a user (e.g., via a web client). For example, the
integrated circuit design service infrastructure 110 may be
used to control testing of one or more integrated circuit(s)
132, which may be structured based on a design output
determined using the process 300 of FIG. 3.

[0024] FIG. 2 is a block diagram of an example of a
system 200 for facilitating generation of integrated circuits
having improved interconnect, for facilitating generation of
a circuit representation for an integrated circuit, and/or for
programming or manufacturing an integrated circuit. The
system 200 is an example of an internal configuration of a

Oct. 10, 2024

computing device. The system 200 may be used to imple-
ment the integrated circuit design service infrastructure 110,
and/or to generate a file that generates a circuit representa-
tion of an integrated circuit design like the integrated circuit
design 400 shown in FIG. 4, the integrated circuit design 500
shown in FIG. 5, the integrated circuit design 600 shown in
FIG. 6, and/or the integrated circuit design 700 shown in
FIG. 7. The system 200 can include components or units,
such as a processor 202, a bus 204, a memory 206, periph-
erals 214, a power source 216, a network communication
interface 218, a user interface 220, other suitable compo-
nents, or a combination thereof.

[0025] The processor 202 can be a central processing unit
(CPU), such as a microprocessor, and can include single or
multiple processors having single or multiple processing
cores. Alternatively, the processor 202 can include another
type of device, or multiple devices, now existing or hereafter
developed, capable of manipulating or processing informa-
tion. For example, the processor 202 can include multiple
processors interconnected in any manner, including hard-
wired or networked, including wirelessly networked. In
some implementations, the operations of the processor 202
can be distributed across multiple physical devices or units
that can be coupled directly or across a local area or other
suitable type of network. In some implementations, the
processor 202 can include a cache, or cache memory, for
local storage of operating data or instructions.

[0026] The memory 206 can include volatile memory,
non-volatile memory, or a combination thereof. For
example, the memory 206 can include volatile memory, such
as one or more dynamic random access memory (DRAM)
modules such as double data rate (DDR) synchronous
DRAM (SDRAM), and non-volatile memory, such as a disk
drive, a solid-state drive, flash memory, Phase-Change
Memory (PCM), or any form of non-volatile memory
capable of persistent electronic information storage, such as
in the absence of an active power supply. The memory 206
can include another type of device, or multiple devices, now
existing or hereafter developed, capable of storing data or
instructions for processing by the processor 202. The pro-
cessor 202 can access or manipulate data in the memory 206
via the bus 204. Although shown as a single block in FIG.
2, the memory 206 can be implemented as multiple units.
For example, a system 200 can include volatile memory,
such as random access memory (RAM), and persistent
memory, such as a hard drive or other storage.

[0027] The memory 206 can include executable instruc-
tions 208, data, such as application data 210, an operating
system 212, or a combination thereof, for immediate access
by the processor 202. The executable instructions 208 can
include, for example, one or more application programs,
which can be loaded or copied, in whole or in part, from
non-volatile memory to volatile memory to be executed by
the processor 202. The executable instructions 208 can be
organized into programmable modules or algorithms, func-
tional programs, codes, code segments, or combinations
thereof to perform various functions described herein. For
example, the executable instructions 208 can include
instructions executable by the processor 202 to cause the
system 200 to automatically, in response to a command,
generate an integrated circuit design and associated test
results based on a design parameters data structure. The
application data 210 can include, for example, user files,
database catalogs or dictionaries, configuration information

US 2024/0338329 Al

or functional programs, such as a web browser, a web server,
a database server, or a combination thereof. The operating
system 212 can be, for example, Microsoft Windows®,
macOS®, or Linux®; an operating system for a small
device, such as a smartphone or tablet device; or an oper-
ating system for a large device, such as a mainframe
computer. The memory 206 can comprise one or more
devices and can utilize one or more types of storage, such as
solid-state or magnetic storage.

[0028] The peripherals 214 can be coupled to the proces-
sor 202 via the bus 204. The peripherals 214 can be sensors
or detectors, or devices containing any number of sensors or
detectors, which can monitor the system 200 itself or the
environment around the system 200. For example, a system
200 can contain a temperature sensor for measuring tem-
peratures of components of the system 200, such as the
processor 202. Other sensors or detectors can be used with
the system 200, as can be contemplated. In some implemen-
tations, the power source 216 can be a battery, and the
system 200 can operate independently of an external power
distribution system. Any of the components of the system
200, such as the peripherals 214 or the power source 216,
can communicate with the processor 202 via the bus 204.

[0029] The network communication interface 218 can also
be coupled to the processor 202 via the bus 204. In some
implementations, the network communication interface 218
can comprise one or more transceivers. The network com-
munication interface 218 can, for example, provide a con-
nection or link to a network, such as the network 106 shown
in FIG. 1, via a network interface, which can be a wired
network interface, such as Ethernet, or a wireless network
interface. For example, the system 200 can communicate
with other devices via the network communication interface
218 and the network interface using one or more network
protocols, such as Ethernet, transmission control protocol
(TCP), Internet protocol (IP), power line communication
(PLC), Wi-Fi, infrared, general packet radio service (GPRS),
global system for mobile communications (GSM), code
division multiple access (CDMA), or other suitable proto-
cols.

