a2 United States Patent

US012081829B2

ao) Patent No.: US 12,081,829 B2

Sdnchez De La Fuente et al. 45) Date of Patent: Sep. 3, 2024
(54) FILE FORMAT CONCEPTS FOR VIDEO (52) US. CL
CODING CPC ... HO4N 21/435 (2013.01); HO4N 21/4402
(2013.01); HO4N 21/440227 (2013.01); HO4N
(71) Applicant: Fraunhofer-Gesellschaft zur 21/85406 (2013.01)
Foerderung der angewandten (58) Field of Classification Search
Forschung e.V., Munich (DE) CPC oo, HO4N 21/435; HO4N 21/4402; HO4N
(72) Inventors: Yago Sanchez De La Fuente, Berlin ,21/440227’ HO4N 21/83406;
(DE); Dimitri Podborski, Berlin (DE); (Continued)
Karsten Grueneberg, Berlin (DE);
Cornelius Hellge, Berlin (DE); (56) References Cited
Thomas Schierl, Berlin (DE); Robert
Skupin, Berlin (DE); Thomas U.S. PATENT DOCUMENTS
Wiegand, Berlin (DE) 2016/0234516 Al 82016 Hendry et al.
(73) Assignee: Fraunhofer-Gesellschaft zur 2017/0111650 AL 412017 Hendry et al.
Foerderung der angewandten FOREIGN PATENT DOCUMENTS
Forschung e.V., Munich (DE)
GB 2535453 * 82016 ... HO4N 19/46
(*) Notice: Subject to any disclaimer, the term of this GB 2546027 A 7/2017
patent is extended or adjusted under 35
U.S.C. 154(b) by 35 days. OTHER PUBLICATIONS
(21) Appl. No.: 17/957,827 “Advanced video coding for generic audiovisual services” (Uploaded
in 2 parts), ITU-T H.264 (Jun. 2019), Jun. 2019, 836 pp.
(22) Filed: Sep. 30, 2022 (Continued)
(65) Prior Publication Data
Primary Examiner — Anthony Bantamoi
US 2023/0089495 Al Mar. 23, 2023 (74) Attorney, Agent, or Firm — Perkins Coie LLP;
Related U.S. Application Data Michael A. Glenn
(63) Continuation of application No.
PCT/EP2021/058758, filed on Apr. 1, 2021. 7 ABSTRACT
File format concepts for video coding are described.
(30) Foreign Application Priority Data Embodiments allow for an efficient extraction of sub-
streams from a video file. Further embodiments allow for a
Apr. 3, 2020 (EP) 20168113 flexible switching between sub-streams of a video file.
Further embodiments allow for a flexible handling of
G Int. Cl. decoder initializations.
HO4N 21/435 (2011.01)
HO4N 21/4402 (2011.01)
HO4N 21/854 (2011.01) 20 Claims, 29 Drawing Sheets

32

46

/'I \‘-‘;
2 Liog' [rap Trani rapt Trra] -+~ [rean] éaa I--;) trackt

40

50

| M
[cra'TRastT — Topal[+-ptracko
N

42

=)
5 Tir Jrant] T

(\2_,

% 8 $5

file parser

US 12,081,829 B2
Page 2

(58) Field of Classification Search
CPC HO4N 21/234327; HO4N 21/23439; HO4N
21/44029
See application file for complete search history.

(56) References Cited

OTHER PUBLICATIONS

“High efficiency video coding” (Uploaded in 2 parts), ITU-T H.265
(Jun. 2019), Jun. 2019, 696 pp.

“Information technology—Coding of audio-visual objects—Part
157, ISO/IEC 14496-15, Carriage of network abstraction layer
(NAL) unit structured video in the ISO base media file format, Jan.
2014, XP030220847, Jan. 2014, 179 pp.

Bross, Benjamin, et al., “Versatile Video Coding (Draft 8)”, H.266/
VVC, JVET-Q2001, vE, Jan. 2020, 513 pp.

* cited by examiner

U.S. Patent

9~ client

{3
7N

10—~ lile parser

3

{
£ A

video
decoder

i
|
18~
|

i
F“m!mmm
i

| video
197>~ player

b o
TN oW oo e 00 g woox T

Fig. 1

Sep. 3, 2024 Sheet 1 of 29
jem ST T
g 110
/ ﬁ L
/j =T
| by 121
i N I
; E}J 2
i 7
§ bob et
IR R A N USR
i P
!) y)
o (((
\ 130 130 13
\\
27 116 114 114
=7)))
i __L,_g ((
§
i ; a
i oo o o o
-~ Y
*x 2
) g

US 12,081,829 B2

N6 o ooz ek o Gox o e om0

U.S. Patent Sep. 3, 2024 Sheet 2 of 29

video encoder

—~—21(

28

file generator

110

Fig. 2

US 12,081,829 B2

US 12,081,829 B2

Sheet 3 of 29

Sep. 3, 2024

U.S. Patent

¢ b4

Y7

Nz

L7

OMoBl| ‘Jalo= Jall,

VAV OV ay ey aye

5 A

7.

|%08l] j8i0= jai),

¢RI

U.S. Patent Sep. 3, 2024

Sheet 4 of 29

file parser

US 12,081,829 B2

4 3
’\;/‘302
A
N,
\ I
\]
\ I
\ !
\ I
v
¥ J
e
190
7N 2 >

Fig. 4

yideo
bitstream

US 12,081,829 B2

Sheet 5 of 29

Sep. 3, 2024

o~ 3
oo o
&N o E
(ol (7
\ AT AW
/ L)

260
)
(
=
V264

1
264

U.S. Patent

Fig. 5

US 12,081,829 B2

Sheet 6 of 29

Sep. 3, 2024

U.S. Patent

9 i
..... dnoub ‘o, = pdfs,
UV AR)i W\@\W
pi-dnoif " juio, = 4
(o4 JBi0= 184,
W — 5554004, .. el
Lol - \\\
Pl %Sm h uio, = 101,
W\mm@w JEIESREN]
: oell
¢y 55 JHSEL]

9|1}
\
012

US 12,081,829 B2

062,

Sheet 7 of 29

Sep. 3, 2024

U.S. Patent

Fig. 7

U.S. Patent Sep. 3, 2024 Sheet 8 of 29 US 12,081,829 B2

510

}

12157 <« 8.0,) :
trackiDy ———~—

US 12,081,829 B2

Sheet 9 of 29

Sep. 3, 2024

U.S. Patent

6 'O

Srits

“\2i

]

2

ONOBlL Jal0=Jal}

\\\\,\

LIl

\

oRl 180= m;

\\\\\

WOON W

mﬁm%a :Ea%‘am@a

U.S. Patent Sep. 3, 2024 Sheet 10 of 29 US 12,081,829 B2

5}@
1 (
1217
102~1 542,
123,
h_—
i 542,
1217~
123, 542,
I
12157~
102
”””” ¢ ol \\
T i i
190~ == ixwmzw,‘,/
122

U.S. Patent Sep. 3, 2024 Sheet 11 of 29 US 12,081,829 B2

O s
(
101
(

O fysae

102
L O ~—334C

101
e.g. operation point track group identifier 132}240

e.q. track group 1D, group ID 103

U.S. Patent Sep. 3, 2024 Sheet 12 of 29 US 12,081,829 B2

Fig. 12

L1-Tid 0 —»

L1Tid 1 =\
L0Tid 1 —>
d

US 12,081,829 B2

Sheet 13 of 29

Sep. 3, 2024

U.S. Patent

HINEEE NN

ADis

N N

Fig. 13

U.S. Patent Sep. 3, 2024 Sheet 14 of 29 US 12,081,829 B2

102
3\
(T 766
768 768 ——710
) 3 e
A Y
6221— Eg;; (“T§)E (0]
\ \
(854)2 (654)2 2
650 650 650 850

600~ TN

Fig. 14

U.S. Patent

Sep. 3, 2024

Sheet 15 of 29

US 12,081,829 B2

870
o2)
é 102
766
622 ™
2 /
768 / 768
v / '
A\
AlAA A A
)

Fig. 15

U.S. Patent Sep. 3, 2024 Sheet 16 of 29 US 12,081,829 B2

. i 7
oool| |doo Nooo 000
)))] 3 3
) ! (((
5y 650 650 650 650

Fig. 16

US 12,081,829 B2

Sheet 17 of 29

Sep. 3, 2024

U.S. Patent

s oo oo oo s oo ol oo o o o 20

010

1

1074,

1074,

Fig. 17

U.S. Patent Sep. 3, 2024 Sheet 18 of 29 US 12,081,829 B2

1010

2

U.S. Patent Sep. 3, 2024 Sheet 19 of 29 US 12,081,829 B2

1010

12838~

1174,
\
/
\
(((((
\ h) 3\ \
/ / / J;
S 130 130 130 130
121,

T A
g 130 17, 190 130, b 130
121,

maa}/

1000—

Fig. 19

US 12,081,829 B2

Sheet 20 of 29

Sep. 3, 2024

T o am , p . s J
EREERREES Eamas ;
L 18 “. [B
- LU s
: y aiz £

56 810ep0osp

U.S. Patent

U.S. Patent Sep. 3, 2024 Sheet 21 of 29 US 12,081,829 B2

U.S. Patent Sep. 3, 2024 Sheet 22 of 29 US 12,081,829 B2

U.S. Patent Sep. 3, 2024 Sheet 23 of 29 US 12,081,829 B2

1010

U.S. Patent Sep. 3, 2024

Sheet 24 of 29

US 12,081,829 B2

server

rep 1
2@\ ‘;6/‘-—‘
) fE\ NS
NANSSANRNNN P 5~
L \\)& sub-r
22 sub- '
G : y,
20
2 rep
&
v
chient I~9

Fig. 24

U.S. Patent Sep. 3, 2024 Sheet 25 of 29 US 12,081,829 B2

en-
coding

TRADLIRADLITRAILT +== ITRAILT CRA

RAP info

(

50

PN 5 \
b CRA’ |RASL CRA'| - / track0

/' indication/

7 drift information /

/ switch-to AAAAAAAAAAAAAAAAAAAAAAAAAA A 2

l

file parser ~—30

l

video decoder —~—144

Fig. 25

US 12,081,829 B2

Sheet 26 of 29

Sep. 3, 2024

U.S. Patent

.

19pI0
Honeuasald

TWYHLY UYHLY 1SYH Y °°° m,qmo\ 10vd 7 0vd 3 10V 1o dd &
[}
7 \\\\ { l.i/f\,,_ ...aJ.M.m
VL2 livdL TSy ﬁ@x 10VH T AvH 1 10vd 2 HO! &
“%,a eI Buioums Joousdg
¥ Salndid Yy uo Buiyoumg
SEIREI _
-Hup ¥
wiod
Buiyolms

US 12,081,829 B2

Sheet 27 of 29

Sep. 3, 2024

U.S. Patent

BP0
0 £ ! ¢ b L- £ ¢ 0 uoneluasaid
=
Y43 TSVH 1 YHD. 10 ¥ dd =
4 <o
YHO 4 TIVHL T TIVHE T IvdL FIVHLY 1aYH 2 10V T T0vY 300! &,
R \..,.& .\...r
J8pJ0 Wealisiig N sainid Buipes) uo Buiyoumg
> /
na1sale
P §
wiod

BUIYOJIMS

US 12,081,829 B2

Sheet 28 of 29

Sep. 3, 2024

U.S. Patent

19¢ b4

poLad AIBA0D8S JO 1101 HAOS

1010
8 . 9 ‘A £ ¢ L 0 uoieasaid
Pt ; ./..w
=
TVHLY UVHL Y TIVHL Y vl \ HO3 TIVHL Y TIVHL TIVHL 2 H0) S,
<2
TYHLIVEL Y TIVEL VYL 3P H09 D ivHLE IvdL g TIvdL 32udl S
13p10 WesASH s3I HOY uo Buynumg
¥
EIRETIE _
“Jlip ¢
wiod
Butoums

U.S. Patent Sep. 3, 2024 Sheet 29 of 29 US 12,081,829 B2

constancy | 66
70 information 70
l 70
IJ ® & O
64 o — ——
YRS RN
72 72 72
sample 4 Tsample Sarmnple
entry entry entry
68 68
62
Y
60—~ file parser
\\
%
i}
76~ } re-initialize
é
f

\ 4

o
<O

video decoder

Fig. 27

US 12,081,829 B2

1
FILE FORMAT CONCEPTS FOR VIDEO
CODING

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of copending Interna-
tional Application No. PCT/EP2021/058758, filed Apr. 1,
2021, which is incorporated herein by reference in its
entirety, and additionally claims priority from European
Application No. 20168113.7, filed Apr. 3, 2020, which is
also incorporated herein by reference in its entirety.

BACKGROUND OF THE INVENTION

Embodiments of the present invention relate to file format
parsers for parsing a file comprising information about one
or more pictures of a video stream. Further embodiments
relate to file generators for generating a file comprising
information about one or more pictures of a video stream.
Further embodiments relate to video decoders and video
encoders. Embodiments of the present invention relate to
methods for parsing a file comprising information about one
or more pictures of a video stream. Further embodiments
relate to methods for generating a file comprising informa-
tion about one or more pictures of a video stream.

Further embodiments relate to a client device for down-
loading media data from a server. Further embodiments of
the present invention relate to files, such as data files
comprising information about one or more pictures of a
video stream. Further embodiments of the present invention
relate to a manifest file describing media data downloadable
by a client from a server. Further embodiments relate to a
method for downloading media data from a server.

Examples of the disclosure relate to multi-track VVC file
format integration aspects.

Encoded video data may be stored or transmitted in the
form of one or more files. These files may comprise, beyond
the coded video data itself, information about the structure
of the coded video data and/or information about how the
coded video data is structured within the file. It is desirable
to have a concept for a file format for a video file, and along
therewith a concept for generating and parsing the video file,
which allows for a flexible and/or efficient (i.e. efficiently
exploiting of computational resources and/or memory
resources) decoding of the video data stored in the file, in
particular in cases, in which the file allows for extracting
different video streams from the file, such providing for, e.g.,
scalable or tiled video bitstreams.

SUMMARY

An embodiment may have a file parser for providing a
video bitstream based on a set of tracks of a file signaling a
coded video sequence, each of the set of tracks representing
a sub-stream of the video sequence, wherein the file parser
is configured to derive from descriptive data within the file
a subset of tracks of the set of tracks complying with a
predetermined operation point, forward the sub-streams of
the subset of tracks in the video bitstream.

According to another embodiment, a method for process-
ing a file signaling a coded video sequence may have the
steps of: providing a video bitstream based on a set of tracks
of'the file, each of the set of tracks representing a sub-stream
of the video sequence, deriving from descriptive data within
the file a subset of tracks of the set of tracks complying with

15

35

40

45

50

2

a predetermined operation point, forwarding the sub-streams
of the subset of tracks in the video bitstream.

Another embodiment may have a file parser configured to
derive, from a file, for a track of the file, an indication
indicating whether all sample entries present in the file for
the track signal video parameters for a coded video sequence
of a video bitstream, which is inserted into the track or a
track group of the file to which the track belongs, which
meet a predetermined decoder capability, wherein each
coded video sequence starts at an RAP of the video bitstream
and ends in front of a subsequent RAP of the video bit-
stream; if all sample entries present in the file for each coded
video sequence of the video bitstream are indicated to meet
the predetermined decoder capability, leave a video decoder,
which receives the coded video sequence, at an RAP at
which a coded video sequence starts, as currently initialized
irrespective of video parameters signaled by the sample
entry for the RAP deviating from video parameters signaled
by the sample entry present in the file for the preceding
coded video sequence or not, and/or irrespective of the video
parameters signaled by the sample entry for the RAP con-
flicting with a current initialization of the video decoder or
not.

According to another embodiment, a method for process-
ing a file may have the steps of: deriving, from the file, for
a track of the file, an indication indicating whether all
sample entries present in the file for the track signal video
parameters for a coded video sequence of a video bitstream,
which is inserted into the track or a track group of the file to
which the track belongs, which meet a predetermined
decoder capability, wherein each coded video sequence
starts at an RAP of the video bitstream and ends in front of
a subsequent RAP of the video bitstream; if all sample
entries present in the file for each coded video sequence of
the video bitstream are indicated to meet the predetermined
decoder capability, leaving a video decoder, which receives
the coded video sequence, at an RAP at which a coded video
sequence starts, as currently initialized irrespective of video
parameters signaled by the sample entry for the RAP devi-
ating from video parameters signaled by the sample entry
present in the file for the preceding coded video sequence or
not, and/or irrespective of the video parameters signaled by
the sample entry for the RAP conflicting with a current
initialization of the video decoder or not.

