US012118222B2

a2 United States Patent

a0y Patent No.: US 12,118,222 B2

Athreya et al. 45) Date of Patent: Oct. 15,2024
(54) CONTROLLING MEMORY OVERHEAD FOR (56) References Cited
STORING INTEGRITY DATA IN SOLID
STATE DRIVES U.S. PATENT DOCUMENTS
(71) Applicant: SK Hynix NAND Product Solutions 2011/0161779 A1* 6/2011 Otsuka ... H07311\;I/]5/2238?
Corp., Rancho Cordova, CA (US) 2014/0337666 AL* 112014 Resch oevrrrrooonnnee GOGF 15/16
(72) Inventors: Arun Athreya, Rancho Cordova, CA 20170160934 AL* 62017 Park oo O
(US): Yihua Zhang, Rancho Cordova, 2020/0264973 AL* 8/2020 Le€ ..oovrvirron GOGF 13/1668
CA (US); Shankar Natarajan, Rancho
Cordova, CA (US); Sriram Natarajan, * cited by examiner
Rancho Cordova, CA (US)
Primary Examiner — Francisco A Grullon
(73) Assignee: SK Hynix NAND Product Solutions (74) Attorney, Agent, or Firm — Morgan, Lewis &
Corp., Rancho Cordova, CA (US) Bockius LLP
*) Notice: Subject to any disclaimer, the term of this
) pateJnt is ethnded or adjusted under 35 7 ABSTRACT
U.S.C. 154(b) by 55 days. This application is directed to data protection in a memory
system of an electronic device. The memory system has a
(21) Appl. No.: 18/113,495 first memory block and a second memory block, and each
. memory block includes one or more respective memory
(22) Filed: Feb. 23, 2023 dies. Each memory die of the second memory block is
. .. distinct from the one or more respective memory dies of the
(65) Prior Publication Data first memory block. The electronic device stores user data
US 2024/0289040 A1~ Aug. 29, 2024 including a plurality of user data items in the first memory
block and integrity data including a plurality of integrity
(51) Int. ClL data items in the second memory block. Each of the plurality
GO6F 3/06 (2006.01) of user data items is configured to be validated based on a
(52) US. CL respective one of the plurality of integrity data items. The
CPC ..o GO6F 3/064 (2013.01); GOGF 3/0619 electronic device invalidates the integrity data in the second
(2013.01); GO6F 3/0683 (2013.01) memory block, and reads the user data from the first memory
(58) Field of Classification Search block independently of the integrity data.

CPC ... GOG6F 3/064; GOG6F 3/0619; GO6F 3/0683
See application file for complete search history.

20 Claims, 7 Drawing Sheets

100

¥

Network
Interfaces (Wi-Fi, | | Power
Ethernet, Solid Supplies
Bluetooth) 108 State Memory Connector
|| Drives Controller | 116
Graphics Module (SSDs) 110 Processor Module
120 | 42 102
Sound Module | | PM‘SC
122 Hard Drive 114 —=
| | !
“—Communication buses 140
{ 1]
S S |

I/0 Controller 10

=2 ————— Memory Modules 104 ————

US 12,118,222 B2

Sheet 1 of 7

Oct. 15, 2024

U.S. Patent

00}

L 9anbBi4

70T SOINPO\ Alowd\

ObL S9SN UOHEDIUNWIWOD —

0l J438j101u03 O/

8Ll
OINd

oLl
10)08UU0D

solddng
Jamod

201
8|NpOJ\ Josseo0.d

[T 9AuQ pJeH

oLt
Jg[jonuon
Aows |\

Zrr

(sass)

SOALIQJ
SIS
pIloS

44}
S|NPO punosg

0cl
a|npoly solydelo)

801 (Yoojenig
pEIIETNE
‘I4-IAN) SooBUBU|
JJomaN

U.S. Patent Oct. 15, 2024 Sheet 2 of 7 US 12,118,222 B2

/200
:"’""""""""'"'"'"’"'"'""""'7 }""’H6§t""i
I Host 220 : | Memory I/"228
i " 1 Buffer
_____________________________ Ll
!
M Syst .g., SSDs 112) 200 '
emory System (e.g)) 200 : /202
I
Controller i
212 222 |
FSD Host Interface Controller I
I
I |
224 Local 218 ' 226
sram | Memory HMB]
Buffer Processor Controller
L~ 214 I
Channel Channel / 214 Channel
Controller Controller Controller
0 1 N
204 204 204
%annel 0 /’206 Channel 1 Channel N
| —
| — [—
== 0L 1210
B Y lﬁ
208 206
/
216 /’ 218 216

Figure 2

U.S. Patent Oct. 15, 2024 Sheet 3 of 7 US 12,118,222 B2

300
f

Die0 206-0 Die1 206-1

Plane 0 | Plane 1 Plane2 | Plane3 jPlane(|Planet Plane 2
208-0 | 208-1 | 2082 | 2083 | 2084 | 2085 | 208-6 |Flane3 2087

Block
Fage 0| 16K data | 16K data | 16K data | 16K data | 16K data | 16K data | 16K data | 10 Jnfegrity
Page 1

Data

16K data | 16K data | 16K data | 16K data | 16K data | 16K data | 16K data | 76K Integrity
306 < 210-1 Data

16K Integrily
g 2104 | 16K data | 16K data | 16K data Data

AL

AN J

Y v
302 304

Figure 3

U.S. Patent Oct. 15, 2024 Sheet 4 of 7 US 12,118,222 B2

[400

302A 302A
\ Die0 2060 | Died 206-1 \ Die0 206-0 | Diel 206-1
306C 306D<
/ 7
[[
3028 | 3008
308 310
Block X Die0 206-0 Die1 206-1
3004l Plane 0 | Plane1 | Plane2 | Plane3 | Plane0 | Planet | Plane2 | Plane3
(] 2080 208-1 208-2 208-3 208-4 208-5 208-6 208-7
(J
Page 0

220° 2 (16K data|16K data 16K data|16K data 16K data| 16K data 16K data 16K data)

Zﬁ%‘?}&fm data | 16K data | 16K data | 16K data | 16K data | 16K data | 16K data | 16K daz‘a)

306A< %
\)
e 3028 N ' e on J
Page N R
21%-[\,; 1§K data | 16K data EGK data | 16K data)’ \402—2
\
AR = y)
\ a02:1
' \ \ Die2 206-2 Die3 206-3
System
block
Plane 0 Plane2 | Plane3 | Plane0 | Plane1 | Plane2 | Plane3
30?A 8-0 208-2 208-3 208-4 208-5 208-6 208-7
-
Page 0 16K 16K 16K 16K 16K 16K 16K \
2190_0 Integrity Integrity | Integrity {integrity | Integrity | integrity | Integrity
e Data Data Data Data Data Data Data
306B< - \ 404-1
Page 3 16K 16K 16K 16K 16K 16K 16K 1 16K
210-N integrity | Integrity | Integrity | Integrity § Inlegrity | Integrity | Integrity | integrily '
| — Data Data Data Data Data Data Data | Data /
L J
Y
304 404-2

Figure 4

US 12,118,222 B2

Sheet 5 of 7

Oct. 15, 2024

U.S. Patent

G a.nbBi4

BlEp]SOy S)lUM 0)
%00]q AlowsW 1S1i) Mau & 3oid

ois— §

¥oo|q Alowaw
puooas ay) ul pasors Alued
HOX 8y} sjepljeAul/piedsip pue
ues|o Sl Bjep ainsus 0] ¥o0|q
AJowaw 1S11) 8113US BY) peay

pLg—/

ocm\

a|gejieAe aJe s}os ejep Aubaul Jo Jequinu pauyap
M4 B 92U0 300|q Alowdl puodas e 0} uajm pue paljdde
\mz‘_ma 9dan ‘eubus 5da Aq peposus si eyep Alibaju|

PasoIo }o0|q
Jowsw 1Sl 8y) s

43¢

015" A

S9ID ANVN 24}
ssosoe uanum pue paidde Aiued Ddan

pue suibus DdqT Agq pepoous ejeq
805" A

Jaung Nyys oieledss
ur iday Aed Yo “(e1qeinbijuod)
SHUNYD BIBP JO # pue (019
M9L ‘M8 ‘M 1e 8|qeanbyuod) 8zis yunyo
giep uo paseq pauluaap Aued YOX

90— A
19JNG INYHS DISY OF @M
g~ A

pu3g

US 12,118,222 B2

Sheet 6 of 7

Oct. 15, 2024

U.S. Patent

9 a.nbi4

Ble)dwod
SILUM

829

3oolq WaysAs
e ul e1ep Ajabaul Buisn
BJED JOSN J9A00DY

¥00|q WoIsAs e Ul
eiep Ajubaiu a1epleAu|

7S n N
K 0] Ble(q Josn alIAA
819 i
Hoolg WelsAS U)
0} e1eq YOX S
oo 4
abed Jadng
N GINH Ul eled MO
19
: dINH 0} elep
" 219"
<<Qbed sig=NVvySSP
809

A
yz9—’ N

<A

9z9—"

00§ \

wioped

1

029~

Joegpesy -«

IWYYS Ul YOX O puadde
pue eiep 1o} YOX spoouyg

A
909 N

cR2IId 00ig ele(=

U.S. Patent Oct. 15, 2024 Sheet 7 of 7 US 12,118,222 B2

00
At an electronic device having a memory system, the memory system having a first
memory block and a second memory block, each memory block including one or more
respective memory dies 702

Store user data including a plurality of user data items in the first memory block, each
of the user data items configured to be validated based on a respective one of a
plurality of integrity data items 704
| Store the user data in a third memory block that is distinct from the firstand |
I second memory blocks 718 !