[0030] A user interface 220 can include a display; a
positional input device, such as a mouse, touchpad, touch-
screen, or the like; a keyboard; or other suitable human or
machine interface devices. The user interface 220 can be
coupled to the processor 202 via the bus 204. Other interface
devices that permit a user to program or otherwise use the
system 200 can be provided in addition to or as an alterna-
tive to a display. In some implementations, the user interface
220 can include a display, which can be a liquid crystal
display (LCD), a cathode-ray tube (CRT), a light emitting
diode (LED) display (e.g., an organic light emitting diode
(OLED) display), or other suitable display. In some imple-
mentations, a client or server can omit the peripherals 214.
The operations of the processor 202 can be distributed
across multiple clients or servers, which can be coupled
directly or across a local area or other suitable type of
network. The memory 206 can be distributed across multiple
clients or servers, such as network-based memory or
memory in multiple clients or servers performing the opera-
tions of clients or servers. Although depicted here as a single
bus, the bus 204 can be composed of multiple buses, which
can be connected to one another through various bridges,
controllers, or adapters.

Oct. 10, 2024

[0031] A non-transitory computer readable medium may
store a circuit representation that, when processed by a
computer, is used to program or manufacture an integrated
circuit. For example, the circuit representation may describe
the integrated circuit specified using a computer readable
syntax. The computer readable syntax may specify the
structure or function of the integrated circuit or a combina-
tion thereof. In some implementations, the circuit represen-
tation may take the form of a hardware description language
(HDL) program, a register-transfer level (RTL) data struc-
ture, a flexible intermediate representation for register-trans-
fer level (FIRRTL) data structure, a Graphic Design System
1T (GDSII) data structure, a netlist, or a combination thereof.
In some implementations, the integrated circuit may take the
form of a field programmable gate array (FPGA), applica-
tion specific integrated circuit (ASIC), system-on-a-chip
(SoC), or some combination thereof. A computer may pro-
cess the circuit representation in order to program or manu-
facture an integrated circuit, which may include program-
ming a field programmable gate array (FPGA) or
manufacturing an application specific integrated circuit
(ASIC) or a system on a chip (SoC). In some implementa-
tions, the circuit representation may comprise a file that,
when processed by a computer, may generate a new descrip-
tion of the integrated circuit. For example, the circuit
representation could be written in a language such as Chisel,
an HDL embedded in Scala, a statically typed general
purpose programming language that supports both object-
oriented programming and functional programming.

[0032] In an example, a circuit representation may be a
Chisel language program which may be executed by the
computer to produce a circuit representation expressed in a
FIRRTL data structure. In some implementations, a design
flow of processing steps may be utilized to process the
circuit representation into one or more intermediate circuit
representations followed by a final circuit representation
which is then used to program or manufacture an integrated
circuit. In one example, a circuit representation in the form
of a Chisel program may be stored on a non-transitory
computer readable medium and may be processed by a
computer to produce a FIRRTL circuit representation. The
FIRRTL circuit representation may be processed by a com-
puter to produce an RTL circuit representation. The RTL
circuit representation may be processed by the computer to
produce a netlist circuit representation. The netlist circuit
representation may be processed by the computer to produce
a GDSII circuit representation. The GDSII circuit represen-
tation may be processed by the computer to produce the
integrated circuit.

[0033] In another example, a circuit representation in the
form of Verilog or VHDL may be stored on a non-transitory
computer readable medium and may be processed by a
computer to produce an RTL circuit representation. The RTL
circuit representation may be processed by the computer to
produce a netlist circuit representation. The netlist circuit
representation may be processed by the computer to produce
a GDSII circuit representation. The GDSII circuit represen-
tation may be processed by the computer to produce the
integrated circuit. The foregoing steps may be executed by
the same computer, different computers, or some combina-
tion thereof, depending on the implementation.

[0034] FIG. 3 is a flow chart of an example of a process
300 for facilitating integrated circuit generation with
improved interconnect. The process 300 may include

US 2024/0338329 Al

accessing 302 a design parameters data structure to config-
ure an integrated circuit design; accessing 304 metadata
associated with the integrated circuit design; compiling 306
the integrated circuit design to generate a design output;
and/or storing and/or transmitting 308 the integrated circuit
design. For example, the process 300 may be implemented
using the system 100 shown in FIG. 1 and/or the system 200
shown in FIG. 2. For example, the process 300 may be
implemented, at least in part, to generate the integrated
circuit design 400 shown in FIG. 4, the integrated circuit
design 500 shown in FIG. 5, the integrated circuit design 600
shown in FIG. 6, and/or the integrated circuit design 700
shown in FIG. 7.

[0035] The process 300 may include accessing 302 a
design parameters data structure to configure an integrated
circuit design. For example, the integrated circuit design
service infrastructure 110 shown in FIG. 1 could have the
design parameters data structure stored as a first JSON file.
For example, configuring the integrated circuit design could
include executing Scala code to read the design parameters
data structure and dynamically generate a circuit graph. In
some implementations, configuring the integrated circuit
design could include invoking a Diplomacy package in
Chisel to determine a bus protocol for the integrated circuit.
The integrated circuit design may be propagated to a com-
piler to compile the integrated circuit design to generate a
design output. The design output may be used to build an
integrated circuit, such as an ASIC or an SoC.

