(19)

(12)

(11) **EP 2 640 725 B1**

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent: 07.01.2015 Bulletin 2015/02
- (21) Application number: 11793604.7
- (22) Date of filing: 18.11.2011

- (51) Int Cl.: **C07D 487/04** ^(2006.01)
- (86) International application number: PCT/US2011/061351
- (87) International publication number: WO 2012/068440 (24.05.2012 Gazette 2012/21)
- (54) HETEROCYCLIC-SUBSTITUTED PYRROLOPYRIDINES AND PYRROLOPYRIMIDINES AS JAK INHIBITORS

HETEROCYCLENSUBSTITUIERTE PYRROLOPYRIDINE UND PYRROLOPYRIMIDINE ALS JAK-INHIBITOREN

PYRROLOPYRIDINES ET PYRROLOPYRIMIDINES À SUBSTITUTION HÉTÉROCYCLIQUE UTILISÉES EN TANT QU'INHIBITEURS DES JAK

 (84) Designated Contracting States: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR Designated Extension States: BA ME 	 ZHU, Wenyu Media PA 19063 (US) GLENN, Joseph Mount Royal NJ 08061 (US)
 (30) Priority: 19.11.2010 US 415617 P (43) Date of publication of application: 25.09.2013 Bulletin 2013/39 	 (74) Representative: Howard, Paul Nicholas et al Carpmaels & Ransford LLP One Southampton Row London WC1B 5HA (GB)
(73) Proprietor: Incyte Corporation Wilmington, DE 19803 (US)	(56) References cited: WO-A1-2007/070514 WO-A1-2007/117494
 (72) Inventors: • RODGERS, James, D. Landenberg PA 19350 (US) 	Remarks: The file contains technical information submitted after the application was filed and not included in this specification

2 640 725 B1 Ч

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

FIELD OF THE INVENTION

⁵ **[0001]** The present invention provides heterocyclic-substituted pyrrolopyridines and pyrrolopyrimidines, as well as their compositions and methods of use, that modulate the activity of Janus kinases (JAKs) and are useful in the treatment of diseases related to the activity of JAKs including, for example, inflammatory disorders, autoimmune disorders, cancer, and other diseases.

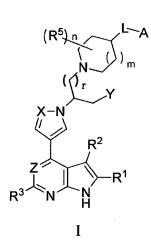
10 BACKGROUND OF THE INVENTION

[0002] Protein kinases (PKs) regulate diverse biological processes including cell growth, survival, differentiation, organ formation, morphogenesis, neovascularization, tissue repair, and regeneration, among others. Protein kinases also play specialized roles in a host of human diseases including cancer. Cytokines, low-molecular weight polypeptides or glyc-

- ¹⁵ oproteins, regulate many pathways involved in the host inflammatory response to sepsis. Cytokines influence cell differentiation, proliferation and activation, and can modulate both pro-inflammatory and anti-inflammatory responses to allow the host to react appropriately to pathogens. Signaling of a wide range of cytokines involves the Janus kinase family (JAKs) of protein tyrosine kinases and Signal Transducers and Activators of Transcription (STATs). There are four known mammalian JAKs: JAK1 (Janus kinase-1), JAK2, JAK3 (also known as Janus kinase, leukocyte; JAKL; and
- ²⁰ L-JAK), and TYK2 (protein-tyrosine kinase 2). [0003] Cytokine-stimulated immune and inflammatory responses contribute to pathogenesis of diseases: pathologies such as severe combined immunodeficiency (SCID) arise from suppression of the immune system, while a hyperactive or inappropriate immune/inflammatory response contributes to the pathology of autoimmune diseases (e.g., asthma, systemic lupus erythematosus, thyroiditis, myocarditis), and illnesses such as scleroderma and osteoarthritis (Ortmann,
- R. A., T. Cheng, et al. (2000) Arthritis Res 2(1): 16-32).
 [0004] Deficiencies in expression of JAKs are associated with many disease states. For example, Jak1-/- mice are runted at birth, fail to nurse, and die perinatally (Rodig, S. J., M. A. Meraz, et al. (1998) Cell 93(3): 373-83). Jak2-/- mouse embryos are anemic and die around day 12.5 postcoitum due to the absence of definitive erythropoiesis.
 [0005] The JAK/STAT pathway, and in particular all four JAKs, are believed to play a role in the pathogenesis of
- asthmatic response, chronic obstructive pulmonary disease, bronchitis, and other related inflammatory diseases of the lower respiratory tract. Multiple cytokines that signal through JAKs have been linked to inflammatory diseases/conditions of the upper respiratory tract, such as those affecting the nose and sinuses (*e.g.*, rhinitis and sinusitis) whether classically allergic reactions or not. The JAK/STAT pathway has also been implicated in inflammatory diseases/conditions of the eye and chronic allergic responses.
- ³⁵ [0006] Activation of JAK/STAT in cancers may occur by cytokine stimulation (e.g. IL-6 or GM-CSF) or by a reduction in the endogenous suppressors of JAK signaling such as SOCS (suppressor or cytokine signaling) or PIAS (protein inhibitor of activated STAT) (Boudny, V., and Kovarik, J., Neoplasm. 49:349-355, 2002). Activation of STAT signaling, as well as other pathways downstream of JAKs (*e.g.*, Akt), has been correlated with poor prognosis in many cancer types (Bowman, T., et al. Oncogene 19:2474-2488, 2000). Elevated levels of circulating cytokines that signal through
- JAK/STAT play a causal role in cachexia and/or chronic fatigue. As such, JAK inhibition may be beneficial to cancer patients for reasons that extend beyond potential anti-tumor activity.
 [0007] JAK2 tyrosine kinase can be beneficial for patients with myeloproliferative disorders, *e.g.*, polycythemia vera (PV), essential thrombocythemia (ET), myeloid metaplasia with myelofibrosis (MMM) (Levin, et al., Cancer Cell, vol. 7, 2005: 387-397). Inhibition of the JAK2V617F kinase decreases proliferation of hematopoietic cells, suggesting JAK2 as
- ⁴⁵ a potential target for pharmacologic inhibition in patients with PV, ET, and MMM. [0008] Inhibition of the JAKs may benefit patients suffering from skin immune disorders such as psoriasis, and skin sensitization. The maintenance of psoriasis is believed to depend on a number of inflammatory cytokines in addition to various chemokines and growth factors (JCI, 113:1664-1675), many of which signal through JAKs (Adv Pharmacol. 2000;47:113-74).
- ⁵⁰ **[0009]** Accordingly, inhibitors of Janus kinases or related kinases are widely sought. For example, certain JAK inhibitors, including pyrrolopyridine and pyrrolopyrimidines, are reported in U.S. Ser. No. 11/637,545, filed December 12, 2006, WO 2007/070514 and WO 2007/117494.

[0010] Thus, new or improved agents which inhibit kinases such as JAKs are continually needed for developing new and more effective pharmaceuticals that are aimed at augmentation or suppression of the immune and inflammatory

⁵⁵ pathways (such as immunosuppressive agents for organ transplants), as well as agents for the prevention and treatment of autoimmune diseases, diseases involving a hyperactive inflammatory response (*e.g.*, eczema), allergies, cancer (*e.g.*, prostate, leukemia, multiple myeloma), and some immune reactions (*e.g.*, skin rash or contact dermatitis or diarrhea) caused by other therapeutics. The compounds of the invention, as well as its compositions and methods described herein are directed toward these needs and other ends.


SUMMARY OF THE INVENTION

⁵ [0011] The present invention provides, *inter alia*, compounds of Formula I:

10

15

20

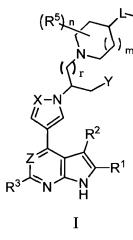
wherein X, Y, Z, L, A, R⁵, n and m, and pharmaceutically acceptable salts thereof. [0012] The present invention further provides pharmaceutical compositions comprising a compound of Formula I as

- described herein, or a pharmaceutically acceptable salt thereof, and at least one pharmaceutically acceptable carrier.
 [0013] The present invention further provides methods of modulating an activity of JAK1 comprising contacting JAK1 with a compound of Formula I as described herein, or a pharmaceutically acceptable salt thereof.
 - **[0014]** The present invention further provides methods of treating a disease or a disorder associated with abnormal kinase expression or activity in a patient by administering to a patient a therapeutically effective amount of a compound of Formula I as described herein, or a pharmaceutically acceptable salt thereof.
- ³⁰ **[0015]** The present invention further provides methods of treating an autoimmune disease, a cancer, a myeloproliferative disorder, an inflammatory disease, a bone resorption disease, or organ transplant rejection in a patient in need thereof, comprising administering to said patient a therapeutically effective amount of a compound of Formula I as described herein, or a pharmaceutically acceptable salt thereof.

[0016] The present invention also provides compounds of Formula I as described herein, or pharmaceutically acceptable salts thereof, as described herein for use in methods of treating autoimmune diseases, cancer, myeloproliferative disorders, inflammatory diseases, a bone resorption disease, or organ transplant rejection.

[0017] The present invention further provides compounds of Formula I as described herein, or pharmaceutically acceptable salts thereof, for use in methods of modulating a JAK1.

[0018] The present invention also provides uses of compounds of Formula I as described herein, or pharmaceutically acceptable salts thereof, for the preparation of medicaments for use in treating autoimmune diseases, cancer, myeloproliferative disorders, inflammatory diseases, a bone resorption disease, or organ transplant rejection.


[0019] The present invention further provides uses of compounds of Formula I as described herein, or pharmaceutically acceptable salts thereof, for the preparation of medicaments for use in methods of modulating a JAK1.

45 DETAILED DESCRIPTION

[0020] The present invention provides, inter alia, a compound of Formula I:

50

5

10

15

20

25

or a pharmaceutically acceptable salt thereof; wherein:

X is CH or N;

Y is H, cyano, halo, C₁₋₃ alkyl, or C₁₋₃ haloalkyl;

Z is CR⁴ or N;

L is O or S;

 R^1 , R^2 , R^3 , and R^4 are each independently H, hydroxy, halo, C_{1-3} alkyl, or C_{1-3} haloalkyl;

each R⁵ is independently hydroxy, C₁₋₄ alkoxy, fluorine, C₁₋₄ alkyl, hydroxy-C₁₋₄-alkyl, C₁₋₄ alkoxy-C₁₋₄-alkyl, or C₁₋₄ fluoroalkyl;

A is C_{1-6} alkyl, C_{3-10} cycloalkyl, C_{2-10} heterocycloalkyl, C_{6-10} aryl, or C_{1-10} heteroaryl; each optionally substituted with p independently selected R^7 substituents; wherein p is 1, 2, 3, 4, or 5;

 $\begin{array}{l} \mbox{each R^7 is independently selected from halo, cyano, nitro, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-10} cycloalkyl-C_{1-4}-alkyl, C_{2-10} heterocycloalkyl, C_{2-10} heterocycloalkyl-C_{1-4}-alkyl, C_{6-10} aryl, C_{6-10} aryl, C_{6-10} aryl, C_{1-4}-alkyl, C_{1-10} heteroaryl-C_{1-4}-alkyl, $-OR^a, -SR^a, -S(=O)R^b, -S(=O)_2R^b, -S(=O)_2NR^eR^f, -C(=O)R^b, -C(=O)OR^a, -C(=O)NR^eR^f, -OC(=O)R^b, -OC(=O)NR^eR^f, -NR^eR^f, -NR^eC(=O)R^d, -NR^eC(=O)OR^d, -NR^eC(=O)NR^d, -NR^eS(=O)_2R^d, and -NR^eS(=O)_2NR^eR^f; wherein said C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-10} cycloalkyl, C_{3-10} cycloalkyl, C_{2-10} heterocycloalkyl, C_{2-10} heterocycloalkyl-C_{1-4}-alkyl, C_{6-10} aryl, C_{6-10} aryl-C_{1-4}-alkyl, C_{1-10} heteroaryl, and C_{1-10} heteroaryl-C_{1-4}-alkyl are each optionally substituted by $1, 2, 3$, or 4 independently selected \mathbb{R}^9 aroups: P_1 aroups P_1 and P_2 and P_1 and P_2 and P_2 and P_1 and P_2 and P_1 and P_2 and P_1 and P_2 and $$

⁵ groups; each R^a, R^c, R^d, R^e, and R^f is independently selected from H, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₁₀ cycloalkyl, C₃₋₁₀ cycloalkyl-C₁₋₄-alkyl, C₂₋₁₀ heterocycloalkyl, C₂₋₁₀ heterocycloalkyl, C₂₋₆ alkenyl, C₆₋₁₀ aryl-C₁₋₄-alkyl, C₁₋₁₀ heteroaryl, and C₁₋₁₀ heteroaryl-C₁₋₄-alkyl; wherein said C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₁₀ cycloalkyl, C₃₋₁₀ cycloalkyl-C₁₋₄-alkyl, C₂₋₁₀ heterocycloalkyl, C₂₋₁₀ heterocycloalkyl, C₂₋₁₀ aryl, C₆₋₁₀ aryl, C₆₋₁₀ aryl, C₆₋₁₀ aryl, C₃₋₁₀ cycloalkyl, C₃₋₁₀ cycloalkyl-C₁₋₄-alkyl, C₂₋₁₀ heterocycloalkyl, C₂₋₁₀ heterocycloalkyl, C₂₋₁₀ heterocycloalkyl, C₁₋₄-alkyl, C₆₋₁₀ aryl, C₆₋₁₀ ary

- ⁴⁰ aryl-C₁₋₄-alkyl, C₁₋₁₀ heteroaryl, and C₁₋₁₀ heteroaryl-C₁₋₄-alkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R^g groups; each R^b is independently selected from C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₁₀ cycloalkyl, C₃₋₁₀ cycloalkyl, C₁₋₄-alkyl, C₁₋₄-alkyl, C₂₋₁₀ heterocycloalkyl, C₂₋₁₀ heterocycloalkyl-C₁₋₄-alkyl, C₆₋₁₀ aryl, C₆₋₁₀ aryl-C₁₋₄-alkyl, C₁₋₁₀ heteroaryl, and C₁₋₁₀ heteroaryl-C₁₋₄-alkyl; wherein said C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₁₀ cycloalkyl, C₃₋₁₀
- cycloalkyl- C_{1-4} -alkyl, C_{2-10} heterocycloalkyl, C_{2-10} heterocycloalkyl- C_{1-4} -alkyl, C_{6-10} aryl, C_{6-10} aryl- C_{1-4} -alkyl, C_{1-10} heteroaryl, and C_{1-10} heteroaryl- C_{1-4} -alkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R^g groups;

each R^g is independently selected from halo, cyano, nitro, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₇ cycloalkyl-C₁₋₃-alkyl, C₂₋₇ heterocycloalkyl, C₂₋₇ heterocycloalkyl-C₁₋₃-alkyl, phenyl, phenyl-C₁₋₃-alkyl, C₁₋₇ heteroaryl-C₁₋₃-alkyl, -OR^{a1}, -SR^{a1}, -S(=O)R^{b1}, -S(=O)₂R^{b1}, -S(=O

- - each R^{a1}, R^{c1}, R^{d1}, R^{e1}, and R^{f1} is independently selected from H, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-7} cycloalkyl, C_{3-7} cycloalkyl- C_{1-3} -alkyl, C_{2-7} heterocycloalkyl, C_{2-7} heterocycloalkyl, C_{2-7} heterocycloalkyl, C_{2-6} alkenyl, phenyl, phenyl- C_{1-3} -alkyl, C_{1-7} heteroaryl- C_{1-3} -alkyl; wherein said C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{2-7} heterocycloalkyl, C_{2-7} heterocycloalkyl, C_{2-7} heterocycloalkyl, C_{2-6} alkenyl, C_{2-

 C_{3-7} cycloalkyl, C_{3-7} cycloalkyl- C_{1-3} -alkyl, C_{2-7} heterocycloalkyl, C_{2-7} heterocycloalkyl- C_{1-3} -alkyl, phenyl, phenyl- C_{1-3} -alkyl, C_{1-7} heteroaryl, and C_{1-7} heteroaryl- C_{1-3} -alkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R^h groups;

each R^{b1} is independently selected from C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₇ cycloalkyl, C₃₋₇ cycloalkyl, C₃₋₇ cycloalkyl, C₁₋₃-alkyl, C₁₋₃-alkyl, C₁₋₃-alkyl, C₁₋₇ heterocycloalkyl, C₂₋₇ heterocycloalkyl-C₁₋₃-alkyl, phenyl, phenyl-C₁₋₃-alkyl, C₁₋₇ heteroaryl, and C₁₋₇ heteroaryl-C₁₋₃-alkyl; wherein said C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₇ cycloalkyl, C₃₋₇ cycloalkyl, C₃₋₇ cycloalkyl, C₁₋₇ heteroaryl, and C₁₋₇ heterocycloalkyl, C₂₋₇ heterocycloalkyl-C₁₋₃-alkyl, phenyl, C₂₋₆ alkynyl, C₃₋₇ cycloalkyl, C₃₋₇ cycloalkyl, C₁₋₇ heteroaryl, and C₁₋₇ alkyl, C₂₋₇ heterocycloalkyl-C₁₋₃-alkyl, phenyl, phenyl-C₁₋₃-alkyl, C₁₋₇ heteroaryl, and C₁₋₇ heteroaryl, and C₁₋₇ heteroaryl-C₁₋₃-alkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R^h groups;

- $\begin{array}{l} \mbox{each } \mathbb{R}^{h} \mbox{ is independently selected from cyano, halo, hydroxy, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy, C_{1-4} haloalkoxy, $amino, C_{1-4} alkylamino, $di-C_{1-4}$-alkylamino, thio, C_{1-6} alkylthio, C_{1-6} alkylsulfinyl, C_{1-6} alkylsulfonyl, $carbamyl, $carbamyl, $carbamyl, $carbamyl, $carbamyl, $carbamyl, $carbamyl, $carbamyl, $carbamyl, c_{1-6} alkylcarbonyl, $aminosulfonyl, $aminosulfonyl, $aminosulfonyl, $aminosulfonyl, $aminosulfonyl, $aminosulfonyl, $aminosulfonyl, $aminosulfonyl amino, C_{1-6} alkylaminosulfonyl amino, $aminocarbonylamino, $aminocarbonylamino, c_{1-6} alkylaminosulfonyl amino, $aminocarbonylamino, $aminocarbonylamino, c_{1-6} alkylaminosulfonyl amino, $aminocarbonylamino, c_{1-6} alkylaminosulfonyl amino, $aminocarbonylamino, c_{1-6} alkylaminosulfonylamino, $aminocarbonylamino, $aminocarbonylamino, $aminocarbonylamino, c_{1-6} alkylaminosulfonylamino, $aminocarbonylamino, $aminocarbonylamino, $aminocarbonylamino, $aminocarbonylamino, $aminocarbonylamino, $aminocarbonylamino, $aminocarbonylamino, $aminocarbonylamino, $aminocarbonylamino, $aminocarbonylamin$
- ¹⁵ m is 0, 1, or 2; n is 0, 1, 2, 3, or 4; and r is 1, 2, or 3.

5

20

30

40

[0021] In some embodiments, if R⁵ is hydroxy or C₁₋₄ alkoxy and n is not zero, then R⁵ is not attached to a carbon next to the nitrogen ring of the ring in Formula I.

- [0022] In some embodiments, X is N.
 - [0023] In some embodiments, Z is N.
 - [0024] In some embodiments, L is O.
- [0025] In some embodiments, Y is cyano.
- ²⁵ [0026] In some embodiments, R¹, R², R³, and R⁴ are each H.
 - **[0027]** In some embodiments, each R⁵ is fluorine.
 - **[0028]** In some embodiments, n is 0, 1, or 2.
 - [0029] In some embodiments, n is 0 or 1.
- [0030] In some embodiments, n is 1.
- [0031] In some embodiments, n is 0.
 - [0032] In some embodiments, m is 1.
 - [0033] In some embodiments, r is 1.

[0034] In some embodiments, A is C_{3-10} cycloalkyl, C_{2-10} heterocycloalkyl, C_{6-10} aryl, or C_{1-10} heteroaryl, each of which are optionally substituted with 1, 2, 3, 4, or 5 independently selected R^7 substituents.

³⁵ **[0035]** In some embodiments, A is C_{6-10} aryl or C_{1-10} heteroaryl, each of which are optionally substituted with 1, 2, 3, 4, or 5 independently selected R⁷ substituents.

[0036] In some embodiments, A is phenyl, a 5-membered heteroaryl ring, or a 6-membered heteroaryl ring, each of which is optionally substituted with 1, 2, 3, 4, or 5 independently selected R⁷ substituents.

[0037] In some embodiments, A is C₃₋₁₀ cycloalkyl, which is optionally substituted with 1, 2, 3, 4, or 5 independently selected R⁷ substituents.

[0038] In some embodiments, A is C_{2-10} heterocycloalkyl, which is optionally substituted with 1, 2, 3, 4, or 5 independently selected R^7 substituents.

[0039] In some embodiments, A is C_{1-10} heteroaryl, which is optionally substituted with 1, 2, 3, 4, or 5 independently selected R^7 substituents.

⁴⁵ **[0040]** In some embodiments, A is C_{1-6} alkyl, which is optionally substituted with 1, 2, 3, 4, or 5 independently selected R^7 substituents.

[0041] In some embodiments, A is phenyl; which is optionally substituted with 1, 2, 3, 4, or 5 independently selected R^7 substituents.

[0042] In some embodiments, each R⁷ is independently selected from halo, cyano, nitro, C₁₋₆ alkyl, C₁₋₆ haloalkyl,

- $\begin{array}{lll} & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & &$
- ⁵⁵ [0043] In some embodiments, each R⁷ is independently selected from halo, cyano, C₁₋₆ alkyl, C₁₋₆ haloalkyl, -OR^a, -S(=O)₂R^b, -S(=O)₂NR^eR^f, -C(=O)R^b, -C(=O)OR^a, and -C(=O)NR^eR^f; wherein said C₁₋₆ alkyl is optionally substituted by 1, 2, 3, or 4 independently selected R⁹ groups.

[0044] In some embodiments, each R⁷ is independently selected from halo, cyano, C₁₋₆ alkyl, C₁₋₆ haloalkyl, -C(=O)R^b,

and -C(=O)NR^eR^f; wherein said C₁₋₆ alkyl is optionally substituted by 1, 2, 3, or 4 independently selected R⁹ groups. **[0045]** In some embodiments, each R⁹ is independently selected from halo, cyano, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₃₋₇ cycloalkyl, C₂₋₇ heterocycloalkyl, $-OR^{a1}$, $-S(=O)_2R^{b1}$, $-S(=O)_2NR^{e1}R^{f1}$, $-C(=O)R^{b1}$, $-C(=O)OR^{a1}$, $-C(=O)NR^{e1}R^{f1}$, $-OC(=O)R^{b1}$, $-OC(=O)NR^{e1}R^{f1}$, $-NR^{e1}R^{f1}$, $-NR^{e1}C(=O)R^{d1}$, $-NR^{e1}C(=O)OR^{d1}$, $-NR^{e1}C(=O)R^{d1}$, and

- -NR^{c1}S(=O)₂NR^{e1}R^{f1}; wherein said C₁₋₆ alkyl, C₃₋₇ cycloalkyl, and C₂₋₇ heterocycloalkyl are each optionally substituted with 1, 2, 3, or 4 independently selected R^h groups.
 [0046] In some embodiments, each R^g is independently selected from halo, cyano, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₂₋₇ heterocycloalkyl, -OR^{a1}, -C(=O)NR^{e1}R^{f1}, and -NR^{e1}R^{f1}; wherein said C₁₋₆ alkyl and C₂₋₇ heterocycloalkyl is optionally substituted with 1, 2, 3, or 4 independently selected R^h groups.
- ¹⁰ **[0047]** In some embodiments, each R⁹ is independently selected from halo, cyano, C₁₋₆ alkyl, C₂₋₇ heterocycloalkyl, $-C(=O)NR^{e1}R^{f1}$, and $-NR^{e1}R^{f1}$; wherein said C₁₋₆ alkyl and C₂₋₇ heterocycloalkyl is optionally substituted with 1 or 2 independently selected R^h groups.

[0048] In some embodiments, each R^h is independently selected from cyano, halo, hydroxy, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy, and C_{1-4} haloalkoxy.

[0049] In some embodiments, each R^h is independently selected from halo, C₁₋₄ alkyl, and C₁₋₄ alkoxy.