A first aspect of the invention provides a concept for a file,
a file parser, a file generator as well as a client for down-
loading media data from a server and a manifest file pro-
vided by a server. In embodiments according to the first
aspect, a file signals a coded video sequence distributed over
a set of tracks of the file, each of the tracks signaling a
sub-stream of the coded video sequence. A file parser may
generate a video bitstream for decoding by extracting one, or
a combination of multiple, of the sub-streams of the file.
Depending on the extracted sub-streams, the video bitstream
may have individual properties, e.g. in terms of constraints
on bitrate, picture size, frame rate, etc., e.g. expressed in
profile, tier, level parameter. The file further comprises
descriptive data which indicates, for an operation point (e.g.
defining constraints for the decoding of the video bitstream
extracted from the file), a subset of the tracks, the sub-
streams of which are required for the video bitstream of the
operation point. Hence, the descriptive data may allow the
file parser to extract the video bitstream by means of
extracting entire tracks, so that a parsing of individual
samples of the coded video data may be unnecessary for
extracting the video bitstream. Further, as the mechanism
allows for extracting individual sub-streams, samples of

US 12,081,829 B2

3

same decoding time which belong to different tracks may be
forwarded in the video bitstream independently from each
other.

According to an embodiment, the indication of the tracks
required by the operation point are indicated in the file by
means of an entity group syntax structure assigning the
operation points to a set of tracks. As the entity group syntax
structure may be stored on file-level, the file parser may not
be required to parse all tracks, but only the tracks assigned
to the currently selected operation point. Thus, the file
parsing may be particularly efficient.

A second aspect of the invention provides a concept for a
file, a file parser, a file generator as well as a client for
downloading media data from a server and a manifest file
provided by a server. Embodiments according to the second
aspect allow for extracting, from a track of a file which
signals a coded video sequence, a portion of samples of the
track so as to generate a video bitstream in accordance with
a selected operation point. Thus, embodiments of the second
aspect allow for forwarding a track partially, so that an
unnecessarily high bitrate of the video bitstream may be
avoided. Embodiments of the second aspect may be particu-
larly beneficial in scenarios, in which a base layer track
signals a base layer of a coded video sequence, and a further
track signals comprises an enhancement layer for the base
layer, the enhancement layer, e.g., providing a higher reso-
Iution of pictures of the coded video sequence. In cases in
which a portion but not all pictures of the base layer are
required for decoding the enhancement layer, e.g. a video
stream having the higher resolution, for example in cases in
which a portion of pictures is encoded without inter-layer
prediction, embodiments thus allow for an extraction of a
portion of the base layer, which is actually required for
decoding the enhancement layer. According to the second
aspect, embodiments of the file include descriptive data
indicating the required portion of the samples of the track
required by the operation point.

According to an embodiment, the indication of the
required portion of the samples is carried in a sample group
syntax structure which indicates, for a layer of the coded
video sequence, a constraint on a temporal sublayer of the
coded video sequence by indicating a constraint on a tem-
poral sublayer identifier. Based on the finding that, in many
cases, the temporal sublayer to which a sample of the coded
video sequence is associated, in combination with a layer to
which the sample is associated, is a valid criterion for the
decision whether the sample is required for an operation
point or not, the indication of a constraint on a temporal
sublayer is an efficient way, in terms of signaling overhead,
of providing selectivity for forwarding individual samples of
a track.

A third aspect provides a concept for a file, a file parser,
a file generator as well as a client for downloading media
data from a server and a manifest file provided by a server.
In embodiments according to the third aspect, a file signals
a coded video sequence distributed over a set of tracks of the
file, each of the tracks signaling a sub-stream of the coded
video sequence. The file comprises switching information
indicating samples of a first track at which switching from
a second track is allowed provided that one or more pre-
ceding samples in the second track are available to the video
decoder. The third aspect relies on the idea, that in case that
the one or more preceding samples are available, switching
to the first track is possible at a sample which relies on a
reference sample (e.g. at a non-RAP sample), if a sample of
the second track which is temporally collocated with the
reference sample of the first track is available to the decoder.

10

15

20

25

30

35

40

45

50

55

60

4

The indication of such switching points may thus allow for
switching at non-RAP sample position, providing for a high
flexibility in the decoding and presentation of the coded
video sequence.

A fourth aspect provides a concept for a file, a file parser,
a file generator as well as a client for downloading media
data from a server and a manifest file provided by a server.
The file signals, in a track of the file, coded video sequences
of a video stream. The file comprises respective sample
entries for the coded video sequences, the sample entries
signaling video parameters (which are, e.g. indicative or
required decoder capabilities) for the coded video
sequences. According to the fourth aspect, the file comprises
descriptive data, from which the file parser may derive,
whether the video parameters signaled by all of the sample
entries for the track or a track group, meet a predetermined
decoder capability. Thus, the file parse may suppress a
re-initialization of a video decoder processing the video
bitstream in cases in which all coded video sequences of the
track comply with the decoder capabilities irrespective of
the finding, that the video parameters may change within the
track. In other words, an unnecessary re-initialization of the
decoder may be avoided.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present disclosure are described in
more detail below with respect to the figures, among which:

FIG. 1 illustrates an example of a file parser and a file;

FIG. 2 illustrates an example of a file generator;

FIG. 3 illustrates an example of a file;

FIG. 4 illustrates an example of a file parser for multi-
track scenarios;

FIG. 5 illustrates an example of a file parser and a file
using a track group;

FIG. 6 illustrates another example of a file;

FIG. 7 illustrates an example of a file and a file parser,
according to which a set of layer identifiers is signaled in an
entity group syntax structure;

FIG. 8 illustrates an example of a file parser and a file
using an entity group syntax structure;

FIG. 9 illustrates an example of a file with an entity group
syntax structure;

FIG. 10 illustrates an example of a file parser and a file
using an entity group syntax structure;

FIG. 11 illustrates an example of a file parser and a file
using multiple track groups;

FIG. 12 illustrates an example of a multi-layered video
stream;

FIG. 13 illustrates another example of a file parser and a
file;

FIG. 14 illustrates another example of a file parser and a
file using a sample group information;

FIG. 15 illustrates an example of a file parser and a file
using a subtrack syntax structure;

FIG. 16 illustrates an example of a file parser and a file
using a subsample syntax structure;

FIG. 17 illustrates an example of a file parser and a file
having multiple tracks;

FIG. 18 illustrates an example of a file parser and a file
having multiple tracks and using a sample group informa-
tion;

FIG. 19 illustrates an example of a file parser and a file
having multiple tracks and using an operation point sample
group information;

FIG. 20 illustrates an example of a grouping of samples
of a multi-layered video stream;

US 12,081,829 B2

5

FIG. 21 illustrates an example of a file parser and a file
having multiple tracks and using a set of layer identifiers;

FIG. 22 illustrates an example of a file parser and a file
having multiple tracks and using level indices;

FIG. 23 illustrates an example of a file parser and a file
having multiple tracks and a sample group information;

FIG. 24 illustrates an example of a client and a manifest
file;

FIG. 25 illustrates a file parser and a file according to
another embodiment;

FIG. 26a-c illustrates examples of switching between
tracks; and

FIG. 27 illustrates a file parser and a file according to
another embodiment.

DETAILED DESCRIPTION OF THE
INVENTION

In the following, embodiments are discussed in detail,
however, it should be appreciated that the embodiments
provide many applicable concepts that can be embodied in
a wide variety of video coding concepts. The specific
embodiments discussed are merely illustrative of specific
ways to implement and use the present concept, and do not
limit the scope of the embodiments. In the following
description, a plurality of details is set forth to provide a
more thorough explanation of embodiments of the disclo-
sure. However, it will be apparent to one skilled in the art
that other embodiments may be practiced without these
specific details. In other instances, well-known structures
and devices are shown in form of a block diagram rather
than in detail in order to avoid obscuring examples described
herein. In addition, features of the different embodiments
described herein may be combined with each other, unless
specifically noted otherwise.

In the following description of embodiments, the same or
similar elements or elements that have the same function-
ality are provided with the same reference sign or are
identified with the same name, and a repeated description of
elements provided with the same reference number or being
identified with the same name is typically omitted. Hence,
descriptions provided for elements having the same or
similar reference numbers or being identified with the same
names are mutually exchangeable or may be applied to one
another in the different embodiments.

The following description of the figures starts with the
presentation of a file parser in conjunction with a video
decoder, and a file generator in conjunction with a video
encoder with respect to FIG. 1 and FIG. 2, respectively. The
file parser of FIG. 1 and the file generator of FIG. 2 provide
an example for a framework into which embodiments of the
present invention may be built in. Thereinafter, the descrip-
tion of embodiments of the concept of the present invention
is presented along with a description as to how such con-
cepts could be built into the file parser and the file generator
of FIG. 1 and FIG. 2, respectively. Although, the embodi-
ments described with respect to the subsequent FIG. 3 and
following may also be used to form a file parser and a file
generator not operating according to the framework
described with respect to FIG. 1 and FIG. 2.

0. File Parser 10 According to FIG. 1 and File Generator 20
According to FIG. 2

FIG. 1 illustrates an example of a file parser 10 in
conjunction with a video decoder 17. The file parser 10
receives a file 110 and generates on the basis of the file 110
a video bitstream 190. The file 110 may also be referred to
as video file, file data, file of a video or the like. The video

10

15

30

35

40

45

60

6

bitstream 190 is provided to the video decoder 17 which
decodes the video bitstream 190 so as to obtain a sequence
18 of decoded picture. For example, the sequence 18 of
decoded pictures may be played by a video player 19. The
file parser 10 may represent any means receiving the file. For
example, one or more or all of the file parser 10, the decoder
17 and the player 19 may be part of one common devices.
That is, the entity receiving the video bitstream 190 may be
video decoder 17 or a video player comprising the latter. In
so far the file format parser 10 may, itself, form one entity
along with the video decoder 17 and/or the video player
and/or an application such as a DASH client or the like. The
video bitstream 190 generated by file parser 10 may include
all or an excerpt of the content of file 110.

The file 110 comprises samples 130 of coded video data,
e.g. data, into which the residual samples and prediction
modes, motion vectors and so froth is actually coded. For
example, a sample 130 comprises a coded picture of a coded
video sequence coded into file 110, or comprises a portion
of a coded picture, such as a slice or a tile thereof. For
example, a sample 130 may comprise one or more video
coding layer (VCL) network abstraction layer (NAL) units,
each of which may comprise a portion of a coded picture
such as a slice or a tile of a coded picture. In other words,
a sample 130 may refer to an entire coded picture, or may
refer to a portion thereof. In the latter case, multiple samples
130 may together signal a coded picture. The file 110 may
comprise one or more tracks to which the coded video data
is distributed, e.g. track 121 shown in FIG. 1.

The file 110 may further comprise descriptive data. The
descriptive data may be indicative of a structure of the coded
video data signaled in file 110, dependencies within the
coded video data, information for decoding of the coded
video data and/or information for parsing the coded video
data. The descriptive data may be signaled in-band with the
samples 130. E.g., a sample 130 may comprise descriptive
data 115, e.g. a parameter set. In-band descriptive data may
refer to coded video data of a sample 130 to which it belongs
and may optionally refer to further samples associated which
the sample, e.g. via a reference. For example, the in-band
descriptive data 115 may be signaled in a non-VCL NAL
unit, e.g. a SEI NAL unit or a parameter set (PS) NAL unit.
Additionally of alternatively, descriptive data may be sig-
naled out-of-band. For example, descriptive data may be
signaled in a sample entry 117 which may optionally be part
of'track 121. Further, file 110 may comprise descriptive data
116 at file level, i.e. in addition to the one or more tracks 121
instead of part of a track, e.g. a meta box.

The file parser 10 parse the descriptive data of file 110, or
a portion thereof, and derive the video bitstream 190 by
inserting, into the video bitstream 190, coded video data, or
a portion thereof, along with descriptive data, or a portion
thereof, of the file 110. For example, file parser 10 may insert
samples 130 into the video bitstream 190 according to a
decoding order of the samples 130. Further, file parser 10
may insert descriptive data at positions in the video bit-
stream 190 at which it is required for decoding the samples
130.

The file 110 may provide several choices for extracting a
decodable video stream, i.e. multiple choices for performing
a playback based on the coded video data of file 110. Each
of the decodable video streams may comprise a set of the
samples 130. One of the streams may include the entire
coded video data of file 110, others may be sub-streams,
including a subset of the samples 130. For example, a track
of file 110 may comprise a sub-stream which may be
decoded, i.e. played, independently from other tracks. That

US 12,081,829 B2

7

is, the track may comprise all samples and parameter sets
required for generating a decodable video stream. Other
examples of tracks may comprise a sub-stream of the coded
video data 12 which is not decodable independently from
other tracks. For example, a sub-stream of a track (e.g. the
sub-stream is defined by a parameter set of the track, e.g. by
indicating samples belonging to or required by the subs-
stream, e.g. by referencing one or more layers and/or one or
more temporal layers) may depend on a further track, as it
may require samples 11 of the further track. Also, a sub-
stream of the coded video data 12 may include multiple
tracks which may both comprise or define independent or
dependent sub-streams themselves. A generation of the
video bitstream 190 based on multiple tracks may be
referred to as joint decoding of the respective tracks or
sub-streams. For example, the different decodable video
streams of file 110 may signal the same content at different
quality (e.g. frame rate, resolution) and/or may signal dif-
ferent sub-pictures, e.g. for providing different fields of view
to a user. In other words, by means of selecting a decodable
stream from file 110, the video stream may be scalable or
tiled.

For example, decodable video streams within file 110 may
be defined by indicating samples belonging to a specific one
the video streams. As mentioned before, samples 130 of the
file 110 may belong to a track 121 of the file 110, so that
samples may be selected by track. Further, samples 130 may
be associated with one out of one or more layers of the coded
video data signaled in file 110. Additionally or alternatively,
samples 130 may be associated with one of one or more
temporal layers, which may comprise pictures for comple-
mentary points in time, so that a frame rate of a video stream
may depend on the number of temporal layers selected for
the video stream. Thus, a video stream may, for example, be
defined by means of selecting one or more layers and/or one
or more temporal layers and/or one or more tracks.

The decision among the choices for playback of the coded
video data 12 may be provided to the file parser 10 from
external means such as the video decoder 17 or the video
player 19 or some application, or might even be made by the
file parser 10 itself, and the file parser 10 may provide the
video bitstream 190 accordingly. For example, the file parser
10 may select the sub-stream on the basis of an operation
point which is indicative of capabilities of the video decoder
17. Thus, file parser 10 generates video stream 190 by
including, into the video stream 190, a set of samples 130 of
the coded video data 12 and descriptive data for the selected
video bitstream.

In other words, the term file parser may refer to any means
receiving and processing a file so as to feed therefrom a
decoder, here a video decoder; the recipient of the excerpt of
the file, namely a video bitstream, having the parameter sets
therein in-band or a video bitstream which is accompanied
by parameter sets out-of-band, may be a video decoder or a
video player comprising the latter; in so far the file parser
may, it self, form one entity along with the video decoder
and/or the video player and/or an application such as a
DASH client or the like.

Optionally, file 110 may be provided to file parser 10 by
a client device 9. Client device 9 may download file 110
from a server. For example, the client device 9 may be an
application such as a DASH client. The client device 9 may
receive from the server, a manifest file, such as an MPD file,
the manifest file comprising a plurality of descriptions for
respective media representations, which are downloadable
from the server. The manifest file may describe which files,
e.g. file 110, are required for a media representation and

30

35

40

45

8

where to download them. E.g. a media representation may
refer to a decodable video stream or sub-stream of the coded
video sequence, as described above. Thus, client 9 may
select one or more files for download in dependence on the
predetermined operation point 102. The manifest file may
optionally describe constraints or tier, profile, level infor-
mation for a video bitstream of the media representation.

FIG. 2 illustrates an example of a file generator 20 in
conjunction with the video encoder 27. Video encoder 27
generates a video bitstream 28, based on which the file
generator 20 generates the file 110. The video stream 28 may
be similar to the video bitstream, or, in examples, be equal
to the video bitstream 28. In contrast to video bitstream 28,
the video stream 110 of FIG. 1 may, for example, include
only a portion of the content of file 8, while the video
bitstream 28 may comprise the entire coded video data of file
8.