[0036] In some implementations, the integrated circuit
design may include a transaction source (e.g., a processor
core or a DMA controller) to be included in the integrated
circuit. The transaction source may be configured to transmit
multiple memory transactions to memory addresses (e.g.,
read and/or write requests), such as to cacheable memory
addresses (e.g., addresses cacheable in a private L2 cache)
and/or non-cacheable memory addresses (e.g., addresses
associated with memory-mapped 1/O, which are not cache-
able in a private 1.2 cache). In some implementations, the
integrated circuit design may include one or more transac-
tion routers (e.g., address decoders). For example, a trans-
action router may be implemented in the integrated circuit to
route memory transactions to cacheable memory addresses
and/or non-cacheable memory addresses.

[0037] In some implementations, the integrated circuit
design may include one or more clusters of processing nodes
(with a processing node including a transaction source, such
as a processor core or a DMA controller, and a private [.2
cache) to be included in the integrated circuit. A processing
node may be configured to transmit multiple memory trans-
actions to memory addresses (e.g., read and/or write
requests), such as to cacheable memory addresses (e.g.,
addresses cacheable in the shared L3 cache) and/or non-
cacheable memory addresses (e.g., addresses associated
with memory-mapped 1/O, which are not cacheable in the
shared L3 cache).

[0038] The process 300 may also include accessing 304
metadata associated with the integrated circuit design. For
example, the integrated circuit design service infrastructure
110 shown in FIG. 1 could have the metadata stored as a
second JSON file. For example, configuring the integrated
circuit design by executing the Scala code and/or by invok-
ing the Diplomacy package in Chisel may produce metadata
associated with the integrated circuit design. The metadata
may include information used by the software to construct

Oct. 10, 2024

the hardware associated with the design. In some implemen-
tations, the metadata may indicate whether a memory trans-
action (e.g., transmitted by a transaction source) will target
a cacheable memory address or a non-cacheable memory
address. In some implementations, the metadata may permit
optimizing a processing node. In some implementations, the
metadata may be propagated to the compiler, with the
integrated circuit design, to compile the integrated circuit
design to generate the design output.

[0039] The process 300 may also include compiling 306
the integrated circuit design to generate the design output.
For example, the integrated circuit design may be compiled
to generate an RTL data structure such as Verilog. The
design output may express the integrated circuit design as
synthesizable circuitry. In some implementations, the inte-
grated circuit design may be compiled with the metadata
associated with the integrated circuit design to generate the
design output. For example, the design output may be
implemented using FIRRTL. For example, the design output
may be implemented using Diplomacy. For example, the
design output may enable a well-designed chip to be auto-
matically developed from a high level set of configuration
settings using a mix of Diplomacy, Chisel, and FIRRTL. For
example, a compiler may take the design parameters data
structure (e.g., a first JSON file) as input, and in some
implementations, may take the metadata (e.g., generated by
the integrated circuit generator, such as by executing the
Scala code and/or by invoking the Diplomacy package in
Chisel, and/or from a second JSON file) as input, and
generate the design output.

[0040] In some implementations, the design output may
include a transaction router (e.g., an address decoder) to
provide a relatively early decode of addresses associated
with memory transactions from the transaction source. The
transaction router may be implemented in the integrated
circuit to route memory transactions to cacheable memory
addresses or non-cacheable memory addresses. In some
implementations, in the design output, a memory transaction
that targets a non-cacheable memory address may be routed
to bypass a cache associated with the transaction source
when the metadata indicates the memory transaction will
target a non-cacheable memory address.

[0041] In some implementations, the design output may
include a first transaction router (e.g., first address decoder)
and a second transaction router (e.g., second address
decoder). The first transaction router may receive memory
transactions from the processing nodes. The first transaction
router may determine whether a received memory transac-
tion is targeting a cacheable memory address or a non-
cacheable memory address. The second transaction router
may receive memory transactions targeting cacheable
memory addresses from the first transaction router. The
second transaction router may determine a block of cache-
able memory addresses (e.g., a bank of cache) to route a
memory transaction to cache. In some implementations, the
second transaction router may include cache bank binding
(e.g., address decoding associated with a cache bank) to
permit a further reduction of wiring between the processing
nodes and the cache. In some implementations, a third
transaction router may receive memory transactions target-
ing non-cacheable memory addresses from the first transac-
tion router. The third transaction router may route memory
transactions through an interface associated with memory-
mapped /O addresses.

US 2024/0338329 Al

[0042] The process 300 may also include storing and/or
transmitting 308 the design output compiled from the inte-
grated circuit design (and in some implementations, from
the metadata associated with the integrated circuit design).
The design output may be stored for use in subsequent
operations, such as synthesis, placement and routing, imple-
mentation of clock trees, and/or simulation analysis. Addi-
tionally, the design output may be transmitted for manufac-
turing of an integrated circuit, such as an ASIC or an SoC.

[0043] FIG. 4 is a block diagram of an example of an
integrated circuit design 400 with improved interconnect.
For example, the integrated circuit design 400 may be
generated using at least part of the process 300 shown in
FIG. 3. A system, such as the integrated circuit design
service infrastructure 110 shown in FIG. 1, may access
design parameters to configure the integrated circuit design
400. The integrated circuit design 400 may be configured to
include a transaction source 410; a first transaction router
420 (e.g., a first address decoder); a cache 430; and/or a
second transaction router 440 (e.g., a second address
decoder). In some implementations, the integrated circuit
design 400 may be a processing node, the transaction source
410 may be a processor core or a DMA controller, and/or the
cache 430 may be a private L.2 cache associated with the
transaction source 410.