[0050] In some embodiments:

each R^a, R^c, R^d, and R^e is independently selected from H, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₃₋₇ cycloalkyl, and C₂₋₇ heterocycloalkyl, wherein said C₁₋₆ alkyl, C₃₋₇ cycloalkyl, and C₂₋₇ heterocycloalkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R^g groups;

each R^b is independently selected from C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₃₋₇ cycloalkyl, and C₂₋₇ heterocycloalkyl; wherein said C₁₋₆ alkyl, C₃₋₇ cycloalkyl, and C₂₋₇ heterocycloalkyl are optionally substituted by 1, 2, 3, or 4 independently selected R⁹ groups;

each R^f is independently selected from H and C₁₋₆ alkyl;

each R^{a1}, R^{c1}, R^{d1}, and R^{e1} is independently selected from H, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{3-7} cycloalkyl, and C_{2-7} heterocycloalkyl; wherein said C_{1-6} alkyl, C_{3-7} cycloalkyl, and C_{2-7} heterocycloalkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R^h groups; and

each R^{b1} is independently selected from C_{1-6} alkyl, C_{1-6} haloalkyl, C_{3-7} cycloalkyl, and C_{2-7} heterocycloalkyl; wherein said C_{1-6} alkyl, C_{3-7} cycloalkyl, and C_{2-7} heterocycloalkyl optionally substituted by 1, 2, 3, or 4 independently selected R^{h} groups; and

each R^{f1} is independently selected from H and C_{1-6} alkyl.

[0051] In some embodiments:

35 X is N;

15

20

30

55

- Z is N;
- L is O;

 R^1 , R^2 , and R^3 are each H;

each R⁵ is fluorine;

⁴⁰ A is C_{3-10} cycloalkyl, C_{2-10} heterocycloalkyl, C_{6-10} aryl, or C_{1-10} heteroaryl, each of which is optionally substituted with 1, 2, 3, 4, or 5 independently selected R^7 substituents;

- $\begin{array}{l} \mbox{each R^7 is independently selected from halo, cyano, nitro, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{3-10} cycloalkyl, C_{3-10} cycloalkyl, C_{3-10} cycloalkyl, C_{3-10} cycloalkyl, C_{3-10} cycloalkyl, C_{2-10} heterocycloalkyl, C_{1-4}-alkyl, $-OR^a$, $-SR^a$, $-S(=O)R^b$, $-S(=O)_2R^b$, $-S(=O)_2Ne^{R_f}$, $-C(=O)R^{e_f}$, $-C(=O)R^{e_f}$, $-OC(=O)R^{e_f}$, $-OC(=O)R^{e_f}$, $-NR^{e_f}$, $-NR^{e_f}$
 - by 1, 2, 3, or 4 independently selected R^g groups; each R^g is independently selected from halo, cyano, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₃₋₇ cycloalkyl, C₂₋₇ heterocycloalkyl,
- $-OR^{a1}, -S(=O)_2R^{b1}, -S(=O)_2NR^{e1}R^{f1}, -C(=O)R^{b1}, -C(=O)OR^{a1}, -C(=O)NR^{e1}R^{f1}, -OC(=O)R^{b1}, -OC(=O)NR^{e1}R^{f1}, -OC(=O)NR^{e1}R^{f1}, -NR^{c1}C(=O)R^{a1}, -NR^{c1}C(=O)OR^{d1}, -NR^{c1}C(=O)NR^{d1}, -NR^{c1}S(=O)_2R^{d1}, and -NR^{c1}S(=O)_2NR^{e1}R^{f1}; where in said C_{1-6} alkyl, C_{3-7} cycloalkyl, and C_{2-7} heterocycloalkyl are each optionally substituted with 1, 2, 3, or 4 independently selected R^h groups;$

each R^a, R^c, R^d, and R^e is independently selected from H, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{3-7} cycloalkyl, and C_{2-7} heterocycloalkyl, wherein said C_{1-6} alkyl, C_{3-7} cycloalkyl, and C_{2-7} heterocycloalkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R^g groups;

each R^b is independently selected from C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₃₋₇ cycloalkyl, and C₂₋₇ heterocycloalkyl; wherein said C₁₋₆ alkyl, C₃₋₇ cycloalkyl, and C₂₋₇ heterocycloalkyl are optionally substituted by 1, 2, 3, or 4 independently selected R^g groups;

each R^f is independently selected from H and C₁₋₆ alkyl;

each R^{a1}, R^{c1}, R^{d1}, and R^{e1} is independently selected from H, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{3-7} cycloalkyl, and C_{2-7} heterocycloalkyl; wherein said C_{1-6} alkyl, C_{3-7} cycloalkyl, and C_{2-7} heterocycloalkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R^h groups; and

⁵ each k^{b1} is independently selected from C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₃₋₇ cycloalkyl, and C₂₋₇ heterocycloalkyl; wherein said C₁₋₆ alkyl, C₃₋₇ cycloalkyl, and C₂₋₇ heterocycloalkyl optionally substituted by 1, 2, 3, or 4 independently selected R^h groups;

each R^{f1} is independently selected from H and C₁₋₆ alkyl;

m is 1;

¹⁰ n is 0, 1, or 2; and r is 1.

[0052] In some embodiments:

15 X is N;

30

Z is N;

L is O;

 R^1 , R^2 , and R^3 are each H;

each R⁵ is fluorine;

²⁰ A is C_{6-10} aryl or C_{1-10} heteroaryl, each of which is optionally substituted with 1, 2, 3, 4, or 5 independently selected R^7 substituents;

each R⁷ is independently selected from halo, cyano, C_{1-6} alkyl, C_{1-6} haloalkyl, $-OR^a$, $-S(=O)_2R^b$, $-S(=O)_2NR^eR^f$, $-C(=O)R^b$, $-C(=O)OR^a$, and $-C(=O)NR^eR^f$; wherein said C_{1-6} alkyl is optionally substituted by 1, 2, 3, or 4 independently selected R^g groups;

²⁵ each R^g is independently selected from halo, cyano, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₂₋₇ heterocycloalkyl, -OR^{a1},
 -C(=O)NR^{e1}R^{f1}, and -NR^{e1}R^{f1}; wherein said C₁₋₆ alkyl and C₂₋₇ heterocycloalkyl is optionally substituted with 1, 2,
 3, or 4 independently selected R^h groups;

each R^a and R^e is independently selected from H, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{3-7} cycloalkyl, and C_{2-7} heterocycloalkyl; wherein said C_{1-6} alkyl, C_{3-7} cycloalkyl, and C_{2-7} heterocycloalkyl are optionally substituted by 1, 2, 3, or 4 independently selected R^g groups;

each R^b is independently selected from C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₃₋₇ cycloalkyl, and C₂₋₇ heterocycloalkyl; wherein said C₁₋₆ alkyl, C₃₋₇ cycloalkyl, and C₂₋₇ heterocycloalkyl are optionally substituted by 1, 2, 3, or 4 independently selected R^g groups;

each R^f is independently selected from H and C₁₋₆ alkyl;

³⁵ each R^{e1} is independently selected from H, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₃₋₇ cycloalkyl, and C₂₋₇ heterocycloalkyl, wherein said C₁₋₆ alkyl, C₃₋₇ cycloalkyl, and C₂₋₇ heterocycloalkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R^h groups;

each R^{f1} is independently selected from H and C_{1-6} alkyl; m is 1:

40 n is 0, 1, or 2; and r is 1.

[0053] In some embodiments:

45 X is N;

Z is N;

L is O;

R¹, R², and R³ are each H;

each R⁵ is fluorine;

⁵⁰ A is C_{6-10} aryl, optionally substituted with 1, 2, 3, 4, or 5 independently selected R^7 substituents;

each R^7 is independently selected from halo, cyano, C_{1-6} alkyl, C_{1-6} haloalkyl, $-OR^a$, $-S(=O)_2R^b$, $-S(=O)_2NR^eR^f$, $-C(=O)R^b$, $-C(=O)OR^a$, and $-C(=O)NR^eR^f$; wherein said C_{1-6} alkyl is optionally substituted by 1, 2, 3, or 4 independently selected R^g groups;

each R⁹ is independently selected from halo, cyano, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₂₋₇ heterocycloalkyl, -OR^{a1}, $-C(=O)NR^{e1}R^{f1}$, and $-NR^{e1}R^{f1}$; wherein said C₁₋₆ alkyl and C₂₋₇ heterocycloalkyl is optionally substituted with 1, 2, 3, or 4 independently selected R^h groups;

each R^a and R^e is independently selected from H, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{3-7} cycloalkyl, and C_{2-7} heterocycloalkyl; wherein said C_{1-6} alkyl, C_{3-7} cycloalkyl, and C_{2-7} heterocycloalkyl are optionally substituted by 1, 2, 3, or 4 inde-

pendently selected R^g groups;

each R^b is independently selected from C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₃₋₇ cycloalkyl, and C₂₋₇ heterocycloalkyl; wherein said C₁₋₆ alkyl, C₃₋₇ cycloalkyl, and C₂₋₇ heterocycloalkyl are optionally substituted by 1, 2, 3, or 4 independently selected R^g groups;

5 each R^f is independently selected from H and C₁₋₆ alkyl;

each R^{e1} is independently selected from H, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₃₋₇ cycloalkyl, and C₂₋₇ heterocycloalkyl, wherein said C₁₋₆ alkyl, C₃₋₇ cycloalkyl, and C₂₋₇ heterocycloalkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R^h groups; and

each R^{f1} is independently selected from H and C₁₋₆ alkyl; m is 1;

10

n is 0, 1, or 2; and r is 1.

[0054] In some embodiments:

15

- X is N;
- Z is N;

L is O;

 R^1 , R^2 , and R^3 are each H;

20 each R⁵ is fluorine;

A is C₆₋₁₀ aryl, optionally substituted with 1, 2, 3, 4, or 5 independently selected R⁷ substituents;

each R⁷ is independently selected from halo, cyano, C_{1-6} alkyl, C_{1-6} haloalkyl, $-C(=O)R^{b}$, and $-C(=O)NR^{e}R^{f}$; wherein said C_{1-6} alkyl is optionally substituted by 1, 2, 3, or 4 independently selected R^g groups;

each R^g is independently selected from halo, cyano, C₁₋₆ alkyl, C₂₋₇ heterocycloalkyl, -C(=O)NR^{e1}R^{f1}, and -NR^{e1}R^{f1};
 wherein said C₁₋₆ alkyl and C₂₋₇ heterocycloalkyl is optionally substituted with 1 or 2 independently selected R^h groups;

m is 1;

n is 0, 1, and 2; and

r is 1.

30

35

55

[0055] In some embodiments:

X is N; Z is N;

L is O;

Y is cyano;

 R^1 , R^2 , and R^3 are each H; each R^5 is fluorine;

A is C₆₋₁₀ aryl, optionally substituted with 1, 2, 3, 4, or 5 independently selected R⁷ substituents;

40 each R⁷ is independently selected from halo, cyano, C₁₋₆ alkyl, C₁₋₆ haloalkyl, -C(=O)R^b, and -C(=O)NR^eR^f; wherein said C₁₋₆ alkyl is optionally substituted by 1, 2, 3, or 4 independently selected R^g groups;

each R^{g} is independently selected from halo, cyano, C_{1-6} alkyl, C_{2-7} heterocycloalkyl, -C(=O)NR^{e1}R^{f1}, and -NR^{e1}R^{f1}; wherein said C_{1-6} alkyl and C_{2-7} heterocycloalkyl is optionally substituted with 1 or 2 independently selected R^h groups;

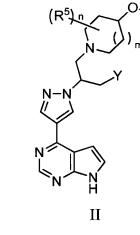
⁴⁵ each R^h is independently selected from halo, C₁₋₄ alkyl, and C₁₋₄ alkoxy; each R^e is independently selected from H, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₃₋₇ cycloalkyl, and C₂₋₇ heterocycloalkyl, wherein said C₁₋₆ alkyl, C₃₋₇ cycloalkyl, and C₂₋₇ heterocycloalkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R^g groups;

each R^f is independently selected from H and C₁₋₆ alkyl;

⁵⁰ each R^b is independently selected from C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₃₋₇ cycloalkyl, and C₂₋₇ heterocycloalkyl; wherein said C₁₋₆ alkyl, C₃₋₇ cycloalkyl, and C₂₋₇ heterocycloalkyl are optionally substituted by 1, 2, 3, or 4 independently selected R^g groups;

each R^{e1} is independently selected from H, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₃₋₇ cycloalkyl, and C₂₋₇ heterocycloalkyl, wherein said C₁₋₆ alkyl, C₃₋₇ cycloalkyl, and C₂₋₇ heterocycloalkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R^h groups;

each R^f is independently selected from H and C_{1-6} alkyl; m is 1;


n is 0 or 1; and

r is 1.

[0056] In some embodiments:

- 5 X is N: Z is N; L is O; Y is cyano; R^1 , R^2 , and R^3 are each H; 10 each R⁵ is fluorine; A is phenyl, optionally substituted with 1, 2, 3, 4, or 5 independently selected R⁷ substituents; each R⁷ is independently selected from halo, cyano, C₁₋₆ alkyl, C₁₋₆ haloalkyl, -C(=O)R^b, and -C(=O)NR^eR^f; wherein said C₁₋₆ alkyl is optionally substituted by 1, 2, 3, or 4 independently selected R^g groups; $each \ R^{g} \ is \ independently \ selected \ from \ halo, \ cyano, \ C_{1-6} \ alkyl, \ C_{2-7} \ heterocycloalkyl, \ -C(=O) \\ NR^{e1}R^{f1}, \ and \ -NR^{e1}R^{f1};$ 15 wherein said C₁₋₆ alkyl and C₂₋₇ heterocycloalkyl is optionally substituted with 1 or 2 independently selected R^h groups; each R^h is independently selected from halo, C_{1-4} alkyl, and C_{1-4} alkoxy; m is 1: n is 0 or 1; and 20 r is 1. [0057] In some embodiments: X is N; 25 Z is N: LisO; Y is cyano; R^1 , R^2 , and R^3 are each H; each R⁵ is fluorine; 30 A is phenyl, optionally substituted with 1, 2, 3, 4, or 5 independently selected R⁷ substituents; each R⁷ is independently selected from halo, cyano, C₁₋₆ alkyl, C₁₋₆ haloalkyl, -C(=O)R^b, and -C(=O)NR^eR^f; wherein said C₁₋₆ alkyl is optionally substituted by 1, 2, 3, or 4 independently selected R^g groups; each R^g is independently selected from halo, cyano, C₁₋₆ alkyl, C₂₋₇ heterocycloalkyl, -C(=O)NR^{e1}R^{f1}, and -NR^{e1}R^{f1}; wherein said C1-6 alkyl and C2-7 heterocycloalkyl is optionally substituted with 1 or 2 independently selected R^h 35 groups; each R^h is independently selected from halo, C₁₋₄ alkyl, and C₁₋₄ alkoxy; each R^e is independently selected from H, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₃₋₇ cycloalkyl, and C₂₋₇ heterocycloalkyl, wherein said C1-6 alkyl, C3-7 cycloalkyl, and C2-7 heterocycloalkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R^g groups; 40 each R^f is independently selected from H and C₁₋₆ alkyl; each R^b is independently selected from C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₃₋₇ cycloalkyl, and C₂₋₇ heterocycloalkyl; wherein said C1-6 alkyl, C3-7 cycloalkyl, and C2-7 heterocycloalkyl are optionally substituted by 1, 2, 3, or 4 independently selected R^g groups; each R^{e1} is independently selected from H, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₃₋₇ cycloalkyl, and C₂₋₇ heterocycloalkyl, 45 wherein said C₁₋₆ alkyl, C₃₋₇ cycloalkyl, and C₂₋₇ heterocycloalkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R^h groups; each R^{f1} is independently selected from H and C₁₋₆ alkyl; m is 1; n is 0 or 1; and
- 50 r is 1.

[0058] In some embodiments, the compound is a compound of Formula II:

5

10

15

or a pharmaceutically acceptable salt thereof.

[0059] In some embodiments, the compound compound is a compound of Formula III:

20	$(\mathbb{R}^5)_{10} \longrightarrow (\mathbb{R}^7)_{10}$					
	N_() _m					
25	N-N Y					
30	N					
	N N H					
	III					
35	or a pharmaceutically acceptable salt thereof.					
	[0060] In some embodiments, the compound is selected from:					
	4-[4-(3,5-difluorophenoxy)piperidin-1-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]butanenitrile;					
40	4-[4-(3-chloro-5-fluorophenoxy)piperidin-1-yi]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yi)-1H-pyrazol-1-yi]butanenitrile;					
	4-{4-[3-fluoro-5-(trifluoromethyl)phenoxy]piperidin-1-yl}-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]bu-					
	tanenitrile; 3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]-4-[4-(3,4,5-trifluorophenoxy)piperidin-1-yl]butanenitrile;					
	3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]-4-[4-(2,3,5-trifluorophenoxy)piperidin-1-yl]butanenitrile;					
45	3-[((1-{3-cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl]piperidin-4-yl)oxy]-5-fluorobenzoni- trile:					
	3-[((1-{3-cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}piperidin-4-yl)oxy]-5-fluoro-N-methyl-					
	3-[((1-{3-cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}piperidin-4-yl)oxy]-5-fluoro-N,N-					

50 dimethylbenzamide;

3-[((1-{3-cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}piperidin-4-yl)oxy]-N-ethyl-5-fluorobenzamide;

3-[((1-{3-cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}piperidin-4-yl)oxy]-N-cyclopropyl-5-fluorobenzamide;

⁵⁵ 3-[((1-{3-cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}piperidin-4-yl)oxy]-5-fluoro-N-isopropylbenzamide;

N-(2-cyanoethyl)-3-[(1-{3-cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}piperidin-4-yl)oxy]-5-fluorobenzamide;

	4-{4-[3-fluoro-5-(pyrrolidin-1-ylcarbonyl)phenoxy]piperidin-1-yl}-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol- 1-yl]butanenitrile;
	N-(3-amino-3-oxopropyl)-3-[(1-{3-cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}piperidin-4- yl)oxy]-5-fluorobenzamide;
5	N-(tert-butyl)-3-[(1-{3-cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}piperidin-4-yl)oxy]-5- fluorobenzamide;
	3-[((1-{3-cyano-2- [4- (7H-pyrrolo[2, 3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}piperidin-4-yl)oxy]- 5-fluoro-N- (2- morpholin-4-ylethyl)benzamide;
	4-{4-[3-fluoro-5-(piperidin-1-ylcarbonyl)phenoxy]piperidin-1-yl}-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-
10	1-yl]butanenitrile;
	4-{4-[3-fluoro-5-(morpholin-4-ylcarbonyl)phenoxy]piperidin-1-yl}-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol- 1-yl]butanenitrile;
	4-((4-{3-[(3,3-difluoropyrrolidin-1-yl)carbonyl]-5-fluorophenoxy}piperidin-1-yl)-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4- yl)-1H-pyrazol-1-yl]butanenitrile;
15	4-((4-{3-[(dimethylamino)methyl]-5-fluorophenoxy}piperidin-1-yl)-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyra- zol-1-yl]butanenitrile;
	4-[4-(3-{[cyclopropyl(methyl)amino]methyl}-5-fluorophenoxy)piperidin-1-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)- 1H-pyrazol-1-yl]butanenitrile;
20	4-{4-[3-(azetidin-1-ylmethyl)-5-fluorophenoxy]piperidin-1-yl}-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1- yl]butanenitrile;
20	4-((4-{3-[(cyclobutylamino)methyl]-5-fluorophenoxy}piperidin-1-yl)-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyra-
	zol-1-yl]butanenitrile;
	4-{4-[3-fluoro-5-(pyrrolidin-1-ylmethyl)phenoxy]piperidin-1-yl}-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-
	yl]butanenitrile;
25	4-{4-[3-fluoro-5-(piperidin-1-ylmethyl)phenoxy]piperidin-1-yl}-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1- yl]butanenitrile;
	4-{4-[3-fluoro-5-(morpholin-4-ylmethyl)phenoxy]piperidin-1-yl}-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1- yl]butanenitrile;
30	4-((4-{3-[(3,3-difluoropyrrolidin-1-yl)methyl]-5-fluorophenoxy}piperidin-1-yl)-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)- 1H-pyrazol-1-yl]butanenitrile;
	4-[4-(3-fluoro-5-{[2-methylpyrrolidin-1-yl]methyl}phenoxy)piperidin-1-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H- pyrazol-1-yl]butanenitrile;
	4-[4-(3-fluoro-5-{[(2-methoxyethyl)amino]methyl}phenoxy)piperidin-1-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H- pyrazol-1-yl]butanenitrile;
35	3-[((1-{3-cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}-3-fluoropiperidin-4-yl)oxy]-5-fluor-
	obenzonitrile; and
	4-[3-fluoro-4-(3-fluoro-5-{[2-methylpyrrolidin-1-yl]methyl}phenoxy)piperidin-1-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-
	4-yl)-1H-pyrazol-1-yl]butanenitrile;
40	or a pharmaceutically salt of any of the aforementioned.
40	[0004] In some application the the compound extend from

[0061] In some embodiments, the compound selected from:

45

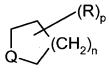
50

4-[4-(3-fluoro-5-{[(2R)-2-methylpyrrolidin-1-yl]methyl}phenoxy)piperidin-1-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]butanenitrile;

4-[4-(3-fluoro-5-{[(2S)-2-methylpyrrolidin-1-yl]methyl}phenoxy)piperidin-1-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4yl)-1H-pyrazol-1-yl]butanenitrile;

 $\label{eq:2.1} 4-[3-fluoro-4-(3-fluoro-5-{[(2R)-2-methylpyrrolidin-1-yl]methyl}phenoxy) piperidin-1-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]butanenitrile; and$

4-[3-fluoro-4-(3-fluoro-5-{[(2S)-2-methylpyrrolidin-1-yl]methyl}phenoxy)piperidin-1-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]butanenitrile;


or a pharmaceutically salt of any of the aforementioned.

- [0062] In some embodiments, the compound is the (R)-enantiomer, or a pharmaceutically acceptable salt thereof.
- [0063] In some embodiments, the compound is the (S)-enantiomer, or a pharmaceutically acceptable salt thereof.
- ⁵⁵ **[0064]** It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, can also be provided in combination in a single embodiment. Conversely, various features of the invention which are, for brevity, described in the context of a single embodiment, can also be provided separately or in any suitable subcombination.

[0065] At various places in the present specification, divalent linking substituents are described. It is specifically intended that each divalent linking substituent include both the forward and backward forms of the linking substituent. For example, $-NR(CR'R'')_n$ -includes both $-NR(CR'R'')_n$ and $-(CR'R'')_nNR$. Where the structure clearly requires a linking group, the Markush variables listed for that group are understood to be linking groups.

- ⁵ **[0066]** The term "n-membered" where n is an integer typically describes the number of ring-forming atoms in a moiety where the number of ring-forming atoms is n. For example, piperidinyl is an example of a 6-membered heterocycloalkyl ring, pyrazolyl is an example of a 5-membered heteroaryl ring, pyridyl is an example of a 6-membered heteroaryl ring, and 1,2,3,4-tetrahydro-naphthalene is an example of a 10-membered cycloalkyl group.
- [0067] For compounds of the invention in which a variable appears more than once, each variable can be a different ¹⁰ moiety independently selected from the group defining the variable. For example, where a structure is described having two R groups that are simultaneously present on the same compound, the two R groups can represent different moieties independently selected from the group defined for R. In another example, when an optionally multiple substituent is designated in the form:

15

20

then it is to be understood that substituent R can occur p number of times on the ring, and R can be a different moiety at each occurrence. It is to be understood that each R group may replace any hydrogen atom attached to a ring atom, including one or both of the $(CH_2)_n$ hydrogen atoms. Further, in the above example, should the variable Q be defined to include hydrogens, such as when Q is the to be CH_2 , NH, etc., any floating substituent such as R in the above example, can replace a hydrogen of the Q variable as well as a hydrogen in any other non-variable component of the ring.

can replace a hydrogen of the Q variable as well as a hydrogen in any other non-variable component of the ring.
 [0068] As used herein, the phrase "optionally substituted" means unsubstituted or substituted. As used herein, the term "substituted" means that a hydrogen atom is removed and replaced by a substituent. It is to be understood that substitution at a given atom is limited by valency. Throughout the definitions, the term "C_{n-m}" indicates a range which includes the endpoints, wherein n and m are integers and indicate the number of carbons. Examples include C₁₋₄, C₁₋₆, and the like.

