(12) STANDARD PATENT (19) AUSTRALIAN PATENT OFFICE

(11) Application No. **AU 2001259432 B2**

(54)	Title Modified peptides, comprising an FC domain, as therapeutic agents			
(51) ⁷	International Patent Classification(s) C07K 014/00			
(21)	Application No: 2001259432 (22) Date of Filing: 2001.05.02			
(87)	WIPO No: WO01/83525			
(30)	Priority Data			
(31)	Number(32)Date(33)Country095632862000.05.03US			
(43) (43) (44)	Publication Date:2001.11.12Publication Journal Date:2002.01.31Accepted Journal Date:2005.04.21			
(71)	Applicant(s) Amgen Inc.			
(72)	Inventor(s) Gudas, Jean Marie; Boone, Thomas Charles; Cheetham, Janet C.; Liu, Chuan-Fa; Feige, Ulrich			
(74)	Agent / Attorney Shelston IP, Level 21 60 Margaret Street, Sydney, NSW, 2000			
(56)	Related Art WO 1997/028828 WO 1996/018422 WO 1998/046267			

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

РСТ

(43) International Publication Date 8 November 2001 (08.11.2001)

(51) International Patent Classification⁷: C07K 19/00, C12N 15/62, 15/70, 1/21

(21) International Application Number: PCT/US01/14310

(22) International Filing Date: 2 May 2001 (02.05.2001)

(25) Filing Language: English

(26) Publication Language: English

- (30) Priority Data: 09/563,286 3 May 2000 (03.05.2000) US
- (71) Applicant: AMGEN INC. [US/US]; One Amgen Center Drive, Thousand Oaks, CA 91320-1799 (US).
- (72) Inventors: FEIGE, Ulrich; 3117 Deer Valley Avenue, Newbury Park, CA 91320 (US). LIU, Chuan-Fa; 1425 Clover Creek Drive, Longmont, CO 80503 (US). CHEETHAM, Janet, C.; 1695 East Valley Road, Montecito, CA 93108 (US). BOONE, Thomas, Charles; 3010 Deer Valley Avenue, Newbury Park, CA 91320 (US). GUDAS, Jean, Marie; 1500 White Birch Terrace, #208, Fremont, CA 94356 (US).
- (74) Agents: ODRF, Steven, M. et al.; Amgen Inc., One Amgen Center Drive, M/S 27-4-A, Thousand Oaks, CA 91320-1799 (US).

C V (10) International Publication Number WO 01/083525 A3

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments
- with (an) indication(s) in relation to deposited biological material furnished under Rule 13bis separately from the description

(88) Date of publication of the international search report: 18 July 2002

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: MODIFIED PEPTIDES, COMPRISING AN FC DOMAIN, AS THERAPEUTIC AGENTS

(57) Abstract: The present invention concerns fusion of Fc domains with biologically active peptides and a process for preparing pharmaceutical agents using biologically active peptides. In this invention, pharmacologically active compounds are prepared by a process comprising: a) selecting at least one peptide that modulates the activity of a protein of interest; and b) preparing a pharmacologic agent comprising an Fc domain covalently linked to at least one amino acid of the selected peptide. Linkage to the vehicle increases the half-life of the peptide, which otherwise would be quickly degraded *in vivo*. The preferred vehicle is an Fc domain. The peptide can be selected, for example, by phage display, *E.coli* display, ribosome display, RNA-peptide screening, yeast-based screening, chemical-peptide screening, rational design, or protein structural analysis.

Modified Peptides as Therapeutic Agents Background of the Invention

- 1 -

Any discussion of the prior art throughout the specification should in no way be considered as an admission that such prior art is widely known or forms part of common

5 general knowledge in the field.

Recombinant proteins are an emerging class of therapeutic agents. Such recombinant therapeutics have engendered advances in protein formulation and chemical modification. Such modifications can protect therapeutic proteins, primarily by blocking their exposure to proteolytic enzymes. Protein modifications may also increase the

therapeutic protein's stability, circulation time, and biological activity. A review article describing protein modification and fusion proteins is Francis (1992), *Focus on Growth Factors* 3:4-10 (Mediscript, London), which is hereby incorporated by reference.

One useful modification is combination with the "Fc" domain of an antibody. Antibodies comprise two functionally independent parts, a variable domain known as

- 15 "Fab", which binds antigen, and a constant domain known as "Fc", which links to such effector functions as complement activation and attack by phagocytic cells. An Fc has a long serum half-life, whereas an Fab is short-lived (Capon <u>et al.</u> (1989), <u>Nature</u> 337:525-31). When constructed together with a therapeutic protein, an Fc domain can provide longer half-life or incorporate such functions as Fc receptor binding, protein A binding,
- 20 complement fixation and perhaps even placental transfer. <u>Id</u>. Table 1 summarizes use of Fc fusions known in the art.

.

Form of Fc	Fusion	Therapeutic	
	partner	implications	Reference
lgG1	N-terminus of CD30-L	Hodgkin's disease; anaplastic lymphoma; T- cell leukemia	U.S. Patent No. 5,480,981
Murine Fcy2a	IL-10	anti-inflammatory; transplant rejection	Zheng <u>et al</u> . (1995), <u>J.</u> <u>Immunol</u> . 154: 5590-600
lgG1	TNF receptor	septic shock	Fisher <u>et al.</u> (1996), <u>N.</u> <u>Engl. J. Med.</u> 334: 1697- 1702; Van Zee, K. <u>et al.</u> (1996), <u>J. Immunol.</u> 156: 2221-30
IgG, IgA, IgM, or IgE (excluding the first domain)	TNF receptor	inflammation, autoimmune disorders	U.S. Pat. No. 5,808,029, issued September 15, 1998
lgG1	CD4 receptor	AIDS	Capon <u>et al.</u> (1989), <u>Nature 337</u> : 525-31
lgG1, lgG3	N-terminus of IL-2	anti-cancer, antiviral	Harvill <u>et al.</u> (1995), <u>Immunotech</u> . 1: 95-105
lgG1	C-terminus of OPG	osteoarthritis; bone density	WO 97/23614, published July 3, 1997
lgG1	N-terminus of leptin	anti-obesity	PCT/US 97/23183, filed December 11, 1997
Human Ig Cy1	CTLA-4	autoimmune disorders	Linsley (1991), <u>J. Exp.</u> <u>Med</u> . 174:561-9

Table 1—Fc fusion wit	h therapeutic proteins
-----------------------	------------------------

A much different approach to development of therapeutic agents is peptide library screening. The interaction of a protein ligand with its receptor often takes place at a relatively large interface. However, as demonstrated for human growth hormone and its receptor, only a few key residues at the interface contribute to most of the binding energy. Clackson <u>et al</u>. (1995), <u>Science</u> 267: 383-6. The bulk of the protein ligand merely displays the binding epitopes in the right topology or serves

10 functions unrelated to binding. Thus, molecules of only "peptide" length (2 to 40 amino acids) can bind to the receptor protein of a given large protein ligand. Such peptides may mimic the bioactivity of the large protein ligand ("peptide agonists") or, through competitive binding, inhibit the bioactivity of the large protein ligand ("peptide antagonists").

WO 01/83525

Phage display peptide libraries have emerged as a powerful method in identifying such peptide agonists and antagonists. See, for example, Scott <u>et al</u>. (1990), <u>Science</u> 249: 386; Devlin <u>et al</u>. (1990), <u>Science</u> 249: 404; U.S. Pat. No. 5,223,409, issued June 29, 1993; U.S. Pat. No.

- 5,733,731, issued March 31, 1998; U.S. Pat. No. 5,498,530, issued March 12, 1996; U.S. Pat. No. 5,432,018, issued July 11, 1995; U.S. Pat. No. 5,338,665, issued August 16, 1994; U.S. Pat. No. 5,922,545, issued July 13, 1999; WO 96/40987, published December 19, 1996; and WO 98/15833, published April 16, 1998 (each of which is incorporated by reference). In such
- 10 libraries, random peptide sequences are displayed by fusion with coat proteins of filamentous phage. Typically, the displayed peptides are affinity-eluted against an antibody-immobilized extracellular domain of a receptor. The retained phages may be enriched by successive rounds of affinity purification and repropagation. The best binding peptides may be
- 15 sequenced to identify key residues within one or more structurally related families of peptides. See, e.g., Cwirla <u>et al.</u> (1997), <u>Science</u> 276: 1696-9, in which two distinct families were identified. The peptide sequences may also suggest which residues may be safely replaced by alanine scanning or by mutagenesis at the DNA level. Mutagenesis libraries may be created
- and screened to further optimize the sequence of the best binders.
 Lowman (1997), <u>Ann. Rev. Biophys. Biomol. Struct.</u> 26: 401-24.

Other methods compete with phage display in peptide research. A peptide library can be fused to the carboxyl terminus of the <u>lac</u> repressor and expressed in <u>E. coli</u>. Another <u>E. coli</u>-based method allows display on

25 the cell's outer membrane by fusion with a peptidoglycan-associated lipoprotein (PAL). Hereinafter, these and related methods are collectively referred to as "<u>E. coli</u> display." Another biological approach to screening soluble peptide mixtures uses yeast for expression and secretion. See Smith <u>et al.</u> (1993), <u>Mol. Pharmacol.</u> 43: 741-8. Hereinafter, the method of

- 3 -

Smith <u>et al</u>. and related methods are referred to as "yeast-based screening." In another method, translation of random RNA is halted prior to ribosome release, resulting in a library of polypeptides with their associated RNA still attached. Hereinafter, this and related methods are collectively

- 5 referred to as "ribosome display." Other methods employ chemical linkage of peptides to RNA; see, for example, Roberts & Szostak (1997), Proc. Natl. <u>Acad. Sci. USA</u>, 94: 12297-303. Hereinafter, this and related methods are collectively referred to as "RNA-peptide screening." Chemically derived peptide libraries have been developed in which peptides are immobilized
- on stable, non-biological materials, such as polyethylene rods or solventpermeable resins. Another chemically derived peptide library uses photolithography to scan peptides immobilized on glass slides.
 Hereinafter, these and related methods are collectively referred to as "chemical-peptide screening." Chemical-peptide screening may be
- advantageous in that it allows use of D-amino acids and other unnatural analogues, as well as non-peptide elements. Both biological and chemical methods are reviewed in Wells & Lowman (1992), <u>Curr. Opin. Biotechnol.</u> 3: 355-62.

In the case of known bioactive peptides, rational design of peptide 20 ligands with favorable therapeutic properties can be completed. In such an approach, one makes stepwise changes to a peptide sequence and determines the effect of the substitution upon bioactivity or a predictive biophysical property of the peptide (e.g., solution structure). Hereinafter, these techniques are collectively referred to as "rational design." In one

such technique, one makes a series of peptides in which one replaces a single residue at a time with alanine. This technique is commonly referred to as an "alanine walk" or an "alanine scan." When two residues (contiguous or spaced apart) are replaced, it is referred to as a "double alanine walk." The resultant amino acid substitutions can be used alone or

- 4 -

in combination to result in a new peptide entity with favorable therapeutic properties.

Structural analysis of protein-protein interaction may also be used to suggest peptides that mimic the binding activity of large protein

- 5 ligands. In such an analysis, the crystal structure may suggest the identity and relative orientation of critical residues of the large protein ligand, from which a peptide may be designed. See, e.g., Takasaki <u>et al.</u> (1997), <u>Nature Biotech.</u> 15: 1266-70. Hereinafter, these and related methods are referred to as "protein structural analysis." These analytical methods may
- 10 also be used to investigate the interaction between a receptor protein and peptides selected by phage display, which may suggest further modification of the peptides to increase binding affinity.

Conceptually, one may discover peptide mimetics of any protein using phage display and the other methods mentioned above. These

methods have been used for epitope mapping, for identification of critical amino acids in protein-protein interactions, and as leads for the discovery of new therapeutic agents. E.g., Cortese <u>et al.</u> (1996), <u>Curr. Opin. Biotech. 7</u>: 616-21. Peptide libraries are now being used most often in immunological studies, such as epitope mapping. Kreeger (1996), <u>The Scientist</u> 10(13): 19-20.

Of particular interest here is use of peptide libraries and other techniques in the discovery of pharmacologically active peptides. A number of such peptides identified in the art are summarized in Table 2. The peptides are described in the listed publications, each of which is

25 hereby incorporated by reference. The pharmacologic activity of the peptides is described, and in many instances is followed by a shorthand term therefor in parentheses. Some of these peptides have been modified (e.g., to form C-terminally cross-linked dimers). Typically, peptide libraries were screened for binding to a receptor for a pharmacologically active protein (e.g., EPO receptor). In at least one instance (CTLA4), the peptide library was screened for binding to a monclonal antibody.

	Binding		
Form of	partner/	Pharmacologic	Reference
peptide	protein of	activity	
• •	interest	, ,	
intrapeptide disulfide- bonded	EPO receptor	EPO-mimetic	Wrighton <u>et al</u> . (1996), <u>Science</u> 273: 458-63; U.S. Pat. No. 5,773,569, issued June 30, 1998 to Wrighton <u>et al</u> .
C-terminally cross-linked dimer	EPO receptor	EPO-mimetic	Livnah <u>et al</u> . (1996), <u>Science</u> 273: 464-71; Wrighton <u>et al</u> . (1997), <u>Nature Biotechnology</u> 15: 1261-5; International patent application WO 96/40772, published Dec. 19, 1996
linear	EPO receptor	EPO-mimetic	Naranda <u>et al</u> . (1999), <u>Proc. Natl. Acad. Sci.</u> <u>USA</u> , 96: 7569-74; WO 99/47151, published September 23, 1999
linear	c-Mpl	TPO-mimetic	Cwirla <u>et al</u> .(1997) <u>Science</u> 276: 1696-9; U.S. Pat. No. 5,869,451, issued Feb. 9, 1999; U.S. Pat. No. 5,932,946, issued Aug. 3, 1999
C-terminally cross-linked dimer	c-Mpl	TPO-mimetic	Cwirla <u>et al</u> . (1997), <u>Science</u> 276: 1696-9
disulfide- linked dimer		stimulation of hematopoiesis ("G-CSF-mimetic")	Paukovits <u>et al</u> . (1984), <u>Hoppe-Seylers Z.</u> <u>Physiol. Chem.</u> 365: 303- 11; Laerum <u>et al</u> . (1988), <u>Exp. Hemat</u> . 16: 274-80
alkylene- linked dimer		G-CSF-mimetic	Bhatnagar <u>et al</u> . (1996), <u>J. Med. Chem</u> . 39: 3814- 9; Cuthbertson <u>et al</u> . (1997), <u>J. Med. Chem</u> . 40: 2876-82; King <u>et al</u> . (1991), <u>Exp. Hematol</u> . 19:481; King <u>et al</u> . (1995), Blood 86 (Suppl.

Table 2–	-Pharmacol	ogically	active	peptides

^a The protein listed in this column may be bound by the associated peptide (e.g., EPO receptor, IL-1 receptor) or mimicked by the associated peptide. The references listed for each clarify whether the molecule is bound by or mimicked by the peptides.

			1): 309a
linear	IL-1 receptor	inflammatory and autoImmune diseases ("IL-1 antagonist" or "IL-1 ra-mimetic")	U.S. Pat. No. 5,608,035; U.S. Pat. No. 5,786,331; U.S. Pat. No. 5,880,096; Yanofsky <u>et al</u> . (1996), <u>Proc. Natl. Acad. Sci</u> . 93: 7381-6; Akeson <u>et al</u> . (1996), <u>J. Biol. Chem</u> . 271: 30517-23; Wiekzorek <u>et al</u> . (1997), <u>Pol. J. Pharmacol</u> . 49: 107-17; Yanofsky (1996), PNAs, 93:7381-7386.
linear	Facteur thymique serique (FTS)	stimulation of lymphocytes ("FTS-mimetic")	Inagaki-Ohara <u>et al</u> . (1996), <u>Cellular Immunol</u> . 171: 30-40; Yoshida (1984), I <u>nt. J. Immunopharmacol, 6:141-6.</u>
intrapeptide disulfide bonded	CTLA4 MAb	CTLA4-mimetic	Fukumoto <u>et al.</u> (1998), <u>Nature Biotech.</u> 16: 267- 70
exocyclic	TNF-α receptor	TNF- α antagonist	Takasaki <u>et al</u> . (1997), <u>Nature Biotech</u> . 15:1266- 70; WO 98/53842, published December 3, 1998
linear	TNF-α receptor	TNF- α antagonist	Chirinos-Rojas (), <u>J.</u> Imm., 5621-5626.
intrapeptide disulfide bonded	C3b	inhibition of complement activation; autoimmune diseases ("C3b-antagonist")	Sahu <u>et al</u> . (1996), <u>J.</u> <u>Immunol</u> . 157: 884-91; Morikis <u>et al</u> . (1998), <u>Protein Sci</u> . 7: 619-27
linear	vinculin	cell adhesion processes cell growth, differentiation, wound healing, tumor metastasis ("vinculin binding")	Adey <u>et al</u> . (1997), <u>Biochem. J</u> . 324: 523-8
linear	C4 binding protein (C4BP)	anti-thrombotic	Linse <u>et al</u> . (1997), <u>J.</u> <u>Biol. Chem</u> . 272: 14658- 65
linear	urokinase receptor	processes associated with urokinase interaction with its receptor (e.g., angiogenesis, tumor cell invasion and metastasis); ("UKR antagonist")	Goodson <u>et al</u> . (1994), <u>Proc. Natl. Acad. Sci</u> . 91: 7129-33; International application WO 97/35969, published October 2, 1997
linear	Mdm2, Hdm2	Inhibition of inactivation of p53 mediated by Mdm2 or hdm2; anti-tumor ("Mdm/hdm antagonist")	Picksley <u>et al</u> . (1994), <u>Oncogene</u> 9: 2523-9; Bottger <u>et al</u> . (1997) <u>J</u> . <u>Mol. Biol</u> . 269: 744-56; Bottger <u>et al</u> . (1996),

^b FTS is a thymic hormone mimicked by the molecule of this invention rather than a receptor bound by the molecule of this invention.

lineer	DO1 WAF1	anti-tumor by mimicking	Ballet al (1997) Curr
	pz I	the activity of p21 ^{WAF1}	<u>Biol</u> . 7: 71-80
linear	farnesyl transferase	anti-cancer by preventing activation of ras oncodene	Gibbs et al. (1994), <u>Cell</u> 77:175 -1 78
linear	Ras effector domain	anti-cancer by inhibiting biological function of the ras oncogene	Moodie et al. (1994), <u>Trends Genet</u> 10: 44-48 Rodriguez et al. (1994), Nature 370:527-532
linear	SH2/SH3 domains	anti-cancer by inhibiting tumor growth with activated tyrosine kinases; treatment of SH3- mediated disease states ("SH3 antagonist")	Pawson et al (1993), <u>Curr. Biol.</u> 3:434-432 Yu et al. (1994), <u>Cell</u> 76:933-945; Rickles <u>et al</u> . (1994), <u>EMBO J</u> . 13: 5598-5604; Sparks <u>et al</u> . (1994), <u>J. Biol. Chem</u> . 269: 23853-6; Sparks <u>et al</u> . (1996), <u>Proc. Natl.</u> <u>Acad. Sci</u> . 93: 1540-4; US Pat. No. 5,886,150, issued March 23, 1999; US Pat. No. 5,888,763, issued March 30, 1999
linear	p16 ^{iNK4}	anti-cancer by mimicking activity of p16; e.g., inhibiting cyclin D-Cdk complex ("p16-mimetic")	Fåhraeus <u>et al</u> . (1996), <u>Curr. Biol</u> . 6:84-91
linear	Src, Lyn	inhibition of Mast cell activation, IgE-related conditions, type I hypersensitivity ("Mast cell antagonist")	Stauffer <u>et al</u> . (1997), <u>Biochem</u> . 36: 9388-94
linear	Mast cell protease	treatment of inflammatory disorders mediated by release of tryptase-6 ("Mast cell protease inhibitors")	International application WO 98/33812, published August 6, 1998
linear	HBV core antigen (HBcAg)	treatment of HBV viral infections ("anti-HBV")	Dyson & Muray (1995), <u>Proc. Natl. Acad. Sci</u> . 92: 2194-8
linear	selectins	neutrophil adhesion; inflammatory diseases ("selectin antagonist")	Martens <u>et al</u> . (1995), <u>J.</u> <u>Biol. Chem</u> . 270: 21129- 36; European patent application EP 0 714 912, published June 5, 1996
linear, cyclized	calmodulin	calmodulin antagonist	Pierce <u>et al</u> . (1995), <u>Molec. Diversity</u> 1: 259- 65; Dedman <u>et al</u> . (1993), <u>J. Biol. Chem</u> . 268: 23025-30; Adey & Kay (1996), <u>Gene</u> 169: 133-4
linear,	integrins	tumor-homing; treatment	International applications

		integrin-mediated cellular events, including platelet aggregation, thrombosis, wound healing, osteoporosis, tissue repair, angiogenesis (e.g., for treatment of cancer), and tumor invasion ("integrin-binding")	June 1, 1995; WO 97/08203, published March 6, 1997; WO 98/10795, published March 19, 1998; WO 99/24462, published May 20, 1999; Kraft <u>et al</u> . (1999), J. Biol. Chem. 274: 1979-1985
cyclic, linear	fibronectin and extracellular matrix components of T cells and macrophages	treatment of inflammatory and autoimmune conditions	WO 98/09985, published March 12, 1998
linear	somatostatin and cortistatin	treatment or prevention of hormone-producing tumors, acromegaly, giantism, dementia, gastric ulcer, tumor growth, inhibition of hormone secretion, modulation of sleep or neural activity	European patent application 0 911 393, published April 28, 1999
linear	bacterial lipopolysac- charide	antibiotic; septic shock; disorders modulatable by CAP37	U.S. Pat. No. 5,877,151, issued March 2, 1999
linear or cyclic, including D- amino acids	pardaxin, mellitin	antipathogenic	WO 97/31019, published 28 August 1997
linear, cyclic	VIP	impotence, neurodegenerative disorders	WO 97/40070, published October 30, 1997
linear	CTLs	cancer	EP 0 770 624, published May 2, 1997
linear	THF-gamma2		Burnstein (1988), <u>Biochem</u> ., 27:4066-71.
linear	Amylin		Cooper (1987), <u>Proc.</u> <u>Natl. Acad. Sci.,</u> 84:8628-32.
linear	Adrenomedullin		Kitamura (1993), <u>BBRC,</u> 192:553-60.
cyclic, linear	VEGF	anti-angiogenic; cancer, rheumatoid arthritis, diabetic retinopathy, psoriasis ("VEGF antagonist")	Fairbrother (1998), <u>Biochem</u> ., 37:17754- 17764.
cyclic	MMP	inflammation and autoimmune disorders; tumor growth ("MMP inhibitor")	Koivunen (1999), <u>Nature</u> <u>Biotech</u> ., 17:768-774.
	Echietatin	inhibition of platolot	0.5. Pat. No. 5,869,452
	LUNISLAUIT		Gall 13001. J. DIUI.

		aggregation	Chem., 263:19827-32.
linear	SLE	SLE	WO 96/30057, published
	autoantibody		October 3, 1996
	GD1alpha	suppression of tumor	lshikawa <u>et al</u> . (1998),
		metastasis	FEBS Lett. 441 (1): 20-4
<u> </u>	antiphospholipid	endothelial cell activation,	Blank et al. (1999), Proc.
	beta-2-	antiphospholipid	Natl. Acad. Sci. USA 96:
	glycoprotein-l	syndrome (APS),	5164-8
	(β2GPI)	thromboembolic	
	antibodies	phenomena,	
		thrombocytopenia, and	
· · · · ·		recurrent fetal loss	
linear	T Cell Receptor	diabetes	WO 96/11214, published
	beta chain		April 18, 1996.
		Antiproliferative, antiviral	WO 00/01402, published
			January 13, 2000.
		anti-ischemic, growth	WO 99/62539, published
		hormone-liberating	December 9, 1999.
		anti-angiogenic	WO 99/61476, published
			December 2, 1999.
linear		Apoptosis agonist;	WO 99/38526, published
		treatment of T cell-	Aug. 5, 1999.
		associated disorders (e.g.,	
		autoimmune diseases,	
		viral infection, T cell	
		leukemia, T cell	
		lymphoma)	
·		······································	
linear	MHC class II	treatment of autoimmune	US Pat. No. 5,880,103,
linear	MHC class II	treatment of autoimmune diseases	US Pat. No. 5,880,103, issued March 9, 1999.
linear linear	MHC class II androgen R,	treatment of autoimmune diseases proapoptotic, useful in	US Pat. No. 5,880,103, issued March 9, 1999. WO 99/45944, published
linear	MHC class II androgen R, p75, MJD, DCC,	treatment of autoimmune diseases proapoptotic, useful in treating cancer	US Pat. No. 5,880,103, issued March 9, 1999. WO 99/45944, published September 16, 1999.
linear	MHC class II androgen R, p75, MJD, DCC, huntingtin	treatment of autoimmune diseases proapoptotic, useful in treating cancer	US Pat. No. 5,880,103, issued March 9, 1999. WO 99/45944, published September 16, 1999.
linear linear linear	MHC class II androgen R, p75, MJD, DCC, huntingtin von Willebrand	treatment of autoimmune diseases proapoptotic, useful in treating cancer inhibition of Factor VIII	US Pat. No. 5,880,103, issued March 9, 1999. WO 99/45944, published September 16, 1999. WO 97/41220, published
linear linear linear	MHC class II androgen R, p75, MJD, DCC, huntingtin von Willebrand Factor; Factor	treatment of autoimmune diseases proapoptotic, useful in treating cancer inhibition of Factor VIII interaction; anticoagulants	US Pat. No. 5,880,103, issued March 9, 1999. WO 99/45944, published September 16, 1999. WO 97/41220, published April 29, 1997.
linear linear linear	MHC class II androgen R, p75, MJD, DCC, huntingtin von Willebrand Factor; Factor VIII	treatment of autoimmune diseases proapoptotic, useful in treating cancer inhibition of Factor VIII interaction; anticoagulants	US Pat. No. 5,880,103, issued March 9, 1999. WO 99/45944, published September 16, 1999. WO 97/41220, published April 29, 1997.
linear linear linear linear	MHC class II androgen R, p75, MJD, DCC, huntingtin von Willebrand Factor; Factor VIII Ientivirus LLP1	treatment of autoimmune diseases proapoptotic, useful in treating cancer inhibition of Factor VIII interaction; anticoagulants antimicrobial	US Pat. No. 5,880,103, issued March 9, 1999. WO 99/45944, published September 16, 1999. WO 97/41220, published April 29, 1997. US Pat. No. 5,945,507, issued Aug. 31, 1999.
linear linear linear linear	MHC class II androgen R, p75, MJD, DCC, huntingtin von Willebrand Factor; Factor VIII Ientivirus LLP1	treatment of autoimmune diseases proapoptotic, useful in treating cancer inhibition of Factor VIII interaction; anticoagulants antimicrobial	US Pat. No. 5,880,103, issued March 9, 1999. WO 99/45944, published September 16, 1999. WO 97/41220, published April 29, 1997. US Pat. No. 5,945,507, issued Aug. 31, 1999. Graf (1986) Boptidos
linear linear linear linear linear	MHC class II androgen R, p75, MJD, DCC, huntingtin von Willebrand Factor; Factor VIII lentivirus LLP1 Delta-Sleep Inducing Pentide	treatment of autoimmune diseases proapoptotic, useful in treating cancer inhibition of Factor VIII interaction; anticoagulants antimicrobial sleep disorders	US Pat. No. 5,880,103, issued March 9, 1999. WO 99/45944, published September 16, 1999. WO 97/41220, published April 29, 1997. US Pat. No. 5,945,507, issued Aug. 31, 1999. Graf (1986), <u>Peptides</u> 7:1165
linear linear linear linear linear	MHC class II androgen R, p75, MJD, DCC, huntingtin von Willebrand Factor; Factor VIII lentivirus LLP1 Delta-Sleep Inducing Peptide	treatment of autoimmune diseases proapoptotic, useful in treating cancer inhibition of Factor VIII interaction; anticoagulants antimicrobial sleep disorders	US Pat. No. 5,880,103, issued March 9, 1999. WO 99/45944, published September 16, 1999. WO 97/41220, published April 29, 1997. US Pat. No. 5,945,507, issued Aug. 31, 1999. Graf (1986), <u>Peptides</u> 7:1165. Barna (1994) Cancer
linear linear linear linear linear linear	MHC class II androgen R, p75, MJD, DCC, huntingtin von Willebrand Factor; Factor VIII lentivirus LLP1 Delta-Sleep Inducing Peptide C-Reactive Protein (CBP)	treatment of autoimmune diseases proapoptotic, useful in treating cancer inhibition of Factor VIII interaction; anticoagulants antimicrobial sleep disorders inflammation and cancer	US Pat. No. 5,880,103, issued March 9, 1999. WO 99/45944, published September 16, 1999. WO 97/41220, published April 29, 1997. US Pat. No. 5,945,507, issued Aug. 31, 1999. Graf (1986), <u>Peptides</u> 7:1165. Barna (1994), <u>Cancer</u> Immunother
linear linear linear linear linear linear	MHC class II androgen R, p75, MJD, DCC, huntingtin von Willebrand Factor; Factor VIII Ientivirus LLP1 Delta-Sleep Inducing Peptide C-Reactive Protein (CRP)	treatment of autoimmune diseases proapoptotic, useful in treating cancer inhibition of Factor VIII interaction; anticoagulants antimicrobial sleep disorders inflammation and cancer	US Pat. No. 5,880,103, issued March 9, 1999. WO 99/45944, published September 16, 1999. WO 97/41220, published April 29, 1997. US Pat. No. 5,945,507, issued Aug. 31, 1999. Graf (1986), <u>Peptides</u> 7:1165. Barna (1994), <u>Cancer</u> Immunol. Immunother. 38:38 (1994)
linear linear linear linear linear linear	MHC class II androgen R, p75, MJD, DCC, huntingtin von Willebrand Factor; Factor VIII lentivirus LLP1 Delta-Sleep Inducing Peptide C-Reactive Protein (CRP)	treatment of autoimmune diseases proapoptotic, useful in treating cancer inhibition of Factor VIII interaction; anticoagulants antimicrobial sleep disorders inflammation and cancer	US Pat. No. 5,880,103, issued March 9, 1999. WO 99/45944, published September 16, 1999. WO 97/41220, published April 29, 1997. US Pat. No. 5,945,507, issued Aug. 31, 1999. Graf (1986), <u>Peptides</u> 7:1165. Barna (1994), <u>Cancer</u> Immunol. Immunother. 38:38 (1994). Suzuki (1992). Comp
linear linear linear linear linear linear linear	MHC class II androgen R, p75, MJD, DCC, huntingtin von Willebrand Factor; Factor VIII lentivirus LLP1 Delta-Sleep Inducing Peptide C-Reactive Protein (CRP) Sperm- Activating	treatment of autoimmune diseases proapoptotic, useful in treating cancer inhibition of Factor VIII interaction; anticoagulants antimicrobial sleep disorders inflammation and cancer infertility	US Pat. No. 5,880,103, issued March 9, 1999. WO 99/45944, published September 16, 1999. WO 97/41220, published April 29, 1997. US Pat. No. 5,945,507, issued Aug. 31, 1999. Graf (1986), <u>Peptides</u> 7:1165. Barna (1994), <u>Cancer</u> Immunol. Immunother. 38:38 (1994). Suzuki (1992), <u>Comp.</u> Biochem. Physiol.
linear linear linear linear linear linear linear	MHC class II androgen R, p75, MJD, DCC, huntingtin von Willebrand Factor; Factor VIII Ientivirus LLP1 Delta-Sleep Inducing Peptide C-Reactive Protein (CRP) Sperm- Activating Peptides	treatment of autoimmune diseases proapoptotic, useful in treating cancer inhibition of Factor VIII interaction; anticoagulants antimicrobial sleep disorders inflammation and cancer infertility	US Pat. No. 5,880,103, issued March 9, 1999. WO 99/45944, published September 16, 1999. WO 97/41220, published April 29, 1997. US Pat. No. 5,945,507, issued Aug. 31, 1999. Graf (1986), <u>Peptides</u> 7:1165. Barna (1994), <u>Cancer</u> <u>Immunol. Immunother.</u> 38:38 (1994). Suzuki (1992), <u>Comp.</u> <u>Biochem. Physiol.</u> 102B:679.
linear linear linear linear linear linear linear	MHC class II androgen R, p75, MJD, DCC, huntingtin von Willebrand Factor; Factor VIII lentivirus LLP1 Delta-Sleep Inducing Peptide C-Reactive Protein (CRP) Sperm- Activating Peptides angiotensins	treatment of autoimmune diseases proapoptotic, useful in treating cancer inhibition of Factor VIII interaction; anticoagulants antimicrobial sleep disorders inflammation and cancer infertility hematopoietic factors for	US Pat. No. 5,880,103, issued March 9, 1999. WO 99/45944, published September 16, 1999. WO 97/41220, published April 29, 1997. US Pat. No. 5,945,507, issued Aug. 31, 1999. Graf (1986), <u>Peptides</u> 7:1165. Barna (1994), <u>Cancer</u> <u>Immunol. Immunother.</u> 38:38 (1994). Suzuki (1992), <u>Comp.</u> <u>Biochem. Physiol.</u> 102B:679. Lundergan (1999), J.
linear linear linear linear linear linear linear linear	MHC class II androgen R, p75, MJD, DCC, huntingtin von Willebrand Factor; Factor VIII lentivirus LLP1 Delta-Sleep Inducing Peptide C-Reactive Protein (CRP) Sperm- Activating Peptides angiotensins	treatment of autoimmune diseases proapoptotic, useful in treating cancer inhibition of Factor VIII interaction; anticoagulants antimicrobial sleep disorders inflammation and cancer infertility hematopoietic factors for hematocytopenic	US Pat. No. 5,880,103, issued March 9, 1999. WO 99/45944, published September 16, 1999. WO 97/41220, published April 29, 1997. US Pat. No. 5,945,507, issued Aug. 31, 1999. Graf (1986), <u>Peptides</u> 7:1165. Barna (1994), <u>Cancer</u> <u>Immunol. Immunother.</u> 38:38 (1994). Suzuki (1992), <u>Comp.</u> <u>Biochem. Physiol.</u> 102B:679. Lundergan (1999), <u>J.</u> Periodontal Res.
linear linear linear linear linear linear linear linear	MHC class II androgen R, p75, MJD, DCC, huntingtin von Willebrand Factor; Factor VIII lentivirus LLP1 Delta-Sleep Inducing Peptide C-Reactive Protein (CRP) Sperm- Activating Peptides angiotensins	treatment of autoimmune diseases proapoptotic, useful in treating cancer inhibition of Factor VIII interaction; anticoagulants antimicrobial sleep disorders inflammation and cancer infertility hematopoietic factors for hematocytopenic conditions from cancer.	US Pat. No. 5,880,103, issued March 9, 1999. WO 99/45944, published September 16, 1999. WO 97/41220, published April 29, 1997. US Pat. No. 5,945,507, issued Aug. 31, 1999. Graf (1986), <u>Peptides</u> 7:1165. Barna (1994), <u>Cancer</u> Immunol. Immunother. 38:38 (1994). Suzuki (1992), <u>Comp.</u> <u>Biochem. Physiol.</u> 102B:679. Lundergan (1999), <u>J.</u> <u>Periodontal Res.</u> 34(4):223-228.
linear linear linear linear linear linear linear linear	MHC class II androgen R, p75, MJD, DCC, huntingtin von Willebrand Factor; Factor VIII lentivirus LLP1 Delta-Sleep Inducing Peptide C-Reactive Protein (CRP) Sperm- Activating Peptides angiotensins	treatment of autoimmune diseases proapoptotic, useful in treating cancer inhibition of Factor VIII interaction; anticoagulants antimicrobial sleep disorders inflammation and cancer infertility hematopoietic factors for hematocytopenic conditions from cancer, AIDS, etc.	US Pat. No. 5,880,103, issued March 9, 1999. WO 99/45944, published September 16, 1999. WO 97/41220, published April 29, 1997. US Pat. No. 5,945,507, issued Aug. 31, 1999. Graf (1986), <u>Peptides</u> 7:1165. Barna (1994), <u>Cancer</u> Immunol. Immunother. 38:38 (1994). Suzuki (1992), <u>Comp.</u> <u>Biochem. Physiol.</u> 102B:679. Lundergan (1999), <u>J.</u> <u>Periodontal Res.</u> 34(4):223-228.
linear linear linear linear linear linear linear linear	MHC class II androgen R, p75, MJD, DCC, huntingtin von Willebrand Factor; Factor VIII lentivirus LLP1 Delta-Sleep Inducing Peptide C-Reactive Protein (CRP) Sperm- Activating Peptides angiotensins	treatment of autoimmune diseases proapoptotic, useful in treating cancer inhibition of Factor VIII interaction; anticoagulants antimicrobial sleep disorders inflammation and cancer infertility hematopoietic factors for hematocytopenic conditions from cancer, AIDS, etc. anti-AIDS	US Pat. No. 5,880,103, issued March 9, 1999. WO 99/45944, published September 16, 1999. WO 97/41220, published April 29, 1997. US Pat. No. 5,945,507, issued Aug. 31, 1999. Graf (1986), Peptides 7:1165. Barna (1994), <u>Cancer</u> Immunol. Immunother. 38:38 (1994). Suzuki (1992), <u>Comp. Biochem. Physiol.</u> 102B:679. Lundergan (1999), <u>J.</u> Periodontal Res. 34(4):223-228.
linear linear linear linear linear linear linear linear	MHC class II androgen R, p75, MJD, DCC, huntingtin von Willebrand Factor; Factor VIII lentivirus LLP1 Delta-Sleep Inducing Peptide C-Reactive Protein (CRP) Sperm- Activating Peptides angiotensins	treatment of autoimmune diseases proapoptotic, useful in treating cancer inhibition of Factor VIII interaction; anticoagulants antimicrobial sleep disorders inflammation and cancer infertility hematopoietic factors for hematocytopenic conditions from cancer, AIDS, etc. anti-AIDS	US Pat. No. 5,880,103, issued March 9, 1999. WO 99/45944, published September 16, 1999. WO 97/41220, published April 29, 1997. US Pat. No. 5,945,507, issued Aug. 31, 1999. Graf (1986), <u>Peptides</u> 7:1165. Barna (1994), <u>Cancer</u> <u>Immunol. Immunother.</u> 38:38 (1994). Suzuki (1992), <u>Comp.</u> <u>Biochem. Physiol.</u> 102B:679. Lundergan (1999), <u>J.</u> <u>Periodontal Res.</u> 34(4):223-228. Chan (1998), <u>Cell</u> 93:681-684.
linear linear linear linear linear linear linear linear linear	MHC class II androgen R, p75, MJD, DCC, huntingtin von Willebrand Factor; Factor VIII lentivirus LLP1 Delta-Sleep Inducing Peptide C-Reactive Protein (CRP) Sperm- Activating Peptides angiotensins HIV-1 gp41 PKC	treatment of autoimmune diseases proapoptotic, useful in treating cancer inhibition of Factor VIII interaction; anticoagulants antimicrobial sleep disorders inflammation and cancer infertility hematopoietic factors for hematocytopenic conditions from cancer, AIDS, etc. anti-AIDS inhibition of bone	US Pat. No. 5,880,103, issued March 9, 1999. WO 99/45944, published September 16, 1999. WO 97/41220, published April 29, 1997. US Pat. No. 5,945,507, issued Aug. 31, 1999. Graf (1986), Peptides 7:1165. Barna (1994), <u>Cancer</u> <u>Immunol. Immunother.</u> 38:38 (1994). Suzuki (1992), <u>Comp.</u> <u>Biochem. Physiol.</u> 102B:679. Lundergan (1999), <u>J.</u> <u>Periodontal Res.</u> 34(4):223-228. Chan (1998), <u>Cell</u> 93:681-684. Moonga (1998), <u>Exp.</u>
linear linear linear linear linear linear linear linear linear	MHC class II androgen R, p75, MJD, DCC, huntingtin von Willebrand Factor; Factor VIII lentivirus LLP1 Delta-Sleep Inducing Peptide C-Reactive Protein (CRP) Sperm- Activating Peptides angiotensins HIV-1 gp41 PKC	treatment of autoimmune diseases proapoptotic, useful in treating cancer inhibition of Factor VIII interaction; anticoagulants antimicrobial sleep disorders inflammation and cancer infertility hematopoietic factors for hematocytopenic conditions from cancer, AIDS, etc. anti-AIDS inhibition of bone resorption	US Pat. No. 5,880,103, issued March 9, 1999. WO 99/45944, published September 16, 1999. WO 97/41220, published April 29, 1997. US Pat. No. 5,945,507, issued Aug. 31, 1999. Graf (1986), Peptides 7:1165. Barna (1994), <u>Cancer</u> Immunol. Immunother. 38:38 (1994). Suzuki (1992), <u>Comp.</u> <u>Biochem. Physiol.</u> 102B:679. Lundergan (1999), <u>J.</u> <u>Periodontal Res.</u> 34(4):223-228. Chan (1998), <u>Cell</u> 93:681-684. Moonga (1998), <u>Exp.</u> Physiol. 83:717-725.

	1, -2, -3, -4)		Enz. 236:160-172.
linear	p185 ^{HER2/neu} , C-	AHNP-mimetic:anti-tumor	Park (2000), <u>Nat.</u>
	erbB-2		Biotechnol. 18:194-198.
linear	gp130	IL-6 antagonist	WO 99/60013, published
			Nov. 25, 1999.
linear	collagen, other	autoimmune diseases	WO 99/50282, published
	joint, cartilage,		Oct. 7, 1999.
	arthritis-related		
_	proteins		
linear	HIV-1 envelope	treatment of neurological	WO 99/51254, published
	protein	degenerative diseases	Oct. 14, 1999.
linear	IL-2	autoimmune disorders	WO 00/04048, published
		(e.g., graft rejection,	Jan. 27, 2000; WO
		rheumatoid arthritis)	00/11028, published
		······	March 2, 2000.

Peptides identified by peptide library screening have been regarded as "leads" in development of therapeutic agents rather than as therapeutic agents themselves. Like other proteins and peptides, they would be

- 5 rapidly removed <u>in vivo</u> either by renal filtration, cellular clearance mechanisms in the reticuloendothelial system, or proteolytic degradation. Francis (1992), <u>Focus on Growth Factors</u> 3: 4-11. As a result, the art presently uses the identified peptides to validate drug targets or as scaffolds for design of organic compounds that might not have been as
- easily or as quickly identified through chemical library screening.
 Lowman (1997), <u>Ann. Rev. Biophys. Biomol. Struct.</u> 26: 401-24; Kay <u>et al</u>.
 (1998), <u>Drug Disc. Today</u> 3: 370-8. The art would benefit from a process by which such peptides could more readily yield therapeutic agents.

Summary of the Invention

- 15 The present invention concerns a process by which the <u>in vivo</u> halflife of one or more biologically active peptides is increased by fusion with a vehicle. In this invention, pharmacologically active compounds are prepared by a process comprising:
 - a) selecting at least one peptide that modulates the activity of a protein of interest; and

20

 b) preparing a pharmacologic agent comprising at least one vehicle covalently linked to at least one amino acid sequence of the selected peptide.

The preferred vehicle is an Fc domain. The peptides screened in step (a)

- 5 are preferably expressed in a phage display library. The vehicle and the peptide may be linked through the N- or C-terminus of the peptide or the vehicle, as described further below. Derivatives of the above compounds (described below) are also encompassed by this invention.
- The compounds of this invention may be prepared by standard synthetic methods, recombinant DNA techniques, or any other methods of preparing peptides and fusion proteins. Compounds of this invention that encompass non-peptide portions may be synthesized by standard organic chemistry reactions, in addition to standard peptide chemistry reactions when applicable.
- 15 The primary use contemplated is as therapeutic or prophylactic agents. The vehicle-linked peptide may have activity comparable to—or even greater than—the natural ligand mimicked by the peptide. In addition, certain natural ligand-based therapeutic agents might induce antibodies against the patient's own endogenous ligand; the vehicle-linked
- 20 peptide avoids this pitfall by having little or typically no sequence identity with the natural ligand.

Although mostly contemplated as therapeutic agents, compounds of this invention may also be useful in screening for such agents. For example, one could use an Fc-peptide (e.g., Fc-SH2 domain peptide) in an

25 assay employing anti-Fc coated plates. The vehicle, especially Fc, may make insoluble peptides soluble and thus useful in a number of assays.

The compounds of this invention may be used for therapeutic or prophylactic purposes by formulating them with appropriate pharmaceutical carrier materials and administering an effective amount to a patient, such as a human (or other mammal) in need thereof. Other related aspects are also included in the instant invention.

Numerous additional aspects and advantages of the present invention will become apparent upon consideration of the figures and detailed description of the invention.

According to the first aspect, the present invention provides a composition of matter of the formula

 $(X^{1})_{a}$ - F^{1} - $(X^{2})_{b}$

and multimers thereof, wherein:

 F^1 is an Fc domain;

10

15

5

 X^{1} and X^{2} are each independently selected from $-(L^{1})_{c}-P^{1}$, $-(L^{1})_{c}-P^{1}-(L^{2})_{d}-P^{2}$, $-(L^{1})_{c}-P^{1}-(L^{2})_{d}-P^{2}-(L^{3})_{e}-P^{3}$, and $-(L^{1})_{c}-P^{1}-(L^{2})_{d}-P^{2}-(L^{3})_{e}-P^{3}-(L^{4})_{f}-P^{4}$

 P^1 , P^2 , P^3 , and P^4 are each independently randomised angiopoietin-2 binding peptide sequences;

 L^1 , L^2 , L^3 , and L^4 are each independently linkers; and

a, b, c, d, e, and f are each independently 0 or 1, provided that at least one of a and b is 1 and wherein "peptide" refers to molecules 2 to 40 amino acids and wherein neither X^1 nor X^2 is a native protein.

According to the second aspect, the present invention provides a DNA encoding a composition of matter according to the invention.

20

According to the third aspect, the present invention provides an expression vector comprising the DNA according to the invention.

According to the fourth aspect, the present invention provides a host cell comprising the expression vector according to the invention.

According to the fifth aspect, the present invention provides a process for

25 preparing an angiopoietin-2 binding compound, which comprises

- a) selecting at least one randomised angiopoietin-2 binding peptide; and
- b) preparing an angiopoietin-2 binding compound comprising at least one Fc domain covalently linked to at least one amino acid sequence of the selected peptide or peptides.

According to the sixth aspect, the present invention provides an angiopoietin-2 binding compound produced by a process according to the invention.

Unless the context clearly requires otherwise, throughout the description and the claims, the words 'comprise', 'comprising', and the like are to be construed in an

30

inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in the sense of "including, but not limited to".

- 13a -

Brief Description of the Figures

Figure 1 shows a schematic representation of an exemplary process of the

⁵ invention. In this preferred process, the vehicle is an Fc domain, which is linked to the peptide covalently by expression from a DNA construct encoding both the Fc domain and the peptide. As noted in Figure 1, the Fc domains spontaneously form a dimer in this process.

Figure 2 shows exemplary Fc dimers that may be derived from an IgG1 antibody.
"Fc" in the figure represents any of the Fc variants within the meaning of "Fc domain" herein. "X¹" and "X²" represents peptides or linker-peptide combinations as defined hereinafter. The specific dimers are as follows:

A, D: Single disulfide-bonded dimers. IgG1 antibodies typically have two disulfide bonds at the hinge region between the constant and variable domains. The Fc

domain in Figures 2A and 2D may be formed by truncation between the two disulfide bond sites or by substitution of a cysteinyl residue with an unreactive residue (e.g., alanyl). In Figure 2A, the Fc domain is linked at the amino terminus of the peptides; in 2D, at the carboxyl terminus.

B, E: Doubly disulfide-bonded dimers. This Fc domain may be formed by
truncation of the parent antibody to retain both cysteinyl residues in the Fc domain
chains or by expression from a construct including a sequence encoding such an Fc
domain. In Figure 2B, the Fc domain is linked at the amino terminus of the peptides; in
2E, at the carboxyl terminus.

25

C, F: Noncovalent dimers. This Fc domain may be formed by elimination of the cysteinyl residues by either truncation or substitution. One may desire to eliminate the cysteinyl residues to avoid impurities formed by reaction of the cysteinyl residue with cysteinyl residues of other

proteins present in the host cell. The noncovalent bonding of the Fc domains is sufficient to hold together the dimer.
Other dimers may be formed by using Fc domains derived from different types of antibodies (e.g., IgG2, IgM).

Figure 3 shows the structure of preferred compounds of the invention that feature tandem repeats of the pharmacologically active peptide. Figure 3A shows a single chain molecule and may also represent the DNA construct for the molecule. Figure 3B shows a dimer in which the linker-peptide portion is present on only one chain of the dimer. Figure 3C shows a dimer having the peptide portion on both chains. The dimer of

15 Figure 3C will form spontaneously in certain host cells upon expression of a DNA construct encoding the single chain shown in Figure 3A. In other host cells, the cells could be placed in conditions favoring formation of dimers or the dimers can be formed <u>in vitro</u>.

Figure 4 shows exemplary nucleic acid and amino acid sequences 20 (SEQ ID NOS: 1 and 2, respectively) of human IgG1 Fc that may be used in this invention.

Figure 5 shows a synthetic scheme for the preparation of PEGylated peptide 19 (SEQ ID NO: 3).

Figure 6 shows a synthetic scheme for the preparation of PEGylated 25 peptide 20 (SEQ ID NO: 4).

Figure 7 shows the nucleotide and amino acid sequences (SEQ ID NOS: 5 and 6, respectively) of the molecule identified as "Fc-TMP" in Example 2 hereinafter.

10

20

Figure 8 shows the nucleotide and amino acid sequences (SEQ. ID. NOS: 7 and 8, respectively) of the molecule identified as "Fc-TMP-TMP" in Example 2 hereinafter.

Figure 9 shows the nucleotide and amino acid sequences (SEQ. ID.
NOS: 9 and 10, respectively) of the molecule identified as "TMP-TMP-Fc" in Example 2 hereinafter.

Figure 10 shows the nucleotide and amino acid sequences (SEQ. ID. NOS: 11 and 12, respectively) of the molecule identified as "TMP-Fc" in Example 2 hereinafter.