It is noted that although, in the context of the individual
embodiments described in sections 1 to 4, the description
may focus on the file parser and the file, the description is
also to be understood as a description of respective file
generators, e.g. within the framework of file generator 20 of
FIG. 2. For each embodiment of a file parser, there is a
corresponding embodiment of a file generator which is for
inserting the information and data into the file to be parsed
by the file parser. For example, it is clear, that information
derived from a file by a file parser, e.g. information being
descriptive of coded video data within the file, is to be
inserted into the file by the corresponding file generator. For
example, file generator may obtain the respective informa-
tion from the video encoder 27, or may derive the informa-
tion such as the descriptive data by inspecting the coded
video data provided by video encoder 27.

Several applications require storing the video data into
multiple tracks or using multiple sample entries.

Examples of use-cases where multiple tracks are required
are consumption/transmission of scalable bitstreams or tiled
bitstreams. In such cases, the consumed video data depends
on different factors, such as client capabilities (e.g., accept-
able resolution), throughput characteristics (e.g. higher or
lower bitrate video can be streamed) or Rol or viewport of
a user where a different set of tiles or rectangular regions
aka. subpictures are played back to match the user orienta-
tion or Rol.

There are different issues that need to be solved for
multi-track scenarios. First, there are two different scenarios
envisioned:

A. Several tracks provide together a joint bitstream:
scalable or tiled-tracks use case. In this case the video
bitstream is extracted from several tracks

B. A single track of the several tracks provide a bitstream:
e.g. tracks with different resolutions, bit-rates, etc. In
this case the bitstream is generated by extracting a
sample of one or another track.

For case A), different solutions exist that have been
provided for previous scalable video coding standards, such
as SVC and SHVC. On the one hand, so-called extractors
can be used. If a sample in a dependent track contains a
construct that is called and “extractor” this contain some
kind of instructions on how to extract and substitute the
“extractor” construct by samples that come from tracks on
which the current track depends on. An alternative is to use
some implicit reconstruction mechanism that specifies with-
out requiring the presence of an “extractor” construct how to
generate the access units of a video by extracting the
required samples from several tracks.

US 12,081,829 B2

9

Sections 1 and 2 include embodiments that describe how
multi-track solutions for a bitstream are encapsulated and
decapsulated.

For case B), typically switching from one track to another
is done at Random Access Points, i.e. IDRs for AVC, IDRs,
CRAs and BLAs for HEVC. However, there is a benefit of
allowing switching at a higher granularity as described in
section 3.

Examples of cases where different sample entries might
be required are a track containing sub-streams that are
encoded with different codecs, or encoded with the same
codec but different profiles, e.g. due to ad insertion, or even
encoded with the same codec and profiles but containing
some high-level metadata (e.g. SEI messages) that are not
allowed to be stored in-band at the track level together with
the samples but is stored at sample entries. In the latter case,
to be able to dynamically change that metadata within the
stream, this means to work either with multiple-tracks,
which is not desirable in some scenarios, or have several
sample entries changing them dynamically during playback
of a track.

However, changing a sample entry involves resetting the
decoder which might be undesirable in some cases. For
instance, if there is a change of codec, it makes sense to reset
the decoder, but if there is only a change in that metadata but
the decoding process can be kept running, it would be
desirable to not reset the decoder. Section 4 describes
embodiments in this regard.

1. File Parser 100 and File 110 According to FIG. 3 to FIG.
11

Examples of the concept in section 1 may refer to layered
VVC bitstreams using a multi-track approach. Embodiments
of section 1 may be in accordance with the first aspect.

VVC supports scalability (SNR, spatial, Multi-view . . .)
with same means as single layer decoding. This means, that
any VVC decoder can decode a multi-layer stream as long
as the required capabilities indicated by the profile tier level
do not exceed a certain value.

The implementation of layered Versatile Video Coding in
ISO-BMFF can be done following the design principles of
previous scalable standards, such as SVC and SHVC.

This requires to define a new sample entry type, e.g.
‘vve2’ and ‘vvi2’. A sample entry of this type in a track that
indicates a sample dependency with a box ‘tref” would
require then further processing of the tracks that this track
depends on for generation of the scalable VVC bitstream.
This is similar as for previous standards such as SVC and
VVC.

As already mentioned in the introduction this could be
done with “extractors” indicating the dependent samples or
by an implicit reconstruction process that does not require
“extractors”.

FIG. 3 illustrates an example of a file structure for implicit
reconstruction. The file structure of FIG. 3 may represent an
example of a file 110, which may optionally correspond the
file 110 as described in section 0. According to the example
of FIG. 3, file 110 comprises three tracks 121, namely track
0, referenced using reference sign 121, track 1 (reference
sign 121,), and track 1 (reference sign 121,). FIG. 3
illustrates how implicit reconstruction may work for three
tracks, TrackO (base layer), Trackl (enhancement layer 1)
and Track?2 (enhancement layer 2). The implicit reconstruc-
tion process requires the association of a track to an opera-
tion point, similar as done for SHVC with the operation
point information ‘oinf” sample group. This sample group is
only stored into one track containing a layer that is present
in all operation points (i.e. the base layer). In the example

10

15

20

25

30

35

40

45

50

55

60

65

10

below two sample groups are represented. The sample
groups are described by a box ‘spgd’ (sample group descrip-
tion box) that would list two groups within the sample group
box. The ‘sbgp’ (sample to group box) box marks the
samples within the base layer track as belonging to one of
these two groups in the example. Then, the rest of the tracks
with layers depending on this layer contain a track reference
to indicate that are dependent tracks and they indicate a
reference type of ‘oref” to indicate that they are to be or can
be reconstructed using the implicit reconstruction process
and that they depend on lower layer tracks.

Then, the implicit reconstruction process involves figur-
ing out what layers and therefore tracks belong to an
operation point and getting the samples from each of the
relevant tracks. All this information is currently carried out
in the ‘oinf” sample group description box. It tells when a
sample belongs to a sample group (operation point) and
which layers are entailed for that operation point. Note that
some tracks required for an operation point might have
additional layers that are not required for an operation point
and therefore some NAL units need to be removed from the
extracted bitstream. Also, note that the ‘oinf” sample group
is only present in one track and samples within that track can
be mapped to that sample group dynamically, which does
not allow to map samples with the same decoding time in
different tracks to different operation points.

Since the dynamicity within a track to map samples to
sample groups seems to be either:

In many cases unnecessary and complicated as tables for
sample group mapping (sample to group box) needs to
be parsed.

Not flexible enough as samples of same decoding time
belong to the same operation point

a different approach may be of advantage.

FIG. 4 illustrates an example of a file parser 100, which
may optionally correspond to the file parser 10 explained in
section 0. That is, the concept of file parser 100 of section
1 may optionally implemented within the framework
described in section 0. According to the example of FIG. 4,
the file 110, which may optionally correspond to the file 110
of FIG. 1, comprises a set 120 of tracks 121, e.g. as
described with respect to FIG. 1. The set of tracks 121
signals a coding video sequence. Each of the tracks 121
represents a sub-stream of the video sequence, the sub-
stream being optionally, but not necessarily, decodable inde-
pendently from other tracks. The file parser 100 may derive
from the descriptive data within the file 110 a subset 180 of
tracks of the set 120 of tracks complying with a predeter-
mined operation point 102. The subset 180 of tracks 121
may comprise one or more or all of the tracks 121 of the set
120 of tracks within the file 110. The predetermined opera-
tion point 102 may be associated with one or more bitstream
requirements such as requirements for buffer sizes, bit rate,
timing, or in general, requirements for the video bitstream
190 provided by file parser 100, which requirements are set
by video decoder 17 or video player 19 for decoding or
playing the video bitstream 190. File parser 100 forwards the
sub-streams 122 of the sub set of tracks 121 and the video
bitstream 190.

The sub-stream 122 of a track 121 forwarded in the video
bitstream 190 may not necessarily comprise all information
indicated in track 121, but may, for example, lack some
parameter set or descriptive data of track 121. In other
examples, the information referred to as sub-stream 122,
forwarded by file parser 100 in the video bitstream 190, may
optionally but not necessarily correspond to the respective
track 121.

US 12,081,829 B2

11

In other words, according to file parser 100 of FIG. 4, a
video stream represented by the video bitstream 190 may be
extracted from file 110 by including, into the video bitstream
190, respective sub-streams of the subset 180 of tracks 121
associated with the predetermined operation point. As
described with respect to FIG. 1, file parser 100 may select
a predetermined operation point itself, or on the basis of an
information about the operation point which may be pro-
vided by the video decoder 17 of the video player 19. In the
following, several examples of how the predetermined
operation point is associated with the set 180 of tracks are
described.

For example, the tracks belonging to an operation point
are grouped together into a track group. There are different
options to do this:

1) All tracks of a scalable bitstream belong to the same
track group

a. The track group information contains a description of

which belong to an operation point.
i. The track itself describes what is inside: layer_id,
sub_layer_id, etc.

. The track group description defines the operation points
in a similar manner than ‘oinf”. Defining operation
points, with which layers_ids to include, and so on. In
another embodiment this information is not carried
with every track belonging to the track group as typi-
cally done but there is a central grouping information
used (e.g., using entity groups) for conveying this
information reducing thus the overhead.

For example, file parser 100 may derive, from descriptive
data of the file 110, a set of layer identifiers indicating one
or more layer identifiers, e.g., layer_id. The descriptive data
may associate the set of layer identifiers with the predeter-
mined operation point. For example, the descriptive data
may indicate, for each of a plurality of operation points, a
respective set of layer identifiers. The file parser 100 may
parse descriptive information of the tracks 121 of the file 110
s0 as to derive, for each of the tracks 121, one or more layers
associated with the track. File parser 100 may forward a
track 121 in the video bitstream 190, if one of the one or
more layers to which the track is associated is identified to
be relevant for the predetermined operation point by the set
of layer identifiers. For example, such a signaling may be
realized by a track group syntax structure as described with
respect to FIG. 5.

FIG. 5 illustrates an example of the file parser 100 of FIG.
4, which may receive a file 210. File 210 may optionally
correspond to the file 110 of FIG. 4. The file 210 comprises,
within its descriptive data, a track group syntax structure
230. The set 120 of tracks 121 of file 210 are associated with
a track group syntax structure 230. For example, each of the
tracks 121 of the set 120 of tracks may comprise a reference
pointing to the track group syntax structure 230. The track
group syntax structure 230 may indicate, for each of a set
240 of operation points, comprising the predetermined
operation point 102, a respective set 262 of layer identifiers
264. In other words, the track group syntax structure 230
may comprise a set 260 of sets 262 of layer identifiers 264.
In the example of FIG. 5, the set 260 of sets of layer
identifiers comprises a first set 262,, a second set 2121 and
a third set 262, of layer identifiers. In FIG. 5, for illustrative
purpose, the predetermined operation point is indicated to be
associated with the first set of layer identifiers 262, which
is indicative of a layer identifier 264 to which samples of the
second layer 121, are associated. File parser 100 may derive,
from descriptive data of the tracks 121, layer identifiers

=

i

10

15

20

25

30

35

40

45

50

55

60

65

12

identifying layers contained in the respective tracks, so as to
associate one or more of the tracks 121 with the predeter-
mined operation point.

Optionally, the track group syntax structure 230 further
comprises information about a tier, a level, a profile and a set
of constrains for each of the operation points. For example,
the information describing the operation point may be
indicated by means of an index pointing to a set of combi-
nations of tier, level, profile and set of constraints.

FIG. 6 illustrates an example of a file structure 210 with
track groups for implicit reconstruction. The file structure
210 of FIG. 6 may optionally correspond to the file structure
210 of FIG. 5. FIG. 6 illustrates an example for track group
references associating each of the tracks 121,, 121, 121, to
a track group syntax structure, as explained with respect to
FIG. 5.

For example, the track reference indicated for the tracks
may be of a track reference type, e.g. ‘oref” (or a new one
‘gref” track group reference), which implies the presence of
a track group for implicit reconstruction. For example, file
parser 100 may parse descriptive data associated with the
tracks 121. If file parser detects a track reference of the track
reference type indicating the presence of a track group, file
parser 100 may parse the indicated track group for recon-
struction of the video bitstream 190.

The track group, e.g. as described by the following
syntax, may be mapped to a track group of type ‘oinf” by the
‘trgr’ box and mapped to a group_id. In the example in FIG.
5 all tracks belong to the same track group. However, the
‘oinf> box can contain multiple operation points, e.g.
OPO=Layer0, OP1=LayerO+Layerl, OP2=LayerO+Layerl+
Layer2. Therefore, this track grouping shown below needs
that the tracks contain information about the layers within
them so that a mapping from track to operation point can be
done.

aligned(8) class TrackGroupTypeBox (unsigned int(32)
track_group_type) extends FullBox(track_group_type, version = 0,
flags = 0)

unsigned int(32) track_group_id;
if track_group_type == ‘oinf” {
unsigned int(6) num_profile_tier level;
for (i=1; i<=num_profile_tier_level; i++) {
unsigned int(1) general_tier flag;
unsigned int(5) general_profile_idc;
unsigned int(x) general constraint_indicator_flags;
unsigned int(8) general_level_idc;

unsigned int(16) num_operating_points;
for (i=0; i<num_operating_points) {
unsigned int(8) ptl_idx;
unsigned int(8) layer_count;
for (j=0; j<layer_count; j++) {
unsigned int(6) layer_id;

In this case, the parser needs to parse the track grouping
information for each of the tracks. Then, once the parser
identifies which tracks belong to the same track grouping,
this means to select one operation point of the ones
described in the track grouping described above, and iden-
tify which tracks contain the layers required for that opera-
tion point. Hach track contains an additional box that
described the layer information, i.e. which layers are con-
tained there. Thus, the parser identifies the tracks that are

US 12,081,829 B2

13

required for the selected operation point and the samples
within these tracks are extracted and sent together to the
decoder.

FIG. 7 illustrates another example of the file parser 100 in
conjunction with the file 410 from which file parser 100
extracts the video bitstream 119. File 410 differs from file
210 described with respect to FIG. 5 at least in that the
information associating the predetermined operation point
102 with a set 262 of layer identifiers, e.g., set 262, in FIG.
7, is indicated in an entity group syntax structure 436 of the
file 410 instead of the track group syntax structure 230 of file
210. Accordingly, file parser 100 of FIG. 7 may parse the
entity group syntax structure 436 so as to derive the set 262,
of layer identifiers associated with a predetermined opera-
tion point 102. File parser 100 may parse descriptive data of
the tracks 121 so as to derive in which of the tracks 121 the
indicative layers are signaled. File format parser 100 may
forward the tracks, or the video streams 122 of the tracks
(e.g. at least samples 130 comprising the coded video data
along with all or a part of descriptive data of the track),
which comprise layers identified by the set of layer identi-
fiers associated with the predetermined operation point 102.

FIG. 8 illustrates another example of the file parser 100 in
conjunction with an example of a file 510 which may
correspond to the file 110 of FIG. 4. File 510 comprises a
plurality of tracks 121 each of which is associated with a
respective track identifier 123. In FIG. 8, the plurality of
tracks is represented by a set 120 of tracks 121, associated
with track identifier 123, a track 121, associated with a
track identifier 123, and a track 121, associated with a track
identifier 123,. Each of the tracks 121 represents a sub-
stream of a video sequence signaling by the file 510.
Descriptive data of the file 510 comprises an operation point
entity group syntax structure 538, e.g., an entity to group
box. The operation point entity group syntax structure 538
describes the predetermined operation point 102. For
example, the operation point may be identified via a grou-
p_id parameter. The operation point entity group syntax
structure 538 is indicative of one or more tracks which are
associated with the predetermined operation point 102. In
other words, the operation point entity group syntax struc-
ture 538 may associate the predetermined operation point
102 with a set 542 of identifiers 543, each of the identifiers
543 being associated with, or pointing to, one of the tracks
identifiers 123.

The operation point entity group syntax structure 538 may
optionally be stored, within the file 510, on file level. That
is, the operation point entity group syntax structure 538 is
not necessary part of any of the tracks 123 by may be stored
outside of the tracks 123, as it is illustrated in FIG. 8. Same
applies to the entity group syntax structure 436 of FIG. 7,
and may, in general, apply to entity group syntax structures.

Optionally, the operation point entity group syntax struc-
ture 538 comprises operation point information 550 describ-
ing the predetermined operation point 102. For example, the
operation point information 550 is indicative of a profile, a
tier, a level, and optionally a set of constraints of the
bitstream defined for the predetermined operation point 102,
as described with respect to FIG. 1. Same applies to the
entity group syntax structure 436 of FIG. 7, which may
optionally comprise operation point information 550 for
each of the operation points of the set 240 of operation
points.