[0069] As used herein, the term " C_{n-m} alkyl", employed alone or in combination with other terms, refers to a saturated hydrocarbon group that may be straight-chain or branched, having n to m carbons. In some embodiments, the alkyl group contains from 1 to 6 carbon atoms, from 1 to 4 carbon atoms, from 1 to 3 carbon atoms, or 1 to 2 carbon atoms. Examples of alkyl moieties include, but are not limited to, chemical groups such as methyl, ethyl, *n*-propyl, isopropyl,

³⁵ *n*-butyl, *tert*-butyl, isobutyl, *sec*-butyl; higher homologs such as 2-methyl-1-butyl, *n*-pentyl, 3-pentyl, *n*-hexyl, 1,2,2-trimethylpropyl, and the like.

[0070] As used herein, the term "alkylene", employed alone or in combination with other terms, refers to a divalent alkyl linking group. Examples of alkylene groups include, but are not limited to, ethan-1,2-diyl, propan-1,3-diyl, propan-1,2-diyl, butan-1,4-diyl, butan-1,3-diyl, butan-1,2-diyl, 2-methyl-propan-1,3-diyl, and the like.

- [0071] As used herein, "C_{n-m} alkenyl" refers to an alkyl group having one or more double carbon-carbon bonds and having n to m carbons. In some embodiments, the alkenyl moiety contains 2 to 6 or to 2 to 4 carbon atoms. Example alkenyl groups include, but are not limited to, ethenyl, *n*-propenyl, isopropenyl, *n*-butenyl, *sec*-butenyl, and the like.
 [0072] As used herein, "C_{n-m} alkynyl" refers to an alkyl group having one or more triple carbon-carbon bonds and
- having n to m carbons. Example alkynyl groups include, but are not limited to, ethynyl, propyn-1-yl, propyn-2-yl, and the
 like. In some embodiments, the alkynyl moiety contains 2 to 6 or 2 to 4 carbon atoms.
 [0073] As used herein, the term "C_{n-m} alkoxy", employed alone or in combination with other terms, refers to a group
- of formula -O-alkyl, wherein the alkyl group has n to m carbons. Example alkoxy groups include methoxy, ethoxy, propoxy (e.g., n-propoxy and isopropoxy), t-butoxy, and the like. In some embodiments, the alkyl group has 1 to 6 or 1 to 4 carbon atoms.
- [0074] As used herein, the term "C_{n-m} alkylamino" refers to a group of formula -NH(alkyl), wherein the alkyl group has n to m carbon atoms. In some embodiments, the alkyl group has 1 to 6 or 1 to 4 carbon atoms.
 [0075] As used herein, the term "di-C_{n-m}-alkylamino" refers to a group of formula N(alkyl)₂, wherein the two alkyl

groups each has, independently, n to m carbon atoms. In some embodiments, each alkyl group independently has 1 to 6 or 1 to 4 carbon atoms.

⁵⁵ **[0076]** As used herein, the term "C_{n-m} alkoxycarbonyl" refers to a group of formula -C(O)O-alkyl, wherein the alkyl group has n to m carbon atoms. In some embodiments, the alkyl group has 1 to 6 or 1 to 4 carbon atoms.

[0077] As used herein, the term " C_{n-m} alkylcarbonyl" refers to a group of formula -C(O)-alkyl, wherein the alkyl group has n to m carbon atoms. In some embodiments, the alkyl group has 1 to 6 or 1 to 4 carbon atoms.

[0078] As used herein, the term " C_{n-m} alkylcarbonylamino" refers to a group of formula -NHC(O)-alkyl, wherein the alkyl group has n to m carbon atoms. In some embodiments, the alkyl group has 1 to 6 or 1 to 4 carbon atoms.

[0079] As used herein, the term " C_{n-m} alkylsulfonylamino" refers to a group of formula -NHS(O)₂-alkyl, wherein the alkyl group has n to m carbon atoms. In some embodiments, the alkyl group has 1 to 6 or 1 to 4 carbon atoms.

⁵ **[0080]** As used herein, the term "aminosulfonyl", employed alone or in combination with other terms, refers to a group of formula $-S(O)_2NH_2$.

[0081] As used herein, the term " C_{n-m} alkylaminosulfonyl" refers to a group of formula -S(O)₂NH(alkyl), wherein the alkyl group has n to m carbon atoms. In some embodiments, the alkyl group has 1 to 6 or 1 to 4 carbon atoms.

[0082] As used herein, the term "di(C_{n-m} alkyl)aminosulfonyl" refers to a group of formula -S(O)₂N(alkyl)₂, wherein
 each alkyl group independently has n to m carbon atoms. In some embodiments, each alkyl group has, independently, 1 to 6 or 1 to 4 carbon atoms.

[0083] As used herein, the term "aminosulfonylamino" refers to a group of formula - NHS(O)₂NH₂.

[0084] As used herein, the term C_{n-m} alkylaminosulfonylamino" refers to a group of formula -NHS(O)₂NH(alkyl), wherein the alkyl group has n to m carbon atoms. In some embodiments, the alkyl group has 1 to 6 or 1 to 4 carbon atoms.

¹⁵ **[0085]** As used herein, the term "di(C_{n-m} alkyl)aminosulfonylamino" refers to a group of formula -NHS(O)₂N(alkyl)₂, wherein each alkyl group independently has n to m carbon atoms. In some embodiments, each alkyl group has, independently, 1 to 6 or 1 to 4 carbon atoms.

[0086] As used herein, the term "aminocarbonylamino" refers to a group of formula -NHC(O)NH₂.

- [0087] As used herein, the term "C_{n-m} alkylaminocarbonylamino" refers to a group of formula -NHC(O)NH(alkyl), wherein the alkyl group has n to m carbon atoms. In some embodiments, the alkyl group has 1 to 6 or 1 to 4 carbon atoms.
 [0088] As used herein, the term "di(C_{n-m} alkyl)aminocarbonylamino" refers to a group of formula -NHC(O)N(alkyl)₂, wherein each alkyl group independently has n to m carbon atoms. In some embodiments, each alkyl group has, independently, 1 to 6 or 1 to 4 carbon atoms.
- [0089] As used herein, the term " C_{n-m} alkylcarbamyl" refers to a group of formula -C(O)-NH(alkyl), wherein the alkyl group has n to m carbon atoms. In some embodiments, the alkyl group has 1 to 6 or 1 to 4 carbon atoms.
- **[0090]** As used herein, the term "di(C_{n-m} -alkyl)carbamyl" refers to a group of formula C(O)N(alkyl)₂, wherein the two alkyl groups each has, independently, n to m carbon atoms. In some embodiments, each alkyl group independently has 1 to 6 or 1 to 4 carbon atoms.
- [0091] As used herein, the term "thio" refers to a group of formula -SH.

35

30 [0092] As used herein, the term "C_{n-m} alkylthio" refers to a group of formula -S-alkyl, wherein the alkyl group has n to m carbon atoms. In some embodiments, the alkyl group has 1 to 6 or 1 to 4 carbon atoms.
[0093] As used herein, the term "C alkylsulfinyl" refers to a group of formula -S(O)-alkyl, wherein the alkyl group.

[0093] As used herein, the term " C_{n-m} alkylsulfinyl" refers to a group of formula -S(O)-alkyl, wherein the alkyl group has n to m carbon atoms. In some embodiments, the alkyl group has 1 to 6 or 1 to 4 carbon atoms.

[0094] As used herein, the term " C_{n-m} alkylsulfonyl" refers to a group of formula -S(O)₂-alkyl, wherein the alkyl group has n to m carbon atoms. In some embodiments, the alkyl group has 1 to 6 or 1 to 4 carbon atoms.

[0095] As used herein, the term "amino" refers to a group of formula -NH₂.

[0096] As used herein, the term "hydroxy- C_{n-m} -alkyl" refers to a group of formula - alkylene-OH, wherein said alkylene group has n to m carbon atoms. In some embodiments, the alkylene group has 1 to 4 carbon atoms.

- [0097] As used herein, the term "C_{o-p} alkoxy-C_{n-m}-alkyl" refers to a group of formula alkylene-O-alkyl, wherein said alkylene group has n to m carbon atoms and said alkyl group has o to p carbon atoms. In some embodiments, the alkyl and alkylene groups each independently have 1 to 4 carbon atoms.
- [0098] As used herein, the term "aryl", employed alone or in combination with other terms, refers to a monocyclic or polycyclic (e.g., having 2, 3 or 4 fused rings) aromatic hydrocarbon, such as, but not limited to, phenyl, 1-naphthyl, 2-naphthyl, anthracenyl, phenanthrenyl, and the like. In some embodiments, aryl is C₆₋₁₀ aryl. In some embodiments, the aryl group is a naphthalene ring or phenyl ring. In some embodiments, the aryl group is phenyl.
- **[0099]** As used herein, the term "arylalkyl" refers to a group of formula -alkylene-aryl. In some embodiments, arylalkyl is C_{6-10} aryl- C_{1-3} alkyl. In some embodiments, arylalkyl is benzyl.
 - **[0100]** As used herein, the term "carbamyl" refers to a group of formula -C(O)NH₂.
 - [0101] As used herein, the term "carbonyl", employed alone or in combination with other terms, refers to a -C(O)- group.
- 50 [0102] As used herein, the term "carboxy" refers to a group of formula -C(O)OH. [0103] As used herein, the term "cycloalkyl", employed alone or in combination with other terms, refers to a nonaromatic cyclic hydrocarbon moiety, which may optionally contain one or more alkenylene groups as part of the ring structure. Cycloalkyl groups can include mono- or polycyclic (e.g., having 2, 3 or 4 fused rings) ring systems. Also included in the definition of cycloalkyl are moieties that have one or more aromatic rings fused (i.e., having a bond in
- ⁵⁵ common with) to the cycloalkyl ring, for example, benzo derivatives of cyclopentane, cyclopentene, cyclohexane, and the like. One or more ring-forming carbon atoms of a cycloalkyl group can be oxidized to form carbonyl linkages. In some embodiments, cycloalkyl is C₃₋₁₂ cycloalkyl, which is monocyclic or bicyclic. Examplary cycloalkyl groups include 1,2,3,4tetrahydro-naphthalene, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclopentenyl, cyclohexenyl, cy-

clohexadienyl, cycloheptatrienyl, norbornyl, norpinyl, norcarnyl, adamantyl, and the like. In some embodiments, the cycloalkyl group is cyclopropyl, cyclobutyl, cyclopentyl, or cyclohexyl.

[0104] As used herein, the term "cycloalkylalkyl" refers to a group of formula -alkylene-cycloalkyl. In some embodiments, cycloalkylalkyl is C_{3-12} cycloalkyl- C_{1-3} alkyl, wherein the cycloalkyl portion is monocyclic or bicyclic.

⁵ **[0105]** As used herein, " C_{n-m} haloalkoxy" refers to a group of formula -O-haloalkyl having n to m carbon atoms. An example haloalkoxy group is OCF₃. In some embodiments, the haloalkoxy group is fluorinated only. In some embodiments, the alkyl group has 1 to 6 or 1 to 4 carbon atoms.

[0106] As used herein, the term "C_{n-m} haloalkyl", employed alone or in combination with other terms, refers to an alkyl group having from one halogen atom to 2s+1 halogen atoms which may be the same or different, where "s" is the number of carbon atoms in the alkyl group, wherein the alkyl group has n to m carbon atoms. In some embodiments, the haloalkyl

10

25

40

50

- group is fluorinated only. In some embodiments, the alkyl group has 1 to 6 or 1 to 4 carbon atoms. **[0107]** As used herein, the term " C_{n-m} fluoroalkyl" refers to a C_{n-m} haloalkyl wherein the halogen atoms are selected from fluorine. In some embodiments, fluorinated C_{n-m} haloalkyl is fluoromethyl, difluoromethyl, or trifluoromethyl. In some embodiments, the alkyl group has 1 to 6 or 1 to 4 carbon atoms.
- ¹⁵ [0108] As used herein, the term "heteroaryl", employed alone or in combination with other terms, refers to a monocyclic or polycyclic (e.g., having 2, 3 or 4 fused rings) aromatic hydrocarbon moiety, having one or more heteroatom ring members selected from nitrogen, sulfur and oxygen. In some embodiments, heteroaryl is 5- to 10-membered C₁₋₉ heteroaryl, which is monocyclic or bicyclic and which has 1, 2, 3, or 4 heteroatom ring members independently selected from nitrogen, sulfur and oxygen. When the heteroaryl group contains more than one heteroatom ring member, the
- ²⁰ heteroatoms may be the same or different. Example heteroaryl groups include, but are not limited to, pyridine, pyrimidine, pyrazine, pyridazine, pyrrole, pyrazole, azolyl, oxazole, thiazole, imidazole, furan, thiophene, quinoline, isoquinoline, indole, benzothiophene, benzofuran, benzisoxazole, imidazo[1,2-b]thiazole, purine, or the like.
 [0109] As used herein, the term "heteroarylalkyl" refers to a group of formula -alkylene-heteroaryl. In some embodi-

[0109] As used herein, the term ineteroarylarkyl refers to a group of formula -arkylene-neteroaryl. In some embodiments, heteroarylalkyl is C_{1-9} heteroaryl- C_{1-3} alkyl, wherein the heteroaryl portion is monocyclic or bicyclic and has 1, 2, 3, or 4 heteroatom ring members independently selected from nitrogen, sulfur and oxygen.

- **[0110]** As used herein, the term "heterocycloalkyl", employed alone or in combination with other terms, refers to nonaromatic ring system, which may optionally contain one or more alkenylene or alkynylene groups as part of the ring structure, and which has at least one heteroatom ring member independently selected from nitrogen, sulfur and oxygen. When the heterocycloalkyl groups contains more than one heteroatom, the heteroatoms may be the same or different.
- Heterocycloalkyl groups can include mono- or polycyclic (e.g., having 2, 3 or 4 fused rings) ring systems. Also included in the definition of heterocycloalkyl are moieties that have one or more aromatic rings fused (i.e., having a bond in common with) to the non-aromatic ring, for example, 1,2,3,4-tetrahydro-quinoline and the like. The carbon atoms or heteroatoms in the ring(s) of the heterocycloalkyl group can be oxidized to form a carbonyl, or sulfonyl group (or other oxidized linkage) or a nitrogen atom can be quaternized. In some embodiments, heterocycloalkyl is 5- to 10-membered
- ³⁵ C₂₋₉ heterocycloalkyl, which is monocyclic or bicyclic and which has 1, 2, 3, or 4 heteroatom ring members independently selected from nitrogen, sulfur and oxygen. Examples of heterocycloalkyl groups include 1,2,3,4-tetrahydro-quinoline, azetidine, azepane, pyrrolidine, piperidine, piperazine, morpholine, thiomorpholine, and pyran.
 [0111] A five-membered ring heteroaryl is a heteroaryl with a ring having five ring atoms wherein one or more (e.g.,

[0111] A five-membered ring heteroaryl is a heteroaryl with a ring having five ring atoms wherein one or more (e.g., 1, 2, or 3) ring atoms are independently selected from N, O, and S. Exemplary five-membered ring heteroaryls are thienyl, furyl, pyrrolyl, imidazolyl, thiazolyl, oxazolyl, pyrazolyl, isothiazolyl, isoxazolyl, 1,2,3-triazolyl, tetrazolyl, 1,2,4-thiadiazolyl, 1,2,4-oxadiazolyl, 1,3,4-thiadiazolyl, and

1,3,4-oxadiazolyl.
[0112] A six-membered ring heteroaryl is a heteroaryl with a ring having six ring atoms wherein one or more (e.g., 1, 2, or 3) ring atoms are independently selected from N, O, and S. Exemplary six-membered ring heteroaryls are pyridyl,

⁴⁵ pyrazinyl, pyrimidinyl, triazinyl and pyridazinyl.
 [0113] As used herein, the term "heterocycloalkylalkyl" refers to a group of formula -alkylene-heterocycloalkyl. In some embodiments, heterocycloalkylalkyl is C₂₋₉ heterocycloalkyl-C₁₋₃ alkyl, wherein the heterocycloalkyl portion is monocyclic or bicyclic and has 1, 2, 3, or 4 heteroatom ring members independently selected from nitrogen, sulfur and oxygen.

[0114] The compounds described herein can be asymmetric (e.g., having one or more stereocenters). All stereoi-somers, such as enantiomers and diastereomers, are intended unless otherwise indicated. Compounds of the present invention that contain asymmetrically substituted carbon atoms can be isolated in optically active or racemic forms.

Methods on how to prepare optically active forms from optically inactive starting materials are known in the art, such as by resolution of racemic mixtures or by stereoselective synthesis. Many geometric isomers of olefins, C=N double bonds, and the like can also be present in the compounds described herein, and all such stable isomers are contemplated in
 the present invention. Cis and trans geometric isomers of the compounds of the present invention are described and may be isolated as a mixture of isomers or as separated isomeric forms.

[0115] Resolution of racemic mixtures of compounds can be carried out by any of numerous methods known in the art. An example method includes fractional recrystallization using a chiral resolving acid which is an optically active, salt-

forming organic acid. Suitable resolving agents for fractional recrystallization methods are, for example, optically active acids, such as the D and L forms of tartaric acid, diacetyltartaric acid, dibenzoyltartaric acid, mandelic acid, malic acid, lactic acid or the various optically active camphorsulfonic acids such as β -camphorsulfonic acid. Other resolving agents suitable for fractional crystallization methods include stereoisomerically pure forms of α -methylbenzylamine (*e.g.*, *S* and

- *R* forms, or diastereomerically pure forms), 2-phenylglycinol, norephedrine, ephedrine, N-methylephedrine, cyclohexylethylamine, 1,2-diaminocyclohexane, and the like.
 [0116] Resolution of racemic mixtures can also be carried out by elution on a column packed with an optically active resolving agent (*e.g.*, dinitrobenzoylphenylglycine). Suitable elution solvent composition can be determined by one skilled in the art.
- 10 [0117] Compounds of the invention also include tautomeric forms. Tautomeric forms result from the swapping of a single bond with an adjacent double bond together with the concomitant migration of a proton. Tautomeric forms include prototropic tautomers which are isomeric protonation states having the same empirical formula and total charge. Example prototropic tautomers include ketone enol pairs, amide imidic acid pairs, lactam lactim pairs, amide imidic acid pairs, enamine imine pairs, and annular forms where a proton can occupy two or more positions of a heterocyclic system for example, 1H₂ and 3H₂imidazole, 1H₂ 2H₂ and 4H₂ 1.2 4-triazole, 1H₂ and 2H₂ isoindole, and 1H₂ and 2H₂
- system, for example, 1H- and 3H-imidazole, 1H-, 2H- and 4H- 1,2,4-triazole, 1H- and 2H- isoindole, and 1H- and 2H- pyrazole. Tautomeric forms can be in equilibrium or sterically locked into one form by appropriate substitution.
 [0118] Compounds of the invention can also include all isotopes of atoms occurring in the intermediates or final compounds. Isotopes include those atoms having the same atomic number but different mass numbers. For example, isotopes of hydrogen include tritium and deuterium. In some embodiments, 1, 2, or 3 CH₂ or CH groups in the moiety
- 20

30

²⁵ of Formula I are replaced by a CHD, CD₂ or CD group, respectively.

[0119] The term, "compound," as used herein is meant to include all stereoisomers, geometric iosomers, tautomers, and isotopes of the structures depicted. Compounds herein identified by name or structure as one particular tautomeric form are intended to include other tautomeric forms unless otherwise specified (e.g., in the case of purine rings, unless otherwise indicated, when the compound name or structure has the 9H tautomer, it is understood that the 7H tautomer is also encompassed).

[0120] All compounds, and pharmaceutically acceptable salts thereof, can be found together with other substances such as water and solvents (e.g. hydrates and solvates) or can be isolated.

[0121] In some embodiments, the compounds of the invention, or salts thereof, are substantially isolated. By "substantially isolated" is meant that the compound is at least partially or substantially separated from the environment in

- ³⁵ which it was formed or detected. Partial separation can include, for example, a composition enriched in the compounds of the invention. Substantial separation can include compositions containing at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, at least about 97%, or at least about 99% by weight of the compounds of the invention, or salt thereof. Methods for isolating compounds and their salts are routine in the art.
- ⁴⁰ **[0122]** The phrase "pharmaceutically acceptable" is employed herein to refer to those compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.

[0123] The expressions, "ambient temperature" and "room temperature," as used herein, are understood in the art, and refer generally to a temperature, *e.g.* a reaction temperature, that is about the temperature of the room in which the reaction is carried out, for example, a temperature from about 20 °C to about 30 °C. [0124] The present invention also includes pharmaceutically acceptable salts of the compounds described herein. As used herein, "herein "between understand" and the present invention also includes pharmaceutically acceptable salts of the compounds described herein. As

- used herein, "pharmaceutically acceptable salts" refers to derivatives of the disclosed compounds wherein the parent compound is modified by converting an existing acid or base moiety to its salt form. Examples of pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of basic residues such as amines; alkali or organic salts of acidic residues such as carboxylic acids; and the like. The pharmaceutically acceptable salts of the present invention include the conventional non-toxic salts of the parent compound formed, for example, from non-toxic inorganic or organic acids. The pharmaceutically acceptable salts of the present invention can be synthesized from the
- parent compound which contains a basic or acidic moiety by conventional chemical methods. Generally, such salts can
 be prepared by reacting the free acid or base forms of these compounds with a stoichiometric amount of the appropriate
 base or acid in water or in an organic solvent, or in a mixture of the two; generally, non-aqueous media like ether, ethyl
 acetate, alcohols (e.g., methanol, ethanol, iso-propanol, or butanol) or acetonitrile (ACN) are preferred. Lists of suitable
 salts are found in Remington's Pharmaceutical Sciences, 17th ed., Mack Publishing Company, Easton, Pa., 1985, p.

1418 and Journal of Pharmaceutical Science, 66, 2 (1977), each of which is incorporated herein by reference in its entirety.

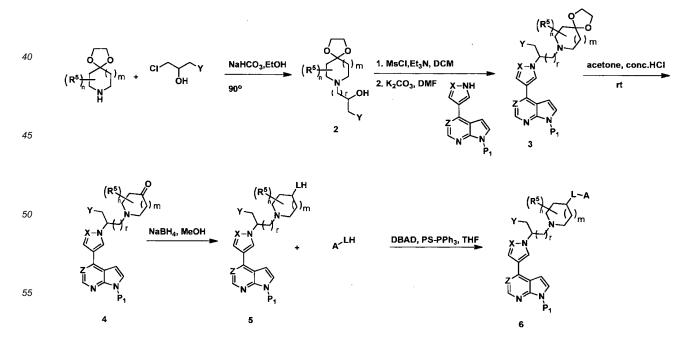
Synthesis

⁵ **[0125]** Compounds of the invention, including salts and N-oxides thereof, can be prepared using known organic synthesis techniques and can be synthesized according to any of numerous possible synthetic routes.

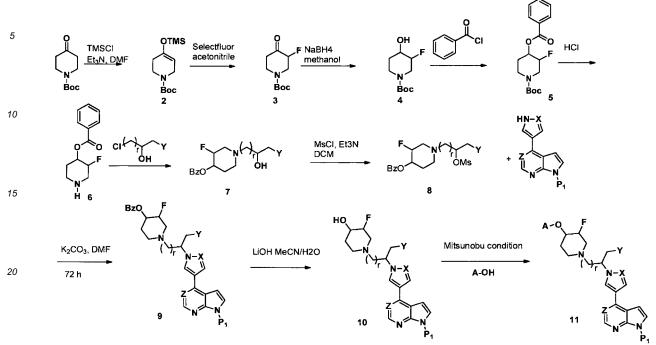
[0126] The reactions for preparing compounds of the invention can be carried out in suitable solvents which can be readily selected by one of skill in the art of organic synthesis. Suitable solvents can be substantially non-reactive with the starting materials (reactants), the intermediates, or products at the temperatures at which the reactions are carried

- ¹⁰ out, *e.g.*, temperatures which can range from the solvent's freezing temperature to the solvent's boiling temperature. A given reaction can be carried out in one solvent or a mixture of more than one solvent. Depending on the particular reaction step, suitable solvents for a particular reaction step can be selected by the skilled artisan.
 [0127] Preparation of compounds of the invention can involve the protection and deprotection of various chemical
- groups. The need for protection and deprotection, and the selection of appropriate protecting groups, can be readily determined by one skilled in the art. The chemistry of protecting groups can be found, for example, in Wuts and Greene, Protective Groups in Organic Synthesis, 4th ed., John Wiley & Sons: New Jersey, (2007), which is incorporated herein by reference in its entirety.