Figure 11 shows the number of platelets generated <u>in vivo</u> in normal female BDF1 mice treated with one $100 \,\mu\text{g/kg}$ bolus injection of various compounds, with the terms defined as follows.

PEG-MGDF: 20 kD average molecular weight PEG attached by reductive amination to the N-terminal amino group of amino

15	acids 1-163 of native human TPO, which is expressed in $\underline{E. \ coli}$
	(so that it is not glycosylated);

TMP: the TPO-mimetic peptide having the amino acid sequence IEGPTLRQWLAARA (SEQ ID NO: 13);

TMP-TMP: the TPO-mimetic peptide having the amino acid sequence IEGPTLRQWLAARA-GGGGGGGGG-IEGPTLRQWLAARA (SEQ ID NO: 14);

PEG-TMP-TMP: the peptide of SEQ ID NO: 14, wherein the PEG group is a 5 kD average molecular weight PEG attached as shown in Figure 6;

25 Fc-TMP-TMP: the compound of SEQ ID NO: 8 (Figure 8) dimerized with an identical second monomer (i.e., Cys residues 7 and 10 are bound to the corresponding Cys residues in the second monomer to form a dimer, as shown in Figure 2); and 5

TMP-TMP-Fc is the compound of SEQ ID NO: 10 (Figure 9) dimerized in the same way as TMP-TMP-Fc except that the Fc domain is attached at the C-terminal end rather than the Nterminal end of the TMP-TMP peptide.

Figure 12 shows the number of platelets generated <u>in vivo</u> in normal BDF1 mice treated with various compounds delivered via implanted osmotic pumps over a 7-day period. The compounds are as defined for Figure 7.

Figure 13 shows the nucleotide and amino acid sequences (SEQ. ID.
10 NOS: 15 and 16, respectively) of the molecule identified as "Fc-EMP" in Example 3 hereinafter.

Figure 14 shows the nucleotide and amino acid sequences (SEQ ID NOS: 17 and 18, respectively) of the molecule identified as "EMP-Fc" in Example 3 hereinafter.

15 Figure 15 shows the nucleotide and amino acid sequences (SEQ ID NOS:19 and 20, respectively) of the molecule identified as "EMP-EMP-Fc" in Example 3 hereinafter.

Figure 16 shows the nucleotide and amino acid sequences (SEQ ID NOS: 21 and 22, respectively) of the molecule identified as "Fc-EMP-EMP"

20 in Example 3 hereinafter.

Figures 17A and 17B show the DNA sequence (SEQ ID NO: 23) inserted into pCFM1656 between the unique <u>Aat</u>II (position #4364 in pCFM1656) and <u>Sac</u>II (position #4585 in pCFM1656) restriction sites to form expression plasmid pAMG21 (ATCC accession no. 98113).

Figure 18A shows the hemoglobin, red blood cells, and hematocrit generated <u>in vivo</u> in normal female BDF1 mice treated with one 100 μ g/kg bolus injection of various compounds. Figure 18B shows the same results with mice treated with 100 μ g/kg per day delivered by 7-day microosmotic pump with the EMPs delivered at 100 μ g/kg, rhEPO at

WO 01/83525

10

20

25

30U/mouse. (In both experiments, neutrophils, lymphocytes, and platelets were unaffected.) In these figures, the terms are defined as follows.

Fc-EMP: the compound of SEQ ID NO: 16 (Figure 13) dimerized with an identical second monomer (i.e., Cys residues 7 and 10 are

bound to the corresponding Cys residues in the second monomer to form a dimer, as shown in Figure 2);

EMP-Fc: the compound of SEQ ID NO: 18 (Figure 14) dimerized in the same way as Fc-EMP except that the Fc domain is attached at the C-terminal end rather than the N-terminal end of the EMP peptide.

"EMP-EMP-Fc" refers to a tandem repeat of the same peptide (SEQ ID NO: 20) attached to the same Fc domain by the carboxyl terminus of the peptides. "Fc-EMP-EMP" refers to the same tandem repeat of the peptide but with the same Fc domain attached at the

amino terminus of the tandem repeat. All molecules are expressedin <u>E. coli</u> and so are not glycosylated.

Figures 19A and 19B show the nucleotide and amino acid sequences (SEQ ID NOS: 1055 and 1056) of the Fc-TNF- α inhibitor fusion molecule described in Example 4 hereinafter.

Figures 20A and 20B show the nucleotide and amino acid sequences (SEQ ID NOS: 1057 and 1058) of the TNF- α inhibitor-Fc fusion molecule described in Example 4 hereinafter.

Figures 21A and 21B show the nucleotide and amino acid sequences (SEQ ID NOS: 1059 and 1060) of the Fc-IL-1 antagonist fusion molecule described in Example 5 hereinafter.

Figures 22A and 22B show the nucleotide and amino acid sequences (SEQ ID NOS: 1061 and 1062) of the IL-1 antagonist-Fc fusion molecule described in Example 5 hereinafter.

Figures 23A, 23B, and 23C show the nucleotide and amino acid sequences (SEQ ID NOS: 1063 and 1064) of the Fc-VEGF antagonist fusion molecule described in Example 6 hereinafter.

Figures 24A and 24B show the nucleotide and amino acid sequences
(SEQ ID NOS: 1065 and 1066) of the VEGF antagonist-Fc fusion molecule
described in Example 6 hereinafter.

Figures 25A and 25B show the nucleotide and amino acid sequences (SEQ ID NOS: 1067 and 1068) of the Fc-MMP inhibitor fusion molecule described in Example 7 hereinafter.

10 Figures 26A and 26B show the nucleotide and amino acid sequences (SEQ ID NOS: 1069 and 1070) of the MMP inhibitor-Fc fusion molecule described in Example 7 hereinafter.

Detailed Description of the Invention

Definition of Terms

15 The terms used throughout this specification are defined as follows, unless otherwise limited in specific instances.

The term "comprising" means that a compound may include additional amino acids on either or both of the N- or C- termini of the given sequence. Of course, these additional amino acids should not

20 significantly interfere with the activity of the compound.

The term "vehicle" refers to a molecule that prevents degradation and/or increases half-life, reduces toxicity, reduces immunogenicity, or increases biological activity of a therapeutic protein. Exemplary vehicles include an Fc domain (which is preferred) as well as a linear polymer (e.g.,

25 polyethylene glycol (PEG), polylysine, dextran, <u>etc</u>.); a branched-chain polymer (see, for example, U.S. Patent No. 4,289,872 to Denkenwalter <u>et al</u>., issued September 15, 1981; 5,229,490 to Tam, issued July 20, 1993; WO 93/21259 by Frechet <u>et al</u>., published 28 October 1993); a lipid; a cholesterol group (such as a steroid); a carbohydrate or oligosaccharide; or

any natural or synthetic protein, polypeptide or peptide that binds to a salvage receptor. Vehicles are further described hereinafter.

The term "native Fc" refers to molecule or sequence comprising the sequence of a non-antigen-binding fragment resulting from digestion of

- 5 whole antibody, whether in monomeric or multimeric form. The original immunoglobulin source of the native Fc is preferably of human origin and may be any of the immunoglobulins, although IgG1 and IgG2 are preferred. Native Fc's are made up of monomeric polypeptides that may be linked into dimeric or multimeric forms by covalent (i.e., disulfide
- 10 bonds) and non-covalent association. The number of intermolecular disulfide bonds between monomeric subunits of native Fc molecules ranges from 1 to 4 depending on class (e.g., IgG, IgA, IgE) or subclass (e.g., IgG1, IgG2, IgG3, IgA1, IgGA2). One example of a native Fc is a disulfidebonded dimer resulting from papain digestion of an IgG (see Ellison <u>et al</u>.
- 15 (1982), <u>Nucleic Acids Res</u>. 10: 4071-9). The term "native Fc" as used herein is generic to the monomeric, dimeric, and multimeric forms.

The term "Fc variant" refers to a molecule or sequence that is modified from a native Fc but still comprises a binding site for the salvage receptor, FcRn. International applications WO 97/34631 (published 25

- 20 September 1997) and WO 96/32478 describe exemplary Fc variants, as well as interaction with the salvage receptor, and are hereby incorporated by reference. Thus, the term "Fc variant" comprises a molecule or sequence that is humanized from a non-human native Fc. Furthermore, a native Fc comprises sites that may be removed because they provide
- 25 structural features or biological activity that are not required for the fusion molecules of the present invention. Thus, the term "Fc variant" comprises a molecule or sequence that lacks one or more native Fc sites or residues that affect or are involved in (1) disulfide bond formation, (2) incompatibility with a selected host cell (3) N-terminal heterogeneity upon

WO 01/83525

PCT/US01/14310

expression in a selected host cell, (4) glycosylation, (5) interaction with complement, (6) binding to an Fc receptor other than a salvage receptor, or (7) antibody-dependent cellular cytotoxicity (ADCC). Fc variants are described in further detail hereinafter.

5 The term "Fc domain" encompasses native Fc and Fc variant molecules and sequences as defined above. As with Fc variants and native Fc's, the term "Fc domain" includes molecules in monomeric or multimeric form, whether digested from whole antibody or produced by other means.

10 The term "multimer" as applied to Fc domains or molecules comprising Fc domains refers to molecules having two or more polypeptide chains associated covalently, noncovalently, or by both covalent and non-covalent interactions. IgG molecules typically form dimers; IgM, pentamers; IgD, dimers; and IgA, monomers, dimers,

15 trimers, or tetramers. Multimers may be formed by exploiting the sequence and resulting activity of the native Ig source of the Fc or by derivatizing (as defined below) such a native Fc.

The term "dimer" as applied to Fc domains or molecules comprising Fc domains refers to molecules having two polypeptide chains

20 associated covalently or non-covalently. Thus, exemplary dimers within the scope of this invention are as shown in Figure 2.

The terms "derivatizing" and "derivative" or "derivatized" comprise processes and resulting compounds respectively in which (1) the compound has a cyclic portion; for example, cross-linking between

25 cysteinyl residues within the compound; (2) the compound is cross-linked or has a cross-linking site; for example, the compound has a cysteinyl residue and thus forms cross-linked dimers in culture or <u>in vivo</u>; (3) one or more peptidyl linkage is replaced by a non-peptidyl linkage; (4) the Nterminus is replaced by -NRR¹, NRC(O)R¹, -NRC(O)OR¹, -NRS(O),R¹, - NHC(O)NHR, a succinimide group, or substituted or unsubstituted benzyloxycarbonyl-NH-, wherein R and R¹ and the ring substituents are as defined hereinafter; (5) the C-terminus is replaced by $-C(O)R^2$ or $-NR^3R^4$ wherein R², R³ and R⁴ are as defined hereinafter; and (6) compounds in

5 which individual amino acid moieties are modified through treatment with agents capable of reacting with selected side chains or terminal residues. Derivatives are further described hereinafter.

The term "peptide" refers to molecules of 2 to 40 amino acids, with molecules of 3 to 20 amino acids preferred and those of 6 to 15 amino acids 10 most preferred. Exemplary peptides may be randomly generated by any of the methods cited above, carried in a peptide library (e.g., a phage display library), or derived by digestion of proteins.

The term "randomized" as used to refer to peptide sequences refers to fully random sequences (e.g., selected by phage display methods) and

15 sequences in which one or more residues of a naturally occurring molecule is replaced by an amino acid residue not appearing in that position in the naturally occurring molecule. Exemplary methods for identifying peptide sequences include phage display, <u>E. coli</u> display, ribosome display, yeastbased screening, RNA-peptide screening, chemical screening, rational

20 design, protein structural analysis, and the like.

The term "pharmacologically active" means that a substance so described is determined to have activity that affects a medical parameter (e.g., blood pressure, blood cell count, cholesterol level) or disease state (e.g., cancer, autoimmune disorders). Thus, pharmacologically active

25 peptides comprise agonistic or mimetic and antagonistic peptides as defined below.

The terms "-mimetic peptide" and "-agonist peptide" refer to a peptide having biological activity comparable to a protein (e.g., EPO, TPO, G-CSF) that interacts with a protein of interest. These terms further

include peptides that indirectly mimic the activity of a protein of interest, such as by potentiating the effects of the natural ligand of the protein of interest; see, for example, the G-CSF-mimetic peptides listed in Tables 2 and 7. Thus, the term "EPO-mimetic peptide" comprises any peptides that

- 5 can be identified or derived as described in Wrighton <u>et al.</u> (1996), <u>Science</u> <u>273</u>: 458-63, Naranda <u>et al.</u> (1999), <u>Proc. Natl. Acad. Sci. USA</u> 96: 7569-74, or any other reference in Table 2 identified as having EPO-mimetic subject matter. Those of ordinary skill in the art appreciate that each of these references enables one to select different peptides than actually disclosed
- 10 therein by following the disclosed procedures with different peptide libraries.

The term "TPO-mimetic peptide" comprises peptides that can be identified or derived as described in Cwirla <u>et al</u>. (1997), <u>Science</u> 276: 1696-9, U.S. Pat. Nos. 5,869,451 and 5,932,946 and any other reference in Table 2

15 identifed as having TPO-mimetic subject matter, as well as the U.S. patent application, "Thrombopoietic Compounds," filed on even date herewith and hereby incorporated by reference. Those of ordinary skill in the art appreciate that each of these references enables one to select different peptides than actually disclosed therein by following the disclosed

20 procedures with different peptide libraries.

The term "G-CSF-mimetic peptide" comprises any peptides that can be identified or described in Paukovits <u>et al</u>. (1984), <u>Hoppe-Seylers Z</u>. <u>Physiol. Chem</u>. 365: 303-11 or any of the references in Table 2 identified as having G-CSF-mimetic subject matter. Those of ordinary skill in the art

25 appreciate that each of these references enables one to select different peptides than actually disclosed therein by following the disclosed procedures with different peptide libraries.

The term "CTLA4-mimetic peptide" comprises any peptides that can be identified or derived as described in Fukumoto <u>et al.</u> (1998), <u>Nature</u>

<u>Biotech</u>. 16: 267-70. Those of ordinary skill in the art appreciate that each of these references enables one to select different peptides than actually disclosed therein by following the disclosed procedures with different peptide libraries.

5 The term "-antagonist peptide" or "inhibitor peptide" refers to a peptide that blocks or in some way interferes with the biological activity of the associated protein of interest, or has biological activity comparable to a known antagonist or inhibitor of the associated protein of interest. Thus, the term "TNF-antagonist peptide" comprises peptides that can be

- 10 identified or derived as described in Takasaki <u>et al</u>. (1997), <u>Nature Biotech</u>. 15: 1266-70 or any of the references in Table 2 identified as having TNFantagonistic subject matter. Those of ordinary skill in the art appreciate that each of these references enables one to select different peptides than actually disclosed therein by following the disclosed procedures with
- 15 different peptide libraries.

The terms "IL-1 antagonist" and "IL-1ra-mimetic peptide" comprises peptides that inhibit or down-regulate activation of the IL-1 receptor by IL-1. IL-1 receptor activation results from formation of a complex among IL-1, IL-1 receptor, and IL-1 receptor accessory protein.

- IL-1 antagonist or IL-1ra-mimetic peptides bind to IL-1, IL-1 receptor, or IL-1 receptor accessory protein and obstruct complex formation among any two or three components of the complex. Exemplary IL-1 antagonist or IL-1ra-mimetic peptides can be identified or derived as described in U.S. Pat. Nos. 5,608,035, 5,786,331, 5,880,096, or any of the references in
- 25 Table 2 identified as having IL-1ra-mimetic or IL-1 antagonistic subject matter. Those of ordinary skill in the art appreciate that each of these references enables one to select different peptides than actually disclosed therein by following the disclosed procedures with different peptide libraries.

WO 01/83525

The term "VEGF-antagonist peptide" comprises peptides that can be identified or derived as described in Fairbrother (1998), <u>Biochem.</u> 37: 17754-64, and in any of the references in Table 2 identified as having VEGF-antagonistic subject matter. Those of ordinary skill in the art

5 appreciate that each of these references enables one to select different peptides than actually disclosed therein by following the disclosed procedures with different peptide libraries.

The term "MMP inhibitor peptide" comprises peptides that can be identified or derived as described in Koivunen (1999), <u>Nature Biotech.</u> 17:

- 10 768-74 and in any of the references in Table 2 identified as having MMP inhibitory subject matter. Those of ordinary skill in the art appreciate that each of these references enables one to select different peptides than actually disclosed therein by following the disclosed procedures with different peptide libraries.
- Additionally, physiologically acceptable salts of the compounds of this invention are also encompassed herein. By "physiologically acceptable salts" is meant any salts that are known or later discovered to be pharmaceutically acceptable. Some specific examples are: acetate; trifluoroacetate; hydrohalides, such as hydrochloride and hydrobromide;
 sulfate; citrate; tartrate; glycolate; and oxalate.

Structure of compounds

In General. In the compositions of matter prepared in accordance with this invention, the peptide may be attached to the vehicle through the peptide's N-terminus or C-terminus. Thus, the vehicle-peptide molecules of this invention may be described by the following formula I:

I

25

$$(X^{1})_{a}-F^{1}-(X^{2})_{b}$$

wherein:

 F^{1} is a vehicle (preferably an Fc domain);

5

10

 $(L^2)_d - P^2$, $-(L^1)_c - P^1 - (L^2)_d - P^2 - (L^3)_e - P^3$, and $-(L^1)_c - P^1 - (L^2)_d - P^2 - (L^3)_e - P^3 - (L^4)_f - P^4$ P^1 , P^2 , P^3 , and P^4 are each independently sequences of pharmacologically active peptides; L^1 , L^2 , L^3 , and L^4 are each independently linkers; and a, b, c, d, e, and f are each independently 0 or 1, provided that at least one of a and b is 1. Thus, compound I comprises preferred compounds of the formulae $X^{1}-F^{1}$ and multimers thereof wherein F^1 is an Fc domain and is attached at the Cterminus of X^1 ;

 X^{1} and X^{2} are each independently selected from $-(L^{1})_{2}-P^{1}$, $-(L^{1})_{2}-P^{1}$.

Ш

Π

F^1-X^2

and multimers thereof wherein F¹ is an Fc domain and is attached at the N-15 terminus of X^2 ;

IV

and multimers thereof wherein F^1 is an Fc domain and is attached at the Nterminus of $-(L^1)_r - P^1$; and

V

20

$F^{1}-(L^{1})_{a}-P^{1}-(L^{2})_{a}-P^{2}$

and multimers thereof wherein F^1 is an Fc domain and is attached at the Nterminus of $-L^1-P^1-L^2-P^2$.

25 Peptides. Any number of peptides may be used in conjunction with the present invention. Of particular interest are peptides that mimic the activity of EPO, TPO, growth hormone, G-CSF, GM-CSF, IL-1ra, leptin, CTLA4, TRAIL, TGF- α , and TGF- β . Peptide antagonists are also of interest, particularly those antagonistic to the activity of TNF, leptin, any

WO 01/83525

5

of the interleukins (IL-1, 2, 3, ...), and proteins involved in complement activation (e.g., C3b). Targeting peptides are also of interest, including tumor-homing peptides, membrane-transporting peptides, and the like. All of these classes of peptides may be discovered by methods described in the references cited in this specification and other references.

Phage display, in particular, is useful in generating peptides for use in the present invention. It has been stated that affinity selection from libraries of random peptides can be used to identify peptide ligands for any site of any gene product. Dedman <u>et al</u>. (1993), J. Biol. Chem. 268:

- 1.0 23025-30. Phage display is particularly well suited for identifying peptides that bind to such proteins of interest as cell surface receptors or any proteins having linear epitopes. Wilson <u>et al.</u> (1998), <u>Can. J. Microbiol.</u> 44: 313-29; Kay <u>et al</u>. (1998), <u>Drug Disc. Today</u> 3: 370-8. Such proteins are extensively reviewed in Herz <u>et al</u>. (1997), <u>J. Receptor & Signal</u>
- 15 <u>Transduction Res</u>. 17(5): 671-776, which is hereby incorporated by reference. Such proteins of interest are preferred for use in this invention.

A particularly preferred group of peptides are those that bind to cytokine receptors. Cytokines have recently been classified according to their receptor code. See Inglot (1997), <u>Archivum Immunologiae et</u>

20 <u>Therapiae Experimentalis</u> 45: 353-7, which is hereby incorporated by reference. Among these receptors, most preferred are the CKRs (family I in Table 3). The receptor classification appears in Table 3.

- 26 -

Cytokine	s (ligands)	Recep	Receptor Type		
family	subfamily	family	subfamily		
I. Hematopoietic cytokines	1. IL-2, IL-4, IL-7, IL-9, IL-13, IL- 15	I. Cytokine R (CKR)	 shared γCr, IL- 9R, IL-4R 		
	2. IL-3, IL-5, GM- CSF		2. shared GP 140 βR		
	3. IL-6, IL-11, IL- 12, LIF, OSM, CNTF, Leptin (OB)		3. 3.shared RP 130, IL-6 R, Leptin R		
	4. G-CSF, EPO, TPO, PRL, GH		4. "single chain" R, GCSF-R, TPO-R, GH-R		
	5. IL-17, HVS-IL- 17		5. other R ^c		
II. IL-10 ligands	IL-10, BCRF-1, HSV-IL-10	II. 1L-10 R			
III. Interferons	 IFN-αl, α2, α4, m, t, IFN-β^d 	III. Interferon R	1. IFNAR		
	2. IFN-γ		2. IFNGR		
IV. IL-1 and IL-1 like ligands	1. IL-1α, IL-1β, IL-1Ra	IV. IL-1R	1. IL-1R, IL- 1RAcP		
	2. IL-18, IL-18BP		2. IL-18R, IL- 18RAcP		
V. TNF family	 TNF-α, TNF-β (LT), FASL, CD40 L, CD30L, CD27 L, OX40L, OPGL, TRAIL, APRIL, AGP-3, BLys, TL5, Ntn-2, KAY, Neutrokine-α 	3. NGF/TNF R ^e	TNF-RI, AGP-3R, DR4, DR5, OX40, OPG, TACI, CD40, FAS, ODR		
VI. Chemokines	 α chemokines: IL-8, GRO α, β, γ, IF-10, PF-4, SDF-1 	4. Chemokine R	1. CXCR		
	2. β chemokines:		2. CCR		

Table 3	Cytoking	Recentors	Classified	hy Roco	ntor Codo
Table 5-	Cytokine	Receptors	Classifieu	by nece	plor Coue

¹ IL-17R - belongs to CKR family but is unassigned to 4 indicated subjamilies.

² Other IFN type I subtypes remain unassigned. Hematopoietic vytokines, IL-10 ligands and interferons do not possess functional intrinsic protein kinases. The signaling molecules for the cytokines are JAK's, STATs and related non-receptor molecules. IL-14, IL-16 and IL-18 have been cloned but according to the receptor code they remain unassigned.

 $^{^3}$ TNF receptors use multiple, distinct intracellular molecules for signal transduction including "death domain" of FAS R and 55 kDa TNF- α R that participates in their cytotoxic effects. NGF/TNF R can bind both NGF and related factors as well as TNF ligands. Chemokine receptors are seven transmembrane (7TM, serpentine) domain receptors. They are G protein-coupled.

MIP1α, MIP1β,		
MCP-1,2,3,4,		
RANTES,		3. CR
Eotaxin		£
3. γ chemokines:		4. $DARC^{1}$
lymphotactin		
VII. Growth factors 1.1 SCF, M-CSF,	VII. RKF	1. TK sub-family
PDGF-AA, AB,		1.1 IgTK III R,
BB, KDR, FLT-		VEGF-RI
1, FLT-3L,		VEGF-RII
VEGF, SSV-		
PDGF, HGF, SF		
1.2 FGFa, FGFB		1.2 IgTK IV R
$1.3 \text{ FGF TGF-}\alpha$		1.3 Cysteine-rich
VV-F19 (EGF-		TK-I
like)		
1 4 IGF-I IGF-II		1.4 Cysteine rich
Insulin		TK-II, IGF-RI
1.5 NGE BDNE		1.5 Cysteine knot
$NT_3 NT_4^g$		TK V
$2 TGE_{B1} B2 B3$		2. Serine-
2. IOI-p1,p2,p3		threonine
		kinase
		subfamily
		(STKS) ^h
		\ ·

- 28 -

Particular proteins of interest as targets for peptide generation in the present

invention include the following:

	ανβ3
5	αVβ1
	B7
	B7RP1
	CRP1
	Calcitonin
10	CD28
	CETP
	cMet
	Complement factor B
	C4b
15	CTLA4

The Duffy blood group antigen (DARC) is an erythrocyte receptor that can bind several different 4 chemokines. IL-1R belongs to the immunoglobulin superfamily but their signal transduction events characteristics remain unclear. ⁵ The neurotrophic cytokines can associate with NGF/TNF receptors also.

20

⁶ STKS may encompass many other TGF-β-related factors that remain unassigned. The protein kinases are an intrinsic part of the intracellular domain of receptor kinase family (RKF). The enzymes participate in the signals transmission via the receptors.

	Glucagon Glucagon Receptor LIPG
5	MPL Splice variants of molecules preferentially expressed on tumor cells; e.g., CD44, CD30
	unglycosylated variants of mucin and Lewis Y surface glycoproteins CD19, CD20, CD33, CD45
10	prostate specific membrane antigen and prostate specific cell
	matrix metalloproteinases (MMPs), both secreted and membrane-bound (e.g., MMP-9)
	Cathepsins
15	angiopoietin-2 (Ang-2)
	TIE-2 receptor
	urokinase plasminogen activator (UPA), UPA receptor parathyroid hormone (PTH), parathyroid hormone-related
20	protein (PTHrP), PTH-RI, PTH-RII Her2
	Her3
	Insulin-

25

Exemplary peptides for this invention appear in Tables 4 through 20 below. These peptides may be prepared by methods disclosed in the art. Single letter amino acid abbreviations are used. The X in these sequences (and throughout this specification, unless specified otherwise in ______

- 29 -

ⁱ IL-17R belongs to the CKR family but is not assigned to any of the 4 indicated subfamilies.

^j Other IFN type I subtypes remain unassigned. Hematopoietic cytokines, IL-10 ligands and interferons do not possess functional intrinsic protein kinases. The signalling molecules for the cytokines are JAK's, STATs and related non-receptor molecules IL-14, IL-16 and IL-18 have been cloned but according to the receptor code they remain unassigned.

^k TNF receptors use multiple, distinct intracellular molecules for signal transduction including "death domain" of FAS R and 55 kDa TNF- α R that participates in their cytotoxic effects. NGF/TNF R can bind both NGF and related factors as well as TNF ligands. Chemokine receptors are G protein-coupled, seven transmembrane (7TM, serpentine) domain receptors.

¹ The Duffy blood group antigen (DARC) is an erythrocyte receptor that can bind several different chemokines. It belongs to the immunoglobulin superfamily but characteristics of it signal transduction events remain unclear.

^m The neurotrophic cytokines can associate with NGF/TNF receptors also.

ⁿ STKS may encompass many other TGF- β -related factors that remain unassigned. The protein kinases are an intrinsic part of the intracellular domain of receptor kinase family (RKF). The enzymes participate in the signals transmission via the receptors.

a particular instance) means that any of the 20 naturally occurring amino acid residues may be present. Any of these peptides may be linked in tandem (i.e., sequentially), with or without linkers, and a few tandemlinked examples are provided in the table. Linkers are listed as " Λ " and

- 5 may be any of the linkers described herein. Tandem repeats and linkers are shown separated by dashes for clarity. Any peptide containing a cysteinyl residue may be cross-linked with another Cys-containing peptide, either or both of which may be linked to a vehicle. A few crosslinked examples are provided in the table. Any peptide having more than
- 10 one Cys residue may form an intrapeptide disulfide bond, as well; see, for example, EPO-mimetic peptides in Table 5. A few examples of intrapeptide disulfide-bonded peptides are specified in the table. Any of these peptides may be derivatized as described herein, and a few derivatized examples are provided in the table. Derivatized peptides in
- 15 the tables are exemplary rather than limiting, as the associated underivatized peptides may be employed in this invention, as well. For derivatives in which the carboxyl terminus may be capped with an amino group, the capping amino group is shown as -NH₂. For derivatives in which amino acid residues are substituted by moieties other than amino
- acid residues, the substitutions are denoted by σ, which signifies any of the moieties described in Bhatnagar et al. (1996), J. Med. Chem. 39: 3814-9 and Cuthbertson et al. (1997), J. Med. Chem. 40: 2876-82, which are incorporated by reference. The J substituent and the Z substituents (Z₅, Z₆, ...Z₄₀) are as defined in U.S. Pat. Nos. 5,608,035,5,786,331, and 5,880,096,
- 25 which are incorporated by reference. For the EPO-mimetic sequences (Table 5), the substituents X₂ through X₁₁ and the integer "n" are as defined in WO 96/40772, which is incorporated by reference. Also for the EPO-mimetic sequences, the substituents X_{na}, X_{1a}, X_{2a}, X_{3a}, X_{4a}, X_{5a} and X_{ca} follow the definitions of X_n, X₁, X₂, X₃, X₄, X₅, and X_c, respectively, of WO 99/47151,

- 30 -

which is also incorporated by reference. The substituents " Ψ ," " Θ ," and "+" are as defined in Sparks <u>et al.</u> (1996), <u>Proc. Natl. Acad. Sci</u>. 93: 1540-4, which is hereby incorporated by reference. X₄, X₅, X₆, and X₇ are as defined in U.S. Pat. No. 5,773,569, which is hereby incorporated by reference,

- 5 except that: for integrin-binding peptides, X₁, X₂, X₃, X₄, X₅, X₆, X₇, and X₈ are as defined in International applications WO 95/14714, published June 1, 1995 and WO 97/08203, published March 6, 1997, which are also incorporated by reference; and for VIP-mimetic peptides, X₁, X₁', X₁'', X₂, X₃, X₄, X₅, X₆ and Z and the integers m and n are as defined in WO 97/40070,
- 10 published October 30, 1997, which is also incorporated by reference. Xaa and Yaa below are as defined in WO 98/09985, published March 12, 1998, which is incorporated by reference. AA₁, AA₂, AB₁, AB₂, and AC are as defined in International application WO 98/53842, published December 3, 1998, which is incorporated by reference. X¹, X², X³, and X⁴ in Table 17 only
- 15 are as defined in European application EP 0 911 393, published April 28, 1999. Residues appearing in boldface are D-amino acids. All peptides are linked through peptide bonds unless otherwise noted. Abbreviations are listed at the end of this specification. In the "SEQ ID NO." column, "NR" means that no sequence listing is required for the given sequence.

20

Sequence/structure	SEQ
	ID NO:
$Z_{11}Z_7Z_9QZ_5YZ_6Z_9Z_{10}$	212
XXQZ₅YZ₅XX	907
$Z_{7}XQZ_{5}YZ_{5}XX$	908
$Z_7 Z_8 Q Z_5 Y Z_6 Z_9 Z_{10}$	909
$Z_{11}Z_7Z_8QZ_5YZ_6Z_9Z_{10}$	910
$Z_{12}Z_{13}Z_{14}Z_{15}Z_{16}Z_{17}Z_{18}Z_{19}Z_{20}Z_{21}Z_{22}Z_{11}Z_{7}Z_{8}QZ_{5}YZ_{6}Z_{9}Z_{10}L$	917
$Z_{25}NZ_{24}Z_{39}Z_{25}Z_{26}Z_{27}Z_{28}Z_{26}Z_{30}Z_{40}$	979
TANVSSFEWTPYYWQPYALPL	213
SWTDYGYWQPYALPISGL	214
ETPFTWEESNAYYWQPYALPL	215

Table 4—IL-1 antagonist peptide sequences

ENTYSPNWADSMYWOPYALPI	216
SVGEDHNFWTSEYWQPYALPL	217
DGYDRWRQSGERYWQPYALPL	218
FEWTPGYWQPY	219
FEWTPGYWQHY	220
FEWTPGWYQJY	221
AcFEWTPGWYQJY	222
FEWTPGWpYQJY	223
FAWTPGYWQJY	224
FEWAPGYWQJY	225
FEWVPGYWQJY	226
FEWTPGYWQJY	227
ACEFWTPGYWQJY	22,
FEWTPaWYQJY	220
FEWTPSarWYQJY	230
FEWTPGYYOPY	230
FFWTPGWWQPY	201
FEWTPNYWOPY	733
EEWTPVYWQJY	230
FEWTPecGYWOJY	204
FEWTPAIDYWOIV	235
FEWTSarGVWO IV	230
FEWTPGYWOPY	237
FEWTPGVWOHV	
FEWTRGWYOIV	
FEWTPGW-pV-OIV	
	242
FEWAPGYWOIX	
	244
FEWTPGYWOIV	245
	240
	24/
FEWTRS arWVO IV	
FEWTPGVVODV	249
	202
	203
	255
	25/
	258
	259
	261
	263
HKSSK	264
I KKUUK	265

NRKQDK	266	
RKQDKR	267	
ENRKQDKRF	268	
VTKFYF	269	
VTKFY	270	
VTDFY	271	
SHLYWQPYSVQ	671	
TLVYWQPYSLQT	672	
RGDYWQPYSVQS	673	
VHVYWQPYSVQT	674	
RLVYWQPYSVQT	675	
SRVWFQPYSLQS	676	
NMVYWQPYSIQT	677	
SVVFWQPYSVQT	678	
TFVYWQPYALPL	679	
TLVYWQPYSIQR	680	
RLVYWQPYSVQR	681	
SPVFWQPYSIQI	682	
WIEWWQPYSVQS	683	
SLIYWQPYSLQM	684	
TRLYWQPYSVQR	685	
RCDYWQPYSVQT	686	
MRVFWQPYSVQN	687	
KIVYWQPYSVQT	688	
RHLYWQPYSVQR	689	
ALVWWQPYSEQI	690	
SRVWFQPYSLQS	691	
WEQPYALPLE	692	
QLVWWQPYSVQR	693	
DLRYWQPYSVQV	694	
ELVWWQPYSLQL	695	
DLVWWQPYSVQW	696	
NGNYWQPYSFQV	697	
ELVYWQPYSIQR	698	
ELMYWQPYSVQE	699	
NLLYWQPYSMQD	700	
GYEWYQPYSVQR	701	
SRVWYQPYSVQR	702	
LSEQYQPYSVQR	703	
GGGWWQPYSVQR	704	
VGRWYQPYSVQR	705	
VHVYWQPYSVQR	706	
QARWYQPYSVQR	707	
VHVYWQPYSVQT	708	
RSVYWQPYSVQR	709	
TRVWFQPYSVQR	710	
GRIWFQPYSVQR	711	
GRVWFQPYSVQR	712	
ARTWYQPYSVQR	713	
ARVWWQPYSVQM	714	
	RLMFYQPYSVQR	715
---	-----------------------	-----
	ESMWYQPYSVQR	716
	HFGWWQPYSVHM	717
	ARFWWQPYSVQR	718
	RLVYWQ PYAPIY	719
	RLVYWQ PYSYQT	720
	RLVYWQ PYSLPI	721
	RLVYWQ PYSVQA	722
	SRVWYQ PYAKGL	723
	SRVWYQ PYAQGL	724
	SRVWYQ PYAMPL	725
	SRVWYQ PYSVQA	726
	SRVWYQ PYSLGL	727
	SRVWYQ PYAREL	728
	SRVWYQ PYSRQP	729
	SRVWYQ PYFVQP	730
	EYEWYQ PYALPL	731
	IPEYWQ PYALPL	732
	SRIWWQ PYALPL	733
	DPL FWQ PYALPL	734
	SBOWVO PYALPI	735
	IBSWWQ PYALPI	736
	BGYWO PYALPI	737
	BLI WVQ PYALPI	738
	FYBWEO PYALPI	739
		730
	WSGYEO PYALPI	740
		741
		742
	DSSWYO PYALPI	745
		744
		745
		740
		747
	BSOVVO PVALPI	740
		749
		750
		751
		752
		753
		/54
		755
		/30
		758
		/59
,		760
		761
		/62
		763
	IFVYWQPY SVQMIIIGKVIM	764

TFVYWQPY SSHXXVPXGFPL	765
TFVYWQPY YGNPQWAIHVRH	766
TFVYWQPY VLLELPEGAVRA	767
TFVYWQPY VDYVWPIPIAQV	768
GWYQPYVDGWR	769
RWEQPYVKDGWS	770
EWYQPYALGWAR	771
GWWQPYARGL	772
LFEQPYAKALGL	773
GWEQPYARGLAG	774
AWVQPYATPLDE	775
MWYQPYSSQPAE	776
GWTQPYSQQGEV	777
DWFQPYSIQSDE	778
PWIQPYARGFG	779
RPLYWQPYSVQV	780
TLIYWQPYSVQI	781
RFDYWQPYSDQT	782
WHQFVQPYALPL	783
EWDS VYWQPYSVQ TLLR	784
WEQN VYWQPYSVQ SFAD	785
SDV VYWQPYSVQ SLEM	786
YYDG VYWQPYSVQ VMPA	787
SDIWYQ PYALPL	788
QRIWWQ PYALPL	789
SRIWWQ PYALPL	790
RSLYWQ PYALPL	791
TIIWEQ PYALPL	792
WETWYQ PYALPL	793
SYDWEQ PYALPL	794
SRIWCQ PYALPL	795
EIMFWQ PYALPL	796
DYVWQQ PYALPL	797
MDLLVQ WYQPYALPL	798
GSKVIL WYQPYALPL	799
RQGANI WYQPYALPL	800
GGGDEP WYQPYALPL	801
SQLERT WYQPYALPL	802
ETWVRE WYQPYALPL	803
KKGSTQ WYQPYALPL	804
LQARMN WYQPYALPL	805
EPRSQK WYQPYALPL	806
VKQKWR WYQPYALPL	807
LRRHDV WYQPYALPL	808
RSTASI WYQPYALPL	809
ESKEDQ WYQPYALPL	810
EGLTMK WYQPYALPL	811
EGSREG WYQPYALPL	812
VIEWWQ PYALPL	813
VWYWEQ PYALPL	814

ASEWWQ PYALPL	815
FYEWWQ PYALPL	816
EGWWVQ PYALPL	817
WGEWLQ PYALPL	818
DYVWEQ PYALPL	819
AHTWWQ PYALPL	820
FIEWFQ PYALPL	821
WLAWEQ PYALPL	822
VMEWWQ PYALPL	823
ERMWQ PYALPL	824
NXXWXX PYALPL	825
WGNWYQ PYALPL	826
TLYWEQ PYALPL	827
VWRWEQ PYALPL	828
LLWTQ PYALPL	829
SRIWXX PYALPL	830
SDIWYQ PYALPL	831
WGYYXX PYALPL	832
TSGWYQ PYALPL	833
VHPYXX PYALPL	834
EHSYFQ PYALPL	835
XXIWYQ PYALPL	836
AQLHSQ PYALPL	837
WANWFQ PYALPL	838
SRLYSQ PYALPL	839
GVTFSQ PYALPL	840
SIVWSQ PYALPL	841
SRDLVQ PYALPL	842
HWGH VYWQPYSVQ DDLG	843
SWHS VYWQPYSVQ SVPE	844
WRDS VYWQPYSVQ PESA	845
TWDA VYWQPYSVQ KWLD	846
TPPW VYWQPYSVQ SLDP	847
YWSS VYWQPYSVQ SVHS	848
YWY QPY ALGL	849
YWY QPY ALPL	850
EWI QPY ATGL	851
NWE QPY AKPL	852
AFY QPY ALPL	853
FLY QPY ALPL	854
VCK QPY LEWC	855
ETPFTWEESNAYYWQPYALPL	856
QGWLTWQDSVDMYWQPYALPL	857
FSEAGYTWPENTYWQPYALPL	858
TESPGGLDWAKIYWQPYALPL	859
DGYDRWRQSGERYWQPYALPL	860
TANVSSFEWTPGYWQPYALPL	861
SVGEDHNFWTSE YWQPYALPL	862
MNDQTSEVSTFP YWQPYALPL	863
SWSEAFEQPRNL YWQPYALPL	864

OYAEPSALNDWG YWOPYALPI	865
NGDWATADWSNY YWOPYALPI	866
THDEHI YWOPYALPL	867
	868
WSDPI TEDADI, YWOPYAI PI	869
SDAFTTODSOAM YWOPYAI PI	870
GDDAAWBTDSI T YWOPYAL PI	871
	872
ENTYSENWADSM YWOPYALE	873
	874
SVGEDHNEWTSE YWOPYAL PI	875
OTPETWEESNAY YWOPYAL PL	876
	877
	878
	879
	880
	881
	882
	002
	003
	004
	003
	000
	007
	000
	800
DETETWEESNAY YWODYALDI	090
	140
	074
	093
	894
	895
QPYALPL	896
Py-1-NapPYQJYALPL	897
	898
FEWTPGYWQPYALPL	899
FEWTPGYWQJYALPL	900
FEWTPGYYQJYALPL	901
	902
FTWEESNAYYWQJYALPL	903
	904
GDVAE YWQPYA LPLTSL	905
SWIDYG YWQPYA LPISGL	906
I FEW I PGYWQPYALPL	911
FEW I PGYWQJYALPL	912
FEW I PGWYQPYALPL	913
FEWTPGWYQJYALPL	914
FEWTPGYYQPYALPL	915
LEW IPGYYQJYALPL	916
TANVSSFEWTPGYWQPYALPL	918

SWTDYGYWQPYALPISGL	919
ETPFTWEESNAYYWQPYALPL	920
ENTYSPNWADSMYWQPYALPL	921
SVGEDHNFWTSEYWQPYALPL	922
DGYDRWRQSGERYWQPYALPL	923
FEWTPGYWQPYALPL	924
FEWTPGYWQPY	925
FEWTPGYWQJY	926
EWTPGYWQPY	927
FEWTPGWYQJY	928
AEWTPGYWQJY	929
FAWTPGYWQJY	930
FEATPGYWQJY	931
FEWAPGYWQJY	932
FEWTAGYWQJY	933
FEWTPAYWQJY	934
FEWTPGAWQJY	935
FEWTPGYAQJY	936
FEWTPGYWQJA	937
FEWTGGYWQJY	938
FEWTPGYWQJY	939
FEWTJGYWQJY	940
FEWTPecGYWQJY	941
FEWTPAibYWQJY	942
FEWTPSarWYQJY	943
FEWTSarGYWQJY	944
FEWTPNYWQJY	945
FEWTPVYWQJY	946
FEWTVPYWQJY	947
AcFEWTPGWYQJY	948
AcFEWTPGYWQJY	949
INap-EWTPGYYQJY	950
YEWTPGYYQJY	951
FEWVPGYYQJY	952
FEWTPGYYQJY	953
FEWTPsYYQJY	954
FEWTPnYYQJY	955
SHLY-Nap-QPYSVQM	956
TLVY-Nap-QPYSLQT	957
RGDY-Nap-QPYSVQS	958
NMVY-Nap-QPYSIQT	959
VYWQPYSVQ	960
VY-Nap-QPYSVQ	961
TFVYWQJYALPL	962
FEWTPGYYQJ-Bpa	963
XaaFEWTPGYYQJ-Bpa	964
FEWTPGY-Bpa-QJY	965
AcFEWTPGY-Bpa-QJY	966
FEWTPG-Bpa-YQJY	967
AcFEWTPG-Bpa-YQJY	968

AcFE-Bpa-TPGYYQJY	969
AcFE-Bpa-TPGYYQJY	970
Bpa-EWTPGYYQJY	971
AcBpa-EWTPGYYQJY	972
VYWQPYSVQ	973
RLVYWQPYSVQR	974
RLVY-Nap-QPYSVQR	975
RLDYWQPYSVQR	976
RLVWFQPYSVQR	977
RLVYWQPYSIQR	978
DNSSWYDSFLL	980
DNTAWYESFLA	981
DNTAWYENFLL	982
PARE DNTAWYDSFLI WC	983
TSEY DNTTWYEKFLA SQ	984
SQIP DNTAWYQSFLL HG	985
SPFI DNTAWYENFLL TY	986
EQIY DNTAWYDHFLL SY	987
TPFI DNTAWYENFLL TY	988
TYTY DNTAWYERFLM SY	989
TMTQ DNTAWYENFLL SY	990
TI DNTAWYANLVQ TYPQ	991
TI DNTAWYERFLA QYPD	992
HI DNTAWYENFLL TYTP	993
SQ DNTAWYENFLL SYKA	994
QI DNTAWYERFLL QYNA	995
NQ DNTAWYESFLL QYNT	996
TI DNTAWYENFLL NHNL	997
HY DNTAWYERFLQ QGWH	998
ETPFTWEESNAYYWQPYALPL	999
YIPFTWEESNAYYWQPYALPL	1000
DGYDRWRQSGERYWQPYALPL	1001
pY-INap-pY-QJYALPL	1002
TANVSSFEWTPGYWQPYALPL	1003
FEWTPGYWQJYALPL	1004
FEWTPGYWQPYALPLSD	1005
FEWTPGYYQJYALPL	1006
FEWTPGYWQJY	1007
AcFEWTPGYWQJY	1008
	1009
AcFEWTPGYYQJY	1010
AcFEWTPaYWQJY	1011
ACFEWTPaWYQJY	1012
ACHEWTPaYYQJY	1013
HEWTPGYYQJYALPL	1014
HEW I PGYWQJYALPL	1015
FEW I PGWYQJYALPL	1016
	1017
ACHEWTPGYWQJY	1018
ACHEWTPGWYQJY	1019

PCT/US01/14310

WO 01/83525

AcFEWTPGYYQJY	1020
AcFEWTPAYWQJY	1021
AcFEWTPAWYQJY	1022
AcFEWTPAYYQJY	1023

.