[0044] The transaction source 410 may be configured to
transmit multiple memory transactions to memory addresses
(e.g., read and/or write requests). The memory transactions
may target cacheable memory addresses (e.g., addresses
cacheable in the cache 430) and/or non-cacheable memory
addresses (e.g., addresses associated with memory-mapped
1/0, which are not cacheable in the cache 430). The first
transaction router 420 may be connected to the transaction
source 410 to receive memory transactions from the trans-
action source 410. The first transaction router 420 may
provide a relatively early decode of addresses associated
with the memory transactions from the transaction source
410. Based on metadata associated with the integrated
circuit design, and more particularly, metadata associated
with the transaction source 410, the integrated circuit design
may be compiled to generate a design output that optimizes
routing of the memory transactions from the transaction
source 410. For example, the design output may configure
the first transaction router 420 to route memory transactions
targeting cacheable memory addresses to the cache 430 (in
a cache path 450) when metadata indicates the transaction
source 410 will target cacheable memory addresses (e.g., the
metadata indicates cacheability of at least one memory
address associated with the first transaction router 420). The
design output may configure the first transaction router 420
to route memory transactions targeting non-cacheable
memory addresses to the second transaction router 440 (in a
non-cache path 460 that bypasses the cache 430) when
metadata indicates the transaction source 410 will target
non-cacheable memory addresses. Additionally, memory
transactions routed to the cache 430 may be routed through
the cache 430 to the second transaction router 440 (e.g., in
a read/write through path 470), such as when reading and/or
writing to a higher level of cache, such as an L3 cache.

[0045] Accordingly, by using the metadata, a design may
be configured in which memory transactions targeting non-
cacheable memory addresses, such as memory addresses
corresponding to memory-mapped 1/O, bypass the cache
430. This may permit the integrated circuit design to be

Oct. 10, 2024

optimized, such as by reducing resources of the cache 430
based on a reduction of a number of memory transactions to
be supported by the cache 430. For example, a system may
determine in advance whether an address is cacheable or
non-cacheable (e.g., a physical memory attribute).

[0046] In some implementations, the integrated circuit
design 400 may be configured to include a third transaction
router that is separate from the first transaction router 420
and the second transaction router 440. As before, the design
output may configure the first transaction router 420 to route
memory transactions targeting cacheable memory addresses
to the cache 430 (in the cache path 450) when metadata
indicates the transaction source 410 will target cacheable
memory addresses (e.g., the metadata indicates cacheability
of at least one memory address associated with the first
transaction router 420). Memory transactions routed to the
cache 430 may be routed through the cache 430 to the
second transaction router 440 (e.g., in the read/write through
path 470), such as when reading and/or writing to a higher
level of cache, such as an L3 cache. With the third transac-
tion router, the design output may configure the first trans-
action router 420 to route memory transactions targeting
non-cacheable memory addresses to the third transaction
router (in the non-cache path 460 that bypasses the cache
430 and the second transaction router 440) when metadata
indicates the transaction source 410 will target non-cache-
able memory addresses.

[0047] In some implementations, the metadata may indi-
cate that the transaction source 410 will only send memory
transactions to cacheable memory addresses. In this imple-
mentation, the design output may configure the first trans-
action router 420 to permanently route memory transactions
from the transaction source 410 to the cache 430. In other
words, the design output may delete the non-cache path 460
and associated circuitry.

[0048] In some implementations, the metadata may indi-
cate that the transaction source 410 will only send memory
transactions to non-cacheable memory addresses. In this
implementation, the design output may configure the first
transaction router 420 to permanently route memory trans-
actions from the transaction source 410 to the second
transaction router 440 (and permanently bypass the cache
430). In other words, the design output may delete the cache
path 450 and associated circuitry.

[0049] FIG. 5is a block diagram of another example of an
integrated circuit design 500 with improved interconnect.
For example, the integrated circuit design 500 may be
generated using at least part of the process 300 shown in
FIG. 3. A system, such as the integrated circuit design
service infrastructure 110 shown in FIG. 1, may access
design parameters to configure the integrated circuit design
500. The integrated circuit design 500 may be configured to
include a cluster 510; cache control circuitry 520; a cache
530; and/or memory-mapped [/O circuitry 540. The cluster
510 may include one or more processing nodes, such as
processing nodes 550A through 550D; a first transaction
router 560 (e.g., a first address decoder); a second transac-
tion router 570 (e.g., a second address decoder); and/or a
third transaction router 580 (e.g., a third address decoder). In
some implementations, the transaction router(s) may com-
prise cross bar(s) and associated circuitry. In some imple-
mentations, the cache 530 may be an L3 cache shared by
processing nodes of one or more clusters, such as the cluster
510.

US 2024/0338329 Al

[0050] A processing node may include a transaction
source, such as a processor core or a DMA controller. In
some implementations, a processing node may include a
cache, such as a private [.2 cache. For example, a processing
node may comprise the transaction source 410, the first
transaction router 420, and/or the cache 430 shown in FIG.
4. A processing node may be configured to transmit multiple
memory transactions to memory addresses (e.g., read and/or
write requests). The memory transactions may target cache-
able memory addresses (e.g., addresses cacheable in the
cache 530) and/or non-cacheable memory addresses (e.g.,
addresses associated with memory-mapped /O, which are
not cacheable in the cache 530).