File parser 100 according to FIG. 8 may parse the
operation point entity group syntax structure 538 so as to
derive a set 180 of tracks 121 associated with the predeter-
mined operation point 102 as indicated by the set 542 of

25

35

40

45

14

identifiers. File parser 100 may forward the sub-streams 122
of the sub set 180 of tracks 121 in the video bitstream 190,
e.g. track 122, in the illustrative example of FIG. 8.

In other words, as an alternative to the example of FIG. 5,
according to the example of FIG. 7, FIG. 8 and subsequent
FIGS. 9 and 10, the information describing the subset 180 of
tracks to be forwarded in the video bitstream 190 may be
carried in an entity group which is associated with the tracks
which belong to an operation point. According to the
embodiment of FIG. 7, the association between the entity
group and the tracks is indicated by means of layer identi-
fiers, whereas, according to the embodiments of FIGS. 8 to
10, the entity group may point directly to the associated
tracks.

According to an example of file 510, the operation point
entity group syntax structure 538 is one of a set of operation
point entity group syntax structures, each of which is asso-
ciated with, and describes, a respective operation point. In
other words, each of a plurality of operation points may be
described by an individual operation point entity group
syntax structure. According to this example, each of the
operation point entity group syntax structures may be iden-
tified by a respective group identifier.

According to alternative examples of the file 510, as will
be described with respect to FIG. 10, the operation point
entity group syntax structure 538 is descriptive of a plurality
of operation points and their respective associated set of
tracks.

FIG. 9 illustrates an example of file 510, according to
which the operation point entity group syntax structure 538
is stored in file 510 in a box structure outside of tracks 121,
e.g., in a meta box. As shown in FIG. 9, in the case of using
an entity group, a box ‘xxxx’ (e.g. ‘oief” operation point
information entity group) as an entityGroup is defined and
included, e.g. in the MetaBox, that defines how the operation
points look like.

For example, the operation point entity group syntax
structure 538 comprises operation point information 550
describing properties of the predetermined operation point
102. In examples, such as the example of FIG. 10, the
operation point entity group syntax structure 538 comprises
operation point information 550 for each of a plurality of
operation points described by the operation point entity
group syntax structure 538. In this case, the operation point
entity group syntax structure 538 may comprise information
on a tier, a level, a profile and/or a set of constraints
associated with each of the plurality of operation points.
Optionally, for example, for the embodiments described
with respect to FIG. 8, but not necessarily for the embodi-
ment described with respect to FIG. 10, the operation point
entity group syntax structure 538 comprises a group iden-
tifier identifying the operation point entity group syntax
structure 538.

As indicated in FIG. 9, in the case that the information
associating the predetermined operation point with a set of
tracks is indicated in an operation point entity group syntax
structure 538, a track 121 may be associated with a track
reference type, e.g., “oref” (or a new one “eref” entity group
reference). The presence of the track reference type may
imply the presence of an entity group for implicit recon-
struction, such as the operation point entity group syntax
structure 538.

For example, file parser 100 may parse the tracks, and
may derive, based on the finding that the track 121 is
associated with a track reference of this type, that the

US 12,081,829 B2

15

operation point entity group syntax structure 538 is present
and accordingly parses the operation point entity group
syntax structure 538.

An example for a syntax or operation point entity group
syntax structure 538 if given in the following:

aligned(8) class EntityToGroupBox(grouping_type, version, flags)
extends FullBox(grouping_ type, version, flags) {
unsigned int(32) group_id;
unsigned int(32) num_entities_in_group;
for(i=0; i<num_entities_in_group; i++)
unsigned int(32) entity_id;
/ / the remaining data may be specified for a particular grouping_type

}

with entity_id pointing to the track_ids. The new grouping_
type for the defined/extended entity group could be as
follows, being an example of the operation point description
550.

aligned(8) class OperationPointTrackGroupsBox extends
Entity ToGroupBox(‘oieg’,0,0)

unsigned int(1) general_tier flag;

unsigned int(5) general_profile_idc;

unsigned int(x) general constraint_indicator_flags;
unsigned int(8) general_level idc;

Thus, the operation point description 550 may be included
in the entity group syntax structure 538 by reference. In
other examples, the operation point description 550 may be
included explicitly in the entity group syntax structure 538.

The above syntax may be an example for the case where
there is an entity group per operation point (e.g. identified by
group_id in the figure in the entity group box), i.e. tracks are
directly mapped to an operation point. For instance, one for
each of eg OPO=Layer0, OPl=LayerO+Layerl,
OP2=LayerO+Layerl+Layer2, where for each operation
point the number of tracks and which are in each group are
specified as well as the operation point properties, e.g. tier,
profile, level as shown in ‘oieg’.

In this case, the parser needs to parse the defined entity
group boxes in the file, e.g. in the meta box. Among all the
entity group boxes defined, one is selected that corresponds
to the desired operation point. As the entity box point
directly to the tracks belonging to the selected operation
point, these tracks are parsed and the samples within them
are send jointly to the decoder.

FIG. 10 illustrates another example of the file format
parser 100, which may optionally correspond to the file
format parser 100 of FIG. 4 and/or the file format parser 100
of FIG. 8. File format parser 100 according to FIG. 10
receives a file 510, which may optionally correspond to
examples of the file 110 of FIG. 1 and/or file 510 as
described with respect to FIG. 8. According to the example
of FIG. 10, the file 510 comprises an entity group syntax
structure 538, which may optionally correspond to examples
of the operation point entity group syntax structure 538 as
explained with respect to FIG. 8 and FIG. 9. The entity
group syntax structure 538 of FIG. 10 comprises informa-
tion assigning one of a set 540 of sets 542 of track identifiers
543 to each of a set 240 of operation points. The set 240 of
operation points comprises the predetermined operation
point 102. The file format parser 100 may derive the entity
group syntax structure 538 from descriptive data within the
file 510.

10

15

20

25

30

35

40

45

50

55

60

65

16

Furthermore, the file format parser 100 may derive the
subset 180 of tracks 121 for the predetermined operation
point 102 from the set 542 of tracks identifiers 543 assigned
to the predetermined operation point 102 by the entity group
structure 538.

For example, the set 540 of sets of track identifiers may
comprise one or more sets 542 of track identifiers, in FIG.
10 represented by a first set 542, of identifiers, a second set
542, of identifiers and a third set 542, of identifiers. The
track identifiers 543 may each be associated with one of
track identifiers 123 of the tracks 121. For example, the
identifiers 543 indicated in the entity group syntax structure
538 may be referred to as entity_id. Track identifiers 123 of
the tracks 121 may be referred to as track_id. Optionally, the
entity group syntax structure 538 may comprise, as
described with respect to FIG. 8 and FIG. 9, for each of the
operation points of the set 240 of operation points, operation
point information 550 describing the respective operation
point. File parser 100 may forward video sub-stream 122, of
track 121, indicated by set 542, of identifiers 543 to be
associated with the predetermined operation point 102.

Further, each of the tracks 121 identified by the identifiers
543 of the entity group syntax structure 538 may optionally
comprise information about one or more layers of the track.
For example, file parser 100 may derive, for each of the
subset 180 of tracks indicated by the set 542, of identifiers
associated with a predetermined operation point 102, from a
box within the track, layer information which identifiers one
or more layers contained in the track. In other words, each
of the tracks identified by the track identifiers of the entity
group box syntax structure 538 may comprise information
about one or more layers of the track.

In other words, there could be a single Entity group for all
operation points and a map to the track_id (entity_id), which
may require further mapping of each layer/track to each
operation point:

aligned(8) class OperationPointTrackGroupsBox extends
Entity ToGroupBox(‘oieg’,0,0)

unsigned int(6) num_profile_tier_level;
for (i=1; i<=num_profile_tier_level; i++) {
unsigned int(1) general_tier flag;
unsigned int(5) general_profile_idc;
unsigned int(x) general constraint_indicator_flags;
unsigned int(8) general_level_idc;

unsigned int(16) num_operating points;
for (i=0; i<num_operating_points) {
unsigned int(8) ptl_idx;
unsigned int(8) layer_count;
for (j=0; j<layer_count; j++) {
unsigned int(8) entity_id;

As already mentioned before, for this grouping that
includes all operation point descriptions within the same
group as shown above, there needs that the tracks contain
information about the layers within them so that a mapping
from track to operation point can be done. Another box
describing what each track contains is required for this case
within each track.

In this case, the parser needs to parse the single entity
group describing all operation points and pointing to all
tracks that of the whole scalable bitstream with which all
operation points can be achieved. Then, the parser selects
one operation point of the ones described in the entity group

US 12,081,829 B2

17

box described above, and identify which tracks contain the
layers required for that operation point. Each track contains
an additional box that described the layer information, i.e.
which layers are contained there. Thus, the parser identifies
the tracks that are required for the selected operation point
and the samples within these tracks are extracted and sent
together to the decoder.

FIG. 11 illustrates another example of the file parser 100,
which may correspond to the file parser 100 of FIG. 4. Fig.
parser 100 according to FIG. 11 receives a file 310, which
may optionally correspond to file 110 of FIG. 4. File 310
comprises a set 332 of operation point track groups 334, e.g.,
track group type box e.g., of type “oinf™, each identified with
an individual track_group_id. Each of the operation point
track groups, which may be included in descriptive data of
the file 310, may describe one of a set of operation points.
File parser 100 may, for each of the tracks 121, derive from
the descriptive data within the file 310, whether the respec-
tive track 121 is associated with an operation point track
group 334 of the set 332 of operation point track groups
which describes the predetermined operation point 302. If
so, file parser 100 may selectively assign the respective track
to the sub set 180 of tracks, i.e., file parser 100 may, in this
case, forward the respective track in contrast to the case, in
which the respective track is not associated with the opera-
tion point track group describing the predetermined opera-
tion point.

For example, each of the operation point track groups 334
may be identified with a track group identifier, e.g., grou-
p_id, and the file parser 100 may derive an association
between one of the tracks and one of the operation point
track groups 334 from an indication of the track group
identifiers of the respective operation point track group 334
by the respective track 121.

In examples, each of the operation point track groups 334
comprises information about a tier, a level, a profile and/or
a set of constraints for the operation point described by the
respective operation point track group.

In other words, this is another option where several track
groups, each corresponding to each operation point and
tracks belonging to the operation point indicate that they
pertain to the track group. This is similar to the first entity
group case shown above. The difference to that case is that
the information comes along with each track in a box instead
of in a separate box that describes all tracks.

aligned(8) class TrackGroup TypeBox(unsigned int(32)
track_group_type) extends FullBox(track_group_type,
version = 0, flags = 0)
{

unsigned int(32) track_group_id;

if track_group_type == ‘oinf” {

unsigned int(1) general_tier flag;

unsigned int(5) general_profile_idc;

unsigned int(x) general constraint_indicator_flags;

unsigned int(8) general_level idc;

In this case, the parser needs to parse all track group boxes
within a track. Among all possible operation points, one is
selected. As in this case track groups and operation points
have a one-to-one direct mapping the tracks belonging to the
selected track group are parsed and sent jointly to the
decoder.

In this case, some additional metadata is required to allow
the user to pick among the different operation points. E.g.
spatial resolution, ROI information, etc.

20

25

30

35

40

45

50

55

60

18

The grouping mechanisms discussed in section 1 may be
built upon the assumption that there is no need of removing
any NAL unit as no unnecessary (e.g., additional layer_id)
is present in the extracted bitstream. In other words, once
identified the tracks containing the layer_ids for an operation
point, all NAL units of the selected tracks for implicit
reconstruction are kept and used to output a bitstream to be
decoded. That is, as mentioned above, file parser 100 may
forward the entire tracks 121 which are associated with the
predetermined operation point 102 in the video bitstream
190.

It is noted, that the embodiments of section 1 are also
beneficially applicable for scenarios, in which the base layer
is distributed over multiple tracks. A base layer may refer to
a layer of the coded video sequence which fulfills the
conditions for all operation points. In the case of multiple
tracks also for the base layer case, the solution in section 1
may apply as there are tracks that are excluded or fully
contained within an operation point. le., no “subtrack
operations” is required.

2. File Parser, File Generator and File According to FIGS. 12
to 23, and Client and Manifest File According to FIG. 24

In the previous section some of the embodiments may
focus on typical scenarios where tracks are either fully
needed for an operation point or not.

However, there might be cases where this does not apply.
A valid use-case for that is based on the fact that number of
pictures per second required to be decoded are tightly related
to the level of a bitstream. For instance, a 1920x1080 @ 32
fps bitstream with a single layer corresponds to a level 4 but
if there are two layers a 1920x1080 @ 16 fps bitstream has
alevel 4 and 1920x1080 @ 32 fps bitstream has a level 4.1.

By only using inter-layer prediction for some pictures in
the bitstream, it is possible to have higher framerates with
multi-layer bitstreams without requiring a much higher
level.

For instance, one possibility would be to have only
inter-layer dependency at every second frame in the bit-
stream as shown in the following FIG. 12

FIG. 12 illustrates an example for a layer (LO) that is not
completely required for decoding its dependent layers (L.1).
In FIG. 12, L0 and L1 may identify two layers of the video
stream. E.g., layer .1 may be an enhancement layer of layer
L0, ie. coded pictures of layer .1 may signal the coded
pictures of layer L.O at a higher resolution, Further, according
to the example of FIG. 4, both layers 1.0 and L1 each have
temporal sublayers, indicated using respective temporal
sublayer identifiers Tid0 and Tid1. For example, pictures of
layer 1O and Tid0 may be required for decoding temporally
collocated pictures of layer L1, e.g. for inter-layer predic-
tion. l.e. pictures of layer [.1 may depend on their respective
collocated pictures of layer LO. In contrast, pictures of layer
L1 with Tidl may be decoded independently of their tem-
porally collocated pictures of layer L.O with Tidl.

There are several options that could be used to encapsu-
late the bitstream described above into the file format, for
example:

1) Single track: all NAL units within the same track where

samples can be assigned to a certain level using:

a. Sample grouping: marking of samples belonging to
an operation point or not

b. Sub-tracks: box descriptive syntax elements of the
video to map values of that syntax to an operation
point.

2) Multiple tracks: one track per layer

3) Multiple tracks (which is covered by the solution in

section 1):

US 12,081,829 B2

19
a. 1 Track for Layer 0 Tid 0
b. 1 track for Layer O Tid 1
c. 1 Track for Layer 1

FIG. 13 illustrates a file parser 600 according to an
example. File parser 600 may optionally correspond to file
parser 10 of FIG. 1. File parser 600 is configured to receive
a file 610, which may optionally correspond to file 110 of
FIG. 1. The file 610 comprises a track 121, the track 121
comprising a sequence of samples 650 of the video
sequence. Each of the samples 650 comprises a plurality of
bitstream portions 654, e.g., VCL NAL units, of the file 610.
In other words, each of the samples 650 may comprise a
plurality of the samples 130 of FIG. 1, i.e. each of the
bitstream portion 654 may correspond to one or more
samples 130. File parser 600 and file 610 may be in
accordance with the second aspect.

File parser 600 derives from descriptive data within the
file 610 a portion 658 (e.g. a selection) of the bitstream
portions 654 of each of the samples 650, required by a
predetermined operation point 102. File parser 600 may
forward portions 658 of the bitstream portions of each of the
samples 650 of the track 121 in the video bitstream 190. I.e.,
each of the portions 658 may comprise one or more samples
130. In other words, file parser 600 may derive from
descriptive data of the file 610, a portion (or a sub-set, a
selection) of the bitstream portions 654 are required by the
predetermined operation point 102.

For example, in some scenarios, the whole bitstream is
transmitted to the end-device irrespective of which is the
operation point that that devices are interested in. It does not
typically suit for point to point streaming scenarios in which
typically a client downloads the appropriate decodable sub-
set only, but might be useful for other scenarios such as
multicast. Therefore, one option for such a use-case is to
send the whole bitstream to the end-device using a single
track but allow for partial processing of such a track.

The first option comes along with the problem that
parsing the track requires identification of NAL units to
some kind of “operation point” and needs to extract only a
subset of the NAL units, depending on the decoder capa-
bilities, as forwarding more NAL units to the decoder would
violate the decoder capabilities.