Sequence/structure	SEQ ID NO:
YXCXXGPXTWXCXP	83
YXCXXGPXTWXCXP-YXCXXGPXTWXCXP	84
YXCXXGPXTWXCXP-A-YXCXXGPXTWXCXP	85
YXCXXGPXTWXCXP-Λ- (ε-amine)	86
K βA (α-amine)	86
GGDYHCBMGPI TWVCKPI GG	
GGVYACBMGPITWVCSPIGG	89
VGNYMCHFGPITWVCRPGGG	
GGLYLCRFGPVTWDCGYKGG	91
GGTYSCHFGPLTWVCKPQGG- GGTYSCHFGPLTWVCKPQGG	92
GGTYSCHFGPLTWVCKPQGG -A- GGTYSCHFGPLTWVCKPQGG	93
GGTYSCHFGPLTWVCKPQGGSSK	94
GGTYSCHFGPLTWVCKPQGGSSK- GGTYSCHFGPLTWVCKPQGGSSK	95
GGTYSCHFGPLTWVCKPQGGSSK-A- GGTYSCHFGPLTWVCKPQGGSSK	96
GGTYSCHFGPLTWVCKPQGGSS (E-amine)	97
βA GGTYSCHEGPLTWVCKPOGGSS (α-amine)	97
GGTYSCHFGPLTWVCKPQGGSSK(-A-biotin)	98
CX₄X₅GPX₅TWX,C	421
GGTYSCHGPLTWVCKPQGG	422
VGNYMAHMGPITWVCRPGG	423
GGPHHVYACRMGPLTWIC	424
GGTYSCHFGPLTWVCKPQ	425
GGLYACHMGPMTWVCQPLRG	426
	427
	428
	429
$\Lambda_3 \Lambda_4 \Lambda_5 \Im \Lambda_6 I V X_7 X_3$	124
$1 \Lambda_2 \Lambda_3 \Lambda_4 \Lambda_5 GF \Lambda_6 IVV \Lambda_7 \Lambda_8$	461

Table 5—EPO-mimetic peptide sequences

X,YX ₂ X ₃ X ₄ X ₅ GPX ₆ TWX ₇ X ₆ X ₅ X ₁₀ X ₁₁	419
X ₁ YX ₂ CX ₄ X ₅ GPX ₆ TWX ₇ CX ₉ X ₁₀ X ₁₁	420
GGLYLCRFGPVTWDCGYKGG	1024
GGTYSCHFGPLTWVCKPQGG	1025
GGDYHCRMGPLTWVCKPLGG	1026
VGNYMCHFGPITWVCRPGGG	1029
GGVYACRMGPITWVCSPLGG	1030
VGNYMAHMGPITWVCRPGG	1035
GGTYSCHFGPLTWVCKPQ	1036
GGLYACHMGPMTWVCQPLRG	1037
TIAQYICYMGPETWECRPSPKA	1038
YSCHFGPLTWVCK	1039
YCHFGPLTWVC	1040
SCHFGPLTWVCK	1041
(AX₂) _n X₃X₄X₅GPX₅TWX ₇ X₅	1042
X _a CX ₁ X₂GWVGX₃CX₄X₅WX _c	1110

•

Table 6—TPO-mimetic peptide sequences

ID NO: IEGPTLRQWLAARA 13 IEGPTLRQWLAARA 24 IEGPTLRWLAARA 25 IEGPTLRQWLAARA 26 IEGPTLRQWLAARA 27 IEGPTLRQWLAARA-A-IEGPTLRQWLAARA 27 IEGPTLRQWLAARA-A-IEGPTLRQULAARA 28 I I IEGPTLRQWLAARA-A-IEGPTLRQULAARA 29 IEGPTLRQWLAARA-A-IEGPTLRQULAARA 30 IEGPTLRQULAARA-A-IEGPTLRQWLAARA 31 IEGPTLRQULAARA-A-IEGPTLRQWLAARA 31 IEGPTLRQULAARA-A-IEGPTLRQULAARA 32 VRDQUXXXL 33 TLREWL 34 GRVRDQVAGW 35 GRVRDQVAGW 35 GRVRDQVAGW 36 GVRETVYRHM 40 GVRETVYRHM 40 GVRETVYRHM 40 GVREDQIMAAL 42 AGVRDQIMAAL 42 AGVRDQILUIL 43 GRVRDQIMAAL 42 AGVRDQIMAAL 42 AGVRDQIMAAL 42 AGVRDQILUILLGM	Sequence/structure	SEQ
IEGPTLRQWLAARA 13 IEGPTLRQWLAARA 24 IEGPTLRQWLAARA 25 IEGPTLRQWLAARA 26 IEGPTLRQWLAARA-Λ-IEGPTLRQWLAARA 26 IEGPTLRQWLAARA-Λ-IEGPTLRQWLAARA 27 IEGPTLRQWLAARA-Λ-IEGPTLRQWLAARA 28 I I IEGPTLRQWLAARA-Λ-IEGPTLRQWLAARA 29 IEGPTLRQWLAARA-Λ-K(FEG)-Λ-IEGPTLRQWLAARA 30 IEGPTLRQCLAARA-Λ-K(FEG)-Λ-IEGPTLRQWLAARA 31 IEGPTLRQCLAARA-Λ-IEGPTLRQWLAARA 31 IEGPTLRQWLAARA-Λ-IEGPTLRQULAARA 32 IEGPTLRQWLAARA-Λ-IEGPTLRQCLAARA 32 VRDQIXXXL 33 TLREWL 34 GRVRDQVAGW 35 GRVKDQIAQL 36 GRVRDQVSWAL 37 ESVREQVMKY 38 SVRSQISASL 39 GVREVVRHM 40 GRVRDQILWAAL 42 AGVRDQILWAAL 42 AGVRDQILWAAL 44 GRVRDQILWAL 43 GRVRDQILWAAL 44 <	-	ID NO:
IEGPTLRQWLAAKA24IEGPTLRQWLAARA25IEGPTLRQWLAARAA25IEGPTLRQWLAARAA26IEGPTLRQWLAARAA-A-IEGPTLRQWLAAKA27IEGPTLRQULAARA-A-IEGPTLRQULAARA28	IEGPTLRQWLAARA	13
IEGPTLREWLAARA25IEGPTLRQWLAARA-A-IEGPTLRQWLAARA26IEGPTLRQWLAARA-A-IEGPTLRQWLAARA27IEGPTLRQCLAARA-A-IEGPTLRQCLAARA28IIIEGPTLRQULAARA-A-IEGPTLRQULAARA29IEGPTLRQWLAARA-A-K(BrAc)-A-IEGPTLRQWLAARA30IEGPTLRQCLAARA-A-IEGPTLRQWLAARA31IEGPTLRQCLAARA-A-IEGPTLRQWLAARA31IEGPTLRQCLAARA-A-IEGPTLRQWLAARA31IEGPTLRQULAARA-A-IEGPTLRQULAARA32VRDQIXXXL33TLREWL34GRVRDQVAGW35GRVRDQVAGW35GRVRDQVAGW36GVRDQVSWAL37ESVREQVMKY38SVRSQISASL39GVRETVYRHM40GVRDQIWAAL42AGVRDQIWAAL44GRVRDOIMAL44GRVRDOIMAAL44GRVRDOIMAAL44GRVRDOIMAAL44GRVRDOIMAAL44GRVRDOIMAAL44GRVRDOIMAAL44GRVRDOIMAL44GRVRDOIMAL44GRVRDOIMAL45CTLRQWLLGGC46CTLREWLHGGFC49CTLREWLHGGFC55CTLREWLHGGC55CTLREWLAGCC55CTLREWLAGCC55CTLREWLAGCC55CTLREWLAGCC55CTLREWLAGCC55CTLREWLAGCC55CTLREWLAGCC56-60REGPTLRQWM61EGPTLRQWM61EGPTLRQWM62ERGPFWAKAC63<	IEGPTLRQWLAAKA	24
IEGPTLRQWLAARA-A-IEGPTLRQWLAARA26IEGPTLRQWLAARA-A-IEGPTLRQWLAARA27IEGPTLRQCLAARA-A-IEGPTLRQWLAARA28	IEGPTLREWLAARA	25
IEGPTLRQWLAAKA-A-IEGPTLRQWLAAKA27IEGPTLRQCLAARA-A-IEGPTLRQCLAARA28IIIEGPTLRQWLAARA-A-IEGPTLRQWLAARA29IEGPTLRQWLAARA-A-K(PEG)-A-IEGPTLRQWLAARA30IEGPTLRQCLAARA-A-IEGPTLRQWLAARA31IEGPTLRQCLAARA-A-IEGPTLRQWLAARA31IEGPTLRQULAARA-A-IEGPTLRQWLAARA32IEGPTLRQWLAARA-A-IEGPTLRQCLAARA32VRDQIXXXL33TLREWL34GRVRDQVAGW35GRVRDQVAGW36GVRDQVSWAL37ESVREQVMKY38SVRSQISASL39GVRETVYRHM40GVRETVYRHM41GRVRDQIMAAL42AGVRDQIWAAL44GRVRDQIMAAL44GRVRDQIMAAL44GRVRDQIMAAL44GRVRDQIMAAL44GRVRDQIMAAL45CTLREWLHGGFC49CTLREWLHGGFC50CTLREWLGGGC52CSLQEFLSHGGYVC53CTLREWLGGC55CTLREWLNAGC55CTLREWLQWM61EGPTLRQWM61EGPTLRQWM61EGPTLRQWM61EGPTLRQWM61EGPTLRQWM61EGPTLRQWM61EGPTLRQWM64CGTEGPTLSTWLDC65	IEGPTLRQWLAARA-A-IEGPTLRQWLAARA	26
IEGPTLRQCLAARA-A-IEGPTLRQCLAARA 28 I	IEGPTLRQWLAAKA-A-IEGPTLRQWLAAKA	27
IEGPTLRQWLAARA-A-K(BrAc)-A-IEGPTLRQWLAARA29IEGPTLRQWLAARA-A-K(PEG)-A-IEGPTLRQWLAARA30IEGPTLRQCLAARA-A-IEGPTLRQWLAARA31IEGPTLRQCLAARA-A-IEGPTLRQWLAARA31IEGPTLRQWLAARA-A-IEGPTLRQCLAARA32VRDQIXXL33TLREWL34GRVRDQVAGW35GRVKDQIAQL36GVRDQVSWAL37ESVREQVMKY38SVRSQISASL39GVRETVYRHM40GVRDQIWAAL41GRVRDQIWAAL42AGVRDQIWAAL42AGVRDQIWAAL44GRVRDQIWAAL42CTLRQWLQGC46CTLRQWLQGC50CTLREWLHGGFC49CTLREWLHGGFC49CTLREWLHGGFC50CTLREWLHGGFC53CTLREWLHGGFC54CTLREWLHGGFC55CTLREWLHGGFC54CTLREWLHGGFC54CTLREWLHGGFC54CTLREWLHGGFC54CTLREWLNARC55CTLREWLARC61EGPTLRQWLA62ERGPTURQWLA64CGTEGFUSTURWM64CGTEGFUSTURWM64CTLREWLAC65	IEGPTLRQCLAARA-A-IEGPTLRQCLAARA	28
IEGPTLRQWLAARA-A-K(BrAc)-A-IEGPTLRQWLAARA 29 IEGPTLRQWLAARA-A-K(PEG)-A-IEGPTLRQWLAARA 30 IEGPTLRQCLAARA-A-IEGPTLRQWLAARA 31 IEGPTLRQCLAARA-A-IEGPTLRQWLAARA 31 IEGPTLRQWLAARA-A-IEGPTLRQWLAARA 32 IEGPTLRQWLAARA-A-IEGPTLRQCLAARA 32 VRDQIXXXL 33 TLREWL 34 GRVRDQVAGW 35 GRVRDQVSWAL 37 ESVREQVKKY 38 SVRSQISASL 39 GVRETVYRHM 40 GVRETVYRHM 41 GRVRDQIMAAL 42 AGVRDQIMAAL 44 GRVRDQIMAAL 44 GRVRDQIMAAL 44 GRVRDQIMUAAL 44 GRVRDQIMUSL 44 GRVRDQIMQC 50 CTLRQWLQGC 46 CTLRQWLQGC 52 CTLREWLHGGFC 49 CTLREWLHGGFC 53 CTLRQWLQGC 55 CTLRQWLQGC 55 CTLREFLDPTTAVC 54		
IEGPTLRQWLAARA-A-K(PEG)-A-IEGPTLRQWLAARA30IEGPTLRQCLAARA-A-IEGPTLRQWLAARA31IEGPTLRQWLAARA-A-IEGPTLRQULAARA32IEGPTLRQWLAARA-A-IEGPTLRQCLAARA32VRDQIXXXL33TLREWL34GRVRDQVAGW35GRVKDQIAQL36GVRDQVSWAL37ESVREQVMKY38SVRSQISASL39GVRETVYRHM40GVRDQILIWL41GRVRDQIML42AGVRDQIML44GRVRDQIMAL42AGVRDQILIWL43GRVRDQIMLSL44GRVRDQIMLSL44CTLRQWLQGC46CTLREWLHGC49CTLREWLHGGFC49CTLREWLHGGFC50CTLRQWLILGMC51CTLREWLHGC53CTLREWLHGC55CTLREWLHGC55CTLRQWLILLGMC55CTLRQWLILLGMC51CTLREWLHGC55CTLREWLASAC56-60REGPTLRQWM61EGPTLRQWM61EGPTLRQWM62ERGPTLRQWM63REGPRCVMWM64CGTEGPTLSTWLDC65	_IEGPTLRQWLAARA-Λ-K(BrAc)-Λ-IEGPTLRQWLAARA	29
IEGPTLRQCLAARA- Λ -IEGPTLRQWLAARA31IEGPTLRQCLAARA- Λ -IEGPTLRQWLAARA31IEGPTLRQWLAARA- Λ -IEGPTLRQCLAARA32I1IEGPTLRQWLAARA- Λ -IEGPTLRQCLAARA32VRDQIXXXL33TLREWL34GRVRDQVAGW35GRVKDQIAQL36GVRDQVSWAL37ESVREQVMKY38SVRSQISASL39GVRETVYRHM40GVRDQIUIWL41GRVRDQIMLSL42AGVRDQILIWL43GRVRDQIKJ45CTLRQWLQGC46CTLREWLHGC49CTLREWLHGGFC49CTLREWLHGGFC50CTLREWLHGGFC53CTLRQWLUGMC51CTLREWLHGGFC55CTLRQWLUSJLE61EGPTLRQWM61EGPTLRQWLA62ERGPTLRQWM61EGPTLRQWLA62ERGPTLRQWM64CGTEGPTLSTWLDC65	IEGPTLRQWLAARA-A-K(PEG)-A-IEGPTLRQWLAARA	30
IEGPTLRQCLAARA-A-IEGPTLRQWLAARA31IEGPTLRQWLAARA-A-IEGPTLRQCLAARA32IEGPTLRQWLAARA-A-IEGPTLRQCLAARA32VRDQIXXXL33TLREWL34GRVRDQVAGW35GRVKDQIAQL36GVRDQVSWAL37ESVREQVMKY38SVRSQISASL39GVRETVYRHM40GVREQVWMAL41GRVRDQIWAAL42AGVRDQILIWL43GRVRDQIMAAL42AGVRDQILIWL44GRVRDQIMASL44GTLREWLGGC46CTLREWLHGGFC49CTLREWLHGGFC50CTLREWLHGGFC51CTLAEFLASGVEQC52CSLQEFLSHGGYVC53CTLREWLSHGWAA61EGPTLRQWLA61EGPTLRQWLAACA62ERGPFWAKAC63REGPRCVMWM64CGTEGPTLSTWLDC65		31
IEGPTLRQWLAARA-A-IEGPTLRQCLAARA 32 IEGPTLRQWLAARA-A-IEGPTLRQCLAARA 32 VRDQIXXXL 33 TLREWL 34 GRVRDQVAGW 35 GRVRDQVSWAL 37 ESVREQVMKY 38 SVRSQISASL 39 GVRETVYRHM 40 GVREVVMHML 41 GRVRDQIWAAL 42 AGVRDQILIWL 43 GRVRDQIWAAL 42 AGVRDQILIWL 43 GRVRDQIWAAL 42 AGVRDQILIWL 43 GRVRDQIWAAL 44 GRVRDQIKJ,L 44 GRVRDQIKJ,L 44 GRVRDQIKQGC 44 CTLRQWLQGC 47 CTLRQWLQGC 48 CTLREWLHGGFC 49 CTLREWLHGGFC 50 CTLREWLAGGVVC 53 CTLREWLAGGVVC 55 CTLREWLXSHEVWC 55 CTLREWLXSHEVWC 55 CTLREWLXSHEVWC 55 CTLREWLXSH	IEGPTLRQCLAARA-A-IEGPTLRQWLAARA	31
IIIEGPTLRQWLAARA-A-IEGPTLRQCLAARA32VRDQIXXXL33TLREWL34GRVRDQVAGW35GRVKDQIAQL36GVRDQVSWAL37ESVREQVMKY38SVRSQISASL39GVRETVYRHM40GVRETVYRHM41GRVRDQIMAAL42AGVRDQILIWL43GRVRDQIMLSL44GRVRDQIMLSL44CTLRQWLQGC46CTLREWLHGGFC49CTLREWLHGGFC49CTLREWLGGC50CTLREWLGGC53CTLREWLSEVQC53CTLREWLSEVQC53CTLREWLSEVQC53CTLREWLSEVQC55CTLREWLVSHEVWC55CTLREWLVSHEVWC56-60REGPTLRQWM61EGPTLRQWM62ERGPFWAKAC63REGPRCVMWM64CGTEGPTLSTWLDC65	IEGPTLRQWLAARA-A-IEGPTLRQCLAARA	32
IEGPTLRQWLAARA-A-IEGPTLRQCLAARA 32 VRDQIXXXL 33 TLREWL 34 GRVRDQVAGW 35 GRVKDQIAQL 36 GVRDQVSWAL 37 ESVREQVMKY 38 SVRSQISASL 39 GVRETVYRHM 40 GVREVIVMHML 41 GRVRDQIMAAL 42 AGVRDQILIWL 43 GRVRDQIMLSL 44 GRVRDQIMLSL 44 GRVRDQIX_sL 45 CTLRQWLQGC 46 CTLQEFLEGC 47 CTRTEWLHGC 48 CTLREWLFAGLC 50 CTLREWLHGGFC 49 CTLREWLAGGFC 53 CTLREFLASGVEQC 53 CTLREFLASGVEQC 53 CTLREFLASGVEQC 55 CTLREWL(X) _{se} C 56-60 REGPTLRQWM 61 EGPTLRQWLA 62 ERGPFWAKAC 63 REGPRCVMWM 64 CGTEGPTLSTWLDC		
VRDQIXXXL 33 TLREWL 34 GRVRDQVAGW 35 GRVKDQIAQL 36 GVRDQVSWAL 37 ESVREQVMKY 38 SVRSQISASL 39 GVRETVYRHM 40 GVREVVMHML 41 GRVRDQIWAAL 42 AGVRDQILIWL 43 GRVRDQIMAL 42 AGVRDQILIWL 43 GRVRDQIMAL 42 AGVRDQILIWL 43 GRVRDQIMASL 44 GRVRDQIX)sL 45 CTLRQWLQGC 46 CTLREWLEGC 47 CTLREWLEGC 48 CTLREWLHGGFC 49 CTLREWLHGGFC 50 CTLREWLIGMC 51 CTLREWLIGMC 53 CTLREWLYSAGLC 53 CTLREWLYSAGLC 54 CTLREWLQWA 61 EGPTLRQWM 61 EGPTLRQWM 61 EGPTLRQWLA 62 ER	IEGPTLRQWLAARA-A-IEGPTLRQCLAARA	32
TLREWL 34 GRVRDQVAGW 35 GRVKDQIAQL 36 GVRDQVSWAL 37 ESVREQVMKY 38 SVRSQISASL 39 GVRETVYRHM 40 GVRETVYRHM 40 GVRETVYRHM 41 GRVRDQIWAAL 42 AGVRDQILIWL 43 GRVRDQILIWL 43 GRVRDQILIWL 43 GRVRDQIKJ_L 44 GRVRDQIK_J_L 45 CTLRQWLQGC 46 CTLQEFLEGC 47 CTLREWLHGGFC 49 CTLREWLHGGFC 50 CTLREWLHGGFC 51 CTLREWLGGFC 52 CSLQEFLSHGGYVC 53 CTLREFLDPTTAVC 54 CTLKEWLVSHEVWC 55 CTLREWL(X) _{2s} C 56-60 REGPTLRQWLA 62 ERGPFWAKAC 63 REGPRCVMWM 64 CGTEGPTLSTWLDC 65	VRDQIXXXL	33
GRVRDQVAGW 35 GRVKDQIAQL 36 GVRDQVSWAL 37 ESVREQVMKY 38 SVRSQISASL 39 GVRETVYRHM 40 GVREVIVMHML 41 GRVRDQIWAAL 42 AGVRDQIMAAL 42 AGVRDQIMAL 43 GRVRDQIMLSL 44 GRVRDQIMLSL 44 GRVRDQI(X) ₃ L 45 CTLRQWLQGC 46 CTLREWLHGC 48 CTLREWLHGGFC 49 CTLREWLHGGFC 50 CTLREWLHGGFC 51 CTLREWLHGGFC 53 CTLREWLHGGYVC 53 CTLREWLAGGYVC 53 CTLREWLVSHEVWC 55 CTLREWL(X) _{2x} C 56-60 REGPTLRQWM 61 EGPTLRQWLA 62 ERGPFWAKAC 63 REGPRCVMWM 64 CGTEGPTLSTWLDC 65	TLREWL	34
GRVKDQIAQL 36 GVRDQVSWAL 37 ESVREQVMKY 38 SVRSQISASL 39 GVRETVYRHM 40 GVREVIVMHML 41 GRVRDQIWAAL 42 AGVRDQILIWL 43 GRVRDQIMAL 42 AGVRDQIMLSL 44 GRVRDQIMLSL 44 GRVRDQI(X) ₃ L 45 CTLRQWLQGC 46 CTLQEFLEGC 47 CTRTEWLHGC 48 CTLREWLHGGFC 49 CTLREWLHGGFC 50 CTLRQWLILLGMC 51 CTLREFLASGVEQC 52 CSLQEFLSHGGYVC 53 CTLREWLVSHEVWC 55 CTLREWL(X) _{2*C} C 56-60 REGPTLRQWM 61 EGPTLRQWLA 62 ERGPFWAKAC 63 REGPRCVMWM 64 CGTEGPTLSTWLDC 65	GRVRDQVAGW	35
GVRDQVSWAL 37 ESVREQVMKY 38 SVRSQISASL 39 GVRETVYRHM 40 GVREVIVMHML 41 GRVRDQIWAAL 42 AGVRDQILIWL 43 GRVRDQIMLSL 44 GRVRDQIK\3_L 45 CTLRQWLQGC 46 CTLQEFLEGC 47 CTRTEWLHGC 48 CTLREWLFAGLC 50 CTLRQWLILLGMC 51 CTLRQWLILLGMC 51 CTLREFLDPTTAVC 54 CTLREFLDPTTAVC 54 CTLREWLVSHEVWC 55 CTLREWLVSHEVWC 55 CTLREWLXSHEVWC 55 CTLREWLAAC 62 EGPTLRQWM 61 EGPTLRQWM 62 ERGPFWAKAC 63 REGPRCVMWM 64 CGTEGPTLSTWLDC 65	GRVKDQIAQL	36
ESVREQVMKY 38 SVRSQISASL 39 GVRETVYRHM 40 GVREVIVMHML 41 GRVRDQIWAAL 42 AGVRDQILIWL 43 GRVRDQIMLSL 44 GRVRDQIMLSL 44 GRVRDQIMLSL 44 GRVRDQICX)_L 45 CTLRQWLQGC 46 CTLQEFLEGC 47 CTRTEWLHGC 48 CTLREWVFAGLC 50 CTLREWVFAGLC 50 CTLRQULILIGMC 51 CTLREFLASGVEQC 52 CSLQEFLSHGGYVC 53 CTLREWLYSHEVWC 55 CTLREWLSHEVWC 55 CTLREWL(X) _{2e} C 56-60 REGPTLRQWIA 61 EGPTLRQWIA 62 ERGPFWAKAC 63 REGPRCVMWM 64 CGTEGPTLSTWLDC 65	GVRDQVSWAL	37
SVRSQISASL 39 GVRETVYRHM 40 GVREVIVMHML 41 GRVRDQIWAAL 42 AGVRDQILWL 43 GRVRDQIMLSL 44 GRVRDQI(X) ₃ L 45 CTLRQWLQGC 46 CTLRQWLQGC 46 CTLRQWLQGC 46 CTLRQWLQGC 47 CTRTEWLHGC 48 CTLREWLHGGFC 49 CTLREWVFAGLC 50 CTLRQWLILLGMC 51 CTLREWVFAGLC 50 CTLREWLKAGEVEQC 52 CSLQEFLSHGGYVC 53 CTLREWLVSHEVWC 55 CTLREWL(X) _{2e} C 56-60 REGPTLRQWIA 61 EGPTLRQWIA 62 ERGPFWAKAC 63 REGPRCVMWM 64 CGTEGPTLSTWLDC 65	ESVREQVMKY	38
GVRETVYRHM 40 GVREVIVMHML 41 GRVRDQIWAAL 42 AGVRDQILIWL 43 GRVRDQIMLSL 44 GRVRDQI(X) ₃ L 45 CTLRQWLQGC 46 CTLQEFLEGC 47 CTRTEWLHGC 48 CTLREWLHGGFC 49 CTLREWVFAGLC 50 CTLREWVFAGLC 50 CTLREWVFAGLC 50 CTLREWVFAGLC 51 CTLREWVFAGLC 53 CTLREWLWSWEQC 52 CSLQEFLSHGGYVC 53 CTLREWLVSHEVWC 55 CTLREWL(X) _{2&C} 56-60 REGPTLRQWM 61 EGPTLRQWLA 62 ERGPFWAKAC 63 REGPRCVMWM 64 CGTEGPTLSTWLDC 65	SVRSQISASL	39
GVREVIVMHML41GRVRDQIWAAL42AGVRDQILIWL43GRVRDQIMLSL44GRVRDQI(X)_145CTLRQWLQGC46CTLQEFLEGC47CTRTEWLHGC48CTLREWLHGGFC49CTLRQWLILLGMC50CTLRQWLILLGMC51CTLREFLASGVEQC52CSLQEFLSHGGYVC53CTLREWLVSHEVWC55CTLREWLVSHEVWC55CTLREWL(X)_2_C56-60REGPTLRQWLA62ERGPFWAKAC63REGPRCVMWM64CGTEGPTLSTWLDC65	GVRETVYRHM	40
GRVRDQIWAAL 42 AGVRDQILIWL 43 GRVRDQIMLSL 44 GRVRDQIX) ₃ L 45 CTLRQWLQGC 46 CTLQEFLEGC 47 CTRTEWLHGC 48 CTLREWLHGGFC 49 CTLRQWLILLGMC 50 CTLRQWLILLGMC 51 CTLREFLASGVEQC 52 CSLQEFLSHGGYVC 53 CTLREWLVSHEVWC 55 CTLREWL(X) _{2e} C 56-60 REGPTLRQWLA 62 ERGPFWAKAC 63 REGPRCVMWM 64 CGTEGPTLSTWLDC 65	GVREVIVMHML	41
AGVRDQILIWL 43 GRVRDQIMLSL 44 GRVRDQI(X)_JL 45 CTLRQWLQGC 46 CTLQEFLEGC 47 CTRTEWLHGC 48 CTLREWLHGGFC 49 CTLREWVFAGLC 50 CTLRQWLILLGMC 51 CTLAEFLASGVEQC 52 CSLQEFLSHGGYVC 53 CTLREWLVSHEVWC 55 CTLREWL(X) _{2s} C 56-60 REGPTLRQWM 61 EGPTLRQWLA 62 ERGPFWAKAC 63 REGPRCVMWM 64 CGTEGPTLSTWLDC 65	GRVRDQIWAAL	42
GRVRDQIMLSL44GRVRDQI(X)_145CTLRQWLQGC46CTLQEFLEGC47CTRTEWLHGC48CTLREWLHGGFC49CTLREWVFAGLC50CTLRQWLILLGMC51CTLAEFLASGVEQC52CSLQEFLSHGGYVC53CTLREWLVSHEVWC55CTLREWL(X)_{2*}C56-60REGPTLRQWLA62ERGPFWAKAC63REGPRCVMWM64CGTEGPTLSTWLDC65	AGVRDQILIWL	43
GRVRDQI(X)_145CTLRQWLQGC46CTLQEFLEGC47CTRTEWLHGC48CTLREWLHGGFC49CTLREWVFAGLC50CTLRQWLILLGMC51CTLAEFLASGVEQC52CSLQEFLSHGGYVC53CTLREWLVSHEVWC55CTLREWL(X)_{2e}C56-60REGPTLRQWLA62ERGPFWAKAC63REGPRCVMWM64CGTEGPTLSTWLDC65	GRVRDQIMLSL	44
CTLRQWLQGC 46 CTLQEFLEGC 47 CTRTEWLHGC 48 CTLREWLHGGFC 49 CTLREWVFAGLC 50 CTLRQWLILLGMC 51 CTLAEFLASGVEQC 52 CSLQEFLSHGGYVC 53 CTLREWLVSHEVWC 55 CTLREWL(X) _{2*} C 56-60 REGPTLRQWM 61 EGPFWAKAC 63 REGPRCVMWM 64 CGTEGPTLSTWLDC 65	GRVRDQI(X) ₃ L	45
CTLQEFLEGC 47 CTRTEWLHGC 48 CTLREWLHGGFC 49 CTLREWVFAGLC 50 CTLRQWLILLGMC 51 CTLAEFLASGVEQC 52 CSLQEFLSHGGYVC 53 CTLREWLVSHEVWC 55 CTLREWL(X) _{2e} C 56-60 REGPTLRQWM 61 EGPFWAKAC 63 REGPRCVMWM 64 CGTEGPTLSTWLDC 65	CTLRQWLQGC	46
CTRTEWLHGC 48 CTLREWLHGGFC 49 CTLREWVFAGLC 50 CTLRQWLILLGMC 51 CTLAEFLASGVEQC 52 CSLQEFLSHGGYVC 53 CTLREWLVSHEVWC 55 CTLREWL(X) _{2.6} C 56-60 REGPTLRQWM 61 EGPFWAKAC 63 REGPRCVMWM 64 CGTEGPTLSTWLDC 65	CTLQEFLEGC	47
CTLREWLHGGFC49CTLREWVFAGLC50CTLRQWLILLGMC51CTLAEFLASGVEQC52CSLQEFLSHGGYVC53CTLREFLDPTTAVC54CTLKEWLVSHEVWC55CTLREWL(X) ₂₆ C56-60REGPTLRQWM61EGPTLRQWLA62ERGPFWAKAC63REGPRCVMWM64CGTEGPTLSTWLDC65	CTRTEWLHGC	48
CTLREWVFAGLC50CTLRQWLILLGMC51CTLAEFLASGVEQC52CSLQEFLSHGGYVC53CTLREFLDPTTAVC54CTLKEWLVSHEVWC55CTLREWL(X) _{2s} C56-60REGPTLRQWM61EGPTLRQWLA62ERGPFWAKAC63REGPRCVMWM64CGTEGPTLSTWLDC65	CTLREWLHGGFC	49
CTLRQWLILLGMC51CTLAEFLASGVEQC52CSLQEFLSHGGYVC53CTLREFLDPTTAVC54CTLKEWLVSHEVWC55CTLREWL(X) $_{2e}$ C56-60REGPTLRQWM61EGPTLRQWLA62ERGPFWAKAC63REGPRCVMWM64CGTEGPTLSTWLDC65	CTLREWVFAGLC	50
CTLAEFLASGVEQC52CSLQEFLSHGGYVC53CTLREFLDPTTAVC54CTLKEWLVSHEVWC55CTLREWL(X)2*C56-60REGPTLRQWM61EGPTLRQWLA62ERGPFWAKAC63REGPRCVMWM64CGTEGPTLSTWLDC65	CTLRQWLILLGMC	51
CSLQEFLSHGGYVC 53 CTLREFLDPTTAVC 54 CTLKEWLVSHEVWC 55 CTLREWL(X) _{2*6} C 56-60 REGPTLRQWM 61 EGPTLRQWLA 62 ERGPFWAKAC 63 REGPRCVMWM 64 CGTEGPTLSTWLDC 65	CTLAEFLASGVEQC	52
CTLREFLDPTTAVC 54 CTLKEWLVSHEVWC 55 CTLREWL(X)_{2e}C $56-60$ REGPTLRQWM 61 EGPTLRQWLA 62 ERGPFWAKAC 63 REGPRCVMWM 64 CGTEGPTLSTWLDC 65	CSLQEFLSHGGYVC	53
CTLKEWLVSHEVWC 55 CTLREWL(X) _{2e} C 56-60 REGPTLRQWM 61 EGPTLRQWLA 62 ERGPFWAKAC 63 REGPRCVMWM 64 CGTEGPTLSTWLDC 65	CTLREFLDPTTAVC	54
CTLREWL(X) _{2e} C 56-60 REGPTLRQWM 61 EGPTLRQWLA 62 ERGPFWAKAC 63 REGPRCVMWM 64 CGTEGPTLSTWLDC 65	CTLKEWLVSHEVWC	55
REGPTLRQWM61EGPTLRQWLA62ERGPFWAKAC63REGPRCVMWM64CGTEGPTLSTWLDC65	CTLREWL(X) ₂₆ C	56-60
EGPTLRQWLA62ERGPFWAKAC63REGPRCVMWM64CGTEGPTLSTWLDC65	REGPTLRQWM	61
ERGPFWAKAC63REGPRCVMWM64CGTEGPTLSTWLDC65	EGPTLRQWLA	62
REGPRCVMWM64CGTEGPTLSTWLDC65	ERGPFWAKAC	63
CGTEGPTLSTWLDC 65	REGPRCVMWM	64
	CGTEGPTLSTWLDC	65

CEQDGPTLLEWLKC	66
CELVGPSLMSWLTC	67
CLTGPFVTQWLYEC	68
CRAGPTLLEWLTLC	69
CADGPTLREWISFC	70
C(X) ₁₋₂ EGPTLREWL(X) ₁₋₂ C	71-74
GGCTLREWLHGGFCGG	75
GGCADGPTLREWISFCGG	76
GNADGPTLRQWLEGRRPKN	77
LAIEGPTLRQWLHGNGRDT	78
HGRVGPTLREWKTQVATKK	79
TIKGPTLRQWLKSREHTS	80
ISDGPTLKEWLSVTRGAS	81
SIEGPTLREWLTSRTPHS	82

Sequence/structure	SEQ
	ID NO:
EEDCK	99
EEDCK	99
EEDCK	99
EEDoK	100
EEDoK	100
EEDoK	100
pGluEDoK	101
pGluEDoK	101
pGluEDoK	101
PicSDoK	102
PicSDoK	102
PicSDoK	102
EEDCK-A-EEDCK	103
EEDXK-A-EEDXK	104

Table 7—G-CSF-mimetic peptide sequences

•

Sequence/structure	SEQ
	ID NO:
YCFTASENHCY	106
YCFTNSENHCY	107
YCFTRSENHCY	108
FCASENHCY	109
YCASENHCY	110
FCNSENHCY	111
FCNSENRCY	112
FCNSVENRCY	113
YCSQSVSNDCF	114
FCVSNDRCY	115
YCRKELGQVCY	116
YCKEPGQCY	117
YCRKEMGCY	118
FCRKEMGCY	119
YCWSQNLCY	120
YCELSQYLCY	121
YCWSQNYCY	122
YCWSQYLCY	123
DFLPHYKNTSLGHRP	1085
AA1-AB1	NR
AC	

Table 8—TNF-antagonist peptide sequences

Sequence/structure	SEQ
_	ID NO:
RX,ETX,WX,	441
RX,ETX,WX	442
RGDGX	443
CRGDGXC	444
CX,X,RLDX,X,C	445
CARRLDAPC	446
CPSRLDSPC	447
X,X,X,RGDX,X,X	448
CX,CRGDCX,C	449
CDCRGDCFC	450
CDCRGDCLC	451
CLCRGDCIC	452
$X_1X_2DDX_4X_5X_7X_8$	453
X ₁ X ₂ X ₃ DDX ₄ X ₅ X ₅ X ₇ X ₈	454
CWDDGWLC	455
CWDDLWWLC	456
CWDDGLMC	457
CWDDGWMC	458
CSWDDGWLC	459
CPDDLWWLC	460
NGR	NR
GSL	NR
RGD	NR
CGRECPRLCQSSC	1071
CNGRCVSGCAGRC	1072
CLSGSLSC	1073
RGD	NR
NGR	NR
GSL	NR
NGRAHA	1074
CNGRC	1075
CDCRGDCFC	1076
CGSLVRC	1077
DLXXL	1043
RTDLDSLRTYTL	1044
RTDLDSLRTY	1053
RTDLDSLRT	1054
RTDLDSLR	1078
GDLDLLKLRLTL	1079
GDLHSLRQLLSR	1080
RDDLHMLRLQLW	1081
SSDLHALKKRYG	1082
RGDLKQLSELTW	1083
RGDLAALSAPPV	1084

Table 9—Integrin-binding peptide sequences

Sequence/structure	SEQ
	ID NO:
DITWDQLWDLMK	147
DITWDELWKIMN	148
DYTWFELWDMMQ	149
QITWAQLWNMMK	150
DMTWHDLWTLMS	151
DYSWHDLWEMMS	152
EITWDQLWEVMN	153
HVSWEQLWDIMN	154
HITWDQLWRIMT	155
RNMSWLELWEHMK	156
AEWTWDQLWHVMNPAESQ	157
HRAEWLALWEQMSP	158
KKEDWLALWRIMSV	159
ITWDQLWDLMK	160
DITWDQLWDLMK	161
DITWDQLWDLMK	162
DITWDQLWDLMK	163
CQNRYTDLVAIQNKNE	462
AENWADNEPNNKRNNED	463
RKNNKTWTWVGTKKALTNE	464
KKALTNEAENWAD	465
CQXRYTDLVAIQNKXE	466
RKXNXXWTWVGTXKXLTEE	467
AENWADGEPNNKXNXED	468
CXXXYTXLVAIQNKXE	469
RKXXXXWXWVGTXKXLTXE	470
AXNWXXXEPNNXXXED	471
XKXKTXEAXNWXX	472

Table 10—Selectin antagonist peptide sequences

Sequence/structure	SEQ
-	ID NO:
GFFALIPKIISSPLFKTLLSAVGSALSSSGGQQ	503
GFFALIPKIISSPLFKTLLSAVGSALSSSGGQE	504
GFFALIPKIISSPLFKTLLSAV	505
GFFALIPKIISSPLFKTLLSAV	506
KGFFALIPKIISSPLFKTLLSAV	507
KKGFFALI P KIISSPLFKT LL SAV	508
KKGFFALIPKIISSPLFKTLLSAV	509
GFFALIPKIIS	510
GIGAVLKVLTTGLPALISWIKRKRQQ	511
GIGAVLKVLTTGLPALISWIKRKRQQ	512
GIGAVLKVLTTGLPALISWIKRKRQQ	513
GIGAVLKVLTTGLPALISWIKR	514
AVLKVLTTGLPALISWIKR	515
KLLLLKLLLK	516
KLLLKLLK	517
KL LL KLK L KLK	518
KKLLKLKLKK	519
KLLLKLLK	520
KLLLKLKLK	521
KLLLLK	522
KLLLKLLK	523
KLLLKLKLKL	524
KLLLKLKLKL	525
KLLLKLKLKLK	526
KAAAKAAAKAAK	527
	528
	529
	530
	531
	532
KVLHLL	533
	534
	535
	536
	537
	538
	540
	541
	542
	543
BIIIBIBIBI	547
I S ANTAR AND AND AND AND A	1 011/

Table 11—Antipathogenic peptide sequences

,

RIVIRIRIRLIR	548	
RIIVRIRLRIIR	549	
RIGIRLRVRIIR	550	
KIVIRIRIRLIR	551	
RIAVKWRLRFIK	552	
KIGWKLRVRIIR	553	
KKIGWLIIRVRR	554	
RIVIRIRIRLIRIR	555	
RIIVRIRLRIIRVR	556	
RIGIRLRVRIIRRV	557	
KIVIRIRARLIRIRIR	558	
RIIVKIRLRIIKKIRL	559	
KIGIKARVRIIRVKII	560	
RIIVHIRLRIIHHIRL	561	
HIGIKAHVRIIRVHII	562	ан. А.
RIYVKIHLRYIKKIRL	563	
KIGHKARVHIIRYKII	564	
RIYVKPHPRYIKKIRL	565	
KPGHKARPHIIRYKI	566	
KIVIRIRIRIRIRKIV	567	
RIIVKIRLRIIKKIRLIKK	568	
KIGWKLRVRIIRVKIGRLR	569	
KIVIRIRIRLIRIRIRKIVKVKRIR	570	
RFAVKIRLRIIKKIRLIKKIRKRVIK	571	
KAGWKLRVRIIRVKIGRLRKIGWKKRVRIK	572	
RIYVKPHPRYIKKIRL	573	
KPGHKARPHIIRYKI	574	
KIVIRIRIRLIRIRIRKIV	575	
RIIVKIRLRIIKKIRLIKK	576	
RIYVSKISIYIKKIRL	577	
KIVIFTRIRLTSIRIRSIV	578	
KPIHKARPTIIRYKMI	579	
cyclicCKGFFALIPKIISSPLFKTLLSAVC	580	
CKKGFFALIPKIISSPLFKTLLSAVC	581	
CKKKGFFALIPKIISSPLFKTLLSAVC	582	
CyclicCRIVIRIRIRLIRIRC	583	
CyclicCKPGHKARPHIIRYKIIC	584	
CyclicCRFAVKIRLRIIKKIRLIKKIRKRVIKC	585	
KLLLKLLL KLLKC	586	
KLLLKLLKLLK	587	
KLLLKLKLKLKC	588	
KLLLKLLKLLK	589	

ID NO: HSDAVFYDNYTR LRKQMAVKKYLN SILN 590 Nie HSDAVFYDNYTR LRKQMAVKKYLN SILN 591 X, X,' X, " X ₂ 592 X 2 X, " X 1 592	
HSDAVFYDNYTR LRKQMAVKKYLN SILN 590 Nie HSDAVFYDNYTR LRKQMAVKKYLN SILN 591 X, X,' X," X2 592 Y, 2VLN 500	
Nie HSDAVFYDNYTR LRKQMAVKKYLN SILN 591 X, X,' X, " X2 592	
X, X, 'X, "X ₂ 592	
$X_3 \supset X_4 \sqcup N$ 593	
NH CH CO KKYX5 NH CH CO X6 594	
(CH2)mZ(CH2)n	
KKYL 595	
NSILN 596	
KKYL 597	_
KKY A 598	
AVKKYL 599	
NSILN 600	
KKYV 601	
SILauN 602	
KKYLNIe 603	
NSYLN 604	
NSIYN 605	
KKYLPPNSILN 606	
LauKKYL 607	
CapKKYL 608	
KYL NR	
KKYNIe 609	
VKKYL 610	
LNSILN 611	
YLNSILN 612	
KKYLN 613	
KKYLNS 614	
KKYLNSI 615	
KKYLNSIL 616	
KKYL 617	
KKYDA 618	
AVKKYL 619	
NSILN 620	
KKYV 621	
SILauN 622	
NSYLN 623	
NSIYN 624	
KKYLNIe 625	
KKYLPPNSILN 626	
KKYL 627	
KKYDA 628	
AVKKYL 629	
NSILN 630	
KKYV 631	
SILauN 632	

Table 12—VIP-mimetic peptide sequences

LauKKYL	633
CapKKYL	634
KYL	NR
KYL	NR
KKYNIe	635
VKKYL	636
LNSILN	637
YLNSILN	638
KKYLNle	639
KKYLN	640
KKYLNS	641
KKYLNSI	642
KKYLNSIL	643
KKKYLD	644
cyclicCKKYLC	645
CKKYLK	646
S-CH,-CO	
ККҮА	647
WWTDTGLW	648
WWTDDGLW	649
WWDTRGLWVWTI	650
FWGNDGIWLESG	651
DWDQFGLWRGAA	652
RWDDNGLWVVVL	653
SGMWSHYGIWMG	654
GGRWDQAGLWVA	655
KLWSEQGIWMGE	656
CWSMHGLWLC	657
GCWDNTGIWVPC	658
DWDTRGLWVY	659
SLWDENGAWI	660
KWDDRGLWMH	661
QAWNERGLWT	662
QWDTRGLWVA	663
WNVHGIWQE	664
SWDTRGLWVE	665
DWDTRGLWVA	666
SWGRDGLWIE	667
EWTDNGLWAL	668
SWDEKGLWSA	669
SWDSSGLWMD	670

Sequence/structure	SEQ
	ID NO:
TFSDLW	130
QETFSDLWKLLP	131
QPTFSDLWKLLP	132
QETFSDYWKLLP	133
QPTFSDYWKLLP	134
MPRFMDYWEGLN	135
VQNFIDYWTQQF	136
TGPAFTHYWATF	137
IDRAPTFRDHWFALV	138
PRPALVFADYWETLY	139
PAFSRFWSDLSAGAH	140
PAFSRFWSKLSAGAH	141
PXFXDYWXXL	142
QETFSDLWKLLP	143
QPTFSDLWKLLP	144
QETFSDYWKLLP	145
QPTFSDYWKLLP	146

Table 13—Mdm/hdm antagonist peptide sequences

Table 14—Calmodulin antagonist peptide sequences

Sequence/structure	SEQ
	ID NO:
SCVKWGKKEFCGS	164
SCWKYWGKECGS	165
SCYEWGKLRWCGS	166
SCLRWGKWSNCGS	167
SCWRWGKYQICGS	168
SCVSWGALKLCGS	169
SCIRWGQNTFCGS	170
SCWQWGNLKICGS	171
SCVRWGQLSICGS	172
LKKFNARRKLKGAILTTMLAK	173
RRWKKNFIAVSAANRFKK	174
RKWQKTGHAVRAIGRLSS	175
INLKALAALAKKIL	176
KIWSILAPLGTTLVKLVA	177
LKKLLKLLKL	178
LKWKKLLKLLKKLL	179
AEWPSLTEIKTLSHFSV	180
AEWPSPTRVISTTYFGS	181
AELAHWPPVKTVLRSFT	182
AEGSWLQLLNLMKQMNN	183
AEWPSLTEIK	184

5

Table 15—Mast cell antagonists/Mast cell protease inhibitor

peptide sequences

Sequence/structure	SEQ
	ID NO:
SGSGVLKRPLPILPVTR	272
RWLSSRPLPPLPLPPRT	273
GSGSYDTLALPSLPLHPMSS	274
GSGSYDTRALPSLPLHPMSS	275
GSGSSGVTMYPKLPPHWSMA	276
GSGSSGVRMYPKLPPHWSMA	277
GSGSSSMRMVPTIPGSAKHG	278
RNR	NR
QT	NR
RQK	NR
NRQ	NR
RQK	NR
RNRQKT	436
RNRQ	437
RNRQK	438
NRQKT	439
RQKT	440

Sequence/structure	SEQ	
	ID NO:	
RPLPPLP	282	
RELPPLP	283	
SPLPPLP		
GPLPPLP	285	
RPLPIPP	286	
RPLPIPP	287	
RRLPPTP	288	
RQLPPTP	289	
RPLPSRP	290	
RPLPTRP	291	
SRLPPLP	292	
RALPSPP	293	
RRLPRTP	294	
RPVPPIT	295	
ILAPPVP	296	
RPLPMLP	297	
RPLPILP	298	
RPLPSLP	299	
RPLPSLP	300	۲
RPLPMIP	301	
RPLPLIP	302	
RPLPPTP	303	
RSLPPLP	304	
RPQPPPP	305	
RQLPIPP	306	
XXXRPLPPLPXP	307	
XXXRPLPPIPXX	308	
XXXRPLPPLPXX	309	
RXXRPLPPLPXP	310	
RXXRPLPPLPPP	311	
PPPYPPPIPXX	312	
PPPYPPPVPXX	313	
LXXRPLPXYP	314	
YXXRPLPXLP	315	
ΡΡΧΘΧΡΡΡΨΡ	316	
+PPYPXKPXWL	317	
RPXYPYR+SXP	318	
PPVPPRPXXTL	319	
ѰҎѰҍҎѰҞ	320	
+ODXPLPXLP	321	

Table 16—SH3 antagonist peptide sequences

Sequence/structure	SEQ
-	ID NO:
X1-X2-Asn-Phe-Phe-Trp-Lys-Thr-Phe-X3-Ser-X4	473
Asp Arg Met Pro Cys Arg Asn Phe Phe Trp Lys Thr Phe Ser Ser Cys Lys	474
Met Pro Cys Arg Asn Phe Phe Trp Lys Thr Phe Ser Ser Cys Lys	475
Cys Arg Asn Phe Phe Trp Lys Thr Phe Ser Ser Cys Lys	476
Asp Arg Met Pro Cys Arg Asn Phe Phe Trp Lys Thr Phe Ser Ser Cys	477
Met Pro Cys Arg Asn Phe Phe Trp Lys Thr Phe Ser Ser Cys	478
Cys Arg Asn Phe Phe Trp Lys Thr Phe Ser Ser Cys	479
Asp Arg Met Pro Cys Lys Asn Phe Phe Trp Lys Thr Phe Ser Ser Cys	480
Met Pro Cys Lys Asn Phe Phe Trp Lys Thr Phe Ser Ser Cys Lys	481
Cys Lys Asn Phe Phe Trp Lys Thr Phe Ser Ser Cys Lys	482
Asp Arg Met Pro Cys Lys Asn Phe Phe Trp Lys Thr Phe Ser Ser Cys	483
Met Pro Cys Lys Asn Phe Phe Trp Lys Thr Phe Ser Ser Cys	484
Cys Lys Asn Phe Phe Trp Lys Thr Phe Ser Ser Cys	485
Asp Arg Met Pro Cys Arg Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys Lys	486
Met Pro Cys Arg Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys Lys	487
Cys Arg Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys Lys	488
Asp Arg Met Pro Cys Arg Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys	489
Met Pro Cys Arg Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys	490
Cys Arg Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys	491
Asp Arg Met Pro Cys Lys Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys Lys	492
Met Pro Cys Lys Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys Lys	493
Cys Lys Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys Lys	494
Asp Arg Met Pro Cys Lys Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys	495
Met Pro Cys Lys Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys	496
Cys Lys Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys	497

ŧ

Sequence/structure	SEQ
-	ID NO:
AEPMPHSLNFSQYLWYT	196
AEHTYSSLWDTYSPLAF	197
AELDLWMRHYPLSFSNR	198
AESSLWTRYAWPSMPSY	199
AEWHPGLSFGSYLWSKT	200
AEPALLNWSFFFNPGLH	201
AEWSFYNLHLPEPQTIF	202
AEPLDLWSLYSLPPLAM	203
AEPTLWQLYQFPLRLSG	204
AEISFSELMWLRSTPAF	205
AELSEADLWTTWFGMGS	206
AESSLWRIFSPSALMMS	207
AESLPTLTSILWGKESV	208
AETLFMDLWHDKHILLT	209
AEILNFPLWHEPLWSTE	210
AESQTGTLNTLFWNTLR	211
AEPVYQYELDSYLRSYY	430
AELDLSTFYDIQYLLRT	431
AEFFKLGPNGYVYLHSA	432
FKLXXXGYVYL	433
AESTYHHLSLGYMYTLN	434
YHXLXXGYMYT	435

Table 18—UKR antagonist peptide sequences

Table 19—Macrophage and/or

T-cell inhibiting peptide sequences

Sequence/structure	SEQ
•	ID NO:
Xaa-Yaa-Arg	NR
Arg-Yaa-Xaa	NR
Xaa-Arg-Yaa	NR
Yaa-Arg-Xaa	NR
Ala-Arg	NR
Arg-Arg	NR
Asn-Arg	NR
Asp-Arg	NR
Cvs-Arg	NR
Gln-Arg	NR
Glu-Arg	NR
Gly-Arg	NR
His-arg	NR
lle-Arg	NR
Leu-Arg	NR
Lvs-Arg	NR
Met-Arg	NR
Phe-Arg	NR
Ser-Arg	NR
Thr-Arg	NR
Trp-Arg	NR
Tyr-Arg	NR
Val-Arg	NR
Ala-Glu-Arg	NR
Arg-Glu-Arg	NR
Asn-Glu-Arg	NR
Asp-Glu-Arg	NR
Cys-Glu-Arg	NR
Gin-Giu-Arg	NR
Glu-Glu-Arg	NR
Gly-Glu-Arg	NR
His-Glu-Arg	NR
Ile-Glu-Arg	NR
Leu-Glu-Arg	NR
Lys-Glu-Arg	NR
Met-Glu-Arg	NR
Phe-Glu-Arg	NR
Pro-Glu-Arg	NR
Ser-Glu-Arg	NR
Thr-Glu-Arg	NR
Trp-Glu-Arg	NR
Tyr-Glu-Arg	NR
Val-Glu-Arg	NR
Arg-Ala	NR

Arg-Asp	NR
Arg-Cys	NR
Arg-Gln	<u>NR</u>
Arg-Glu	NR
Arg-Gly	NR
Arg-His	NR
Arg-Ile	NR
Arg-Leu	NR
Arg-Lys	NR
Arg-Met	NR
Arg-Phe	NR
Arg-Pro	NR
Arg-Ser	NR
Arg-Thr	NR
Arg-Trp	NR
Arg-Tyr	NR
Arg-Val	NR
Arg-Glu-Ala	NR
Arg-Glu-Asn	NR
Arg-Glu-Asp	NR
Arg-Glu-Cys	NR
Arg-Glu-Gln	NR
Arg-Glu-Glu	NR
Ara-Glu-Gly	NR
Arg-Glu-His	NR
Arg-Glu-Ile	NR
Arg-Glu-Leu	NR
Arg-Glu-Lys	NR
Arg-Glu-Met	NR
Arg-Glu-Phe	NR
Arg-Glu-Pro	NR
Arg-Glu-Ser	NR
Arg-Glu-Thr	NR
Arg-Glu-Trp	NR
Arg-Glu-Tvr	NR
Arg-Glu-Val	NR
Ala-Aro-Glu	NR
Ara-Ara-Glu	NR
Asn-Arg-Glu	NR
Asp-Arg-Glu	NR
Cvs-Arg-Glu	NR
Gin-Arg-Giu	NR
Glu-Arn-Glu	NR
Gly-Arg-Glu	NR
His-Arg-Glu	NR
lle-Arg-Glu	NR
Leu-Aro-Giu	NR
Livs-Arg-Glu	
Met-Arg-Glu	
Phe-Ara-Glu	
i no ng uu	INIX

WO 01/83525

Pro-Arg-Glu	NR
Ser-Arg-Glu	NR
Thr-Arg-Glu	NR
Trp-Arg-Glu	NR
Tyr-Arg-Glu	NR
Val-Arg-Glu	NR
Glu-Arg-Ala,	NR
Glu-Arg-Arg	NR
Glu-Arg-Asn	NR
Glu-Arg-Asp	NR
Glu-Arg-Cys	NR
Glu-Arg-Gln	NR
Glu-Arg-Gly	NR
Glu-Arg-His	NR
Glu-Arg-Ile	NR
Glu-Arg-Leu	NR
Glu-Arg-Lys	NR
Glu-Arg-Met	NR
Glu-Arg-Phe	NR
Glu-Arg-Pro	NR
Glu-Arg-Ser	NR
Glu-Arg-Thr	NR
Glu-Arg-Trp	NR
Glu-Arg-Tyr	NR
Glu-Arg-Val	NR

Sequence/structure	SEQ	Activity
	110.	VEGE ontogonist
	1027	VEGI -amayomsi
GERWCEDGPLTWVCGEES	102/	VEGE-antagonist
BGWVFICVADDNGMCVTFAQ	1085	VEGF-antagonist
GWDECDVABMWEWECEAGV	1086	VEGE- antagonist
GEBWCEDGPBAWVCGWEI	501	VEGF- antagonist
EELWCFDGPRAWVCGYVK	502	VEGF- antagonist
RGWVEICAADDYGRCLTEAQ	1031	VEGF- antagonist
RGWVEICESDVWGRCL	1087	VEGF- antagonist
RGWVEICESDVWGRCL	1088	VEGF- antagonist
GGNECDIARMWEWECFERL	1089	VEGF- antagonist
BGWVEICAADDYGBCL	1090	VEGF-antagonist
CTTHWGFTLC	1028	MMP inhibitor
CLRSGXGC	1091	MMP inhibitor
CXXHWGFXXC	1092	MMP inhibitor
CXPXC	1093	MMP inhibitor
CRRHWGFEFC	1094	MMP inhibitor
STTHWGFTLS	1095	MMP inhibitor
CSLHWGFWWC	1096	CTLA4-mimetic
GEVCSGIFAVGVGBC	125	CTLA4-mimetic
APGVRLGCAVLGRYC	126	CTLA4-mimetic
LLGRMK	105	Antiviral (HBV)
ICVVQDWGHHRCTAGHMANLTSHASAI	127	C3b antagonist
ICVVQDWGHHRCT	128	C3b antagonist
CVVQDWGHHAC	129	C3b antagonist
STGGFDDVYDWARGVSSALTTTLVATR	185	Vinculin-binding
STGGFDDVYDWARRVSSALTTTLVATR	186	Vinculin-binding
SRGVNFSEWLYDMSAAMKEASNVFPSRRSR	187	Vinculin-binding
SSQNWDMEAGVEDLTAAMLGLLSTIHSSSR	188	Vinculin-binding
SSPSLYTQFLVNYESAATRIQDLLIASRPSR	189	Vinculin-binding
SSTGWVDLLGALQRAADATRTSIPPSLQNSR	190	Vinculin-binding
DVYTKKELIECARRVSEK	191	Vinculin-binding
EKGSYYPGSGIAQFHIDYNNVS	192	C4BP-binding
SGIAQFHIDYNNVSSAEGWHVN	193	C4BP-binding
LVTVEKGSYYPGSGIAQFHIDYNNVSSAEGWHVN	194	C4BP-binding
SGIAQFHIDYNNVS	195	C4BP-binding
LLGRMK	279	anti-HBV
ALLGRMKG	280	anti-HBV
LDPAFR	281	anti-HBV
CXXRGDC	322	Inhibition of platelet
		aggregation
RPLPPLP	323	Src antagonist
PPVPPR	324	Src antagonist
XFXDXWXXLXX	325	Anti-cancer
		(particularly for

Table 20—Additional Exemplary Pharmacologically Active Peptides

1 1	\
00.6	sarcomas)
326	p16-mimetic
327	p16-mimetic
328	p16-mimetic
329	p16-mimetic
330	p16-mimetic
331	p16-mimetic
332	p16-mimetic
498	CAP37 mimetic/LPS binding
499	CAP37 mimetic/LPS binding
500	CAP37 mimetic/LPS binding
1097	carbohydrate (GD1 alpha) mimetic
1098	β2GPI Ab binding
1099	β2GPI Ab binding
1100	B2GPI Ab binding
1101	B2GPI Ab binding
1102	B2GPI Ab binding
1103	B2GPI Ab binding
1104	B2GPI Ab binding
1101	B2GPI Ab binding
1105	P2GFT AD Dinuing
1100	pzGPI Ab binding
1107	transporting
NID	Mambrana
INK	transporting
1100	transporting
1100	transporting
1100	Mambrona
1109	transporting
1111	Antiproliforativo
1111	antiviral
11110	Antiproliferative.
	antiviral
1112	Antiproliferative, antiviral
1112 1113 1114	antiviral Antiproliferative, antiviral Antiproliferative, antiproliferative,
1112 1113 1114 1115	Antiproliferative, antiviral Antiproliferative, antiproliferative, antiviral Antiproliferative, antipiral
1112 1113 1114 1115 1116	Antiproliferative, antiviral Antiproliferative, antiviral Antiproliferative, antiviral Antiproliferative, antiviral
1112 1113 1114 1115 1116 1134	Antiproliferative, antiviral Antiproliferative, antiviral Antiproliferative, antiviral Antiproliferative, antiviral Antiproliferative, antiviral
1112 1113 1114 1115 1116 1134 1135	Antiproliferative, antiviral Antiproliferative, antiviral Antiproliferative, antiviral Antiproliferative, antiviral Antiproliferative, antiviral Antiproliferative, antiviral
	326 327 328 329 330 331 332 498 499 500 1097 1098 1099 100 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 NR 1108 1109 1111

		antiviral
CVHTYRA	1137	Antiproliferative,
		antiviral
CVHTPRS	1138	Antiproliferative,
		antiviral
CVHTPRA	1139	Antiproliferative,
		antiviral
HWAWFK	1140	anti-ischemic, growth
		hormone-liberating

The present invention is also particularly useful with peptides having activity in treatment of:

- cancer, wherein the peptide is a VEGF-mimetic or a VEGF receptor
- antagonist, a HER2 agonist or antagonist, a CD20 antagonist and the like;
 - asthma, wherein the protein of interest is a CKR3 antagonist, an IL-5 receptor antagonist, and the like;
 - thrombosis, wherein the protein of interest is a GPIIb antagonist, a

GPIIIa antagonist, and the like;

 autoimmune diseases and other conditions involving immune modulation, wherein the protein of interest is an IL-2 receptor antagonist, a CD40 agonist or antagonist, a CD40L agonist or antagonist, a thymopoietin mimetic and the like.