[0051] The first transaction router 560 may be connected
to the processing nodes to receive memory transactions from
the processing nodes. For example, the first transaction
router 560 may implement four bus interfaces to receive
memory transactions from the four processing nodes (e.g.,
one bus per processing node). The integrated circuit design
may be compiled to generate a design output that optimizes
routing of the memory transactions from the processing
nodes. For example, the design output may configure the
first transaction router 560 to determine whether a memory
transaction is targeting a cacheable memory address or a
non-cacheable memory address. Accordingly, the first trans-
action router 560 may provide a relatively early decode of
addresses associated with memory transactions from the
processing nodes.

[0052] The first transaction router 560 may route memory
transactions targeting cacheable memory addresses to the
second transaction router 570, and/or may route memory
transactions targeting non-cacheable memory addresses to
the third transaction router 580. The first transaction router
560 may route the memory transactions to the one or more
transaction routers via bus interfaces associated with the
processing nodes. For example, the first transaction router
560 may implement four bus interfaces to route memory
transactions targeting cacheable memory addresses to the
second transaction router 570 (e.g., one bus corresponding
to a processing node, dedicated to routing memory transac-
tions targeting cacheable memory addresses). For example,
the first transaction router 560 may implement four bus
interfaces to route memory transactions targeting non-ca-
cheable memory addresses to the third transaction router 580
(e.g., one bus corresponding to a processing node, dedicated
to routing memory transactions targeting non-cacheable
memory addresses). In other words, memory transactions
that target cacheable memory addresses may be routed to the
second transaction router 570, and memory transactions that
target non-cacheable memory addresses may be routed to
the third transaction router 580 (in a separate path that
avoids the cache 530). This may permit the integrated circuit
design to be optimized, such as by reducing resources of the
cache 530 based on a reduction of a number of memory
transactions to be supported by the cache 530. This may
provide a performance benefit for the integrated circuit by
separating possibly lower performance memory transactions
targeting non-cacheable memory addresses (e.g., addresses
associated with the memory-mapped /O circuitry 540) from
possibly higher performance memory transactions targeting
cacheable memory addresses (e.g., addresses associated
with the cache 530). This may also provide a performance
benefit for the integrated circuit by preventing possibly
lower performance memory transactions targeting non-ca-

Oct. 10, 2024

cheable memory addresses (e.g., addresses associated with
the memory-mapped 1/O circuitry 540) from blocking pos-
sibly higher performance memory transactions targeting
cacheable memory addresses (e.g., addresses associated
with the cache 530).

[0053] The second transaction router 570 may receive
memory transactions targeting cacheable memory addresses
from the first transaction router 560. For example, the
second transaction router 570 may implement four bus
interfaces to receive memory transactions targeting cache-
able memory addresses propagating from the four process-
ing nodes (e.g., one bus per processing node). The second
transaction router 570 may route the memory transactions
targeting cacheable memory addresses through a bus inter-
face associated with cache addresses (e.g., to the cache
control circuitry 520 and/or the cache 530.) In some imple-
mentations, the cache control circuitry 520 may comprise a
system level cross bar and associated circuitry. In some
implementations, the cache control circuitry 520 may pro-
vide cache coherency. In some implementations, the cache
530 may implement multiple physical banks.

[0054] The third transaction router 580 may receive
memory transactions targeting non-cacheable memory
addresses from the first transaction router 560. For example,
the third transaction router 580 may implement four bus
interfaces to receive memory transactions targeting non-
cacheable memory addresses propagating from the four
processing nodes (e.g., one bus per processing node). The
third transaction router 580 may route memory transactions
targeting non-cacheable memory addresses to the memory-
mapped /O circuitry 540.

[0055] In some implementations, the cluster 510 may be
configured to provide two bus interfaces for memory trans-
actions, including one bus for memory transactions targeting
cacheable memory addresses and one bus for memory
transactions targeting non-cacheable memory addresses.
Accordingly, the integrated circuit design 500 may provide
one or more transaction routers that permit reducing and/or
shortening wires associated with routing memory transac-
tions. This may result in an improved physical design of the
chip, such as by reducing wiring, shortening wiring, and/or
providing a smaller footprint, while maintaining bandwidth.
[0056] In some implementations, the third transaction
router 580 may be omitted. For example, the first transaction
router 560 could route memory transactions targeting non-
cacheable memory addresses directly to the memory-
mapped /O circuitry 540. For example, in this implemen-
tation, the cluster 510 may be configured to provide five bus
interfaces for memory transactions, including one bus for
memory transactions targeting cacheable memory addresses,
and four buses for memory transactions targeting non-
cacheable memory addresses.

[0057] In some implementations, metadata associated
with the integrated circuit design 500 may be propagated to
the compiler to compile the integrated circuit design 500 to
generate the design output. For example, using the metadata
may permit optimizing a processing node, such as process-
ing nodes 550A through 550D.