There are already, File Format tools which that allow
having different sub-bitstream access within a track, which
is described herein as the state-of-the art:

FF already defines a Level AssignmentBox (‘leva’) which

describes levels (kind of sub-bitstreams). This box has
a flag ‘assignment_type’ which defines the type of
assignment to each of the levels. For cases where these
different levels are within a single track the ‘assign-
ment_type’ considered are the following values:

assignment_type=0 (or 1) specifies that Sample group-

ing is used

assignment_type=4: Sub-tracks with the SubTrackBox

Sample grouping mechanism which allow to assign a

partition of samples from a track to a specific group.

The sample group mechanism is not very flexible as it
operates on a per-sample basis. That is, it cannot remove
parts of a sample (i.e. sub-samples) as ideally desired by the
illustrated example and FIG. 12 above.

FIG. 14 illustrates another example of the file parser 600
in conjunction with a file 710 which may optionally corre-
spond to the file 610 of FIG. 13 or file 110 of FIG. 1.
According to the example of FIG. 14, the descriptive data
within the file 710 comprises an information 762 about a
sample group, which indicates a set 764 of the samples 650
of the track 121. According to the example of FIG. 14, file

10

15

20

25

30

35

40

45

50

55

60

65

20

parser 600 derives the sample group 762 from the file 710
and detects, which portion 766 (i.e. a subset) of the bitstream
portions 654 (e.g. samples 130) of each of the samples 650
indicated by the sample group is required by the predeter-
mined operation point 102. File parser 600 may forward the
portion 766 of the bitstream portion 654 of each of the
samples 764 of the sample group and each bitstream portion
654 of each of the samples 768 not indicated by the sample
group and the video bitstream. In contrast, file parser 600
may omit a forwarding of bitstream portions 654 of samples
650 indicated by the sample group 764 which bitstream
portions 654 are, according to the descriptive data, not
required by the predetermined operation point 102. In some
examples, the required bitstream portions may be indicated
by the descriptive data, while in other examples, bitstream
portions which are not required may be indicated.

In other words, e.g. according to the example of FIG. 14,
sample groups can be used to identify which samples require
sub-sample removal and which not. For this purpose, the
sample groups need to be parameterized and include addi-
tional information that specifies how to handle some
samples belonging to samples groups that need to be par-
tially extracted.

class PartiallyDisposableGroupEntry() extends
VisualSampleGroupEntry (‘pdis’) {
unsigned int(8) grouplD;

This sample grouping would determine that parts of the
samples need to be removed/ignored when playing the
group. E.g. the base layer part of the sample as shown in
FIG. 12 to conform to a profile/operation point.

The sample grouping mechanism described above would
allow a parser to identify the samples at which parts thereof
need to be dropped. However, still it may be unclear for a
parser which parts need to be kept and which dropped.

FIG. 15 illustrates another example of the file parser 600,
the description of which is based on the description of the
file parser 600 of FIG. 13, and the description of the file
parser 600 of FIG. 14. According to the example of FIG. 15,
the file 710 comprises a subtrack syntax structure 870, e.g.,
“strk”. The subtract syntax structure 870 indicates a prede-
termined type of bitstream portion syntax element 872, for
example, a layer identifier, layer_id, or temporal sublayer
identifier, also referred to as temporal_id, tid, or Tid. The
subtract syntax structure 870 further indicates, for the pre-
determined type of bitstream portion syntax element 872, a
related predetermined value to be used as a criterion for
indicating, whether a bitstream portion of a sample 764 of
the sample group 762 is required by the predetermined
operation point 102. File parser 600 may derive the subtract
syntax structure 870 from descriptive data within the file
710. File parser 600 may, for each bitstream portion 654 of
each of the samples 650 of the sample group 762, derive
from the descriptive data the value of the predetermined type
of bitstream portion syntax element of the respective bit-
stream portion 654. The file parser 600 may selectively
handle the respective bitstream portion 654 as being
required by the predetermined operation point 102, if the
value of the predetermined type of bit stream portion syntax
element corresponds to the predetermined value.

In other words, file parser 600 may determine a portion of
samples 130 of the track 121 by means of a layer identifier
or a temporal sublayer identifier.

US 12,081,829 B2

21

In other words, the information of which NAL units to
keep and which to drop could be conveyed by using sub-
tracks.

Subtracks are defined with ‘strk” boxes. The structure of
the file could look as follows:

SubTrackBoxes (“strk’) one per sub-track used together

with sample grouping
It contains a subtrack information box ‘stri’
Contains for instance the subtrack id
With a mandatory Subtrack definition box (‘strd’)
which holds a subtrack sample group box ‘stsg’:
Which defines the relation of specified subtrack to a
sample group

Sub-tracks are to some extent a description of groups of
NAL units that lead to a conformant sub-bitstream. A
mapping is required to identify which NAL units belong to
a sub-track. Typically, this is done by syntax elements of the
video itself. For instance, for SVC, a SVC sub track layer
box “sstl’ is defined that conveys the information within the
Subtrack definition box ° strd” box of which syntax elements
have what value—e.g, dependency_id, quality_id, etc. In the
case that we are considering the information for an extension
of such a box would contain the layer_id and temporallD.

This means that a parser that identifies first with the
previously described sample grouping a sample (partially
disposable sample) that needs to be partially removed, or
some NAL units thereof needs to be dropped and not sent to
the decoder, would parse the information in the subtracks
and depending on the information in subtrack definition box
would parse syntax values of the NAL units (e.g. layer_id
and temporallD) and depending on their value keep it or
drop it before sending to the decoder.

Subtracks require that the parser understands some syntax
structure of the media contained below. They are compact
but come along with an additional complexity for the parser.
Alternatively, subsample information boxes can contain
similar information in a more verbose fashion. Instead of
describing the assignment of syntax values to a subtract,
subsample information boxes are tables that for each sample
they index byte ranges and identify parst smaller than a
sample.

FIG. 16 illustrates another example of the file parser 600.
The file parser 600 of FIG. 16 may be an implementation of
the file parser 600 of FIG. 14, for example, as an alternative
to the implementation of FIG. 15. According to the example
of FIG. 16, file 710 comprises a subsample syntax structure
974, e.g., “subs”. The subsample syntax structure 974 is
indicative of a mapping rule between the predetermined
operation point 102 and respective bit ranges within portions
of the track for the samples required by the predetermined
operation point 102. In other words, the mapping rule may
associate each of the samples of the sample group 752 with
a bite range within a portion of the track comprising the
respective sample indicated by the sample group 762. File
parser 600 may derive the subsample syntax structure 974
from file 710 and may, for each of the samples of the sample
group, for each of the bitstream portions of the respective
sample, selectively handle the respective bitstream portion
as being required by the predetermined operation point, if
the respective bitstream portion is part of the bite range of
the respective sample indicated by the mapping group.

In other words, a subsample information box can be used
to convey this information and map sub-track with subSam-
pleInformationBox. The benefit of such a solution is that the
mapping is not based on some particular syntax value in the

20

35

40

45

22

bitstream, but that the mapping is simply explicitly signaled
and needs not deeper parsing of the video bitstream on the
player side.

In this case, the parser would first identify the samples
that are partially disposable using the sample grouping
described above. Then the parser parses the subsample
information boxes and identify the parts of the sample
(based on the byte ranges) that belong to a given operation
point. Then, the parser would only send to the decoder the
relevant parts of those “partially disposable” samples.

The codec_specific_parameters field of the SubSampleln-
formationBox in this case is as follows:

if (flags == xx) {
unsigned int(32) operating_point;

}

As indicated in FIG. 1, file 110, or file 610, 710, respec-
tively, may optionally be provided to file parser 10 by a
client device 9. Client device 9 may download file 110 from
a server. For example, the client device 9 may be an
application such as a DASH client. The client device 9 may
receive from the server, a manifest file, such as an MPD, the
manifest file comprising a plurality of descriptions for
respective media representations, which are downloadable
from the server.

As indicated before, streaming of parts of a track could be
desirable. Typically in streaming scenarios, e.g. DASH one
track is mapped to one representation, which for instance has
a given URL assigned.

Naturally, a DASH client would rather to not download
irrelevant data, i.e. in the example above not download
L0-Tid, when downloading layer 1.

This is done by mapping the operation point of interest to
byte ranges of a resource (track) using a box (‘ssix’) that
contains byte ranges for the levels defined in the ‘leva’ box.

The ‘leva’ box specifies levels that typically are built
incrementally. That is, all the byte ranges of levels below the
target level are included in the HTTP requests, e.g when
using DASH and subrepresentations. For a DASH client to
be aware that some levels are not to be included in this
fashion, i.e. incrementally, some signaling is required. In one
embodiment, the indication of levels not to be included in
higher target levels is exposed in a file format box and also
in a Media Presentation Description so that some unneces-
sary byte ranges need not to be included in the clients HTTP
requests.

The previously described embodiments of section 2 may
be particularly beneficial for cases, in which all layers are
grouped within one track of the file. In the following,
embodiments will be described, in which layers, which are
associated with samples 130 (or bitstream portions 654)
required for the predetermined operation point 102 may be
distributed over two or more tracks 121.

FIG. 17 illustrates an example of a file parser 1000, which
may optionally correspond to file parser 100 of FIG. 1. File
parser 1000 is configured for receiving a file 1010 which
may optionally correspond to file 110 of FIG. 1. The file
1010 comprises a set 120 of tracks 121 signaling a coded
video sequence. Each of the tracks 121 represents a sub-
stream comprising a sequence of samples 130 of the video
sequence. For example, as described with respect to FIG. 1,
each of the samples 130 represents one or a plurality of
bitstream portions such as VCL NAL units of the file 1010.
File parser 1000 is configured for deriving, from descriptive
data within the file 1010, a subset 1080 of tracks 121 of the

US 12,081,829 B2

23

set 120 of tracks 121. The subset 1080 of tracks is not
necessarily a proper subset, that is, the subset may comprise
one or more or all of the tracks 121 of the file 1010. Tracks
of the subset 1080 of tracks comprise samples which are
required by a predetermined operation point 102. File parser
1000 may derive, from the descriptive data, a portion of the
samples 130 of each of the subset 1080 of tracks 121
required by the predetermined operation point 102. In the
illustrative example of FIG. 17, the set 120 of tracks is
represented by a first track 121, and a second track 121,,
which are both part of the subset 1080 of tracks which
comprise samples for the predetermined operation point
102. File parser 1000 may determine, based on the descrip-
tive data within the file, for the first track 121, a portion
1074, of samples 130 required for the predetermined opera-
tion point 102 and may determine, for the second track 121,
a portion 1074, of samples 130 required by the predeter-
mined operation point. File parser 1000 may selectively
forward the respective portions 1074 of samples 130 of the
tracks 121 of the subset 1080 of tracks in the video bitstream
190. That is, file parser 1000 may include samples 130 of the
portions 1074 (i.e., portions 1074,, 1074,) required by the
predetermined operation point in the video bitstream 190
and may ignore samples of the file 1010, which are not part
of the portions 1074 in constructing bitstream 190.

For example, one of the tracks of file 1010, e.g., the first
track 121, may be a base layer track which may be decoded
independently from further tracks of file 1010. The base
layer track may comply with the predetermined operation
point when extracted individually. According to this
example, the second track 121, may comprise an enhance-
ment layer.

In other words, some embodiments, e¢.g. the embodiment
according to FIG. 17, but not limited to the embodiment of
FIG. 17, allow to provide a base layer track that does not
require any “special” handling as the profile tier level
matches all NAL units within the track.

However, when parsing the enhancement layer only
some, or not all, base layer NAL units are required. If
extractors were used, the extractors point only to the
required NAL units. However, as they come with a data-rate
and processing overhead it might be more desirable to not
use extractors. In that case it is required to allow identifi-
cation of the required NAL units.

For example, the identification may be achieved through
a mechanism based on sample grouping. In other words, the
descriptive data from which file parser 1010 derives the
subset 1080 of tracks 121 and the respective portions 1074
of samples for the tracks 121 of the subset 1080 may be
indicated in file 1000 by using a sample group.

FIG. 18 illustrates an example of the file parser 1000 and
in the file 1010 of FIG. 17, according to which the file 1010
is indicative of a sample group 1182 for a track of the tracks
121 of the file 1010. For example, the sample group 1182
may be indicated for a track comprising an enhancement
layer. In FIG. 18, sample group 1182 is for illustrative
purpose exemplarily associated with the second track 121,.
For example, file parser 1000 may derive, based on the
predetermined operation point 102, a track comprising a
sub-stream to be played as indicated by the predetermined
operation point. A track comprising a sub-stream indicated
by the predetermined operation point may be referred to as
indicated track. File parser 1000 detects whether the file
1010 comprises a sample group 1182 associated with the
indicated track. The sample group 1182 may indicate a set
1184 of samples of the indicated track, e.g., track 121,, as
being independent from further tracks. File parser 1000 may

25

30

40

45

50

24

forward the samples 130 of the indicated track 121, in the
video bitstream 190. Further, file parser 1000 may detect, for
each sample 1151 of the indicated track 121,, which is not
part of the set 1184 indicated by the sample group 1182 to
be independent from further tracks, samples 1152 of further
tracks, such as track 121, of the subset 180 of tracks 121,
which samples 1152 have equal time stamps 1186 as the
samples 1151 of the indicated track 121,. File parser 1000
may forward samples of the further tracks of the subset of
tracks, i.e., tracks other than the indicated track 121,, in the
video bitstream 190 if the samples of the further track have
a temporally aligned or temporally collocated, sample in the
indicated track 121, which is not indicated to be independent
from further tracks. For example, the indicated track 121,
may depend on one or more further layers, samples of which
may be required for decoding a layer signaled in the indi-
cated track 121,. For samples of the indicated track 121,
which samples are not indicated as being independent from
further tracks, file parser 1000 may detect samples of the
further layers on which the layer of the indicated track 121,
depends, and which are temporally aligned with the samples
not indicated to be independent, and forward detected
samples of the further layer.

In other words, a sample grouping mechanism would
indicate whether NAL units are entailed for a given opera-
tion point or not. For instance, based on the solution men-
tioned in section 1 where track grouping is used to indicate
that some tracks belong to an operation point. An additional
sample grouping within the track would mark some samples
as not belonging or belonging to a particular operation point.
In such a case, it is part of the invention to indicate within
the track grouping that additional sample handling is
required to determine sample by sample whether a sample
belongs to a certain operation point.

class IndepSamplelnOperationPoint extends
VisualSampleGroupEntry (‘indo”)) {
unsigned int(32) operating_points[J;

Sample marked as belonging to this sample group would
not need the sample of reference tracks belonging to the
same operation point group. So the sample to group tables
mapping each samples to a given group would indicate when
used for a sample that that sample is independent and does
not need samples of the dependent tracks for a given
operation point. So the parser would not look for samples in
a dependent track when it finds this indication.

FIG. 19 illustrates another example of the file parser 1000
and the file 1010 of FIG. 17, according to which file 1010
may comprise an operation point sample group 1183 asso-
ciated with a track of the subset 180 of tracks, for example,
with track 121,. In examples, file 1010 may comprise an
operation point sample group for each of the tracks of the
subset 1080 of tracks. Accordingly, file parser 1000 may
detect, for each track associated with a predetermined opera-
tion point 102, that is, for each of the tracks of the subset
1080 of tracks, whether the descriptive data of file 1010
comprises an operation point sample group 1183 for the
respective track, the operation point sample group 1183
being associated with a predetermined operation point 102.

The operation point sample group 1183 indicates the
samples of the track to which the operation point sample
group 1183 is associated, which samples are required by the
predetermined operation point.