15

10

5

<u>Vehicles</u>. This invention requires the presence of at least one vehicle (F^1, F^2) attached to a peptide through the N-terminus, C-terminus or a sidechain of one of the amino acid residues. Multiple vehicles may also be used; e.g., Fc's at each terminus or an Fc at a terminus and a PEG group at the other terminus or a sidechain.

20

An Fc domain is the preferred vehicle. The Fc domain may be fused to the N or C termini of the peptides or at both the N and C termini. For the TPO-mimetic peptides, molecules having the Fc domain fused to the N terminus of the peptide portion of the molecule are more bioactive than other such fusions, so fusion to the N terminus is preferred. As noted above, Fc variants are suitable vehicles within the scope of this invention. A native Fc may be extensively modified to form an Fc variant in accordance with this invention, provided binding to the salvage receptor is maintained; see, for example WO 97/34631 and WO 96/32478.

- 5 In such Fc variants, one may remove one or more sites of a native Fc that provide structural features or functional activity not required by the fusion molecules of this invention. One may remove these sites by, for example, substituting or deleting residues, inserting residues into the site, or truncating portions containing the site. The inserted or substituted
- 10 residues may also be altered amino acids, such as peptidomimetics or Damino acids. Fc variants may be desirable for a number of reasons, several of which are described below. Exemplary Fc variants include molecules and sequences in which:
- 15

25

1. Sites involved in disulfide bond formation are removed. Such removal may avoid reaction with other cysteine-containing proteins present in

the host cell used to produce the molecules of the invention. For this purpose, the cysteine-containing segment at the N-terminus may be truncated or cysteine residues may be deleted or substituted with other amino acids (e.g., alanyl, seryl). In particular, one may truncate the N-

terminal 20-amino acid segment of SEQ ID NO: 2 or delete or
 substitute the cysteine residues at positions 7 and 10 of SEQ ID NO: 2.
 Even when cysteine residues are removed, the single chain Fc domains
 can still form a dimeric Fc domain that is held together non-covalently.

2. A native Fc is modified to make it more compatible with a selected host cell. For example, one may remove the PA sequence near the N-terminus of a typical native Fc, which may be recognized by a digestive enzyme in <u>E. coli</u> such as proline iminopeptidase. One may also add an N-terminal methionine residue, especially when the molecule is

5

10

25

expressed recombinantly in a bacterial cell such as <u>E. coli</u>. The Fc domain of SEQ ID NO: 2 (Figure 4) is one such Fc variant.

- 3. A portion of the N-terminus of a native Fc is removed to prevent Nterminal heterogeneity when expressed in a selected host cell. For this
- purpose, one may delete any of the first 20 amino acid residues at the N-terminus, particularly those at positions 1, 2, 3, 4 and 5.
- One or more glycosylation sites are removed. Residues that are typically glycosylated (e.g., asparagine) may confer cytolytic response. Such residues may be deleted or substituted with unglycosylated
- residues (e.g., alanine).
 - 5. Sites involved in interaction with complement, such as the C1q binding site, are removed. For example, one may delete or substitute the EKK sequence of human IgG1. Complement recruitment may not be advantageous for the molecules of this invention and so may be
- 15 avoided with such an Fc variant.
 - 6. Sites are removed that affect binding to Fc receptors other than a salvage receptor. A native Fc may have sites for interaction with certain white blood cells that are not required for the fusion molecules of the present invention and so may be removed.
- The ADCC site is removed. ADCC sites are known in the art; see, for example, <u>Molec. Immunol</u>. 29 (5): 633-9 (1992) with regard to ADCC sites in IgG1. These sites, as well, are not required for the fusion molecules of the present invention and so may be removed.

8. When the native Fc is derived from a non-human antibody, the native Fc may be humanized. Typically, to humanize a native Fc, one will

substitute selected residues in the non-human native Fc with residues that are normally found in human native Fc. Techniques for antibody humanization are well known in the art.

PCT/US01/14310

WO 01/83525

5

20

25

Preferred Fc variants include the following. In SEQ ID NO: 2 (Figure 4) the leucine at position 15 may be substituted with glutamate; the glutamate at position 99, with alanine; and the lysines at positions 101 and 103, with alanines. In addition, one or more tyrosine residues can be replaced by phenyalanine residues.

An alternative vehicle would be a protein, polypeptide, peptide, antibody, antibody fragment, , or small molecule (e.g., a peptidomimetic compound) capable of binding to a salvage receptor. For example, one could use as a vehicle a polypeptide as described in U.S. Pat. No. 5,739,277,

10 issued April 14, 1998 to Presta <u>et al</u>. Peptides could also be selected by phage display for binding to the FcRn salvage receptor. Such salvage receptor-binding compounds are also included within the meaning of "vehicle" and are within the scope of this invention. Such vehicles should be selected for increased half-life (e.g., by avoiding sequences recognized

15 by proteases) and decreased immunogenicity (e.g., by favoring nonimmunogenic sequences, as discovered in antibody humanization).

As noted above, polymer vehicles may also be used for F¹ and F². Various means for attaching chemical moieties useful as vehicles are currently available, <u>see</u>, e.g., Patent Cooperation Treaty ("PCT") International Publication No. WO 96/11953, entitled "N-Terminally Chemically Modified Protein Compositions and Methods," herein incorporated by reference in its entirety. This PCT publication discloses, among other things, the selective attachment of water soluble polymers to the N-terminus of proteins.

A preferred polymer vehicle is polyethylene glycol (PEG). The PEG group may be of any convenient molecular weight and may be linear or branched. The average molecular weight of the PEG will preferably range from about 2 kiloDalton ("kD") to about 100 kDa, more preferably from about 5 kDa to about 50 kDa, most preferably from about 5 kDa to about

- 66 -

WO 01/83525

5

10 kDa. The PEG groups will generally be attached to the compounds of the invention via acylation or reductive alkylation through a reactive group on the PEG moiety (e.g., an aldehyde, amino, thiol, or ester group) to a reactive group on the inventive compound (e.g., an aldehyde, amino, or ester group).

A useful strategy for the PEGylation of synthetic peptides consists of combining, through forming a conjugate linkage in solution, a peptide and a PEG moiety, each bearing a special functionality that is mutually reactive toward the other. The peptides can be easily prepared with

- 10 conventional solid phase synthesis (see, for example, Figures 5 and 6 and the accompanying text herein). The peptides are "preactivated" with an appropriate functional group at a specific site. The precursors are purified and fully characterized prior to reacting with the PEG moiety. Ligation of the peptide with PEG usually takes place in aqueous phase and can be
- 15 easily monitored by reverse phase analytical HPLC. The PEGylated peptides can be easily purified by preparative HPLC and characterized by analytical HPLC, amino acid analysis and laser desorption mass spectrometry.

Polysaccharide polymers are another type of water soluble polymer
 which may be used for protein modification. Dextrans are polysaccharide
 polymers comprised of individual subunits of glucose predominantly
 linked by α1-6 linkages. The dextran itself is available in many molecular
 weight ranges, and is readily available in molecular weights from about 1
 kD to about 70 kD. Dextran is a suitable water soluble polymer for use in

25 the present invention as a vehicle by itself or in combination with another vehicle (e.g., Fc). See, for example, WO 96/11953 and WO 96/05309. The use of dextran conjugated to therapeutic or diagnostic immunoglobulins has been reported; see, for example, European Patent Publication No. 0 315 456, which is hereby incorporated by reference. Dextran of about 1 kD to about 20 kD is preferred when dextran is used as a vehicle in accordance with the present invention.

<u>Linkers</u>. Any "linker" group is optional. When present, its chemical structure is not critical, since it serves primarily as a spacer. The linker is

- 5 preferably made up of amino acids linked together by peptide bonds. Thus, in preferred embodiments, the linker is made up of from 1 to 20 amino acids linked by peptide bonds, wherein the amino acids are selected from the 20 naturally occurring amino acids. Some of these amino acids may be glycosylated, as is well understood by those in the art. In a more
- preferred embodiment, the 1 to 20 amino acids are selected from glycine, alanine, proline, asparagine, glutamine, and lysine. Even more preferably, a linker is made up of a majority of amino acids that are sterically unhindered, such as glycine and alanine. Thus, preferred linkers are polyglycines (particularly (Gly)₄, (Gly)₅), poly(Gly-Ala), and polyalanines.
- 15 Other specific examples of linkers are:

(Gly)₃Lys(Gly)₄ (SEQ ID NO: 333); (Gly)₃AsnGlySer(Gly)₂ (SEQ ID NO: 334); (Gly)₃Cys(Gly)₄ (SEQ ID NO: 335); and GlyProAsnGlyGly (SEQ ID NO: 336).

- 20 To explain the above nomenclature, for example, (Gly)₃Lys(Gly)₄ means Gly-Gly-Gly-Lys-Gly-Gly-Gly-Gly. Combinations of Gly and Ala are also preferred. The linkers shown here are exemplary; linkers within the scope of this invention may be much longer and may include other residues.
- Non-peptide linkers are also possible. For example, alkyl linkers such as -NH-(CH₂)_s-C(O)-, wherein s = 2-20 could be used. These alkyl linkers may further be substituted by any non-sterically hindering group such as lower alkyl (e.g., C_1 - C_6) lower acyl, halogen (e.g., Cl, Br), CN, NH₂, phenyl, <u>etc</u>. An exemplary non-peptide linker is a PEG linker, VI

- 68 -

5

10

15

20

wherein n is such that the linker has a molecular weight of 100 to 5000 kD, preferably 100 to 500 kD. The peptide linkers may be altered to form derivatives in the same manner as described above.

<u>Derivatives</u>. The inventors also contemplate derivatizing the peptide and/or vehicle portion of the compounds. Such derivatives may improve the solubility, absorption, biological half life, and the like of the compounds. The moieties may alternatively eliminate or attenuate any undesirable side-effect of the compounds and the like. Exemplary derivatives include compounds in which:

- The compound or some portion thereof is cyclic. For example, the peptide portion may be modified to contain two or more Cys residues (e.g., in the linker), which could cyclize by disulfide bond formation.
- For citations to references on preparation of cyclized derivatives, see Table 2.
- 2. The compound is cross-linked or is rendered capable of cross-linking between molecules. For example, the peptide portion may be modified to contain one Cys residue and thereby be able to form an

intermolecular disulfide bond with a like molecule. The compound may also be cross-linked through its C-terminus, as in the molecule shown below.

VII

$$F^{1}-(X^{1})_{b}-CO-N \xrightarrow{H}_{NH_{2}} NH_{2}$$

 $F^{1}-(X^{1})_{b}-CO-N \xrightarrow{H}_{O} NH$
4. One or more peptidyl [-C(O)NR-] linkages (bonds) is replaced by a non-peptidyl linkage. Exemplary non-peptidyl linkages are -CH₂carbamate [-CH₂-OC(O)NR-], phosphonate , -CH₂-sulfonamide [-CH₂-S(O)₂NR-], urea [-NHC(O)NH-], -CH₂-secondary amine, and alkylated peptide [-C(O)NR⁶- wherein R⁶ is lower alkyl].

 The N-terminus is derivatized. Typically, the N-terminus may be acylated or modified to a substituted amine. Exemplary N-terminal derivative groups include -NRR¹ (other than -NH₂), -NRC(O)R¹, -NRC(O)OR¹, -NRS(O),R¹, -NHC(O)NHR¹, succinimide, or

benzyloxycarbonyl-NH- (CBZ-NH-), wherein R and R¹ are each independently hydrogen or lower alkyl and wherein the phenyl ring may be substituted with 1 to 3 substituents selected from the group consisting of C_1 - C_4 alkyl, C_1 - C_4 alkoxy, chloro, and bromo.

- 6. The free C-terminus is derivatized. Typically, the C-terminus is
- esterified or amidated. For example, one may use methods described in the art to add $(NH-CH_2-CH_2-NH_2)_2$ to compounds of this invention having any of SEQ ID NOS: 504 to 508 at the C-terminus. Likewise, one may use methods described in the art to add -NH₂ to compounds of this invention having any of SEQ ID NOS: 924 to 955, 963 to 972,

1005 to 1013, or 1018 to 1023 at the C-terminus. Exemplary C-terminal derivative groups include, for example, $-C(O)R^2$ wherein R^2 is lower alkoxy or $-NR^3R^4$ wherein R^3 and R^4 are independently hydrogen or C_1 - C_5 alkyl (preferably C_1 - C_4 alkyl).

7. A disulfide bond is replaced with another, preferably more stable,

cross-linking moiety (e.g., an alkylene). See, e.g., Bhatnagar <u>et al.</u> (1996), <u>J. Med. Chem</u>. 39: 3814-9; Alberts <u>et al</u>. (1993) <u>Thirteenth Am.</u> <u>Pep. Symp</u>., 357-9.

10

5

15

20

25

20

25

8. One or more individual amino acid residues is modified. Various derivatizing agents are known to react specifically with selected sidechains or terminal residues, as described in detail below.

Lysinyl residues and amino terminal residues may be reacted with succinic or other carboxylic acid anhydrides, which reverse the charge of the lysinyl residues. Other suitable reagents for derivatizing alpha-aminocontaining residues include imidoesters such as methyl picolinimidate; pyridoxal phosphate; pyridoxal; chloroborohydride; trinitrobenzenesulfonic acid; O-methylisourea; 2,4 pentanedione; and transaminase-catalyzed reaction with glyoxylate.

Arginyl residues may be modified by reaction with any one or combination of several conventional reagents, including phenylglyoxal, 2,3butanedione, 1,2-cyclohexanedione, and ninhydrin. Derivatization of arginyl residues requires that the reaction be performed in alkaline conditions because of the high pKa of the guanidine functional group. Furthermore, these reagents may react with the groups of lysine as well as the arginine epsilon-amino group.

Specific modification of tyrosyl residues has been studied extensively, with particular interest in introducing spectral labels into tyrosyl residues by reaction with aromatic diazonium compounds or tetranitromethane. Most commonly, N-acetylimidizole and tetranitromethane are used to form O-acetyl tyrosyl species and 3-nitro derivatives, respectively.

Carboxyl sidechain groups (aspartyl or glutamyl) may be selectively modified by reaction with carbodiimides (R'-N=C=N-R') such as 1-cyclohexyl-3-(2-morpholinyl-(4-ethyl) carbodiimide or 1-ethyl-3-(4-azonia-4,4dimethylpentyl) carbodiimide. Furthermore, aspartyl and glutamyl residues may be converted to asparaginyl and glutaminyl residues by reaction with ammonium ions.

- 71 -

PCT/US01/14310

Glutaminyl and asparaginyl residues may be deamidated to the corresponding glutamyl and aspartyl residues. Alternatively, these residues are deamidated under mildly acidic conditions. Either form of these residues falls within the scope of this invention.

5

Cysteinyl residues can be replaced by amino acid residues or other moieties either to eliminate disulfide bonding or, conversely, to stabilize crosslinking. See, e.g., Bhatnagar <u>et al</u>. (1996), J. Med. Chem. 39: 3814-9.

Derivatization with bifunctional agents is useful for cross-linking the peptides or their functional derivatives to a water-insoluble support matrix or

10 to other macromolecular vehicles. Commonly used cross-linking agents include, e.g., 1,1-bis(diazoacetyl)-2-phenylethane, glutaraldehyde, Nhydroxysuccinimide esters, for example, esters with 4-azidosalicylic acid, homobifunctional imidoesters, including disuccinimidyl esters such as 3,3'dithiobis(succinimidylpropionate), and bifunctional maleimides such as bis-N-

15 maleimido-1,8-octane. Derivatizing agents such as methyl-3-[(p-azidophenyl)dithio]propioimidate yield photoactivatable intermediates that are capable of forming crosslinks in the presence of light. Alternatively, reactive water-insoluble matrices such as cyanogen bromide-activated carbohydrates and the reactive substrates described in U.S. Pat. Nos. 3,969,287; 3,691,016;

20 4,195,128; 4,247,642; 4,229,537; and 4,330,440 are employed for protein immobilization.

Carbohydrate (oligosaccharide) groups may conveniently be attached to sites that are known to be glycosylation sites in proteins. Generally, O-linked oligosaccharides are attached to serine (Ser) or

25 threonine (Thr) residues while N-linked oligosaccharides are attached to asparagine (Asn) residues when they are part of the sequence Asn-X-Ser/Thr, where X can be any amino acid except proline. X is preferably one of the 19 naturally occurring amino acids other than proline. The structures of N-linked and O-linked oligosaccharides and the sugar

15

20

residues found in each type are different. One type of sugar that is commonly found on both is N-acetylneuraminic acid (referred to as sialic acid). Sialic acid is usually the terminal residue of both N-linked and Olinked oligosaccharides and, by virtue of its negative charge, may confer acidic properties to the glycosylated compound. Such site(s) may be incorporated in the linker of the compounds of this invention and are preferably glycosylated by a cell during recombinant production of the polypeptide compounds (e.g., in mammalian cells such as CHO, BHK, COS). However, such sites may further be glycosylated by synthetic or semi-synthetic procedures known in the art. 10 .

Other possible modifications include hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of servl or threonyl residues, oxidation of the sulfur atom in Cys, methylation of the alpha-amino groups of lysine, arginine, and histidine side chains. Creighton, Proteins: Structure and Molecule Properties (W. H. Freeman & Co., San Francisco), pp. 79-86 (1983).

Compounds of the present invention may be changed at the DNA level, as well. The DNA sequence of any portion of the compound may be changed to codons more compatible with the chosen host cell. For E. coli, which is the preferred host cell, optimized codons are known in the art. Codons may be substituted to eliminate restriction sites or to include silent restriction sites, which may aid in processing of the DNA in the selected host cell. The vehicle, linker and peptide DNA sequences may be modified to include any of the foregoing sequence changes.

Isotope- and toxin-conjugated derivatives. Another set of useful 25 derivatives are the above-described molecules conjugated to toxins, tracers, or radioisotopes. Such conjugation is especially useful for molecules comprising peptide sequences that bind to tumor cells or pathogens. Such molecules may be used as therapeutic agents or as an aid to surgery (e.g., radioimmunoguided surgery or RIGS) or as diagnostic agents (e.g., radioimmunodiagnostics or RID).

As therapeutic agents, these conjugated derivatives possess a number of advantages. They facilitate use of toxins and radioisotopes that would be toxic if administered without the specific binding provided by the peptide sequence. They also can reduce the side-effects that attend the use of radiation and chemotherapy by facilitating lower effective doses of the conjugation partner.

Useful conjugation partners include:

10

15

20

- radioisotopes, such as ⁹⁰Yttrium, ¹³¹Iodine, ²²⁵Actinium, and
 ²¹³Bismuth;
- ricin A toxin, microbially derived toxins such as <u>Pseudomonas</u> endotoxin (e.g., PE38, PE40), and the like;
- partner molecules in capture systems (see below);
- biotin, streptavidin (useful as either partner molecules in capture systems or as tracers, especially for diagnostic use); and
- cytotoxic agents (e.g., doxorubicin).

One useful adaptation of these conjugated derivatives is use in a capture system. In such a system, the molecule of the present invention would comprise a benign capture molecule. This capture molecule would be able to specifically bind to a separate effector molecule comprising, for example, a toxin or radioisotope. Both the vehicle-conjugated molecule and the effector molecule would be administered to the patient. In such a system, the effector molecule would have a short half-life except when

25 bound to the vehicle-conjugated capture molecule, thus minimizing any toxic side-effects. The vehicle-conjugated molecule would have a relatively long half-life but would be benign and non-toxic. The specific binding portions of both molecules can be part of a known specific binding pair

- 74 -

(e.g., biotin, streptavidin) or can result from peptide generation methods such as those described herein.

Such conjugated derivatives may be prepared by methods known in the art. In the case of protein effector molecules (e.g., <u>Pseudomonas</u>

- endotoxin), such molecules can be expressed as fusion proteins from correlative DNA constructs. Radioisotope conjugated derivatives may be prepared, for example, as described for the BEXA antibody (Coulter).
 Derivatives comprising cytotoxic agents or microbial toxins may be prepared, for example, as described for the BR96 antibody (Bristol-Myers)
- Squibb). Molecules employed in capture systems may be prepared, for example, as described by the patents, patent applications, and publications from NeoRx. Molecules employed for RIGS and RID may be prepared, for example, by the patents, patent applications, and publications from NeoProbe.

A process for preparing conjugation derivatives is also contemplated. Tumor cells, for example, exhibit epitopes not found on their normal counterparts. Such epitopes include, for example, different post-translational modifications resulting from their rapid proliferation. Thus, one aspect of this invention is a process comprising:

20

25

15

 a) selecting at least one randomized peptide that specifically binds to a target epitope; and

b) preparing a pharmacologic agent comprising (i) at least one vehicle (Fc domain preferred), (ii) at least one amino acid sequence of the selected peptide or peptides, and (iii) an effector molecule.

The target epitope is preferably a tumor-specific epitope or an epitope specific to a pathogenic organism. The effector molecule may be any of the above-noted conjugation partners and is preferably a radioisotope.

Methods of Making

The compounds of this invention largely may be made in transformed host cells using recombinant DNA techniques. To do so, a recombinant DNA molecule coding for the peptide is prepared. Methods of preparing such DNA molecules are well known in the art. For instance, sequences coding for the peptides could be excised from DNA using suitable restriction enzymes. Alternatively, the DNA molecule could be synthesized using chemical synthesis techniques, such as the phosphoramidate method. Also, a combination of these techniques could

10 be used.

20

25

The invention also includes a vector capable of expressing the peptides in an appropriate host. The vector comprises the DNA molecule that codes for the peptides operatively linked to appropriate expression control sequences. Methods of effecting this operative linking, either

15 before or after the DNA molecule is inserted into the vector, are well known. Expression control sequences include promoters, activators, enhancers, operators, ribosomal binding sites, start signals, stop signals, cap signals, polyadenylation signals, and other signals involved with the control of transcription or translation.

The resulting vector having the DNA molecule thereon is used to transform an appropriate host. This transformation may be performed using methods well known in the art.

Any of a large number of available and well-known host cells may be used in the practice of this invention. The selection of a particular host is dependent upon a number of factors recognized by the art. These include, for example, compatibility with the chosen expression vector, toxicity of the peptides encoded by the DNA molecule, rate of transformation, ease of recovery of the peptides, expression characteristics, bio-safety and costs. A balance of these factors must be struck with the

- 76 -

understanding that not all hosts may be equally effective for the expression of a particular DNA sequence. Within these general guidelines, useful microbial hosts include bacteria (such as <u>E. coli</u> sp.), yeast (such as <u>Saccharomyces</u> sp.) and other fungi, insects, plants, mammalian (including

5 human) cells in culture, or other hosts known in the art.

Next, the transformed host is cultured and purified. Host cells may be cultured under conventional fermentation conditions so that the desired compounds are expressed. Such fermentation conditions are well known in the art. Finally, the peptides are purified from culture by

10 methods well known in the art.

The compounds may also be made by synthetic methods. For example, solid phase synthesis techniques may be used. Suitable techniques are well known in the art, and include those described in Merrifield (1973), <u>Chem. Polypeptides</u>, pp. 335-61 (Katsoyannis and

Panayotis eds.); Merrifield (1963), J. Am. Chem. Soc. 85: 2149; Davis et al. (1985), <u>Biochem. Intl</u>. 10: 394-414; Stewart and Young (1969), <u>Solid Phase Peptide Synthesis</u>; U.S. Pat. No. 3,941,763; Finn <u>et al</u>. (1976), <u>The Proteins</u> (3rd ed.) 2: 105-253; and Erickson <u>et al</u>. (1976), <u>The Proteins</u> (3rd ed.) 2: 257-527. Solid phase synthesis is the preferred technique of making

20 individual peptides since it is the most cost-effective method of making small peptides.

Compounds that contain derivatized peptides or which contain non-peptide groups may be synthesized by well-known organic chemistry techniques.

Uses of the Compounds

<u>In general</u>. The compounds of this invention have pharmacologic activity resulting from their ability to bind to proteins of interest as agonists, mimetics or antagonists of the native ligands of such proteins of interest. The utility of specific compounds is shown in Table 2. The activity

of these compounds can be measured by assays known in the art. For the TPO-mimetic and EPO-mimetic compounds, <u>in vivo</u> assays are further described in the Examples section herein.

- In addition to therapeutic uses, the compounds of the present invention are useful in diagnosing diseases characterized by dysfunction of their associated protein of interest. In one embodiment, a method of detecting in a biological sample a protein of interest (e.g., a receptor) that is capable of being activated comprising the steps of: (a) contacting the sample with a compound of this invention; and (b) detecting activation of
- 10 the protein of interest by the compound. The biological samples include tissue specimens, intact cells, or extracts thereof. The compounds of this invention may be used as part of a diagnostic kit to detect the presence of their associated proteins of interest in a biological sample. Such kits employ the compounds of the invention having an attached label to allow
- 15 for detection. The compounds are useful for identifying normal or abnormal proteins of interest. For the EPO-mimetic compounds, for example, presence of abnormal protein of interest in a biological sample may be indicative of such disorders as Diamond Blackfan anemia, where it is believed that the EPO receptor is dysfunctional.
 - <u>Therapeutic uses of EPO-mimetic compounds</u>. The EPO-mimetic compounds of the invention are useful for treating disorders characterized by low red blood cell levels. Included in the invention are methods of modulating the endogenous activity of an EPO receptor in a mammal, preferably methods of increasing the activity of an EPO receptor. In
- 25 general, any condition treatable by erythropoietin, such as anemia, may also be treated by the EPO-mimetic compounds of the invention. These compounds are administered by an amount and route of delivery that is appropriate for the nature and severity of the condition being treated and

- 78 -

PCT/US01/14310

may be ascertained by one skilled in the art. Preferably, administration is by injection, either subcutaneous, intramuscular, or intravenous.

<u>Therapeutic uses of TPO-mimetic compounds</u>. For the TPOmimetic compounds, one can utilize such standard assays as those

5 described in WO95/26746 entitled "Compositions and Methods for Stimulating Megakaryocyte Growth and Differentiation". <u>In vivo</u> assays also appear in the Examples hereinafter.

The conditions to be treated are generally those that involve an existing megakaryocyte/platelet deficiency or an expected

10 megakaryocyte/platelet deficiency (e.g., because of planned surgery or platelet donation). Such conditions will usually be the result of a deficiency (temporary or permanent) of active Mpl ligand <u>in vivo</u>. The generic term for platelet deficiency is thrombocytopenia, and hence the methods and compositions of the present invention are generally available 15 for treating thrombocytopenia in patients in need thereof.

Thrombocytopenia (platelet deficiencies) may be present for various reasons, including chemotherapy and other therapy with a variety of drugs, radiation therapy, surgery, accidental blood loss, and other specific disease conditions. Exemplary specific disease conditions that

- 20 involve thrombocytopenia and may be treated in accordance with this invention are: aplastic anemia, idiopathic thrombocytopenia, metastatic tumors which result in thrombocytopenia, systemic lupus erythematosus, splenomegaly, Fanconi's syndrome, vitamin B12 deficiency, folic acid deficiency, May-Hegglin anomaly, Wiskott-Aldrich syndrome, and
- 25 paroxysmal nocturnal hemoglobinuria. Also, certain treatments for AIDS result in thrombocytopenia (e.g., AZT). Certain wound healing disorders might also benefit from an increase in platelet numbers.

With regard to anticipated platelet deficiencies, e.g., due to future surgery, a compound of the present invention could be administered

- 79 -

several days to several hours prior to the need for platelets. With regard to acute situations, e.g., accidental and massive blood loss, a compound of this invention could be administered along with blood or purified platelets.

5

10

The TPO-mimetic compounds of this invention may also be useful in stimulating certain cell types other than megakaryocytes if such cells are found to express Mpl receptor. Conditions associated with such cells that express the Mpl receptor, which are responsive to stimulation by the Mpl ligand, are also within the scope of this invention.

The TPO-mimetic compounds of this invention may be used in any situation in which production of platelets or platelet precursor cells is desired, or in which stimulation of the c-Mpl receptor is desired. Thus, for example, the compounds of this invention may be used to treat any condition in a mammal wherein there is a need of platelets, megakaryocytes, and the like. Such

conditions are described in detail in the following exemplary sources:
 WO95/26746; WO95/21919; WO95/18858; WO95/21920 and are incorporated herein.

The TPO-mimetic compounds of this invention may also be useful in maintaining the viability or storage life of platelets and/or megakaryocytes and related cells. Accordingly, it could be useful to include an effective amount of one or more such compounds in a composition containing such cells.

The therapeutic methods, compositions and compounds of the present invention may also be employed, alone or in combination with other cytokines, soluble Mpl receptor, hematopoietic factors, interleukins,

25

20

growth factors or antibodies in the treatment of disease states characterized by other symptoms as well as platelet deficiencies. It is anticipated that the inventive compound will prove useful in treating some forms of thrombocytopenia in combination with general stimulators of hematopoiesis, such as IL-3 or GM-CSF. Other megakaryocytic stimulatory factors, i.e., meg-CSF, stem cell factor (SCF), leukemia inhibitory factor (LIF), oncostatin M (OSM), or other molecules with megakaryocyte stimulating activity may also be employed with Mpl ligand. Additional exemplary cytokines or hematopoietic factors for such

- 5 co-administration include IL-1 alpha, IL-1 beta, IL-2, IL-3, IL-4, IL-5, IL-6, IL-11, colony stimulating factor-1 (CSF-1), SCF, GM-CSF, granulocyte colony stimulating factor (G-CSF), EPO, interferon-alpha (IFN-alpha), consensus interferon, IFN-beta, or IFN-gamma. It may further be useful to administer, either simultaneously or sequentially, an effective amount of a
- 10 soluble mammalian Mpl receptor, which appears to have an effect of causing megakaryocytes to fragment into platelets once the megakaryocytes have reached mature form. Thus, administration of an inventive compound (to enhance the number of mature megakaryocytes) followed by administration of the soluble Mpl receptor (to inactivate the
- 15 ligand and allow the mature megakaryocytes to produce platelets) is expected to be a particularly effective means of stimulating platelet production. The dosage recited above would be adjusted to compensate for such additional components in the therapeutic composition. Progress of the treated patient can be monitored by conventional methods.
- 20

In cases where the inventive compounds are added to compositions of platelets and/or megakaryocytes and related cells, the amount to be included will generally be ascertained experimentally by techniques and assays known in the art. An exemplary range of amounts is $0.1 \,\mu\text{g}$ —1 mg inventive compound per 10^6 cells.

25

Pharmaceutical Compositions

<u>In General</u>. The present invention also provides methods of using pharmaceutical compositions of the inventive compounds. Such pharmaceutical compositions may be for administration for injection, or for oral, pulmonary, nasal, transdermal or other forms of administration. In general, the invention encompasses pharmaceutical compositions comprising effective amounts of a compound of the invention together with pharmaceutically acceptable diluents, preservatives, solubilizers, emulsifiers, adjuvants and/or carriers. Such compositions include diluents of various

- 5 buffer content (*e.g.*, Tris-HCl, acetate, phosphate), pH and ionic strength; additives such as detergents and solubilizing agents (*e.g.*, Tween 80, Polysorbate 80), anti-oxidants (*e.g.*, ascorbic acid, sodium metabisulfite), preservatives (*e.g.*, Thimersol, benzyl alcohol) and bulking substances (*e.g.*, lactose, mannitol); incorporation of the material into particulate preparations of
- 10 polymeric compounds such as polylactic acid, polyglycolic acid, etc. or into liposomes. Hyaluronic acid may also be used, and this may have the effect of promoting sustained duration in the circulation. Such compositions may influence the physical state, stability, rate of in vivo release, and rate of in vivo clearance of the present proteins and derivatives. See, e.g., Remington's
- 15 Pharmaceutical Sciences, 18th Ed. (1990, Mack Publishing Co., Easton, PA 18042) pages 1435-1712 which are herein incorporated by reference. The compositions may be prepared in liquid form, or may be in dried powder, such as lyophilized form. Implantable sustained release formulations are also contemplated, as are transdermal formulations.
- 20 <u>Oral dosage forms</u>. Contemplated for use herein are oral solid dosage forms, which are described generally in Chapter 89 of <u>Remington's</u> <u>Pharmaceutical Sciences</u> (1990), 18th Ed., Mack Publishing Co. Easton PA 18042, which is herein incorporated by reference. Solid dosage forms include tablets, capsules, pills, troches or lozenges, cachets or pellets. Also,
- 25 liposomal or proteinoid encapsulation may be used to formulate the present compositions (as, for example, proteinoid microspheres reported in U.S. Patent No. 4,925,673). Liposomal encapsulation may be used and the liposomes may be derivatized with various polymers (e.g., U.S. Patent No. 5,013,556). A description of possible solid dosage forms for the

WO 01/83525

therapeutic is given in Chapter 10 of Marshall, K., <u>Modern Pharmaceutics</u> (1979), edited by G. S. Banker and C. T. Rhodes, herein incorporated by reference. In general, the formulation will include the inventive compound, and inert ingredients which allow for protection against the

5 stomach environment, and release of the biologically active material in the intestine.

Also specifically contemplated are oral dosage forms of the above inventive compounds. If necessary, the compounds may be chemically modified so that oral delivery is efficacious. Generally, the chemical

- 10 modification contemplated is the attachment of at least one moiety to the compound molecule itself, where said moiety permits (a) inhibition of proteolysis; and (b) uptake into the blood stream from the stomach or intestine. Also desired is the increase in overall stability of the compound and increase in circulation time in the body. Moieties useful as covalently
- 15 attached vehicles in this invention may also be used for this purpose. Examples of such moieties include: PEG, copolymers of ethylene glycol and propylene glycol, carboxymethyl cellulose, dextran, polyvinyl alcohol, polyvinyl pyrrolidone and polyproline. See, for example, Abuchowski and Davis, <u>Soluble Polymer-Enzyme Adducts, Enzymes as Drugs</u> (1981),
- 20 Hocenberg and Roberts, eds., Wiley-Interscience, New York, NY, , pp 367-83; Newmark, et al. (1982), J. Appl. Biochem. 4:185-9. Other polymers that could be used are poly-1,3-dioxolane and poly-1,3,6-tioxocane. Preferred for pharmaceutical usage, as indicated above, are PEG moieties.

For oral delivery dosage forms, it is also possible to use a salt of a 25 modified aliphatic amino acid, such as sodium N-(8-[2-hydroxybenzoyl] amino) caprylate (SNAC), as a carrier to enhance absorption of the therapeutic compounds of this invention. The clinical efficacy of a heparin formulation using SNAC has been demonstrated in a Phase II trial

10

conducted by Emisphere Technologies. See US Patent No. 5,792,451, "Oral drug delivery composition and methods".

The compounds of this invention can be included in the formulation as fine multiparticulates in the form of granules or pellets of particle size about 1 mm. The formulation of the material for capsule administration could also be as a powder, lightly compressed plugs or even as tablets. The therapeutic could be prepared by compression.

Colorants and flavoring agents may all be included. For example, the protein (or derivative) may be formulated (such as by liposome or microsphere encapsulation) and then further contained within an edible product, such as a refrigerated beverage containing colorants and flavoring agents.

One may dilute or increase the volume of the compound of the invention with an inert material. These diluents could include

- 15 carbohydrates, especially mannitol, α-lactose, anhydrous lactose, cellulose, sucrose, modified dextrans and starch. Certain inorganic salts may also be used as fillers including calcium triphosphate, magnesium carbonate and sodium chloride. Some commercially available diluents are Fast-Flo, Emdex, STA-Rx 1500, Emcompress and Avicell.
- 20 Disintegrants may be included in the formulation of the therapeutic into a solid dosage form. Materials used as disintegrants include but are not limited to starch including the commercial disintegrant based on starch, Explotab. Sodium starch glycolate, Amberlite, sodium carboxymethylcellulose, ultramylopectin, sodium alginate, gelatin, orange
- 25 peel, acid carboxymethyl cellulose, natural sponge and bentonite may all be used. Another form of the disintegrants are the insoluble cationic exchange resins. Powdered gums may be used as disintegrants and as binders and these can include powdered gums such as agar, Karaya or

tragacanth. Alginic acid and its sodium salt are also useful as disintegrants.

Binders may be used to hold the therapeutic agent together to form a hard tablet and include materials from natural products such as acacia,

- 5 tragacanth, starch and gelatin. Others include methyl cellulose (MC), ethyl cellulose (EC) and carboxymethyl cellulose (CMC). Polyvinyl pyrrolidone (PVP) and hydroxypropylmethyl cellulose (HPMC) could both be used in alcoholic solutions to granulate the therapeutic.
- An antifrictional agent may be included in the formulation of the 10 therapeutic to prevent sticking during the formulation process. Lubricants may be used as a layer between the therapeutic and the die wall, and these can include but are not limited to; stearic acid including its magnesium and calcium salts, polytetrafluoroethylene (PTFE), liquid paraffin, vegetable oils and waxes. Soluble lubricants may also be used such as
- 15 sodium lauryl sulfate, magnesium lauryl sulfate, polyethylene glycol of various molecular weights, Carbowax 4000 and 6000.

Glidants that might improve the flow properties of the drug during formulation and to aid rearrangement during compression might be added. The glidants may include starch, talc, pyrogenic silica and hydrated silicoaluminate.

20

To aid dissolution of the compound of this invention into the aqueous environment a surfactant might be added as a wetting agent. Surfactants may include anionic detergents such as sodium lauryl sulfate, dioctyl sodium sulfosuccinate and dioctyl sodium sulfonate. Cationic

25 detergents might be used and could include benzalkonium chloride or benzethonium chloride. The list of potential nonionic detergents that could be included in the formulation as surfactants are lauromacrogol 400, polyoxyl 40 stearate, polyoxyethylene hydrogenated castor oil 10, 50 and 60, glycerol monostearate, polysorbate 40, 60, 65 and 80, sucrose fatty acid ester, methyl cellulose and carboxymethyl cellulose. These surfactants could be present in the formulation of the protein or derivative either alone or as a mixture in different ratios.

Additives may also be included in the formulation to enhance uptake of the compound. Additives potentially having this property are for instance the fatty acids oleic acid, linoleic acid and linolenic acid.

Controlled release formulation may be desirable. The compound of this invention could be incorporated into an inert matrix which permits release by either diffusion or leaching mechanisms e.g., gums. Slowly

degenerating matrices may also be incorporated into the formulation, e.g., alginates, polysaccharides. Another form of a controlled release of the compounds of this invention is by a method based on the Oros therapeutic system (Alza Corp.), i.e., the drug is enclosed in a semipermeable membrane which allows water to enter and push drug out through a
 single small opening due to osmotic effects. Some enteric coatings also

have a delayed release effect.

20

25

Other coatings may be used for the formulation. These include a variety of sugars which could be applied in a coating pan. The therapeutic agent could also be given in a film coated tablet and the materials used in this instance are divided into 2 groups. The first are the nonenteric materials and include methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, methylhydroxy-ethyl cellulose, hydroxypropyl cellulose, hydroxypropyl-methyl cellulose, sodium carboxy-methyl cellulose, providone and the polyethylene glycols. The second group consists of the enteric materials that are commonly esters of phthalic acid.

A mix of materials might be used to provide the optimum film coating. Film coating may be carried out in a pan coater or in a fluidized bed or by compression coating.

- 86 -

WO 01/83525

25

<u>Pulmonary delivery forms</u>. Also contemplated herein is pulmonary delivery of the present protein (or derivatives thereof). The protein (or derivative) is delivered to the lungs of a mammal while inhaling and traverses across the lung epithelial lining to the blood stream. (Other

- reports of this include Adjei <u>et al.</u>, <u>Pharma. Res.</u> (1990) 7: 565-9; Adjei <u>et al</u>. (1990), <u>Internatl. J. Pharmaceutics</u> 63: 135-44 (leuprolide acetate); Braquet <u>et al</u>. (1989), <u>J. Cardiovasc. Pharmacol</u>. 13 (suppl.5): s.143-146 (endothelin-1); Hubbard <u>et al</u>. (1989), <u>Annals Int. Med</u>. 3: 206-12 (α1-antitrypsin); Smith <u>et al</u>. (1989), <u>J. Clin. Invest</u>. 84: 1145-6 (α1-proteinase); Oswein <u>et al</u>. (March
- 10 1990), "Aerosolization of Proteins", <u>Proc. Symp. Resp. Drug Delivery II</u>, Keystone, Colorado (recombinant human growth hormone); Debs <u>et al</u>. (1988), <u>J. Immunol</u>. 140: 3482-8 (interferon-γ and tumor necrosis factor α) and Platz <u>et al</u>., U.S. Patent No. 5,284,656 (granulocyte colony stimulating factor).
- 15 Contemplated for use in the practice of this invention are a wide range of mechanical devices designed for pulmonary delivery of therapeutic products, including but not limited to nebulizers, metered dose inhalers, and powder inhalers, all of which are familiar to those skilled in the art. Some specific examples of commercially available
- 20 devices suitable for the practice of this invention are the Ultravent nebulizer, manufactured by Mallinckrodt, Inc., St. Louis, Missouri; the Acorn II nebulizer, manufactured by Marquest Medical Products, Englewood, Colorado; the Ventolin metered dose inhaler, manufactured by Glaxo Inc., Research Triangle Park, North Carolina; and the Spinhaler
 - powder inhaler, manufactured by Fisons Corp., Bedford, Massachusetts. All such devices require the use of formulations suitable for the dispensing of the inventive compound. Typically, each formulation is specific to the type of device employed and may involve the use of an

15

20

25

appropriate propellant material, in addition to diluents, adjuvants and/or carriers useful in therapy.

The inventive compound should most advantageously be prepared in particulate form with an average particle size of less than 10 μ m (or microns), most preferably 0.5 to 5 μ m, for most effective delivery to the distal lung.

Pharmaceutically acceptable carriers include carbohydrates such as trehalose, mannitol, xylitol, sucrose, lactose, and sorbitol. Other ingredients for use in formulations may include DPPC, DOPE, DSPC and

10 DOPC. Natural or synthetic surfactants may be used. PEG may be used (even apart from its use in derivatizing the protein or analog). Dextrans, such as cyclodextran, may be used. Bile salts and other related enhancers may be used. Cellulose and cellulose derivatives may be used. Amino acids may be used, such as use in a buffer formulation.

Also, the use of liposomes, microcapsules or microspheres, inclusion complexes, or other types of carriers is contemplated.

Formulations suitable for use with a nebulizer, either jet or ultrasonic, will typically comprise the inventive compound dissolved in water at a concentration of about 0.1 to 25 mg of biologically active protein per mL of solution. The formulation may also include a buffer and a simple sugar (e.g., for protein stabilization and regulation of osmotic pressure). The nebulizer formulation may also contain a surfactant, to reduce or prevent surface induced aggregation of the protein caused by atomization of the solution in forming the aerosol.

Formulations for use with a metered-dose inhaler device will generally comprise a finely divided powder containing the inventive compound suspended in a propellant with the aid of a surfactant. The propellant may be any conventional material employed for this purpose, such as a chlorofluorocarbon, a hydrochlorofluorocarbon, a

- 88 -

WO 01/83525

5

10

15

20

hydrofluorocarbon, or a hydrocarbon, including trichlorofluoromethane, dichlorodifluoromethane, dichlorotetrafluoroethanol, and 1,1,1,2tetrafluoroethane, or combinations thereof. Suitable surfactants include sorbitan trioleate and soya lecithin. Oleic acid may also be useful as a surfactant.

Formulations for dispensing from a powder inhaler device will comprise a finely divided dry powder containing the inventive compound and may also include a bulking agent, such as lactose, sorbitol, sucrose, mannitol, trehalose, or xylitol in amounts which facilitate dispersal of the powder from the device, e.g., 50 to 90% by weight of the formulation.

<u>Nasal delivery forms</u>. Nasal delivery of the inventive compound is also contemplated. Nasal delivery allows the passage of the protein to the blood stream directly after administering the therapeutic product to the nose, without the necessity for deposition of the product in the lung.