] Determine that the user data read from the third block is invalid based on the 1
lintegrity data stored in the second memory block 722

|

Loy e R e [
_______________________ y_ o _________,

: Duplicate the user data from the third memory block to the first memory block 1
724

o e e e o e e o e ot e l

o _____ v _______

: Correct the user data in the first memory block based on the integrity data 726 |

L e e e e e e [

T

Store integrity data including the plurality of integrity data items in the second memory
block, each memory die of the second memory block distinct from the first memory
block 706

: Determine that the user data are valid based on the integrity data, wherein the integrity :
i data in the second memory block are invalidated in accordance with a determination 1
I that the user data is valid based on the plurality of integrity data 714

| Copy the user data from the first memory block to a fourth memory block :
I without the integrity data, the first memory block including a plurality of SLCs,
the memory system further including a fourth memory block, the fourth memory !
| block including a plurality of QLCs 730

US 12,118,222 B2

1
CONTROLLING MEMORY OVERHEAD FOR
STORING INTEGRITY DATA IN SOLID
STATE DRIVES

TECHNICAL FIELD

This application relates generally to memory management
including, but not limited to, methods, systems, devices, and
non-transitory computer-readable media for storing user
data in a memory device with high fidelity while saving
overhead memory space from storage of integrity data.

BACKGROUND

Memory is applied in a computer system to store instruc-
tions and data, and the data are processed by one or more
processors according to the instructions stored in the
memory. Primary memory (e.g., registers and caches) is
used within the one or more processors to support calcula-
tions and operations on data in real time. The one or more
processors are coupled via a memory bus to main memory
that often includes random access memory (RAM). The
main memory provides instructions and data to the one or
more processors if the instructions and data cannot be found
in the primary memory. Both the primary and main memory
are volatile memory that needs to be regularly refreshed and
loses data stored thereon if decoupled from a power source.
Additionally, the one or more processors are further coupled
to secondary memory (e.g., hard disk drives (HDDs) or
solid-state drives (SSDs)), which is non-volatile memory
that keeps data stored thereon if decoupled from a power
source. Each data item in the memory is oftentimes stored in
association with integrity data, and validated based on the
integrity data when the respective data item is extracted
from the memory. The integrity data are stored in additional
memory blocks in the memory and causes overprovisioning
of the memory, e.g., by 4-5% of memory space of the SSDs.
During an internal copy back operation, the integrity data is
copied over as dummy data jointly with the data items,
thereby compromising efficiency of the copy back operation.
It would be beneficial to manage data protection and vali-
dation effectively and efficiently to reduce associated over-
provisioning space and dummy data operations in a memory
system.

SUMMARY

Various embodiments of this application are directed to
methods, systems, devices, non-transitory computer-read-
able media for managing data protection and validation in a
memory system (e.g., SSDs. HDDs). User data and associ-
ated integrity data is stored in two distinct memory blocks
that are located in two distinct memory blocks of the
memory system. After the user data and integrity data is
stored, the user data is read back, and validity of the user
data is checked with respect to the integrity data. In accor-
dance with a validation of the user data, the corresponding
integrity data is invalidated and discarded from the memory
system. Conversely, in accordance with an invalidation of
the user data, the user data is corrected based on the integrity
data. Subsequent to correction of the user data, the corre-
sponding integrity data is invalidated and discarded from the
memory system. By these means, the memory system vali-
dates the user data in advance, and discards the integrity data
after the user data are validated or corrected. The memory
system does not need to reserve large amount of dedicated
memory space for storing the integrity data, nor does it need

10

15

20

25

30

35

40

45

50

55

60

65

2

to implement additional data migration operations on the
integrity data with the user data.

In an example, XOR logic is applied in memory manage-
ment policies to validate user data and protect user data
against NAND defects in an SSD. XOR-based integrity data
are stored in memory space that needs to be addressed with
overprovisioning availability in NAND memory blocks of
the SSD. In some implementations, the XOR-based integrity
data is invalidated and discarded from the SSD, thereby
saving the memory space (e.g., by 90%) used for storing the
XOR-based integrity data. The XOR-based parity data is
stored in a memory block that does not store any user data.
In some situations, the memory block is closed and then
re-purposed to an open memory block for storing additional
user data. In some embodiments, the XOR logic generates
each integrity data item based on a subset of user data having
an XOR parity size (e.g., corresponding to a quarter of a
memory plane, a half of a memory plane, a memory plane,
or a memory die). The XOR-based integrity data is invali-
dated and discarded from the SSD independently of the
XOR parity size. Firmware programs are scaled based on the
XOR parity size.

In one aspect, a method is implemented at an electronic
device to store and protect data in a memory system (e.g., an
SSD) of the electronic device. The memory system has a first
memory block and a second memory block, and each
memory block includes one or more respective memory
dies. The method includes storing user data including a
plurality of user data items in the first memory block, and
each of the plurality of user data items is configured to be
validated based on a respective one of a plurality of integrity
data items. The method further includes storing integrity
data including the plurality of integrity data items in the
second memory block, and each memory die of the second
memory block is distinct from the one or more respective
dies of the first memory block. The method further includes
invalidating the integrity data in the second memory block
and reading the user data from the first memory block
independently of the integrity data.

In some embodiments, the method further includes before
invalidating the integrity data in the second memory block,
reading back the user data from the first memory block,
determining that the user data is valid based on the integrity
data, and discarding the integrity data in the second memory
block. The integrity data in the second memory block is
invalidated in accordance with a determination that the user
data is valid based on the integrity data.

In some embodiments, the method further includes prior
to storing the user data in the first memory block, storing the
user data in a third memory block that is distinct from the
first and second memory blocks, reading back the user data
from the third memory block, and determining that the user
data read from the third block is invalid based on the
integrity data stored in the second memory block. Further, in
some embodiments, storing the user data in the first memory
block further includes, in accordance with a determination
that a subset of the user data stored in the third memory
block is invalid, duplicating the user data from the third
memory block to the first memory block, correcting the user
data in the first memory block based on the integrity data,
and purging the user data in the third memory block.

In another aspect, some implementations include an elec-
tronic device that includes one or more processors and
memory having instructions stored thereon, which when
executed by the one or more processors cause the processors

US 12,118,222 B2

3

to perform any of the above methods to store and protect
data in a memory system having a first memory block and
a second memory block.

In yet another aspect, some implementations include a
non-transitory computer readable storage medium storing
one or more programs. The one or more programs include
instructions, which when executed by one or more proces-
sors cause the processors to implement any of the above
methods to store and protect data in a memory system
having a first memory block and a second memory block.

These illustrative embodiments and implementations are
mentioned not to limit or define the disclosure, but to
provide examples to aid understanding thereof. Additional
embodiments are discussed in the Detailed Description, and
further description is provided there.

BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the various described imple-
mentations, reference should be made to the Detailed
Description below, in conjunction with the following draw-
ings in which like reference numerals refer to corresponding
parts throughout the figures.

FIG. 1 is a block diagram of an example system module
in a typical electronic device in accordance with some
embodiments of the present invention.

FIG. 2 is a block diagram of a memory system of an
example electronic device having one or more memory
access queues, in accordance with some embodiments of the
present invention.

FIG. 3 is a diagram illustrating a data structure of user
data that is stored jointly with integrity data in a memory
block of a memory system, in accordance with some
embodiments of the present invention.

FIG. 4 is a diagram illustrating a data structure of user
data that is stored separately with integrity data in two
distinct memory blocks of a memory system, in accordance
with some embodiments of the present invention.

FIG. 5 is a flow diagram of an example data storage
method, in accordance with some embodiments of the
present invention.

FIG. 6 is a flow diagram of an example data writing
process of writing user data in a first memory block of a
memory system, in accordance with some embodiments of
the present invention.

FIG. 7 is a flow diagram of another example data storage
method, in accordance with some embodiments of the
present invention.

Like reference numerals refer to corresponding parts
throughout the several views of the drawings.

DETAILED DESCRIPTION

Reference will now be made in detail to specific embodi-
ments, examples of which are illustrated in the accompany-
ing drawings. In the following detailed description, numer-
ous non-limiting specific details are set forth in order to
assist in understanding the subject matter presented herein.
But it will be apparent to one of ordinary skill in the art that
various alternatives may be used without departing from the
scope of claims and the subject matter may be practiced
without these specific details. For example, it will be appar-
ent to one of ordinary skill in the art that the subject matter
presented herein can be implemented on many types of
electronic devices with digital video capabilities.

FIG. 1 is a block diagram of an example system module
100 in a typical electronic device in accordance with some

10

15

20

25

30

35

40

45

50

55

60

65

4

embodiments. The system module 100 in this electronic
device includes at least a processor module 102, memory
modules 104 for storing programs, instructions and data, an
input/output (I/O) controller 106, one or more communica-
tion interfaces such as network interfaces 108, and one or
more communication buses 140 for interconnecting these
components. In some embodiments, the I/O controller 106
allows the processor module 102 to communicate with an
1/O device (e.g., a keyboard, a mouse or a track-pad) via a
universal serial bus interface. In some embodiments, the
network interfaces 108 includes one or more interfaces for
Wi-Fi, Ethernet and Bluetooth networks, each allowing the
electronic device to exchange data with an external source,
e.g., a server or another electronic device. In some embodi-
ments, the communication buses 150 include circuitry
(sometimes called a chipset) that interconnects and controls
communications among various system components
included in system module 100.

In some embodiments, the memory modules 104 include
high-speed random access memory, such as dynamic ran-
dom access memory (DRAM), static random-access
memory (SRAM), double data rate (DDR) random access
memory (RAM), or other random access solid state memory
devices. In some embodiments, the memory modules 104
include non-volatile memory, such as one or more magnetic
disk storage devices, optical disk storage devices, flash
memory devices, or other non-volatile solid state storage
devices. In some embodiments, the memory modules 104, or
alternatively the non-volatile memory device(s) within the
memory modules 104, include a non-transitory computer
readable storage medium. In some embodiments, memory
slots are reserved on the system module 100 for receiving
the memory modules 104. Once inserted into the memory
slots, the memory modules 104 are integrated into the
system module 100.