[0128] Reactions can be monitored according to any suitable method known in the art. For example, product formation can be monitored by spectroscopic means, such as nuclear magnetic resonance spectroscopy (e.g., ¹H or ¹³C), infrared spectroscopy, spectrophotometry (e.g., UV-visible), mass spectrometry, or by chromatographic methods such as high


performance liquid chromatography (HPLC) or thin layer chromatography (TLC). **[0129]** For example, compounds of Formula I can be made by the methods analogous shown in Scheme I. Accordingly, 1,4-dioxa-8-azaspiro[4.5]decane is reacted with an hydroxyalkane chloride to give compound **2**. The coupling product can then be treated with methanesulfonyl chloride, followed by reacted with the protected pyrrolo[2,3-d]pyrimidine com-

- ²⁵ pound to give the compound **3**. The compound of formula 3 can then be deprotected to give an oxopiperidine **4**. The compound of formula 4 can then be reduced to give the **alcohol 5**. The alcohol derivative can then be reacted with substituted phenol via a Mitsunobu reaction procedure to give the desired compound of formula 6. The protecting group P₁ of compound **6** can be then removed to give the compound of Formula I.
- [0130] Compounds of Formula I, wherein R⁵ is fluoro, can be made by the methods analogous to those shown in Scheme II. Accordingly *tert*-butyl 4-oxo-1-piperidinecarboxylate is reacted with TMS-CI to give compound **2**, which can be fluoronated to give the fluoro-piperidine compound **3**. Compound **3** can be reduced to give an alcohol **4**, which can be protected to give compound **5**. Compound **5** can be converted to compound **11** in a similar manner of Scheme I, which can then be deprotected to remove P₁ to give the compound of Formula I.


35

20

Scheme 1

Scheme 2

25

30

Methods

[0131] Compounds of the invention are JAK inhibitors, and the majority of the compounds of the invention are JAK1 selective inhibitors. A JAK1 selective inhibitor is a compound that inhibits JAK1 activity preferentially over other Janus kinases. For example, the compounds of the invention preferentially inhibit JAK1 over one or more of JAK2, JAK3, and TYK2. In some embodiments, the compounds inhibit JAK1 preferentially over JAK2 (e.g., have a JAK1/JAK2 IC₅₀ ratio >1).
 [0132] JAK1 plays a central role in a number of cytokine and growth factor signaling pathways that, when dysregulated,

can result in or contribute to disease states. For example, IL-6 levels are elevated in rheumatoid arthritis, a disease in which it has been suggested to have detrimental effects (Fonesca, J.E. et al., Autoimmunity Reviews, 8:538-42, 2009).

- Because IL-6 signals, at least in part, through JAK1, antagonizing IL-6 directly or indirectly through JAK1 inhibition is expected to provide clinical benefit (Guschin, D., N., et al Embo J 14:1421, 1995; Smolen, J. S., et al. Lancet 371:987, 2008). Moreover, in some cancers JAK1 is mutated resulting in constitutive undesirable tumor cell growth and survival (Mullighan CG, Proc Natl Acad Sci U S A.106:9414-8, 2009; Flex E., et al.J Exp Med. 205:751-8, 2008). In other autoimmute diseases and cancers elevated systemic levels of inflammatory cytokines that activate JAK1 may also
- 40 contribute to the disease and/or associated symptoms. Therefore, patients with such diseases may benefit from JAK1 inhibition. Selective inhibitors of JAK1 may be efficacious while avoiding unnecessary and potentially undesirable effects of inhibiting other JAK kinases.

[0133] Selective inhibitors of JAK1, relative to other JAK kinases, may have multiple therapeutic advantages over less selective inhibitors. With respect to selectivity against JAK2, a number of important cytokines and growth factors signal

- through JAK2 including, for example, erythropoietin (Epo) and thrombopoietin (Tpo) (Parganas E, et al. Cell. 93:385-95, 1998). Epo is a key growth factor for red blood cells production; hence a paucity of Epo-dependent signaling can result in reduced numbers of red blood cells and anemia (Kaushansky K, NEJM 354:2034-45, 2006). Tpo, another example of a JAK2-dependent growth factor, plays a central role in controlling the proliferation and maturation of megakaryocytes the cells from which platelets are produced (Kaushansky K, NEJM 354:2034-45, 2006). As such, reduced Tpo signaling
- ⁵⁰ would decrease megakaryocyte numbers (megakaryocytopenia) and lower circulating platelet counts (thrombocytopenia). This can result in undesirable and/or uncontrollable bleeding. Reduced inhibition of other JAKs, such as JAK3 and Tyk2, may also be desirable as humans lacking functional version of these kinases have been shown to suffer from numerous maladies such as severe-combined immunodeficiency or hyperimmunoglobulin E syndrome (Minegishi, Y, et al. Immunity 25:745-55, 2006; Macchi P, et al. Nature. 377:65-8, 1995). Therefore a JAK1 inhibitor with reduced
- affinity for other JAKs would have significant advantages over a less-selective inhibitor with respect to reduced side effects involving immune suppression, anemia and thrombocytopenia.
 [0134] Another aspect of the present invention pertains to methods of treating a JAK-associated disease or disorder

[0134] Another aspect of the present invention pertains to methods of treating a JAK-associated disease or disorder in an individual (*e.g.*, patient) by administering to the individual in need of such treatment a therapeutically effective

amount or dose of a compound of the present invention or a pharmaceutical composition thereof. A JAK-associated disease can include any disease, disorder or condition that is directly or indirectly linked to expression or activity of the JAK, including overexpression and/or abnormal activity levels. A JAK-associated disease can also include any disease, disorder or condition that can be prevented, ameliorated, or cured by modulating JAK activity. In some embodiments,

- the JAK-associated disease is a JAK1-associated disease.
 [0135] Examples of JAK-associated diseases include diseases involving the immune system including, for example, organ transplant rejection (*e.g.*, allograft rejection and graft versus host disease).
 [0136] Further examples of JAK-associated diseases include autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, juvenile arthritis, psoriatic arthritis, type I diabetes, lupus, psoriasis, inflammatory bowel disease, ulcer-
- ative colitis, Crohn's disease, myasthenia gravis, immunoglobulin nephropathies, myocarditis, autoimmune thyroid disorders, and the like. In some embodiments, the autoimmune disease is an autoimmune bullous skin disorder such as pemphigus vulgaris (PV) or bullous pemphigoid (BP).

[0137] Further examples of JAK-associated diseases include allergic conditions such as asthma, food allergies, atopic dermatitis and rhinitis. Further examples of JAK-associated diseases include viral diseases such as Epstein Barr Virus (EBV), Hepatitis B, Hepatitis C, HIV, HTLV 1, Varicella-Zoster Virus (VZV) and Human Papilloma Virus (HPV).

[0138] Further examples of JAK-associated disease include diseases associated with cartilage turnover, for example, gouty arthritis, septic or infectious arthritis, reactive arthritis, reflex sympathetic dystrophy, algodystrophy, Tietze syndrome, costal athropathy, osteoarthritis deformans endemica, Mseleni disease, Handigodu disease, degeneration resulting from fibromyalgia, systemic lupus erythematosus, scleroderma, or ankylosing spondylitis.

15

20 [0139] Further examples of JAK-associated disease include congenital cartilage malformations, including hereditary chrondrolysis, chrondrodysplasias, and pseudochrondrodysplasias (e.g., microtia, enotia, and metaphyseal chrondro-dysplasia).

[0140] Further examples of JAK-associated diseases or conditions include skin disorders such as psoriasis (for example, psoriasis vulgaris), atopic dermatitis, skin rash, skin irritation, skin sensitization (*e.g.*, contact dermatitis or allergic

- ²⁵ contact dermatitis). For example, certain substances including some pharmaceuticals when topically applied can cause skin sensitization. In some embodiments, co-administration or sequential administration of at least one JAK inhibitor of the invention together with the agent causing unwanted sensitization can be helpful in treating such unwanted sensitization or dermatitis. In some embodiments, the skin disorder is treated by topical administration of at least one JAK inhibitor of the invention.
- 30 [0141] In further embodiments, the JAK-associated disease is cancer including those characterized by solid tumors (*e.g.*, prostate cancer, renal cancer, hepatic cancer, pancreatic cancer, gastric cancer, breast cancer, lung cancer, cancers of the head and neck, thyroid cancer, glioblastoma, Kaposi's sarcoma, Castleman's disease, melanoma etc.), hematological cancers (*e.g.*, lymphoma, leukemia such as acute lymphoblastic leukemia, acute myelogenous leukemia (AML) or multiple myeloma), and skin cancer such as cutaneous T-cell lymphoma (CTCL) and cutaneous B-cell lymphoma
- ³⁵ phoma. Example CTCLs include Sezary syndrome and mycosis fungoides. [0142] In some embodiments, the JAK inhibitors described herein, or in combination with other JAK inhibitors, such as those reported in U.S. Ser. No. 11/637,545, which is incorporated herein by reference in its entirety, can be used to treat inflammation-associated cancers. In some embodiments, the cancer is associated with inflammatory bowel disease. In some embodiments, the inflammatory bowel disease is ulcerative colitis. In some embodiments, the inflammatory bowel disease is ulcerative colitis.
- 40 bowel disease is Crohn's disease. In some embodiments, the inflammation-associated cancer is colitis-associated cancer. In some embodiments, the inflammation-associated cancer is colon cancer or colorectal cancer. In some embodiments, the cancer is gastric cancer, gastrointestinal carcinoid tumor, gastrointestinal stromal tumor (GIST), adenocarcinoma, small intestine cancer, or rectal cancer.
- [0143] JAK-associated diseases can further include those characterized by expression of: JAK2 mutants such as those having at least one mutation in the pseudo-kinase domain (*e.g.*, JAK2V617F); JAK2 mutants having at least one mutation outside of the pseudo-kinase domain; JAK1 mutants; JAK3 mutants; erythropoietin receptor (EPOR) mutants; or deregulated expression of CRLF2.

[0144] JAK-associated diseases can further include myeloproliferative disorders (MPDs) such as polycythemia vera (PV), essential thrombocythemia (ET), myelofibrosis with myeloid metaplasia (MMM), primary myelofibrosis (PMF),

- ⁵⁰ chronic myelogenous leukemia (CML), chronic myelomonocytic leukemia (CMML), hypereosinophilic syndrome (HES), systemic mast cell disease (SMCD), and the like. In some embodiments, the myeloproliferative disorder is myelofibrosis (e.g., primary myelofibrosis (PMF) or post polycythemia vera/essential thrombocythemia myelofibrosis (Post-PV/ET MF)). [0145] The present invention further provides methods of treating psoriasis or other skin disorders by administration of a topical formulation containing a compound of the invention.
- ⁵⁵ **[0146]** In some embodiments, JAK inhibitors described herein can be used to treat pulmonary arterial hypertension. **[0147]** The present invention further provides a method of treating dermatological side effects of other pharmaceuticals by administration of the compound of the invention. For example, numerous pharmaceutical agents result in unwanted allergic reactions which can manifest as acneiform rash or related dermatitis. Example pharmaceutical agents that have

such undesirable side effects include anti-cancer drugs such as gefitinib, cetuximab, erlotinib, and the like. The compounds of the invention can be administered systemically or topically (e.g., localized to the vicinity of the dermatitis) in combination with (e.g., simultaneously or sequentially) the pharmaceutical agent having the undesirable dermatological side effect. In some embodiments, the compound of the invention can be administered topically together with one or

- ⁵ more other pharmaceuticals, where the other pharmaceuticals when topically applied in the absence of a compound of the invention cause contact dermatitis, allergic contact sensitization, or similar skin disorder. Accordingly, compositions of the invention include topical formulations containing the compound of the invention and a further pharmaceutical agent which can cause dermatitis, skin disorders, or related side effects.
- **[0148]** Further JAK-associated diseases include inflammation and inflammatory diseases. Example inflammatory diseases include sarcoidosis, inflammatory diseases of the eye (*e.g.*, iritis, uveitis, scleritis, conjunctivitis, or related disease), inflammatory diseases of the respiratory tract (*e.g.*, the upper respiratory tract including the nose and sinuses such as rhinitis or sinusitis or the lower respiratory tract including bronchitis, chronic obstructive pulmonary disease, and the like), inflammatory myopathy such as myocarditis, and other inflammatory diseases.
- [0149] The JAK inhibitors described herein can further be used to treat ischemia reperfusion injuries or a disease or condition related to an inflammatory ischemic event such as stroke or cardiac arrest. The JAK inhibitors described herein can further be used to treat anorexia, cachexia, or fatigue such as that resulting from or associated with cancer. The JAK inhibitors described herein can further be used to treat restenosis, sclerodermitis, or fibrosis. The JAK inhibitors described herein can further be used to treat conditions associated with hypoxia or astrogliosis such as, for example, diabetic retinopathy, cancer, or neurodegeneration. See, e.g., Dudley, A.C. et al. Biochem. J. 2005, 390(Pt 2):427-36
- and Sriram, K. et al. J. Biol. Chem. 2004, 279(19):19936-47. Epub 2004 Mar 2, both of which are incorporated herein by reference in their entirety. The JAK inhibitors described herein can be used to treat Alzheimer's disease.
 [0150] The JAK inhibitors described herein can further be used to treat other inflammatory diseases such as systemic inflammatory response syndrome (SIRS) and septic shock.
- [0151] The JAK inhibitors described herein can further be used to treat gout and increased prostate size due to, e.g., ²⁵ benign prostatic hypertrophy or benign prostatic hyperplasia.
- [0152] Further JAK-associated diseases include bone resorption diseases such as osteoporosis, osteoarthritis. Bone resorption can also be associated with other conditions such as hormonal imbalance and/or hormonal therapy, autoimmune disease (e.g. osseous sarcoidosis), or cancer (e.g. myeloma). The reduction of the bone resorption due to the JAK inhibitors can be about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, or about 90%.
 - **[0153]** In some embodiments, JAK inhibitors described herein can further be used to treat a dry eye disorder. As used herein, "dry eye disorder" is intended to encompass the disease states summarized in a recent official report of the Dry Eye Workshop (DEWS), which defined dry eye as "a multifactorial disease of the tears and ocular surface that results in symptoms of discomfort, visual disturbance, and tear film instability with potential damage to the ocular surface. It is
- ³⁵ accompanied by increased osmolarity of the tear film and inflammation of the ocular surface." Lemp, "The Definition and Classification of Dry Eye Disease: Report of the Definition and Classification Subcommittee of the International Dry Eye Workshop", The Ocular Surface, 5(2), 75-92 April 2007, which is incorporated herein by reference in its entirety. In some embodiments, the dry eye disorder is selected from aqueous tear-deficient dry eye (ADDE) or evaporative dry eye disorder, or appropriate combinations thereof. In some embodiments, the dry eye disorder is Sjogren syndrome dry eye
- 40 (SSDE). In some embodiments, the dry eye disorder is non-Sjogren syndrome dry eye (NSSDE). [0154] In a further aspect, the present invention provides a method of treating conjunctivitis, uveitis (including chronic uveitis), chorioditis, retinitis, cyclitis, sclieritis, episcleritis, or iritis; treating inflammation or pain related to corneal transplant, LASIK (laser assisted in situ keratomileusis), photorefractive keratectomy, or LASEK (laser assisted sub-epithelial keratomileusis); inhibiting loss of visual acuity related to corneal transplant, LASIK, photorefractive keratectomy, or
- LASEK; or inhibiting transplant rejection in a patient in need thereof, comprising administering to the patient a therapeutically effective amount of the compound of the invention, or a pharmaceutically acceptable salt thereof.
 [0155] Additionally, the compounds of the invention, or in combination with other JAK inhibitors, such as those reported in U.S. Ser. No. 11/637,545, which is incorporated herein by reference in its entirety, can be used to treat respiratory dysfunction or failure associated with viral infection, such as influenza and SARS.
- ⁵⁰ **[0156]** In some embodiments, the present invention provides a compound of Formula I, pharmaceutically acceptable salt thereof, as described in any of the embodiments herein, for use in a method of treating any of the diseases or disorders described herein. In some embodiments, the present invention provides the use of a compound of Formula I as described in any of the embodiments herein, for the preparation of a medicament for use in a method of treating any of the diseases or the diseases or disorders described herein.
- ⁵⁵ **[0157]** In some embodiments, the present invention provides a compound of Formula I as described herein, or a pharmaceutically acceptable salt thereof, for use in a method of modulating a JAK1. In some embodiments, the present invention also provides use of a compound of Formula I as described herein, or a pharmaceutically acceptable salt thereof, for use in a method of modulating a JAK1. In some embodiments, the present invention also provides use of a compound of Formula I as described herein, or a pharmaceutically acceptable salt thereof, for the preparation of a medicament for use in a method of modulating a JAK1.

[0158] As used herein, the term "contacting" refers to the bringing together of indicated moieties in an *in vitro* system or an *in vivo* system. For example, "contacting" a JAK with a compound of the invention includes the administration of a compound of the present invention to an individual or patient, such as a human, having a JAK, as well as, for example, introducing a compound of the invention into a sample containing a cellular or purified preparation containing the JAK.

⁵ **[0159]** As used herein, the term "individual" or "patient," used interchangeably, refers to any animal, including mammals, preferably mice, rats, other rodents, rabbits, dogs, cats, swine, cattle, sheep, horses, or primates, and most preferably humans.

[0160] As used herein, the phrase "therapeutically effective amount" refers to the amount of active compound or pharmaceutical agent that elicits the biological or medicinal response that is being sought in a tissue, system, animal, individual or human by a researcher, veterinarian, medical doctor or other clinician.

- **[0161]** As used herein, the term "treating" or "treatment" refers to one or more of (1) preventing the disease; for example, preventing a disease, condition or disorder in an individual who may be predisposed to the disease, condition or disorder but does not yet experience or display the pathology or symptomatology of the disease; (2) inhibiting the disease; for example, inhibiting a disease, condition or disorder in an individual who is experiencing or displaying the
- ¹⁵ pathology or symptomatology of the disease, condition or disorder (i.e., arresting further development of the pathology and/or symptomatology); and (3) ameliorating the disease; for example, ameliorating a disease, condition or disorder in an individual who is experiencing or displaying the pathology or symptomatology of the disease, condition or disorder (i.e., reversing the pathology and/or symptomatology) such as decreasing the severity of disease.
- 20 Combination Therapies

10

[0162] One or more additional pharmaceutical agents such as, for example, chemotherapeutics, anti-inflammatory agents, steroids, immunosuppressants, as well as Bcr-Abl, Flt-3, RAF and FAK kinase inhibitors such as, for example, those described in WO 2006/056399, which is incorporated herein by reference in its entirety, or other agents can be

- ²⁵ used in combination with the compounds described herein for treatment of JAK-associated diseases, disorders or conditions. The one or more additional pharmaceutical agents can be administered to a patient simultaneously or sequentially.
 [0163] Example chemotherapeutic include proteosome inhibitors (e.g., bortezomib), thalidomide, revlimid, and DNA-damaging agents such as melphalan, doxorubicin, cyclophosphamide, vincristine, etoposide, carmustine, and the like.
 [0164] Example steroids include coriticosteroids such as dexamethasone or prednisone.
- ³⁰ **[0165]** Example Bcr-Abl inhibitors include the compounds, and pharmaceutically acceptable salts thereof, of the genera and species disclosed in U.S. Pat. No. 5,521,184, WO 04/005281, and U.S. Ser. No. 60/578,491, all of which are incorporated herein by reference in their entirety.

[0166] Example suitable FIt-3 inhibitors include compounds, and their pharmaceutically acceptable salts, as disclosed in WO 03/037347, WO 03/099771, and WO 04/046120, all of which are incorporated herein by reference in their entirety.

- [0167] Example suitable RAF inhibitors include compounds, and their pharmaceutically acceptable salts, as disclosed in WO 00/09495 and WO 05/028444, both of which are incorporated herein by reference in their entirety.
 [0168] Example suitable FAK inhibitors include compounds, and their pharmaceutically acceptable salts, as disclosed in WO 04/080980, WO 04/056786, WO 03/024967, WO 01/064655, WO 00/053595, and WO 01/014402, all of which are incorporated herein by reference in their entirety.
- ⁴⁰ **[0169]** In some embodiments, one or more of the compounds of the invention can be used in combination with one or more other kinase inhibitors including imatinib, particularly for treating patients resistant to imatinib or other kinase inhibitors.

[0170] In some embodiments, one or more JAK inhibitors of the invention can be used in combination with a chemo-therapeutic in the treatment of cancer, such as multiple myeloma, and may improve the treatment response as compared

- 45 to the response to the chemotherapeutic agent alone, without exacerbation of its toxic effects. Examples of additional pharmaceutical agents used in the treatment of multiple myeloma, for example, can include, without limitation, melphalan, melphalan plus prednisone [MP], doxorubicin, dexamethasone, and Velcade (bortezomib). Further additional agents used in the treatment of multiple myeloma include Bcr-Abl, Flt-3, RAF and FAK kinase inhibitors. Additive or synergistic effects are desirable outcomes of combining a JAK inhibitor of the present invention with an additional agent. Furthermore,
- ⁵⁰ resistance of multiple myeloma cells to agents such as dexamethasone may be reversible upon treatment with a JAK inhibitor of the present invention. The agents can be combined with the present compounds in a single or continuous dosage form, or the agents can be administered simultaneously or sequentially as separate dosage forms. [0171] In some embodiments, a corticosteroid such as dexamethasone is administered to a patient in combination with at least one JAK inhibitor where the dexamethasone is administered intermittently as opposed to continuously.
- ⁵⁵ [0172] In some further embodiments, combinations of one or more JAK inhibitors of the invention with other therapeutic agents can be administered to a patient prior to, during, and/or after a bone marrow transplant or stem cell transplant. [0173] In some embodiments, the additional therapeutic agent is fluocinolone acetonide (Retisert®), or rimexolone (AL-2178, Vexol, Alcon).

[0174] In some embodiments, the additional therapeutic agent is cyclosporine (Restasis®).

[0175] In some embodiments, the additional therapeutic agent is a corticosteroid. In some embodiments, the corticosteroid is triamcinolone, dexamethasone, fluocinolone, cortisone, prednisolone, or flumetholone.

- [0176] In some embodiments, the additional therapeutic agent is selected from Dehydrex[™] (Holles Labs), Civamide ⁵ (Opko), sodium hyaluronate (Vismed, Lantibio/TRB Chemedia), cyclosporine (ST-603, Sirion Therapeutics), ARG101(T) (testosterone, Argentis), AGR1012(P) (Argentis), ecabet sodium (Senju-Ista), gefarnate (Santen), 15-(s)-hydroxyeicosatetraenoic acid (15(S)-HETE), cevilemine, doxycycline (ALTY-0501, Alacrity), minocycline, iDestrin[™] (NP50301, Nascent Pharmaceuticals), cyclosporine A (Nova22007, Novagali), oxytetracycline (Duramycin, MOL11901, Lantibio), CF101 (2S,3S,4R,5R)-3,4-dihydroxy-5-[6-[(3-iodophenyl)methylamino]purin-9-yl]-N-methyl-oxolane-2-carbamyl, Can-Fite Bi-
- ¹⁰ opharma), voclosporin (LX212 or LX214, Lux Biosciences), ARG103 (Agentis), RX-10045 (synthetic resolvin analog, Resolvyx), DYN15 (Dyanmis Therapeutics), rivoglitazone (DE011, Daiichi Sanko), TB4 (RegeneRx), OPH-01 (Ophtalmis Monaco), PCS101 (Pericor Science), REV1-31 (Evolutec), Lacritin (Senju), rebamipide (Otsuka-Novartis), OT-551 (Othera), PAI-2 (University of Pennsylvania and Temple University), pilocarpine, tacrolimus, pimecrolimus (AMS981, Novartis), loteprednol etabonate, rituximab, diguafosol tetrasodium (INS365, Inspire), KLS-0611 (Kissei Pharmaceuticals),
- ¹⁵ dehydroepiandrosterone, anakinra, efalizumab, mycophenolate sodium, etanercept (Embrel®), hydroxychloroquine, NGX267 (TorreyPines Therapeutics), or thalidomide.
 [0177] In some embodiments, the additional therapeutic agent is an anti-angiogenic agent, cholinergic agonist, TRP-

1 receptor modulator, a calcium channel blocker, a mucin secretagogue, MUC1 stimulant, a calcineurin inhibitor, a corticosteroid, a P2Y2 receptor agonist, a muscarinic receptor agonist, another JAK inhibitor, Bcr-Abl kinase inhibitor, Elt-3 kinase inhibitor, BAE kinase inhibitor, and EAK kinase inhibitor such as for example, those described in WO

Flt-3 kinase inhibitor, RAF kinase inhibitor, and FAK kinase inhibitor such as, for example, those described in WO 2006/056399, which is incorporated herein by reference in its entirety. In some embodiments, the additional therapeutic agent is a tetracycline derivative (e.g., minocycline or doxycline).