Formulations for nasal delivery include those with dextran or cyclodextran. Delivery via transport across other mucous membranes is also contemplated.

<u>Buccal delivery forms.</u> Buccal delivery of the inventive compound is also contemplated. Buccal delivery formulations are known in the art for use with peptides.

<u>Dosages</u>. The dosage regimen involved in a method for treating the above-described conditions will be determined by the attending physician, considering various factors which modify the action of drugs, e.g. the age, condition, body weight, sex and diet of the patient, the severity of any infection,

25 time of administration and other clinical factors. Generally, the daily regimen should be in the range of 0.1-1000 micrograms of the inventive compound per kilogram of body weight, preferably 0.1-150 micrograms per kilogram.

Specific preferred embodiments

The inventors have determined preferred peptide sequences for molecules having many different kinds of activity. The inventors have further determined preferred structures of these preferred peptides combined with preferred linkers and vehicles. Preferred structures for these preferred peptides listed in Table 21 below.

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Sequence/structure	SEQ	Activity
NO: F^{1} -(G) _g -IEGPTLRQWLAARA-(G) _g -IEGPTLRQWLAARA337TPO-mimeticIEGPTLRQWLAARA-(G) _g -IEGPTLRQWLAARA-(G) _g - F'338TPO-mimetic F^{1} -(G) _g -IEGPTLRQWLAARA10321032IEGPTLRQWLAARA -(G) _g - F'1033TPO-mimetic F^{1} -(G) _g -GGTYSCHFGPLTWVCKPQGG-(G) _g - GGTYSCHFGPLTWVCKPQGG-(G) _g - GGTYSCHFGPLTWVCKPQGG-(G) _g -F'339EPO-mimeticGGTYSCHFGPLTWVCKPQGG-(G) _g - GGTYSCHFGPLTWVCKPQGG-(G) _g -F'340EPO-mimetic1034F'-(G) _g -GGTYSCHFGPLTWVCKPQGG-(G) _g -F'1034TNF-α inhibitorGGTYSCHFGPLTWVCKPQGG-(G) _g -F'1034TNF-α inhibitorGGTYSCHFGPLTWVCKPQGG-(G) _g -F'1045TNF-α inhibitorGGTYSCHFGPLTWVCKPQGG-(G) _g -F'10451045F'-(G) _g -DFLPHYKNTSLGHRP1045TNF-α inhibitorDFLPHYKNTSLGHRP-(G) _g -F'1046IL-1 R antagonistF'-(G) _g - FEWTPGYWQPYALPL1047IL-1 R antagonistFEWTPGYWQPYALPL-(G) _g -F'1048VEGF-antagonistF'-(G) _g -VEPNCDIHVMWEWECFERL1049VEGF-antagonistVEPNCDIHVMWEWECFERL-(G) _g -F'1050MMP inhibitorF'-(G) _g -CTTHWGFTLC1051CTTHWGFTLC-(G) _g -F'		ID	-
$F^{-}(G)_{g}$ -IEGPTLRQWLAARA- $(G)_{g}$ -IEGPTLRQWLAARA337TPO-mimeticIEGPTLRQWLAARA- $(G)_{g}$ -IEGPTLRQWLAARA- $(G)_{g}$ - F'338TPO-mimetic $F^{-}(G)_{g}$ -IEGPTLRQWLAARA10321032IEGPTLRQWLAARA - $(G)_{g}$ - F'1033TPO-mimetic $I^{-}(G)_{g}$ -GGTYSCHFGPLTWVCKPQGG- $(G)_{4}$ -1033TPO-mimeticGGTYSCHFGPLTWVCKPQGG- $(G)_{4}$ -339EPO-mimeticGGTYSCHFGPLTWVCKPQGG- $(G)_{4}$ -340GGTYSCHFGPLTWVCKPQGG- $(G)_{5}$ -F'GGTYSCHFGPLTWVCKPQGG- $(G)_{5}$ -F'340FPO-mimeticGGTYSCHFGPLTWVCKPQGG- $(G)_{5}$ -F'1034FVO-mimeticGGTYSCHFGPLTWVCKPQGG- $(G)_{5}$ -F'1034TNF-α inhibitorGGTYSCHFGPLTWVCKPQGG- $(G)_{5}$ -F'1034TNF-α inhibitorGGTYSCHFGPLTWVCKPQGG- $(G)_{5}$ -F'1045IL-1 R antagonistGGTYSCHFGPLTWVCKPQGG- $(G)_{5}$ -F'1045TNF-α inhibitorGGTYSCHFGPLTWVCKPQGG- $(G)_{5}$ -F'1045TNF-α inhibitorGGTYSCHFGPLTWVCKPQGG- $(G)_{5}$ -F'1045TNF-α inhibitorF'- $(G)_{5}$ -FEWTPGYWQPYALPL1047IL-1 R antagonistF'- $(G)_{5}$ -VEPNCDIHVMWEWECFERL1048VEGF-antagonistF'- $(G)_{5}$ -VEPNCDIHVMWEWECFERL- $(G)_{5}$ -F'1050MMP inhibitorF'- $(G)_{5}$ -CTTHWGFTLCMMP inhibitor1051CTTHWGFTLC- $(G)_{5}$ -F'1050MMP inhibitor		NO:	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F'-(G) ₅ -IEGPTLRQWLAARA-(G) ₈ -IEGPTLRQWLAARA	337	TPO-mimetic
F^{1} -(G) _s -IEGPTLRQWLAARATPO-mimeticIEGPTLRQWLAARA -(G) _s - F'1032IEGPTLRQWLAARA -(G) _s - F'1033 F^{1} -(G) _s -GGTYSCHFGPLTWVCKPQGG-(G) ₄ - GGTYSCHFGPLTWVCKPQGG-(G) ₄ - GGTYSCHFGPLTWVCKPQGG-(G) ₅ -F'339GGTYSCHFGPLTWVCKPQGG-(G) ₄ - GGTYSCHFGPLTWVCKPQGG-(G) ₅ -F'EPO-mimeticGGTYSCHFGPLTWVCKPQGG-(G) ₅ -F'340GGTYSCHFGPLTWVCKPQGG-(G) ₅ -F'1034F'-(G) ₆ -DFLPHYKNTSLGHRP1045DFLPHYKNTSLGHRP-(G) ₅ -F'1045DFLPHYKNTSLGHRP-(G) ₅ -F'1046F'-(G) ₆ - FEWTPGYWQPYALPL1047FEWTPGYWQPYALPL-(G) ₅ -F'1048F'-(G) ₆ -VEPNCDIHVMWEWECFERL1049VEPNCDIHVMWEWECFERL-(G) ₆ -F'1050F'-(G) ₆ -CTTHWGFTLCMMP inhibitorCTTHWGFTLC-(G) ₆ -F'MMP inhibitor	IEGPTLRQWLAARA-(G),-IEGPTLRQWLAARA-(G),- F	338	TPO-mimetic
$\begin{tabular}{ c c c c c c c } & 1032 & & & & & & & & & & & & & & & & & & &$	F¹-(G)₅-IEGPTLRQWLAARA		TPO-mimetic
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1032	
	IEGPTLRQWLAARA -(G)₅- F¹]	TPO-mimetic
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1033	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F ¹ -(G) ₅ -GGTYSCHFGPLTWVCKPQGG-(G) ₄ -	339	EPO-mimetic
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	GGTYSCHFGPLTWVCKPQGG		
GGTYSCH-GPLTWVCKPQGG-(G)_s-F340GGTYSCHFGPLTWVCKPQGG-(G)_s-F11034F1-(G)_s-DFLPHYKNTSLGHRPTNF- α inhibitorDFLPHYKNTSLGHRP-(G)_s-F11045DFLPHYKNTSLGHRP-(G)_s-F11046F1-(G)_s- FEWTPGYWQPYALPLIL-1 R antagonist10471047FEWTPGYWQPYALPL-(G)_s-F11048F1-(G)_s-VEPNCDIHVMWEWECFERLVEGF-antagonist10491049VEPNCDIHVMWEWECFERL-(G)_s-F11050F1-(G)_s-CTTHWGFTLC1051CTTHWGFTLC-(G)_s-F11051MMP inhibitor1051	GGTYSCHFGPLTWVCKPQGG-(G)₄-		EPO-mimetic
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	GGTYSCHFGPLTWVCKPQGG-(G)₅-F	340	
I034F¹-(G)s-DFLPHYKNTSLGHRPTNF-α inhibitorDFLPHYKNTSLGHRP-(G)s-F¹1045DFLPHYKNTSLGHRP-(G)s-F¹1046F¹-(G)s- FEWTPGYWQPYALPL1047FEWTPGYWQPYALPL-(G)s-F¹1047IL-1 R antagonist1048F¹-(G)s-VEPNCDIHVMWEWECFERLVEGF-antagonistVEPNCDIHVMWEWECFERL-(G)s-F¹1050F¹-(G)s-CTTHWGFTLCMMP inhibitorCTTHWGFTLC-(G)s-F¹1051CTTHWGFTLC-(G)s-F¹1050	GGTYSCHFGPLTWVCKPQGG-(G)₅-F	1004	EPO-mimetic
F'-(G)_s-DFLPHYKNTSLGHRPTNF-α inhibitorDFLPHYKNTSLGHRP-(G)_s-F11045DFLPHYKNTSLGHRP-(G)_s-F11046F'-(G)_s- FEWTPGYWQPYALPL1047IL-1 R antagonist1047FEWTPGYWQPYALPL-(G)_s-F11048F'-(G)_s-VEPNCDIHVMWEWECFERLVEGF-antagonist10491049VEPNCDIHVMWEWECFERL-(G)_s-F11050F'-(G)_s-CTTHWGFTLC1051CTTHWGFTLC-(G)_s-F11051CTTHWGFTLC-(G)_s-F11050		1034	
$\begin{array}{c c c c c c c c c } \hline 1045 \\ \hline 1045 \\ \hline DFLPHYKNTSLGHRP-(G)_{5}-F^{1} & TNF-\alpha \mbox{ inhibitor} \\ \hline 1046 & & \\ \hline 1047 & & \\ \hline 1047 & & \\ \hline FEWTPGYWQPYALPL-(G)_{5}-F^{1} & & \\ \hline 1048 & & \\ \hline F^{1}-(G)_{5}-VEPNCDIHVMWEWECFERL & & VEGF-antagonist \\ \hline 1049 & & \\ \hline VEPNCDIHVMWEWECFERL-(G)_{5}-F^{1} & & \\ \hline 1050 & & \\ \hline F^{1}-(G)_{5}-CTTHWGFTLC & & \\ \hline 1051 & & \\ \hline CTTHWGFTLC-(G)_{5}-F^{1} & & \\ \hline 1057 & & \\ \hline MMP \mbox{ inhibitor} \\ \hline 1057 & & \\ \hline \end{array}$	F'-(G)₅-DFLPHYKNTSLGHRP	10/5	TNF- α inhibitor
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1045	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	│ DFLPHYKN ISLGHRP-(G)₅-F	1046	$1^{\text{NF}}-\alpha$ inhibitor
F'-(G)_5- FEW TPGYWQPYALPLIL- T R antagonist10471047FEWTPGYWQPYALPL-(G)_5-F11048F1-(G)_5-VEPNCDIHVMWEWECFERL1048VEPNCDIHVMWEWECFERL-(G)_5-F11049VEPNCDIHVMWEWECFERL-(G)_5-F11050F1-(G)_5-CTTHWGFTLCMMP inhibitorCTTHWGFTLC-(G)_5-F11051CTTHWGFTLC-(G)_5-F11057		1046	
FEWTPGYWQPYALPL-(G)_s-F1IL-1 R antagonist $f^1-(G)_s$ -VEPNCDIHVMWEWECFERLVEGF-antagonistVEPNCDIHVMWEWECFERL-(G)_s-F1VEGF-antagonistVEPNCDIHVMWEWECFERL-(G)_s-F11050F1-(G)_s-CTTHWGFTLCMMP inhibitorCTTHWGFTLC-(G)_s-F11051CTTHWGFTLC-(G)_s-F11057	F-(G) ₅ -FEWTPGYWQPYALPL	1047	IL-I R antagonist
FEWTPGYWQPYALPL-(G)5-FInternational 1048 F^1 -(G)5-VEPNCDIHVMWEWECFERL1048VEPNCDIHVMWEWECFERL-(G)5-F1VEGF-antagonist 1050 1050 F^1 -(G)5-CTTHWGFTLCMMP inhibitorCTTHWGFTLC-(G)5-F11051CTTHWGFTLC-(G)5-F11052		1047	II 1 Dentegonist
$ \begin{array}{c c} & 1048 \\ \hline 1048 \\ \hline 1049 \\ \hline \\ VEGF-antagonist \\ \hline 1049 \\ \hline \\ VEGF-antagonist \\ \hline \\ 1050 \\ \hline \\ \hline \\ F^{1}-(G)_{s}-CTTHWGFTLC \\ \hline \\ CTTHWGFTLC-(G)_{s}-F^{1} \\ \hline \\ \hline \\ \end{array} \begin{array}{c c} & 1051 \\ \hline \\ MMP inhibitor \\ \hline \\ 1051 \\ \hline \\ $	FEWTPGYWQPYALPL-(G)₅-F	1040	IL-I H antagonist
F'-(G)_5-VEPNCDIHVMWEWECFERLVEGF-antagonist10491049VEPNCDIHVMWEWECFERL-(G)_5-F1VEGF-antagonist $F^1-(G)_5$ -CTTHWGFTLC1050CTTHWGFTLC-(G)_5-F11051CTTHWGFTLC-(G)_5-F11051		1048	
VEPNCDIHVMWEWECFERL-(G) ₅ -F ¹ VEGF-antagonist 1050 1050 F ¹ -(G) ₅ -CTTHWGFTLC MMP inhibitor 1051 1051	F'-(G) ₅ -VEPNCDIHVMWEWECFERL	1040	veor-amagonisi
VEPNCDIHVMWEWECFERL-(G) ₅ -F VEGF-antagonist 1050 1050 F¹-(G) ₅ -CTTHWGFTLC MMP inhibitor CTTHWGFTLC-(G) ₅ -F¹ 1051		1049	
F¹-(G)₅-CTTHWGFTLC MMP inhibitor CTTHWGFTLC-(G)₅-F¹ MMP inhibitor	VEPNCDIHVMWEWECFERL-(G) ₅ -F	1050	veer-antagonist
CTTHWGFTLC-(G) ₆ -F ¹ MMP inhibitor		1050	MMD inhibitor
CTTHWGFTLC-(G) ₆ -F ¹ MMP inhibitor		1051	
		1051	MMD inhibitor
	UTHWGFTLC-(G)5-F	1052	

liments
C

"F¹" is an Fc domain as defined previously herein.

Working examples

The compounds described above may be prepared as described

10 below. These examples comprise preferred embodiments of the invention and are illustrative rather than limiting.

10

15

Example 1

TPO-Mimetics

The following example uses peptides identified by the numbers appearing in Table A hereinafter.

Preparation of peptide 19. Peptide 17b (12 mg) and MeO-PEG-SH 5000 (30 mg, 2 equiv.) were dissolved in 1 ml aqueous buffer (pH 8). The mixture was incubated at RT for about 30 minutes and the reaction was checked by analytical HPLC, which showed a > 80% completion of the reaction. The pegylated material was isolated by preparative HPLC.

Preparation of peptide 20. Peptide 18 (14 mg) and MeO-PEGmaleimide (25 mg) were dissolved in about 1.5 ml aqueous buffer (pH 8). The mixture was incubated at RT for about 30 minutes, at which time about 70% transformation was complete as monitored with analytical HPLC by applying an aliquot of sample to the HPLC column. The pegylated material was purified by preparative HPLC.

<u>Bioactivity assay</u>. The TPO <u>in vitro</u> bioassay is a mitogenic assay utilizing an IL-3 dependent clone of murine 32D cells that have been transfected with human mpl receptor. This assay is described in greater detail in WO 95/26746. Cells are maintained in MEM medium containing

20 10% Fetal Clone II and 1 ng/ml mIL-3. Prior to sample addition, cells are prepared by rinsing twice with growth medium lacking mIL-3. An extended twelve point TPO standard curve is prepared, ranging from 33 to 39 pg/ml. Four dilutions, estimated to fall within the linear portion of the standard curve, (100 to 125 pg/ml), are prepared for each sample and

run in triplicate. A volume of 100 µl of each dilution of sample or standard is added to appropriate wells of a 96 well microtiter plate containing 10,000 cells/well. After forty-four hours at 37 °C and 10% CO₂, MTS (a tetrazolium compound which is bioreduced by cells to a formazan) is added to each well. Approximately six hours later, the optical density is

- 91 -

read on a plate reader at 490 nm. A dose response curve (log TPO concentration vs. O.D.- Background) is generated and linear regression analysis of points which fall in the linear portion of the standard curve is performed. Concentrations of unknown test samples are determined using the resulting linear equation and a correction for the dilution factor.

<u>TMP tandem repeats with polyglycine linkers</u>. Our design of sequentially linked TMP repeats was based on the assumption that a dimeric form of TMP was required for its effective interaction with c-Mpl (the TPO receptor) and that depending on how they were wound up

- 10 against each other in the receptor context, the two TMP molecules could be tethered together in the C- to N-terminus configuration in a way that would not perturb the global dimeric conformation. Clearly, the success of the design of tandem linked repeats depends on proper selection of the length and composition of the linker that joins the C- and N-termini of the
- 15 two sequentially aligned TMP monomers. Since no structural information of the TMP bound to c-Mpl was available, a series of repeated peptides with linkers composed of 0 to 10 and 14 glycine residues (Table A) were synthesized. Glycine was chosen because of its simplicity and flexibility, based on the rationale that a flexible polyglycine peptide chain might
- 20 allow for the free folding of the two tethered TMP repeats into the required conformation, while other amino acid sequences may adopt undesired secondary structures whose rigidity might disrupt the correct packing of the repeated peptide in the receptor context.

The resulting peptides are readily accessible by conventional solid phase peptide synthesis methods (Merrifield (1963), <u>J. Amer. Chem. Soc</u>. 85: 2149) with either Fmoc or t-Boc chemistry. Unlike the synthesis of the C-terminally linked parallel dimer which required the use of an orthogonally protected lysine residue as the initial branch point to build the two peptide chains in a pseudosymmetrical way (Cwirla <u>et al</u>. (1997),

- 92 -

<u>Science</u> 276: 1696-9), the synthesis of these tandem repeats was a straightforward, stepwise assembly of the continuous peptide chains from the C- to N-terminus. Since dimerization of TMP had a more dramatic effect on the proliferative activity than binding affinity as shown for the C-

- 5 terminal dimer (Cwirla <u>et al</u>. (1997)), the synthetic peptides were tested directly for biological activity in a TPO-dependent cell-proliferation assay using an IL-3 dependent clone of murine 32D cells transfected with the full-length c-Mpl (Palacios <u>et al</u>., Cell 41:727 (1985)). As the test results showed, all the polyglycine linked tandem repeats demonstrated >1000
- 10 fold increases in potency as compared to the monomer, and were even more potent than the C-terminal dimer in this cell proliferation assay. The absolute activity of the C-terminal dimer in our assay was lower than that of the native TPO protein, which is different from the previously reported findings in which the C-terminal dimer was found to be as active as the
- 15 natural ligand (Cwirla et al. (1997)). This might be due to differences in the conditions used in the two assays. Nevertheless, the difference in activity between tandem (C terminal of first monomer linked to N terminal of second monomer) and C-terminal (C terminal of first monomer linked to C terminal of second monomer; also referred to as parallel)
- 20 dimers in the same assay clearly demonstrated the superiority of tandem repeat strategy over parallel peptide dimerization. It is interesting to note that a wide range of length is tolerated by the linker. The optimal linker between tandem peptides with the selected TMP monomers apparently is composed of 8 glycines.
- Other tandem repeats. Subsequent to this first series of TMP tandem repeats, several other molecules were designed either with different linkers or containing modifications within the monomer itself. The first of these molecules, peptide 13, has a linker composed of GPNG, a sequence known to have a high propensity to form a β-turn-type

- 93 -

25

secondary structure. Although still about 100-fold more potent than the monomer, this peptide was found to be >10-fold less active than the equivalent GGGG-linked analog. Thus, introduction of a relatively rigid β -turn at the linker region seemed to have caused a slight distortion of the optimal agonist conformation in this short linker form.

The Trp9 in the TMP sequence is a highly conserved residue among the active peptides isolated from random peptide libraries. There is also a highly conserved Trp in the consensus sequences of EPO mimetic peptides and this Trp residue was found to be involved in the formation of a

10 hydrophobic core between the two EMPs and contributed to hydrophobic interactions with the EPO receptor. Livnah <u>et al</u>. (1996), <u>Science</u> 273: 464-71). By analogy, the Trp9 residue in TMP might have a similar function in dimerization of the peptide ligand, and as an attempt to modulate and estimate the effects of noncovalent hydrophobic forces exerted by the two

- 15 indole rings, several analogs were made resulting from mutations at the Trp. So in peptide 14, the Trp residue was replaced in each of the two TMP monomers with a Cys, and an intramolecular disulfide bond was formed between the two cysteines by oxidation which was envisioned to mimic the hydrophobic interactions between the two Trp residues in
- 20 peptide dimerization. Peptide 15 is the reduced form of peptide 14. In peptide 16, the two Trp residues were replaced by Ala. As the assay data show, all three analogs were inactive. These data further demonstrated that Trp is critical for the activity of the TPO mimetic peptide, not just for dimer formation.

The next two peptides (peptide 17a, and 18) each contain in their 8amino acid linker a Lys or Cys residue. These two compounds are precursors to the two PEGylated peptides (peptide 19 and 20) in which the side chain of the Lys or Cys is modified by a PEG moiety. A PEG moiety was introduced at the middle of a relatively long linker, so that the large

- 94 -

PEG component (5 kDa) is far enough away from the critical binding sites in the peptide molecule. PEG is a known biocompatible polymer which is increasingly used as a covalent modifier to improve the pharmacokinetic profiles of peptide- and protein-based therapeutics.

5 A modular, solution-based method was devised for convenient PEGylation of synthetic or recombinant peptides. The method is based on the now well established chemoselective ligation strategy which utilizes the specific reaction between a pair of mutually reactive functionalities. So, for pegylated peptide 19, the lysine side chain was preactivated with a

- 10 bromoacetyl group to give peptide 17b to accommodate reaction with a thiol-derivatized PEG. To do that, an orthogonal protecting group, Dde, was employed for the protection of the lysine ε-amine. Once the whole peptide chain was assembled, the N-terminal amine was reprotected with t-Boc. Dde was then removed to allow for the bromoacetylation. This
- 15 strategy gave a high quality crude peptide which was easily purified using conventional reverse phase HPLC. Ligation of the peptide with the thiolmodified PEG took place in aqueous buffer at pH 8 and the reaction completed within 30 minutes. MALDI-MS analysis of the purified, pegylated material revealed a characteristic, bell-shaped spectrum with an
- 20 increment of 44 Da between the adjacent peaks. For PEG-peptide 20, a cysteine residue was placed in the linker region and its side chain thiol group would serve as an attachment site for a maleimide-containing PEG. Similar conditions were used for the pegylation of this peptide. As the assay data revealed, these two pegylated peptides had even higher in vitro bioactivity as compared to their unpegylated counterparts.

Peptide 21 has in its 8-amino acid linker a potential glycosylation motif, NGS. Since our exemplary tandem repeats are made up of natural amino acids linked by peptide bonds, expression of such a molecule in an appropriate eukaryotic cell system should produce a glycopeptide with

- 95 -

the carbohydrate moiety added on the side chain carboxyamide of Asn. Glycosylation is a common post-translational modification process which can have many positive impacts on the biological activity of a given protein by increasing its aqueous solubility and in vivo stability. As the

assay data show, incorporation of this glycosylation motif into the linker 5 maintained high bioactivity. The synthetic precursor of the potential glycopeptide had in effect an activity comparable to that of the -(G)_slinked analog. Once glycosylated, this peptide is expected to have the same order of activity as the pegylated peptides, because of the similar chemophysical properties exhibited by a PEG and a carbohydrate moiety.

The last peptide is a dimer of a tandem repeat. It was prepared by oxidizing peptide 18, which formed an intermolecular disulfide bond between the two cysteine residues located at the linker. This peptide was designed to address the possibility that TMP was active as a tetramer. The

- assay data showed that this peptide was not more active than an average 15 tandem repeat on an adjusted molar basis, which indirectly supports the idea that the active form of TMP is indeed a dimer, otherwise dimerization of a tandem repeat would have a further impact on the bioactivity.
- In order to confirm the in vitro data in animals, one pegylated TMP tandem repeat (compound 20 in Table A) was delivered subcutaneously to 20 normal mice via osmotic pumps. Time and dose-dependent increases were seen in platelet numbers for the duration of treatment. Peak platelet levels over 4-fold baseline were seen on day 8. A dose of $10 \,\mu g/kg/day$ of the pegylated TMP repeat produced a similar response to rHuMGDF
- (non-pegylated) at $100 \,\mu g/kg/day$ delivered by the same route. 25

Peptide	Compound	SEQ ID	Relative
No.		NO:	Potency
	ТРО	·	++++
	TMP monomer	13	+
	TMP C-C dimer		+++ -
TMP-(G) _n -	TMP:		
1	n = 0	341	┽┼╌┼┼╸
2	n = 1	342	++++
3	n = 2	343	++++
4	n = 3	344	++++
5	n = 4	345	++++
6	n = 5	346	++++
7	n = 6	347	+++++
8	n = 7	348	++++
9	n = 8	349	++++-
10	n = 9	350	+++ ++
11	n = 10	351	++++
12	n = 14	352	++++
13	TMP-GPNG-TMP	353	+++
14	IEGPTLRQ <u>C</u> LAARA-GGGGGGGGG-IEGPTLRQ <u>C</u> LAARA	354	-
15	(cyclic) IEGPTLRQ <u>C</u> LAARA-GGGGGGGGG-	355	-
	IEGPTLRQCLAARA (linear)		
16	IEGPTLRQALAARA-GGGGGGGGG-	356	-
	IEGPTLRQALAARA		
17a	TMP-GGGKGGGG-TMP	357	++++
17b	TMP-GGGK(BrAc)GGGG-TMP	358	ND
18	TMP-GGGCGGGG-TMP	359	++++
19	TMP-GGGK(PEG)GGGG-TMP	360	++++ +
20	TMP-GGGC(PEG)GGGG-TMP	361	┼┼┼┼┾
21	TMP-GGGN*GSGG-TMP	362	++++
22	TMP-GGGCGGGG-TMP	363	
	TMP-GGGCGGGG-TMP	363	++++

Table A—TPO-mimetic Peptides

15

PCT/US01/14310

<u>Discussion</u>. It is well accepted that MGDF acts in a way similar to hGH, i.e., one molecule of the protein ligand binds two molecules of the receptor for its activation. Wells <u>et al.(1996)</u>, <u>Ann. Rev. Biochem</u>. 65: 609-34. Now, this interaction is mimicked by the action of a much smaller

peptide, TMP. However, the present studies suggest that this mimicry
requires the concerted action of two TMP molecules, as covalent
dimerization of TMP in either a C-C parallel or C-N sequential fashion
increased the <u>in vitro</u> biological potency of the original monomer by a
factor of greater than 10³. The relatively low biopotency of the monomer is

10 probably due to inefficient formation of the noncovalent dimer. A preformed covalent repeat has the ability to eliminate the entropy barrier for the formation of a noncovalent dimer which is exclusively driven by weak, noncovalent interactions between two molecules of the small, 14residue peptide.

It is intriguing that this tandem repeat approach had a similar effect on enhancing bioactivity as the reported C-C dimerization is intriguing. These two strategies brought about two very different molecular configurations. The C-C dimer is a quasi-symmetrical molecule, while the tandem repeats have no such symmetry in their linear structures. Despite

- 20 this difference in their primary structures, these two types of molecules appeared able to fold effectively into a similar biologically active conformation and cause the dimerization and activation of c-Mpl. These experimental observations provide a number of insights into how the two TMP molecules may interact with one another in binding to c-Mpl. First,
- 25 the two C-termini of the two bound TMP molecules must be in relatively close proximity with each other, as suggested by data on the C-terminal dimer. Second, the respective N- and C-termini of the two TMP molecules in the receptor complex must also be very closely aligned with each other, such that they can be directly tethered together with a single peptide bond

- 98 -

PCT/US01/14310

to realize the near maximum activity-enhancing effect brought about by the tandem repeat strategy. Insertion of one or more (up to 14) glycine residues at the junction did not increase (or decrease) significantly the activity any further. This may be due to the fact that a flexible polyglycine

- 5 peptide chain is able to loop out easily from the junction without causing any significant changes in the overall conformation. This flexibility seems to provide the freedom of orientation for the TMP peptide chains to fold into the required conformation in interacting with the receptor and validate it as a site of modification. Indirect evidence supporting this
- 10 came from the study on peptide 13, in which a much more rigid b-turnforming sequence as the linker apparently forced a deviation of the backbone alignment around the linker which might have resulted in a slight distortion of the optimal conformation, thus resulting in a moderate (10-fold) decrease in activity as compared with the analogous compound
- with a 4-Gly linker. Third, Trp9 in TMP plays a similar role as Trp13 in EMP, which is involved not only in peptide:peptide interaction for the formation of dimers but also is important for contributing hydrophobic forces in peptide:receptor interaction. Results obtained with the W to C mutant analog, peptide 14, suggest that a covalent disulfide linkage is not sufficient to approximate the hydrophobic interactions provided by the Trp pair and that, being a short linkage, it might bring the two TMP monomers too close, therefore perturbing the overall conformation of the optimal dimeric structure.

An analysis of the possible secondary structure of the TMP peptide can provide further understanding on the interaction between TMP and c-Mpl. This can be facilitated by making reference to the reported structure of the EPO mimetic peptide. Livnah <u>et al.</u> (1996), <u>Science</u> 273:464-75 The receptor-bound EMP has a b-hairpin structure with a b-turn formed by the highly consensus Gly-Pro-Leu-Thr at the center of its sequence. Instead of GPLT, TMP has a highly selected GPTL sequence which is likely to form a similar turn. However, this turn-like motif is located near the N-terminal part in TMP. Secondary structure prediction using Chau-Fasman method suggests that the C-terminal half of the peptide has a tendency to adopt a

- 5 helical conformation. Together with the highly conserved Trp at position 9, this C-terminal helix may contribute to the stabilization of the dimeric structure. It is interesting to note that most of our tandem repeats are more potent than the C-terminal parallel dimer. Tandem repeats seem to give the molecule a better fit conformation than does the C-C parallel
- 10 dimerization. The seemingly asymmetric feature of a tandem repeat might have brought it closer to the natural ligand which, as an asymmetric molecule, uses two different sites to bind two identical receptor molecules.

Introduction of a PEG moiety was envisaged to enhance the <u>in vivo</u> activity of the modified peptide by providing it a protection against proteolytic degradation and by slowing down its clearance through renal filtration. It was unexpected that pegylation could further increase the <u>in</u> <u>vitro</u> bioactivity of a tandem repeated TMP peptide in the cell-based proliferation assay.

Example 2

Fc-TMP fusions

TMPs (and EMPs as described in Example 3) were expressed in either monomeric or dimeric form as either N-terminal or C-terminal fusions to the Fc region of human IgG1. In all cases, the expression construct utilized the luxPR promoter promoter in the plasmid expression vector pAMG21.

15

20

25

<u>Fc-TMP</u>. A DNA sequence coding for the Fc region of human IgG1 fused in-frame to a monomer of the TPO-mimetic peptide was constructed using standard PCR technology. Templates for PCR reactions were the pFc-A3 vector and a synthetic TMP gene. The synthetic gene was constructed from the 3 overlapping oligonucleotides (SEQ ID NOS: 364, 365, and 366, respectively) shown below:

1842-97AAA AAA GGA TCC TCG AGA TTA AGC ACG AGC AGC CAG CCA
CTG ACG CAG AGT CGG ACC1842-98AAA GGT GGA GGT GGT GGT GGT ATC GAA GGT CCG ACT CTG CGT1842-99CAG TGG CTG GCT GCT CGT GCT TAA TCT CGA GGA TCC TTT
TTT

10

15

20

3

35

5

These oligonucleotides were annealed to form the duplex encoding an amino acid sequence (SEQ ID NOS: 367 and 368, respectively) shown below:

This duplex was amplified in a PCR reaction using 1842-98 and 1842-97 as the sense and antisense primers.

The Fc portion of the molecule was generated in a PCR reaction with pFc-A3 using the primers shown below (SEQ ID NOS: 369 and 370):

) 1216-52	AAC	ATA	AGT	ACC	$\mathbf{T}\mathbf{G}\mathbf{T}$	AGG	ATC	G
-----------	-----	-----	-----	-----	----------------------------------	-----	-----	---

1830–51. TTCGATACCA CCACCTCCAC CTTTACCCGG AGACAGGGAG AGGCTCTTCTGC The oligonucleotides 1830-51 and 1842-98 contain an overlap of 24 nucleotides, allowing the two genes to be fused together in the correct reading frame by combining the above PCR products in a third reaction

reading frame by combining the above PCR products in a third reaction using the outside primers, 1216-52 and 1842-97.

The final PCR gene product (the full length fusion gene) was digested with restriction endonucleases <u>Xba</u>I and <u>Bam</u>HI, and then ligated

40

into the vector pAMG21 and transformed into competent <u>E. coli</u> strain 2596 cells as described for EMP-Fc herein. Clones were screened for the ability to produce the recombinant protein product and to possess the

10

45

gene fusion having the correct nucleotide sequence. A single such clone was selected and designated Amgen strain #3728.

The nucleotide and amino acid sequences (SEQ ID NOS: 5 and 6) of the fusion protein are shown in Figure 7.

<u>Fc-TMP-TMP</u>. A DNA sequence coding for the Fc region of human IgG1 fused in-frame to a dimer of the TPO-mimetic peptide was constructed using standard PCR technology. Templates for PCR reactions were the pFc-A3 vector and a synthetic TMP-TMP gene. The synthetic gene was constructed from the 4 overlapping oligonucleotides (SEQ ID NOS: 371 to 374, respectively) shown below:

	1830-52	AAA ACT	$\begin{array}{c} \mathrm{GGT} \\ \mathrm{CTG} \end{array}$	GGA CGT	GGT CAG	$\begin{array}{c} \mathrm{GGT} \\ \mathrm{TGG} \end{array}$	GGT CTG	ATC GCT	GAA GCT	$\begin{array}{c} \mathrm{GGT} \\ \mathrm{CGT} \end{array}$	CCG GCT				
15	1830-53	ACC CCA	TCC CTG	ACC ACG	ACC CAG	AGC AGT	ACG CGG	AGC ACC	AGC	CAG					
20	1830-54	GGT CTT	GGT CGC	GGA CAA	GGT TGG	GGC CTT	GGC GCA	GGA GCA	GGT CGC	ATT GCA	GAG	GGC	CCA	ACC	
20	1830-55	AAA ATT	AAA GGC	AGG GAA	ATC GGG	CTC TTG	GAG GGC	ATT CCT	ATG CAA	CGC TAC	GTG CTC	CTG CGC	CAA CGC	GCC C	

The 4 oligonucleotides were annealed to form the duplex encoding an amino acid sequence (SEQ ID NOS: 375 and 376, respectively) shown below:

		1	AA	AAAGGTGGAGGTGGTGGTGGTATCGAAGGTCCGACTCTGCGTCAGTGGCTGGC															60				
30	a	_	ĸ	G	G	G	G	G	I	E	CC G	AGG P	CTG T	AGA L	CGC R	AGT Q	CAC W	CGA L	ACCG	ACG A	AGC R	ACGA A	_
35		б1	GG' CC	TGG ACC	TGG ACC	AGG	TGG 		GCGG + CGCC	AGG	TAT ATA	TGA	GGG +	GGG	AAC TTG	CCT -+- GGA	TCG AGC	GGI	ATG	GCT	TGC ACG	AGCA + TCGT	120
	a	104	G CG	G CGC	G A	G	G	G	G	G	I	E	G	P	т	L	R	Q	W	L	A	A	-
40		121	1 GCGCGTATTAGAGCTCCTAGGAAAAAAA																				
	a		R	А	*	-																	

This duplex was amplified in a PCR reaction using 1830-52 and 1830-55 as the sense and antisense primers.

The Fc portion of the molecule was generated in a PCR reaction with pFc-A3 using the primers 1216-52 and 1830-51 as described above for Fc-TMP. The full length fusion gene was obtained from a third PCR reaction using the outside primers 1216-52 and 1830-55.

The final PCR gene product (the full length fusion gene) was digested with restriction endonucleases <u>Xba</u>I and <u>Bam</u>HI, and then ligated into the vector pAMG21 and transformed into competent <u>E. coli</u> strain 2596 cells as described in example 1. Clones were screened for the ability to produce the recombinant protein product and to possess the gene fusion having the correct nucleotide sequence. A single such clone was

selected and designated Amgen strain #3727.

The nucleotide and amino acid sequences (SEQ ID NOS: 7 and 8) of the fusion protein are shown in Figure 8.

<u>TMP-TMP-Fc</u>. A DNA sequence coding for a tandem repeat of the TPO-mimetic peptide fused in-frame to the Fc region of human IgG1 was constructed using standard PCR technology. Templates for PCR reactions were the EMP-Fc plasmid from strain #3688 (see Example 3) and a synthetic gene encoding the TMP dimer. The synthetic gene for the tandem repeat was constructed from the 7 overlapping oligonucleotides shown below (SEQ ID NOS: 377 to 383, respectively):

20	1885-52	$\mathbf{T}\mathbf{T}\mathbf{T}$	TTT	CAT	ATG	ATC	GAA	GGT	CCG	ACT	CTG	CGT	CAG	TGG	
	1885-53	AGC GAT	ACG CAT	AGC ATG	AGC	CAG	CCA	CTG	ACG	CAG	AGT	CGG	ACC	TTC	
25	1885-54	CTG CAC	GCT ACA	GCT	CGT	GCT	GGT	GGA	GGC	GGT	GGG	GAC	AAA	ACT	
30	1885-55	CTG ATT	GCT GAG	GCT GGC	CGT CCA	GCT	GGC	GGT	GGT	GGC	GGA	GGG	GGT	GGC	
50	1885-56	AAG TCC	CCA GCC	TTG ACC	GCG ACC	AAG GCC	GGT	TGG	GCC	CTC	AAT	GCC	ACC	CCC	
35	1885-57	ACC GGT	CTT GGG	CGC GAC	CAA AAA	TGG ACT	CTT	GCA	GCA	CGC	GCA	GGG	GGA	GGC	
	1885-58	CCC	ACC	GCC	TCC	CCC	TGC	GCG	TGC	TGC					

These oligonucleotides were annealed to form the duplex shown encoding an amino acid sequence shown below (SEQ ID NOS 384 and 385):

10

15

40

5

25

		1	TT:	rrr:	TCA	TAT	GAT	CGA	AGG	TCC	GAC	TCI	GCG	TCA	GTG	GCT	GGC'	FGC'	TCG	TGC	IGG	CGGT	60
	-	بلا			GT.	ATA	CTA	GCT	TCC	AGG	CTG	AGA	CGC.	AGT	CAC	CGA	CCG	ACG)	AGC.	ACG.	ACC	GCCA	00
5	a		GGI	TGG	റദദ	200	T T	а таа	о Сат	- таа	GGG		ת הגע	ע רריד	w TCG		ים איזי ה	ጭ ጉግር	n DDD	ית היים	U Tra	таст	
		61				-+- TCC		ACC	+ Gта			 GGG	 ምሞርቆ	GGA	AGC	-+- GGT		GA	+ ACG	 TCG	TGC	+	120
10	a		G	G	G	G	G	G	I	E	G	P	T	L	R	Q	W	L	A	A	R	A	-
		121	GG	IGG.	AGG	CGG -+-	TGG	GGA		AAC	TCT	GGC	TGC	TCG	TGC	TGG -+-	TGG.	AGG	CGG +	TGG 	GGA	CAAA +	180
15	a		CC(G	CCC' G	TCC G	GCC. G	ACC G	C D	ĸ	т	Ŀ	A	A	R	A	G	G	G	G	G	D	ĸ	
		181	AC:	TCA(CAC	A - 1	89																
	a		т	н	т																		

This duplex was amplified in a PCR reaction using 1885-52 and 1885-58 as the sense and antisense primers.

The Fc portion of the molecule was generated in a PCR reaction with DNA from the EMP-Fc fusion strain #3688 (see Example 3) using the primers 1885-54 and 1200-54. The full length fusion gene was obtained from a third PCR reaction using the outside primers 1885-52 and 1200-54.

The final PCR gene product (the full length fusion gene) was digested with restriction endonucleases <u>Xba</u>I and <u>Bam</u>HI, and then ligated into the vector pAMG21 and transformed into competent <u>E. coli</u> strain

30 2596 cells as described for Fc-EMP herein. Clones were screened for the ability to produce the recombinant protein product and to possess the gene fusion having the correct nucleotide sequence. A single such clone was selected and designated Amgen strain #3798.

The nucelotide and amino acid sequences (SEQ ID NOS: 9 and 10) of the fusion protein are shown in Figure 9.

<u>TMP-Fc</u>. A DNA sequence coding for a monomer of the TPOmimetic peptide fused in-frame to the Fc region of human IgG1 was obtained fortuitously in the ligation in TMP-TMP-Fc, presumably due to the ability of primer 1885-54 to anneal to 1885-53 as well as to 1885-58. A

40 single clone having the correct nucleotide sequence for the TMP-Fc construct was selected and designated Amgen strain #3788.

The nucleotide and amino acid sequences (SEQ ID NOS: 11 and 12) of the fusion protein are shown in Figure 10.

Expression in E. coli. Cultures of each of the pAMG21-Fc-fusion constructs in <u>E. coli</u> GM221 were grown at 37 °C in Luria Broth medium containing 50 mg/ml kanamycin. Induction of gene product expression from the luxPR promoter was achieved following the addition of the synthetic autoinducer N-(3-oxohexanoyl)-DL-homoserine lactone to the culture media to a final concentration of 20 ng/ml. Cultures were incubated at 37 °C for a further 3 hours. After 3 hours, the bacterial

10 cultures were examined by microscopy for the presence of inclusion bodies and were then collected by centrifugation. Refractile inclusion bodies were observed in induced cultures indicating that the Fc-fusions were most likely produced in the insoluble fraction in <u>E. coli</u>. Cell pellets were lysed directly by resuspension in Laemmli sample buffer containing 10% b-mercaptoethanol and were analyzed by SDS-PAGE. In each case, and 15

10% b-mercaptoethanol and were analyzed by SDS-PAGE. In each case, an intense coomassie-stained band of the appropriate molecular weight was observed on an SDS-PAGE gel.

<u>pAMG21</u>. The expression plasmid pAMG21 can be derived from the Amgen expression vector pCFM1656 (ATCC #69576) which in turn be derived from the Amgen expression vector system described in US Patent No. 4,710,473. The pCFM1656 plasmid can be derived from the described pCFM836 plasmid (Patent No. 4,710,473) by:

> (a) destroying the two endogenous <u>NdeI</u> restriction sites by end filling with T4 polymerase enzyme followed by blunt end ligation;

(b) replacing the DNA sequence between the unique <u>AatII</u> and <u>ClaI</u> restriction sites containing the synthetic P_L promoter with a similar fragment obtained from pCFM636 (patent No. 4,710,473) containing the PL promoter (see SEQ ID NO: 386 below); and

25

20

- 105 -
(c) substituting the small DNA sequence between the unique <u>ClaI</u> and <u>KpnI</u> restriction sites with the oligonucleotide having the sequence of SEQ ID NO: 387.

SEQ ID NO: 386:

5	AatII	
-	5 / CTAATTCCGCTCTCACCTACCAAACAATGCCCCCCTGCAAAAAATAAAT	
10	-AAAAAACATACAGATAACCATCTGCGGTGATAAATTATCTCTGGCGGTGTTGACATAAA- -TTTTTTGTATGTCTATTGGTAGACGCCACTATTTAATAGAGACCGCCACAACTGTATTT-	
	-TACCACTGGCGGTGATACTGAGCACAT 3' -ATGGTGACCGCCACTATGACTCGTGTAGC 5' Clat	
15		
	SEQ ID NO: 387:	
າດີ	5' CGATTTGATTCTAGAAGGAGGAATAACATATGGTTAACGCGTTGGAATTCGGTAC 3' 3' TAAACTAAGATCTTCCTCCTTATTGTATACCAATTGCGCAACCTTAAGC 5' <u>Cla</u> I <u>Kpn</u> I	
20	The expression plasmid pAMG21 can then be derived from pCFM1656	by
	making a series of site-directed base changes by PCR overlapping olig)
	mutagenesis and DNA sequence substitutions. Starting with the BgIII	site
	(plasmid bp # 180) immediately 5' to the plasmid replication promoter	

P_{copB} and proceeding toward the plasmid replication genes, the base pair
 changes are as shown in Table B below.

		-	0 0 1
	pAMG21 bp #	bp in pCFM1656	bp changed to in pAMG21
5	# 204 # 428 # 500	T/A A/T	C/G G/C
1.0	# 509 # 617 # 679	G/C	insert two G/C bp T/A
10	# 980 # 994 # 1004	T/A G/C A/T	C/G A/T C/G
15	# 1007 # 1028 # 1047	C/G A/T C/G	T/A T/A T/A
	# 1178 # 1466 # 2028	G/C G/C G/C	T/A T/A bp deletion
20	# 2187 # 2480	C/G A/T	T/A T/A
	# 2499-2502	AGTG TCAC	<u>GTCA</u> CAGT
25	# 2642	TCCGAGC AGGCTCG	7 bp deletion
30	# 3435 # 3446 # 3643	G/C G/C A/T	A/T A/T T/A

Table B—Base pair changes resulting in pAMG21

The DNA sequence between the unique <u>Aat</u>II (position #4364 in pCFM1656) and <u>Sac</u>II (position #4585 in pCFM1656) restriction sites is substituted with the DNA sequence (SEQ ID NO: 23) shown in Figures 17A and 17B. During the ligation of the sticky ends of this substitution DNA sequence, the outside AatII and SacII sites are destroyed. There are

5

35

unique <u>AatII</u> and <u>SacII</u> sites in the substituted DNA.

<u>GM221 (Amgen #2596</u>). The Amgen host strain #2596 is an <u>E.coli</u> K-12 strain derived from Amgen strain #393. It has been modified to contain both the temperature sensitive lambda repressor cI857s7 in the early <u>ebg</u>

10 region and the lacl^{\circ} repressor in the late <u>ebg</u> region (68 minutes). The presence of these two repressor genes allows the use of this host with a variety of expression systems, however both of these repressors are irrelevant to the expression from luxP_R. The untransformed host has no antibiotic resistances.

15 The ribosome binding site of the cI857s7 gene has been modified to include an enhanced RBS. It has been inserted into the <u>ebg</u> operon between nucleotide position 1170 and 1411 as numbered in Genbank accession number M64441Gb_Ba with deletion of the intervening <u>ebg</u> sequence. The sequence of the insert is shown below with lower case
20 letters representing the <u>ebg</u> sequences flanking the insert shown below (SEQ ID NO: 388):

The construct was delivered to the chromosome using a recombinant phage called MMebg-cI857s7enhanced RBS #4 into F'tet/393. After recombination and resolution only the chromosomal insert described

30

above remains in the cell. It was renamed F'tet/GM101. F'tet/GM101 was then modified by the delivery of a lacl^Q construct into the <u>ebg</u> operon between nucleotide position 2493 and 2937 as numbered in the Genbank accession number M64441Gb_Ba with the deletion of the intervening <u>ebg</u> sequence. The sequence of the insert is shown below with the lower case letters representing the <u>ebg</u> sequences flanking the insert (SEQ ID NO:

389) shown below:

ggcggaaaccGACGTCCATCGAATGGTGCAAAACCTTTCGCGGTATGGCATGATAGCGCCCGGAAGAGAGTCA ATTCAGGGTGGTGAATGTGAAACCAGTAACGTTATACGATGTCGCAGAGTATGCCGGTGTCTCTTATCAGACC 10 GTTTCCCGCGTGGTGAACCAGGCCAGCCACGTTTCTGCGAAAAACGCGGGAAAAAGTCGAAGCGGCGATGGCGG AGCTGAATTACATTCCCAACCGCGTGGCACAACAACTGGCGGGCAAACAGTCGCTCCTGATTGGCGTTGCCAC AGCGTGGTGGTGTCGATGGTAGAACGAAGCGGCGTCGAAGCCTGTAAAGCGGCGGTGCACAATCTTCTCGCGC 15 TAATGTTCCGGCGTTATTTCTTGATGTCTCTGACCAGACACCCCATCAACAGTATTATTTTCTCCCCATGAAGAC GGTACGCGACTGGGCGTGGAGCATCTGGTCGCATTGGGTCACCAGCAAATCGCGCTGTTAGCGGGCCCATTAA GTTCTGTCTCGGCGGCGTCTGCGTCTGGCTGGCTGGCATAAATATCTCACTCGCAATCAAATTCAGCCGATAGC GGAACGGGAAGGCGACTGGAGTGCCATGTCCGGTTTTCAACAAACCATGCAAATGCTGAATGAGGGCATCGTT CCCACTGCGATGCTGGCTGGCCAACGATCAGATGGCGCCTGGGCGCAATGCGCGCCATTACCGAGTCCGGGCTGC 20 GCGTTGGTGCGGATATCTCGGTAGTGGGATACGACGATACCGAAGACAGCTCATGTTATATCCCCGCCGTTAAC CACCATCAAACAGGATTTTCGCCTGCTGGGGCAAACCAGCGTGGACCGCTTGCTGCAACTCTCCAGGGCCAG GCGGTGAAGGGCAATCAGCTGTTGCCCGTCTCACTGGTGAAAAGAAAAACCACCCTGGCGCCCAATACGCAAA $\tt CCGCCTCTCCCCGCGCTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGACA$ GTAAGGTACCATAGGATCCaggcacagga 25

The construct was delivered to the chromosome using a recombinant phage called AGebg-LacIQ#5 into F'tet/GM101. After recombination and resolution only the chromosomal insert described above remains in the cell. It was renamed F'tet/GM221. The F'tet episome was cured from the strain using acridine orange at a concentration of 25 μ g/ml in LB. The cured strain was identified as tetracyline sensitive and was stored as GM221.