US 12,081,829 B2

25

In other words, another option would be that samples
themselves would indicate to which operation points they
belong or don’t belong. This would require all tracks to
contain the operation point sample groups and the parser
would take from all tracks that are of interest only the
samples that belong to a given operation point as indicated
by this other type of sample grouping.

class OperationPointSampleGroup extends
VisualSampleGroupEntry (‘opsg’)) {

}

FIG. 20 illustrates an example of a grouping of samples
by means of layers and temporal sublayers for the exemplary
bitstream of FIG. 12. For example, the track grouping
mechanism illustrated in FIG. 20 may be indicated in file
1010 on the basis of the track grouping mechanism
described in section 1, further containing information about
which sub-layers (or which NAL units) do not belong to an
operation point and parsing of NAL units (e.g. TID to
determine to which sub-layer a NAL unit belongs to) is
carried out. These means that the track grouping would
require to indicate for an operation point which temporal 1D
values (sub-layer correspondence) have the NAL units that
belong to an operation point. The tracks themselves would
have all the sub-layers (possible values of temporal 1Ds)
within them and further parsing of NAL unit header values
would be required to not include them in the bitstream sent
to the decoder. The syntax could look as follows with
additions highlighted in bold compared to the track group
described in section 1.

aligned(8) class TrackGroup TypeBox(unsigned int(32)
track_group_type) extends FullBox(track_group_type,
version = 0, flags = 0)

unsigned int(32) track_group_id;
if track_group_type == ‘oinf” {
unsigned int(6) num_profile_tier_level;
for (i=1; i<=num_profile_tier_level; i++) {
unsigned int(1) general_tier flag;
unsigned int(5) general profile_idc;
unsigned int(x) general constraint_indicator_flags;
unsigned int(8) general level idc;

unsigned int(16) num_operating_points;
for (i=0; i<num_operating_points) {
unsigned int(8) ptl_idx;
unsigned int(8) layer_count;
for (j=0; j<layer_count; j++) {
unsigned int(6) layer_id;
unsigned int(6) max_sub_layer_id;

e

FIG. 21 illustrates another embodiment of the file parser
1000 and the file 1010 according to an embodiment.
Examples of the embodiment of FIG. 21 may implement the
embodiment described with respect to FIG. 20. According to
the embodiment of FIG. 21, the file 1010 is indicative of a
set 1362 of layer identifiers. The set 1362 of layer identifiers
comprises one or more layer identifiers 264 associated with
a predetermined operation point 102. In examples, file 1010
comprises a set 1360 of sets 1362 of layer identifiers. In FIG.
21, the set 1360 exemplarily comprises a first set 1362, a
second set 13121 and a third set 1362, of layer identifiers.
One of the sets 1362, for example set 13121, may be

10

15

25

35

40

45

50

55

60

65

26

associated with the predetermined operation point 102. File
parser 1000 may derive from the descriptive data within the
file, whether a track 121 of the subset of tracks is associated
with one of the layer identifiers 264 of the set 13121 of layer
identifiers associated with a predetermined operation point.
If the track is associated with one of the layer identifiers 264
of the associated set 13121 of layer identifiers, file parser
1000 may selectively assign the track to the subset 1080 of
tracks, and derive from the descriptive data, whether a
portion of the samples of the track is associated with a
sublayer, samples of which are required by the predeter-
mined operation point 102. File parser may selectively
forward the portion of samples associated with the sublayer
which is indicated to be required by the predetermined
operation point 102 and the video bitstream 190. That is, file
parser 1000 may omit forwarding samples of the respective
track which are not associated with the sublayer indicated to
be required by the predetermined operation point, when
constructing bitstream 190.

For example, descriptive data of file 1010 may indicate,
for each of the layer identifiers 264 of the set 13121 of layer
identifiers for the predetermined operation point, an associ-
ated sublayer identifier indicating a subset of the samples
associated with the layer identified with the respective layer
identifier. For example, the sublayer identifier may indicate
a maximum value for a temporal identifier for samples of the
layer identified with the respective layer identifier. File
parser 1000 may, for each of the tracks which is associated
with a predetermined operation point, derive from the
descriptive data, the set of layer identifiers associated with
the predetermined operation point and a set of sublayer
identifiers associated with the set of layer identifiers for the
predetermined operation point. Parser 1000 may, for each
sample of the tracks associated with a predetermined opera-
tion point, forward the respective sample in the video
bitstream 190, if a sample is associated with the set of layer
identifiers and with the set of sublayer identifiers indicate for
the predetermined operation point, and do not forward the
sample otherwise.

For example, file 1010 may comprise a syntax structure,
for example a track group syntax structure or a sample group
syntax structure, comprising for each of a set 240 of opera-
tion points which includes the predetermined operation point
102, an associated set 162 of layer identifiers 264. Each of
the layer identifiers 264 may have associated therewith, an
associated sublayer identifier which is indicative of one or
more sublayers of the layer associated with the layer iden-
tifier 264. For example, a layer may comprise one or more
temporal sublayers, which are ordered hierarchically. The
sublayer identifier 1365 may indicate, for the layer identified
with the layer identifier 264, a maximum temporal sublayer
of the identified layer required for the predetermined opera-
tion point 102. File parser 1000 may include, for each of the
layers identified by the set 13121 of layer identifiers asso-
ciated with a predetermined operation point 102, samples
130 in the video bitstream 190, which samples 130 are
associated with a temporal layer identifier equal to or lower
than the maximum temporal identifier indicated by the
sublayer identifier 1364 associated with the respective layer
identifier 264.

FIG. 22 illustrates another example of the file parser 1000
and the file 1010 according to which the portions 1074 to be
included in the video bitstream 190 are indicated by means
of level indexes. According to the example of FIG. 22, file
parser 1000 is configured to derive from the descriptive data
a level assigned syntax structure 1489 assigning a level
index 1491 to samples 130 of the set of tracks. According to

US 12,081,829 B2

27

this example, the predetermined operation point 102 is
associated with a set of level indexes indicating the level
indexes of the samples required by the predetermined opera-
tion point 102. For example, the set of level indexes may
comprise one or more level indexes, the set of level indexes
being, for example, indicated by a maximum level index
implying that the step of level indexes includes smaller level
indexes. For examples, the level assignment syntax structure
may indicate a first level for first samples of an indicated
track and a second level for second samples of the indicated
track, the first samples having a first temporal identifier and
a second samples having a second temporal identifier.
According to the example of FIG. 22, file parser 1000 may
detect, for each of the tracks 121, whether the track com-
prises samples associated with level index of the set of level
indexes associated with a predetermined operation point. If
so, file parser 1000 may selectively add the track to the
subset 180 of tracks to be forwarded in the video bitstream
190. Otherwise, file parser 1000 may ignore the track for the
video bitstream 190. Further, file parser 1000 may derive,
from the descriptive data, a sample group associated with a
predetermined operation point 102, a sample group indicat-
ing a set 1494 of the samples of the subset of tracks which
is not required by the predetermined operation point, by
indicating one or more of the level indexes of the set of level
indexes as being not required by the predetermined opera-
tion point. For each of the samples of the subset of tracks,
file parser 1000 may omit a forwarding of the respective
sample in the video bitstream 190, if the level of the
respective sample is indicated as not being required by the
predetermined operation point. Otherwise, file parser 1000
may forward the respective sample.

In a further embodiment this independency or dependency
is indicated by using sample groups in a different manner,
i.e. the samples group would indicate that some levels
identified by the ‘leva’ box would not be required for an
operation point.

Operation points can be defined in the sample group
description box using VisualSampleGroupEntries.

Class OperationPointRecord {
Unsigned int(X) profile_level_idc;
Unsigned int(8) exclude_levels_cnt;
For(i=0; i<exclude_levels_cnt; ++i) {
Unsigned int(8) level_to_exclude_from_dependency;

.

Class OperationPointInformation extends
VisualSampleGroupEntry(‘oinf”)

OperationPointRecord oinf;

}

However, this would require to use the ‘leva’ (Level
Assignment) box mapping for the implicit reconstruction.
The ‘leva’ only mandates level dependencies like this:
m<=n<p. Where samples from level n may depend on any
samples from levels m but shall not depend on any samples
from level p. Therefore, G3 may depend on G1 but not
necessarily on G2. The structure shown above (Operation-
PointRecord) shows an example of how this indication of a
independency of G3 to G2 is entailed to be able to process
the data more efficiently can be done. With the provided
mechanism in the new sample group, it would be explicitly
clear that some levels in the leva box are excluded from
higher levels (by the indication in the sample group “level_
to_exclude_from_dependency™).

10

15

20

25

30

35

40

45

50

55

60

65

28

FIG. 23 illustrates another example of the file parser 1000
and the file 1010 according to an embodiment. According to
the example of FIG. 23, the file 1010 comprises information
on a sample group 1595 which indicates, for a predeter-
mined operation point 102, the portions 1074 of samples 130
of tracks 121 required by the predetermined operation point.
In the illustrative example of FIG. 23, the predetermined
operation point 102 is associated with the first track 120, and
the second track 121,. The sample group 1595 may indicate,
for the first track 121, a portion 1074, of samples of the first
track 121, associated with the predetermined operation
point. Accordingly, the sample group 1595 may indicate, for
the second track 121,, a portion 1074, of samples of the first
track 121, associated with the predetermined operation
point. For example, the samples 130 of the tracks 121 may
each be associated with a layer of the video stream signaled
in file 1010. Each of the samples 130 may be associated with
a layer identifier 1591, indicating the layer, to which the
respective sample is associated. In example, samples asso-
ciated with the same layer may be part of the same track. In
some examples, samples of the same track may be associ-
ated with the same layer, however, in further examples, a
track may comprise samples of several layers. In other
words, in some examples, there may be one track per layer,
and in other examples, one track may comprise samples of
multiple layers.

The sample group 1595 may be associated with the
predetermined operation point. In other examples, the
sample group 1595 is indicative of, for each of a set of
multiple operation points (e.g. the set 240 of operation
points), including the predetermine operation point, a
respective set of samples. The sample group 1595 may
indicate the set of samples for the predetermined operation
point, and optionally further operation points, by indicating
a set of layer identifiers 1591 associated with the respective
operation points, such as the predetermined operation point.

Each of samples 130 may further be associated with a
temporal sublayer, by having, associated to the respective
sample, a temporal identifier 1597. The temporal identifier
1597 indicates, to which of a set of temporal subsets of the
samples 130 of the coded video sequence the sample
belongs. The temporal identifier 1597 may, for example,
correspond to the temporal_id, as explained with respect to
FIG. 15 and FIG. 21. Sample group 1595 indicates, for each
of the layer identifiers 1591 associated with the predeter-
mined operation point, a constraint 1596 on the temporal
identifier 1597. For example, the constraint 1596 may be
indicated in the sample group 1595, by indicating whether
all temporal sublayers of the respective layer are required for
the predetermined operation point, or not. Further, in case
that not all temporal sublayers of the respective layers are
required for the predetermined operation point, the indica-
tion of the constraint 1596 may comprise an indication for
a maximum temporal sublayer. As explained with respect to
FIG. 1, temporal sublayers may be ordered hierarchically.
File parser 1000 may include into the video bitstream 190,
for each of the layers identified by the layer identifiers 1591
associated with a predetermined operation point, all samples
130 which are associated with a temporal sublayer which is,
in its hierarchical order, equal to or lower than the indicated
constraint on the temporal identifier. For example, the maxi-
mum temporal sublayer may be indicated by the constraint
1596 by means of a maximum value for the temporal
identifier.

In examples, the sample group 1595 indicates, for the
predetermined operation point, a profile, a tier, and a level
and/or a set of one or more constraints of the predetermined

US 12,081,829 B2

29

operation point. For example, the sample group 1595 may
indicate, for each of a plurality of operation points, respec-
tive profiles, tiers, levels, and a respective set of layer
identifiers. Further, the sample group 1595, may comprise,
for each of the sets of layer identifiers for the plurality of
operation points a respective constraint 1596 on the tempo-
ral identifier 1591.

In other words, FIG. 23 may be an example of an
embodiment, according to which the indication of the por-
tions 1074 of samples required by the predetermined opera-
tion point is done by indicating explicitly up to which level
the dependency occurs for each of the samples. However, in
this case the sub-layer value (max_tid_in_dep_layer) is
indicated and it is expected that the filer format parser
checks the TID values for including it in the output bitstream
to decode or not.

Class OperationPointRecord {
Unsigned int(X) profile_level_idc;
Unsigned int(8) layers;
For(i=0; i<; layers ++i) {
Unsigned int(3) max_tid_in_dep_layer;

According to another embodiment of the file parser 1000
of FIG. 17, file parser 1000 may derive, from descriptive
data in the file 1000 that a predetermined track of the subset
of tracks is required for the predetermined operation point
and forwards the samples of the predetermined track in the
video bitstream 190. File parser 1000 may, for each of
further tracks, i.e., tracks other than the predetermined track,
of the subset 180 of the tracks, inspect, for each of the
samples of the respective track, whether the sample is part
of a sample group, such as sample group 1595, the sample
group indicating samples as being required by the deter-
mined operation point. If so, file parser 1000 may forward
the respective samples in the video bitstream 190, and if not,
file parser 1000 may omit the samples in constructing the
video bitstream 190. In example, the sample group is defined
s0 as to comprise samples having one of a specified set of
temporal identifiers indicating to which of a set of temporal
subsets of the samples of the coded video sequence the
respective sample belongs.

The latter embodiment may provide for an efficient pars-
ing of the file. As already stated, the sample group mecha-
nism may require that the parser parses tables for each track
to identify to which sample group a sample belongs. Those
tables indicate each sample to belong to a sample group, if
any. Then the parser, would need to react accordingly. E.g.
excluding levels that are not necessary, by not included
samples belonging to that level in the bitstream sent to the
decoder.

However, typically the maximum temporal id that is
required does not change sample by sample, but is a char-
acteristic of a layer. E.g. L1 in the example only depends on
temporal IDs equal to O in LO. Therefore, this information
could be conveyed for a track.

In a further embodiment a track group mechanism or
another track property description is used that when using a
given reference type, e.g. in ‘tref” having a ref_type of ‘sref”
sample group reference, the track group indicates the index
of the sample groups in the dependent layers that are
included into the output bitstream.

The grouping above would allow four different operation
points:

5

10

15

20

25

30

35

40

45

50

55

60

65

30

G1 only (sample group description of G1)

G1+G2 (sample group description of G2)

G1+G3 (sample group description of G1 is used in G3
reference where G2 samples are excluded as they are
not included into the track (group/property) descrip-
tion)

In this case, the parser would need to parse a track group
or the track reference box ‘tref’ that are generic for all
samples within the track. That reference would indicate that
it is a “non-full” reference, e.g. only temporallD equal to 0
is required in the referenced layer, or an ‘sref” reference that
indicates that only some samples belonging to a sample
group in the referenced layer are required.

Based on this information the parser, parses the reference
layer only looking for samples with temporallD equal to 0
or parsing the sample group table in the reference track
looking for samples that belong to the sample groups that are
required. The bitstream sent to the decoder would contain
only the relevant NAL units.

FIG. 24 illustrates an example of a client 9, which may
optionally correspond to the client 9 of FIG. 1, in conjunc-
tion with a server 7. Client 9 may download a manifest file
14 describing a set of media representations Rep #down-
loadable by the client. Client 9 may derive, from the
manifest file 14, for a first media representation RepO
information on subrepresentations sub-rep 0, sub-repl
embedded into the first media representations. Further, client
9 may derive from the manifest file 14 for a second media
representation Repl, a first indication 16 of a first set of one
or more media representations which the second media
representation Repl depends on, the set of one or more
media representations including the first media representa-
tion Rep0. Further, client 9 may derive from the manifest file
14 for a second media representation Repl, a second indi-
cation 18 of a second set of one or more sub-representations
out of the sub-representations sub-rep0, sub-repl embedded
into the first media representation, which are needed for
playing the second media representation Rep 1. Client 9 may
download the second representation (Rep 1) along with the
first set of one or more media representations with restricting
downloading the first representation (Rep 0) to the second
set of one or more sub-representations. For example, the
client requests the manifest 14 from server 12, inspects the
manifest 12, and then retrieves, e.g. by HTTP requests, Rep
1 plus Rep 0’s sub-rep O as indicated by 16 and 18.

In examples, the client 9 may access samples or sub-
samples (e.g. NAL units defined by a certain NAL unit
value, such as layer ID, or temporal layer and forming, thus,
a substream 22) of a track (e.g. as shown each representation
might have one track 20 embedded thereinto) which is
contained in the first representation (Rep 0), which belong to
the second set of one or more sub-representations, by
deriving information on the samples or sub-samples from
segments of the first representation (Rep 0) (e.g. this infor-
mation might be contained in the media segments which
contain the NAL units, or some initial segment or rep 0
which is firstly downloaded by the client for that Rep 0).

In other words, similar to as discussed previously, in this
case also ‘ssix’ and ‘leva’ boxes are required to allow
downloading only some parts of a track, as streaming only
the NAL units required is desirable. The ‘ssix’ box and ‘leva’
box would contain descriptive information of the file as to
which level samples belong to and byte ranges that are to be
consider to access only the relevant samples belonging to a
level.

In this case in order to download only the required part,
this means to indicate at a DASH level, i.e. in the manifest

US 12,081,829 B2

31

MPD, that a representation depends on only parts of another
representation. Note that in the example described there are
2 track and therefore there would be two representations in
the DASH MPD, one for layer 0 and one for layer 1. l.e, a
further embodiment consists of an indication for DASH that
a dependency not on representation level but on subrepre-
sentations happens. In the example bitstream, the represen-
tation containing layer 1 only needs a part of the represen-
tation containing layer 0. That is either by adding a
@dependencyld “extension” allowing that the Id indicated
in the @dependencyld of a representation points to a sub-
representation or some kind of indication at subrepresenta-
tions level that points required or not when dependent
Representation. For instance, this could be a descriptor that
indicates which subrepresentation is required. Subreprese-
tation in DASH in this case would be the parts of the
representation containing layer O that contains only NAL
units with temporallD equal to 0.