[0178] In some embodiments, the additional therapeutic agent(s) are demulcent eye drops (also known as "artificial tears"), which include, but are not limited to, compositions containing polyvinylalcohol, hydroxypropyl methylcellulose,

- ²⁵ glycerin, polyethylene glycol (e.g. PEG400), or carboxymethyl cellulose. Artificial tears can help in the treatment of dry eye by compensating for reduced moistening and lubricating capacity of the tear film. In some embodiments, the additional therapeutic agent is a mucolytic drug, such as N-acetyl-cysteine, which can interact with the mucoproteins and, therefore, to decrease the viscosity of the tear film.
- [0179] In some embodiments, the additional therapeutic agent includes an antibiotic, antiviral, antifungal, anesthetic, anti-inflammatory agents including steroidal and non-steroidal anti-inflammatories, and anti-allergic agents. Examples of suitable medicaments include aminoglycosides such as amikacin, gentamycin, tobramycin, streptomycin, netilmycin, and kanamycin; fluoroquinolones such as ciprofloxacin, norfloxacin, ofloxacin, trovafloxacin, lomefloxacin, levofloxacin, and enoxacin; naphthyridine; sulfonamides; polymyxin; chloramphenicol; neomycin; paramomycin; colistimethate; bacitracin; vancomycin; tetracyclines; rifampin and its derivatives ("rifampins"); cycloserine; beta-lactams; cephalosporins;
- ³⁵ amphotericins; fluconazole; flucytosine; natamycin; miconazole; ketoconazole; corticosteroids; diclofenac; flurbiprofen; ketorolac; suprofen; cromolyn; lodoxamide; levocabastin; naphazoline; antazoline; pheniramine; or azalide antibiotic.

Pharmaceutical Formulations and Dosage Forms

- ⁴⁰ **[0180]** When employed as pharmaceuticals, the compounds of the invention can be administered in the form of pharmaceutical compositions. These compositions can be prepared in a manner well known in the pharmaceutical art, and can be administered by a variety of routes, depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical (including transdermal, epidermal, ophthalmic and to mucous membranes including intranasal, vaginal and rectal delivery), pulmonary (*e.g.*, by inhalation or insufflation of powders
- or aerosols, including by nebulizer; intratracheal or intranasal), oral or parenteral. Parenteral administration includes intravenous, intraarterial, subcutaneous, intraperitoneal intramuscular or injection or infusion; or intracranial, *e.g.*, intrathecal or intraventricular, administration. Parenteral administration can be in the form of a single bolus dose, or may be, for example, by a continuous perfusion pump. Pharmaceutical compositions and formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders.
- 50 Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable.

[0181] This invention also includes pharmaceutical compositions which contain, as the active ingredient, the compound of the invention or a pharmaceutically acceptable salt thereof, in combination with one or more pharmaceutically acceptable carriers (excipients). In some embodiments, the composition is suitable for topical administration. In making the

⁵⁵ compositions of the invention, the active ingredient is typically mixed with an excipient, diluted by an excipient or enclosed within such a carrier in the form of, for example, a capsule, sachet, paper, or other container. When the excipient serves as a diluent, it can be a solid, semi-solid, or liquid material, which acts as a vehicle, carrier or medium for the active ingredient. Thus, the compositions can be in the form of tablets, pills, powders, lozenges, sachets, cachets, elixirs,

suspensions, emulsions, solutions, syrups, aerosols (as a solid or in a liquid medium), ointments containing, for example, up to 10% by weight of the active compound, soft and hard gelatin capsules, suppositories, sterile injectable solutions, and sterile packaged powders.

[0182] In preparing a formulation, the active compound can be milled to provide the appropriate particle size prior to combining with the other ingredients. If the active compound is substantially insoluble, it can be milled to a particle size

5

10

of less than 200 mesh. If the active compound is substantially water soluble, the particle size can be adjusted by milling to provide a substantially uniform distribution in the formulation, e.g. about 40 mesh.

[0183] The compounds of the invention may be milled using known milling procedures such as wet milling to obtain a particle size appropriate for tablet formation and for other formulation types. Finely divided (nanoparticulate) preparations of the compounds of the invention can be prepared by processes known in the art, e.g., see International App. No. WO 2002/000196.

[0184] Some examples of suitable excipients include lactose, dextrose, sucrose, sorbitol, mannitol, starches, gum acacia, calcium phosphate, alginates, tragacanth, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, and methyl cellulose. The formulations can additionally include: lubricating agents such

- ¹⁵ as talc, magnesium stearate, and mineral oil; wetting agents; emulsifying and suspending agents; preserving agents such as methyl- and propylhydroxy-benzoates; sweetening agents; and flavoring agents. The compositions of the invention can be formulated so as to provide quick, sustained or delayed release of the active ingredient after administration to the patient by employing procedures known in the art.
- [0185] The compositions can be formulated in a unit dosage form, each dosage containing from about 5 to about 1,000 mg (1 g), more usually about 100 mg to about 500 mg, of the active ingredient. The term "unit dosage forms" refers to physically discrete units suitable as unitary dosages for human subjects and other mammals, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect, in association with a suitable pharmaceutical excipient.
- [0186] In some embodiments, the compositions of the invention contain from about 5 mg to about 50 mg of the active ²⁵ ingredient. One having ordinary skill in the art will appreciate that this embodies compounds or compositions containing about 5 mg to about 10 mg, about 10 mg to about 15 mg, about 15 mg to about 20 mg, about 20 mg to about 25 mg, about 25 mg to about 30 mg, about 30 mg to about 35 mg, about 35 mg to about 40 mg, about 40 mg to about 45 mg, or about 45 mg to about 50 mg of the active ingredient.
- **[0187]** In some embodiments, the compositions of the invention contain from about 50 mg to about 500 mg of the active ingredient. One having ordinary skill in the art will appreciate that this embodies compounds or compositions containing about 50 mg to about 100 mg, about 100 mg to about 150 mg, about 150 mg to about 200 mg, about 200 mg to about 250 mg, about 250 mg to about 300 mg, about 350 mg to about 400 mg, or about 450 mg to about 500 mg of the active ingredient.
- [0188] In some embodiments, the compositions of the invention contain from about 500 mg to about 1,000 mg of the active ingredient. One having ordinary skill in the art will appreciate that this embodies compounds or compositions containing about 500 mg to about 550 mg, about 550 mg to about 600 mg, about 600 mg to about 650 mg, about 650 mg to about 700 mg, about 700 mg to about 750 mg, about 750 mg, or about 800 mg, about 800 mg to about 800 mg to about 850 mg, about 850 mg, or about 950 mg to about 1,000 mg of the active ingredient.
 [0189] The active compound may be effective over a wide dosage range and is generally administered in a pharma-
- 40 ceutically effective amount. It will be understood, however, that the amount of the compound actually administered will usually be determined by a physician, according to the relevant circumstances, including the condition to be treated, the chosen route of administration, the actual compound administered, the age, weight, and response of the individual patient, the severity of the patient's symptoms, and the like.
- [0190] For preparing solid compositions such as tablets, the principal active ingredient is mixed with a pharmaceutical excipient to form a solid preformulation composition containing a homogeneous mixture of a compound of the present invention. When referring to these preformulation compositions as homogeneous, the active ingredient is typically dispersed evenly throughout the composition so that the composition can be readily subdivided into equally effective unit dosage forms such as tablets, pills and capsules. This solid preformulation is then subdivided into unit dosage forms of the type described above containing from, for example, about 0.1 to about 1000 mg of the active ingredient of the present invention.

[0191] The tablets or pills of the present invention can be coated or otherwise compounded to provide a dosage form affording the advantage of prolonged action. For example, the tablet or pill can comprise an inner dosage and an outer dosage component, the latter being in the form of an envelope over the former. The two components can be separated by an enteric layer which serves to resist disintegration in the stomach and permit the inner component to pass intact

⁵⁵ into the duodenum or to be delayed in release. A variety of materials can be used for such enteric layers or coatings, such materials including a number of polymeric acids and mixtures of polymeric acids with such materials as shellac, cetyl alcohol, and cellulose acetate.

[0192] The liquid forms in which the compounds and compositions of the present invention can be incorporated for

administration orally or by injection include aqueous solutions, suitably flavored syrups, aqueous or oil suspensions, and flavored emulsions with edible oils such as cottonseed oil, sesame oil, coconut oil, or peanut oil, as well as elixirs and similar pharmaceutical vehicles.

[0193] Compositions for inhalation or insufflation include solutions and suspensions in pharmaceutically acceptable,

- ⁵ aqueous or organic solvents, or mixtures thereof, and powders. The liquid or solid compositions may contain suitable pharmaceutically acceptable excipients as described *supra*. In some embodiments, the compositions are administered by the oral or nasal respiratory route for local or systemic effect. Compositions in can be nebulized by use of inert gases. Nebulized solutions may be breathed directly from the nebulizing device or the nebulizing device can be attached to a face masks tent, or intermittent positive pressure breathing machine. Solution, suspension, or powder compositions can be administered orally or nasally from devices which deliver the formulation in an appropriate manner.
- ¹⁰ be administered orally or nasally from devices which deliver the formulation in an appropriate manner. [0194] Topical formulations can contain one or more conventional carriers. In some embodiments, ointments can contain water and one or more hydrophobic carriers selected from, for example, liquid paraffin, polyoxyethylene alkyl ether, propylene glycol, white vaseline, and the like. Carrier compositions of creams can be based on water in combination with glycerol and one or more other components, e.g. glycerinemonostearate, PEG-glycerinemonostearate and cetyl-
- ¹⁵ stearyl alcohol. Gels can be formulated using isopropyl alcohol and water, suitably in combination with other components such as, for example, glycerol, hydroxyethyl cellulose, and the like. In some embodiments, topical formulations contain at least about 0.1, at least about 0.25, at least about 0.5, at least about 1, at least about 2, or at least about 5 wt % of the compound of the invention. The topical formulations can be suitably packaged in tubes of, for example, 100 g which are optionally associated with instructions for the treatment of the select indication, e.g., psoriasis or other skin condition.
- 20 [0195] The amount of compound or composition administered to a patient will vary depending upon what is being administered, the purpose of the administration, such as prophylaxis or therapy, the state of the patient, the manner of administration, and the like. In therapeutic applications, compositions can be administered to a patient already suffering from a disease in an amount sufficient to cure or at least partially arrest the symptoms of the disease and its complications. Effective doses will depend on the disease condition being treated as well as by the judgment of the attending clinician
- ²⁵ depending upon factors such as the severity of the disease, the age, weight and general condition of the patient, and the like.

[0196] The compositions administered to a patient can be in the form of pharmaceutical compositions described above. These compositions can be sterilized by conventional sterilization techniques, or may be sterile filtered. Aqueous solutions can be packaged for use as is, or lyophilized, the lyophilized preparation being combined with a sterile aqueous carrier

³⁰ prior to administration. The pH of the compound preparations typically will be between 3 and 11, more preferably from 5 to 9 and most preferably from 7 to 8. It will be understood that use of certain of the foregoing excipients, carriers, or stabilizers will result in the formation of pharmaceutical salts.

[0197] The therapeutic dosage of a compound of the present invention can vary according to, for example, the particular use for which the treatment is made, the manner of administration of the compound, the health and condition of the

- ³⁵ patient, and the judgment of the prescribing physician. The proportion or concentration of a compound of the invention in a pharmaceutical composition can vary depending upon a number of factors including dosage, chemical characteristics (*e.g.*, hydrophobicity), and the route of administration. For example, the compounds of the invention can be provided in an aqueous physiological buffer solution containing about 0.1 to about 10% w/v of the compound for parenteral administration. Some typical dose ranges are from about 1 µg/kg to about 1 g/kg of body weight per day. In some embodiments,
- 40 the dose range is from about 0.01 mg/kg to about 100 mg/kg of body weight per day. The dosage is likely to depend on such variables as the type and extent of progression of the disease or disorder, the overall health status of the particular patient, the relative biological efficacy of the compound selected, formulation of the excipient, and its route of administration. Effective doses can be extrapolated from dose-response curves derived from *in vitro* or animal model test systems. [0198] The compositions of the invention can further include one or more additional pharmaceutical agents such as
- a chemotherapeutic, steroid, anti-inflammatory compound, or immunosuppressant, examples of which are listed hereinabove.

[0199] In some embodiments, the compound, or pharmaceutically acceptable salt thereof, is administered as an ophthalmic composition. Accordingly, in some embodiments, the methods comprise administration of the compound, or pharmaceutically acceptable salt thereof, and an ophthalmically acceptable carrier. In some embodiments, the ophthalmic composition is a liquid composition, semi-solid composition, insert, film, microparticles or nanoparticles.

- 50 composition is a liquid composition, semi-solid composition, insert, film, microparticles or nanoparticles. [0200] In some embodiments, the ophthalmic composition is a liquid composition. In some embodiments, the ophthalmic composition is a semi-solid composition. In some embodiments, the ophthalmic composition is an topical composition. The topical compositions include, but are not limited to liquid and semi-solid compositions. In some embodiments, the ophthalmic composition is a topical composition. In some embodiments, the topical composition is a topical composition. In some embodiments, the topical composition is a topical composition.
- ⁵⁵ solution, an aqueous suspension, an ointment or a gel. In some embodiments, the ophthalmic composition is topically applied to the front of the eye, under the upper eyelid, on the lower eyelid and in the cul-de-sac. In some embodiments, the ophthalmic composition is sterilized. The sterilization can be accomplished by known techniques like sterilizing filtration of the solution or by heating of the solution in the ampoule ready for use. The ophthalmic compositions of the

invention can further contain pharmaceutical excipients suitable for the preparation of ophthalmic formulations. Examples of such excipients are preserving agents, buffering agents, chelating agents, antioxidant agents and salts for regulating the osmotic pressure.

[0201] As used herein, the term "ophthalmically acceptable carrier" refers to any material that can contain and release

- ⁵ the compound, or pharmaceutically acceptable salt thereof, and that is compatible with the eye. In some embodiments, the ophthalmically acceptable carrier is water or an aqueous solution or suspension, but also includes oils such as those used to make ointments and polymer matrices such as used in ocular inserts. In some embodiments, the composition may be an aqueous suspension comprising the compound, or pharmaceutically acceptable salt thereof. Liquid ophthalmic compositions, including both ointments and suspensions, may have a viscosity that is suited for the selected route of
- ¹⁰ administration. In some embodiments, the ophthalmic composition has a viscosity in the range of from about 1,000 to about 30,000 centipoise.

[0202] In some embodiments, the ophthalmic compositions may further comprise one or more of surfactants, adjuvants, buffers, antioxidants, tonicity adjusters, preservatives (e.g., EDTA, BAK (benzalkonium chloride), sodium chlorite, sodium perborate, polyquaterium-1), thickeners or viscosity modifiers (e.g., carboxymethyl cellulose, hydroxymethyl cellulose,

- ¹⁵ polyvinyl alcohol, polyethylene glycol, glycol 400, propylene glycol hydroxymethyl cellulose, hydroxpropyl-guar, hyaluronic acid, and hydroxypropyl cellulose) and the like. Additives in the formulation may include, but are not limited to, sodium chloride, sodium bicarbonate, sorbic acid, methyl paraben, propyl paraben, chlorhexidine, castor oil, and sodium perborate.
- [0203] Aqueous ophthalmic compositions (solutions or suspensions) generally do not contain physiologically or ophthalmically harmful constituents. In some embodiments, purified or deionized water is used in the composition. The pH may be adjusted by adding any physiologically and ophthalmically acceptable pH adjusting acids, bases or buffers to within the range of about 5.0 to 8.5. Ophthalmically acceptable examples of acids include acetic, boric, citric, lactic, phosphoric, hydrochloric, and the like, and examples of bases include sodium hydroxide, sodium phosphate, sodium borate, sodium citrate, sodium acetate, sodium lactate, tromethamine, trishydroxymethylamino-methane, and the like.
- ²⁵ Salts and buffers include citrate/dextrose, sodium bicarbonate, ammonium chloride and mixtures of the aforementioned acids and bases.

[0204] In some embodiments, the methods involve forming or supplying a depot of the therapeutic agent in contact with the external surface of the eye. A depot refers to a source of therapeutic agent that is not rapidly removed by tears or other eye clearance mechanisms. This allows for continued, sustained high concentrations of therapeutic agent to

- ³⁰ be present in the fluid on the external surface of the eye by a single application. Without wishing to be bound by any theory, it is believed that absorption and penetration may be dependent on both the dissolved drug concentration and the contact duration of the external tissue with the drug containing fluid. As the drug is removed by clearance of the ocular fluid and/or absorption into the eye tissue, more drug is provided, e.g. dissolved, into the replenished ocular fluid from the depot. Accordingly, the use of a depot may more easily facilitate loading of the ocular tissue for more insoluble
- therapeutic agents. In some embodiments, the depot can remain for up to eight hours or more. In some embodiments, the ophthalmic depot forms includes, but is not limited to, aqueous polymeric suspensions, ointments, and solid inserts. [0205] In some embodiments, the ophthalmic composition is an ointment or gel. In some embodiment, the ophthalmic composition is an oil-based delivery vehicle. In some embodiments, the composition comprises a petroleum or lanolin base to which is added the active ingredient, usually as 0.1 to 2%, and excipients. Common bases may include, but are
- not limited to, mineral oil, petrolatum and combinations thereof. In some embodiments, the ointment is applied as a ribbon onto the lower eyelid.
 [0206] In some embodiment, the ophthalmic composition is an ophthalmic insert. In some embodiments, the ophthalmic insert is biologically inert, soft, bio-erodible, viscoelastic, stable to sterilization after exposure to therapeutic agents,
- resistant to infections from air borne bacteria, bio- erodible, biocompatible, and/or viscoelastic. In some embodiments, the insert comprises an ophthalmically acceptable matrix, e.g., a polymer matrix. The matrix is typically a polymer and the therapeutic agent is generally dispersed therein or bonded to the polymer matrix. In some embodiments, the therapeutic agent may be slowly released from the matrix through dissolution or hydrolysis of the covalent bond. In some embodiments, the polymer is bioerodible (soluble) and the dissolution rate thereof can control the release rate of the
- therapeutic agent dispersed therein. In another form, the polymer matrix is a biodegradable polymer that breaks down such as by hydrolysis to thereby release the therapeutic agent bonded thereto or dispersed therein. In further embodiments, the matrix and therapeutic agent can be surrounded with an additional polymeric coating to further control release. In some embodiments, the insert comprises a biodegradable polymer such as polycaprolactone (PCL), an ethylene/vinyl acetate copolymer (EVA), polyalkyl cyanoacrylate, polyurethane, a nylon, or poly (dl-lactide-co-glycolide) (PLGA), or a copolymer of any of these. In some embodiments, the therapeutic agent is dispersed into the matrix material or dispersed
- ⁵⁵ amongst the monomer composition used to make the matrix material prior to polymerization. In some embodiments, the amount of therapeutic agent is from about 0.1 to about 50%, or from about 2 to about 20%. In further embodiments, the biodegradable or bioerodible polymer matrix is used so that the spent insert does not have to be removed. As the biodegradable or bioerodible polymer is degraded or dissolved, the therapeutic agent is released.

[0207] In further embodiments, the ophthalmic insert comprises a polymer, including, but are not limited to, those described in Wagh, et al., "Polymers used in ocular dosage form and drug delivery systems", Asian J. Pharm., pages 12-17 (Jan. 2008), which is incorporated herein by reference in its entirety. In some embodiments, the insert comprises a polymer selected from polyvinylpyrrolidone (PVP), an acrylate or methacrylate polymer or copolymer (e.g., Eudragit®)

- family of polymers from Rohm or Degussa), hydroxymethyl cellulose, polyacrylic acid, poly(amidoamine) dendrimers, poly(dimethyl siloxane), polyethylene oxide, poly(lactide-co-glycolide), poly(2-hydroxyethylmethacrylate), poly(vinyl al-cohol), or poly(propylene fumarate). In some embodiments, the insert comprises Gelfoam® R. In some embodiments, the insert is a polyacrylic acid of 450 kDa-cysteine conjugate.
- [0208] In some embodiments, the ophthalmic composition is a ophthalmic film. Polymers suitable for such films include, but are not limited to, those described in Wagh, et al. (*ibid*), In some embodiments, the film is a soft-contact lens, such as ones made from copolymers of N,N-diethylacrylamide and methacrylic acid crosslinked with ethyleneglycol dimethacrylate.

[0209] In some embodiments, the ophthalmic compositon comprises microspheres or nanoparticles. In some embodiment, the microspheres comprise gelatin. In some embodiments, the microspheres are injected to the posterior segment

- of the eye, in the chroroidal space, in the sclera, intravitreally or sub-retinally. In some embodiments, the microspheres or nanoparticles comprises a polymer including, but not limited to, those described in Wagh, et al. (*ibid*), which is incorporated herein by reference in its entirety. In some embodiments, the polymer is chitosan, a polycarboxylic acid such as polyacrylic acid, albumin particles, hyaluronic acid esters, polyitaconic acid, poly(butyl)cyanoacrylate, polycaprolactone, poly(isobutyl)caprolactone, poly(lactic acid-co-glycolic acid), or poly(lactic acid). In some embodiments, the microspheres or papoparticles comprise solid lipid particles.
- 20 the microspheres or nanoparticles comprise solid lipid particles.
 [0210] In some embodiments, the ophthalmic composition comprises an ion-exchange resin. In some embodiments, the ion-exchange resin is an inorganic zeolite or synthetic organic resin. In some embodiments, the ion-exchange resin includes, but is not limited to, those described in Wagh, et al. (*ibid*), which is incorporated herein by reference in its entirety. In some embodiments, the ion-exchange resin is a partially neutralized polyacrylic acid.
- ²⁵ **[0211]** In some embodiments, the ophthalmic composition is an aqueous polymeric suspension. In some embodiments, the therapeutic agent or a polymeric suspending agent is suspended in an aqueous medium. In some embodiments, the aqueous polymeric suspensions may be formulated so that they retain the same or substantially the same viscosity in the eye that they had prior to administration to the eye. In some embodiments, they may be formulated so that there is increased gelation upon contact with tear fluid.
- 30

35

Labeled Compound and Assay Methods

[0212] Another aspect of the present invention relates to labeled compounds of the invention (radio-labeled, fluorescentlabeled, etc.) that would be useful not only in imaging techniques but also in assays, both *in vitro* and *in vivo*, for localizing and quantitating JAK in tissue samples, including human, and for identifying JAK ligands by inhibition binding of a labeled compound. Accordingly, the present invention includes JAK assays that contain such labeled compounds.

[0213] The present invention further includes isotopically-labeled compounds of the invention. An "isotopically" or "radio-labeled" compound is a compound of the invention where one or more atoms are replaced or substituted by an atom having an atomic mass or mass number different from the atomic mass or mass number typically found in nature

- 40 (*i.e.*, naturally occurring). Suitable radionuclides that may be incorporated in compounds of the present invention include but are not limited to ³H (also written as T for tritium), ¹¹C, ¹³C, ¹⁴C, ¹³N, ¹⁵N, ¹⁵O, ¹⁷O, ¹⁸O, ¹⁸F, ³⁵S, ³⁶Cl, ⁸²Br, ⁷⁵Br, ⁷⁶Br, ⁷⁷Br, ¹²³I, ¹²⁴I, ¹²⁵I and ¹³¹I. The radionuclide that is incorporated in the instant radio-labeled compounds will depend on the specific application of that radio-labeled compound. For example, for *in vitro* JAK labeling and competition assays, compounds that incorporate ³H, ¹⁴C, ⁸²Br, ¹²⁵I, ¹³¹I, ³⁵S or will generally be most useful. For radio-imaging
- applications ¹¹C, ¹⁸F, ¹²⁵I, ¹²³I, ¹²⁴I, ¹³¹I, ⁷⁵Br, ⁷⁶Br or ⁷⁷Br will generally be most useful.
 [0214] It is to be understood that a "radio-labeled " or "labeled compound" is a compound that has incorporated at least one radionuclide. In some embodiments the radionuclide is selected from the group consisting of ³H, ¹⁴C, ¹²⁵I, ³⁵S and ⁸²Br. In some embodiments, the compound incorporates 1, 2, or 3 deuterium atoms.
- [0215] The present invention can further include synthetic methods for incorporating radio-isotopes into compounds of the invention. Synthetic methods for incorporating radio-isotopes into organic compounds are well known in the art, and an ordinary skill in the art will readily recognize the methods applicable for the compounds of invention.