In some embodiments, the system module 100 further
includes one or more components selected from a memory
controller 110, solid state drives (SSDs) 112, a hard disk
drive (HDD) 114, power management integrated circuit
(PMIC) 118, a graphics module 120, and a sound module
122. The memory controller 110 is configured to control
communication between the processor module 102 and
memory components, including the memory modules 104,
in the electronic device. The SSDs 112 are configured to
apply integrated circuit assemblies to store data in the
electronic device, and in many embodiments, are based on
NAND or NOR memory configurations. The HDD 114 is a
conventional data storage device used for storing and
retrieving digital information based on electromechanical
magnetic disks. The power supply connector 116 is electri-
cally coupled to receive an external power supply. The
PMIC 118 is configured to modulate the received external
power supply to other desired DC voltage levels, e.g., 5V,
3.3V or 1.8V, as required by various components or circuits
(e.g., the processor module 102) within the electronic
device. The graphics module 120 is configured to generate
a feed of output images to one or more display devices
according to their desirable image/video formats. The sound
module 122 is configured to facilitate the input and output of
audio signals to and from the electronic device under control
of computer programs.

It is noted that communication buses 150 also intercon-
nect and control communications among various system
components including components 110-122.

Further, one skilled in the art knows that other non-
transitory computer readable storage media can be used, as
new data storage technologies are developed for storing

US 12,118,222 B2

5

information in the non-transitory computer readable storage
media in the memory modules 104, SSDs 112, and/or, hard
drive 114. These new non-transitory computer readable
storage media include, but are not limited to, those manu-
factured from biological materials, nanowires, carbon nano-
tubes and individual molecules, even though the respective
data storage technologies are currently under development
and yet to be commercialized.

Some implementations of this application are directed to
managing data protection and validation effectively and
efficiently to reduce associated overprovisioning space and
dummy data operations in a memory system (e.g., SSDs 112,
memory module 104) of the system module 100. User data
and associated integrity data are stored in two distinct
memory blocks of the memory system. After the user data
and integrity data are stored, the user data is read back, and
validity of the user data is checked with respect to the
integrity data. In accordance with a validation of the user
data, the corresponding integrity data is invalidated and
discarded from the memory system. Conversely, in accor-
dance with an invalidation of the user data, the user data is
corrected based on the integrity data, and the corresponding
integrity data is subsequently invalidated and discarded from
the memory system. By these means, the memory system
validates the user data prior to receiving any read request for
the user data, and discards the integrity data after the user
data is validated or corrected. The system module 100 does
not need to reserve large amount of dedicated memory space
for storing the integrity data in the SSD 112 or memory
modules 104, nor does it need to implement additional data
migration operations on the integrity data when the user data
needs to be migrated (e.g., in an internal copy back).

FIG. 2 is a block diagram of a memory system 200 of an
example electronic device having one or more memory
access queues, in accordance with some embodiments. The
memory system 200 is coupled to a host device 220 (e.g., a
processor module 102 in FIG. 1) and configured to store
instructions and data for an extended time, e.g., when the
electronic device sleeps, hibernates, or is shut down. The
host device 220 is configured to access the instructions and
data stored in the memory system 200 and process the
instructions and data to run an operating system and execute
user applications. The memory system 200 further includes
a controller 202 and a plurality of memory channels 204.
Each memory channels 204 includes a plurality of memory
cells. The controller 202 is configured to executes firmware
level software to bridge the plurality of memory channels
204 to the host device 220. Specifically, the controller 202
is configured to communicate with the host device 220,
manage a file system directory (FSD) 212 for tracking data
locations in the memory channels 204, organize the plurality
of memory channels 204, and facilitate internal and external
requests to access the memory channels 204.

Each memory channels 204 includes on one or more
memory packages 206 (e.g., two memory chips, two
memory dies). In an example, each memory package 206
corresponds to a memory die. Each memory package 206
includes a plurality of memory planes 208, and each
memory plane 208 further includes a plurality of memory
pages 210. Each memory page 210 includes an ordered set
of memory cells, and each memory cell is identified by a
respective physical address. In some embodiments, the
memory system 200 includes a single layer cell (SLC)
memory system, and each memory cell stores a single data
bit. In some embodiments, the memory system 200 includes
an MLC memory system, and each memory cell stores a
plurality of data bits. In an example, each memory cell of a

10

15

20

25

30

35

40

45

50

55

60

65

6

multi-level cell (ML.C) memory system stores 2 data bits. In
an example, each memory cell of a triple-level cell (TLC)
memory system stores 3 data bits. In another example, each
memory cell of a quad-level cell (QLC) memory system
stores 4 data bits. In yet another example, each memory cell
of'a penta-level cell (PL.C) memory system stores 5 data bits.
In some embodiments, each memory cell can store any
suitable number of data bits by a six- or higher-level
memory cell. Compared with the ML.C, TL.C, QLC, or PLC
memory system, the SLC memory system operates with a
higher speed, a higher reliability, and a longer lifespan, and
however, has a lower device density and a higher price. In
some embodiments, each of the SLC, MLC, TLC, QLC,
PLC, or six- or higher-level cell memory system includes
one or more SSDs.

Each memory channel 204 is coupled to a respective
channel controller 214 configured to control internal and
external requests to access memory cells in the respective
memory channel 204. In some embodiments, each memory
package 206 (e.g., each memory die) corresponds to a
respective queue 216 of memory access requests. In some
embodiments, each memory channel 204 corresponds to a
respective queue 216 of memory access requests. Further, in
some embodiments, each memory channel 204 corresponds
to a distinct and different queue 216 of memory access
requests. In some embodiments, a subset (less than all) of the
plurality of memory channels 204 correspond to a distinct
queue 216 of memory access requests. In some embodi-
ments, all of the plurality of memory channels 204 of the
memory system 200 correspond to a single queue 216 of
memory access requests. Each memory access request is
optionally received internally from the memory system 200
to manage the respective memory channel 204 or externally
from the host device 220 to write or read data stored in the
respective channel 204. Specifically, each memory access
request includes one of: a system write request that is
received from the memory system 200 to write to the
respective memory channel 204, a system read request that
is received from the memory system 200 to read from the
respective memory channel 204, a host write request that
originates from the host device 220 to write to the respective
memory channel 204, and a host read request that is received
from the host device 220 to read from the respective memory
channel 204.

Further, in some embodiments, a queue 216 of memory
access requests includes a memory read queue that includes
only system read requests, host read requests, or a combi-
nation thereof. Alternatively, in some embodiments, a queue
216 of memory access requests includes a mixed memory
access queue that includes at least a write request and a read
request, while the write request is optionally a system write
request or a host write request and the read request is
optionally a system read request or a read write request.

A memory workload of the memory system 200 includes
the one or more queues 216 of memory access requests. In
some embodiments, the memory workload includes a host
read workload that starts with host read requests, and does
not include any host write requests. The memory workload
further incorporates system read requests, system write
requests, or both, and the one or more queues 216 include
the host read requests and one or more of: a system read
request, a system write request, or a combination thereof.
Alternatively, in some embodiments, the memory workload
includes a host write workload, and incorporates in which
the one or more queues 216 include only system write
requests that starts with host write requests, and does not
include any host read requests. The memory workload

US 12,118,222 B2

7

further incorporates system read requests, system write
requests, or both, and the one or more queues 216 include
the host write requests and one or more of: a system read
request, a system write request, or a combination thereof.
Additionally and alternatively, in some embodiments, the
memory workload includes a mixed host workload further
having both host read requests and host write requests, and
further incorporates system read requests, system write
requests, or both. The one or more queues 216 include at
least a write request and a read request, while the write
request is optionally a system write request or a host write
request and the read request is optionally a system read
request or a read write request.

It is noted that system read requests (also called back-
ground read requests or non-host read requests) and system
write requests are dispatched by a memory controller to
implement internal memory management functions includ-
ing, but are not limited to, garbage collection, read disturb,
memory shapshot capturing, memory mirroring, caching,
and memory sparing.

In some embodiments, in addition to the FSD 212 and
channel controllers 214, the controller 202 further includes
a local memory processor 218, a host interface controller
222, an SRAM buffer 224, and a home memory buffer
(HMB) controller 226. The local memory processor 218
accesses the plurality of memory channels 204 based on the
one or more queues 216 of memory access requests. In some
embodiments, the local memory processor 218 writes into
and read from the plurality of memory channels 204 on a
memory chunk basis. Data of one or more memory chunks
is written into, or read from, the plurality of channels jointly.
No data in the same memory chunk is written via more than
one operation. Each memory chunk optionally corresponds
to one or more memory pages 210. In an example, each
memory chunk to be written or read jointly in the plurality
of memory channels 204 has a size of 16 KB (e.g., one
memory page 210)). In another example, each memory
chunk to be written or read jointly in the plurality of memory
channels 204 has a size of 64 KB (e.g., four memory pages
210). In some embodiments, each memory page 210 has 16
KB user data and 2 KB metadata. Additionally, a number of
memory chunks to be accessed jointly and a size of each
memory chunk are configurable for each of the system read,
host read, system write, and host write operations. Stated
another way, the number of memory chunks to be accessed
jointly and the size of each memory chunk are not limited by
the examples shown in this application, and can have
different sizes that are not detailed in this application.