[0058] FIG. 6 is a block diagram of another example of an
integrated circuit design 600 with improved interconnect.
For example, the integrated circuit design 600 may be
generated using at least part of the process 300 shown in
FIG. 3. A system, such as the integrated circuit design
service infrastructure 110 shown in FIG. 1, may access

US 2024/0338329 Al

design parameters to configure the integrated circuit design
600. The integrated circuit design 600 may be configured to
include a cluster 610 including processing nodes, a first
transaction router 660, and a third transaction router 680
like, respectively, the processing nodes, the first transaction
router 560, and the third transaction router 580 shown in
FIG. 5. The integrated circuit design 600 may also include
cache control circuitry 620 that routes transactions to banks,
and a cache 630 that is segmented into multiple physical
banks. The integrated circuit design 600 may also include a
second transaction router 670 in the cluster 610, which
implements bank binding for routing memory transactions to
specific banks of the cache 630. In some implementations,
the cache 630 may be an [.3 cache shared by processing
nodes of one or more clusters, such as the cluster 610. In
some implementations, the number of banks of the cache
630 may equal the number of processing nodes (e.g., four
banks implemented supporting four processing nodes in one
cluster, eight banks supporting eight processing nodes, etc.).
In some implementations, the cache control circuitry 620
may comprise a system level cross bar and associated
circuitry. In some implementations, the cache control cir-
cuitry 620 may provide cache coherency.

[0059] The second transaction router 670 may receive
memory transactions targeting cacheable memory addresses
from the first transaction router 660. For example, the
second transaction router 670 may implement four bus
interfaces to receive memory transactions targeting cache-
able memory addresses propagating from the four process-
ing nodes (e.g., one bus per processing node). The second
transaction router 670 may implement cache bank binding
(e.g., a bank binder) to permit a further reduction of wiring
between the processing nodes and the cache. The bank
binding may permit the second transaction router 670 to
route memory transactions in parallel, via multiple bus
interfaces, to corresponding banks of the cache 630. In other
words, the second transaction router 670 may provide a
relatively early decode of addresses associated with a spe-
cific bank of cache. The second transaction router 670 may
determine a block of cacheable memory addresses (e.g., a
bank of the cache 630) to route a memory transaction. In
some implementations, the second transaction router 670
may make this determination by performing a hash calcu-
lation that associates a cacheable memory address with a
block of cacheable memory addresses (e.g., a bank of the
cache 630). The second transaction router 670 then routes
the memory transaction to the block of cacheable memory
addresses (e.g., to the bank of the cache 630) via the cache
control circuitry 620.

[0060] In some implementations, the cluster 610 may be
configured to provide N+1 buses for memory transactions,
where N indicates the number of buses for memory trans-
actions targeting cacheable memory addresses (e.g., corre-
sponding to the number of processing nodes), and where +1
indicates an additional bus for memory transactions target-
ing non-cacheable memory addresses.

[0061] FIG. 7 is a block diagram of another example of an
integrated circuit design 700 with improved interconnect.
For example, the integrated circuit design 700 may be
generated using at least part of the process 300 shown in
FIG. 3. A system, such as the integrated circuit design
service infrastructure 110 shown in FIG. 1, may access
design parameters to configure the integrated circuit design
700. The integrated circuit design 700 may be configured to

Oct. 10, 2024

include multiple clusters, such as clusters 710A and 710B.
For example, a cluster may implement four processing
nodes and may provide four buses for memory transactions
targeting cacheable memory addresses (e.g., including a
transaction router that provides bank binding) and one bus
for memory transactions targeting non-cacheable memory
addresses. The clusters 710A and 710B may be like the
cluster 610 shown in FIG. 6. The integrated circuit design
700 may also include cache control circuitry 720 that routes
transactions to banks, and a cache 730 that is segmented into
multiple banks (e.g., eight banks). In some implementations,
the cache 730 may be an [.3 cache shared by processing
nodes of the clusters.

[0062] The cache control circuitry 720 may implement a
system level (e.g., ASIC or SoC level) cross bar and asso-
ciated circuitry. In some implementations, the cache control
circuitry 720 may provide cache coherency among the
processing nodes of the clusters. The cache control circuitry
720 may receive memory transactions targeting cacheable
memory addresses from the clusters. The cache control
circuitry 720 may receive the memory transactions via buses
that steer to specific cache banks. For example, a transaction
router in a cluster, like the second transaction router 670
shown in FIG. 6, may implement bank binding to steer
memory transactions to buses associated with specific banks
of the cache 730. The cache control circuitry 720 may route
the memory transactions to the respective banks. For
example, in one implementation, the cache control circuitry
720 may route: memory transactions on a first bus of cluster
710A (e.g., bus “A”) and memory transactions on a first bus
of cluster 710B (e.g., bus “F”) to first and second banks of
the cache 730 (e.g., “Bank 1” and “Bank 2°); memory
transactions on a second bus of cluster 710A (e.g., bus “B”)
and memory transactions on a second bus of cluster 710B
(e.g., bus “G”) to third and fourth banks of the cache 730
(e.g., “Bank 3” and “Bank 47); and so forth. This may permit
memory transactions in parallel, via multiple bus interfaces,
to different banks of the cache 730.

[0063] Accordingly, the transaction routers of the clusters
may permit an improved physical design of the chip, such as
by reducing wiring, shortening wiring, and/or providing a
smaller footprint, while maintaining bandwidth. For
example, in the integrated circuit design 700 with eight
processing nodes (e.g., four processing nodes per cluster)
and eight banks of cache, the transaction routers may reduce
sixty-four possible buses (e.g., a bus between each process-
ing node and each bank) to sixteen buses (e.g., a bus
associating a processing node within one of two banks of
cache, for eight processing nodes and eight banks of cache).
This may result in an improved physical design of the chip,
such as by reducing wiring, shortening wiring, and/or pro-
viding a smaller footprint, while maintaining bandwidth.