<u>Expression</u>. Cultures of pAMG21-Fc-TMP-TMP in <u>E. coli</u> GM221 in
 Luria Broth medium containing 50 µg/ml kanamycin were incubated at
 37°C prior to induction. Induction of Fc-TMP-TMP gene product
 expression from the luxPR promoter was achieved following the addition
 of the synthetic autoinducer N-(3-oxohexanoyl)-DL-homoserine lactone to
 the culture media to a final concentration of 20 ng/ml and cultures were

40 incubated at 37°C for a further 3 hours. After 3 hours, the bacterial

PCT/US01/14310

cultures were examined by microscopy for the presence of inclusion bodies and were then collected by centrifugation. Refractile inclusion bodies were observed in induced cultures indicating that the Fc-TMP-TMP was most likely produced in the insoluble fraction in <u>E. coli</u>. Cell pellets

- 5 were lysed directly by resuspension in Laemmli sample buffer containing 10% •-mercaptoethanol and were analyzed by SDS-PAGE. An intense Coomassie stained band of approximately 30kDa was observed on an SDS-PAGE gel. The expected gene product would be 269 amino acids in length and have an expected molecular weight of about 29.5 kDa.
- 10 Fermentation was also carried out under standard batch conditions at the 10 L scale, resulting in similar expression levels of the Fc-TMP-TMP to those obtained at bench scale.

<u>Purification of Fc-TMP-TMP</u>. Cells are broken in water (1/10) by high pressure homogenization (2 passes at 14,000 PSI) and inclusion

15 bodies are harvested by centrifugation (4200 RPM in J-6B for 1 hour). Inclusion bodies are solubilized in 6M guanidine, 50mM Tris, 8mM DTT, pH 8.7 for 1 hour at a 1/10 ratio. The solubilized mixture is diluted 20 times into 2M urea, 50 mM tris, 160mM arginine, 3mM cysteine, pH 8.5. The mixture is stirred overnight in the cold and then concentrated about

- 20 10 fold by ultafiltration. It is then diluted 3 fold with 10mM Tris, 1.5M urea, pH 9. The pH of this mixture is then adjusted to pH 5 with acetic acid. The precipitate is removed by centrifugation and the supernatant is loaded onto a SP-Sepharose Fast Flow column equilibrated in 20mM NaAc, 100 mM NaCl, pH 5(10mg/ml protein load, room temperature).
- 25 The protein is eluted off using a 20 column volume gradient in the same buffer ranging from 100mM NaCl to 500mM NaCl. The pool from the column is diluted 3 fold and loaded onto a SP-Sepharose HP column in 20 mM NaAc, 150 mM NaCl, pH 5(10 mg/ml protein load, room temperature). The protein is eluted off using a 20 column volume gradient

- 110 -

in the same buffer ranging from 150 mM NaCl to 400 mM NaCl. The peak is pooled and filtered.

<u>Characterization of Fc-TMP activity</u>. The following is a summary of <u>in vivo</u> data in mice with various compounds of this invention.

5

20

25

Mice: Normal female BDF1 approximately 10-12 weeks of age. Bleed schedule: Ten mice per group treated on day 0, two groups started 4 days apart for a total of 20 mice per group. Five mice bled at each

time point, mice were bled a minimum of three times a week. Mice were anesthetized with isoflurane and a total volume of 140-160 μ l of blood was obtained by puncture of the orbital sinus. Blood was counted on a

obtained by puncture of the orbital sinus. Blood was counted on a
 Technicon H1E blood analyzer running software for murine blood.
 Parameters measured were white blood cells, red blood cells, hematocrit,
 hemoglobin, platelets, neutrophils.

Treatments: Mice were either injected subcutaneously for a bolus treatment or implanted with 7-day micro-osmotic pumps for continuous delivery. Subcutaneous injections were delivered in a volume of 0.2 ml. Osmotic pumps were inserted into a subcutaneous incision made in the skin between the scapulae of anesthetized mice. Compounds were diluted in PBS with 0.1% BSA. All experiments included one control group,

labeled "carrier" that were treated with this diluent only. The concentration of the test articles in the pumps was adjusted so that the calibrated flow rate from the pumps gave the treatment levels indicated in the graphs.

Compounds: A dose titration of the compound was delivered to mice in 7 day micro-osmotic pumps. Mice were treated with various compounds at a single dose of $100 \,\mu\text{g/kg}$ in 7 day osmotic pumps. Some of the same compounds were then given to mice as a single bolus injection.

Activity test results: The results of the activity experiments are shown in Figures 11 and 12. In dose response assays using 7-day micro-

- 111 -

osmotic pumps, the maximum effect was seen with the compound of SEQ ID NO: 18 was at 100 μ g/kg/day; the 10 μ g/kg/day dose was about 50% maximally active and 1 μ g/kg/day was the lowest dose at which activity could be seen in this assay system. The compound at 10 μ g/kg/day dose

5 was about equally active as 100 µg/kg/day unpegylated rHu-MGDF in the same experiment.

Example 3

Fc-EMP fusions

- <u>Fc-EMP</u>. A DNA sequence coding for the Fc region of human IgG1 fused in-frame to a monomer of the EPO-mimetic peptide was constructed using standard PCR technology. Templates for PCR reactions were a vector containing the Fc sequence (pFc-A3, described in International application WO 97/23614, published July 3, 1997) and a synthetic gene encoding EPO monomer. The synthetic gene for the monomer was
- constructed from the 4 overlapping oligonucleotides (SEQ ID NOS: 390 to393, respectively) shown below:

20	1798-2	TAT CCA	GAA CTT	AGG CGG	TGG CCC	AGG GCT	TGG GAC	TGG TTG	TGG G	AGG	TAC	TTA	CTC	TTG
20	1798-3	CGG GTA	TTT AGT	GCA ACC	AAC TCC	CCA ACC	AGT ACC	CAG ACC	CGG TCC	GCC ACC	GAA TTT	GTG CAT	GCA	AGA
25	1798-4	GTT ACC	TGC TAT	AAA TCC	CCG TGT	CAG CAT	GGT TTT	GGC	GGC	GGC	GGC	GGC	GGT	GGT
	1798-5	CCA GCC	GGT GCC	CAG GCC	CGG GCC	GCC GCC	AAA ACC	ATG CTG	ACA	GGA	ATA	GGT	ACC	ACC

30 The 4 oligonucleotides were annealed to form the duplex encoding an amino acid sequence (SEQ ID NOS: 394 and 395, respectively) shown below:

35	1	TAT TAC	GAA	AGG	rgg + CCT	AGG	TGG CCA	TGG -+- CCA	TGG.	AGG CCA	TAC + TGA	TTA ATG	CTC AGA	TTG ACG	CCA + GTG	CTT AAG		CCC -+- GGC	GCT GAC	GAC TGA	TTG + AC	60	
	b	М	K	G	G	G	G	G	G	G	т	Y	S	С	Н	F	G	Ρ	$\mathbf{\Gamma}$	\mathbf{T}	W	-	
40	61 b	GGT CCA V	TTG AAC C	CAA GTT K	ACC + rgg P	GCA CGT Q	GGG CCC G	TGG -+- ACC G	CGG(GCC(G	GCC GCC G	CGG + GCC G	GCC	CGG GCC G	TGG ACC G	TAC + ATG T	CTA GAT Y	TTC AAG S	CTG -+- GAC C	TCA AGT H	TTT AAA F	T ACC	+ GGGCGACTGGACC	133

This duplex was amplified in a PCR reaction using

1798-18GCA GAA GAG CCT CTC CCT GTC TCC GGG TAA
AGG TGG AGG TGG TGG TGG AGG TAC TTA
CTC Tand1798-19CTA ATT GGA TCC ACG AGA TTA ACC ACC
CTG CGG TTT GCA A

10

5

as the sense and antisense primers (SEQ ID NOS: 396 and 397, respectively).

The Fc portion of the molecule was generated in a PCR reaction with pFc-A3 using the primers

15

20

25

30

1216-52AAC ATA AGT ACC TGT AGG ATC G1798-17AGA GTA AGT ACC TCC ACC ACC ACC TCC ACC TTT ACC CGG
AGA CAG GGA GAG GCT CTT CTG C

which are SEQ ID NOS: 369 and 399, respectively. The oligonucleotides 1798-17 and 1798-18 contain an overlap of 61 nucleotides, allowing the two genes to be fused together in the correct reading frame by combining the above PCR products in a third reaction using the outside primers, 1216-52 and 1798-19.

The final PCR gene product (the full length fusion gene) was digested with restriction endonucleases <u>XbaI</u> and <u>Bam</u>HI, and then ligated into the vector pAMG21 (described below), also digested with <u>XbaI</u> and <u>Bam</u>HI. Ligated DNA was transformed into competent host cells of <u>E. coli</u> strain 2596 (GM221, described herein). Clones were screened for the ability to produce the recombinant protein product and to possess the gene fusion having the correct nucleotide sequence. A single such clone was

The nucleotide and amino acid sequence of the resulting fusion protein (SEQ ID NOS: 15 and 16) are shown in Figure 13.

selected and designated Amgen strain #3718.

<u>EMP-Fc</u>. A DNA sequence coding for a monomer of the EPOmimetic peptide fused in-frame to the Fc region of human IgG1 was constructed using standard PCR technology. Templates for PCR reactions

10

15

20

25

35

45

were the pFC-A3a vector and a synthetic gene encoding EPO monomer. The synthetic gene for the monomer was constructed from the 4 overlapping oligonucleotides 1798-4 and 1798-5 (above) and 1798-6 and 1798-7 (SEQ ID NOS: 400 and 401, respectively) shown below: 1798-6 GGC CCG CTG ACC TGG GTA TGT AAG CCA CAA GGG GGT GGG GGA GGC GGG GGG TAA TCT CGA G 1798-7 GAT CCT CGA GAT TAC CCC CCG CCT CCC CCA CCC CCT TGT GGC TTA CAT AC The 4 oligonucleotides were annealed to form the duplex encoding an amino acid sequence (SEQ ID NOS: 402 and 403, respectively) shown below: GTTTGCAAACCGCAGGGTGGCGGCGGCGGCGGCGGTGGTACCTATTCCTGTCATTTGGC 1 GTCCCACCGCCGCCGCCGCCACCATGGATAAGGACAGTAAAACCG + 60 V C K P Q G G G G G G G G T Y S C H F G 61 ----+----А PLTWVCKPQGGGGGGG This duplex was amplified in a PCR reaction using TTA TTT CAT ATG AAA GGT GGT AAC TAT TCC TGT CAT TTT 1798-21 30 and TGG ACA TGT GTG AGT TTT GTC CCC CCC GCC TCC CCC ACC CCC T 1798-22 as the sense and antisense primers (SEQ ID NOS: 404 and 405, respectively). The Fc portion of the molecule was generated in a PCR reaction with pFc-A3 using the primers 40 1798-23 AGG GGG TGG GGG AGG CGG GGG GGA CAA AAC TCA CAC ATG TCC A and 1200-54 GTT ATT GCT CAG CGG TGG CA which are SEQ ID NOS: 406 and 407, respectively. The oligonucleotides 1798-22 and 1798-23 contain an overlap of 43 nucleotides, allowing the two genes to be fused together in the correct reading frame by combining the

above PCR products in a third reaction using the outside primers, 1787-21 and 1200-54.

The final PCR gene product (the full length fusion gene) was digested with restriction endonucleases <u>Xba</u>I and <u>Bam</u>HI, and then ligated

5 into the vector pAMG21 and transformed into competent <u>E. coli</u> strain 2596 cells as described above. Clones were screened for the ability to produce the recombinant protein product and to possess the gene fusion having the correct nucleotide sequence. A single such clone was selected and designated Amgen strain #3688.

10 The nucleotide and amino acid sequences (SEQ ID NOS: 17 and 18) of the resulting fusion protein are shown in Figure 14.

<u>EMP-EMP-Fc</u>. A DNA sequence coding for a dimer of the EPOmimetic peptide fused in-frame to the Fc region of human IgG1 was constructed using standard PCR technology. Templates for PCR reactions

15 were the EMP-Fc plasmid from strain #3688 above and a synthetic gene encoding the EPO dimer. The synthetic gene for the dimer was constructed from the 8 overlapping oligonucleotides (SEQ ID NOS:408 to 415, respectively) shown below:

20	1869-23	TTT TAG	TTT AAG	ATC GAG	GAT GAA	TTG TAA	АТТ ААТ	CTA ATG	GAT	TTG	AGT	TT	AAC	ŢTT
25	1869-48	taa Aa	AAG	TTA	AAA	CTC	AAA	TCT	AGA	ATC	AAA	TCG	АТА	AAA
20	1871-72	GGA GTT	GGT TGC	аСТ ААА	TAC CCG	TCT	TGC	CAC	TTC	GGC	CCG	CTG	ACT	TGG
30	1871-73	AGT ATT	CAG TTA	CGG TTC	GCC CTC	GAA CTT	GTG C	GCA	AGA	gta	AGT	ACC	TCC	CAT
	1871-74	CAG CAT	GGT TTT	GGC GGC	GGC CCG	GGC CTG	GGC ACC	GGC TGG	GGT	GGT	ACC	TAT	TCC	$\mathbf{T}\mathbf{G}\mathbf{T}$
35	1871-75	AAA ACC	ATG CTG	ACA CGG	GGA TTT	ATA GCA	GGT AAC	ACC CCA	ACC	GCC	GCC	GCC	GCC	GCC
4.0	1871-78	GTA AAA	TGT ACT	AAG CAC	CCA ACA	CAA TGT	GGG CCA	GGT	GGG	GGA	GGC	GGG	GGG	GAC
40	1871-79	AGT ACA	TTT TAC	GTC CCA	CCC GGT	CCC CAG	GCC CGG	TCC GCC	CCC	ACC	ccc	TTG	TGG	CTT

- 115 -

10

15

20

25

The 8 oligonucleotides were annealed to form the duplex encoding an amino acid sequence (SEQ ID NOS: 416 and 417, respectively) shown below:

TTTTTTATCGATTTGATTCTAGATTTGAGTTTTAACTTTTAGAAGGAGGAATAAAATATG AAAAAATAGCTAAACTAAGATCTAAACTCAAAATTGAAAATCTTCCTCCTTATTTTATAC а GGAGGTACTTACTCTTGCCACTTCGGCCCGCTGACTTGGGTTTGCAAACCGCAGGGTGGC 61 · + 120 -------+-----+-CCTCCATGAATGAGAACGGTGAAGCCGGGCGACTGAACCCAAACGTTTGGCGTCCCACCG GPLTWVCKP a YSCHF 0 G ${\tt GGCGGCGGCGGCGGTGGTACCTATTCCTGTCATTTGGCCCGCTGACCTGGGTATGTAAG}$ 121 -180 а G G G G G T Y S C H F G P L T W V C K 181 ----- 228 GGTGTTCCCCCACCCCCCCCCCCCCCTGTTTGA Q G G G G G G G D K T H T C P а

This duplex was amplified in a PCR reaction using 1869-23 and 1871-79 (shown above) as the sense and antisense primers.

The Fc portion of the molecule was generated in a PCR reaction with strain 3688 DNA using the primers 1798-23 and 1200-54 (shown above).

30

The oligonucleotides 1871-79 and 1798-23 contain an overlap of 31 nucleotides, allowing the two genes to be fused together in the correct reading frame by combining the above PCR products in a third reaction using the outside primers, 1869-23 and 1200-54.

The final PCR gene product (the full length fusion gene) was
digested with restriction endonucleases <u>Xba</u>I and <u>Bam</u>HI, and then ligated into the vector pAMG21 and transformed into competent <u>E. coli</u> strain
2596 cells as described for Fc-EMP. Clones were screened for ability to produce the recombinant protein product and possession of the gene fusion having the correct nucleotide sequence. A single such clone was
selected and designated Amgen strain #3813.

The nucleotide and amino acid sequences (SEQ ID NOS: 19 and 20, respectively) of the resulting fusion protein are shown in Figure 15. There

is a silent mutation at position 145 (A to G, shown in boldface) such that the final construct has a different nucleotide sequence than the oligonucleotide 1871-72 from which it was derived.

<u>Fc-EMP-EMP</u>. A DNA sequence coding for the Fc region of human
 IgG1 fused in-frame to a dimer of the EPO-mimetic peptide was
 constructed using standard PCR technology. Templates for PCR reactions
 were the plasmids from strains 3688 and 3813 above.

The Fc portion of the molecule was generated in a PCR reaction with strain 3688 DNA using the primers 1216-52 and 1798-17 (shown

- 10 above). The EMP dimer portion of the molecule was the product of a second PCR reaction with strain 3813 DNA using the primers 1798-18 (also shown above) and SEQ ID NO: 418, shown below:
- 15

20

25

1798-20 CTA ATT GGA TCC TCG AGA TTA ACC CCC TTG TGG CTT ACAT

The oligonucleotides 1798-17 and 1798-18 contain an overlap of 61 nucleotides, allowing the two genes to be fused together in the correct reading frame by combining the above PCR products in a third reaction using the outside primers, 1216-52 and 1798-20.

The final PCR gene product (the full length fusion gene) was digested with restriction endonucleases <u>Xba</u>I and <u>Bam</u>HI, and then ligated into the vector pAMG21 and transformed into competent <u>E. coli</u> strain 2596 cells as described for Fc-EMP. Clones were screened for the ability to produce the recombinant protein product and to possess the gene fusion having the correct nucleotide sequence. A single such clone was selected and designated Amgen strain #3822.

The nucleotide and amino acid sequences (SEQ ID NOS: 21 and 22, respectively) of the fusion protein are shown in Figure 16.

<u>Characterization of Fc-EMP activity</u>. Characterization was carried
out <u>in vivo</u> as follows.

Mice: Normal female BDF1 approximately 10-12 weeks of age.

WO 01/83525

Bleed schedule: Ten mice per group treated on day 0, two groups started 4 days apart for a total of 20 mice per group. Five mice bled at each time point, mice were bled a maximum of three times a week. Mice were anesthetized with isoflurane and a total volume of 140-160 ml of

 blood was obtained by puncture of the orbital sinus. Blood was counted on a Technicon H1E blood analyzer running software for murine blood.
 Parameters measured were WBC, RBC, HCT, HGB, PLT, NEUT, LYMPH.

Treatments: Mice were either injected subcutaneously for a bolus treatment or implanted with 7 day micro-osmotic pumps for continuous

- 10 delivery. Subcutaneous injections were delivered in a volume of 0.2 ml. Osmotic pumps were inserted into a subcutaneous incision made in the skin between the scapulae of anesthetized mice. Compounds were diluted in PBS with 0.1% BSA. All experiments included one control group, labeled "carrier" that were treated with this diluent only. The
- 15 concentration of the test articles in the pumps was adjusted so that the calibrated flow rate from the pumps gave the treatment levels indicated in the graphs.

Experiments: Various Fc-conjugated EPO mimetic peptides (EMPs) were delivered to mice as a single bolus injection at a dose of 100 µg/kg. Fc-EMPs were delivered to mice in 7-day micro-osmotic pumps. The pumps were not replaced at the end of 7 days. Mice were bled until day

51 when HGB and HCT returned to baseline levels.

<u>Example 4</u>

TNF- α inhibitors

25

20

<u>Fc-TNF- α inhibitors</u>. A DNA sequence coding for the Fc region of human IgG1 fused in-frame to a monomer of the TNF- α inhibitory peptide was constructed using standard PCR technology. The Fc and 5 glycine linker portion of the molecule was generated in a PCR reaction with DNA from the Fc-EMP fusion strain #3718 (see Example 3) using the sense

PCT/US01/14310

primer 1216-52 and the antisense primer 2295-89 (SEQ ID NOS: 369 and 398, respectively). The nucleotides encoding the TNF- α inhibitory peptide were provided by the PCR primer 2295-89 shown below:

- 5
 1216-52
 AAC ATA AGT ACC TGT AGG ATC G

 2295-89
 CCG CGG ATC CAT TAC GGA CGG TGA CCC AGA GAG GTG TTT TTG TAG

 TGC GGC AGG AAG TCA CCA CCA CCT CCA CCT TTA CCC
- 10 The oligonucleotide 2295-89 overlaps the glycine linker and Fc portion of the template by 22 nucleotides, with the PCR resulting in the two genes being fused together in the correct reading frame.

The PCR gene product (the full length fusion gene) was digested with restriction endonucleases <u>Nde</u>I and <u>Bam</u>HI, and then ligated into the vector pAMG21 and transformed into competent <u>E. coli</u> strain 2596 cells as described for EMP-Fc herein. Clones were screened for the ability to produce the recombinant protein product and to possess the gene fusion having the correct nucleotide sequence. A single such clone was selected and designated Amgen strain #4544.

The nucleotide and amino acid sequences (SEQ ID NOS: 1055 and 1056) of the fusion protein are shown in Figures 19A and 19B.

<u>TNF- α inhibitor-Fc</u>. A DNA sequence coding for a TNF- α inhibitory peptide fused in-frame to the Fc region of human IgG1 was constructed using standard PCR technology. The template for the PCR reaction was a plasmid containing an unrelated peptide fused via a five glycine linker to Fc. The nucleotides encoding the TNF- α inhibitory peptide were provided by the sense PCR primer 2295-88, with primer 1200-54 serving as the antisense primer (SEQ ID NOS: 1117 and 407, respectively). The primer sequences are shown below:

30

20

25

2295-88 GAA TAA CAT ATG GAC TTC CTG CCG CAC TAC AAA AAC ACC TCT CTG GGT CAC CGT CCG GGT GGA GGC GGT GGG GAC AAA ACT

35

15

1200-54 GTT ATT GCT CAG CGG TGG CA

The oligonucleotide 2295-88 overlaps the glycine linker and Fc portion of the template by 24 nucleotides, with the PCR resulting in the two genes being fused together in the correct reading frame.

The PCR gene product (the full length fusion gene) was digested with restriction endonucleases <u>Nde</u>I and <u>Bam</u>HI, and then ligated into the vector pAMG21 and transformed into competent <u>E. coli</u> strain 2596 cells as described for EMP-Fc herein. Clones were screened for the ability to

10 produce the recombinant protein product and to possess the gene fusion having the correct nucleotide sequence. A single such clone was selected and designated Amgen strain #4543.

The nucleotide and amino acid sequences (SEQ ID NOS: 1057 and 1058) of the fusion protein are shown in Figures 20A and 20B.

<u>Expression in E. coli</u>. Cultures of each of the pAMG21-Fc-fusion constructs in <u>E. coli</u> GM221 were grown at 37 °C in Luria Broth medium containing 50 mg/ml kanamycin. Induction of gene product expression from the luxPR promoter was achieved following the addition of the synthetic autoinducer N-(3-oxohexanoyl)-DL-homoserine lactone to the

20 culture media to a final concentration of 20 ng/ml. Cultures were incubated at 37 °C for a further 3 hours. After 3 hours, the bacterial cultures were examined by microscopy for the presence of inclusion bodies and were then collected by centrifugation. Refractile inclusion bodies were observed in induced cultures indicating that the Fc-fusions

25 were most likely produced in the insoluble fraction in <u>E. coli</u>. Cell pellets were lysed directly by resuspension in Laemmli sample buffer containing 10% β-mercaptoethanol and were analyzed by SDS-PAGE. In each case, an intense coomassie-stained band of the appropriate molecular weight was observed on an SDS-PAGE gel.

<u>Purification of Fc-peptide fusion proteins</u>. Cells are broken in water (1/10) by high pressure homogenization (2 passes at 14,000 PSI) and inclusion bodies are harvested by centrifugation (4200 RPM in J-6B for 1 hour). Inclusion bodies are solubilized in 6M guanidine, 50mM Tris, 8mM

- 5 DTT, pH 8.7 for 1 hour at a 1/10 ratio. The solubilized mixture is diluted 20 times into 2M urea, 50 mM tris, 160mM arginine, 3mM cysteine, pH 8.5. The mixture is stirred overnight in the cold and then concentrated about 10 fold by ultafiltration. It is then diluted 3 fold with 10mM Tris, 1.5M urea, pH 9. The pH of this mixture is then adjusted to pH 5 with acetic
- 10 acid. The precipitate is removed by centrifugation and the supernatant is loaded onto a SP-Sepharose Fast Flow column equilibrated in 20mM NaAc, 100 mM NaCl, pH 5 (10mg/ml protein load, room temperature). The protein is eluted from the column using a 20 column volume gradient in the same buffer ranging from 100mM NaCl to 500mM NaCl. The pool
- 15 from the column is diluted 3 fold and loaded onto a SP-Sepharose HP column in 20mM NaAc, 150mM NaCl, pH 5(10mg/ml protein load, room temperature). The protein is eluted using a 20 column volume gradient in the same buffer ranging from 150mM NaCl to 400mM NaCl. The peak is pooled and filtered.

<u>Characterization of activity of Fc-TNF- α inhibitor and TNF- α </u> <u>inhibitor -Fc</u>. Binding of these peptide fusion proteins to TNF- α can be characterized by BIAcore by methods available to one of ordinary skill in the art who is armed with the teachings of the present specification.

Example 5

IL-1 Antagonists

<u>Fc-IL-1 antagonist</u>. A DNA sequence coding for the Fc region of human IgG1 fused in-frame to a monomer of an IL-1 antagonist peptide was constructed using standard PCR technology. The Fc and 5 glycine linker portion of the molecule was generated in a PCR reaction with DNA

20

10

15

20

from the Fc-EMP fusion strain #3718 (see Example 3) using the sense primer 1216-52 and the antisense primer 2269-70 (SEQ ID NOS: 369 and 1118, respectively). The nucleotides encoding the IL-1 antagonist peptide were provided by the PCR primer 2269-70 shown below:

1216-52AAC ATA AGT ACC TGT AGG ATC G2269-70CCG CGG ATC CAT TAC AGC GGC AGA GCG TAC GGC TGC CAG TAA CCCGGG GTC CAT TCG AAA CCA CCA CCT CCA CCT TTA CCC

The oligonucleotide 2269-70 overlaps the glycine linker and Fc portion of the template by 22 nucleotides, with the PCR resulting in the two genes being fused together in the correct reading frame.

The PCR gene product (the full length fusion gene) was digested with restriction endonucleases <u>Nde</u>I and <u>Bam</u>HI, and then ligated into the vector pAMG21 and transformed into competent <u>E. coli</u> strain 2596 cells as described for EMP-Fc herein. Clones were screened for the ability to produce the recombinant protein product and to possess the gene fusion having the correct nucleotide sequence. A single such clone was selected and designated Amgen strain #4506.

The nucleotide and amino acid sequences (SEQ ID NOS: 1059 and 1060) of the fusion protein are shown in Figures 21A and 21B.

<u>IL-1 antagonist-Fc</u>. A DNA sequence coding for an IL-1 antagonist peptide fused in-frame to the Fc region of human IgG1 was constructed using standard PCR technology. The template for the PCR reaction was a plasmid containing an unrelated peptide fused via a five glycine linker to Fc. The nucleotides encoding the IL-1 antagonist peptide were provided by the sense PCR primer 2269-69, with primer 1200-54 serving as the

30 antisense primer (SEQ ID NOS: 1119 and 407, respectively). The primer sequences are shown below:

WO 01/83525

5

PCT/US01/14310

2269-69GAA TAA CAT ATG TTC GAA TGG ACC CCG GGT TAC TGG CAG CCG TAC GCT
CTG CCG CTG GGT GGA GGC GGT GGG GAC AAA ACT1200-54GTT ATT GCT CAG CGG TGG CA

The oligonucleotide 2269-69 overlaps the glycine linker and Fc portion of the template by 24 nucleotides, with the PCR resulting in the two genes being fused together in the correct reading frame.

The PCR gene product (the full length fusion gene) was digested 10 with restriction endonucleases <u>NdeI</u> and <u>Bam</u>HI, and then ligated into the vector pAMG21 and transformed into competent <u>E. coli</u> strain 2596 cells as described for EMP-Fc herein. Clones were screened for the ability to produce the recombinant protein product and to possess the gene fusion having the correct nucleotide sequence. A single such clone was selected 15 and designated Amgen strain #4505.

The nucleotide and amino acid sequences (SEQ ID NOS: 1061 and 1062) of the fusion protein are shown in Figures 22A and 22B. Expression and purification were carried out as in previous examples.

<u>Characterization of Fc-IL-1 antagonist peptide and IL-1 antagonist</u> <u>peptide-Fc activity</u>. IL-1 Receptor Binding competition between IL-1β, IL-1RA and Fc-conjugated IL-1 peptide sequences was carried out using the IGEN system. Reactions contained 0.4 nM biotin-IL-1R + 15 nM IL-1-TAG + 3 uM competitor + 20 ug/ml streptavidin-conjugate beads, where competitors were IL-1RA, Fc-IL-1 antagonist, IL-1 antagonist-Fc).

25 Competition was assayed over a range of competitor concentrations from3 uM to 1.5 pM. The results are shown in Table C below:

Table C—Results	from IL-1 Rece	ptor Binding (Competition Assay	Ÿ
-----------------	----------------	----------------	-------------------	---

		IL-1pep-Fc	Fc-IL-1pep	IL-1ra
5	KI EC50	281.5 530.0	59.58 112.2	1.405 2.645
	95% Confidence	e Intervals		
10	EC50	280.2 to 1002	54.75 to 229.8	1.149 to 6.086
15	KI	148.9 to 532.5	29.08 to 122.1	0.6106 to 3.233
ТĴ	Goodness of Fi	t .		
	R ²	0.9790	0.9687	0.9602

40

<u>Example 6</u>

VEGF-Antagonists

<u>Fc-VEGF Antagonist</u>. A DNA sequence coding for the Fc region of human IgG1 fused in-frame to a monomer of the VEGF mimetic peptide was constructed using standard PCR technology. The templates for the
PCR reaction were the pFc-A3 plasmid and a synthetic VEGF mimetic peptide gene. The synthetic gene was assembled by annealing the following two oligonucleotides primer (SEQ ID NOS: 1120 and 1121, respectively):

 2293-11
 GTT GAA CCG AAC TGT GAC ATC CAT GTT ATG TGG GAA TGG GAA

 30
 TGT TTT GAA CGT CTG

 2293-12
 CAG ACG TTC AAA ACA TTC CCA TTC CCA CAT AAC ATG GAT GTC ACA GTT CGG TTC AAC

The two oligonucleotides anneal to form the following duplex encoding an amino acid sequence shown below (SEQ ID NOS 1122 and 1133):

> GTTGAACCGAACTGTGACATCCATGTTATGTGGGGAATGGGAATGTTTTGAACGTCTG 1 ----- 57 CAACTTGGCTTGACACTGTAGGTACAATACACCCCTTACCAAAACTTGCAGAC

WO 01/83525

a VEPNCDIHVMWEWECFERL -

5 This duplex was amplified in a PCR reaction using 2293-05 and 2293-06 as the sense and antisense primers (SEQ ID NOS. 1125 and 1126).

The Fc portion of the molecule was generated in a PCR reaction with the pFc-A3 plasmid using the primers 2293-03 and 2293-04 as the sense and antisense primers (SEQ ID NOS. 1123 and 1124, respectively).

10 The full length fusion gene was obtained from a third PCR reaction using the outside primers 2293-03 and 2293-06. These primers are shown below:

	2293-03	$\mathbf{A}\mathbf{T}\mathbf{T}$	TGA	\mathbf{TTC}	TAG	AAG	GAG	GAA	TAA	CAT	ATG	GAC	AAA	ACT	CAC
		ACA	$\mathbf{T}\mathbf{G}\mathbf{T}$												
15															
	2293-04	GTC	ACA	GTT	CGG	TTC	AAC	ACC	ACC	ACC	ACC	ACC	$\mathbf{T}\mathbf{T}\mathbf{T}$	ACC	CGG
		AGA	CAG	GGA											
	2293-05	TCC	CTG	TCT	CCG	\mathbf{GGT}	AAA	\mathbf{GGT}	\mathbf{GGT}	\mathbf{GGT}	\mathbf{GGT}	$\mathbf{G}\mathbf{G}\mathbf{T}$	\mathbf{GTT}	GAA	CCG
20		AAC	$\mathbf{T}\mathbf{G}\mathbf{T}$	GAC	ATC										
					,										
	2293-06	CCG	CGG	ATC	CTC	GAG	TTA	CAG	ACG	TTC	AAA	ACA	TTC	CCA	

The PCR gene product (the full length fusion gene) was digested with restriction endonucleases <u>Nde</u>I and <u>Bam</u>HI, and then ligated into the vector pAMG21 and transformed into competent <u>E. coli</u> strain 2596 cells as described for EMP-Fc herein. Clones were screened for the ability to produce the recombinant protein product and to possess the gene fusion having the correct nucleotide sequence. A single such clone was selected and designated Amgen strain #4523.

The nucleotide and amino acid sequences (SEQ ID NOS: 1063 and 1064) of the fusion protein are shown in Figures 23A and 23B.

WO 01/83525

10

<u>VEGF antagonist -Fc</u>. A DNA sequence coding for a VEGF mimetic peptide fused in-frame to the Fc region of human IgG1 was constructed using standard PCR technology. The templates for the PCR reaction were the pFc-A3 plasmid and the synthetic VEGF mimetic peptide gene

5 described above. The synthetic duplex was amplified in a PCR reaction using 2293-07 and 2293-08 as the sense and antisense primers (SEQ ID NOS. 1127 and 1128, respectively).

The Fc portion of the molecule was generated in a PCR reaction with the pFc-A3 plasmid using the primers 2293-09 and 2293-10 as the sense and antisense primers (SEQ ID NOS. 1129 and 1130, respectively).

The full length fusion gene was obtained from a third PCR reaction using the outside primers 2293-07 and 2293-10. These primers are shown below:

	2293-07	\mathbf{ATT}	TGA	TTC	TAG	AAG	GAG	GAA	TAA	CAT	ATG	GTT	GAA	CCG	AAC
15		TGT	GAC												
	2293-08	ACA	TGT	GTG	AGT	$\mathbf{T}\mathbf{T}\mathbf{T}$	GTC	ACC	ACC	ACC	ACC	ACC	CAG	ACG	TTC
		AAA	ACA	TTC											
20	2293-09	GAA	TGT	TTT	GAA	CGT	CTG	GGT	GGT	GGT	GGT	GGT	GAC	AAA	ACT
		CAC	ACA	TGT											
	2293-10	CCG	CGG	ATC	CTC	GAG	TTA	TTT	ACC	CGG	AGA	CAG	GGA	GAG	
	The P	CR g	ene j	prod	uct (the f	ull le	ngth	ı fusi	on g	ene)	was	dige	sted	
25	with restricti	on er	ndon	ucle	ases	Nde	Ianc	l <u>Bar</u>	<u>n</u> HI,	and	then	liga	ted i	nto tl	ne
	vector pAM	G21 a	nd t	ransi	form	ed ir	nto co	ompe	etent	<u>E. c</u>	<u>oli</u> st	rain	2596	cells	as
	described for	EM	P-Fc	here	in. C	lone	s we	re sc	reen	ed fo	or the	e abil	ity to	С	
	produce the	recor	nbin	ant p	prote	in pi	rodu	ct an	d to	poss	ess t	he ge	ene f	usior	1
	having the c	orrec	t nuc	leoti	ide s	eque	nce.	A siı	ngle	such	clon	le wa	is sel	ected	1
30	and designat	ed A	.mge	n str	ain #	4524	! .								

The nucleotide and amino acid sequences (SEQ ID NOS: 1065 and 1066) of the fusion protein are shown in Figures 24A and 24B. Expression and purification were carried out as in previous examples.

<u>Example 7</u>

MMP Inhibitors

<u>Fc-MMP inhibitor</u>. A DNA sequence coding for the Fc region of human IgG1 fused in-frame to a monomer of an MMP inhibitory peptide was constructed using standard PCR technology. The Fc and 5 glycine

10 linker portion of the molecule was generated in a PCR reaction with DNA from the Fc-TNF-α inhibitor fusion strain #4544 (see Example 4) using the sense primer 1216-52 and the antisense primer 2308-67 (SEQ ID NOS: 369 and 1131, respectively). The nucleotides encoding the MMP inhibitor peptide were provided by the PCR primer 2308-67 shown below:

15

5

1216-52	AAC	ATA	AGT	ACC	TGT	AGG	ATC	G						
2308-67	CCG CAA	CGG CCA	ATC CCA	CAT CCT	TAG CCA	CAC CCT	AGG TTA	GTG CCC	AAA	CCC	CAG	TGG	GTG	GTG

20

The oligonucleotide 2308-67 overlaps the glycine linker and Fc portion of the template by 22 nucleotides, with the PCR resulting in the two genes being fused together in the correct reading frame.

The PCR gene product (the full length fusion gene) was digested with restriction endonucleases <u>NdeI</u> and <u>Bam</u>HI, and then ligated into the vector pAMG21 and transformed into competent <u>E. coli</u> strain 2596 cells as described for EMP-Fc herein. Clones were screened for the ability to produce the recombinant protein product and to possess the gene fusion having the correct nucleotide sequence. A single such clone was selected

30 and designated Amgen strain #4597.

The nucleotide and amino acid sequences (SEQ ID NOS: 1067 and 1068) of the fusion protein are shown in Figures 25A and 25B. Expression and purification were carried out as in previous examples.

WO 01/83525

<u>MMP Inhibitor-Fc</u>. A DNA sequence coding for an MMP inhibitory peptide fused in-frame to the Fc region of human IgG1 was constructed using standard PCR technology. The Fc and 5 glycine linker portion of the molecule was generated in a PCR reaction with DNA from the Fc-TNF- α

inhibitor fusion strain #4543 (see Example 4). The nucleotides encoding the MMP inhibitory peptide were provided by the sense PCR primer 2308-66, with primer 1200-54 serving as the antisense primer (SEQ ID NOS: 1132 and 407, respectively). The primer sequences are shown below:

2308-66GAA TAA CAT ATG TGC ACC ACC CAC TGG GGT TTC ACC CTG TGC
GGT GGA GGC GGT GGG GAC AAA1200-54GTT ATT GCT CAG CGG TGG CA

15

10

The oligonucleotide 2269-69 overlaps the glycine linker and Fc portion of the template by 24 nucleotides, with the PCR resulting in the two genes being fused together in the correct reading frame.

The PCR gene product (the full length fusion gene) was digested with restriction endonucleases <u>NdeI</u> and <u>BamHI</u>, and then ligated into the vector pAMG21 and transformed into competent <u>E. coli</u> strain 2596 cells as described for EMP-Fc herein. Clones were screened for the ability to produce the recombinant protein product and to possess the gene fusion having the correct nucleotide sequence. A single such clone was selected and designated Amgen strain #4598.

The nucleotide and amino acid sequences (SEQ ID NOS: 1069 and 1070) of the fusion protein are shown in Figures 26A and 26B.

* *

The invention now being fully described, it will be apparent to one of ordinary skill in the art that many changes and modifications can be made thereto, without departing from the spirit and scope of the invention as set forth herein.

Abbreviations

Abbreviations used throughout this specification are as defined below, unless otherwise defined in specific circumstances.

5	Ac	acetyl (used to refer to acetylated residues)
	AcBpa	acetylated p-benzoyl-L-phenylalanine
	ADCC	antibody-dependent cellular cytotoxicity
	Aib	aminoisobutyric acid
	bA	beta-alanine
10	Вра	p-benzoyl-L-phenylalanine
	BrAc	bromoacetyl ($BrCH_2C(O)$
	BSA	Bovine serum albumin
	Bzl	Benzyl
	Cap	Caproic acid
15	CTL	Cytotoxic T lymphocytes
	CTLA4	Cytotoxic T lymphocyte antigen 4
	DARC	Duffy blood group antigen receptor
	DCC	Dicylcohexylcarbodiimide
x	Dde	1-(4,4-dimethyl-2,6-dioxo-cyclohexylidene)ethyl
20	EMP	Erythropoietin-mimetic peptide
	ESI-MS	Electron spray ionization mass spectrometry
	EPO	Erythropoietin
	Fmoc	fluorenylmethoxycarbonyl
	G-CSF	Granulocyte colony stimulating factor
25	GH	Growth hormone
	HCT	hematocrit
	HGB	hemoglobin
	hGH	Human growth hormone
	HOBt	1-Hydroxybenzotriazole

	HPLC	high performance liquid chromatography
	IL	interleukin
	IL-R	interleukin receptor
	IL-1R	interleukin-1 receptor
5	IL-1ra	interleukin-1 receptor antagonist
	Lau	Lauric acid
	LPS	lipopolysaccharide
	LYMPH	lymphocytes
	MALDI-MS	Matrix-assisted laser desorption ionization mass
10		spectrometry
	Me	methyl
	MeO	methoxy
	MHC	major histocompatibility complex
	MMP	matrix metalloproteinase
15	MMPI	matrix metalloproteinase inhibitor
· ·	1-Nap	1-napthylalanine
	NEUT	neutrophils
	NGF	nerve growth factor
· · · ·	Nle	norleucine
20	NMP	N-methyl-2-pyrrolidinone
	PAGE	polyacrylamide gel electrophoresis
	PBS	Phosphate-buffered saline
	Pbf	2,2,4,6,7-pendamethyldihydrobenzofuran-5-sulfonyl
	PCR	polymerase chain reaction
25	Pec	pipecolic acid
,	PEG	Poly(ethylene glycol)
	pGlu	pyroglutamic acid
	Pic	picolinic acid
	PLT	platelets

	рY	phosphotyrosine
	RBC	red blood cells
	RBS	ribosome binding site
	RT	room temperature (25 °C)
5	Sar	sarcosine
	SDS	sodium dodecyl sulfate
	STK	serine-threonine kinases
	t-Boc	tert-Butoxycarbonyl
	tBu	tert-Butyl
10	TGF	tissue growth factor
	THF	thymic humoral factor
	TK	tyrosine kinase
	TMP	Thrombopoietin-mimetic peptide
	TNF	Tissue necrosis factor
15	TPO	Thrombopoietin
	TRAIL	TNF-related apoptosis-inducing ligand
	Trt	trityl
	UK	urokinase
	UKR	urokinase receptor
20	VEGF	vascular endothelial cell growth factor
	VIP	vasoactive intestinal peptide
	WBC	white blood cells

- 131 -

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:-

1. A composition of matter of the formula

$$(X^{1})_{a}-F^{1}-(X^{2})_{b}$$

and multimers thereof, wherein:

 F^1 is an Fc domain;

X¹ and X² are each independently selected from $-(L^1)_c - P^1$, $-(L^1)_c - P^1 - (L^2)_d - P^2$, $-(L^1)_c - P^1 - (L^2)_d - P^2 - (L^3)_e - P^3$, and $-(L^1)_c - P^1 - (L^2)_d - P^2 - (L^3)_e - P^3 - (L^4)_f - P^4$

 P^1 , P^2 , P^3 , and P^4 are each independently randomised angiopoietin-2 binding peptide sequences;

10

5

 L^1 , L^2 , L^3 , and L^4 are each independently linkers; and

a, b, c, d, e, and f are each independently 0 or 1, provided that at least one of a and b is 1 and wherein "peptide" refers to molecules 2 to 40 amino acids and wherein neither X^1 nor X^2 is a native protein.

2. The composition of matter of Claim 1 of the formulae

15

or

 F^1 - X^2 .

 $X^{1}-F^{1}$

3. The composition of matter of Claim 1 of the formula

 $F^{1}-(L^{1})_{c}-P^{1}$.

20 4. The composition of matter of Claim 1 of the formula

 $F^{1}-(L^{1})_{c}-P^{1}-(L^{2})_{d}-P^{2}.$

- 5. The composition of matter of Claim 1 wherein F^1 is an IgG Fc domain.
- 6. The composition of matter of Claim 1 wherein F^1 is an IgG1 Fc domain.
- 7. The composition of matter of Claim 1 wherein F^1 comprises the sequence of SEQ

25 ID NO: 2.

- 8. A DNA encoding a composition of matter of Claim 1.
- 9. An expression vector comprising the DNA of Claim 8.
- 10. A host cell comprising the expression vector of Claim 9.
- 11. The cell of Claim 10, wherein the cell is an <u>E. coli</u> cell.

30 12. A process for preparing an angiopoietin-2 binding compound, which comprises

a) selecting at least one randomised angiopoietin-2 binding peptide; and

10

- b) preparing an angiopoietin-2 binding compound comprising at least one Fc domain covalently linked to at least one amino acid sequence of the selected peptide or peptides.
- The process of Claim 12, wherein the peptide is selected in a process comprising screening of a phage display library, an <u>E. coli</u> display library, a ribosomal library, or a chemical peptide library.
 - 14. The process of Claim 12, wherein the Fc domain is an IgG Fc domain.
 - 15. The process of Claim 12, wherein the vehicle is an IgG1 Fc domain.
- 16. The process of Claim 12, wherein the vehicle comprises the sequence of SEQ ID NO: 2.
 - 17. The process of Claim 12, wherein the compound prepared is of the formula $(X^{1})_{a}-F^{1}-(X^{2})_{b}$

and multimers thereof, wherein:

F¹ is an Fc domain;

15 X^1 and X^2 are each independently selected from $-(L^1)_c -P^1$, $-(L^1)_c -P^1 - (L^2)_d -P^2$, $-(L^1)_c -P^1 - (L^2)_d -P^2 - (L^3)_e -P^3$, and $-(L^1)_c -P^1 - (L^2)_d -P^2 - (L^3)_e -P^3 - (L^4)_f -P^4$ P^1 , P^2 , P^3 , and P^4 are each independently sequences of pharmacologically active

P¹, P², P³, and P⁴ are each independently sequences of pharmacologically active peptides;

 L^1 , L^2 , L^3 , and L^4 are each independently linkers; and

- 20 a, b, c, d, e, and f are each independently 0 or 1, provided that at least one of a and b is 1.
 - 18. The process of Claim 17, wherein the compound prepared is of the formulae

$$X^{1}$$
-F

or

$$F^1-X^2$$

25

19. The process of Claim 17, wherein the compound prepared is of the formulae $F^1-(L^1)_c-P^1$

or

$$F^{1}-(L^{1})_{c}-P^{1}-(L^{2})_{d}-P^{2}$$

- 30 20. The process of Claim 17, wherein F^1 is an IgG Fc domain.
 - 21. The process of Claim 17, wherein F^1 is an IgG1 Fc domain.
 - 22. The process of Claim 17, wherein F^1 comprises the sequence of SEQ ID NO: 2.

10

- 23. An angiopoietin-2 binding compound produced by a process according to any one or claims 12 to 23.
- 24. A composition of matter of the formula

 $(X^{1})_{a}-F^{1}(X^{2})_{b}$

- and multimers thereof, substantially as herein described with reference to any one or more of the examples but excluding comparative examples.
 - 25. A DNA encoding a composition of matter of the formula

$$(X^1)_a$$
- $F^1(X^2)_b$

and multimers thereof, substantially as herein described with reference to any one or more of the examples but excluding comparative examples.

26. An expression vector comprising a DNA encoding a composition of matter of the formula

$$(X^{1})_{a}-F^{1}(X^{2})_{b}$$

and multimers thereof, substantially as herein described with reference to any one

- 15 or more of the examples but excluding comparative examples.
 - 27. A host cell comprising an expression vector, the expression vector comprising a DNA encoding a composition of matter of the formula

$$(X^{1})_{a}-F^{1}(X^{2})_{b}$$

and multimers thereof, substantially as herein described with reference to any one

- 20 or more of the examples but excluding comparative examples.
 - 28. A process for preparing an angiopoietin-2 binding compound, substantially as herein described with reference to any one or more of the examples but excluding comparative examples.