In some embodiments, the local memory processor 218
temporarily stores data to be written into, or data read from,
the memory channels 204 in an SRAM buffer 224 of the
controller 202. Alternatively, in some embodiments, the
local memory processor 218 is coupled to the HMB con-
troller 226, and temporarily stores the data to be written into,
or the data read from, the memory channels 204 in a host
memory buffer (HMB) 228 via the HMB controller 226 or
host interface controller 222. The HMB 228 is external to the
controller 202, and is main memory used by the processor
module 102 (FIG. 1). In some embodiments, the HMB 228
is one of SRAM, DRAM, 3D XPOINT, and magnetoresis-
tive RAM (MRAM), or other RAM devices. Further, in
some embodiments, the memory system 200 includes an
SSD coupled to a DRAM based HMB 228. Alternatively, in
some embodiments, the memory system 200 includes an
SSD coupled to an HMB 228, which does not include
DRAM.

10

15

20

25

30

35

40

45

50

55

60

65

8

FIG. 3 is a diagram illustrating a data structure 300 of user
data 302 that is stored jointly with integrity data 304 in a
memory block 306 of a memory system 200 (e.g., an SSD
112), in accordance with some embodiments. The integrity
data 304 is generated from the user data 302 based on a
parity check scheme (e.g., using XOR logic) and applied to
verify validity of the user data 302. The user data 302
includes a plurality of user data items, and the integrity data
304 includes a plurality of integrity data items. The user data
302 and the integrity data 304 are temporarily stored in an
SRAM buffer 224 of a controller 202 of a memory system
200 (e.g., an SSD 112) or an HMB 228 external to the
controller 202 (FIG. 2). In some embodiments, the user data
302 and the integrity data 304 are stored in two separate
regions of the SRAM buffer 224. After storing the user data
302 and the integrity data 304 temporarily in the SRAM
buffer 224 or the HMB 228, the controller 202 moves the
user data 302 and the integrity data 304 into the memory
block 306 of the memory system 200 (e.g., an SSD 112). In
some situations, the memory block 306 is entirely filled with
the user data 302 and the integrity data 304 copied from the
SRAM buffer 224 or the HMB 228. Alternatively, in some
situations, a first subset of the memory block 306 is filled
with the user data 302 and the integrity data 304, and a
second subset of the memory block 306 is left empty as the
memory block 306 is closed (i.e., no more data can be
written into the memory block 306). For example, last
memory pages 210-3 of the memory planes 208-3 to 208-7
are empty.

In accordance with the data structures 300, the memory
block 306 includes a plurality of memory pages 210. The
plurality of memory pages 210 are distributed on a first
number L of memory dies 206. Each memory die 206 has a
second number M of memory planes 208 (e.g., 208-0) to
208-7), where M is equal to 8 in FIG. 3. Each memory plane
208 corresponds to a third number N of memory pages 210
(e.g., 210-0) to 210-N). Each of the first number L, the
second number M, and the third number N is a positive
integer number. In this example, the first number L, the
second number M, and the third number N are equal to 2, 8,
and 4, respectively, and the memory block 306 includes 64
memory pages in total. Each super page or stripe includes a
row of pages 210. In some embodiments, each super page or
stripe is identified by one physical address when a controller
202 accesses the memory cells in the memory system 200.
In some embodiments, each super page or stripe is a basic
memory unit, and a plurality of super pages or stripes are
identified jointly by one physical address when the control-
ler 202 accesses the memory cells in the memory system
200.

Referring to FIG. 3, in some embodiments, one or more
last pages 210 of each super page or strip are used to store
the integrity data 304, while remaining pages 210 of each
super page or strip are used to store the user data 302.
Specifically, each row of memory pages 210 (e.g., a super
page or stripe 210-0)) corresponds to a subset of the user
data 302 and a subset of the integrity data 304. The subset
of the user data 302 is stored in the respective row of
memory pages 210 (e.g., the super page 210-0)) on a first
subset of memory planes 208 (e.g., 208-0) to 208-6), and the
subset of the integrity data 304 is stored in the respective
row of memory pages 210 (e.g., 210-0) on a second subset
of distinct memory planes 208 (e.g., 208-7). In some
embodiments, each user data item of the user data 302 has
a data item size (e.g., 32 bits) and is stored with an integrity
data item having an integrity item size (4 bits). For example,
each user data item of the user data 302 is stored in a

US 12,118,222 B2

9

corresponding memory page 210-0) on any of memory
planes 208-0 to 208-6, and its corresponding integrity data
item is stored in the same memory page 210-0 of the
memory plane 208-7. In some embodiments, XOR logic is
applied to generate the integrity data item for each user data
item of the user data 302. Every 8 bits of the user data item
of the user data 302 are combined using the XOR logic to
determine a parity bit of the integrity data item of the
integrity data 304.

In some embodiments, for each memory block 306, the
user data 302 and the integrity data 304 are provided by a
host device 220 coupled to the memory system 200 (FIG. 2),
and prepared in the SRAM buffer 224 by the controller 202.
While the user data 302 is written to the SRAM buffer 224,
the integrity data 304 is determined based on each individual
user data item (e.g., 32 bits, 64 bits), user data 302 to be
stored in each memory page 210) (e.g., 16 KB), or user data
302 to be stored in each row of memory pages 210. Stated
another way, each integrity data item of the integrity data
304 is generated based on a data chunk having a configur-
able size (e.g., 4 KB, 8 KB, 16 KB, or any other suitable
sizes) and a number of data chunks of the user data 302. In
some embodiments, the user data 302 and the integrity data
304 are stored in two separate SRAM buffers 224. In some
embodiments, the user data 302 is further encoded by a
low-density parity-check (LDPC) engine and based on an
LDPC coding scheme. Each of the user data items of the user
data 302 corresponds to a respective one of the integrity data
items of the integrity data 304. Each of the user data items
of'the user data 302 is coded by the LDPC engine to generate
a respective LDPC code, and the respective one of the
integrity data items of the integrity item of the integrity data
304 includes the LDPC code. The user data 302 and the
associated integrity data 304 stored in the SRAM buffer 224
is copied jointly to, and coexist in a memory block 306 of
the memory system 200 (e.g., the SSD 112).

Specifically, for example, on each row of memory pages
210 of the memory block 306, the user data 302 is stored in
the first subset of memory planes 208-0 to 208-6, and the
integrity data 304 corresponding to the user data 302 on the
same row is stored in the last memory plane 208-7. As such,
the user data 302 and the corresponding integrity data 304 is
stored jointly in the same memory block 306 of the memory
system 200 on a super page basis or on a block-by-block
basis.

FIG. 4 is a diagram illustrating a data structure 400 of user
data 302 that is stored separately with integrity data 304 in
two distinct memory blocks 306A and 306B of a memory
system 200 (e.g., an SSD 112), in accordance with some
embodiments. The integrity data 304 is generated from the
user data 302 based on a parity check scheme and applied to
verify validity of the user data 302. The user data 302 and
the integrity data 304 are temporarily stored in an SRAM
buffer 224 or an HMB 228 (FIG. 2). In some embodiments,
each of the two distinct memory blocks 306A and 306B
corresponds to a respective distinct memory block in the
SRAM buffer 224 or the HMB 228 (FIG. 2). The user data
302 is copied from respective distinct memory blocks of the
SRAM buffer 224 or the HMB 228 to a first memory block
306A. The integrity data 304 is copied from respective
distinct memory blocks of the SRAM buffer 224 to a second
memory block 306B. After the user data 302 stored in the
first memory block 306A of the memory system 200 is
validated or corrected, the integrity data 304 corresponding
to the user data 302 is invalidated and discarded in the

20

40

45

50

55

10

second memory block 306B, allowing the second memory
block 306B to repurposed for storage of additional user data
302 or integrity data 304.

In accordance with the data structures 400, each of the
memory blocks 306A and 306B includes a plurality of
memory pages 210. The plurality of memory pages 210 are
distributed on a first number L of memory dies 206. Each
memory die 206 has a second number M of memory planes
208 (e.g., 208-0) to 208-7, wherein M is equal to 8). Each
memory plane 208 corresponds to a third number N of
memory pages 210 (e.g., 210-0) to 210-N). Each of the first
number L, the second number M, and the third number N is
a positive integer number. In some embodiments, each
memory die 206 (e.g., 206-0) or 206-1) of the first memory
block 306A is distinct from memory dies 206 (e.g., 206-2
and 206-3) of the second memory block 3068, and each
memory die 206 (e.g., 206-2 or 206-3) of the second
memory block 306B is distinct from memory dies 206 (e.g.,
206-0) and 206-1) of the first memory block 306A. No
memory die belongs to both of the memory blocks 306 A and
306B. In some situations, the first memory block 306A is
entirely filled with the user data 302 copied from the SRAM
buffer 224 or the HMB 228. Alternatively, in some situa-
tions, a first subset of the first memory block 306A is filled
with the user data 302, and a second subset of the first
memory block 306A is left empty. For example, a half of last
memory pages 210-3 of the second number M of memory
planes 208 are empty. In some situations, the second
memory block 3068 is entirely filled with the integrity data
304 copied from the SRAM buffer 224 or the HMB 228.
Alternatively, in some situations, a first subset of the second
memory block 3068 is filled with the integrity data 304, and
a second subset of the second memory block 306B is left
empty.

In some embodiments FIG. 4, the first memory block
306A has a block size equal to that of the second memory
block 306B. Alternatively, in some embodiments not shown,
the first memory block 306A has a block size distinct from
(e.g., larger than, smaller than) that of the second memory
block 306B.