[0064] In a first aspect, the subject matter described in this
specification can be embodied in a method that includes:
accessing design parameters to configure an integrated cir-
cuit design and metadata associated with the integrated
circuit design, wherein the integrated circuit design includes
a transaction source to be included in an integrated circuit,
wherein the transaction source is configured to transmit a
plurality of memory transactions to memory addresses, and
wherein the metadata indicates whether a memory transac-
tion will target a non-cacheable memory address; and using
the integrated circuit design and the metadata to generate a
design output in which a memory transaction of the plurality

US 2024/0338329 Al

of memory transactions that targets a non-cacheable
memory address is routed to bypass a cache associated with
the transaction source when the metadata indicates the
memory transaction will target a non-cacheable memory
address. In some implementations, the design output
includes a transaction router, and the transaction router may
be configured to route memory transactions transmitted by
the transaction source. In some implementations, generating
the design output comprises wiring the transaction source to
permanently route memory transactions to bypass the cache.
In some implementations, the non-cacheable memory
address corresponds to a memory-mapped I/O address. In
some implementations, the method may include generating
the design output so that a memory transaction of the
plurality of memory transactions which targets a cacheable
memory address will be routed to the cache when the
metadata indicates the memory transaction will target a
cacheable memory address. In some implementations, gen-
erating the design output comprises wiring the transaction
source to permanently route memory transactions to the
cache. In some implementations, the cache is a private Level
2 (L2) cache associated with the transaction source. In some
implementations, the transaction source is a processor core.
In some implementations, the transaction source is a direct
memory access (DMA) controller.

[0065] In a second aspect, the subject matter described in
this specification can be embodied in a method that includes:
propagating metadata associated with at least a first trans-
action source to be associated with at least a first address
decoder, wherein the first address decoder is configured to be
connected to a cache and the metadata indicates cacheability
of at least one memory address associated with the first
transaction source, and wherein an integrated circuit design
includes a hardware construction language expression of the
first transaction source, the first address decoder, and the
cache; and compiling the integrated circuit design to pro-
duce a design output based on the metadata, wherein the
design output includes an instance of the first address
decoder configured to transmit memory transactions to cir-
cuitry that bypasses the cache for memory locations having
the metadata indicating that such memory locations are not
cacheable. In some implementations, the method may
include wiring the first transaction source directly to the
cache without wiring the first transaction source to the
circuitry that bypasses the cache if the metadata indicates
that the first transaction source only sends memory transac-
tions to the cache. In some implementations, the method
may include wiring the first transaction source directly to the
circuitry that bypasses the cache without wiring the first
transaction source to the cache if the metadata indicates that
the first transaction source does not send memory transac-
tions to the cache. In some implementations, the method
may include reducing a memory size of the cache if the
metadata indicates that the first transaction source is an only
transaction source to send memory transactions to the cache.

[0066] In a third aspect, the subject matter described in
this specification can be embodied in a method that includes:
accessing design parameters to configure an integrated cir-
cuit design, wherein the integrated circuit design includes a
plurality of processing nodes to be included in an integrated
circuit, wherein a processing node is configured to transmit
a plurality of memory transactions to memory addresses;
and compiling the integrated circuit design to generate a
design output including a first transaction router and a

Oct. 10, 2024

second transaction router, wherein the first transaction router
receives memory transactions from the plurality of process-
ing nodes and determines whether a memory transaction is
targeting a cacheable memory address, and wherein the
second transaction router receives memory transactions tar-
geting cacheable memory addresses from the first transac-
tion router and routes memory transactions through a bus
interface associated with cache addresses. In some imple-
mentations, the second transaction router determines a bus
interface associated with a bank of a cache. In some imple-
mentations, the second transaction router determines the bus
interface by performing a hash calculation to associate a
memory transaction targeting a cacheable memory address
with the bank. In some implementations, the cache is a Level
3 (L3) cache shared by the processing nodes, and wherein a
processing node comprises a processor core and a private 1.2
cache associated with the processor core. In some imple-
mentations, the design output may include a third transac-
tion router that receives memory transactions targeting non-
cacheable memory addresses from the first transaction router
and routes memory transactions through a bus interface
associated with memory-mapped /O addresses. In some
implementations, the bus interface is one of a plurality of
bus interfaces for routing memory transactions targeting
cacheable memory addresses, and the design output includes
one bus interface for routing memory transactions targeting
non-cacheable memory addresses.

[0067] In a fourth aspect, the subject matter described in
this specification can be embodied in a system that includes:
a plurality of processing nodes implemented in an integrated
circuit, wherein a processing node transmits a plurality of
memory transactions to memory addresses; a first transac-
tion router in communication with the plurality of process-
ing nodes, the first transaction router receiving memory
transactions from the plurality of processing nodes, wherein
the first transaction router determines whether a memory
transaction is targeting a cacheable memory address; and a
second transaction router in communication with the first
transaction router, the second transaction router receiving
memory transactions targeting cacheable memory addresses
from the first transaction router, wherein the second trans-
action router routes memory transactions through a bus
interface associated with cache addresses. In some imple-
mentations, the second transaction router determines a bus
interface associated with a bank of a cache. In some imple-
mentations, the second transaction router determines the bus
interface by performing a hash calculation to associate a
memory transaction targeting a cacheable memory address
with the bank of the cache. In some implementations, the
cache is a Level 3 (L3) cache, and a processing node may
comprise a processor core and a private L2 cache associated
with the processor core. In some implementations, the
method may include a third transaction router in communi-
cation with the first transaction router, the third transaction
router receiving memory transactions targeting non-cache-
able memory addresses from the first transaction router,
wherein the third transaction router routes memory transac-
tions through a bus interface associated with memory-
mapped /O addresses. In some implementations, the bus
interface is one of a plurality of bus interfaces for routing
memory transactions targeting cacheable memory addresses,
and the system includes one bus interface for routing
memory transactions targeting non-cacheable memory
addresses.