TABLE 1

10

15

32

3. File Parser, File Generator and File According to FIGS. 25
and 26

FIG. 25 illustrates a file parser 30 in conjunction with a
video decoder 44 according to an embodiment. File parser
30 may optionally be in accordance with file parser 10 of
FIG. 1. File parser 30 may receive a file 32, which may
correspond to file 110. File 30 may comprise a set 36 of
tracks, e.g. comprising track 0 and track 1, each of the tracks
comprising samples, e.g. samples 130 of FIG. 1. The file 32
comprises switching information 34 for the set 36 of tracks,
the switching information 34 indicating samples 38 of a first
track, e.g. track 1, of the set 36 of tracks at which switching
from a second track (e.g., track 0) of the set of tracks is
allowed provided that one or more preceding samples in the
second track (e.g. track 0) are available to the video decoder
44 fed by the file parser from the file. The one or more
preceding samples may refer, for example, to the ones
preceding sample 38 in coding order 40 up to, inclusively,

Element or

Attribute Name Description

This element contains a description of a
Representation.

Representation

@id M

specifies an identifier for this Representation. The

identifier shall be unique within a Period unless the
Representation is functionally identically to another

Representation in the same Period.

The identifier shall not contain whitespace

characters.

If used in the template-based URL construction as
defined in 5.3.9.4.4, the string shall only contain
characters that are permitted within an HTTP-URL

according to RFC 1738.
(@bandwidth M

Consider a hypothetical constant bitrate channel of

bandwidth with the value of this attribute in bits per
second (bps). Then, if the Representation is
continuously delivered at this bitrate, starting at any
SAP that is indicated either by @startwithSAP or

by any Segment Index box, a client can be assured

of having enough data for continuous playout

providing playout begins after @minBufferTime *
@bandwidth bits have been received (i.e. at time

@qualityRanking

@dependencyld

@maxLevellnDepRep

o

@minBufferTime after the first bit is received).

For dependent Representations this value shall
specify the minimum bandwidth as defined above of
this Representation and all complementary
Representations.

specifies a quality ranking of the Representation
relative to other Representations in the same
Adaptation Set. Lower values represent higher quality
content. If not present then no ranking is defined.
specifies all complementary Representations the
Representation depends on in the decoding and/or
presentation process as a whitespace-separated list
of values of @id attributes.

If not present, the Representation can be decoded
and presented independently of any other
Representation.

This attribute shall not be present where there are no
dependencies.

specifies the Sub-Representations of the
Representations specified by @dependencyld
the Representation depends on in the decoding
and/or presentation process as a whitespace-
separated list of values of @level attributes of
the Sub-Representation of the corresponding
Representations.

Legend:

For attributes: M = Mandatory, O = Optional, OD = Optional with Default Value, CM = Conditionally

Mandatory.

For elements: <minOccurs> . . . <maxOccurs> (N = unbounded)

Elements are bold; attributes are non-bold and preceded with an @, List of elements and attributes is in
italics bold referring to those taken from the Base type that has been extended by this type.

US 12,081,829 B2

33

the immediately preceding RAP sample 42, because then it
is guaranteed that any reference sample of sample 38, here
exemplarily 44, has a co-temporal sample, here sample 42,
in the part of the second track available to the decoder. The
tracks have embedded thereinto different version of the same
video content in a manner, for instance, mutually indepen-
dently encoded. File parser 30 may derive the switching
information 34 from file 32. Embodiments of section 3 may
be related to the third aspect.

For example, file parser 30 may provide the switching
information 34 to an external device configured to decide on
the switching, e.g. video player comprising, or co-operating
with, the video decoder.

Optionally, the switching information 34 may comprise
information 48 on drift-affected samples 46 of the first track
(track 1) which are affected from decoding drift by the video
decoder decoding the drift-affected samples 46 of the first
track (track 1) based on (e.g. by reference picture resampling
of) previous samples of the second track (track 0) which are
temporally aligned to reference samples of the first track
(track 1) referred to (directly as shown in the figure or
indirectly via one or more other of the drift-affected
samples) by the drift-affected samples 46 (such as sample 42
which is co-aligned/co-temporal to sample 44 referred to by
sample 38). For example, file parser 30 may derive the
information 48 from file 32.

For example, the information 48 on the drift-affected
samples 46 is indicative of an upper bound of a number of,
or a temporal duration of, the drift-affected samples.

For example, the information 48 on the drift-affected
samples 46 is indicative of a quality of the drift-affected
samples meeting a predetermined criterion.

For example, the information 48 on the drift-affected
samples is indicative of the drift-affected samples being
coded without temporal syntax prediction.

For example, the information 48 on the drift-affected
samples identifies the drift-affected samples.

Optionally, the file 32 comprises RAP information 50
which is indicative of RAP samples 44 (such RAP samples
might be synchronization samples or sync samples, SAP
(stream access point) samples and/or IRAPs) of the first
track (track 1). The RAP information 50 may be separate
from the switching information 34 (e.g. are two different
kinds of information; in fact, samples 38 are no RAP
samples). File parser 30 may derive the RAP information 50
from file 30 for the first track (track 1).

Optionally, the file 32 comprises further RAP information
52 which is indicative of RAP samples 42 (such RAP
samples might be synchronization samples or sync samples,
SAP (stream access point) samples and/or IRAPs) of the
second track (track 0), the switching information 34 indi-
cating the samples 38 of the first track (track 1) of the set of
tracks at which switching from the second track (track 0) of
the set of tracks is allowed provided that those samples in the
second track (track 0) are available to the video decoder 44
which precede the samples of the first track upstream to the
closest (in terms of coding order) preceding RAP sample 42
of the second track (track 0). File parser 30 may derive the
further RAP information 52 from file 30 for the second track
(track 1).

The switching information 34 and the file parser 32 may
provide for a more flexible switching between tracks in the
decoding of video bitstreams. For a long time, video codecs
allowed to change the resolution of the video (i.e. the size of
the matrix of coded samples per picture) only at certain
pictures (IRAP) that are independently coded and break
prediction dependencies of proceeding pictures. At such

35

40

45

55

60

34

independent random-access points (IRAPs), the decoding
process can begin and results in pictures of a single resolu-
tion to be output until the next occurrence of such an IRAP.
The concept of leading pictures in open GOP structures
introduces pictures with inter-dependencies to the associated
IRAP and its preceding IRAP as shown in the following FIG.
26A.

FIG. 26A illustrates drift affected pictures in open GOP
CRA switching. In other words, FIG. 26A illustrates open
GOP switching at so-called CRA pictures. The associated
leading pictures will be drift affected until occurrence of a
non-leading pictures such as IRAP, TRAIL, DRAP, GDR
and so on. However, from a codec perspective, this scheme
used to be only possible between streams of a same reso-
Iution. Further, the support of such use cases in the file
format is limited to guaranteeing that apart from the CRA
only the trailing pictures (POC 5 and higher) are decodable
and being silent about the leading pictures.

Latest generation codecs such as the emerging VVC allow
to change resolution also at pictures that are non-IRAP
pictures. This is achieved by incorporating an additional
resampling step in the inter-prediction chain and thereby,
reference pictures of different resolutions than the current
pictures can be used for reference and hence, resolution
change can occur at pictures between IRAPs.

This feature can be helpful primarily in a low-delay
conversational scenario, wherein a sender can adjust the
video resolution (e.g. in case of bandwidth issues) without
having to send a bitrate-wise costly IRAP. However, in a
video-on-demand segment based streaming scenario, it is
conceivable to use this feature to allow bitrate adaption by
means of resolution switching (which is the common case)
wherein a client can switch between different versions of a
content (e.g. 720p and 1080p) without waiting for segments
that start with an IRAP. However, the important difference is
that such switching is not envisioned by a single encoder and
will likely result in a certain amount of artefacts or drift in
some of the decoded pictures. The following FIG. 26B
provides an illustration regarding the described scenario and
which pictures are affected by the drift. In other words, FIG.
268 illustrates drift affected pictures when switching at
trailing pictures.

Further application examples in the context of new
emerging codecs such as VVC exist, e.g. GDR based
streams as illustrated in FIG. 26C, where non-refreshed
regions may be drift-affected when switching into such a
GDR cycle.

From perspective of a file format for such coded video
data, the different versions to switch among are typically
stored in separate tracks and a switching event involves a
first switch-from track and a second switch-to track. It is
important to provide information in the file format container
to identify samples (of the switch-to track) where such
switching can occur with a controllable/a-priori determin-
able amount of artefacts/drift and additional information
about the nature of such artefacts/drift. As explained above,
such non-IRAP pictures could for instance be regular trailing
pictures or GDR pictures or STSA pictures and so on.

Therefore, as part of the invention in a first embodiment,
an indication is provided in the FF (e.g. through SAP type,
sync sample type, configuration record information, or a
separate box providing this information on a per-track,
per-track-group, per-sample or per-sample-group basis) that
certain samples of the switch-to track (including or exclud-
ing the switching point picture of the switch-to track) can be
decoded when earlier samples of the switch-from track are
available for referencing. Regarding the track-group exem-

US 12,081,829 B2

35

plary embodiment, such track groups would for instance
contain a set of tracks and indicate that drift-inducing
switching among the tracks contained in the track group is
possible. Regarding the sample-group exemplary embodi-
ment, such sample groups would include the switching point
picture and the drift affect pictures when switching among a
track group.

In a further embodiment, an indication is given in the file
format similar to the above (e.g. through SAP type, sync
sample type, configuration record information, or a separate
box providing this information on a per-track, per-track-
group, per-sample or per-sample-group basis) that when any
such drift-affected picture (including or excluding the
switching point picture) will be decoded, the samples will be
of an acceptable quality when reference samples of a any
track in the track group are available. In other words, the
embodiment is an indication that any severe-drift-inducing
inter-prediction tools in the drift-affected pictures such as
TMVP, ATMVP, DMVR, BIO, i.e. further Motion Vector
prediction related tools or syntax-prediction based tools are
absence, and instead, only pixel value based prediction is
used by the drift-affected pictures.

In a further embodiment, an indication is given in the file
format similar to the above (e.g. through SAP type, sync
sample type, configuration record information, or a separate
box providing this information on a per-track, per-track-
group, per-sample or per-sample-group basis) about drift
duration, i.e. duration from switching point until the last
drift-affected picture in the switch-to track, in seconds or
number of pictures. This information can help applications
to schedule switching events when they are least impactful
subjectively, e.g. when a region moves out of viewport.

4. File Parser, File Generator and File According to FIG. 27

FIG. 27 illustrates a file parser 60 according to an embodi-
ment of the fourth aspect. File parser may optionally be in
accordance with file parser 10 of FIG. 1. FIG. 27 illustrates
file parser 60 in conjunction with a video decoder 78, e.g.
video decoder 17. File parser 60 may receive a file 62, which
may optionally correspond to file 110. File 62 comprises a
track 64, e.g. track 121. File 62 may comprise sample entries
68 (e.g. samples entries as described in section 0) for the
track 64, the sample entries 68 signaling video parameters
for respective coded video sequences 70 of a video bitstream
76 which is inserted into the track 64 or a track group of the
file 62 to which the track belongs. For example, the video
parameter may relate to highest allowed values for reference
picture index, picture size and/or activation of certain inter-
polation tools. File 62 further comprises an indication 66
which indicates, whether the video parameters signaled by
all of the sample entries 68 for the track 64 or the track group
meet a predetermined decoder capability, e.g. in terms of one
or more of memory allocation mount used, picture output
size, CPB size, etc. The video bitstream 76 to which the
video parameters refer may, e.g., a video bitstream which is
forwarded by the parser 60 from file 62 to decoder 78, e.g.
video bitstream 190 of FIG. 1. Each coded video sequence
70 starts at an RAP 72, e.g. IRAP, of the video bitstream 76
and ends in front of a subsequent RAP 72 of the video
bitstream, e.g. in coding/stream order 74.

File parser 60 may derive the indication 66 from file 62.
If all sample entries 68 present in the file 62 for each coded
video sequence 70 of the video bitstream 76 are indicated,
by indication 66, to meet the predetermined decoder capa-
bility, file parser 60 may leave video decoder 78, which
receives the coded video sequence 76, at an RAP 72 (let’s
say the simply hatched one in FIG. 27) at which a coded
video sequence 70 starts, as currently initialized. That is, in

10

15

20

25

30

35

40

45

50

55

60

65

36

this case, file parser 60 may omit a re-initialization of the
video decoder 78. The file parser 60 may omit the re-
initialization irrespective of video parameters signaled by
the sample entry 68 for the RAP (the simply hatched one)
deviating from video parameters signaled by the sample
entry present in the file for the preceding coded video
sequence (i.e. the cross-hatched sample entry) or not. Alter-
natively or additionally, file parser 60 may omit the re-
initialization irrespective of the video parameters signaled
by the sample entry 68 for the RAP conflicting with a current
initialization (e.g., conflicting in terms of one or more of
memory allocation mount used, picture output size, CPB
size) of the video decoder 78 or not.

For example, the indication 66 may be a syntax element
or a syntax structure, indicating whether all sample entries
68 present in the file 62 for each coded video sequence 70
of the video bitstream 76 meet the predetermined decoder
capability. In examples, file parser 60 may derive from the
presence or the absence of a syntax element or a syntax
structure in file 62 whether all sample entries 68 present in
the file 62 for each coded video sequence 70 of the video
bitstream 76 meet the predetermined decoder capability.

For example, if the indication does not indicate that all
sample entries present in the file for the track 64 signal video
parameters for the coded video sequence which meet the
predetermined decoder capability, the file parser 60 may
initiate a re-initialization of the video decoder at a RAP at
which a coded video sequence starts, depending on a first
criterion and/or a second criterion. The first criterion being
fulfilled may depend on whether the video parameters
signaled by the sample entry 68 for the IRAP deviating from
video parameters signaled by the sample entry present in the
file for the preceding coded video sequence or not. In other
words, the file parser may re-initialize the video decoder 78,
if sample entry changes and the indication 66 does not
indicate, that that all sample entries present in the file for the
track 64 signal video parameters for the coded video
sequence which meet the predetermined decoder capability.
The second criterion being fulfilled may depend on whether
the video parameters signaled by the sample entry 68 for the
IRAP conflicting with current initialization of the video
decoder or not.

For example, file parser 60 may derive decoder capability
related video parameters, e.g. DCI NAL units, from a section
of the file which relates to the track, and forward the video
bitstream 76 from the track or the track group to the video
decoder along with providing the video decoder 76 with the
decoder capability related video parameters at RAPs at
which the coded video sequences start and for which the
sample entries are present in the track.

For example, an initialization (and re-initialization) of the
video decoder affects one or more of a coded picture buffer
size, an amount of allocated memory and/or a number of
allocated processor decoder kernels.

The indication 66 allows to avoid an unnecessary decoder
re-initialization. For example, VVC has a new syntax struc-
ture referred to as Decoder Capability Information (DCI)
and this syntax structure has a different scope than compa-
rable syntax structures such as Parameter Sets in former
codecs such as, for instance, HEVC. A DCI entails limit
information about the profile tier level of a bitstream similar
to the way that parameter sets contain such information for
their respective scope. However, in former video coding
standards, the scope of such parameter sets cannot last
beyond a single coded video sequence (CVS), ie. from
IRAP to IRAP. Now, with VVC, a profile tier level limit
guarantee can be expressed with a scope spanning aver the

US 12,081,829 B2

37

concatenation of multiple IRAP periods, i.e. what is defined
as a bitstream which entails all data from the beginning of
the first CVS in the bitstream until the end of the bitstream
(e.g. as signalled through an end-of-bitstream NAL unit).

For instance, imagine the case where three CVSs of
HEVC coded video are concatenated to a bitstream. When
this example is packetized into a file format container, the
respective track would entail three sample entries, each
containing new and potentially different parameter sets.
Note that Section 4.10 of ISO/IEC 14496-15 describes in an
informative section that “the video decoder for decoding of
the bitstream output from the file parser is expected to be
reset at the first sample at which the sample entry changes”
which implies that in the described scenario the application
parsing the file needs to initialize the decoder. Before, VVC
there was no means to indicate the parameter set sections
relevant for decoder initialization such as profile tier level
are to remain constant in the bitstream.