In some embodiments, the user data 302 stored in the first
memory block 306A includes a plurality of user data sets
402 (e.g., a first user data set 402-1, a second user data set
402-2), and each user data set 402 is configured to occupy
one or more respective first memory pages 210) (e.g., 2
memory pages). A number of memory pages in each user
data set 402 is reconfigurable. User data in each user data set
402 is stored in the first memory block 306A jointly, e.g., in
response to a write command. Successively and after obtain-
ing each of the plurality of user data sets 402 in a buffer (e.g.,
the SRAM buffer 224, the HMB 228), the controller 202
stores the respective user data set 402 as a whole (e.g.,
jointly, in response to a respective write command) into the
one or more respective memory pages 210 of the first
memory block 306. In some embodiments, the integrity data
304 stored in the second memory block 306B includes a
plurality of integrity data sets 404 (e.g., a first integrity data
set 404-1, a second integrity data set 404-2), and each
integrity data set 404 is configured to occupy one or more
respective second memory pages 210 (e.g., 4 memory
pages). A number of memory pages in each integrity data set
404 is reconfigurable. Integrity data in each integrity data set
404 is stored in the second memory block 3068 jointly, e.g.,
in response a write command. Successively and after obtain-
ing each of the plurality of integrity data sets 404 in a buffer
(e.g., the SRAM buffer 224, the HMB 228), the controller
202 stores the respective integrity data set 404 as a whole

US 12,118,222 B2

11

(e.g., jointly, in response to a respective write command)
into the one or more respective second memory pages 210
of the second memory block 306B.

For the first memory block 306 A, a subset of user data 302
corresponds to, and is verified based on, a subset of integrity
data 304 of the second memory block 306B. For example,
the subset of user data 302 is stored in a row of memory
pages 210 (also called a super page) distributed on the
second number M of memory planes 208 of the first number
L of memory dies 206 of the first memory block 306A. The
subset of integrity data 304 is stored in a respective memory
page 210 of a respective memory plane 208 of a memory die
206 of the second memory block 306B. In an example, the
subset of user data 302A are stored in a first row of 8
memory pages (i.e., a first super page 210-0)) of the first
memory block 306A, and the subset of integrity data 304A
corresponding to the subset of user data 302A is stored in a
single memory page 210-0 on the memory plane 208-0) of
the second memory block 306B. The subset of user data
302B is stored in a second row of 8 memory pages (i.e., a
second super page 210-1) below the first row of the first
memory block 306A, and the subset of integrity data 304B
corresponding to the subset of user data 302B is stored in a
single memory page 210-0) of a memory plane 208-1
immediately adjacent to the plane 208-0) of the second
memory block 306B. Each memory page 210 in the memory
blocks 306A and 306B has a page size of 16 KB. In some
embodiments, XOR logic or a lookup table is applied to
generate the integrity data item for each user data item.
Every eight 16 KB memory pages 210 of the first memory
block 306 A corresponds to a 16 KB memory page 210 of the
second memory block 306B.

After the user data 302 and the integrity data 304 are
written into the first memory block 306A and the second
memory block 306B, respectively, the controller 202 of the
memory system 200 reads back the user data 302 from the
first memory block 306A. In some situations, the controller
202 further determines that the user data 302 is valid based
on the integrity data 304. In accordance with a determination
that the user data 302 is valid based on the integrity data 304,
the integrity data 304 is invalidated in, and discarded from,
the second memory block 306B.

In some situation, before the user data 302 is stored in the
first memory block 306A, the user data 302 is stored in a
third memory block 306C that is distinct from the first and
second memory blocks 306A and 306B. The user data 302
is read back from the third memory block 306C. The
controller 202 of the memory system 200 determines that the
user data 302 read from the third memory block 306C is
invalid based on the integrity data 304 stored in the second
memory block 306B. Further, in some embodiments, in
accordance with a determination that a subset of the user
data 302 stored in the third memory block 306C is invalid,
the controller 202 duplicates (operation 308) the user data
from the third memory block 306C to the first memory block
306A and corrects the user data 302 in the first memory
block 306A based on the integrity data 304. The user data
302 is purged in the third memory block 306C. The user data
302 duplicated in the first memory block 306A is optionally
read back and validated based on the integrity data 304 in the
second memory block 306B. In accordance with a determi-
nation that the user data 302 is valid, the integrity data 304
is invalidated in the second memory block 306B, which is
repurposed for storage of additional user data 302 or integ-
rity data 304.

In some embodiments, the user data 302 stored in the first
memory block 306A corresponds to a first subset (less than

30

40

45

55

65

12

all) of the integrity data 304 stored in the second memory
block 306B. The second memory block 306B are repurposed
after all of the integrity data 304 stored in the second
memory block 306B are invalidated, i.e., after validation of
user data stored in the first memory block 306 A and one or
more additional memory blocks 306. Alternatively, in some
embodiments, the second memory block 3068 is partially
filled, and the user data 302 stored in the first memory block
306A corresponds to all of the integrity data 304 stored in
the second memory block 306B. The second memory block
306B is repurposed after the user data 302 of the first
memory block 306A is validated. Alternatively and addi-
tionally, in some embodiments, the second memory block
306B is entirely filled by the integrity data 304 correspond-
ing to the user data 302 of the first memory block 306A. The
second memory block 306B is repurposed after the user data
302 of the first memory block 306A are validated.

After the integrity data 304 in the second memory block
306 is invalidated, the user data 302 is read from the first
memory block 306A, independently of the integrity data
304. In some embodiments, the first memory block 306A
includes a plurality of first cells of a first cell type (e.g.,
SLC). The memory system 200 further includes a fourth
memory block 306D having a plurality of second cells of a
second cell type (e.g., QLC). In an internal copy back 310,
the user data 302 is copied from the first memory block
306 A to the fourth memory block 306D without the integrity
data 304. Each of the first and second cell types is a
respective one of an SLC, MLC, TLC, QLC, PLC, and six-
or higher-level cell, while the first cell type is distinct and
different from the second cell type.

FIG. 5 is a flow diagram of an example data storage
method 500, in accordance with some embodiments. A host
device 220) (e.g., a processor module 102 in FIG. 1) is
coupled to a memory system 200 including a plurality of
memory blocks 306. Each memory block 306 includes an
SLC memory block. The host device 220 provides (opera-
tion 502) user data 302 to a controller 202 of the memory
system 200. In some embodiments, the controller 202 writes
(operation 504) the user data 302 temporarily in an SRAM
buffer 224 (FIG. 2) in the controller 202. Alternatively, in
some embodiments, the controller 202 writes the user data
302 temporarily in an HMB 228 (FIG. 2) external to the
controller 202.

The controller 202 of the memory system 200 determines
(operation 506) integrity data 304 that corresponds to the
user data 302 and is applicable to verify the user data 302.
The user data 302 includes a configurable first number of
data chunks, and each data chunk has a configurable first
chunk size (e.g., 4 KB, 8 KB, 16 KB). The integrity data 304
corresponding to the user data 302 includes a configurable
second number of data chunks, each of which has a config-
urable second chunk size (e.g., 4 KB, 8 KB, 16 KB). The
configurable second number (e.g., 8) is optionally equal to
or different from the configurable first number (e.g., 32). The
configurable second chunk size (e.g., 4 KB) is optionally
equal to or different from the configurable first chunk size
(e.g., 16 KB). In an example, XOR logic is applied to
generate an integrity data item for each user data item. Every
8 bits of the user data item are combined using the XOR
logic to determine the parity check unit of the integrity data
304. In some embodiments, the integrity data 304 is stored
in the same bufter 224 or 228 (FIG. 2) with the user data 302.
Alternatively, the integrity data 304 and the user data 302 is
stored separately in the SRAM buffer 224 and the HMB 228
(FIG. 2).

US 12,118,222 B2

13

In some embodiments, the user data 302 is further
encoded (operation 508) by an LDPC engine to generate the
integrity data 304 based on an LDPC coding scheme. The
user data 302 is written to a first memory block 306A of the
memory system 200 (e.g., the SSD 112), and the integrity
data 304 corresponding to the user data 302 is copied to a
second memory block 306B of the memory system 200 (e.g.,
the SSD 112). In an example, each memory cell on the
memory block 306 includes an SL.C and is formed based a
NAND logic. Each memory cell may have two or more
levels. Further, in some situations, XOR logic is imple-
mented by the LDPC engine to encode the user data 302 and
generate LDPC codes as the integrity data 304. As such, the
integrity data 304 corresponding to the user data 302
includes the LDPC codes, and is written into the second
memory block 306B.

The integrity data 304 includes a plurality of integrity data
sets 404 (FIG. 4), and each integrity data set 404 is config-
ured to occupy one or more respective second memory
pages 210 in the second memory block 306B. Integrity data
in each integrity data set 404 is stored in the second memory
block 306B jointly, e.g., in response a write command. In
some embodiments, when a predefined number of integrity
data sets 404 are available, integrity data of the integrity data
sets 404 is written (operation 510) to the second memory
block 306B. In some embodiments, the user data 302 of the
first memory block 306A is encoded by an LDPC engine and
based on an LDPC coding scheme. Each of the user data
items of the user data 302 corresponds to a respective one of
the integrity data items of the integrity data 304 of the
second memory block 306B. Each of the user data items of
the user data 302 in the first memory block 306A is coded
by the LDPC engine to generate a respective LDPC code,
and the respective one of the integrity data items of the
integrity item of the integrity data 304 in the second memory
block 306B includes the LDPC code. In some embodiments,
the integrity data 304 in the second memory block 306B
includes XOR parity. In some embodiments, the integrity
data 304 in the second memory block 306B includes both the
LDPC code and XOR parity associated with the user data
302 stored in the first memory block 306A.

The second memory block 306B is closed when integrity
data sets 404 fill the second memory block 306B or when the
second memory block 306B does not need to be entirely
filled. In some embodiments, a firmware application is
applied to control the predefined number of integrity data
sets 404 that are written to the second memory block 306B
in each write operation. In some embodiments, the second
memory block 306B stores only the integrity data 304
associated with the user data 302 stored in the first memory
block 306A. Alternatively, in some embodiments, the sec-
ond memory block 306B stores the integrity data 304
associated with the user data 302 stored in the first memory
block 306A and one or more additional memory blocks 306.