[0216] A labeled compound of the invention can be used in a screening assay to identify/evaluate compounds. For example, a newly synthesized or identified compound (*i.e.*, test compound) which is labeled can be evaluated for its ability to bind a JAK by monitoring its concentration variation when contacting with the JAK, through tracking of the

⁵⁵ labeling. For example, a test compound (labeled) can be evaluated for its ability to reduce binding of another compound which is known to bind to a JAK (*i.e.*, standard compound). Accordingly, the ability of a test compound to compete with the standard compound for binding to the JAK directly correlates to its binding affinity. Conversely, in some other screening assays, the standard compound is labeled and test compounds are unlabeled. Accordingly, the concentration of the

labeled standard compound is monitored in order to evaluate the competition between the standard compound and the test compound, and the relative binding affinity of the test compound is thus ascertained.

5

Kits

[0217] The present invention also includes pharmaceutical kits useful, for example, in the treatment or prevention of JAK-associated diseases or disorders, such as cancer, which include one or more containers containing a pharmaceutical composition comprising a therapeutically effective amount of a compound of the invention. Such kits can further include, if desired, one or more of various conventional pharmaceutical kit components, such as, for example, containers with

one or more pharmaceutically acceptable carriers, additional containers, etc., as will be readily apparent to those skilled in the art. Instructions, either as inserts or as labels, indicating quantities of the components to be administered, guidelines for administration, and/or guidelines for mixing the components, can also be included in the kit.

EXAMPLES

15

10

[0218] The invention will be described in greater detail by way of specific examples. The following examples are offered for illustrative purposes, and are not intended to limit the invention in any manner. Those of skill in the art will readily recognize a variety of noncritical parameters which can be changed or modified to yield essentially the same results. The compounds of the Examples have been found to be JAK inhibitors according to at least one assay described herein.

20

25

30

Example 1. 4-[4-(3,5-Difluorophenoxy)piperidin-1-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]bu-tanenitrile tris(trifluoroacetate)

[0219]

35

50

Step 1. 4-(1,4-Dioxa-8-azaspiro[4.5]dec-8-yl)-3-hydroxybutanenitrile

[0220] To a solution of 1,4-dioxa-8-azaspiro[4.5]decane (9.0 g, 63 mmol) and (3R)-4-chloro-3-hydroxybutanenitrile (6.4 g, 52 mmol) in ethanol (120 mL) was added sodium hydrogen carbonate (6.7 g, 80 mmol). The mixture was stirred at 90 °C for 20 hours. After cooling, most of the ethanol was evaporated. The remaining mixture was diluted with ethyl acetate and washed with water and brine. The organic was then dried over MgSO₄, filtered, and concentrated to give an orange oil which was purified silica gel column to give the desired product (7.2 g, 61%) as an oil. ¹H NMR (CDCl₃) δ 3.95 (m, 5H), 2.75 (m, 2H), 2.51 (m, 6H), 1.73 (m, 4H). LCMS (M+H)⁺: 227.1.

45 Step 2. 2-cyano-1-(1,4-Dioxa-8-azaspiro[4.5]dec-8-ylmethyl)ethyl methanesulfonate

[0221] A solution of 4-(1,4-dioxa-8-azaspiro[4.5]dec-8-yl)-3-hydroxybutanenitrile (7.2 g, 32 mmol) and triethylamine (6.65 mL, 47.7 mmol) in methylene chloride (200 mL) was cooled to 0 °C. Methanesulfonyl chloride (3.45 mL, 44.5 mmol) was added and the reaction stirred at 0 °C for 1 hour. The reaction was quenched with water (20 mL) then diluted with dichloromethane (DCM). The mixture was then washed with water (2×). The organics were dried over MgSO₄, filtered, and concentrated to give the desired product (9.4 g, 97%). The crude product was used immediately for the next reaction. LCMS (M+H)⁺: 305.1.

Step 3. 4-(1,4-Dioxa-8-azaspiro[4.5]dec-8-yl)-3-[4-(1-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]butanenitrile

[0222] To a solution of 2-cyano-1-(1,4-dioxa-8-azaspiro[4.5]dec-8-ylmethyl)ethyl methanesulfonate (9.4 g, 31 mmol) and 4-(1H-pyrazol-4-yl)-7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidine (10.7 g, 34.0 mmol) in DMF

(100.0 mL) was added potassium carbonate (12.8 g, 92.6 mmol). The resulting mixture was stirred at room temperature for 91 hours. The reaction was diluted with ethyl acetate then washed with water ($2\times$) and brine. The organic solutions were dried over MgSO₄, filtered, and concentrated. The crude was purified with silica gel column to give of the product (10.5 g, 65%) as an oil. ¹H NMR (CDCl₃) δ 8.90 (s, 1H), 8.38, (d, 2H), 7.46 (d, 1H), 6.85, d, 1H), 5.73 (s, 2H), 4.00 (s,

5 4H), 3.61 (t, 2H), 3.21 (t, 1H), 3.02 (m, 2H), 2.94 (m, 2H), 2.67 (m, 4H), 1.79 (m, 4H), 0.98 (t, 2H), 0.02 (s, 9H). LCMS (M+H)⁺: 524.3.

Step 4. 4-(4-Oxopiperidin-1-yl)-3-[4-(1-{[2-(trimethylsilyl)ethoxy]methyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1yl]butanenitrile

10

15

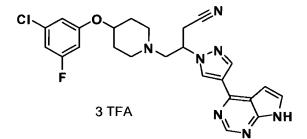
[0223] To a solution of 4-(1,4-dioxa-8-azaspiro[4.5]dec-8-yl)-3-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3d]pyrimidin-4-yl)-1H-pyrazol-1-yl]butanenitrile (1.00 g, 1.91 mmol) in acetone (20 mL) at 0 °C was added aqueous. HCl (3.2 mL, 39 mmol). The resulting mixture was warmed to room temperature and stirred overnight. The solution was placed in an ice water bath again and additional HCI (3.2 mL) was added and stirred for 5 hours. The flask was placed in an ice water bath and the reaction mixture was made slightly basic by the slow addition of 6 M NaOH solution. The acetone was evaporated and the remaining mixture extracted with DCM (3×). The combined extracts were washed with brine, dried over MgSO₄, filtered, and concentrated to give the crude product which was purified with silica gel column

20 Step 5. 4-(4-Hydroxypiperidin-1-yl)-3-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]butanenitrile

to give the desired product (0.58 g, 62%). LCMS (M+H)+: 480.0.

[0224] To a solution of 4-(4-oxopiperidin-1-yl)-3-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4yl)-1H-pyrazol-1-yl]butanenitrile (0.58 g, 0.97 mmol) in methanol (10 mL) at 0 °C was added sodium tetrahydroborate 25 (48 mg, 1.3 mmol). The resulting mixture was stirred for 1 hour then quenched with water. The solvent was evaporated then the aqueous mixture was extracted with DCM (3 ×). The combined extracts were washed with water, dried over Na₂SO₄, filtered, and concentrated. The crude product was purified with silica gel column to give the desired product (0.24 g, 52%). ¹H NMR (CDCl₃) δ 8.90 (s, 1H), 8.38, (d, 2H), 7.46 (d, 1H), 6.85, d, 1H), 5.73 (s, 2H), 4.70 (m, 1H), 3.78 (br, 1H), 3.60 (t, 2H), 3.19 (t, 2H), 3.06 - 2.86 (m, 3H), 2.80 (m, 2H), 2.37 (m, 2H), 1.92 (m, 2H), 1.62 (m, 2H), 0.98 (t, 2H), 0.0 (s, 9H). LCMS (M+H)+: 482.3.

30


Step 6. 4-[4-(3,5-Difluorophenoxy)piperidin-1-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]butanenitrile tris(trifluoroacetate)

- 35 [0225] To a mixture of resin of triphenylphosphine (54.6 mg, 0.114 mmol) in THF (0.6 mL) was added 3,5-difluorophenol (10.1 mg, 0.0778 mmol) and di-tert-butyl azodicarboxylate (19.1 mg, 0.0830 mmol). The mixture was stirred for 15 minutes before adding 4-(4-hydroxypiperidin-1-yl)-3-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]butanenitrile (25.0 mg, 0.0519 mmol). The reaction was stirred overnight at room temperature and the solvent was evaporated. The vial and resin were washed with DCM and filtered. The filtrates were washed with 10%
- 40 aq. NaOH solution. The organic was collected and concentrated to give the crude product. The crude residue was dissolved in methylene chloride (0.20 mL) and trifluoroacetic acid (0.17 mL) was added. The mixture was stirred for 2 hours then concentrated. The residue was dissolved in methanol (0.5 mL) followed by adding ethylenediamine (0.10 mL, 1.50 mmol). After stirring for 1 hour, the mixture was diluted with acetonitrile and purified by preparative LCMS (C18 column eluting with a gradient of acetonitrile (ACN)/H₂O containing 0.1% trifluoroacetic acid (TFA)) to afford the desired
- 45 product (12.6 mg, 30%). ¹H NMR (CD₃OD) δ 9.08 (s, 1H), 8.92 (s, 1H), 8.60 (s, 1H), 7.86 (s, 1H), 7.27 (s, 1H), 6.64 (d, 2H), 6.54 (t, 1H), 5.56 (m, 1H), 4,70 (s, 1H), 4.21 (t, 2H), 3.74 (d, 1H), 3.52 (br, 2H), 3.28 (m, 4H), 2.15 (m, 4H). LCMS (M+H)+: 464.1.

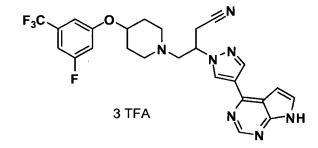
Example 2. 4-[4-(3-Chloro-5-fluorophenoxy)piperidin-1-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1yl]butanenitrile tris(trifluoroacetate

[0226]

55

10

20

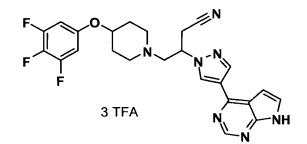

25

5

[0227] This compound was prepared according to the method of Example 1, using 3-chloro-5-fluorophenol as starting material. LCMS (M+H)⁺: 481.2.

Example 3.4-{4-[3-Fluoro-5-(trifluoromethyl)phenoxy]piperidin-1-yl}-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1Hpyrazol-1-yl]butanenitrile tris(trifluoroacetate)

[0228]

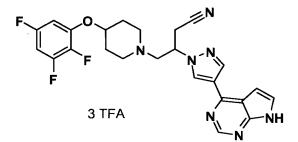


[0229] This compound was prepared according to the method of Example 1, Step 6, using 3-fluoro-5-(trifluoromethyl)phenol as starting material. LCMS (M+H)⁺: 514.2.

Example 4. 3-[4-(7H-Pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]-4-[4-(3,4,5-trifluorophenoxy)piperidin-1-yl]butanenitrile tris(trifluoroacetate)

35 [0230]

40



45

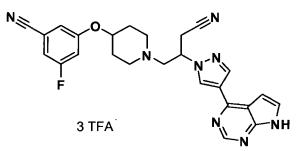
[0231] This compound was prepared according to the method of Example 1, using 3,4,5-trifluorophenol as starting material. LCMS (M+H)⁺: 482.2.

50 Example 5. 3-[4-(7H-Pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]-4-[4-(2,3,5-trifluorophenoxy)piperidin-1yl]butanenitrile tris(trifluoroacetate)

[0232]

10

5

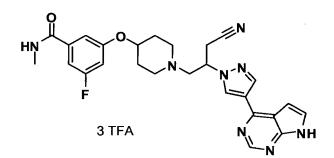

[0233] This compound was prepared according to the method of Example 1, Step 6, using 2,3,5-trifluorophenol as starting material. LCMS (M+H)⁺: 482.2.

Example 6. 3-[(1-{3-Cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}piperidin-4-yl)oxy]-5fluorobenzonitrile tris(trifluoroacetate)

[0234]

20		

25



[0235] This compound was prepared according to the method of Example 1, using 3-fluoro-5-hydroxybenzonitrile as starting material. LCMS (M+H)⁺: 471.3.

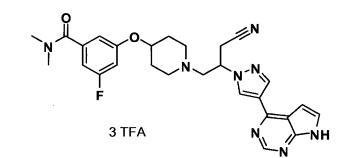
Example 7. 3-[(1-{3-Cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}piperidin-4-yl)oxy]-5-fluoro-N-methylbenzamide tris(trifluoroacetate)

35 **[0236]**

40

45

Step1. 3-Fluoro-5-hydroxy-N-methylbenzamide


50 [0237] To a mixture of 3-fluoro-5-hydroxybenzoic acid (100 mg, 0.60 mmol), methylammonium chloride (43 mg, 0.64 mmol), and triethylamine (130 μL, 0.96 mmol) in methylene chloride (3.4 mL) and DMF (0.50 mL) was added resin of *N*,*N'*-dicyclohexylcarbodiimide (0.77 g, 0.96 mmol). The resulting mixture was stirred overnight at room temperature then filtered. The filtrate was washed with water, dried over MgSO₄, filtered and concentrated to give the desired product (46 mg, 40%). LCMS (M+H)⁺: 170.1.

Step 2.3-[(1-{3-Cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}piperidin-4-yl)oxy]-5-fluoro-N-methylbenzamide tris(trifluoroacetate)

[0238] This compound was prepared according to the method of Example 1, Step 6, using 3-fluoro-5-hydroxy-N-5 methylbenzamide as starting material. LCMS (M+H)+: 503.3.

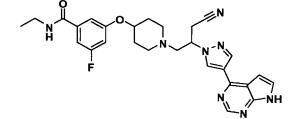
Example 8. 3-[(1-{3-Cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}piperidin-4-yl)oxy]-5fluoro-N,N-dimethylbenzamide tris(trifluoroacetate)

10 [0239]

[0240] This compound was prepared according to the method of Example 7, using dimethylamine hydrochloride as starting material. LCMS (M+H)+: 517.1.

25

15


20

Example 9. 3-[(1-{3-Cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}piperidin-4-yl)oxy]-Nethyl-5-fluorobenzamide

[0241]

30

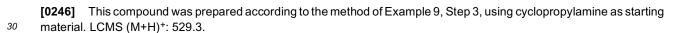
40 Step 1. Methyl 3-[(1-{3-cyano-2-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1yl]propyljpiperidin-4-yl)oxy]-5-fluorobenzoate

[0242] This compound was prepared according to the method of Example 1, Step 6, starting with methyl 3-fluoro-5hydroxybenzoate (185 mg, 1.09 mmol), with the exception that it was purified by flash column (eluted with 0-10% 45 MeOH/DCM). LCMS (M+H)+: 634.0.

Step 2. 3-[(1-{3-Cyano-2-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl{piperidin-4-yl)oxy]-5-fluorobenzoic acid

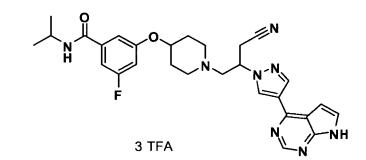
- 50 [0243] To a mixture of methyl 3-[(1-{3-cyano-2-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}piperidin-4-yl)oxy]-5-fluorobenzoate (40 mg, 0.05 mmol), THF (0.1 mL), methanol (1.0 mL) and water (0.2 mL) was added lithium hydroxide, monohydrate (10 mg, 0.25 mmol). The resulting mixture was stirred overnight at room temperature. The mixture was acidified by the addition of 1N HCl, and the solvents were evaporated. The aqueous mixture was extracted with DCM ($3\times$). The combined extracts were dried over Na₂SO₄, filtered and concentrated
- 55 to give the desired product (36 mg, 100%) as a solid. LCMS (M+H)+: 620.3.

Step 3. 3-[(1-{3-Cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}piperidin-4-yl)oxy]-N-ethyl-5-fluor-obenzamide


 [0244] To a mixture of 3-[(1-{3-cyano-2-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1Hpyrazol-1-yl]propyl}piperidin-4-yl)oxy]-5-fluorobenzoic acid (18 mg, 0.029 mmol) and 2.0 M ethylamine in THF (21.8 μL, 0.0436 mmol) in methylene chloride (0.2 mL) and dimethylformamide (DMF) (50 μL) were added triethylamine (6.1 μL, 0.0436 mmol) and benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate (19.3 mg, 0.0436 mmol). The resulting mixture was stirred overnight at room temperature and concentrated. To the residue was added saturated NaHCO₃ solution then extracted with ethyl acetate (3×). The combined extracts were dried over MgSO₄, filtered, and concentrated. The crude residue was dissolved in DCM (0.2 mL) and TFA (0.2 mL). The mixture was stirred for 2 hours then concentrated. To the reaction vial was added MeOH (0.5 mL) and ethylenediamine (EDA) (0.1 mL). After stirring for 1 hour, the mixture was diluted with acetonitrile and purified by preparative-LCMS (eluting with a gradient of ACN/H₂O containing 0.15% NH₄OH to afford the desired product (2.7 mg, 18%). LCMS (M+H)⁺: 517.3.

¹⁵ Example 10. 3-[(1-{3-Cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}piperidin-4-yl)oxy]-Ncyclopropyl-5-fluorobenzamide

20


25

Example 11.3-[(1-{3-Cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}piperidin-4-yl)oxy]-5-fluoro-N-isopropylbenzamide tris(trifluoroacetate)

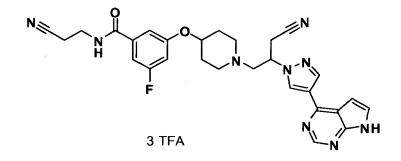
35 **[0247]**

40

45

[0248] To a mixture of 3-[(1-{3-cyano-2-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}piperidin-4-yl)oxy]-5-fluorobenzoic acid (20.0 mg, 0.0323 mmol), 2-propanamine (3.02 μL, 0.0355 mmol), and triethylamine (6.75 μL, 0.0484 mmol) in DMF (0.30 mL) was added *N*,*N*,*N'*,*N'*-tetramethyl-O-(7-azabenzo-triazol-1-yl)uronium hexafluorophosphate (18.4 mg, 0.0484 mmol). The resulting mixture was stirred overnight at room temperature. The reaction mixture was poured into saturated NaHCO₃ solution and extracted with ethyl acetate (3×). The combined extracts were dried over MgSO₄, filtered, and concentrated. The crude residue was dissolved in methylene chloride (0.15 mL) and trifluoroacetic acid (0.15 mL, 1.9 mmol) was added. The mixture was stirred for 2 hours then concentrated. To the reaction vial was added methanol (0.40 mL) and ethylenediamine (80 μL, 1 mmol). After stirring for 1 hour, the mixture was diluted with acetonitrile and purified by preparative LCMS (eluting with a gradient of ACN and H₂O containing 0.1% TFA) to give the desired product (11.7 mg, 68%). ¹H NMR (CD₃OD) δ 9.04 (s, 1H), 8.88 (s, 1H), 8.58 (s, 1H), 7.81 (d, 1H), 7.24 (m, 2H), 7.17 (d, 1H), 6.94 (d, 1H), 5.53 (m, 1H), 4.74 (s, 1H), 4.17 (m, 2H), 3.72

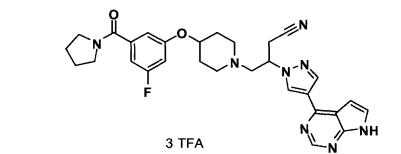
(d, 1H), 3.50 (br, 2H), 3.26 (m, 6H), 2.15 (m, 4H), 1.22 (d, 6H). LCMS (M+H)+: 531.3.


Example 12. N-(2-Cyanoethyl)-3-[(1-{3-cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}piperidin-4-yl)oxy]-5-fluorobenzamide tris(trifluoroacetate)

[0249]

10

15


5

[0250] This compound was prepared according to the method of Example 11, using β -cyanoethylamine as starting material. LCMS (M+H)⁺: 542.3.

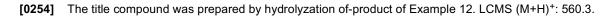
Example 13. 4-{4-[3-Fluoro-5-(pyrrolidin-1-ylcarbonyl)phenoxy]piperidin-1-yl}-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]butanenitrile tris(trifluoroacetate)

25 **[0251]**

[0252] This compound was prepared according to the method of Example 11, using pyrrolidine as starting material. LCMS (M+H)⁺: 543.3.

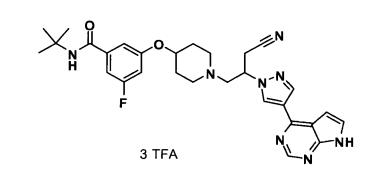
40

50


55

30

35


Example 14. N-(3-Amino-3-oxopropyl)-3-[(1-{3-cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]pro-pyl}piperidin-4-yl)oxy]-5-fluorobenzamide tris(trifluoroacetate)

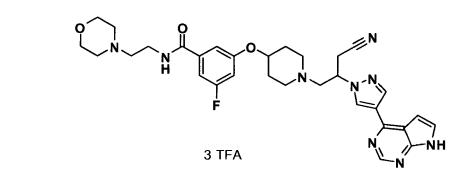
[0253]

Example 15. N-(tert-Butyl)-3-[(1-{3-cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}piperidin-4-yl)oxy]-5-fluorobenzamide tris(trifluoroacetate)

[0255]

15

25


30

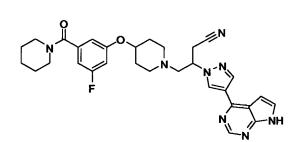
10

[0256] This compound was prepared according to the method of Example 11, using *tert*-butylamine as starting material. LCMS (M+H)⁺: 545.3.

20 Example 16. 3-[(1-{3-Cyano-2-[4-(7H-pyrrolo[2, 3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}piperidin-4-yl)oxy]-5fluoro-N-(2-morpholin-4-ylethyl)benzamide tris(trifluoroacetate)

[0257]

35

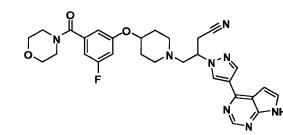

[0258] This compound was prepared according to the method of Example 11, using *N*-(2-aminoethyl)morpholine as starting material. ¹H NMR (CD₃OD) δ 9.04 (s, 1H), 8.88 (s, 1H), 8.58 (s, 1H), 7.80 (t, 1H), 7.30 (s, 1H), 7.21 (m, 2H), 6.99 (d, 1H), 5.53 (m, 1H), 4.74 (s, 1H), 4.19 (m, 1H), 4.04 (br, 1H), 3.92 (s, 1H), 3.75 (m, 4H), 3.50 (m, 1H), 3.36 (m, 4H), 3.20 (m, 4H), 3.00 (s, 2H), 2.20 (m, 2H), 2.09 (m, 2H), 1.30 (m, 4H). LCMS (M+H)⁺: 602.3.

40

[0259]

45

⁵⁵ **[0260]** This compound was prepared according to the method of Example 11, using piperidine as starting material, with the exception that purification was done by preparative-LCMS (eluting with a gradient of ACN/H₂O containing 0.15% $NH_4OH LCMS (M+H)^+$: 557.3.

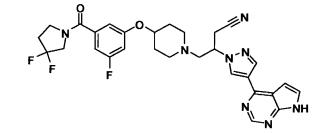

Example 17.4-{4-[3-Fluoro-5-(piperidin-1-ylcarbonyl)phenoxy]piperidin-1-yl}-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]butanenitrile

Example 18.4-{4-[3-Fluoro-5-(morpholin-4-ylcarbonyl)phenoxy]piperidin-1-yl}-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]butanenitrile

[0261]

5

10

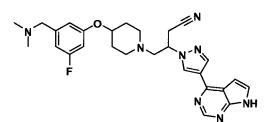

¹⁵ **[0262]** This compound was prepared according to the method of Example 11, using morpholine as starting material, with the exception that purification was done by preparative LCMS (eluting with a gradient of ACN/H₂O containing 0.15% NH_4OH). LCMS (M+H)⁺: 559.3.