DATED this 30th day of MARCH, 2005

25 Shelston IP Attorneys for: AMGEN, INC.

WO 01/83525

PCT/US01/14310

FIGURE 1

peptide selection

 \downarrow

peptide optimization

 \downarrow

formation of Fc-peptide DNA construct \downarrow

insertion of construct into expression vector

 \downarrow

transfection of host cell with vector

\downarrow

expression of vector in host cell

 \downarrow

Fc multimer formation in host cell

 \downarrow

isolation of Fc multimer from host cell

Fc-

D

FIGURE 2

Fc-F

С

Е

В

С

3/36

		ATGGACAAAACTCACACATGTCCACCTTGTCCAGGCTCCGGAACTCCTGGGGGGGCCGTCA	50
	-	TACCTGTTTTGAGTGTGTACAGGTGGAACAGGTCGAGGCCTTGAGGACCCCCCTGGCAGT	»U
a		M D K T H T C P P C P A P E L L G G P S -	
	61	GTCTTCCTCTTCCCCCCAAAAACCCAAGGACACCCTCATGATCTCCCCGGACCCCTGAGGTC	20
		CAGAAGGAGAAGGGGGGTTTTGGGTTCCTGTGGGAGTACTAGAGGGCCTGGGGACTCCAG	
a		VFLFPPKPKDTLMISRTPEV -	
	121	ACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTG lttttttt	30
		TGTACGCACCACCTGCACTCGGTGCTTCTGGGACTCCAGTTCAAGTTGACCATGCAC	
d			
	181		10
a		D G V E V H N A K T K P R E E O Y N S T -	
		~ TACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTAC	
	241	L	00
a		YRVVSVLTVLHQDWLNGKEY -	
	301	AAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCC	50
	201	TTCACGTTCCAGAGGTTGTTTCGGGAGGGTCGGGGGGGGG	10
a		KCKVSNKALPAPIEKTISKA -	
	361	AAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACC l++	20
		TTTCCCGTCGGGGCTCTTGGTGTCCACATGTGGGACGGGGGGGG	
a			
	421		30
a		K N O V S L T C L V K G F Y P S D I A V -	
		~ GAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGAC	
	481	CTCACCCTCTCGTTACCCGTCGGCCTCTTGTTGATGTTCTGGTGCGGAGGGCACGACCTG	10
a		EWESNGQPENNYKTTPPVLD-	
	5/1		n n
	747	AGGCTGCCGAGGAAGAAGGAGATGTCGTTCGAGTGGCACCTGTTCTCGTCCACCGTCGTC	,0
а		SDGSFFLYSKLTVDKSRWQQ-	
	601	GGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAG l	60
		CCCTTGCAGAAGAGTACGAGGCACTACGTACTCCGAGACGTGTTGGTGATGTGCGTCTTC	
a		G N V F S C S V M H E A L H N H Y T Q K -	
	661		
а		S I, S L S P G K	

	Xbal	
1	TCTAGATTTGTTTTAACTAATTAAAGGAGGAATAACATATGGACAAAACTCACACATGTC	60
1	AGATCTAAACAAAATTGATTAATTTCCTCCTTATTGTATACCTGTTTTGAGTGTGTACAG M D K T H T C P	-
61	CACCTTGTCCAGCTCCGGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAAC	12
UL	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-
101	CCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGA	19
777	GGTTCCTGTGGGAGTACTAGAGGGGCCTGGGGACTCCAGTGTACGCACCACCACCTGCACT K D T L M I S R T P E V T C V V V D V S	- TO
191	GCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATG	24
701	$\begin{array}{c} \mbox{CGGTGCTTCTGGGACTCCAGTTCAAGTTGACCATGCACCTGCCGCACCTCCACGTATTAC} \\ \mbox{H} \mbox{E} \mbox{D} \mbox{P} \mbox{E} \mbox{V} \mbox{F} \mbox{N} \mbox{V} \mbox{V} \mbox{D} \mbox{G} \mbox{V} \mbox{E} \mbox{V} \mbox{H} \mbox{N} \mbox{A} \end{array}$	-
	CCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCA	20
241	$ \begin{array}{c} {} {} {} {} {} {} {} {} {} {} {} {} {}$	
201	CCGTCCTGCACCAGGACTGCCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCCAACAAAG	20
301	GGCAGGACGTGGTCCTGACCGACTTACCGTTCCACGTTCCACGTTCCAGAGGTTGTTCC V L H Q D W L N G K E Y K C K V S N K A	ەد -
2.51	CCCTCCCAGCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCAC	
36L	GGGAGGGTGGGGGGGTAGCTCTTTGGTAGAGGTTCGGTTCGGTCGG	42
	AGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCT	
421	TCCACATGTGGGACGGGGGTAGGGCCCTACTCGACTGGTTCTTGGTCCAGTCGGACTGGA V Y T L P P S R D E L T K N Q V S L T C	48 -
481	GCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGC	
	CGGACCAGTTTCCGAAGATAGGGTCGCTGTAGCGGCACCTCACCCTCTCGTTACCCGTCG L V K G F Y P S D I A V E W E S N G Q P	54 ~
541	CGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCT	
	GCCTCTTGTTGATGTTCTGGTGCGGAGGGGGGGGGGGGG	- -
	ACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCG	~~
601	TGTCGTTCGAGTGGCACCTGTTCTCGTCCACCGTCGTCCCCCTTGCAGAGAGTACGAGGC S K L T V D K S R W Q Q G N V F S C S V	66 -
661	TGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCCTGTCTCCGGGTA	50
	ACTACGTACTCCGAGAACGGGTGGGTGGGTGGTGGTGCGTCTTCTCGGAGAGGGACAGAGGCCCAT M H E A L H N H Y T Q K S L S L S P G K	-
721	AAGGTGGAGGTGGTGGTATCGAAGGTCCGACTCTGCGTCAGTGGCTGGC	
	TTCCACCTCCACCATCAGCTTCCAGGCTGAGACGCAGTCACCGACCG	78 -
	BamHI AATCTCGAGGATCC	
701	794	

781 ----- 794 TTAGAGCTCCTAGG
XbaI

FIGURE 8

		 TCTAGATTTGTTTTAACTAATTAAAGGAGGAATAACATATGGACAAAACTCACACATGTC	c 0
с	Ť	AGATCTAAACAAAATTGATTAATTTCCTCCTTATTGTATACCTGTTTTGAGTGTGTACAG M D K T H T C P	-
	C1	CACCTTGTCCAGCTCCGGAACTCCTGGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAAC	100
с	97	CTGGAACAGGTCGAGGCCTTGAGGAGCCCCCCGGCAGTCAGAAGGAGAAGGGGGGGTTTG P C P A P E L L G G P S V F L F P P K P	-
	101	CCAAGGACACCCTCATGATCTCCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTCA	100
с	121	GGTTCCTGTGGGAGTACTAGAGGGCCTGGGGACTCCAGTGTACGCACCACCACCTGCACT K D T L M I S R T P E V T C V V V D V S	-
	101	GCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATG	240
с	T 8T	CGGTGCTTCTGGGACTCCAGTTCAAGTTGACCATGCACCTGCCGCACCTCCACGTATTAC H E D P E V K F N W Y V D G V E V H N A	∠40 -
	241	CCAAGACAAAGCCGCGGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCA	200
с	241 	GGTTCTGTTTCGGCGCCCTCCTCGTCATGTTGTCGTGCATGGCACACCAGTCGCAGGAGT K T K P R E E Q Y N S T Y R V V S V L T	-
	201	CCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAG	200
с	201	GGCAGGACGTGGTCCTGACCGACTTACCGTTCCATGTTCACGTTCCAGAGGTTGTTCC V L H Q D W L N G K E Y K C K V S N K A	-
	361	CCCTCCCAGCCCCATCGAGAAAACCATCTCCAAAGGCAAAGGGCAGCCCCGAGAACCAC	130
с	201	GGGAGGGTCGGGGGTAGCTCTTTTGGTAGAGGTTTCGGTTTCCCGTCGGGGCTCTTGGTG L P A P I E K T I S K A K G Q P R E P Q	-
	//21	AGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCT	480
с	941	TCCACATGTGGGACGGGGGTAGGGCCCTACTCGACTGGTTCTTGGTCCAG7CGGACTG3A V Y T L P P S R D E L T K N Q V S L T C	
	481	GCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGC	540
с	101	CGGACCAGTTTCCGAAGATAGGGTCGCTGTAGCGGCACCTCACCCTCTCGTTACCCGTCG L V K G F Y P S D I A V E W E S N G Q P	-
	541		600
с		GCCTCTTGTTGATGTTCTGGTGCGGAGGGCACGACGACGAGGCTGCCGAGGAAGAAGGAGA E N N Y K T T P P V L D S D G S F F L Y	-
	601	ACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCCCATGCTCCG	660
С	002	TGTCGTTCGAGTGGCACCTGTTCTCGTCCACCGTCGTCCCCTTGCAGAAGAGTACGAGGCSCSKLTVDKSRWQQGNVFSCSV	-
	661	TGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCCGGGTA	720
С		ACTACGTACTCCGAGACGTGTTGGTGATGTGCGTCTTCTCGGAGAGGGGACAGAGGCCCAT M H E A L H N H Y T Q K S L S L S P G K	-
	721	AAGGTGGAGGTGGTAGTACGAAGGTCCGACTCTGCGTCAGTGGCTGGC	780
с		$\begin{array}{cccc} {\tt TTCCACCTCCACCATGGCTTCCAGGCTGAGAGCGCGAGTCACCGACCG$	-
	781	GTGGTGGAGGTGGCGGGGGGGGGGTATTGAGGGCCCAACCCTTCGCCAATGGCTTGCAGCAC	840
с		CACCACCTCCACCGCCGCCTCCATAACTCCCGGGTTGGGAAGCGGTTACCGAACGTCGTG G G G G G G G I E G P T L R Q W L A A R	_
		BamHI	
	841	GCGCATAATCTCGAĠGATCCG	
		CGCGTATTAGAGCTCCTAGGC	

C A * -

PCT/US01/14310

WO 01/83525

	2	Xbal	
	1	CTAGATTTGTTTTAACTAATTAAAGGAGGAATAACATATGATCGAAGGTCCGACTCTGC	50
С	Ŧ	AGATCTAAACAAAATTGATTAATTTCCTCCTTATTGTATACTAGCTTCCAGGCTGAGACG M I E G P T L R -	-
	C1	GTCAGTGGCTGGCTGGTCGTCGTCGCGGCGGGGGGGGGG	
с	91	CAGTCACCGACCGACGACGACGACCGCCCACCGCCACCGCCCCCC	-
	121	CCCTTCGCCAATGGCTTGCAGCACGCGCAGGGGGGGGGG	180
C		L R Q W L A A R A G G G G G D K T H T C -	-
	181	GTCCACCTTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTTTTCCTCTTCCCCCCAA	240
с		CAGGTGGAACGGGTCGTGGACTTGAGGACCCCCCTGGCAGTCAAAAGGAGAAGGGGGGGTT P P C P A P E L L G G P S V F L F P P K -	-
	241	AACCCAAGGACACCCTCATGATCTCCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACG	300
с		TTGGGTTCCTGTGGGAGTACTAGAGGGCCTGGGGACTCCAGTGTACGCACCACCACCTGC PKDTLMISRTPEVTCVVVDV-	-
	301	TGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTCGACGCGTGGAGGTGCATA	360
с		ACTCGGTGCTTCTGGGACTCCAGTTCAAGTTGACCATGCACCTGCCGCACCTCCACGTAT S H E D P E V K F N W Y V D G V E V H N -	-
	361	ATGCCAAGACAAAGCCGCGGGGGGGGGGGGGGGGGGGGG	120
С		TACGGTTCTGTTTCGGCGCCCCCCCCCCCGCATGTCGCCACGCACCAGTCGCAGG A K T K P R E E Q Y N S T Y R V V S V L -	-
	421	ICACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACA	180
с		AGTGGCAGGACGTGGTCCTGACCGACGTTACCGTTCCTCATGTTCACGTTCCAGAGGTTGT T $V \ L \ H \ Q \ D \ W \ L \ N \ G \ K \ E \ Y \ K \ C \ K \ V \ S \ N \ K \ -$	-
	481	AAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAAC	540
с		ALPAPIEKTISKAKGHTCGGHTCCCGTCGGGGCTCTTG	-
	541	CACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGA	500
c	512	CTGTCCACATGTGGGACGGGGGGGGGGGGGGGGGCCCTACTCGACTGGTTCTTGGTCCAGTCGGACT Q V Y T L P P S R D E L T K N Q V S L T -	-
	601		560
с		GGACGGACCAGTTTCCGAAGATAGGGTCGCTGTAGCGGCACCTCACCTCTCGTTACCCG C L V K G F Y P S D I A V E W E S N G Q -	-
		AGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCCT	
	661	TCGGCCTCTTGTTGATGTTCTGGTGCGGAGGGCACGACCTGAGGCTGCCGAGGAAGAAGG	120
С		PENNYKTTPPVLDSDGSFFL-	-
	721	TCTACAGCAAGCTCACCGTGGACAAGAGCAGGGGGAACGTCTCTCTC	780
с		Y S K L T V D K S R W Q Q G N V F S C S -	-
	781	CCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCCGG	340
с		GGCACTACGTACTCCGAGACGTGTTGGGGACAGGGGACAGAGGGC V M H E A L H N H Y T Q K S L S L S P G -	
		BamHI	
		GTAAATAATGGATCC	
	841	CATTTATTACCTAGG	
С		К *	

PCT/US01/14310

WO 01/83525

		XbaT	
		I TCTAGATTTGTTTTAACTAATTAAAGGAGGAATAACATATGATCGAAGGTCCGACTCTGC	
с	1	AGATCTAAACAAAATTGATTAATTTCCTCCTTATTGTATACTAGCTTCCAGGCTGAGACG M I E G P T L R	60 -
	61	GTCAGTGGCTGGCTGCTGGTGCGGGGGGGGGGGGGGGGG	120
с		$\begin{array}{cccc} CAGTCACCGACGACGACGACGACGACCACCTCCGCCACCCCTGTTTTGAGTGTGTACAGGIG\\ Q & W & L & A & R & A & G & G & G & G & D & K & T & H & T & C & P & P \end{array}$	-
	121	CTTGCCCAGCACCTGAACTCCTGGGGGGGCCGTCAGTTTTCCTCTTCCCCCCAAAACCCA	180
с		C P A P E L L G G P S V F L F P P K P K	-
с	181	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	240 -
	241	ACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCA	300
с		TGCTTCTGGGACTCCAGTTCAAGTTGACCATGCACCTGCCGCACCTCCACGTATTACGGT E D P E V K F N W Y V D G V E V H N A K	-
с	301	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	360 -
	361	TCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCC	420
с		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_
	421	TCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGG	480
С		P A P I E K T I S K A K G Q P R E P Q V TGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAGGACCAGGTCAGCCTGACCTGCC	-
с	481	ACATGIGGACGGGGTAGGGCCCTACTCGACTGGTCTTGGTCCAGTCGGACTGGACGG Y T L P P S R D E L T K N Q V S L T C L	540 -
с	541	TGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGG ACCAGTTTCCGAAGATAGGGTCGCTCTAGCGGCACCTCTCGTTACCCGTCGGCC V K G F Y P S D T A V F W F S N G O P F	600 -
	601	AGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACA	660
С		N N Y K T T P P V L D S D G S F F L Y S GCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGA	-
с	661	CGTTCGAGTGGCACCTGTTCTCGTCCACCGTCGTCGCCCCTTGCAGAGACTACGAGGCACT K L T V D K S R W Q Q G N V F S C S V M	720 -
	721	TGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCCGGTAAAT	780
C		пекьниптукзьзьзрСК* Ватні І	-
	781	AAT 789 TTACCTAGG	

.

<u>FIGURE 13</u>

	7	XbaI		
	1) TCTAGATTTGTTTTAACTAATTAAAGGAGGAATAACATATGG	ACAAAACTCACACATGTC	60
с	-	AGATCTAAACAAAATTGATTAATTTCCTCCTTATTGTATACC M D	TGTTTTGAGTGTGTACAG KTHTCP	-
	61	CACCTTGTCCAGCTCCGGAACTCCTGGGGGGACCGTCAGTCT	TCCTCTTCCCCCCAAAAC	120
с	01	GTGGAACAGGTCGAGGCCTTGAGGACCCCCCTGGCAGTCAGA P C P A P E L L G G P S V F	AGGAGAAGGGGGGTTTTIG 'LFPPKP	-
	101	CCAAGGACACCCTCATGATCTCCCCGGACCCCTGAGGTCACAT	GCGTGGTGGTGGACGTGA	100
с	121	GGTTCCTGTGGGAGTACTAGAGGGCCTGGGGACTCCAGTGTA K D T L M I S R T P E V T C	CGCACCACCACCTGCACT	-
	1.91	GCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACG	GCGTGGAGGTGCATAATG	240
с	TOT	CGGTGCTTCTGGGACTCCAGTTCAAGTTGACCATGCACCTGC H E D P E V K F N W Y V D G	CGCACCTCCACGTATTAC	-
	241	CCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACC	GTGTGGTCAGCGTCCTCA	300
с		GGTTCTGTTTCGGCGCCCCCCCCGTCATGTTGTCGTGCATGG K T K P R E E Q Y N S T Y R	CACACCAGTCGCAGGAGT	-
	301	CCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGT	GCAAGGTCTCCAACAAAG	360
с		GGCAGGACGTGGTCCTGACCGACTTACCGTTCCTCATGTTCA V L H Q D W L N G K E Y K C	CGTTCCAGAGGTTGTTTC KVSNKA	-
	CC 361	CCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGC		420
с		GGGAGGGTCGGGGGTAGCTCTTTTGGTAGAGGTTTCGGTTTC L P A F I E K T I S K A K G	CCGTCGGGGGCTCTTGGTG Q P R E P Q	-
	421	AGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGA	ACCAGGTCAGCCTGACCT	480
с		TCCACATGTGGGACGGGGGGAGGGCCCTACTCGACTGGTTCT V Y T L P P S R D E L T K N	TGGTCCAGTCGGACTGGA QVSLTC	-
	481	GCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGT	GGGAGAGCAATGGGCAGC	540
с		CGGACCAGTTTCCGAAGATAGGGTCGCTGTAGCGGCACCTCA L V K G F Y P S D I A V E W	CCCTCTCGTTACCCGTCG	-
	541	GCCTCTTGTTGATGTTCTGGTGCGGAGGGCACGACCTGAGGC	TGCCGAGGAAGAAGGAGA	600
С		ENNYKTTPPVLDSD	GSFFLY	-
	601	ACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGA	ACGTCTTCTCATGCTCCG	660
с		S K L T V D K S R W Q Q G N	TGCAGAAGAGTACGAGGC VFSCSV	-
	661	TGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCC	TCTCCCTGTCTCCGGGTA	720
с		ACTACGTACTCCGAGACGTGTTGGTGATGTGCGTCTTCTCGG M H E A L H N H Y T Q K S L	AGAGGGACAGAGGCCCAT SLSPGK	-
	721	AAGGTGGAGGTGGTGGTGGTGGAGGTACTTACTCTTGCCACTTCG	GCCCGCTGACTTGGGTTT	780
с		TTCCACCTCCACCACCACCATGAATGAGAACGGTGAAGC G G G G G G G T Y S C H F G	CGGGCGACTGAACCCAAA PLTWVC	-
		BanHI		
	701	GCAAACCGCAGGGTGGTTAATCTCGTGGATCC		
	101	CGTTTGGCGTCCCACCAATTAGAGCACCTAGG		

CGTTTGGCGTCCCACCAAI C K P Q G G *

13/36

	1	 ТСТАБАРТТЕЛТТТААСТААТТАААБСАССАТАТСБСССССССССССССС	50
c		AGATCTAAACAAAATTGATTAATTTCCTCCTTATTGTATACCCTCCATGAATGA	-
	61	ACTTCGGCCCGCTGACTTGGGTATGTAAGCCACAAGGGGGTGGGGGGGG	120
с		TGAAGCCGGGCGACTGAACCCATACATTCGGTGTTCCCCCACCCCCTCCGCCCCCCGT F G P L T W V C K P Q G G G G G G G D K -	-
	121	AAACTCACACATGTCCACCTTGCCCAGCACCTGAACTCCTGGGGGGGG	180
с		TTTGAGTGTACAGGTGGAACGGGTCGTGGACTTGAGGACCCCCCTGGCAGTCAAAAGG T H T C P P C P A P E L L G G P S V F L -	-
	181	TCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCG	240
С		AGAAGGGGGGTTTTGGGTTCCTGTGGGAGTACTAGAGGGCCCTGGGGACTCCAGTGTACGC F P P K P K D T L M I S R T P E V T C V -	-
	241	TGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCG	300
с		ACCACCACCTGCACTCGGGGCTTCTGGGACTCCAGTTCAAGTTGACCATGCACCTGCCGC V V D V S H E D P E V K F N W Y V D G V -	-
	301	TGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCACGTACAACAGCACGTACCGTG	60
с		ACCTCCACGTATTACGGTTCTGTTTCGGCGCCCCTCCTCGTCATGTTGTCGTGCATGGCAC E V H N A K T K P R E E Q Y N S T Y R V -	•
	361	TGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCA	120
с		ACCAGTCGCAGGAGTGGCCAGGACGTGGTCCTGACCGACTTACCGTTCCTCATGTTCACGT $V~S~V~L~T~V~L~H~Q~D~W~L~N~G~K~E~Y~K~C~K-$	
	421	AGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGGAAAACCATCTCCAAAGCCAAAGGGC	180
c		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	481	AGCCCCGAGAACCACAGGTGTACACCCTGCCCCATCCCGGGATGAGCTGACCAAGAACC	540
с		PREPQVYTLPPSRDELTKNQ-	
	541	AGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGG	500
с		TCCAGTCGGACTGGACGGACCAGTTTCCGAAGATAGGGTCGCTGTAGCGGCACCTCACCC	
		V S L T C L V K G F Y P S D I A V E W E -	
	601	V S L T C L V K G F Y P S D I A V E W E - AGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGGCTGGACTCGACG	60
с	601	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	60
С	601	V S L T C L V K G F Y P S D I A V E W E - AGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGGCTGGACTCCGACG TCTCGTTACCCGTCGGCCTCTTGTTGATGTTCTGGTGCGGAGGGGCACGACCTGAGGCTGC S N G Q P E N N Y K T T P P V L D S D G - GCTCCTTCTTCCTCTCAGGCAGGCAGCCCGCGCAGGGGAACG TCTCCTTCTTCCTCTCAGGCAGGCAGCCCGCCGCAGGGGAACG	60
c	601 661	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	60 '20
C C	601 661 721	V S L T C L V K G F Y P S D I A V E W E - AGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGGACTCCGACG TCTCGTTACCCGTCGGCCTCTTGTTGATGTTCTGGTGCGGGAGGGGCACGACCTGAGGCTGC S N G Q P E N N Y K T T P P V L D S D G - GCTCCTTCTTCCTCTCAGCAAGCACCCGTGGACAAGAGCAGGGGGAACG \sim CGAGGAAGAAGGAGATGTCGTTCGAGTGGCACCTGTTCTCGTCCACCGTCGTCCCCCTTGC S F F L Y S K L T V D K S R W Q Q G N V - TCTTCTCATGCTCCGTGATGCATGGAGGGCTCTGCACAACCACTACACGCAGAAGAGGCCTCT \sim TCTTCTCATGCTCCGTGATGCATGGAGGCGCTCTGCACAACCACTACACGCAGAAGAGGCCTCT \sim TCTTCTCATGCTCCGTGTAGCATGGAGGCTCTGCACAACCACTACACGCAGAAGAGGCCTCT \sim TCTTCTCATGCTCCGTGTAGCATGGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCT \sim TCTTCTCATGCTCCGTGTGCATGGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCT \sim TCTTCTCATGCTCCGTGTGCACAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCT \sim TCTTCTCATGCTCCGTGATGCATGCAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCT \sim TCTTCTCATGCTCCGTGTGCACTGCACAACCACTACACGCAGAAGAGCCTCT \sim TCTTCTCATGCTCCGTGTGCATGCAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCT \sim TCTTCTCATGCTCCGTGTGCACAACCACTACACGCAGAAGAGCCTCT \sim TCTTCTCATGCTCCGTGTGCACAACCACTACACGCAGAAGAGCCTCT \sim TCTTCTCATGCTCCGTGTGCACAACCACTACACGCAGAAGAGCCTCT \sim TCTTCTCCTCCGTGTGCACAACCACTACACGCCAGAAGAGCCTCT \sim TCTTCTCATGCTCCGTGTGCACAACCACTACACGCAGAAGAGCCTCT \sim TCTTCTCATGCTCCGTGTGCACAACCACTACACGCAGAAGAGCCTCT	560 '20
C C C	601 661 721	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	560 '20
c c	601 661 721	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	560
c c c	601 661 721 781	V S L T C L V K G F Y P S D I A V E W E - AGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGGCTGGACTCCGACG TCTCGTTACCCGTCGGCCTCTTGTTGATGTTCTGGTGCGGGAGGGGCACGACCTGAGGGCTGC S N G Q P E N N Y K T T P P V L D S D G - GCTCCTTCTTCCTCTCACAGCAAGCTCACCGTGGCAAGAGCAGGTGGCAGCAGGGGGAACG CGAGGAAGAAGGAGATGTCGTTCGAGGGCACCGGTCTCCGCCCCTTCC S F F L Y S K L T V D K S R W Q Q G N V - TCTTCTCATGCTCCGTGATGCATGAGGCTCTCCGACACACAC	560 '20 '80

PCT/US01/14310

WO 01/83525

	V)	TIOURD ID	
	л		
b	1	AGATCTAAACTCAAAATTGAAAATCTTCCTCCTTATTTTATACCCTCCATGAATGA	60 -
	~ 1	CCACTTCGGCCCACTGACTTGGGTTTGCAAACCGCAGGGTGGCGGCGGCGGCGGCGGTGG	100
b	0.1	GGTGAAGCCGGGTGACTGAACCCAAACGTTTGGCGTCCCACCGCCGCCGCCGCCACC H F G P L T W V C K P Q G G G G G G G G	- 120
b	121	$\begin{array}{cccc} \texttt{T} & \texttt{T} & \texttt{S} & \texttt{C} & \texttt{H} & \texttt{F} & \texttt{G} & \texttt{P} & \texttt{L} & \texttt{T} & \texttt{W} & \texttt{V} & \texttt{C} & \texttt{K} & \texttt{P} & \texttt{Q} & \texttt{G} & \texttt{G} & \texttt{G} \\ \texttt{T} & \texttt{Y} & \texttt{S} & \texttt{C} & \texttt{H} & \texttt{F} & \texttt{G} & \texttt{P} & \texttt{L} & \texttt{T} & \texttt{W} & \texttt{V} & \texttt{C} & \texttt{K} & \texttt{P} & \texttt{Q} & \texttt{G} & \texttt{G} & \texttt{G} \\ \end{array}$	180 -
b	181	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	240 -
b	241	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	300 -
b	301	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	360 -
b	361	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	420 -
b	421	$\begin{array}{c} CAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAA\\ GTCGTGCATGGCACCAGCCGGTCGCGCGGGGGGGGGGGG$	480 -
b	481	$\begin{array}{c} \texttt{GGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGGCCCCCATCGAGAAAACCATCTC} \\ $	540 -
b	541	$\begin{array}{c} \texttt{CAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGA}\\ \texttt{GTTTCGGTTTCCCGTCGGGGCTCTTGGTGTCCACATGTGGGACGGGGGTAGGGCCCTACT}\\ \texttt{K} \texttt{A} \texttt{K} \texttt{G} \texttt{Q} \texttt{P} \texttt{R} \texttt{E} \texttt{F} \texttt{Q} \texttt{V} \texttt{Y} \texttt{T} \texttt{L} \texttt{P} \texttt{P} \texttt{S} \texttt{R} \texttt{D} \texttt{E} \end{array}$	600 -
b	601	GCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACAT CGACTGGTTCTTGGTCCAGTCGGACGGACCGGAC	660 -
Ŀ	661	CGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGT GCGGCACCTCACCCTCTCGTTACCCGTCGGCCTCTTGTTGTTGTTCTCGTGCGGAGGGCA	720
d	72 1	GCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCGACCAGGACAAGAGCAGGTG	- 780
b		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-
b	781	CGTCGTCCCCTTGCAGAAGAGTACGAGGCCACTACGTACG	840 -
		GCAGAAGAGCCTCTCCCTGTCTCCGGGTAAAAAGGATCC	
	841	CGTCTTCTCGGAGAGGGACAGAGGCCCATTTATTACCTAGG	

PCT/US01/14310

WO 01/83525

FIGURE 16

	2	XbaI
	1	 TCTAGATTTGTTTTAACTAATTAAAGGAGGAATAACATATGGACAAAACTCACACATGTC
с		AGATCTAAACAAAATTGATTAATTTCCTCCTTATTGTATACCTGTTTTGAGTGTGTACAG $$\rm M$\ D$\ K$\ T$\ H$\ T$\ C$\ P$\ -$
	~ -	CACCTTGCCCAGCACCTGAACTCCTGGGGGGGCCGTCAGTTTTCCTCTTCCCCCCAAAAC
с	61	GTGGAACGGGTCGTGGACTTGAGGACCCCCCTGGCAGTCAAAGGAGAAGGGGGGGG
	121	CCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGA CCTTCCTGTGGGAGTACTAGAGGGCCTGGGGACTCCAGTGTACGCACCACCACCTGCACT
С		K D T L M I S R T P E V T C V V V D V S -
	181	GCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGCGTGGAGGTGCATAATG
С		H = D P = V K F N W Y V D G V E V H N A - CCARGECARGEGEGEGEGEGEGEGEGEGEGEGEGEGEGEGEGEGEGE
c	241	GGTTCTGTTTCGGCGCCCTCCTCGTCGTCGTCGTCGTCGCACGCCGCACGCCGCAGGAGT
C		
с	301	GGCAGGACGTGGTCCTGACCGACTTACCGTTCCTCATGTTCACGTTCCAGAGGTTGTTTC V L H Q D W L N G K E Y K C K V S N K A -
	7 6 1	CCCTCCCAGCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCAC
с	201	GGGAGGGTCGGGGGTAGCTCTTTGGTAGAGGTTTCGGTTTCCCGTCGGGGCTCTTGGTG L P A P I E K T I S K A K G Q P R E P Q -
	121	AGGTGTACACCCTGCCTCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCT
с	421	TCCACATGTGGGACGGAGGTAGGGCCCTACTCGACTGGTTCTTGGTCCAGTCGGACTGGA V Y T L P P S R D E L T K N Q V S L T C -
	481	GCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGC
с		L V K G F Y P S D I A V E W E S N G Q P-
	541	CGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCT
с		GCCTCTTGTTGATGTTGCTGCGGCGCGCGCGCGCGCGCGC
	601	ACAGCAAGCTCACCCGTGGACAAGAGCAGGGGCAGCGGGGAACGTCTTCTCATGCTCCG
с		TGTCGTTCGAGTGGCACCTGTTCTCGTCCACCGTCGTCCCCTTGCAGAAGAGTACGAGGC S K L T V D K S R W Q Q G N V F S C S V -
	661	TGATGCATGAGGCTCTGCACAACCACCACCACGCAGAAGAGCCCCCCCC
с		ACTACGTACTCCGAGACGTGTTGGTGATGTGCGTCTTCTCGGAGAGGGGACAGAGGCCCAT M H E A L H N H Y T Q K S L S L S P G K \sim
	721	AAGGTGGAGGTGGTGGCGGAGGTACTTACTCTTGCCACTTCGGCCCACTGACTTGGGTTT
с	, 22	TTCCACCTCCACCACCGCCTCCATGAATGAGAACGGTGAAGCCGGGTGACCGAAA C G G G G G G T Y S C H F G P L T W V C -
	721	GCAAACCGCAGGGTGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGCGGC
с	101	CGTTTGGCGTCCACCGCCGCCGCCGCCGCCACCATGGATAAGGACAGTAAAACCGGGCG K P Q G G G G G G G T Y S C H F G P L -
		BanHI
	Q/1	TGACCTGGGTATGTAAGCCACAAGGGGGTTAATCTCGAGGATCC
C	047	ACTGGACCCATACATTCGGTGTTCCCCCCAATTAGAGCTCCTAGG
Ŷ		1 W V C A F Q G G

16/36

FIGURE 17A

[<u>Aat</u>II sticky end] (position #4358 in pAMG21) 5' GCGTAACGTATGCATGGTCTCC-3' TGCACGCATTGCATACGTACCAGAGG-

-GGGCCTTTCGTTTTATCTGTTGTTGTCGGTGAACGCTCTCCTGAGTAGGACAAATCCGC--CCCGGAAAGCAAAATAGACAACAAACAGCCACTTGCGAGAGGACTCATCCTGTTTAGGCG-

-CGGGAGCGGATTTGAACGTTGCGAAGCAACGGCCCGGAGGGTGGCGGGCAGGACGCCCGC--GCCCTCGCCTAAACTTGCAACGCTTCGTTGCCGGGCCTCCCACCGCCCGTCCTGCGGGGG-

-CATAAACTGCCAGGCATCAAATTAAGCAGAAGGCCATCCTGACGGATGGCCTTTTTGCGT--GTATTTGACGGTCCGTAGTTTAATTCGTCTTCCGGTAGGACTGCCTACCGGAAAAACGCA-

<u>Aat</u>II

-TTCTACAAACTCTTTTGTTATTTTTTTCTAAATACATTCAAATATGGACGTCGTACTTAAC--AAGATGTTTGAGAAAACAAATAAAAAGATTTATGTAAGTTTATACCTGCAGCATGAATTG-

-TTTTAAAGTATGGGCAATCAATTGCTCCTGTTAAAATTGCTTTAGAAATACTTTGGCAGC--AAAATTTCATACCGGTTAGTTAACGAGGACAATTTTAACGAAATCTTTATGAAACCGTCG-

-GGTTTGTTGTATTGAGTTTCATTTGCGCATTGGTTAAATGGAAAGTGACCGTGCGCTTAC--CCAAACAACATAACTCAAAGTAAACGCGTAACCAATTTACCTTTCACTGGCACGCGAATG-

-TACAGCCTAATATTTTTGAAATATCCCAAGAGCTTTTTCCTTCGCATGCCCACGCTAAAC--ATGTCGGATTATAAAAACTTTATAGGGTTCTCGAAAAAGGAAGCGTACGGGTGCGATTTG-

-TAGCAGTATGAATAGGGAAACTAAACCCAGTGATAAGACCTGATGATTTCGCTTCTTTAA--ATCGTCATACTTATCCCTTTGATTTGGGTCACTATTCTGGACTACTAAAGCGAAGAAATT-

-TTACATTTGGAGATTTTTATTTACAGCATTGTTTTCAAATATATTCCAATTAATCGGTG--AATGTAAACCTCTAAAAAATAAATGTCGTAACAAAAGTTTATATAAGGTTAATTAGCCAC-

 $-\texttt{AATGATTGGAGTTAGAATAATCTACTATAGGATCATATTTTATTAAATTAGCGTCATCAT-TTACTAACCTCAATCTTATTAGATGATAATCCTAGTATAAAATAATTTAATCGCAGTAGTA-$

-AATATTGCCTCCATTTTTAGGGTAATTATCCAGAATTGAAATATCAGATTTAACCATAG--TTATAACGGAGGTAAAAAATCCCATTAATAGGTCTTAACTTTATAGTCTAAATTGGTATC-

-ANTGAGGATAAATGATCGCCGAGTAAATAATAATATTCACAATGTACCATTTTAGTCATATCAG--TTACTCCTATTTACTAGCGCCTCATTTATTATAAGTGTTACATGGTAAAATCAGTATAGTC-

- A A G T G T C G T C G C C A T T T A T G T C T T T C A T A C C T A T T G T C T T C A C A G C

-GCAAGTTTTGCGTGTTATATATCATTAAAACGGTAATAGATTGACATTTGATTCTAATAA--CGTTCAAAACGCACAATATATAGTAATTTTGCCATTATCTAACTGTAAACTAAGATTATT-

FIGURE 17B

-ATTGGATTTTTGTCACACTATTATATCGCTTGAAATACAATTGTTTAACATAAGTACCTG--TAACCTAAAAACAGTGTGATAATATAGCGAACTTTATGTTAACAAATTGTATTCATGGAC-

-TAGGATCGTACAGGTTTACGCAAGAAAATGGTTTGTTATAGTCGATTAATCGATTTGATT--ATCCTAGCATGTCCAAATGCGTTCTTTTACCAAACAATATCAGCTAATTAGCTAAACTAA-

-CTAGATTTGTTTTAACTAATTAAAGGAGGAGAATAACATATGGTTAACGCGTTGGAATTCGA--GATCTAAACAAAATTGATTAATTTCCTCCTTATTGTATACCAATTGCGCAACCTTAAGCT-

<u>Sac</u>II

-GCTCACTAGTGTCGACCTGCAGGGTACCATGGAAGCTTACTCGAGGATCCGCGGAAAGAA--CGAGTGATCACAGCTGGACGTCCCATGGTACCTTCGAATGAGCTCCTAGGCGCCTTTCTT-

-GAAGAAGAAGAAGAAGCCCGAAAGGAAGCTGAGTTGGCTGCCGCCGCCGGCGAGCAATA-- CTTCTTCTTCTTCTTCGGGCCTTTCCTTCGACTCAACCGACGGCGGCGACTCGTTAT-

-ACTAGCATAACCCCTTGGGGGCCTCTAAACGGGTCTTGAGGGGGTTTTTTGCTGAAAGGAGG--TGATCGTATTGGGGAACCCCGGAGATTTGCCCAGAACTCCCCAAAAAACGACTTTCCTCC-

-AACCGCTCTTCACGCTCTTCACGC 3' [SacII sticky end] -TTGGCGAGAAGTGCGAGAAGTG 5' (position #5904 in pAMG21)

.

FIGURE 18A

Erythroid parameters EMP-Fc, single bolus injection.

FIGURE 18B

Normal female BDF1 mice treated with 100ug/kg EMP-Fc in 7-day micro osmotic pumps

PCT/US01/14310

FIGURE 19A

	NdeI		ኮአጥ	2020	ግልክ	ሻሻር	መሮአ	CAC	ልጥር	utr Cr C	יאריר	ጣጥር	The second se	AGC	ጥሮሮ	CCA	ъст	ററന	ccc	ccc	ACCC	
	1	 GT	 2	 	-+- วาก	 		+ CTC	 						-+- AGG	 CCT		+ GGA	 			60
a			м	יביסי ת	ĸ	С Т	н ч	ידי	с С	p	p	 ۲	p	Δ	P	- чо Е	т,	Τ.	ວວວ. ລ	G	р	_
a		me	171 N CYTP(ע	יר היריה	- - -			ר ה הי	- - -	יריים. ת תיים	с ССЛ	- -		~ سري	<u>ב</u> הערי			0 0 x 0		ጥሮእሮ	
	61					 (777)									-+- ~~~			+				120
_		AG.	t CAN	5ririn F	T.		.9999. D	oooo a		- 196	11101	נטט. ת	m Gro	T.	M	T	e d	-200 D	-19 m	595 5	P P	_
a		ວ ດຫ	v	r amcu	ц 20m	г сот	r	F	a a a	F	л иссл	U 007	ד ערט ע	ц ССС	n Ci A	т ССП	ה ה היו	л Стт	ר ברי	r ama		-
	121	G.1.		 	-+- 					GAG		+			-+-			+		 		180
		CAG	σrG.	PAC	CA کی	CCA	CCA	.CC1	GCA	CTC	:GG.1	GCT	TCT	666	ACT	CCA		CAA	GTT	GAC	CATG	
a		V	т	С	V	V	V	D	V	S	н	ъ	ע	Р	E	V	K.	Ъ.	N	W	Y	-
	181	GT(GGA(2GG(CGT -+-	GGA	.GGT	GCA		TGC	CAA	GAC		.GCC	GCG -+-	GGA	GGA	GCA +	GTA 	CAA 	CAGC	240
		CA	CCT	GCC	GCA	ССТ	CCA	CGI	'AT'I	ACG	GTI	CTG	TTT	CGG	CGC	CCT	CCI	CGT	CAT	GTT	GTCG	
a		V	D	G	v	Ε	V	Η	Ν	A	K	Т	K	Ρ	R	Е	Ε	Q	Y	Ν	S	-
	241	AC	GTA(CCG	IGT -+-	GGT	CAG	CGI	CC1	CAC	CGI	CCT +	GCA	CCA	GGA -+-	CTG	GCI	GAA +	TGG	CAA	GGAG +	300
		ΊG	CAT	GGC	ACA	CCA	.GTC	GCA	.GGA	GTC	GCA	GGA	.CGT	GGT	ССТ	GAC	CGA	CTT.	ACC	GTT	CCTC	
а		Т	Y	R	V	V	S	V	L	Т	V	Ь	Η	Q	D	W	\mathbf{r}	N	G	K	Е	-
	301			GTG	CAA -+-	GGT			CAA	AGC	CC1	200	AGC	CCC	CAT	CGA	GAA	AAC	CAT	СТС	CAAA	360
	001	AT	GTT	CAC	GTT	CCA	GAG	GTT	GTT	TCG	GGA	GGG	TCG	GGG	GTA	GCT	CTI	TTG	GTA	GAG	GTTT	
а		Y	K	С	K	V	S	N	K	A	Ь	Ρ	A	Ρ	I	Е	K	Т	I	S	K	-
	361	GC	CAA	AGG	GCA	GCC	CCG	AGA	ACC	ACA	GGI	GTA	CAC	CCT	GCC	ccc	ATC	CCG	GGA	TGA	GCTG	120
	201	CG	GTT	rcco	CGT	CGG	GGC	TCT	TGG	STGI	CCA	CAT	GTG	IGGA	CGG	GGG	TAG	GGC	CCT	ACT	CGAC	420
a		A	K	G	Q	Ρ	R	Ε	Р	Q	V	Y	т	Ь	Ρ	₽	S	R	D	Ε	\mathbf{L}	-
	401	AC	CAA	GAA	CCA	GGT	CAG	CC1	GAC	CTG	CCI	GGI	CAA	AGG	CTT	CTA	TCC	CAG	CGA	CAT	CGCC	400
	421	TG	GTT	CTT	GGT	CCA	GTC	GGA	CTC	GAC	GGP	ACCA	GTT	TCC	GAA	.GAT	AGG	GTC	GCT	GTA	GCGG	480
a		т	K	N	Q	v	S	L	Т	С	Ь	V	K	G	F	Y	Р	S	D	I	A	-
		GT	GGA	GTG	GGA	GAG	CAA	TGG	IGCA	GCC	GGA	GAA	CAA	CTA	CAA	.GAC	CAC	GCC	TCC	CGT	GCTG	
	481	CA	CCT	CAC	-+- CCT	CTC	GTI	+ ACC	CGI	CGG	CCI	-+ CTT	GTT	GAT	-+- GTT	CTG	GTG	CGG	AGG	GCA	+ CGAC	540
a		v	Е	Ŵ	Е	S	N	G	Q	Ρ	E	N	N	Y	ĸ	т	Т	Ρ	Ρ	v	L	_
		GA	CTC	CGA	CGG	CTC	CTI:	'CT'I	CCI	CTA	CAG	CAA	GCI	'CAC	CGT	GGA	CAA	GAG	CAG	GTG	GCAG	
	541		GAG	GCT(-+- GCC	GAG	GAA	GAA	GGA	GAT	GTC	+ GTT	CGA		-+- GCA	 CC'I	GTT	+ CTC	GTC	CAC	+ CGTC	600
a		D	s	D	G	S	F	F	\mathbf{L}	Y	S	K	Ь	т	v	D	ĸ	S	R	W	Q	

FIGURE 19B

	601	CAC		CAAC	CGT(-+ GCA(CTT(GAA(CTC	ATG(+- FAC(CTC	CGT(CATO	GCAT	GAC		rCTC -+	GCAC	CAAC	CCAC	CTAC	CACO	ECAG	660
a		Q	G	N	v	F	S	С	S	V	М	Н	Е	A	L	Н	N	H	ž	Т	Q	-
	661	AA(GAG	CCT(GGA(CTC(-+ SAG(CCT GGA	GTC CAG	FCC(+- AGG(GGG CCC2	TAA ATT'	AGG:	rggæ + ACC1	GG CCZ	rgg: ACCZ	rggi -+ ACCZ	rga(ACT(CTTC GAAC	CCTC +- GGAC	GCC	GCAC	CTAC + GATG	720
a		ĸ	S	г	ទ	L	s	Ρ	G	к	G	G	G	G	G	D	F	L	₽	н	Y	-
											Bar	nHI 										
	721	AA2 TTT	4AA([TTT(CACO	CTC' -+- GAG	rct(AGA(GGG	rca(+- AGT(CCG' GGC2		GTAZ CAT:	ATĠO + FACO	GATO CTAO	CC 	757							

a KNTSLGHRP*

-

FIGURE 20A

		No I	deI																			
	1	CĄ	TAT	GGA	CTI	rcci	GCC	GCA	ACTA	CAA	AAZ	ACA	ССТО	CTC	rggc	TCA	7CCG	TCC	GGG	TGG	AGGC	60
	Ť	GT.	ATA	.CCI	GAA	GGA	CGG	GGI	GAI	GTI	rTT?	rGT	GGA	GAGA	AGGC	AGI	GGC	AGG	ccc	ACC	TCCG	00
a			Μ	D	F	L	Ρ	Н	Y	K	N	т	S	\mathbf{L}	G	H	R	Р	G	G	G	-
		GG	TGG	GGA	CAA	AAC	TCA	CAC	ATG	TCC	CACO	CTT	GCC	CAG	CACC	TGA	ACI	CCI	GGG	GGG	ACCG	
	61	CC.	ACC	CCI	-+- 'GTT	TTG	AGI	GTG	 FTAC	AGO	GTGO	-+- GAA(CGGG	GTC	+- GTGC	JAC1	TGA	+ .GGA		CCC	+ TGGC	120
a		G	G	D	ĸ	\mathbf{T}	н	т	С	P	P	С	P	A	Р	E	ь	\mathbf{L}	G	G	P	_
		TC	AGT	TTT	'CCT	CTI	reec	ccc		ACC	CAA	AGGZ	ACAG	ccc	[CA]	GAI	CTC	CCG	GAC	ccc	TGAG	
	121	 AG'		 AAA	-+-	GAA		+				-+-·	 PGT(+- AGTZ	 Ста	GAG	+ ccc			+ ACTC	180
2		c	17	т. Г	т.	.о.ш. г	ссс ъ	лоос п	v		v.	т. Т	т Т	т.	м	т Т		- -	 	טטט. ת	TT TT	
a		S	v • • • •	7 7		L.		е 1000	n.	F			ב בר <i>ז</i> הרא	ц лоси	111	-	ם ת ברו		1 	r omo		-
	181	GT		ATG	-+-			+ 		GAG		4CG/			+-			.G1"1 +		CTG		240
		CA	GIG	TAC	:GCA	ICCA	LCCA	ICC1	GCA	CTC	GGI	rGC'.	FTC:	rgg(GAC'l	CCA	GTT	CAA	GTT	GAC	CATG	
a		V	T	С	V	V	V	D	v	S	Н	E	D	₽	E	V	ĸ	F	N	W	Y	-
	241	GT(GGA	CGG	CGT	GGA	GGI	GCA	TAA	TGC	CAZ	\GA(-+		AGC(CGC@	GGA	GGA	.GCA +	GTA	CAA	CAGC	300
		CA	CCT	GCC	GCA	.CCI	CCA	CGI	TTA	ACO	GT1	rct(GTT.	rcgo	GCGC	CC1	CCT	CGT	CAT	GTT	GTCG	
а		V	D	G	V	Ε	V	Η	N	A	K	т	K	₽	R	Ε	Е	Q	Y	N	ន	<u>-</u>
	301	AC	GTA	CCG	TGT	GGT	CAG	CGI	rccı	CAC	CGI	rcc:	rgc <i>i</i>	ACCI	\GGZ	CTC	GCT	GAA	TGG	CAA	GGAG	360
	501	ТG	CAT	GGC	ACA	.CCA	.GTC	GCA	GGA	.GTG	GCZ	AGGI	łCG.	rggī	rcc'i	GAC	CGA	CTT	ACC	GTT	CCTC	200
a		Т	Y	R	v	V	s	V	L	т	v	\mathbf{L}	Н	Q	D	W	L	N	G	K	Ε	-
		TA	CAA	GTG	CAA	.GGT	CTC	CAA	CAA	AGC	CC1	1000	CAGO	ccc	CAT	CGA	GAA	AAC	CAT	CTC	CAAA	
	36T	AT(GTT	CAC	-+- 'GTT	CCA	GAG	GTI	GTT	TCO	GGG	-+ \GG(STC	GGG	+- GTA	GCI	CTT	+ TTG	GTA	GAG	+ GTTT	420
a		Y	K	С	K	V	S	N	к	A	L	P	A	Р	I	Е	ĸ	т	Ţ	S	K	
		GC	CAA	AGG	GCA	.GCC	CCG	AGA	ACC	ACA	GGJ	GTZ	ACAC	CCI	rgco	CCC	ATC	CCG	GGA	TGA	GCTG	
	421	CG	 GTT	 TCC	-+- CGT	CGG	GGC	+ TCT	TGG	TGT		-+ \CA:	ſGTO	GGGI	+- 4CGG	GGG	TAG	+ GGC	CCT	 ACT	+ CGAC	480
a		A	ĸ	G	0	Ρ	R	Ε	P	0	v	Y	т	Г	Р	Р	s	R	D	Е	Ъ	_
		AC	CAA	GAA	~ CCA	GGT	'CAG	CCT	GAC	~ CTG	CCT	- GGr			- ⊒⊂-₽-1	ירייים	TCC	CAG	CGA	ር ጉልጥ		
	481		 יידיידי		-+-			+			 'CC2	-+			+-			+ CTC				540
_		то. 	77		0.01	بیانی ۲7	010	-100. T		220	-00F	<i>ی</i> ر رہ ۲7	1011	. 1. U	JGAF.	77 1(371 1	- AGG	~	501	GIA T	5000	
a		.T.	n aar	N	Q	V	5	ш Ш.С.С.	.T.		ц 	V	K	G	F.	1 ~ 1~	P	ъ 222	ע דפס	1	A 	-
	541	G'1'(GTG	-+-	GAG		~1'GG	GCA	.GCC	:GG2 	1GA7 -+	<u>ACA</u> Z	4CT#	ACAA	GAC	:CAC	GCC +		CGT	GCTG +	600
		CA	CCT	CAC	CCT	CTC	GTT	ACC	CGT	CGG	CCI	CT.	ſGTI	rgan	rgt'i	CTG	GTG	CGG	AGG	GCA	CGAC	
a		V	E	W	E	S	N	G	0	Ρ	Ε	Ν	Ν	Y	ĸ	\mathbf{T}	т	Ρ	Ρ	v	т	_

PCT/US01/14310

FIGURE 20B

	601	GAC	CTCC GAGC	CGAC GCTC	CGGC -+ GCCC	GAGO	CTTO GAAC	CTT(+- SAA(CCTC GGAC	CTAC GATC	CAGO + GTCO	CAAC STTC	GAC	CACO GTGO	CGTO -+ SCAC	GAC	CAAC GTTC	GAGC	TCC	TGO	GCAG + CGTC	660
a		D	S	D	G	S	F	F	L	Y	S	ĸ	Ŀ	т	v	D	ĸ	ន	R	W	Q	_
	661	CAC GTC	GGGC CCCC	GAAC	CGTC -+ SCAG	CTTC BAAG	CTCA GAGI	ATGO +- TACO	GTCC	CGTO GCAO	GATO CTAC	GCAT GTI	GAG CTC	GCI	CTC + AGAC	GTC	CAAC	CAC -+- GTC	CTAC GATO	CACC	GCAG + CGTC	720
a		Q	G	N	V	F	s	С	s	v	М	Н	Ε	A	Г	Н	N	H	Y	Т	Q	~