In some embodiments, readback and data validation are
implemented as the first memory block 306A is closed for
additional data storage. The second memory block 306B
does not need to be closed for storing additional integrity
data distinct from the integrity data 304 associated with the
user data 302 of the first memory block 306 A. However, the
integrity data 304 associated with the user data 302 stored in
the first memory block 306A should have been written into
the second memory block 306B.

In accordance with a determination that the first memory
block 306A used to store the user data 302 has not been
closed (operation 512), more user data 302 and integrity data
304 are generated (operations 502-510) to be written into the

10

15

20

25

30

35

40

45

50

55

60

65

14

first memory block 306A and the second memory block
306B, respectively, until the first memory block 306A is
closed. In accordance with a determination that the first
memory block 306A used to store the user data 302 has been
closed (operation 512), the integrity data 304 corresponding
to the first memory block 306A has been copied from the
buffer 224 or 228 to the second memory block 306B. The
user data 302 in the first memory block 306A is read back
(operation 514) from the first memory block 306A and
validated based on the corresponding integrity data 304
stored in the second memory block 306B. The integrity data
304 corresponding to the user data 302 stored in the first
memory block 306A is invalidated, in accordance with a
determination that the user data 302 is valid. Subsequently,
the integrity data 304 is discarded. After all of the integrity
data 304 stored in the second memory block 306B is
invalidated, the second memory block 306B is repurposed
for storing additional user data 302 or integrity data 304.

After integrity data 304 stored in the second memory
block 3068 is invalidated and discarded, the controller 202
of the memory system 200 repeats operations 502-516 to
store user data 302 provided by the host device 220 in a next
first memory block 306A (FIG. 2). The next first memory
block 306A of user data 302 is validated based on a next
second memory block 306B storing corresponding integrity
data 304, and however, not stored jointly with the corre-
sponding integrity data 304. Upon validation of the next first
memory block 306A of user data 302, the next second
memory block 306B of integrity data 304 are also invali-
dated and discarded. By these means, the integrity data 304
is not stored to reduce overprovisioning of the memory
system 202, and the integrity data 304 does not need to be
copied during subsequent copy back operation on the user
data 302.

In some embodiments, XOR parity check is one of the
critical memory management functions implemented in
SSDs 112 to protect data integrity against NAND defects.
This function allows the firmware (FW) and application
specific integrated circuit (ASIC) to recover the user data
302 using the integrity data 304 (e.g., the XOR parity) stored
in the volatile media which is determined while writing the
user data 302 to the NAND based memory cells of the SSDs
112. The XOR parity is determined optionally on a die level
(e.g., 64 KB), a planar level (e.g., 16 KB), on a half plane
level (e.g., 8 KB), or on a quarter plane level (e.g., 4 KB)).
The quarter plane level uses lesser space (e.g., 4 KB) and has
a lower correction capability compared with the planar level,
which uses less space (e.g., 16 KB) and has a lower
correction capability compared with the die level. The
method 500 invalidates the integrity data 304, and is imple-
mented, independently of any XOR Parity size requirement
(e.g., on a half plane level, on a quarter plane level, or on a
planar level).

Stated another way, in some embodiments, the electronic
device divides user data 302 into a plurality of data chunks.
Each data chunk has a data chunk size. The electronic device
determines each integrity data item of a subset of integrity
data 304 based on a subset of respective data chunks. The
subset of respective data chunks includes a predefined
number of data chunks of the user data 302 (e.g., 4 data
chunks). For example, each data chunk corresponds to two
memory pages 210, and each integrity data item corresponds
to four data chunks (i.e., eight memory pages 210)). In some
embodiments, each of the plurality of integrity data items of
the integrity data 304 is determined based on the subset of
respective data chunks using an XOR logic or a lookup
table. In some embodiments, for each of the plurality of user

US 12,118,222 B2

15

data items of the user data 302, the respective one of the
plurality of integrity data items of the integrity data 304 is
determined using an XOR logic or a lookup table.

In some embodiments, the method 500 is implemented
based on a dynamic XOR policy to generate dynamic XOR
parity data 304, which will be stored in a system block 3068
(i.e., the second memory block 306B) while the user data
302 is being written to an SLC block 306A or TLC/QLC
block during TLC/QLC direct program algorithm. The
dynamic XOR parity data 304 is calculated at a super page
granularity (e.g., for the first memory block 306A), stored in
ASIC memory (e.g., buffer 224 or 228), and periodically
flushed to non-volatile storage medium (system block 306B)
during low power state transitions (including a power loss
notification (PLN)). In some situations, the SRAM buffer
224 has a limited size, a host memory buffer (HMB) 228 is
used to for storing the dynamic XOR parity data 304. The
firmware uses direct addressing to match the user data 302
stored in the first memory block 306A to the corresponding
parity data 304 stored in the system block 306B. This will
ensure the parity data 304 is protected against power loss.
Once the first memory block 306A is closed, the FW
performs a full or partial block read (depends on NAND
technology) to ensure data integrity before invalidating the
XOR parity data 304 stored in the system block 306B. If
there is a safe power cycle or low power state transition, the
parity data 304 is dumped in the system block 306B and will
be valid. Upon resume, if there is any error correction code
(ECC) error detected in an open block, the integrity data 304
is used to recover the user data 302 and manage the bad
block error handling scenario identical to traditional XOR
policy implementation.

In some embodiments, the low power state transition is
enabled in response to the PLN received by the controller
202 of the memory system 200. The PLN indicates that the
system module 100 will disable a power supply and instructs
the controller 202 to take necessary actions to store snap-
shots or current states of the memory system 200 including
the plurality of memory channels 204. The snapshots and
current states will be loaded to help the memory system 200
resume operations promptly after a low power state.

In some embodiments, an internal copy back (ICB) fea-
ture is supported by a NAND based SSD 112. The SSD 112
copies all the user data 302 from one first memory block
306A (source) to another block destination. When ICB is
used, there is no distinction/intelligence built to differentiate
valid vs invalid data on the first memory block 306A and
entire block data is copied over into the destination block. As
the total NVB (number of valid blocks) in QLC is dimin-
ishing, the overhead to maintain QLC XOR is higher, as a
result the FW algorithm does not implement QL.C XOR. In
the architecture without adaptive XOR parity, the SLC parity
is ported over to QLC during internal copy back. This data
would not be ported if the internal copy back feature was not
used. As a result, the validity of the TLC/QLC block is lower
due to XOR parity data being present. This reduction can
trigger QLC-t0-QLC or TLC-to-TLC garbage collection
(defrag) earlier (to free up some space in the TLC/QLC
regions) resulting in performance drop to the end user. The
adaptive XOR parity based method 500 becomes critical for
ne TLC/QLC NAND based SSDs 112, ensures that no
additional block is needed, and qualifies the NAND based
SSD 112 for a faster memory operation. The spare SLC
block storing parity (e.g., the second memory block 306B)
will be wear leveled with the rest of the SL.C data or system
map blocks.

10

15

20

25

30

35

40

45

50

55

60

65

16

The method 500 is scalable to different types of memory
systems 200, including but not limited to, an SSD 112 of a
data center, an SSD 112 of a client device, and an automotive
SSD segment. In some embodiments, the memory system
200 has XOR protection until a memory block 306 is open.
Post closure relies on NAND reliability metrics. Margins are
high for the SL.C. This feature is implemented for the value
segments with minimal impact. In some situations, post
closure failures are triggered as read failures based on
retention or disturb mechanisms.

In some embodiments, application of the method 500 is
detected by sniffing a NAND interface bus and applying
command sequence analysis.

FIG. 6 is a flow diagram of an example data writing
process 600 of writing user data 302 in a first memory block
306A of a memory system 200 (e.g., an SSD 112), in
accordance with some embodiments. A first memory block
306A is also called an SLC block, and a second memory
block 306B is also called a system block. In some embodi-
ments, the data writing process 600 is initiated (operation
602), e.g., in response to a data write request. A controller
202 of the memory system 200 determines (operation 604)
whether the first memory block 306A has been closed for
storing the user data 302. In some embodiments, the user
data 302 fills the first memory block 306A. The controller
202 determines (operation 604) whether the user data 302
fill the first memory block 306A. Alternatively, in some
embodiments, the user data 302 does not fill the first
memory block 306A, and are stored in the first memory
block 306A to partially fill the first memory block 306A.
Once the first memory block 306A is closed, no more user
data 302 are stored into the first memory block 306A.

In accordance with a determination that the first memory
block 306A is not closed, more user data 302 needs to be
obtained from a host device 220 (FIG. 2). While obtaining
more user data 302 to be stored in the first memory block
306A, the controller 202 generates (operation 606) a subset
of integrity data 304 (e.g., XOR based parity data) corre-
sponding to the obtained user data 302, and temporarily
stores the subset of integrity data 304 in the SRAM buffer
224. During the course of generating the integrity data 304,
the controller 202 determines whether the integrity data 304
stored in the SRAM buffer 224 fills (operation 608) a first
integrity data set 404 (e.g., a die page including 4 memory
pages) predefined to be copied from the SRAM buffer 224
to the HMB 228 jointly. In accordance with a determination
that the integrity data 304 stored in the SRAM buffer 224
fills the first integrity data set 404, the controller 202 further
determines (operation 610) whether the HMB 228 is also
used to store integrity data 304 for the second memory block
306B. In accordance with a determination that the HMB 228
is also used to store the integrity data 304 for the second
memory block 306B, the integrity data 304 is moved (opera-
tion 612) to the HMB 228, e.g., to append to integrity data
304 that are already stored on the HMB 228, until it is
determined (operation 614) that the integrity data 304 stored
on the HMB 228 fills a second integrity data set 404 (e.g.,
a super page including 8 memory pages) predefined to be
copied from the HMB 228 to the second memory block
306B jointly. Each second integrity data set 404 stored in the
HMB 228 are written (operation 616) into the second
memory block 306B. In some embodiments, the HMB 228
is not used to store integrity data for the second memory
block 306B, the integrity data 304 stored in the SRAM
buffer 224 bypass the HMB 228, and are written (operation
616) to the second memory block 306B. The user data 302
is temporarily stored (operation 618) in the SRAM buffer

US 12,118,222 B2

17
224 for the first memory block 306A, and gradually written
into the first memory block 306A.