Example 19. 4-(4-{3-[(3,3-Difluoropyrrolidin-1-yl)carbonyl]-5-fluorophenoxy}piperidin-1-yl)-3-[4-(7H-pyrrolo[2,3d]pyrimidin-4-yl)-1H-pyrazol-1-yl]butanenitrile

[0263]

25

30


[0264] This compound was prepared according to the method of Example 11, using 3,3-difluoropyrrolidine hydrochloride as starting material, with the exception that purification was done by preparative LCMS (eluting with a gradient of ACN/H₂O containing 0.15% NH₄OH). LCMS (M+H)⁺: 579.3.

Example 20. 4-(4-{3-[(Dimethylamino)methyl]-5-fluorophenoxy}piperidin-1-yl)-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]butanenitrile (chiral)

40

[0265]

45

50

Step 1. 3-Fluoro-5-hydroxybenzaldehyde

55

[0266] To a suspension of 3-fluoro-5-hydroxybenzonitrile (1.00 g, 7.29 mmol) in toluene (60.0 mL at -78 °C was added 1.0 M diisobutylaluminum hydride in toluene (18.2 mL, 18.2 mmol). The resulting mixture was stirred at -78 °C for 1 hour and allowed to warm to room temperature overnight. The 1:1 mixture of methanol and water (10 mL) was added and stirred for 35 minutes. The solid was filtered and washed with ethyl acetate. The filtrates were washed with water and brine then dried over Na₂SO₄, filtered, and concentrated. The crude product was purified with silica gel column (eluted

with 10-50% ethyl acetate/hexanes) to give the desired product (0.77 g, 75%). ¹H NMR (DMSO-d₆) δ 10.49 (s, 1H), 9.88 (s, 1H), 7.10 (m, 2H), 6.87 (d, 1H).

Step 2. 3-[(Dimethylamino)methyl]-5-fluorophenol

[0267] To a mixture of dimethylamine hydrochloride (160 mg, 1.96 mmol) and 3-fluoro-5-hydroxybenzaldehyde (250.0 mg, 1.784 mmol) in methylene chloride (9.0 mL) was added triethylamine (323 μ L, 2.32 mmol) and resin of sodium triacetoxyborohydride (1.1 g, 2.7 mmol). The resulting mixture was stirred overnight then filtered and concentrated. The crude was purified by silica gel column (eluting with 0-15% methanol/DCM) to give the desired product (0.21 g, 70%). ¹H NMR (DMSO-d₆) δ 6.55 (m, 2H), 6.42 (d, 1H), 2.15 (s, 6H), 1.89 (s, 2H). LCMS (M+H)⁺: 170.1.

Step 3. 4-(4-{3-[(Dimethylamino)methyl]-5-fluorophenoxy}piperidin-1-yl)-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]butanenitrile

- ¹⁵ **[0268]** To a mixture of 3-[(dimethylamino)methyl]-5-fluorophenol (158 mg, 0.934 mmol) in methylene chloride (9 mL) was added Resin of triphenylphosphine (578 mg, 1.37 mmol) and di-*tert*-butyl azodicarboxylate (229 mg, 0.996 mmol). The mixture was stirred for 20 minutes before adding a solution of 4-(4-hydroxypiperidin-1-yl)-3-[4-(7-{[2-(trimethylsi-lyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]butanenitrile (300 mg, 0.6 mmol) in methylene chloride (2 mL). The reaction was stirred at room temperature overnight. Additional resin of triphenylphosphine (0.5 g), di-
- 20 tert-butyl azodicarboxylate (0.23g), and DCM (8mL) were added and stirred for additional 2 hours. The vial and resin were washed with DCM and filtered. The filtrates were washed with 10% aq. NaOH solution. The organic layer was dried over MgSO₄, filtered, and concentrated. The crude was purified by silica gel column (eluted with 0-15% methanol/DCM) to give the SEM protected product. LCMS (M+H)⁺: 633.5. To the purified product was added methylene chloride (1.5 mL) and trifluoroacetic acid (1.5 mL, 19 mmol) and stirred for 2 hours. The solvents were evaporated before adding
- ²⁵ methanol (3.5 mL) and ethylenediamine (0.70 mL, 10 mmol). The resulting mixture was stirred for 1 hour then concentrated. The concentrate was taken up in DCM and washed with water, dried over Na₂SO₄, filtered, and concentrated to give the crude product which was purified by chiral prep-HPLC (Chiralcel OJ-H column, 4.6 x 250mm, 5 μ , 60% ethanol/Hex, 0.5 ml/min) to afford 2 enantiomers.
- enantiomer 1 (first to elute): LCMS (M+H)⁺: 503.3.
- enantiomer 2 (second to elute): ¹H NMR (DMSO-d₆) δ 8.78 (s, 1H), 8.67 (s, 1H), 8.35 (s, 1H), 7.59 (d, 1H), 6.96 (d, 1H), 6.64 (t, 3H), 4.94 (m, 1H), 4.36 (m, 1H), 3.39 (m, 2H), 3.19 (d, 3H), 2.77 (m, 3H), 2.60 (m, 1H), 2.32 (m, 2H), 2.10 (s, 6H), 1.83 (m, 2H), 1.54 (m, 2H). LCMS (M+H)⁺: 503.3.

Examples 21-30.

35

5

10

[0269] The examples in the table below were made by procedures analogous to those for producing Example 20, step 2-3.

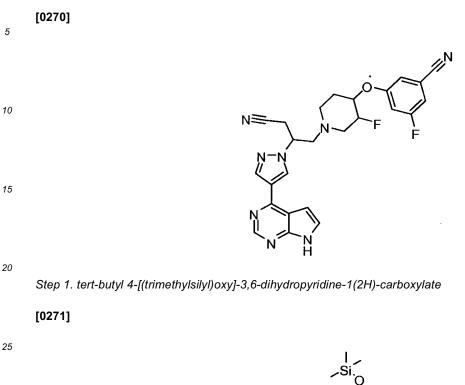
40

45

50

529.3 515.3 529.3 529.3 H+N 5 4-(4-{3-[(cyclobutylamino)methyl]-5-fluorophenoxy}piperidin-1-yl)-3-[4-(7H-pyrrolo[2,3-4-[4-(3-{[cyclopropyl(methyl)amino]methyl}-5-fluorophenoxy)piperidin-1-yl]-3-[4-(7H-4-{4-[3-fluoro-5-(pyrrolidin-1-ylmethyl)phenoxy]piperidin-1-yl}-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]butanenitrile tetrakis(trifluoroacetate) 4-{4-[3-(azetidin-1-ylmethyl)-5-fluorophenoxy]piperidin-1-yl}-3-[4-(7H-pyrrolo[2,3-10 d]pyrimidin-4-yl)-1H-pyrazol-1-yl]butanenitrile tetrakis(trifluoroacetate) d]pyrimidin-4-yl)-1H-pyrazol-1-yl]butanenitrile tetrakis(trifluoroacetate 15 pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]butanenitrile Name 20 25 30 35 40 z Z z 45 4 TFA 4 TFA 4 TFA 50 Structure 55 . Ш 23 24 22 5

EP 2 640 725 B1


			T		1	1
		H+M	543.3	545.3	565.3	543.3
5						
10			H-pyrrolo[2,3-	(7H-pyrrolo[2,3-	in-1-yl)-3-[4-(7H-	4-[4-(3-fluoro-5-t[(2R)-2-methylpyrrolidin-1-yl]methyl}phenoxy)piperidin -1-yl]-3-[4-(7H- pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]butanenitrile
15			n-1-yl}-3-[4-(7	din-1-yl}-3-[4-	anoxy} piperid rile	henoxy)piper rile
20		Name	phenoxy]piperidi anenitrile	/)phenoxy]piperi anenitrile	ethyl]-5-fluorophe zol-1-yl]butanenit	idin-1-yl]methyl} zol-1-yl]butanenit
25			n-1-ylmethyl) azol-1-yl]butt	ilin-4-ylmethy azol-1-yl]buta	olidin-1-yl)m -yra -yra	-methylpyrrol -yl)-1H-pyra:
30	(continued)		4-{4-[3-fluoro-5-(piperidin-1-ylmethyl)phenoxy]piperidin-1-yl}-3-[4-(7H-pyrrolo[2,3- d]pyrimidin-4-yl)-1H-pyrazol-1-yl]butanenitrile	4-{4-[3-fluoro-5-(morpholin-4-ylmethyl)phenoxy]piperidin-1-yl}-3-[4-(7H-pyrrolo[2,3- d]pyrimidin-4-yl)-1H-pyrazol-1-yl]butanenitrile	4-(4-{3-[(3,3-difluoropyrrolidin-1-yl)methyl]-5-fluorophenoxy} piperidin-1-yl)-3-[4-(7H- pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]butanenitrile	4-[4-(3-fluoro-5-{[(2R)-2-methylpyrrolidin-1-yl]methyl}pher pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]butanenitrile
35			4-{4-[3 d]pyrir	4-{4-[3 d]pyrir	4-(4-{3 pyrrolo	4-[4-(3 pyrrolo
40			N N N N			z z z
45				$\langle \rangle$	$\left \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \right\rangle^{\mathbf{z}}$	
50			ý ý ľ	о́ Дарана Да Дарана Да Да Дарана Да Да Да Да Да Да Да Да Да Да Да Да Да	<mark>`</mark>	́
55		Structure	~			Z
		ËX.	25	26	27	28

HN

z

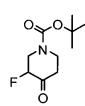
	H+W	543.3	533.2
5		1	
10		4-[4-(3-fluoro-5-{[(2S)-2-methylpyrrolidin-1-yl]methyl}phenoxy)piperidin-1-yl]-3-[4-(7H- pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]butanenitrile	-1-yl]-3-[4-(7H-
15		}phenoxy)piper itrile	anoxy)piperidin nitrile
20	Name	idin-1-yl]methyl zol-1-yl]butaner	ino]methyl} ph izol-1-yl]butane
25		-2-methylpyrrol 1-4-yl)-1H-pyra:	ethoxyethyl)am -4-yl)-1 H-pyra
30	(continuea)	4-[4-(3-fluoro-5-{[(2S)-2-methylpyrrolidin-1-yl]methyl}pher pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]butanenitrile	4-[4-(3-fluoro-5-[[(2-methoxyethyl)amino]methyl} phenoxy)piperidin-1-yl]-3-[4-(7H- pyrrolo[2,3-d]pyrimidin-4-yl)-1 H-pyrazol-1-yl]butanenitrile
35		4-[4-(; pyrrol	4-[4-(; pyrrol
40		N N N	
45			
50	en L		ZI ZI
55	Structure		ó\
	х Ц	29	30

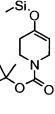
Example 31. 3-[(1-{3-Cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}-3-fluoropiperidin-4yl)oxy]-5-fluorobenzonitrile (two diastereomers)

30

5

- [0272] To a solution of tert-butyl 4-oxo-1-piperidinecarboxylate (7.73 g, 38.8 mmol) in DMF (20 mL) was added chlo-35 rotrimethylsilane (5.91 mL, 46.6 mmol) followed by triethylamine (13.0 mL, 93.2 mmol). The resulting heterogeneous mixture was warmed to 80 °C and stirred for 24 hours. The cooled mixture was filtered and diluted with hexanes, washed with saturated NaHCO₃ (3 \times) and brine, then dried over Na₂SO₄, filtered and concentrated to afford 6.2 g (58%) the desired product as an oil. LCMS (M+H-56)+: 216.1.
- 40 Step 2. tert-Butyl 3-fluoro-4-oxopiperidine-1-carboxylate


[0273]


45

50

55

[0274] To a solution of tert-butyl 4-[(trimethylsilyl)oxyl-3,6-dihydropyridine-1(2H)-carboxylate (6.15 g, 22.6 mmol) in acetonitrile (140 mL) at ambient temperature was added Selectfluor (8.84 g, 25.0 mmol) portionwise. The mixture was stirred for 2 hours, then concentrated to dryness and partitioned between ethyl acetate and brine. The aqueous layer was extracted with ethyl acetate and the combined organic phases were washed with brine, dried over Na2SO4, filtered and concentrated. The crude was purified with silica gel column to give the desired product (3.6 g, 73%) as a solid. LCMS (M+H-56)+: 162.1.

Step 3. tert-Butyl 3-fluoro-4-hydroxypiperidine-1-carboxylate

[0275]

10

15

[0276] To a solution of tert-butyl 3-fluoro-4-oxopiperidine-1-carboxylate (3.60 g, 16.6 mmol) in methanol (20 mL) was added sodium borohydride (0.815 g, 21.5 mmol). The reaction solution was stirred at room temperature for 2 hours. The reaction was guenched with water and methanol was removed in vacuo. The agueous layer was extracted with ethyl acetate twice. The combined organic solutions were washed with brine, dried over Na₂SO₄ and concentrated. The crude was purified by flash column chromatography on silica gel, eluting with a gradient of 0-50% ethyl acetate in hexanes to afford diastereomers 1 (first to elute) (0.95 g, 26%) and diastereomers 2 (second to elute) (2.7 g, 74%). LCMS (M+H-56)+: 164.1.

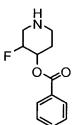
20 Step 4. tert-Butyl 4-(benzoyloxy)-3-fluoropiperidine-1-carboxylate

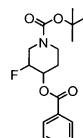
[0277]

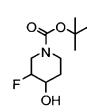
25

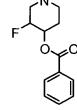
30

35 [0278] To a solution of tert-butyl 3-fluoro-4-hydroxypiperidine-1-carboxylate (diastereomers 1, 0.95 g, 4.3 mmol) in THF (10.0 mL) at 0 °C was added sodium hydride (60% in mineral oil, 0.260 g, 6.50 mmol). After stirring for 0.5 hour, benzoyl chloride (0.604 mL, 5.20 mmol) was added and stirred for 2 hours. The reaction was quenched with 1 N HCI and diluted with ethyl acetate. The aqueous layer was extracted with ethyl acetate and combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated. The residue was purified with silica gel column to give 40 the desired product as oil (0.80 g, 57%). Diasteromers 2 from last step was converted to the desired product using same


Step 5. 3-Fluoropiperidin-4-yl benzoate


condition in 63% yield. LCMS (M+Na)+: 346.1.


45 [0279]


50

[0280] To a solution of tert-butyl 4-(benzoyloxy)-3-fluoropiperidine-1-carboxylate (diastereomer 2, 2.6 g, 8.0 mmol) in methylene chloride (38 mL) was added 4.0 M hydrogen chloride in dioxane (16 mL, 64 mmol). The reaction solution was stirred at ambient temperature for 6 hours. The reaction solution was diluted with ether. The precipitate was filtered

and dried to give the desired product as white solid (1.8 g, 100%). Diastereomer 1 was converted to the desired product in same condition in 100% yield. LCMS (M+H)⁺: 224.1.

Step 6. 1-((R)-3-Cyano-2-hydroxypropyl)-3-fluoropiperidin-4-yl benzoate

[0281]

10

5

15

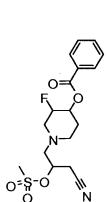
20 [0282] To a solution of 3-fluoropiperidin-4-yl benzoate (diastereomer 1, 532 mg, 2.38 mmol) and (3R)-4-chloro-3-hydroxybutanenitrile (301 mg, 2.44 mmol) in ethanol (5.4 mL) was added sodium hydrogen carbonate (1.02 g, 12.1 mmol). The mixture was stirred at 90 °C for 20 hours. After cooling, most of the ethanol was evaporated. The remaining mixture was diluted with ethyl acetate and washed with water and brine. The organic was then dried over MgSO₄, filtered, and concentrated. The product was purified with LCMS (C18 column eluting with a gradient MeCN/H₂O containing 0.15%

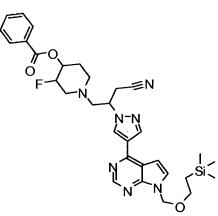
HC

NH₄OH at 60 mL/min) to give the desired product (0.375 g, 51%). The product was synthesized from diastereomer 2 using same procedure in 43% yield. LCMS (M+H)⁺: 307.1.

Step 7. 1-{3-Cyano-2-[(methylsulfonyl)oxy]propyl}-3-fluoropiperidin-4-yl benzoate

30 **[0283]**


35


- 40
- [0284] To a solution of 1-(3-cyano-2-hydroxypropyl)-3-fluoropiperidin-4-yl benzoate (diastereomer 1, 0.375 g, 1.22 mmol) in DCM (7 mL) was added triethylamine (0.256 mL, 1.84 mmol) at 0 °C, followed by methanesulfonyl chloride (0.133 mL, 1.71 mmol). The reaction solution was stirred at 0 °C for 1 hour. The reaction was quenched with water and diluted with DCM. The organic solution was washed with water (2×). The organics were dried over MgSO₄, filtered, and concentrated to give the desired product (0.47 g, 100%) as an oil. The crude was used immediately for the next reaction. The product was synthesized from diastereomer 2 using same procedure in 100% yield. LCMS (M+H)⁺: 385.1.

50

Step 8. 1-{3-Cyano-2-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}-3-fluoropiperidin-4-yl benzoate

[0285]

10

15

[0286] To a solution of 1-{3-cyano-2-[(methylsulfonyl)oxy]propyl}-3-fluoropiperidin-4-yl benzoate (0.407 g, 1.06 mmol) (diastereomer 2) and 4-(1H-pyrazol-4-yl)-7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidine (0.36 g, 1.1 mmol) in DMF (4 mL) was added potassium carbonate (0.46 g, 3.3 mmol). The resulting mixture was stirred at room temperature for 4 days. The reaction was diluted with ethyl acetate then washed with water (2×) and brine. The organics
 were dried over MgSO₄, filtered, and concentrated. The product was purified with LCMS (C18 column eluting with a gradient MeCN/H₂O containing 0.15% NH₄OH at 60 mL/min) to give the desired product (0.389 g, 61%). The product was synthesized from diastereomer 1 using same procedure in 52% yield. LCMS (M+H)⁺: 604.3.

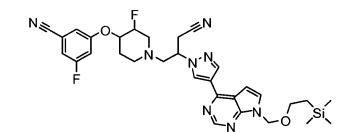
Step 9. 4-(3-Fluoro-4-hydroxypiperidin-1-yl)-3-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]butanenitrile

[0287]

30

25

35



45

[0288] To a solution of 1-{3-cyano-2-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}-3-fluoropiperidin-4-yl benzoate (0.389 g, 0.644 mmol) (diastereomer 2) in acetonitrile (2.0 mL) and water (1.0 mL) was added lithium hydroxide (30.8 mg, 1.29 mmol). The reaction solution was stirred at room temperature overnight. The reaction solution was diluted with ethyl acetate and water. The aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated to give the desired product (0.322 g, 100%). The product was synthesized from diastereomer 1 using same procedure in 100% yield. LCMS (M+H)⁺: 500.3.

Step 10. 3-[(1-{3-Cyano-2-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}-3-fluoropiperidin-4-yl)oxy]-5-fluorobenzonitrile

[0289]

15

20

5

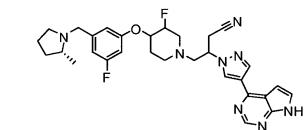
[0290] To a mixture of resin of triphenylphosphine (63.8 mg, 0.133 mmol) and 3-fluoro-5-hydroxybenzonitrile (12.5 mg, 0.0910 mmol) in methylene chloride (0.6 mL) was added di-*tert*-butyl azodicarboxylate (22.3 mg, 0.0970 mmol) (DBAD). The mixture was stirred for 15 minutes before adding a solution of 4-(3-fluoro-4-hydroxypiperidin-1-yl)-3-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]butanenitrile (30.3 mg, 0.0606 mmol) (diastereomer 2) in methylene chloride (0.2 mL). The reaction was stirred overnight at room temperature then another portion of resin of triphenylphosphine and DBAD was added and the solution was stirred for 6 hours, then the solvent was evaporated. The vial and resin were washed with DCM and filtered. The filtrates were washed with 10% aq. NaOH. The organic was dried over MgSO₄, filtered, and concentrated. The crude was diluted with methanol and purified with preparative LCMS (Sunfire C18 column eluting with a gradient MeCN/H₂O containing 0.1% TFA at 30 mL/min) to give the desired product (11 mg, 29%). The product was synthesized from diastereomer 1 using same

procedure in 14% yield. LCMS (M+H)⁺: 619.3.

Step 11. 3-[(1-{3-Cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}-3-fluoropiperidin-4-yl)oxy]-5-fluorobenzonitrile

25

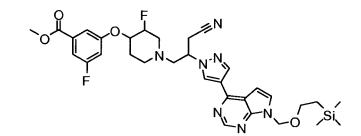
[0291] To a solution of 3-[(1-{3-cyano-2-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}-3-fluoropiperidin-4-yl)oxy]-5-fluorobenzonitrile (11 mg, 0.018 mmol) in DCM (0.5 mL) was added 0.5 ml TFA. The mixture was stirred for 1 hour and solvent was removed. The residue was dissolved in methanol (1 mL), and 0.2 ml EDA was added. After stirring for 2 hours, The reaction solution was diluted with methanol and purified by preparative-LCMS (C18 column eluting with a gradient of ACN/H₂O containing 0.15% NH₄OH) afforded product (5.4 mg, 62%). The product was synthesized from diastereomer 1 using same procedure in 61% yield LCMS (M+H)⁺: 489.2.


Example 32.4-[3-Fluoro-4-(3-fluoro-5-{[(2R)-2-methylpyrrolidin-1-yl]methyl}phenoxy)piperidin-1-yl]-3-[4-(7H-pyrrolo [2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]butanenitrile (diastereomers 2)

35

[0292]

30



45

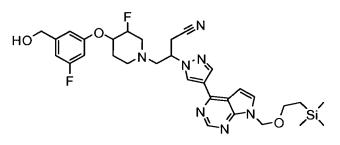
Step 1. Methyl 3-[(1-{3-cyano-2-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1yl]propyl}-3-fluoropiperidin-4-yl)oxy]-5-fluorobenzoate

50

[0293]

5

[0294] This compound was prepared according to the procedure of Example 31, step 10, using of 4-(3-fluoro-4-hydroxypiperidin-1-yl)-3-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]bu-tanenitrile (266 mg, 0.532 mmol) (diastereomer 2) and 3-fluoro-5-hydroxybenzoate as the starting materials. LCMS (M+H)+: 652.3.


15

Step 2. 4-{3-Fluoro-4-[3-fluoro-5-(hydroxymethyl)phenoxy]piperidin-1-yl}-3-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]butanenitrile

[0295]

20

25

30

35

40

[0296] To a solution of methyl 3-[(1-{3-cyano-2-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}-3-fluoropiperidin-4-yl)oxy]-5-fluorobenzoate (148 mg, 0.227 mmol) (diastereomer 2) in tetrahydrofuran (THF) (6.7 mL) was added lithium tetrahydroborate (9.9 mg, 0.45 mmol). The resulting solution was stirred at room temperature for 1 hour. The reaction was quenched with 1 N HCl solution. The organic solution was washed with brine, dried over Na_2SO_4 , filtered and concentrated. The crude was purified with LCMS (C18 column eluting with a gradient of ACN/H₂O containing 0.15% NH₄OH) to give the desired product (42 mg, 30%). LCMS (M+H)+: 624.3.

Step 3. 4-[3-Fluoro-4-(3-fluoro-5-formylphenoxy)piperidin-1-yl]-3-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]butanenitrile

[0297]

45

55

50

[0298] To a solution of 4-{3-fluoro-4-[3-fluoro-5-(hydroxymethyl)phenoxy]piperidin-1-yl}-3-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]butanenitrile (42.0 mg, 0.0673 mmol) (diastereomer 2) in DCM (3 mL) was added Dess-Martin periodinane (57 mg, 0.13 mmol). The reaction solution was stirred at ambient temperature for 1 hour. The reaction solution was diluted with ether and saturated sodium bicarbonate and stirred until two clear layers were formed. The organic layer was separated and washed with brine, dried over Na₂SO₄, filtered and concentrated. The crude was used without purification. LCMS (M+H)+: 622.3.