US 2024/0338329 Al

[0068] While the disclosure has been described in con-
nection with certain embodiments, it is to be understood that
the disclosure is not to be limited to the disclosed embodi-
ments but, on the contrary, is intended to cover various
modifications and equivalent arrangements included within
the scope of the appended claims, which scope is to be
accorded the broadest interpretation so as to encompass all
such modifications and equivalent arrangements.
What is claimed is:
1. A method comprising:
accessing design parameters to configure an integrated
circuit design and metadata associated with the inte-
grated circuit design, wherein the integrated circuit
design includes a transaction source, and wherein the
metadata indicates that a transaction from the transac-
tion source targets a non-cacheable memory address;

generating a data structure for the integrated circuit
design, the data structure including a reference to the
metadata; and

generating, based on the reference to the metadata in the

data structure, a design output in which the transaction
from the transaction source is routed to bypass a cache.

2. The method of claim 1, wherein the design output
includes a transaction router, and wherein the transaction
router is configured to route memory transactions transmit-
ted by the transaction source.

3. The method of claim 1, wherein generating the design
output comprises wiring the transaction source to perma-
nently route memory transactions to bypass the cache.

4. The method of claim 1, wherein the non-cacheable
memory address corresponds to a memory-mapped /O
address.

5. The method of claim 1, wherein the design output is
generated such that a memory transaction which targets a
cacheable memory address will be routed to the cache when
the metadata indicates the memory transaction will target a
cacheable memory address.

6. The method of claim 1, wherein generating the design
output comprises wiring the transaction source to perma-
nently route memory transactions to the cache.

7. The method of claim 1, wherein the cache is a private
Level 2 (1.2) cache associated with the transaction source.

8. The method of claim 1, wherein the transaction source
is a processor core.

9. The method claim 1, wherein the transaction source is
a direct memory access (DMA) controller.

10. A method comprising:

propagating metadata associated with at least a first

transaction source to be associated with at least a first
address decoder, wherein the first address decoder is
configured to be connected to a cache and the metadata
indicates cacheability of at least one memory address
associated with the first transaction source, and wherein
an integrated circuit design includes a hardware con-
struction language expression of the first transaction
source, the first address decoder, and the cache; and

compiling the integrated circuit design to produce a

design output based on the metadata, wherein the
design output includes an instance of the first address
decoder configured to transmit memory transactions to

Oct. 10, 2024

circuitry that bypasses the cache for memory locations
having the metadata indicating that such memory loca-
tions are not cacheable.

11. The method of claim 10, further comprising wiring the
first transaction source directly to the cache without wiring
the first transaction source to the circuitry that bypasses the
cache if the metadata indicates that the first transaction
source only sends memory transactions to the cache.

12. The method of claim 10, further comprising wiring the
first transaction source directly to the circuitry that bypasses
the cache without wiring the first transaction source to the
cache if the metadata indicates that the first transaction
source does not send memory transactions to the cache.

13. The method of claim 10, further comprising reducing
a memory size of the cache if the metadata indicates that the
first transaction source is an only transaction source to send
memory transactions to the cache.

14. A method comprising:

accessing design parameters to configure an integrated

circuit design, wherein the integrated circuit design
includes a plurality of processing nodes to be included
in an integrated circuit, wherein a processing node is
configured to transmit a plurality of memory transac-
tions to memory addresses; and

compiling the integrated circuit design to generate a

design output including a first transaction router and a
second transaction router, wherein the first transaction
router receives memory transactions from the plurality
of processing nodes and determines whether a memory
transaction is targeting a cacheable memory address,
and wherein the second transaction router receives
memory transactions targeting cacheable memory
addresses from the first transaction router and routes
memory transactions through a bus interface associated
with cache addresses.

15. The method of claim 14, wherein the second trans-
action router determines a bus interface associated with a
bank of a cache.

16. The method of claim 15, wherein the second trans-
action router determines the bus interface by performing a
hash calculation to associate a memory transaction targeting
a cacheable memory address with the bank.

17. The method of claim 15, wherein the cache is a Level
3 (L3) cache shared by the processing nodes, and wherein a
processing node comprises a processor core and a private 1.2
cache associated with the processor core.

18. The method of claim 14, wherein the design output
includes a third transaction router that receives memory
transactions targeting non-cacheable memory addresses
from the first transaction router and routes memory trans-
actions through a bus interface associated with memory-
mapped /O addresses.

19. The method of claim 14, wherein the bus interface is
one of a plurality of bus interfaces for routing memory
transactions targeting cacheable memory addresses, and
wherein the design output includes one bus interface for
routing memory transactions targeting non-cacheable
memory addresses.

20. The method of claim 14, wherein the second trans-
action router implements bank binding to route memory
transactions to specific banks of a cache.

#* #* #* #* #*