In accordance with a determination that the first memory
block 306A is not closed (e.g., no more user data 302 needs
to be stored in the first memory block 306A), the controller
202 reads back (operation 620) the user data 302 from the
first memory block 306A and determines (operation 622)
whether there is a readback error. In accordance with a
determination that there is no readback error, the integrity
data 304 corresponding to the user data 302 in the first
memory block 306A is invalidated (operation 624) in the
second memory block 306B. Conversely, in accordance with
a determination that there is a readback error, the integrity
data 304 corresponding to the user data 302 in the first
memory block 306A is identified (operation 626) in the
second memory block 306B and applied to correct the
readback error in the first memory block 306A. In some
embodiments, when a readback error is detected in the user
data 302 in the first memory block 306A, the user data 302
is duplicated from the first memory block 306A to the third
memory block 306C and corrected in the third memory
block 306C. The user data 302 in the first memory block
306A and corresponding integrity data 304 in the second
memory block 306B are invalidated. Alternatively, in some
embodiments, the user data 302 in a third memory block
306C (FIG. 4) is read back, and a readback error is detected
in the user data 302 in the third memory block 306C. The
user data 302 is duplicated from the third memory block
306C to the first memory block 306A and corrected in the
first memory block 306A. The user data 302 in the third
memory block 306C and corresponding integrity data 304
are invalidated. After the user data 302 in the first memory
block 306A is validated or corrected, the writing operation
is completed (operation 628).

FIG. 7 is a flow diagram of another example data storage
method 700, in accordance with some embodiments. The
method 700 is implemented (operation 702) at an electronic
device having a memory system 200. The memory system
200 includes a first memory block 306A and a second
memory block 306B. Each memory block 306 includes one
or more respective memory dies 206 (e.g., two distinct dies
206-0) and 206-1 of the first memory block 306A in FIG. 4).
The electronic device stores (operation 704) user data 302
including a plurality of user data items in the first memory
block 306A. Each of the plurality of user data items of the
user data 302 is configured to be validated based on a
respective one of a plurality of integrity data items. The
electronic device stores (operation 706) the integrity data
304 including the plurality of integrity data items in the
second memory block 306B, and each memory die of the
second memory block 3068 is distinct from the one or more
respective dies of the first memory block 306A. Each
memory die of the first memory block 306A is distinct from
the one or more respective dies of the second memory block
306B. The first memory block 306 A and the second memory
blocks 306B have entirely different memory dies. The
electronic device invalidates (operation 708) the integrity
data 304 in the second memory block 306B, and reads
(operation 710) the user data 302 from the first memory
block 306 A independently of the integrity data 304.

In some embodiments, before invalidating the integrity
data 304 in the second memory block 306B, the electronic
device reads back (operation 712) the user data 302 from the
first memory block 306A, and determines (operation 714)
that the user data 302 is valid based on the integrity data 304.
The integrity data 304 in the second memory block 3068 is
invalidated in accordance with a determination that the user

10

15

20

25

30

35

40

45

50

55

60

65

18
data 302 is valid based on the integrity data 304. The
integrity data 304 in the second memory block 306B is
discarded (operation 716). Stated another way, the user data
302 is stored in the first memory block 306A without the
integrity data 304, and is read from this on without checking
data validity based on the integrity data 304.

In some embodiments, prior to storing the user data 302
in the first memory block 306 A, the electronic device stores
(operation 718) the user data 302 in a third memory block
306C that is distinct from the first and second memory
blocks. The electronic device reads (operation 720) back the
user data 302 from the third memory block 306C and
determines (operation 722) that the user data 302 read from
the third memory block 306C is invalid based on the
integrity data 304 stored in the second memory block 306B.
Further, in some embodiments, in accordance with a deter-
mination that a subset of the user data 302 stored in the third
memory block 306C is invalid, the electronic device dupli-
cates (operation 724) the user data 302 from the third
memory block 306C to the first memory block 306A,
corrects (operation 726) the user data 302 in the first
memory block 306A based on the integrity data 304, and
purges (operation 728) the user data 302 in the third memory
block 306C.

In some embodiments, the memory system 200 includes
an SSD 112 of the electronic device, and each memory die
206 includes a plurality of memory planes 208. Each
memory plane 208 includes a plurality of memory pages
210, and each memory page 210) includes a plurality of
memory cells. Further, in some embodiments, the user data
302 includes a plurality of user data sets 402, and each user
data set 402 is configured to occupy one or more respective
first memory pages. The user data 302 are stored in the first
memory block 306A by successively and after obtaining
each of the plurality of user data sets 402 in a buffer, storing
the respective user data set as a whole (e.g., jointly, in
response to a memory command) into the one or more
respective memory pages 210 of the first memory block
306A. Additionally, in some embodiments, the integrity data
304 includes a plurality of integrity data sets 404, and each
integrity data set 404 is configured to occupy one or more
respective second memory pages. Specifically, after obtain-
ing each of the plurality of integrity data sets 404 in a buffer,
the respective integrity data set 404 is stored as a whole (e.g.,
jointly, in response to a memory command) into the one or
more respective second memory pages 210 of the second
memory block 306B. The plurality of integrity data sets 404
are stored successively in the second memory block 306B.
The buffer is optionally an SRAM buffer 224 or an HMB
228. The one or more respective first or second memory
pages 210 include a number of memory pages 210 that are
read or written jointly, and the number is reconfigurable.

Further, in some embodiments, the memory system 200
includes a plurality of memory blocks 306, and the second
memory block 3068 is a last memory block of the plurality
of memory blocks 306.

In some embodiments, the first memory block 306A
includes a plurality of first cells of a first cell type (e.g.,
SLC). The memory system 200 further includes a fourth
memory block 306D, and the fourth memory block 306D
includes a plurality of second cells of a second cell type
(e.g., QLC). The first cell type is distinct and different from
the second cell type. The electronic device reads the user
data 302 from the first memory block 306A by copying
(operation 730) the user data 302 from the first memory
block 306A to the fourth memory block 306D without the
integrity data 304.

US 12,118,222 B2

19

In some embodiments, for each of the plurality of user
data items of the user data 302, the respective one of the
plurality of integrity data items of the integrated data 304 is
determined using an XOR logic. In some embodiments, for
each of the plurality of user data items of the user data 302,
the respective one of the plurality of integrity data items of
the integrated data is determined 304 using a lookup table.

In some embodiments, the electronic device divides the
user data 302 into a plurality of data chunks. Each data
chunk has a data chunk size. The electronic device deter-
mines each of a subset of the integrity data 304 based on a
subset of respective data chunks. The subset of respective
data chunks includes a predefined number of data chunks. In
an example, an XOR parity is obtained at different levels
(e.g., on a planar level) based on a size of the subset of
respective data chunks.

In some embodiments, the electronic device encodes each
of the plurality of user data items of the user data 302 by a
low-density parity-check (LDPC) engine to generate a
respective LDPC code. The respective one of the plurality of
integrity data items of the integrity data 304 that corresponds
to the respective user data 302 includes the LDPC code. In
some embodiments, the electronic device encodes each of
the plurality of user data items of the user data 302 by a XOR
parity scheme. In some embodiments, the electronic device
encodes each of the plurality of user data items of the user
data 302 by both the LDPC engine and a XOR parity
scheme. In some embodiments, the electronic device
encodes a data chunk including a set of user data items of the
user data 302 by one or both of the LDPC engine and an
XOR parity scheme.

In some embodiments, the memory system includes a
redundant array of inexpensive disks (RAID) further includ-
ing a first drive and a second drive. The first memory block
includes at least part of the first drive in the RAID. The
electronic device determines the integrity data 304 including
a set of RAID parity data items based on a subset of the user
data 302 stored in the first drive and a set of user data stored
in the second drive of the RAID.

It should be understood that the particular order in which
the operations in FIGS. 5-7 have been described are merely
exemplary and are not intended to indicate that the described
order is the only order in which the operations could be
performed. One of ordinary skill in the art would recognize
various ways to store user data 302 in a memory system 200
(e.g., an SSD 112). Additionally, it should be noted that
details of other processes described above with respect to
FIGS. 1-4 are also applicable in an analogous manner to
methods 500, 600, and 700 described above with respect to
FIGS. 5, 6, and 7. For brevity, these details are not repeated
here.

Memory is also used to storing instructions and data
associated with the methods 500, 600, and 700, and includes
high-speed random access memory, such as DRAM, SRAM,
DDR RAM, or other random access solid state memory
devices; and, optionally, includes non-volatile memory, such
as one or more magnetic disk storage devices, one or more
optical disk storage devices, one or more flash memory
devices, or one or more other non-volatile solid state storage
devices. The memory, optionally, includes one or more
storage devices remotely located from one or more process-
ing units. Memory, or alternatively the non-volatile memory
within memory, includes a non-transitory computer readable
storage medium. In some embodiments, memory, or the
non-transitory computer readable storage medium of

40

45

50

20

memory, stores the programs, modules, and data structures,
or a subset or superset for implementing methods 500, 600,
and 700.