However, imagining the above example based on VVC
coded video CVSs, the bitstream may contain Das at each
IRAP describing the maximum capability needed for decod-
ing the entire bitstream (i.e. the mentioned three concat-
enated video sequences). Hence, there will also exist three
sample entries as in HEVC at which the respective confi-
guartionRecords in the sample entries will carry pairs of
VPS/SPS/PPS. However, if there was a single DCI for each
CVSs that required individual sample entries to be present
(e.g. for parameter changes which would not require a
decoder re-initialization or without changes at all), it would
still be beneficial to indicate that all the sample entries have
a single DCI and that no decoder reset is required.

In the first embodiment, an indication is added to the file
format container that all sample entries in a track have the
same DCI contents so that a single decoder initialization at
the operation point described by the DCI is sufficient to
decode the entire bitstream without re-initialization (or
reset) of the respective decoder.

For instance, the invention could use flags of the Sample
Description Box “stsd’ to indicate that same DCI applies to
all sample entries within a track. The current ‘stsd’ box is not
using any flags (flags=0). More concretely the flag signals if
decoder re-initialization can be omitted for changing
between sample entries in the sample description box (i.e.
track). Therefore, if the flag is set to 1, configuration record
changes (in other words: changes of sample entries) will not
require decoder re-initialization.

aligned(8) class SampleDescriptionBox (unsigned int(32) handler_type)
extends FullBox(“stsd’, version, flags = 0) {
inti;
unsigned int(32) entry_count;
for (i=1;i <= entry_count ; i++) {
SampleEntry(); // an instance of a class derived from
SampleEntry

}

Semantics:

If flags is set to 1, all sample entries in stsd box contain
the same parameters describing the maximum capability
needed for decoding of the entire track (e.g.: DCI in VVC)
and therefore can be switched without full re-initialization of
the decoder.

In another embodiment of the invention, each track has a
mandatory media information box ‘minf” which describe

20

25

35

40

45

50

55

60

65

38

characteristics information of the media in a track. This new
box contains a DCI NAL unit used for all sample entries in
that track.

An example for such a decoder configuration box is given
in the following:
Definition

Box Types: © dcfg’

Container: MedialnformationBox

Mandatory: No

Quantity: Exactly one

The DecoderConfigurationBox contains decoder configu-
ration information valid for all sample entries in a track.
When this box is present the player can switch sample
entries without re-initialization of the decoder. The NAL
units from this box can be overwritten by the NAL units
from the selected sample entry except of DCI NAL units.
Syntax

aligned(8) class DecoderConfigurationBox
extends FullBox(*defg’, version = 0, 0) {
unsigned int(8) numOfArrays;
for (j=0; j < numOfArrays; j++) {
unsigned int(1) array_completeness;
bit(1) reserved = 0;
unsigned int(6) NAL_unit_type;
unsigned int(16) numNalus;
for (i=0; i< numNalus; i++) {
unsigned int(16) nalUnitLength;
bit(8*nalUnitLength) nalUnit;

Semantics

numOfArrays indicates the number of arrays of NAL
units of the indicated type(s). array_completeness when
equal to 1 indicates that all NAL units of the given type are
in the following array and none are in the stream or in the
sample entry; when equal to 0 indicates that additional NAL
units of the indicated type may be in the stream or in the
sample entry.

NAL_unit_type indicates the type of the NAL units in the
following array (which shall be all of that type); it takes a
value as defined in ISO/IEC 23009-3; it is restricted to take
one of the values indicating a DCI, VPS, SPS, PPS, prefix
SEIL, or suffix SEI NAL unit. numNalus indicates the number
of NAL units of the indicated type included in the decoder
configuration box. The SEI array shall only contain SEI
messages of a ‘declarative’ nature, that is, those that provide
information about the stream as a whole.

nalUnitLength indicates the length in bytes of the NAL
unit.

nalUnit contains an DCI, SPS, PPS, VPS or declarative
SEI NAL unit, as specified in ISO/IEC 23009-3.

In another embodiment, a group of tracks is indicated to
obey the limits constituted by a single first DCI when
played, regardless of the second Das in the individual
sample entries of the individual tracks belonging to the
group. The first DCI may be conveyed through explicit
signalling as described above or marked via means of a flag
to be of broader persistence/scope as above.

Although some aspects have been described as features in
the context of an apparatus it is clear that such a description
may also be regarded as a description of corresponding
features of a method. Although some aspects have been
described as features in the context of a method, it is clear

US 12,081,829 B2

39

that such a description may also be regarded as a description
of corresponding features concerning the functionality of an
apparatus.

Some or all of the method steps may be executed by (or
using) a hardware apparatus, like for example, a micropro-
cessor, a programmable computer or an electronic circuit. In
some embodiments, one or more of the most important
method steps may be executed by such an apparatus.

The inventive encoded image signal or file can be stored
on a digital storage medium or can be transmitted on a
transmission medium such as a wireless transmission
medium or a wired transmission medium such as the Inter-
net.

Depending on certain implementation requirements,
embodiments of the invention can be implemented in hard-
ware or in software or at least partially in hardware or at least
partially in software. The implementation can be performed
using a digital storage medium, for example a floppy disk,
a DVD, a Blu-Ray, a CD, a ROM, a PROM, an EPROM, an
EEPROM or a FLASH memory, having electronically read-
able control signals stored thereon, which cooperate (or are
capable of cooperating) with a programmable computer
system such that the respective method is performed. There-
fore, the digital storage medium may be computer readable.

Some embodiments according to the invention comprise
a data carrier having electronically readable control signals,
which are capable of cooperating with a programmable
computer system, such that one of the methods described
herein is performed.

Generally, embodiments of the present invention can be
implemented as a computer program product with a program
code, the program code being operative for performing one
of the methods when the computer program product runs on
a computer. The program code may for example be stored on
a machine readable carrier.

Other embodiments comprise the computer program for
performing one of the methods described herein, stored on
a machine readable carrier.

In other words, an embodiment of the inventive method
is, therefore, a computer program having a program code for
performing one of the methods described herein, when the
computer program runs on a computer.

A further embodiment of the inventive methods is, there-
fore, a data carrier (or a digital storage medium, or a
computer-readable medium) comprising, recorded thereon,
the computer program for performing one of the methods
described herein. The data carrier, the digital storage
medium or the recorded medium are typically tangible
and/or non-transitory.

A further embodiment of the inventive method is, there-
fore, a data stream or a sequence of signals representing the
computer program for performing one of the methods
described herein. The data stream or the sequence of signals
may for example be configured to be transferred via a data
communication connection, for example via the Internet.

A further embodiment comprises a processing means, for
example a computer, or a programmable logic device, con-
figured to or adapted to perform one of the methods
described herein.

A further embodiment comprises a computer having
installed thereon the computer program for performing one
of the methods described herein.

A further embodiment according to the invention com-
prises an apparatus or a system configured to transfer (for
example, electronically or optically) a computer program for
performing one of the methods described herein to a
receiver. The receiver may, for example, be a computer, a

10

15

20

25

30

35

40

45

50

55

60

65

40

mobile device, a memory device or the like. The apparatus
or system may, for example, comprise a file server for
transferring the computer program to the receiver.

In some embodiments, a programmable logic device (for
example a field programmable gate array) may be used to
perform some or all of the functionalities of the methods
described herein. In some embodiments, a field program-
mable gate array may cooperate with a microprocessor in
order to perform one of the methods described herein.
Generally, the methods may be performed by any hardware
apparatus.

The apparatus described herein may be implemented
using a hardware apparatus, or using a computer, or using a
combination of a hardware apparatus and a computer.

The methods described herein may be performed using a
hardware apparatus, or using a computer, or using a com-
bination of a hardware apparatus and a computer.

In the foregoing Detailed Description, it can be seen that
various features are grouped together in examples for the
purpose of streamlining the disclosure. This method of
disclosure is not to be interpreted as reflecting an intention
that the claimed examples require more features than are
expressly recited in each claim. Rather, as the following
claims reflect, subject matter may lie in less than all features
of a single disclosed example. Thus the following claims are
hereby incorporated into the Detailed Description, where
each claim may stand on its own as a separate example.
While each claim may stand on its own as a separate
example, it is to be noted that, although a dependent claim
may refer in the claims to a specific combination with one
or more other claims, other examples may also include a
combination of the dependent claim with the subject matter
of each other dependent claim or a combination of each
feature with other dependent or independent claims. Such
combinations are proposed herein unless it is stated that a
specific combination is not intended. Furthermore, it is
intended to include also features of a claim to any other
independent claim even if this claim is not directly made
dependent to the independent claim.

While this invention has been described in terms of
several embodiments, there are alterations, permutations,
and equivalents which fall within the scope of this invention.
It should also be noted that there are many alternative ways
of implementing the methods and compositions of the
present invention. It is therefore intended that the following
appended claims be interpreted as including all such altera-
tions, permutations and equivalents as fall within the true
spirit and scope of the present invention.

The invention claimed is:

1. A file parser for providing a video bitstream based on
a set of tracks of a file signaling a coded video sequence,
each of the set of tracks representing a sub-stream of the
video sequence, wherein the file parser is configured to
derive from descriptive data within the file a subset of tracks
of the set of tracks complying with a predetermined opera-
tion point, forward the sub-streams of the subset of tracks in
the video bitstream, wherein the file parser is configured to
derive from the descriptive data within the file an operation
point entity group syntax structure describing the predeter-
mined operation point, the operation point entity group
structure identifying the tracks of the subset of tracks which
are associated with the predetermined operation point, and
derive from the entity group syntax structure the subset of
tracks, wherein the operation point entity group syntax is
stored in the file on file level outside of the tracks.

2. The file parser according to claim 1, wherein the file
parser is configured to derive from descriptive data of the file

US 12,081,829 B2

41

a set of layer identifiers associated with the predetermined
operation point, and for each of the set of tracks, derive from
the descriptive data within the file, whether the respective
track is associated with one of the layer identifiers of the set
of layer identifiers, and selectively assign the respective
track to the subset of tracks, if the respective track is
associated with one of the layer identifiers of the set of layer
identifiers.

3. The file parser according to claim 2, wherein the file
parser is configured to, for each of the set of tracks, derive
from a track group syntax structure within the descriptive
data, the track group syntax structure being associated with
the respective track, a set of operation points comprising the
predetermined operation point and a mapping rule assigning
one set of layer identifiers of a set of sets of layer identifiers
to each of the operation points, and derive from the track
group syntax structure the set of layer identifiers associated
with the predetermined operation point.

4. The file parser according to claim 3, wherein the track
group syntax structure comprises information about a tier, a
level, a profile and a set of constraints for each of the
operation points described by the track group syntax struc-
ture.

5. The file parser according to claim 1, wherein the file
parser is configured to detect a set of operation point track
groups within the descriptive data, each describing one of a
set of operation points, and for each of the set of tracks,
derive from the descriptive data within the file, whether the
respective track is associated with an operation point track
group of the set of operation point track groups describing
the predetermined operation point, and if so, selectively
assign the respective track to the subset of tracks.

6. The file parser according to claim 5, wherein each track
group is identified with a track group identifier, and wherein
the file parser is configured to derive an association between
one of the tracks and one of the operation point track groups
from an indication of the track group identifiers of the
respective operation point track group by the respective
track.

7. The file parser according to claim 1, wherein each of the
operation point track groups comprises information about a
tier, a level, a profile and a set of constraints for the operation
point described by the respective operation point track
group.

8. The file parser according to claim 2, wherein the file
parser is configured to derive from the descriptive data
within the file an entity group syntax structure, the entity
group syntax structure assigning one of a set of sets of layer
identifiers to each of a set of operation points comprising the
predetermined operation point, and derive the set of layer
identifiers for the predetermined operation point from the
entity group structure.

9. The file parser according to The file parser according to
wherein the file parser is configured to derive from the
descriptive data within the file an entity group syntax
structure, the entity group syntax structure assigning one of
a set of sets of track identifiers to each of a set of operation
points comprising the predetermined operation point, and
derive the subset of tracks for the predetermined operation
point from the set of track identifiers assigned to the pre-
determined operation point by the entity group structure.

10. The file parser according to claim 1, wherein the
operation point entity group syntax structure is descriptive
of a set of operation points comprising the predetermined
operation point, and wherein the operation point entity
group syntax structure indicates, for each of the operation
points, a set of tracks associated with the operation point.

35

40

45

55

42

11. The file parser according to claim 1, wherein each of
the tracks identified by the track identifiers of the entity
group syntax structure comprises information about one or
more layers of the track.

12. The file parser according to claim 1, configured to
derive, for each of the subset of tracks, from a box of the
track, layer information which identifies one or more layers
comprised in the track.

13. The file parser according to claim 1, wherein the entity
group syntax structure comprises respective descriptions of
the operation points.

14. The file parser according to claim 1, wherein the entity
group syntax structure comprises, for each of the operation
points, information about a tier, a level, a profile and a set of
constraints for the operation point.

15. A method for processing a file signaling a coded video
sequence, the method comprising: providing a video bit-
stream based on a set of tracks of the file, each of the set of
tracks representing a sub-stream of the video sequence,
deriving from descriptive data within the file a subset of
tracks of the set of tracks complying with a predetermined
operation point, forwarding the sub-streams of the subset of
tracks in the video bitstream wherein the method comprises:
deriving from the descriptive data within the file an opera-
tion point entity group syntax structure describing the pre-
determined operation point, the operation point entity group
structure identifying the tracks of the subset of tracks which
are associated with the predetermined operation point, and
deriving from the entity group syntax structure the subset of
tracks, wherein the operation point entity group syntax is
stored in the file on file level outside of the tracks.

16. A file parser configured to derive, from a file, for a
track of the file, an indication indicating whether all sample
entries present in the file for the track signal video param-
eters for a coded video sequence of a video bitstream, which
is inserted into the track or a track group of the file to which
the track belongs, which meet a predetermined decoder
capability, wherein each coded video sequence starts at an
RAP of the video bitstream and ends in front of a subsequent
RAP of the video bitstream; if all sample entries present in
the file for each coded video sequence of the video bitstream
are indicated to meet the predetermined decoder capability,
leave a video decoder, which receives the coded video
sequence, at an RAP at which a coded video sequence starts,
as currently initialized irrespective of video parameters
signaled by the sample entry for the RAP deviating from
video parameters signaled by the sample entry present in the
file for the preceding coded video sequence or not, and/or
irrespective of the video parameters signaled by the sample
entry for the RAP conflicting with a current initialization of
the video decoder or not.

17. The file parser of claim 16 configured to if the
indication does not indicate that all sample entries present in
the file for the track signal video parameters for the coded
video sequence which meet the determined decoder capa-
bility, then initiate a re- initialization of the video decoder at
a RAP at which a coded video sequence starts, depending on
the video parameters signaled by the sample entry for the
IRAP deviating from video parameters signaled by the
sample entry present in the file for the preceding coded video
sequence or not, and/or the video parameters signaled by the
sample entry for the IRAP conflicting with current initial-
ization of the video decoder or not.

18. The file parser of claim 16, configured to derive
decoder capability related video parameters from a section
of the file which relates to the track, and forward the video
bitstream from the track or the track group to the video

US 12,081,829 B2

43

decoder along with providing the video decoder with the
decoder capability related video parameters at RAPs at
which the coded video sequences start and for which the
sample entries are present in the track.

19. The file parser of claim 16, wherein an initialization
of the video decoder affects one or more of a coded picture
buffer size, an amount of allocated memory and/or a number
of allocated processor decoder kernels.

20. A method for processing a file, comprising: deriving,
from the file, for a track of the file, an indication indicating
whether all sample entries present in the file for the track
signal video parameters for a coded video sequence of a
video bitstream, which is inserted into the track or a track
group of the file to which the track belongs, which meet a
predetermined decoder capability, wherein each coded video
sequence starts at an RAP of the video bitstream and ends in
front of a subsequent RAP of the video bitstream; if all
sample entries present in the file for each coded video
sequence of the video bitstream are indicated to meet the
predetermined decoder capability, leaving a video decoder,
which receives the coded video sequence, at an RAP at
which a coded video sequence starts, as currently initialized
irrespective of video parameters signaled by the sample
entry for the RAP deviating from video parameters signaled
by the sample entry present in the file for the preceding
coded video sequence or not, and/or irrespective of the video
parameters signaled by the sample entry for the RAP con-
flicting with a current initialization of the video decoder or
not.

10

15

20

25

30

44