BamHI

> r 1

a KSLSLSPGK*

NdeI

FIGURE 21A

	1	CA'	TAT	GGA	CAAI	AAC	TCA	CAC	ATG'	rcc)	ACC	FTG	FCCZ	AGCJ	rade	GAF	ACTC	CTC	GGG	GGG1	ACCG	6.0
	Т	GT	ATA	CCT	GTT:	rTG)	AGT	GTG'	TAC	AGG	rGGZ	AAC/	AGGI	rCGZ	AGGC	СТЛ	rgac	GGAC	ccc	CCC	rggC	60
a			Μ	D	K	Т	Η	Т	С	Ρ	P	С	Р	A	Ρ	Ε	L	Г	G	G	Ρ	-
	61	TC	AGT	CTT	ССТО	CTT	CCC	ccċ	AAA	ACC	CAA	GGA(CACO	CCTC	CATO	ATC	CTCC	CCGC	GAC	CCC	FGAG	100
	01	AG	TCA	GAA	GGA	GAA	GGG	GGG'	rrr'	rgg	 GTT(CTC	GTGO	GGAG	TAC	TAG	GAG	GCC	CTG	GGI	ACIC	120
a		S	V	F	L	F	Ρ	Ρ	K	Ρ	ĸ	D	т	L	Μ	I	ន	R	т	Ρ	Е	
	101	GT	CAC	ATG	CGT	GGT	GGT(GGA	CGT	GAG	CCA	CGA	AGAC	CCJ	GAG	GTC	CAAG	STTC	CAAC	CTGC	STAÇ	100
	ΤĞΤ	CA	GTG	TAC	GCA	CCA	CCA	CCT	GCA	CTC	GGT	GCT	rCTC	GGGZ	LCTC	CAG	GTTC		GTTC	GACO	CATG	180
a		v	Т	С	V	v	V	D	V	s	H	Έ	D	Ρ	Ε	v	K	F	N	W	Y	-
	101	GT	GGA	CGGG	CGT	GGA	GGT(GCA'	ΓΑΑ'	rgco	CAAC	GAC	AAAG	CCC	GCGC	GAG	GAG	CAC	GTA (CAAC	CAGC	0.4.0
	707	CA	CCT	GCC	GCA(CCTC	CCA	CGT	ATTZ	ACG	GTT	CTG:	rrr(CGGC	GCC	СТС	СТС	GTC	CAT	GTTC	GTCG	240
a		v	D	G	v	E	V	Н	N	A	к	т	K	Р	R	Е	Ε	Q	Y	N	S	-
	n 41	AC	GTA	CCG	rGT(GGT	CAG	CGT	CCTC	CAC	GT	CTC	GCAC	CAG	GAC	TGG	CTO	GAAT	rgg(CAAC	GGAG	200
	241	TG	CAT	GGCZ	ACA(CCAC	GTC	GCA	GGA	GTG	GCA	GGA(CGTO	GTC	CTO	GACC	CGAC	+- CTTZ	ACC(GTTC	CCTC	300
a		т	Y	R	V	V	S	V	Ь	т	v	Ŀ	H	Q	D	W	L	N	G	K	Е	_
	201	TA(CAA	GTG		GGT(CTC	CAA	CAAZ	AGC	CTC	CCC	AGCC	ccc	ATC	GAG	AAA	ACC	CAT	CTCC	CAAA	260
	301	TA AT	CAA GTT	GTGO CACO	CAA(-+ GTT(GGT(CCA(CTC GAG	CAA(+- GTT(CAA) GTT	AGC(FCG(CCT(GGA(CCC2 + GGG1	AGCC	GGGG	АТС + ТАС	GAG CTC	AAA TTT	ACC +- TGC	CATO GTAC	CTCC GAGG	CAAA + FTTT	360
a	301	TA AT Y	CAA(GTT(K	GTG(CAC(C	CAA(-+ GTT(K	GGT(CCA(V	CTC GAG S	CAA(+- GTT(N	CAAJ GTT K		CCTO GGAO L	CCC2 + GGC2 P	AGCC FCGC A	CCC GGG P	ATC + TAG I	GAC CTC E	AAA TTTI K	ACC -+- TGC T	CATO GTAC	CTCC SAGO S	CAAA + YTTT K	360
a	301	TA AT Y GC	CAA(GTT(K CAA;	GTG(CAC(C AGG(CAA(-+ GTT(K GCA(GGT(CCA(V GCC(CTC GAG S CCG	CAA(+ GTT(N AGA2	CAA) GTT K ACC)	AGCO ICGO A ACAO	CCT(GAC L GGT(CCC2 + 9GG7 P 9TAC	AGCC FCGC A CACC	CCCC	ATC + FTAG I	GAG E E	TTT K	ACC TGC TCGC	CATO STAC I SGAI	CTCC BAGG S TGAG	CAAA STTT K SCTG	360
a	301 361	TAC ATC Y GCC CGC	CAA GTT K CAA GTT	GTGO CACO C AGGO ICCO	CAA(-+ GTT(K GCA(-+ CGT(GGT(CCA(V GCC(CGG(CTCC GAGC S CCG2 GGC3	CAA GTTC N AGA FCT	CAAJ GTT K ACCJ IGG		GAC GAC L GGT CAC	CCC2 GGG7 P GTAC F CATC	AGCO FCGO A CACO GTGO	GGGG P CCTC GGAC	ATC TAG	GAG CTC E CCCA	XAAA XTTT K XTCC XAGC	ACC TGC T CGC GCC	TAC I GAT	S GAGG S GAG	CAAA STTT K SCTG CGAC	360 - 420
a	301 361	TAC ATC Y GCC CGC A	CAA GTT K CAA GTT K	GTGC CACC C AGGC ICCC G	CAAC GTTC K GCAC CGTC Q	GGTC CCAC V GCCC GGCC P	GAGO S CCGJ GGCC R	CAAC GTTC N AGAJ ICTT E	CAAZ GTT K ACC2 IGG? P	AGCO ICGO A ACAO IGTO Q	CCTO GAC L GGTO CCAO V	CCC2 SGG7 P STAC + CATC	AGCC FCGG A CACC GTGG T	CCCC P CCTC GGAC	ATC TAG I CCC GGG	E CCCA GGT	XAAA K XTCC ZAGC S	ACC TTGC T CCGC GCC R	EATO TAC I GAN CCTZ	ETCO BAGO S FGAO ACTO	CAAA FTTT K SCTG CGAC L	360 - 420 -
a	301 361	TAC ATC Y GCC CGC A ACC	CAA GTT K CAA GTT GTT K CAA	GTGC CACC C AGGC FCCC G G GAAC	CAA GTT K GCA GCA CGT Q CCA	GGTC CCAC V GCCC GGC P GGTC	CTCC GAGC S CCG2 GGC3 R CAGC	CAAC GTTC N AGAZ FCTC E	CAAJ GTT: K ACCJ IGG: P GACC	AGCO FCGO A ACAO FGTO Q CTGO	CCTO GGAO EGTO CCAO V	CCC2 F EGG7 P GTAC F CATC Y EGTC	AGCC PCGG A CACC GTGG T CAAA	ECTO FGGAC	I CCCC P SCCCC P	GAG E CCCA GGI P	XAAA XTTT K XTCC XAGG S CCCC	ACC T T CCGC R ZAGC	EATO I EGAT CCTZ D	S GAGG S GAG ACTC E CATC	CAAA FTTT K SCTG CGAC L CGCC	360 - 420 -
a	301 361 421	TAC ATC Y GCC CGC A ACC TGC	CAAC GTTC K CAAC GTTC GTTC	G G G G G G G G G G G G G G C T T C	CAAC GTTC K GCAC CGTC Q CCAC	GGTC CCAC V GCCC P GGTC CCAC	CTCC SAGC S CCGJ GGCC R CAGC	CAAC GTTC N AGAJ FCTT E CCTC GGAC	CAAJ GTT K ACCJ P GACC CTGC	AGCO PCGO A ACAO CGTO Q CTGO GACO	CCT(GGA(L CCA(V CCT(GGA(CCCA GTAC P GTAC Y GGTC Y GGTC CCAC	AGCC PCGG A CACC T CAAA CAAA		LATC	GAC E CCA GGI P TAT	XAAA TTTT K ATCC S CCCC	ACC TGG T CCGC R CGGC R CAGC	GATC I GGAT CCTZ D CGAC	S S GAG E CATC	CAAA FTTT K SCTG CGAC L CGCC CGCC	360 - 420 - 480
a a	301 361 421	TA(AT(Y CG(A A CG(TG(TG(T	CAA(GTT(K CAA) GTT(K GTT(K	GTGC CACC C AGGC ICCC G G G AGAAC CTTC N	ZAA(-+ GTT(K GCA(-+ CGT(Q CCA(-+ GGT(Q	GGT(CCA(V GCCC CGGC P GGT(CCA(V	CTCC S CCCGJ CCCGJ R CCCGJ R CCCGJ S CCCGJ S	CAA(+- FTT(N AGA) +- F CCT(+- SGA(L	GTT K ACCJ P GACCJ CTGC T	AGCO ICGO A ACAO IGTO Q CTGO CTGO C	GGT(CCAC V CCTC GGAC L	CCC2 GGG7 P GGTA(CAT(Y GGT(CCA(V	AGCC PCGG A CACC T CAAA T CAAA STTT K	GGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	TAGE	CTC E CCCA GGI P TAI ATA X	CAAA TTTI K ATCC CAGG S CCCC GGGG P	ACC TGG T CCGG GGCC R R CAGC S TCG S	TAC TAC I GGA1 CCTZ D CCGAC CGAC CCTZ	S GGAG E CATC GTAG I	CAAA FTTT K SCTG CGAC L CGCC CGCC A	360 - 420 - 480 -
a a	301 361 421	TA(ATC Y GCC CGC A A ACC TGC TGC	CAA(GTT(K CAA) GTT(K CAA(GTT(K GGA(GTGC CACC C AGGC ICCC G G G AGGC CTTC N STGC	ZAA(-+ GTT(K GCA(Q CCA(CCA(CCA(CCA(CCA(CCA(CCA(GGTC CCAC V GGCCC P GGTC CCAC V V GAGCC	S CCGJ R CAGC R CAGC S CAGC S CAA	CAA(+- GTTC N AGAJ +- F CCTC CCTC +- GGA(L IGGG	CAAJ GTT: K ACCJ P GACC CTGC T GCAC	AGCO FCGO A ACAO CGTO Q CTGO CTGO C GCCO	CCTC GGAC CCAC V CCTC GGAC L	CCCI GGT P GTAC CATC V GGTC CCAC V SAAC	AGCC FCGG A CACC T CAAA STTT K K CAAC	GGGG P CCTC GGAC L CCCC G CCCC G CTAC	ATC TAG TAG CCCC CCCC CCCC CCCC CCCC CCC	CCCA E CCCA GGT P TAT ATA Y XACC	CAAP CTTTI K ATCC CAGG S CCCC GGGG P LACG	ACC TTGC T CCGC R CAGC FTCC S CCCI	FTAC I I GGA CCTZ D CGAC CCTZ D CCCCZ	CTCC S S CGAC E CATC STAG I CGTC	XAAA STTT K SCTG CGCC L CGCC A SCTG A SCTG	360 - 420 - 480 -
a a	301 361 421 481	TA(ATC Y GCC CGC A A ACC TGC TGC TGC	CAA(GTT(K CAA) GTT(K CAA(GTT(K GGA(CCT(G C C C C C C C C C C C C C C C C C C C	ZAA(-+ GTT(K GCA(-+ CGT(Q CCA(CCA(CGGA(-+ CCT(CCT(GGT(CCA(V GCCC) CGGC P GGT(CCA(V V GAGC CTCC	CTC(SAG(S CCG) R CAG(S CAG(S CAA(S CAA(S TT)	2AA(+- STTC N AGAJ +- F CCTC F CCTC +- SGA(L L IGG(+- ACCC	GAAJ GTTY K ACCJ P GACC CTGC T GCAC	AGCC PCGC A ACAC CGTC CTGC CTGC CGGC CGGC	CCTC GGAC L GGTC CCAC V CCTC GGAC L GGAC	CCCA GGGT P FTA(FTA) CAT(CAT(CCA(V V CCA(V CCA(CTT(CTT(AGCC PCGG A CACC T CAAA STTG K CAAAC	GGAC GGAC GGAC GGAC GGAC GGAC GGAC GGAC	ATC	CCCA E CCCA GGT P TAT XATA Y XATA Y	XAAA TTTT K VACCO S CCCCO S CCCCO S CCCCO S CCCCO S CCCCO S CCCCO S CCCCO S CCCCO S S CCCCO S S S CCCCO S S S S	ACC TGC T CCGC CCC R CAGC S CCC S CCC CCC CCC CCC CCC CCC CCC	I GGA1 CCTZ D CCCZ D CCCCC	S S CTGAC C CACTC E CATC STAG I CGTC CGTC	XAAA STTT K SCTG CGAC L CGCC A SCTG CGAC	360 - 420 - 480 - 540
a a a	301 361 421 481	TA(ATC Y GCC CGC A A CCG T TG CGC T CGC V	CAA(GTT(K CAA) GTT(K CAA(GTT(K GGA(CCT(E	GTGC CACC CAGGC ICCC G GAAC CTTC N GTGC CACC W	CAA(-+ STTC K GCA(-+ CGTC Q CCA(-+ GGTC Q GGA(-+ E	GGT(CCAC V GCCC P GGT(CCAC V EAGC CTCC S	CTCC GAGC S CCG2 R CAGC S CAGC S TCC S CAAC S TTZ N	CAA(+- STTC N AGAJ +- F CCTC F CCTC +- GGA(L IGG(+- ACCC) G	CAAJ STT: K ACCJ P GGC CTGC T GCAC CTGC CGTC Q	AGCO PCGC A ACAO PGTO C C GCCO C GCCO C GCCO C GCCO	CCTC GGAC CCAC V CCTC GGAC CCTC E	CCC2 GGG7 P GTA(CATC V V GGT(CCAC V SAA(CTTC N	AGCC PCGG A CACC FTGG T CAAA STTT K CAAA STTT G STTTG	GGCCCG GGGCCG GGGCCCG GGCCG GGCG GGCGCG GGCGC GGCG GGCG GGCGC GGCG GGCG GGCG GGCGC GGCGC GGCG GGCGCG GGCG GGCGC GG	TAC TAG TAG CCCC CCCC CCCC CCCC CCCCC CCCCC CCCCC CCCC	CCA CCCA CCCA CCCA P TATA CCCA P SACCA CCCA CCCA CCCA CCCA CCCA	TTTT K ATCC ATCC S CCCC S GGGG P P ZACG TGC	ACC TGC T CCGC R CCGC R CCGC S CCCI S CCCI CGCZ P	TATC TAC TAC TAC TAC TAC TAC TAC TAC TAC	S GGAG E CATC GTAG CGTG GCAC V	ZAAA STTT K SCTG CGAC L CGCC A SCTG A SCTG CGAC L	360 - 420 - 480 - 540 -
a a a	301 361 421 481	TA(ATC QC CG CG A AC CG TG CA CA V V GA	CAA(GTT(K CAA) GTT(K CAA(GTT(K GGA(CTC) E	GERACC	CAA(-+ FTT(K GCA(-+ CGT(Q CCA(CCA(-+ GGT(Q CCA(-+ CCT(E CCGG(CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	GGT(CCAC V GCCC CGGC P GGT(CCAC V EAGC CTCC S	CTCG GAG CCGJ GGC R CAG STCC S CAA S TTTZ N CTTC	CAA(+- GTTC N AGAJ +- F CCTC F CCTC +- GGA(L CCTC G G CTTC	CAAJ GTTY K ACCJ IGG? P GACC T GCAC CTGC CGTC Q	AGCO ICGO A ACAO IGTO Q CTGO C GCCO C GCCO C GCCO C C GCCO C C GCCO C C C C	CCTC GGAC L GGTC CCAC V CCTC GGAC L GGAC CCTC E E	CCC2 GGGG P FTA(CCAC V GGT(CCAC V GGT(CCAC V CCAC	AGCC PCGG A CACC FTGG T CAAA STTT K CAAC STTTG STTTG N	CCCC P CCTC G G CCCC G CCCC G CCCCC G CTAC CCCC Y X CCCCCC CCCCCCCCCCCCCCCCCCCCC	ATC TAG TAG CCCC CCCC CCCC CCCC P TTC CCCC P TTC CAAG F F CAAG F CAAG K CCCCC CCCCC CCCCCCCCCCCCCCCCCCCC	CCCA E CCCA GGGI P TTAI GACC TGG T GGAC	XAAA TTTT K VTCC ZAGG S CCCC ZAGG P P ZACG T T T CAAG	ACC TTGC T CCGC R CAGC S CCT S CCT S CCT S CCT S CCT S CCT S CCT S CCT S CCT S CCT S CCT S CCT S CCT S CCT S CCC S CCT S CCCC S CCC S CCC S CCC S CCC S CCC S CCC S CCC S CCC S CCC S CCC S CCC S CCC S C	TATC TAC TAC TAC TAC TAC TAC TAC TAC TAC	S S CTGAC E CATC CGTC GCAC V V	XAAA STTT K SCTG CGAC L CGCC A SCTG A CGAC L SCAG	360 - 420 - 480 - 540 -
a a a	301 361 421 481 541	TAU ATO Y GCO CGO A ACO TGO TGO CAO V GAO CTO	CAA(GTT(K CAA) GTT(CAA(GTT(CAA(CAA(CCT(E CCT(E CTC(GAA(CCT(E	GEGEC	CAA(-+	GGT(V GGCCCAC CGGC P GGTCC CCAC V EAGC CTCC S CTCCC S CTCCC	CTCC GAGC S CCCGJ GGC R CAGC GTCC S CAAC S CAAC N N CTTC GAAC	CAA(+- GTTC N AGAJ +- ICTC E CCTC CCTC CCTC CCTC G G CTTC G CTTC +-	CAAJ GTT: K ACCJ IGG? P GACC CTGC CTGC CTGC CCTGC CCTC CCTC CCT	AGCC CGGC A ACAC CGGT CTGC CTGC CGGC CGG	CCTC GGAC L GGTC CCAC V CCTC GGAC L GGAC CCTC E CAGC	CCC2 P GTAC CATC V GGTC V GGTC V GGTC V CAAC N CAAC F CTTC N	AGCC FCGG A CACC FTGG T CAAA FTTG K CAAAC STTG N SCTC CGAC	CCCC GGAC CCCCC G CCCCCCCCCCCCCCCCCCCCC	ATC TAG TAG TAG CCCC CCCC CCCC CCCC CCCC	CCA CCA E CCA GGT P TAT Y Y XACO T GGAC CCTG	XAAA TTTT K ATCC ZAGG S CCCCC S CCCCC S CCCCC S CCCCC T T C CCCCC T T C CCCCC T T C CCCCC T T C CCCCC T	ACC TGG T CGG CGC R CGGC TCG S CCC P BAGC CGGA P BAGC	PATC	S S GGAC E CATC CATC CATC CATC CATC CATC CATC	XAAA STTT K SCTG CGAC L SCGG A SCTG CGAC L SCAG L SCAG	360 - 420 - 480 - 540 - 600

а

PCT/US01/14310

FIGURE 21B

 ${\tt Caggggaacgtcttctcatgctccgtgatgcatgaggctctgcacaaccactacacgcag}$ 601 ------ 660 GTCCCCTTGCAGAAGAGTACGAGGCACTACGTACTCCGAGACGTGTTGGTGATGTGCGTC Q G N V F S C S V M H E A L H N H Y T Q а ----AAGAGCCTCTCCCTGTCTCCGGGTAAAGGTGGAGGTGGTGGTGGTTTCGAATGGACCCCGGGT TTCTCGGAGAGGGACAGAGGCCCATTTCCACCTCCACCACCAAAGCTTACCTGGGGCCCA K S L S L S P G K G G G G G F E W T P G а _ BamHI TACTGGCAGCCGTACGCTCTGCCGCTGTAATGGATCCCTCGAG 721 ----- 763 ATGACCGTCGGCATGCGAGACGGCGACATTACCTAGGGAGCTC

YWQPYALPL*

.

FIGURE 22A

		Nd I	eI																		
	-1	CAT	ATGTI	CGA	ATG	GAC	ccc	GGG	TTA	CTG	GCA	.GCC	GTA	CGC	TCT	GCC	GCT	GGG	TGG.	AGGC	6.0
	Т	GTA	TACAA	GCT	TAC	CTG	GGG	ccc	AAT	GAC	CGT	CGG	CAT	GCG	aga	.CGG	CGA	CCC	ACC	TCCG	60
a			M F	Е	W	т	P	G	Y	W	Q	Ρ	Y	A	Г	P	Ь	G	G	G	-
	61	GGT	GGGGP	CAA	AAC	TCA	CAC	ATG	TCC	ACC	TTG	CCC	AGC	ACC	TGA	ACT	CCT	GGG	GGG.	ACCG	120
	0.L	CCA	CCCCI	GTT	TTG	AGT	GTG	TAC	AGG	TGG	AAC	GGG	TCG	TGG	ACT	TGA	GGA	ccc	CCC	TGGC	120
а		G	G D	ĸ	т	Н	т	С	Р	Ρ	С	Ρ	A	Ρ	Ε	L	\mathbf{L}	G	G	Р	-
	121	TCA	GTTTT	CCT	CTT	ccc	CCC	AAA	ACC	CAA	.GGA	CAC	ССТ	CAT	GAT	CTC	CCG	GAC	CCC	TGAG	100
	777	AGT	CAAAA	GGA	GAA	GGG	GGG	TTT	TGG	GTT	CCT	GTG	GGA	GTA	CTA	GAG	GGC	CTG	GGG.	ACTC	100
a		S	VF	L	F	Ρ	Ρ	K	Ρ	К	D	т	\mathbf{L}	М	I	S	R	Т	Ρ	Е	
	1 8 1	GTC	ACATO	CGT	GGT	GGT	GGA	.CGT	GAG	CCA	CGA	AGA	CCC	TGA	GGT	CAA	GTT	CAA	CTG	GTAC	240
	701	CAG	TGTAC	GCA	.CCA	CCA	CCT	GCA	CTC	GGT	GCT	TCT	GGG	ACT	CCA	GTT	CAA	GTT	GAC	CATG	240
a		v	T C	V	V	V	D	V	S	н	Ε	D	Ρ	Ε	V	K	F	N	W	Y	
	241	GTG	GACGO	CGT	GGA	GGT	GCA	TAA	TGC	CAA	GAC	AAA	GCC	GCG	GGA	GGA	GCA	GTA	CAA	CAGC	300
		CAC	CTGCC	:GCA	CCT	CCA	CGT	ATT	ACG	GTT	ĊТG	TTT	CGG	CGC	ССТ	CCT	CGT	CAT	GTT	GTCG	500
a		V	DG	V	E	V	Η	N	A	K	Т	K	Ρ	R	Ε	Ε	Q	Y	N	S	-
	301	ACG	TACCO	TGT	GGT	CAG	CGT	ССТ	CAC	CGT	CCT	GCA	CCA	GGA	CTG	GCT	GAA'	TGG	CAA	GGAG	360
	501	TGC	ATGGC	ACA	.CCA	GTC	GCA	.GCA	CTG	GCA	GGA	CGT	GGT	CCT	GAC	CGA	CTT	ACC	GTT	CCTC	500
a		т	YR	V	V	S	V	\mathbf{L}	Т	V	L	Η	Q	D	W	L	N	G	K	Е	
	361	TAC	AAGTO	CAA	GGT	CTC	CAA +	CAA	AGC	CCT	ccc +	AGC	CCC	CAT	CGA	GAA		CAT	CTC	CAAA	420
		ATG	TTCAC	GTT	CCA	GAG	GTT	GTT	TCG	GGA	ĠGG	TCG	GGG	GTA	GCT	CTT	TTG	GTA	GAG	GTTT	1.20
a		Y	K C	K	V	S	N	K	Α	Г	Ρ	A	Ρ	Ι	Ε	K	Т	I	S	ĸ	-
	421	GCC	AAAGO	GCA	.GCC	CCG	AGA	ACC	ACA	GGT	GTA +	CAC	CCT	GCC	CCC.	ATC		GGA	TGA	GCTG	480
		CGG	TTTCC	CGT	CGG	GGC	тст	TGG	TGT	CCA	САТ	GTG	GGA	CGG	GGG	TAG	GGC	CCT	ACT	CGAC	
a		А	K G	Q	Ρ	R	Ε	P	Q	V	Y	т	\mathbf{L}	Ρ	Ρ	S	R	D	Ε	Г	
	481	ACC	AAGAA	CCA	GGT	CAG	ССТ +	GAC	CTG	CCT	GGT +	CAA	AGG	CTT -+-	CTA	TCC		CGA			540
		TGG	TTCTI	GGT	CCA	GTC	GGA	СTG	GAC	GGA	CCA	GTT	TCC	GAA	GAT.	AGG	GTC	GCT	GTA(GCGG	
a		т	K N	Q	V	S	L	т	C	Г	V	К	G	F	Y	Ρ	S	D	Ι	A	-
	541	GTG	GAGTO	GGA	GAG	CAA	TGG +	GCA	GCC	GGA	GAA +	CAA	CTA	CAA -+-	GAC	CAC	GCC	TCC	CGT	GCTG	600
		CAC	CTCAC	CCT	CTC	GTT.	ACC	CGT	CGG	CCT	CTT	GTT	GAT	GTT	CTG	GTG	CGG	AGG	GCA	CGAC	
а		V	ΕW	E	s	N	G	Q	Ρ	E	N	N	Y	К	т	т	Ρ	Ρ	v	L	-

FIGURE 22B

	601	GA(CTC	CGA	CGG	CTC	CTTC	CTTC	CCT	CTA	CAG	CAA	GCT	CAC	CGT	GGA	CAA	GAG	CAG	GTG	GCAG	660
	001	СТС	GAG	GCT	GCC	GAG	GAAG	GAA	GGA	GAT	GTC	GTT	CGA	GTG	GCA	CCT	GTT	CTC	GTC	CAC	CGTC	000
a		D	s	D	G	S	F	F	L	Y	S	K	L	т	V	D	K	S	R	W	Q	-
	661	CAC	GGG	GAA	CGT	CTT	CTCZ	ATG(CTC	CGT	GAT	GCA	TGA	GGC	TCT	GCA	CAA	CCA	СТА	CAC	GCAG	700
	001	GT	CCC	CTT	GCA	GAA	GAG	FAC	GAG	GCA	CTA	CGT.	ACT	CCG	AGA	CGT	GTT	GGT	GAT	GTG	CGTC	720
a		Q	G	N	v	F	ន	С	S	v	М	Η	Е	A	Ь	H	N	H	Y	T	Q	-
											Bai	mHŢ										
	721	AA(TT(GAG(CTC(CCT(GGA(CTC(-+ 3AG(CCT(GGA(GTC: CAGI	rcco +- AGGO	GGG' CCC	TAA ATT		ATG + TAC	GAT(CTA(CC GG	757							
a		ĸ	s	Ъ	s	L	s	Ρ	G	ĸ	*											

FIGURE 23A

	No	leI				Ndei CATATGGACAAAACTCACACATGTCCACCGTGCCCAGCACCTGAACTCCTGGGGGGGG																
		CAT	PATO	GGA	CAA	AAC	TCA	CAC	ATC	TCC	CACC	GTC	acco	AGC	ACC	TGA	ACT	CCT	GGG	GGG	ACCG	
	Т	GTZ	ATA(CCT	-+- GTT	TTG	AGT	GTC	JTAC	AGO	TGG	-+ SCAC	GGG	TCG	-+- TGG	ACT	TGA	GGA	CCC	CCC'	+ FGGC	60
а			М	D	K	Т	H	[]	. C	: I	ь Е	, c	: F	A	P	E	Ŀ	L	G	G	Ρ	_
		TCZ	GT:	ETT(ССТ	CTT	ccc	.ccc	AAZ	ACC	CAF	GGA	CAC	CCT	CAT	GAT	CTC	CCG	GAC	CCC	IGAG	
	61	AGT	rca <i>i</i>		-+- GGA	GAA	GGG	+ GGC	 TTT	TGO	GTI	+ CC7	GTG	GGA	-+- GTA	CTA	GAG	+ GGC(CTG	GGG	ACTC	120
a		s	v	F	L	F	Р	P	к	P	к	D	т	ь	М	I	5	R	Ţ	P	E	_
		GTO	TACZ	አጥር	റവ്ന	GGT	GGT	GGP	CGT	ימסמי	CCZ	- 	-	_ 	 ന്ന്രമ	– ഭദ്ന	~ ~ ~ ~	ദസം	- ממיי	- നേവം	 רויב	
	121				-+-	 CCN	 	+							-+-			+·			+	180
-		Und TT		a	UCA TT	T7			. GCF		.1997		TCT	555	ACI		GTT		GT 11	JAC	-ATG	
a		v	T		v	v	V	D	V	5	H	<u>ب</u>	U 	P	E non	V	К 	F.	N	W	Y	-
	181	GTC			CGT -+-	GGA		'GCA		ATGC	CAA	GAC		GGC	GCG -+-	GGA	GGA	GCA(CAA(CAGC	240
		CAC	CTC	GCC	GCA	CCT	CCA	.CGI	'AT'I	ACG	GTI	CTC	TTT	CGG	CGC	CCT	CCT	CGT	CAT	GTT(GTCG	
a		V	D	G	V	Ε	V	Н	N	A	K	т	K	P	R	Ε	Ε	Q	Y	Ν	S	-
	241		STAC	CCG	IGT	GGT	CAG	CGI	CC1	CAC	CGI	СС1 +	GCA	.CCA	GGA	CTG	GCT	GAA	TGG		GGAG	300
		TGC	CATC	GGCZ	ACA	CCA	GTC	GCA	GGA	GTG	IGCA	GGA	CGT	GGT	CCT	GAC	CGA	CTT	ACC	GTT(CCTC	500
a		Ţ	Y	R	V	V	S	V	\mathbf{L}	т	V	L	Η	Q	D	W	L	N	G	К	Ε	-
	201	TAC	CAA(GTG	CAA	GGT	CTC	CAA	CAA	AGC	CCI	cac	AGC	ccc	CAT	CGA	GAA	AAC	CAT	CTC	CAAA	
	301	ATC	GTTC	CAC	-+- GTT	CCA	GAG	GTI	GTI	TCO	ICCA	reec	TCG	GGG	-+- GTA	GCT	CTT	rtg(GTA(GAG	+ 3TTT	360
a		Y	K	С	K	v	S	N	K	A	Ь	Ρ	A	Ρ	Ι	Е	К	Т	Ι	s	K	_
		GCC	CAAF	4GG(GCA	GCC	CCG	AGA	ACC	ACA	.GG1	'G'PA	.CAC	ССТ	GCC	ccc	ATC(CCG	GGA	rga(GCTG	
	361	CGG	GTT3	rcc	-+- CGT	CGG	GGC	+ TCI	TGG	TGI	CCA	+	 GTG	GGA	-+- CGG	GGG'	TAG	+- GGC(CCTZ	ACT(+ CGAC	420
a		A	K	G	Q	Р	R	Е	Ρ	0	v	Y	т	\mathbf{L}	Ρ	Ρ	S	R	D	Е	L	-
		ACC	AAC	GAA	CCA	GGT	CAG	CCI	GAC	- CTG	CCI	GGT	CAA	AGG	CTT	CTA	TCC	CAG	CGA	ገልጥ	2002	
	421	 тсс	 TTC	 ?TTT(-+- 36T(СтС	+			GGA	+	GTT	 TCC	-+- CAA	GAT		+- 2mC(2772/		480
a		 m	w v	N	0	τ <i>τ</i>	с. с	т.	т т		т.	37	v	- CC			лооч п	~		т т	7	
u		- 		ייחרי	× ~~~	v (17) (1)						v ~~~~		Cuny	с С 7	ar a	1 72 CV	o aaar	U DOOU	1	A	-
	481							+			GGA				-+-	GAC		+-		.GTC	+	540
		CAU	-	JACI		CTU	G1.1	ACC	CGI	CGG	CCJ	'CT'1	G1"1	GAT	GTT	CTG	GTG	CGG	AGG(GCA(CGAC	
a		V	Е	W	E	S	Ν	G	Q	Ρ	Ε	N	N	Y	K	т	Т	Ρ	Ρ	V	L	-
	541	GAC	CTCC	CGA(CGG(CTC	СТТ 	CTT -+	CCI	CTA	CAG	CAA +	GCT	CAC	CGT -+-	GGA	CAA(GAG(CAG	GTGC	GCAG	600
		CTG	BAGG	SCT(GCC	GAG	GAA	GAA	.GGA	GAI	GTC	GTI	CGA	GTG	GCA	CCT	GTT(CTC	GTC	CACO	GTC	
a		D	S	D	G	S	F	F	Ŀ	Y	s	ĸ	Г	т	V	D	ĸ	S	R	W	Q	-

PCT/US01/14310

FIGURE 23B

	601	CAC	GGG	GAA(CGT	ÎTTC	TC	ATGO	CTC	CGT	GAT	GCAT	rga(GGC	rCT(GCA	CAAC	CCA	CTA	CAC	GCAG	660
	001	GT	ccc	CTT(GCA	GAAC	GAG	FAC	GAGO	GCAC	CTA	CGTI	ACT	CCG	AGA	CGT	GTT	GGT(GAT	GTG	CGTC	000
a		Q	G	N	V	F	S	С	S	V	М	H	Ε	A	Ъ	Н	N	Н	Y	Т	Q	-
	661		GAG(CTC(ССТО	GTC:		GGG	ГАА?	AGG	rgg:	rgg:	rgg	rgg.	rgt'	rga/	ACC	GAA(CTG	rgac	720
		TTC	CTC	GGA	GAG	GGAC	CAG	AGG	CCC	\TTT:	rcc2	ACC2	ACCS	ACCZ	ACCI	ACA	ACT	rgg(CTT(GACA	ACTG	
a		K	S	L	S	Ь	S	Ρ	G	K	G	G	G	G	G	V	Ε	Ρ	N	С	D	-
																В	amH:	Ľ				
	721	АТ(ТА(GGT	IGT ACA	ГАТ(-+ АТА(GTGC	GA/	ATG(+- FAC(GGAZ CCT:	ATG: FAC2		FGAZ + ACTI	ACG: FGCZ	TCT(AGA(GTAZ -+ CATS	ACT(TGA(CGAC GCTC	 GGA: + CCT	ICC AGG	773	3	
a		I	Н	v	Μ	W	Ξ	W	Е	С	F	Ε	R	L	*							

FIGURE 24A

	N	leI																				
	1	CA	TAT	GGT	TGA	ACC	GAA	CTG	TGA	CAT	CCA	TGI	TAT	GTC	GGA	ATG	GGA	ATG	TTT	TGA	ACGT	~ ~
	4	GT.	ATA	CCA	ACT	TGG	CTI	GAC	ACI	GTA	GGI	'ACZ	ATA	CAC	CC1	TAC	ССТ	TAC	AAA	ACT	TGCA	60
a			Μ	V	Ε	Ρ	N	С	D	Ι	Η	V	М	W	Е	W	Ε	С	F	Е	R	-
	C 1	CT	GGG	TGG	TGG	TGG	TGG	TGA	CAA	AAC	TCA	CAC	ATC	TCC	ACC	GTG	ccc	AGC	ACC	TGA	ACTC	100
	ΟT	GA	CCC	ACC	ACC	ACC	ACC	ACT	GTI	TTC	AGI	GTO	TAC	AGG	TGC	CAC	GGG	TCG	TGG	ACT	TGAG	120
а		L	G	G	G	G	G	D	к	Т	Н	Т	С	Р	Ρ	С	Ρ	A	Ρ	Е	L	_
	101	CT	GGG	GGG	ACC	GTC	AGΊ	TTT	CCI	CTI	ccc	ccc	AAA	ACC	CAA	GGA	CAC	CCT	CAT	GAT	CTCC	
	121	GA	CCC	CCC	-+- TGG	CAG	TCA	AAA	GGA	GAA	GGG	+ IGGG	TTT:	TGG	GTT	CCT	GTG	+ GGA	GTA	CTA	GAGG	180
a		г	G	G	P	S	v	F	L	F	Ρ	P	K	Ρ	K	D	т	Ŀ	Μ	Ι	S	-
	1.01	CG	GAC	CCC	TGA	GGT	CAC	ATG	CGI	GGI	'GG'I	GGA	CGI	'GAG	CCA	CGA	AGA	CCC	TGA	GGT	CAAG	
	181	GC	CTG	GGG.	-+- ACT	CCA	GTG	TAC	GCA	CCA	CCA	+ CC1	GCA	CTC	GGI	GCT	TCT	+ GGG	ACT	CCA	+ GTTC	240
а		R	т	Ρ	Е	V	т	С	v	V	V	D	V	ន	H	Е	D	P	Е	v	K	_
	0.44	TT	CAA	CTG	GTA	.CGT	GGA	CGG	CGT	GGA	GGI	GCA	TAA	TGC	CAA	GAC	ААА	GCC	GCG	GGA	GGAG	_
	241	AA	GTT(GAC	-+- CAT	GCA	CCI	GCC	GCA	CCT	CCA	+ CGI	ATT	ACG	-+- GTI	CTG	- ТТТ	+ CGG	CGC	CCT	CCTC	300
a		F	N	W	Y	V	D	G	V	Ε	V	H	N	A	K	т	ĸ	Ρ	R	Е	Е	_
		C 2	~~~~	~ ~ ~	<u></u>		a ma	999	-	~ ~~		~~~	~~~		~~~							
	301						GTA	+	TGT	GGT	CAG	CG1		CAC		CCT	GCA	+	GGA	C'I'G' 	GCTG	360
		GTO		G.TT.	GTC	GTG	CA1	GGC	ACA	.CCA	GTC	GCA	.GGA	.GTG	GCA	.GGA	CGT	GGT	CCT	GAC	CGAC	
a		Q	Y	N	5	.T.	Y	R	V	V	5	V	ц 	Т	V	Ц	H	Q	D	W	L	_
	361	AA'.			GGA -+-	GTA		GTG		.GGT	CTC	CAA +		AGC	-+-	'CCC	AGC			CGA	GAAA +	420
		.1.1.7	ACC	GT"I"	CCT	CAT	GT'I	CAC	G'1"1	CCA	.GAG	GT"1	'GT'1	TCG	GGA	.GGG	TCG	GGG	GTA	GCT	CTTT	
a		N	G	K	E	Y	K	C	K	V	S	N	K	A	L	P	A	₽	I	E	K	-
	421	ACG		C'I'C'	CAA -+-	AGC		AGG +	GCA	GCC	CCG	AGA +		ACA	GGI -+-	GTA	CAC	ССТ +			ATCC	480
		'I'G(JTA	GAG	GTT	"TCG	GTI	TCC	CGT	CGG	GGC	TCI	TGG-	TGT	CCA	CAT	GTG	GGA	CGG	GGG'	FAGG	
a		т	I	S	K	A	K	G	Q	P	R	E	P	Q	V	Y	Τ	Ŀ,	Ρ	Ρ	ន	-
	481	CG	GGA'	TGA	GCT -+-	GAC		GAA +	CCA	.GGT	'CAG	CCI +	GAC	CTG	CCI -+-	GGT	CAA	AGG +		CTA'	rccc	540
		-GCC	CT7	ACT	CGA	CTG	GTT	CTT	GGT	CCA	.GTC	GGA	CTG	GAC	GGA	CCA	GTT	rcc	GAA	GAT	AGGG	
a		R	D	E	L	T	K	N	Q	V	S	L	Т	C	L	V	ĸ	G	F	Y	P	-
	541	AG	CGA(CAT(CGC -+-	CGT	GGA 	GTG +	GGA	.GAG	CAA	тGG +	GCA	.GCC	GGA -+-	GAA		СТА +		GAC	CACG	600
		TCO	GCT(GTA	GCG	GCA	CCT	CAC	ССТ	CTC	GTT	ACC	CGT	CGG	ССТ	CTT	GTT(GAT	GTT(CTG	JTGC	
a		S	D	I	A	V	Ε	W	Ε	S	Ν	G	Q	Ρ	Е	N	N	Y	Κ	\mathbf{T}	Т	-

PCT/US01/14310

FIGURE 24B

	601	CC.	TCC	CGT	GCT	GGA	CTC	CGA	CGG	CTC	CTT	CTT	CCT	СТА	.CAG	CAA	GCT	CAC	CGT	GGA	CAAG	<i>c c</i> 0
	001	GG	AGG	GCA	CGA	CCT	GAG	GCT	GCC	GAG	GAA	GAA	GGA	GAT	GTC	GTT	CGA	GTG	GCA	CCT	GTTC	660
a		Ρ	P	V	L	D	S	D	G	ន	F	F	L	Y	S	ĸ	Г	т	V	D	K	-
	661	AGO TCO	CAG GTC	GTG CAC	GCA -+- CGT	GCA CGT	GGG	GAA + CTT	CGT GCA	CTT GAA	CTC GAG	ATG + TAC	CTC GAG	CGT GCA	GAT -+- CTA	GCA CGT	TGA ACT	GGC + CCG	TCT AGA	GCA CGT	CAAC + GTTG	720
a		s	R	Ŵ	Q	Q	G	N	v	F	S	С	S	V	М	Н	Е	A	\mathbf{L}	Η	N	-
																В	amH	I 				
	721	CA(CTA	CAC	GCA	GAA(?~~~	GAG	CCT	CTC	CCT	GTC	TCC +	GGG	ТАА ¤тт	ATA -+- T>T	ACT 	CGA	ĠGA + CCT		77	3	
a		н	Y	т	0	ĸ	s	L	s	L	S	P	G G	ĸ	*	T (11)	001					

FIGURE 25A

	No	leI																				
	1	CA	TAT	GGA	CAA	AAC	TCA	CAC	ATG	TCC	ACC		TCC	AGC	TCC	GGA	АСТ	CCT	GGG	GGG	ACCG	60
	_	GT	ATA	CCT	GTT	TTG	AGT	GTG	TAC	AGG	TGG	AAC	AGG	TCG	AGG	CCT	TGA	GGA	ccc	CCC	rggc	00
a			Μ	D	ĸ	т	Н	т	С	Ρ	Ρ	С	Ρ	A	Ρ	Е	Г	L	G	G	Ρ	-
	61	TC	AGT	CTT	CCT	CTT	CCC	ccc	AAA	ACC	CAA	GGA	CAC	CCT	CAT	GAT	CTC	CCG	GAC	CCC	TGAG	100
	01	AG	TCA	GAA	GGA	GAA	GGG	GGG	TTT	TGG	GTI	'CCI	GTG	GGA	GTA	СТА	GAG	GGC	CTG	GGG	ACTC	ΤZΟ
а		s	V	F	L	F	₽	Ρ	ĸ	Ρ	к	D	т	Г	М	I	S	R	т	Ρ	Е	-
	101	GT	CAC	ATG	CGT	GGT	GGT	GGA	.CGT	GAG	CCA	CGA	AGA	.ccc	TGA	GGT	CAA	GTT	CAA	CTG	GTAC	100
	121	CAG	GTG'	TAC	GCA	CCA	CCA	CCT	GCA	.CTC	GGI	'GCI	TCT	GGG	ACT	CCA	GTT	CAA	GTT	GAC	CATG	180
a		v	т	С	V	v	v	D	V	ន	H	Ε	D	P	Ε	V	K	F	N	W	Y	
		GT	GGA	CGG	CGT	GGA	GGT	GCA	TAA	TGC	CAA	.GAC	AAA	.GCC	GCG	GGA	GGA	GCA	GTA	CAA	CAGC	
	181	CA	CCT	GCC	GCA	ССТ	CCA	+ CGT	ATT	ACG	GTI	+ CTG	TTT	CGG	-+- CGC	CCT	CCT	+ CGT	CAT	GTT(+ GTCG	240
a		v	D	G	V	Е	v	Н	N	A	к	т	К	Р	R	E	Е	Q	Y	N	S	
		AC	GTA(CCG	TGT	GGT	CAG	CGT	CCT	CAC	CGI	CCI	GCA	.CCA	GGA	CTG	GCT	GAA	TGG	CAAG	GGAG	
	241	TG	CAT	GGC	-+- ACA	CCA	GTC	+ GCA	.GGA	GTG	GCA	+	CGT	GGT	-+- CCT	GAC	CGA	+ CTT.	ACC	GTT(+ CCTC	300
a		Т	Y	R	V	v	S	v	L	т	V	L	Н	Q	D	W	L	N	G	K	E	-
		TAC	CAA	3TG(CAA	GGT	СТС	CAA	CAA	AGC	сст	ccc	AGC	ccc	CAT	CGA	GAA	AAC	CAT	CTC	CAAA	
	301	AT(GTT(CAC	-+- GTT(CCA	GAG	+GTT	GTT	TCG	GGA	+ .GGC	TCG	GGG	-+- GTA	GCT	 CTT	+ TTG	GTA	GAG	+ GTTT	360
a		Y	K	С	K	v	s	N	ĸ	A	\mathbf{L}	Ρ	А	Ρ	I	Е	K	т	I	ន	K	_
		GC	CAA	AGG	GCA	GCC	CCG	AGA	ACC	ACA	GGT	GTA	CAC	ССТ	GCC	CCC.	ATC	CCG	GGA'	IGA	GCTG	
	361	CG	GTT	rcc	-+- CGT(CGG	GGC	+TCT	TGG	TGT	CCA	+ CAT	GTG	GGA	-+- CGG	GGG	TAG	GGC	CCT	ACT	CGAC	420
a		A	K	G	Q	Ρ	R	Ε	P	Q	v	Y	T	L	Ρ	P	S	R	Đ	E	L	_
		AC	CAA	GAA	CCA	GGT	CAG	CCT	GAC	CTG	CCT	GGI	CAA	AGG	CTT	CTA	TCC	CAG	CGA	CAT	CGCC	
	421	TG(GTT(CTT(-+- GGT(CCA	GTC	+ GGA	CTG	GAC	GGA	+ CCA	GTT	TCC	-+- GAA	GAT	AGG	+ GTC	GCT(GTA	+ GCGG	480
a		Т	K	N	Q	v	s	Г	т	С	L	v	ĸ	G	F	Y	Ρ	s	D	I	А	-
		GT	GGA(GTG	GGA	GAG	CAA	TGG	GCA	.GCC	GGA	.GAA	CAA	СТА	CAA	GAC	CAC	GCC'	TCC	CGT	GCTG	
	481	CAC	CCT(CAC	-+- CCT(CTC	GTT	+ ACC	CGT	CGG	CCT	+ CTT	GTT	GAT	-+- GTT	 CTG	 GTG	+ CGG	AGG	GCA	+ CGAC	540
a		v	E	W	Ε	s	N	G	Q	Ρ	Ε	N	N	Y	ĸ	т	т	P	P	v	L	_
		GA	CTC	CGA	CGG	стс	CTT	CTT	CCT	СТА	CAG	CAA	GCT	CAC	CGT	GGA	СУУ	GAG	CAG	GTG	GCAG	
	541	CT(GAG	GCT(-+ GCC(GAG	 GAA	+ GAA		GAT	 GTC	+ GTI	CGA	GTG	-+- GCA	CCT	GTT	+ CTC	GTC		+ CGTC	600
a		D	s	D	G	s	F	F	L	Y	s	к	L	т	v	D	ĸ	s	R	W	Q	-

FIGURE 25B

721 ----- 748 AAGTGGGACACGATTACCTAGGGAGCTC

a FTLC*

FIGURE 26A

	No	Jdel	
	1	CATATGTGCACCACCCACTGGGGTTTCACCCTGTGCGGTGGGGCGCGGTGGGGGACAAAGGT	60
		GTATACACGTGGTGGGTGACCCCAAAGTGGGACACGCCACCTCCGCCACCCCTGTTTCCA	
a		M C T T H W G F T L C G G G G G D K G ·	-
	61	GGAGGCGGTGGGGACAAAACTCACATGTCCACCTTGCCCAGCACCTGAACTCCTGGGG	120
		CCTCCGCCACCCCTGTTTTGAGTGTGTACAGGTGGAACGGGTCGTGGACTTGAGGACCCC	
a		G G G D K T H T C P P C P A P E L L G ·	-
	121	GGACCGTCAGTTTTCCTCTTCCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACC	180
		CCTGGCAGTCAAAAGGAGAAGGGGGGGTTTTGGGTTCCTGTGGGAGTACTAGAGGGCCTGG	100
а		G P S V F L F P P K P K D T L M I S R T -	-
	181	CCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAAC	240
		GGACTCCAGTGTACGCACCACCTGCACTCGGTGCTTCTGGGACTCCAGTTCAAGTTG	
a		PEVTCVVVDVSHEDPEVKFN-	
	241	TGGTACGTGGACGCGTGGACGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTAC	300
		ACCATGCACCTGCCGCACCTCCACGTATTACGGTTCTGTTTCGGCGCCCCTCCTCGTCATG	
a		WYVDGVEVHNAKTKPREEQY-	
	301	AACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGC	360
		TTGTCGTGCATGGCACCAGTCGCAGGAGTGGCAGGACGTGGTCCTGACCGACTTACCG	
а		N S T Y R V V S V L T V L H Q D W L N G -	-
	361	AAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATC	420
		TTCCTCATGTTCACGTTCCAGAGGTTGTTTCGGGAGGGTCGGGGGTAGCTCTTTTGGTAG	
а		KEYKCKVSNKALPAPIEKTI -	-
	421	TCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAT	480
		AGGTTTCGGTTTCCCGTCGGGGGCTCTTGGTGTCCACATGTGGGACGGGGGTAGGGCCCTA	
а		SKAKGQPREPQVYTLPPSRD -	
	481	GAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCCTTCTATCCCAGCGAC	540
		CTCGACTGGTTCTTGGTCCAGTCGGACTGGACGGACCAGTTTCCGAAGATAGGGTCGCTG	
a		ELTKNQVSLTCLVKGFYPSD -	
	541	ATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCC	600
		TAGCGGCACCTCACCCTCGTCGGTCGGCCTCTTGTTGATGTTCTGGTGCGGAGGG	
а		IAVEWESNGQPENNYKTTPP-	

PCT/US01/14310

FIGURE 26B

	601	GTO	GCTO	GGA		CGA	CGG	CTCC	CTTC	CTT(CCTO		CAGO	CAAC	SCLC	CAC	CGT	GGAC	CAAC	SAGC	CAGG	660
	UUT	CAC	GAC	CCTC	GAG	GCTC	GCC	GAG	SAAC	SAA	GGA	GATO	GTCO	GTTC	CGAC	GTGO	GCA	CCTC	GTTO	TCC	FTCC	000
a		V	L	D	ន	D	G	ន	F	F	Г	Y	S	ĸ	L	т	v	D	К	S	R	-
	TGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCAC 661															CTAC	720					
	661+ ACCGTCGTCCCCTTGCAGAAGAGTACGAGGCACTACGTACTCCGAGACGTGTTGGTGATG																					
a		W	Q	Q	G	Ν	v	F	S	С	S	V	М	H	Ε	Α	L	Η	N	Η	Y	-
													Bar	uHI 								
	721	ACC	SCAC	GAAC	GAG(CTC		TC1		GGG		ATAZ	ATĠO	SATC	cc ,	763					
		TGC	GTC	CTTC	CTC	GGA	GAGO	GGAC	CAGZ	4GG(CCCI	\TTT	PAT 1	raco	TAC	ĞG						

a TQKSLSLSPGK*