Each of the above identified elements may be stored in
one or more of the previously mentioned memory devices,
and corresponds to a set of instructions for performing a
function described above. The above identified modules or
programs (i.e., sets of instructions) need not be implemented
as separate software programs, procedures, modules or data
structures, and thus various subsets of these modules may be
combined or otherwise re-arranged in various embodiments.
In some embodiments, the memory, optionally, stores a
subset of the modules and data structures identified above.
Furthermore, the memory, optionally, stores additional mod-
ules and data structures not described above.

The terminology used in the description of the various
described implementations herein is for the purpose of
describing particular implementations only and is not
intended to be limiting. As used in the description of the
various described implementations and the appended claims,
the singular forms “a”, “an” and “the” are intended to
include the plural forms as well, unless the context clearly
indicates otherwise. It will also be understood that the term
“and/or” as used herein refers to and encompasses any and
all possible combinations of one or more of the associated
listed items. It will be further understood that the terms
“includes,” “including.” “comprises,” and/or “comprising.”
when used in this specification, specify the presence of
stated features, integers, steps, operations, elements, and/or
components, but do not preclude the presence or addition of
one or more other features, integers, steps, operations,
elements, components, and/or groups thereof. Additionally,
it will be understood that, although the terms “first,” “sec-
ond,” etc. may be used herein to describe various elements,
these elements should not be limited by these terms. These
terms are only used to distinguish one element from another.

As used herein, the term “if” is, optionally, construed to
mean “when” or “upon” or “in response to determining” or
“in response to detecting” or “in accordance with a deter-
mination that”” depending on the context. Similarly, the
phrase “if it is determined” or “if [a stated condition or
event] is detected” is, optionally, construed to mean “upon
determining” or “in response to determining” or “upon
detecting [the stated condition or event|” or “in response to
detecting [the stated condition or event]” or “in accordance
with a determination that [a stated condition or event] is
detected,” depending on the context.

The foregoing description, for purpose of explanation, has
been described with reference to specific embodiments.
However, the illustrative discussions above are not intended
to be exhaustive or to limit the claims to the precise forms
disclosed. Many modifications and variations are possible in
view of the above teachings. The embodiments were chosen
and described in order to best explain principles of operation
and practical applications, to thereby enable others skilled in
the art.

Particularly, any examples involving specific numbers or
configurations are not intended to be exhaustive or to limit
the scope of the claims to the precise examples disclosed.
Many modifications and variations are possible in view of
the above teachings or common knowledge of one skilled in
the art. The embodiments were chosen and described in
order to best explain principles of operation and practical
applications, to thereby enable others skilled in the art.

Although various drawings illustrate a number of logical
stages in a particular order, stages that are not order depen-
dent may be reordered and other stages may be combined or

2 <

US 12,118,222 B2

21

broken out. While some reordering or other groupings are
specifically mentioned, others will be obvious to those of
ordinary skill in the art, so the ordering and groupings
presented herein are not an exhaustive list of alternatives.
Moreover, it should be recognized that the stages can be
implemented in hardware, firmware, software or any com-
bination thereof.

What is claimed is:

1. A data storage method, comprising:

at an electronic device having a memory system, the

memory system having a first memory block and a

second memory block, each memory block including

one or more respective memory dies:

storing user data including a plurality of user data items
in the first memory block, each of the plurality of
user data items configured to be validated based on
a respective one of a plurality of integrity data items;

storing integrity data including the plurality of integrity
data items in the second memory block, each
memory die of the second memory block being
distinct from the one or more respective memory
dies of the first memory block;

invalidating the integrity data in the second memory
block; and

reading the user data from the first memory block
independently of the integrity data.

2. The method of claim 1, the method further comprising,
before invalidating the integrity data in the second memory
block:

reading back the user data from the first memory block;

determining that the user data is valid based on the

integrity data, wherein the integrity data in the second
memory block is invalidated in accordance with a
determination that the user data is valid based on the
integrity data; and

discarding the integrity data in the second memory block.

3. The method of claim 1, further comprising, prior to
storing the user data in the first memory block:

storing the user data in a third memory block that is

distinct from the first and second memory blocks;
reading back the user data from the third memory block;
determining that the user data read from the third block is
invalid based on the integrity data stored in the second
memory block.

4. The method of claim 3, storing the user data in the first
memory block further comprising, in accordance with a
determination that a subset of the user data stored in the third
memory block is invalid:

duplicating the user data from the third memory block to

the first memory block;

correcting the user data in the first memory block based on

the integrity data; and

purging the user data in the third memory block.

5. The method of claim 1, wherein the memory system
includes a solid state drive of the electronic device, each
memory die including a plurality of memory planes, each
memory planes including a plurality of memory pages, each
memory page including a plurality of memory cells.

6. The method of claim 5, wherein the user data includes
a plurality of user data sets, and each user data set is
configured to occupy one or more respective first memory
pages, storing the user data in the first memory block further
comprising:

successively, after obtaining each of the user data sets in

a buffer, storing the respective user data sets as a whole
into the one or more respective memory pages of the
first memory block.

10

20

25

30

35

40

45

50

55

60

65

22

7. The method of claim 5, wherein the integrity data
includes a plurality of integrity data sets, and each integrity
data set is configured to occupy one or more respective
second memory pages, storing the integrity data in the
second memory block further comprising:

successively, after obtaining each of the plurality of
integrity data sets in a buffer, storing the respective
integrity data set as a whole into the one or more
respective second memory pages of the second memory
block.

8. The method of claim 5, wherein the memory system
includes a plurality of memory blocks, and the second
memory block is a last memory block of the plurality of
memory blocks.

9. The method of claim 1, wherein:

the first memory block includes a plurality of first cells of
a first cell type;

the memory system further includes a fourth memory
block, and the fourth memory block includes a plurality
of second cells of a second cell type;

the second cell type is distinct from the first cell type; and

reading the user data from the first memory block further
comprises:
copying the user data from the first memory block to

the fourth memory block without the integrity data.
10. The method of claim 1, further comprising:
for each of the plurality of user data items, determining
the respective one of the plurality of integrity data
items using one of an XOR logic and a lookup table.
11. The method of claim 1, further comprising:
dividing the user data into a plurality of data chunks, each
data chunk having a data chunk size; and
determining each of a subset of integrity data items based
on a subset of respective data chunks, the subset of
respective data chunks including a predefined number
of data chunks.
12. The method of claim 11, further comprising:
encoding each of the plurality of user data items by a
low-density parity-check (LDPC) engine to generate a
respective LDPC code, the respective one of the plu-
rality of integrity data items including the LDPC code.
13. An electronic device, comprising:
one or more processors;
a memory system having a first memory block and a
second memory block, each memory block including
one or more respective memory dies; and
memory storing one or more programs for execution by
the one or more processors, the one or more programs
including instructions for:
storing user data including a plurality of user data items
in the first memory block, each of the plurality of
user data items configured to be validated based on
a respective one of a plurality of integrity data items;

storing integrity data including the plurality of integrity
data items in the second memory block, each
memory die of the second memory block being
distinct from the one or more respective memory
dies of the first memory block;

invalidating the integrity data in the second memory
block; and

reading the user data from the first memory block
independently of the integrity data.

14. The electronic device of claim 13, the one or more
programs further comprising instructions for, before invali-
dating the integrity data in the second memory block:

reading back the user data from the first memory block;

US 12,118,222 B2

23

determining that the user data is valid based on the
integrity data, wherein the integrity data in the second
memory block is invalidated in accordance with a
determination that the user data is valid based on the
integrity data; and

discarding the integrity data in the second memory block.

15. The electronic device of claim 13, the one or more
programs further comprising instructions for, prior to storing
the user data in the first memory block:

storing the user data in a third memory block that is

distinct from the first and second memory blocks;
reading back the user data from the third memory block;
determining that the user data read from the third block is
invalid based on the integrity data stored in the second
memory block.

16. The electronic device of claim 15, storing the user data
in the first memory block further comprising, in accordance
with a determination that a subset of the user data stored in
the third memory block is invalid:

duplicating the user data from the third memory block to

the first memory block;

correcting the user data in the first memory block based on

the integrity data; and

purging the user data in the third memory block.

17. A non-transitory computer-readable storage medium
storing one or more programs for execution by one or more
processors, the one or more programs comprising instruc-
tions for:

at an electronic device having a memory system, the

memory system having a first memory block and a

second memory block, each memory block including

one or more respective memory dies;

storing user data including a plurality of user data items
in the first memory block, each of the plurality of
user data items configured to be validated based on
a respective one of a plurality of integrity data items;

storing integrity data including the plurality of integrity
data items in the second memory block, each
memory die of the second memory block being

15

25

30

35

24

distinct from the one or more respective memory
dies of the first memory block;

invalidating the integrity data in the second memory
block; and

reading the user data from the first memory block
independently of the integrity data.

18. The non-transitory computer-readable storage
medium of claim 17, the one or more programs further
comprising instructions for, before invalidating the integrity
data in the second memory block:

reading back the user data from the first memory block;

determining that the user data is valid based on the

integrity data, wherein the integrity data in the second
memory block is invalidated in accordance with a
determination that the user data is valid based on the
integrity data; and

discarding the integrity data in the second memory block.

19. The non-transitory computer-readable storage
medium of claim 17, storing the user data in the first memory
block further comprising, in accordance with a determina-
tion that a subset of the user data stored in a third memory
block is invalid:

duplicating the user data from the third memory block to

the first memory block;

correcting the user data in the first memory block based on

the integrity data; and

purging the user data in the third memory block.

20. The non-transitory computer-readable storage
medium of claim 17, wherein the memory system includes
a redundant array of inexpensive disks (RAID) including a
first drive and a second drive, and the first memory block
includes at least part of the first drive in the RAID, the one
or more programs further comprising instructions for:

determining the integrity data including a set of RAID

parity data items based on a subset of the user data
stored in the first drive and a set of user data stored in
the second drive of the RAID.

#* #* #* #* #*