Step 4. 4-[3-Fluoro-4-(3-fluoro-5-{[(2R)-2-methylpyrrolidin-1-yl]methyl}phenoxy)piperidin-1-yl]-3-[4-(7-{[2-(trimethylsi-lyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrirnidin-4-yl]-1H-pyrazol-1-yl]butanenitrile

[0299]

5

10

15

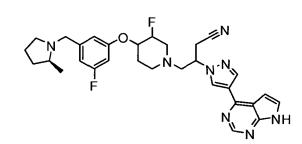
20

[0300] To a mixture of (2R)-2-methylpyrrolidine (2.3 μ L, 0.023 mmol) and 4-[3-fluoro-4-(3-fluoro-5-formylphenoxy)piperidin-1-yl]-3-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]butanenitrile (13.5 mg, 0.0217 mmol) (diastereomer 2) in DCM (0.10 mL) was added resin of sodium triacetoxyborohydride (13 mg, 0.032 mmol). The resulting mixture was stirred overnight. The reaction solution was filtered, washed with additional DCM, and concentrated. The residue was purified with LCMS (C18 column eluting with a gradient of ACN/H₂O containing 0.15%

NH₄OH) to give the desired product (3.4 mg, 23%). LCMS (M+H)+: 691.4.

Step 5. 4-[3-Fluoro-4-(3-fluoro-5-{[(2R)-2-methylpyrrolidin-1-yl]methyl}phenoxy)piperidin-1yl]-3-[4-(7H-pyrrolo[2,3-d]py-rimidin-4-yl)-1H-pyrazol-1-yl]butanenitrile

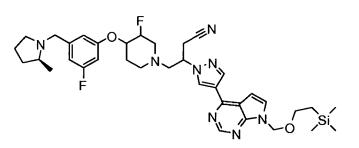
25


[0301] This compound was prepared according to the procedure of Example 31 step 11, using of 4-[3-fluoro-4-(3-fluoro-5-{[(2R)-2-methylpyrrolidin-1-yl]methyl}phenoxy)piperidin-1-yl]-3-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyr-rolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]butanenitrile (diastereomer 2) as the starting material. LCMS (M+H)+: 561.3.

³⁰ Example 33. 4-[3-fluoro-4-(3-fluoro-5-{[(2S)-2-methylpyrrolidin-1-yl]methyl}phenoxy)piperidin-1-yl]-3-[4-(7Hpyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]butanenitrile (diastereomers 2)

[0302]

35


40

45 Step 1. 4-[3-Fluoro-4-(3-fluoro-5-{[(2S)-2-methylpyrrolidin-1-yl]methyl}phenoxy)piperidin-1-yl]-3-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4yl)-1H-pyrazol-1-yl]butanenitrile

[0303]

50

[0304] This compound was prepared according to the procedure of Example 32, step 4, using (2S)-2-methylpyrrolidine and 4-[3-fluoro-4-(3-fluoro-5-formylphenoxy)piperidin-1-yl]-3-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]butanenitrile (diastereomer 2) as the starting materials. LCMS (M+H)+: 691.4.

5 Step 2. 4-[3-fluoro-4-(3-fluoro-5-{[(2S)-2-methylpyrrolidin-1-yl]methyl}phenoxy)piperidin-1-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]butanenitrile (diastereomers 2)

[0305] This compound was prepared according to the procedure of Example 31 step 11, using of 4-[3-fluoro-4-(3-fluoro-5-{[(2S)-2-methylpyrrolidin-1-yl]methyl}phenoxy)piperidin-1-yl]-3-[4-(7-{[2-(trimethylsilyl)ethoxy]methyl}-7H-pyr-rolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]butanenitrile (diastereomer 2) as the starting material. LCMS (M+H)+: 561.3.

Example A: In vitro JAK Kinase Assay

10

30

35

40

45

50

55

- [0306] Compounds herein were tested for inhibitory activity of JAK targets according to the following *in vitro* assay described in Park et al., Analytical Biochemistry 1999, 269, 94-104. The catalytic domains of human JAK1 (a.a. 837-1142) and JAK2 (a.a. 828-1132) with an N-terminal His tag were expressed using baculovirus in insect cells and purified. The catalytic activity of JAK1 and JAK2 was assayed by measuring the phosphorylation of a biotinylated peptide. The phosphorylated peptide was detected by homogenous time resolved fluorescence (HTRF). IC₅₀s of compounds were measured for each kinase in the 40 microL reactions that contain the enzyme, ATP and 500 nM peptide in 50 mM Tris (pH)
- 7.8) buffer with 100 mM NaCl, 5 mM DTT, and 0.1 mg/mL (0.01%) BSA. For the 1 mM IC₅₀ measurements, ATP concentration in the reactions was 1 mM. Reactions were carried out at room temperature for 1 hour and then stopped with 20 μL 45 mM EDTA, 300 nM SA-APC, 6 nM Eu-Py20 in assay buffer (Perkin Elmer, Boston, MA). Binding to the Europium labeled antibody took place for 40 minutes and HTRF signal was measured on a Fusion plate reader (Perkin Elmer, Boston, MA). See Tables A and B for data related to compounds of the invention (at 1 mM). Data is indicated as ranges, wherein "+" is less than 5 nM; "++" is 5 nM to 25 nM; "+++" is greater than 25 nM to 100 nM; and "++++" is
- ranges, wherein "+" is less than 5 nM; "++" is 5 nM to 25 nM; "+++" is greater than 25 nM to 100 nM; and "++++" i greater than 100 nM.

Ex. No.	Salt Form	JAK1 IC ₅₀ (nM)	JAK2 IC ₅₀ (nM)
1	3TFA	++	+++
2	3TFA	+	+++
3	3TFA	++	++++
4	3TFA	++	+++
5	3TFA	+	++
6	3TFA	+	+++
7	3TFA	+	++
8	3TFA	+	++
9	-	+	++
10	-	+	++
11	3TFA	+	++
12	3TFA	+	++
13	3TFA	+	++
14	3TFA	+	++
15	3TFA	+	+
16	3TFA	+	++
17	-	+	++
18	-	+	++
19	-	+	++

Table A

Ex. No.	Salt Form	JAK1 IC ₅₀ (nM)	JAK2 IC ₅₀ (nM)
20 Enantiomer 2	-	+	++
21	-	+	++++
22	4TFA	+	+++
23	4TFA	++	+++
24	4TFA	+	+++
25	-	+	++
26	-	++	++++
27	-	++	++++
28	-	+	+++
29	-	+	+++
30	-	++	+++

(continued)

20

25

5

10

15

Ex. No.	Salt Form	JAK1 IC ₅₀ (nM)	JAK2 IC ₅₀ (nM)
31 diastereomer 1	-	++	+++
31 diastereomer 2	-	+	+++
32 diastereomer 2	-	+	++
33 diastereomer 2	-	+	+++

30

Example B: Cellular Assays

[0307] Cancer cell lines dependent on cytokines and hence JAK/STAT signal transduction, for growth, can be plated at 6000 cells per well (96 well plate format) in RPMI 1640, 10% FBS, and 1 nG/mL of appropriate cytokine. Compounds 35 can be added to the cells in DMSO/media (final concentration 0.2% DMSO) and incubated for 72 hours at 37 °C, 5% CO2. The effect of compound on cell viability is assessed using the CellTiter-Glo Luminescent Cell Viability Assay (Promega) followed by TopCount (Perkin Elmer, Boston, MA) quantitation. Potential off-target effects of compounds are measured in parallel using a non-JAK driven cell line with the same assay readout. All experiments are typically performed in duplicate.

40

[0308] The above cell lines can also be used to examine the effects of compounds on phosphorylation of JAK kinases or potential downstream substrates such as STAT proteins, Akt, Shp2, or Erk. These experiments can be performed following an overnight cytokine starvation, followed by a brief preincubation with compound (2 hours or less) and cytokine stimulation of approximately 1 hour or less. Proteins are then extracted from cells and analyzed by techniques familiar

- to those schooled in the art including Western blotting or ELISAs using antibodies that can differentiate between phos-45 phorylated and total protein. These experiments can utilize normal or cancer cells to investigate the activity of compounds on tumor cell survival biology or on mediators of inflammatory disease. For example, with regards to the latter, cytokines such as IL-6, IL-12, IL-23, or IFN can be used to stimulate JAK activation resulting in phosphorylation of STAT protein(s) and potentially in transcriptional profiles (assessed by array or qPCR technology) or production and/or secretion of
- proteins, such as IL-17. The ability of compounds to inhibit these cytokine mediated effects can be measured using 50 techniques common to those schooled in the art. [0309] Compounds herein can also be tested in cellular models designed to evaluate their potency and activity against mutant JAKs, for example, the JAK2V617F mutation found in myeloid proliferative disorders. These experiments often utilize cytokine dependent cells of hematological lineage (e.g. BaF/3) into which the wild-type or mutant JAK kinases
- are ectopically expressed (James, C., et al. Nature 434:1144-1148; Staerk, J., et al. JBC 280:41893-41899). Endpoints 55 include the effects of compounds on cell survival, proliferation, and phosphorylated JAK, STAT, Akt, or Erk proteins. [0310] Certain compounds herein can be evaluated for their activity inhibiting T-cell proliferation. Such as assay can be considered a second cytokine (i.e. JAK) driven proliferation assay and also a simplistic assay of immune suppression

or inhibition of immune activation. The following is a brief outline of how such experiments can be performed. Peripheral blood mononuclear cells (PBMCs) are prepared from human whole blood samples using FicoII Hypaque separation method and T-cells (fraction 2000) can be obtained from PBMCs by elutriation. Freshly isolated human T-cells can be maintained in culture medium (RPMI 1640 supplemented with10% fetal bovine serum, 100 U/ml penicillin, 100 µg/ml

⁵ streptomycin) at a density of 2 x 10⁶ cells/ml at 37 °C for up to 2 days. For IL-2 stimulated cell proliferation analysis, T-cells are first treated with Phytohemagglutinin (PHA) at a final concentration of 10 µg/mL for 72h. After washing once with PBS, 6000 cells/well are plated in 96-well plates and treated with compounds at different concentrations in the culture medium in the presence of 100 U/mL human IL-2 (ProSpec-Tany TechnoGene; Rehovot, Israel). The plates are incubated at 37 °C for 72h and the proliferation index is assessed using CellTiter-Glo Luminescent reagents following the manufactory suggested protocol (Promega; Madison, WI).

Example C: In vivo anti-tumor efficacy

[0311] Compounds herein can be evaluated in human tumor xenograft models in immune compromised mice. For example, a tumorigenic variant of the INA-6 plasmacytoma cell line can be used to inoculate SCID mice subcutaneously (Burger, R., et al. Hematol J. 2:42-53, 2001). Tumor bearing animals can then be randomized into drug or vehicle treatment groups and different doses of compounds can be administered by any number of the usual routes including oral, i.p., or continuous infusion using implantable pumps. Tumor growth is followed over time using calipers. Further, tumor samples can be harvested at any time after the initiation of treatment for analysis as described above (Example

B) to evaluate compound effects on JAK activity and downstream signaling pathways. In addition, selectivity of the compound(s) can be assessed using xenograft tumor models that are driven by other know kinases (e.g. Bcr-Abl) such as the K562 tumor model.

Example D: Murine Skin Contact Delayed Hypersensitivity Response Test

25

[0312] Compounds herein can also be tested for their efficacies (of inhibiting JAK targets) in the T-cell driven murine delayed hypersensitivity test model. The murine skin contact delayed-type hypersensitivity (DTH) response is considered to be a valid model of clinical contact dermatitis, and other T-lymphocyte mediated immune disorders of the skin, such as psoriasis (Immunol Today. 1998 Jan;19(1):37-44). Murine DTH shares multiple characteristics with psoriasis, including the immune influences in influences in influences in the skin such as psoriasis.

30 the immune infiltrate, the accompanying increase in inflammatory cytokines, and keratinocyte hyperproliferation. Furthermore, many classes of agents that are efficacious in treating psoriasis in the clinic are also effective inhibitors of the DTH response in mice (Agents Actions. 1993 Jan;38(1-2):116-21).

[0313] On Day 0 and 1, Balb/c mice are sensitized with a topical application, to their shaved abdomen with the antigen 2,4,dinitro-fluorobenzene (DNFB). On day 5, ears are measured for thickness using an engineer's micrometer. This

- ³⁵ measurement is recorded and used as a baseline. Both of the animals' ears are then challenged by a topical application of DNFB in a total of 20 µL (10 µL on the internal pinna and 10 µL on the external pinna) at a concentration of 0.2%. Twenty-four to seventy-two hours after the challenge, ears are measured again. Treatment with the test compounds is given throughout the sensitization and challenge phases (day -1 to day 7) or prior to and throughout the challenge phase (usually afternoon of day 4 to day 7). Treatment of the test compounds (in different concentration) is administered either
- 40 systemically or topically (topical application of the treatment to the ears). Efficacies of the test compounds are indicated by a reduction in ear swelling comparing to the situation without the treatment. Compounds causing a reduction of 20% or more were considered efficacious. In some experiments, the mice are challenged but not sensitized (negative control). [0314] The inhibitive effect (inhibiting activation of the JAK-STAT pathways) of the test compounds can be confirmed by immunohistochemical analysis. Activation of the JAK-STAT pathway(s) results in the formation and translocation of
- ⁴⁵ functional transcription factors. Further, the influx of immune cells and the increased proliferation of keratinocytes should also provide unique expression profile changes in the ear that can be investigated and quantified. Formalin fixed and paraffin embedded ear sections (harvested after the challenge phase in the DTH model) are subjected to immunohistochemical analysis using an antibody that specifically interacts with phosphorylated STAT3 (clone 58E12, Cell Signaling Technologies). The mouse ears are treated with test compounds, vehicle, or dexamethasone (a clinically efficacious
- ⁵⁰ treatment for psoriasis), or without any treatment, in the DTH model for comparisons. Test compounds and the dexamethasone can produce similar transcriptional changes both qualitatively and quantitatively, and both the test compounds and dexamethasone can reduce the number of infiltrating cells. Both systemically and topical administration of the test compounds can produce inhibitive effects, *i.e.*, reduction in the number of infiltrating cells and inhibition of the transcriptional changes.
- 55

Example E: In vivo anti-inflammatory activity

[0315] Compounds herein can be evaluated in rodent or non-rodent models designed to replicate a single or complex

inflammation response. For instance, rodent models of arthritis can be used to evaluate the therapeutic potential of compounds dosed preventatively or therapeutically. These models include but are not limited to mouse or rat collageninduced arthritis, rat adjuvant-induced arthritis, and collagen antibody-induced arthritis. Autoimmune diseases including, but not limited to, multiple sclerosis, type I-diabetes mellitus, uveoretinitis, thyroditis, myasthenia gravis, immunoglobulin

⁵ nephropathies, myocarditis, airway sensitization (asthma), lupus, or colitis may also be used to evaluate the therapeutic potential of compounds herein. These models are well established in the research community and are familiar to those schooled in the art (Current Protocols in Immunology, Vol 3., Coligan, J.E. et al, Wiley Press.; Methods in Molecular Biology: Vol. 225, Inflammation Protocols., Winyard, P.G. and Willoughby, D.A., Humana Press, 2003.).

10 Example F: Animal Models for the Treatment of Dry Eye, Uveitis, and Conjunctivitis

[0316] Agents may be evaluated in one or more preclinical models of dry eye known to those schooled in the art including, but not limited to, the rabbit concanavalin A (ConA) lacrimal gland model, the scopolamine mouse model (subcutaneous or transdermal), the Botulinumn mouse lacrimal gland model, or any of a number of spontaneous rodent

- ¹⁵ autoimmune models that result in ocular gland dysfunction (e.g. NOD-SCID, MRL/lpr, or NZB/NZW) (Barabino et al., Experimental Eye Research 2004, 79, 613-621 and Schrader et al., Developmental Opthalmology, Karger 2008, 41, 298-312, each of which is incorporated herein by reference in its entirety). Endpoints in these models may include histopathology of the ocular glands and eye (cornea, etc.) and possibly the classic Schirmer test or modified versions thereof (Barabino et al.) which measure tear production. Activity may be assessed by dosing via multiple routes of
- administration (e.g. systemic or topical) which may begin prior to or after measurable disease exists.
 [0317] Agents may be evaluated in one or more preclinical models of uveitis known to those schooled in the art. These include, but are not limited to, models of experimental autoimmune uveitis (EAU) and endotoxin induced uveitis (EIU). EAU experiments may be performed in the rabbit, rat, or mouse and may involve passive or activate immunization. For instance, any of a number or retinal antigens may be used to sensitize animals to a relevant immunogen after which
- ²⁵ animals may be challenged ocuarly with the same antigen. The EIU model is more acute and involves local or systemic administration of lipopolysaccaride at sublethal doses. Endpoints for both the EIU and EAU models may include fundo-scopic exam, histopathology amongst others. These models are reviewed by Smith et al. (Immunology and Cell Biology 1998, 76, 497-512, which is incorporated herein by reference in its entirety). Activity is assessed by dosing via multiple routes of administration (e.g. systemic or topical) which may begin prior to or after measurable disease exists. Some
- 30 models listed above may also develop scleritis/episcleritis, chorioditis, cyclitis, or iritis and are therefore useful in investigating the potential activity of compounds for the therapeutic treatment of these diseases.
 [0318] Agents may also be evaluated in one or more preclinical models of conjunctivitis known those schooled in the art. These include, but are not limited to, rodent models utilizing guinea-pig, rat, or mouse. The guinea-pig models include those utilizing active or passive immunization and/or immune challenge protocols with antigens such as ovalbumin or
- ³⁵ ragweed (reviewed in Groneberg, D.A., et al., Allergy 2003, 58, 1101-1113, which is incorporated herein by reference in its entirety). Rat and mouse models are similar in general design to those in the guinea-pig (also reviewed by Groneberg). Activity may be assessed by dosing via multiple routes of administration (e.g. systemic or topical) which may begin prior to or after measurable disease exists. Endpoints for such studies may include, for example, histological, immunological, biochemical, or molecular analysis of ocular tissues such as the conjunctiva.
- 40

Example G: In vivo protection of bone

[0319] Compounds may be evaluated in various preclinical models of osteopenia, osteoporosis, or bone resorption known to those schooled in the art. For example, ovariectomized rodents may be used to evaluate the ability of compounds to affect signs and markers of bone remodeling and/or density (W.S.S. Jee and W. Yao, J Musculoskel. Nueron. Interact., 2001, 1(3), 193-207, which is incorporated herein by reference in its entirety). Alternatively, bone density and architecture may be evaluated in control or compound treated rodents in models of therapy (e.g. glucocorticoid) induced osteopenia (Yao, et al. Arthritis and Rheumatism, 2008, 58(6), 3485-3497; and *id*. 58(11), 1674-1686, both of which are incorporated herein by reference in its entirety). In addition, the effects of compounds on bone resorption and density may be evaluable in the rodent models of arthritis discussed above (Example E). Endpoints for all these models may vary but often include histological and radiological assessments as well as immunohisotology and appropriate biochemical markers of bone remodeling.

55 Claims

1. A compound of Formula I:

5 10 I 15 or a pharmaceutically acceptable salt thereof; wherein: X is CH or N; 20 Y is H, cyano, halo, C₁₋₃ alkyl, or C₁₋₃ haloalkyl; Z is CR^4 or N; L is O or S; R¹, R², R³, and R⁴ are each independently H, hydroxy, halo, C₁₋₃ alkyl, or C₁₋₃ haloalkyl; each R⁵ is independently hydroxy, C₁₋₄ alkoxy, fluorine, C₁₋₄ alkyl, hydroxy-C₁₋₄-alkyl, C₁₋₄alkoxy-C₁₋₄-alkyl, or 25 C1-4 fluoroalkyl; A is C₁₋₆ alkyl, C₃₋₁₀cycloalkyl, C₂₋₁₀heterocycloalkyl, C₆₋₁₀ aryl, or C₁₋₁₀ heteroaryl; each optionally substituted with p independently selected R⁷ substituents; wherein p is 1, 2, 3, 4, or 5; each R⁷ is independently selected from halo, cyano, nitro, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, $C_{3-10} cycloalkyl, \ C_{3-10} \ cycloalkyl-C_{1-4}-alkyl, \ C_{2-10} \ heterocycloalkyl, \ C_{2-10} heterocycloalkyl-C_{1-4}-alkyl, \ C_{6-10} aryl, \ C_{1-10} \ aryl, \ cy haryl, \ cy ha$ 30 $C_{6-10} \quad aryl-C_{1-4}-alkyl, \quad C_{1-10} \quad heteroaryl, \quad C_{1-10} \quad heteroaryl-C_{1-4}-alkyl, \quad -OR^a, \quad -SR^a, \quad -S(=O)R^b, \quad -S(=O)_2R^b, \quad -S(=O)_2R^b$ $-S(=0)_2 N R^e R^f, -C(=0) R^b, -C(=0) O R^a, -C(=0) N R^e R^f, -O C(=0) R^b, -O C(=0) N R^e R^f, -N R^e C(=0) R^d, -C(=0) R^b, -C(=0) R^e R^f, -C(=0) R^b, -C(=0) R^b,$ -NR^cC(=O)OR^d, -NR^cS(=O)₂R^d, and -NR^cS(=O)₂NR^eR^f; wherein said C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₁₀ $cycloalkyl, C_{3-10} cycloalkyl-C_{1-4}-alkyl, C_{2-10} heterocycloalkyl, C_{2-10} heterocycloalkyl-C_{1-4}-alkyl, C_{6-10} aryl, C_{6-10} aryl, C_{1-4}-alkyl, C_{1-4}-a$ aryl-C1-4-alkyl, C1-10 heteroaryl, and C1-10 heteroaryl-C1-4-alkyl are each optionally substituted by 1, 2, 3, or 4 35 independently selected R^g groups; each R^a, R^c, R^d, R^e, and R^f is independently selected from H, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, $C_{3-10} \text{ cycloalkyl}, C_{3-10} \text{ cycloalkyl-} C_{1-4}\text{-alkyl}, C_{2-10} \text{ heterocycloalkyl}, C_{2-10} \text{heterocycloalkyl-} C_{1-4}\text{-alkyl}, C_{6-10}\text{aryl}, C_{6-10}\text{-aryl}, C_{6-10}$ C_{6-10} aryl- C_{1-4} -alkyl, C_{1-10} heteroaryl, and C_{1-10} heteroaryl- C_{1-4} -alkyl; wherein said C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkenyl alkynyl, C_{3-10} cycloalkyl, C_{3-10} cycloalkyl- C_{1-4} -alkyl, C_{2-10} heterocycloalkyl, C_{2-10} heterocycloalkyl- C_{1-4} -alkyl, C_{2-10} heterocycloalkyl- C_{2-10} heterocycloa 40 C₆₋₁₀aryl, C₆₋₁₀ aryl-C₁₋₄-alkyl, C₁₋₁₀heteroaryl, and C₁₋₁₀ heteroaryl-1C₁₋₄-alkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R^g groups; each R^b is independently selected from C₁₋₆ alkyl, C₁₋₆haloalkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₁₀cycloalkyl, $C_{3-10} \text{ cycloalkyl-} C_{1-4} \text{-alkyl}, C_{2-10} \text{ heterocycloalkyl}, C_{2-10} \text{ heterocycloalkyl-} C_{1-4} \text{-alkyl}, C_{6-10} \text{ aryl-} C_{6-10} \text{ aryl-} C_{1-4} \text{-alkyl}, C_{1-4} \text{-alkyl},$ C_{1-4} -alkyl, C_{1-10} heteroaryl, and C_{1-10} heteroaryl- C_{1-4} -alkyl; wherein said C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, 45 $C_{3-10} \text{ cycloalkyl}, C_{3-10} \text{ cycloalkyl-} C_{1-4}\text{-}alkyl, C_{2-10} \text{ heterocycloalkyl}, C_{2-10} \text{ heterocycloalkyl-} C_{1-4}\text{-}alkyl, C_{6-10} \text{ aryl}, C_{1-10} \text{ aryl}, C_{1-10} \text{ argl}, C_{1-10} \text{ arg$ C₆₋₁₀ aryl-C₁₋₄-alkyl, C₁₋₁₀ heteroaryl, and C₁₋₁₀heteroaryl-C₁₋₄-alkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R^g groups; each R^g is independently selected from halo, cyano, nitro, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, $C_{3-7} cycloalkyl, C_{3-7} cycloalkyl-C_{1-3}-alkyl, C_{2-7} heterocycloalkyl, C_{2-7} heterocycloalkyl-C_{1-3}-alkyl, phenyl, phenyl-pheny$ $C_{1-3}\text{-}alkyl,\ C_{1-7}\ heteroaryl,\ C_{1-7}\ heteroaryl-\\ C_{1-3}\text{-}alkyl,\ -OR^{a1},\ -S(=O)R^{b1},\ -S(=O)_2R^{b1},\ -S(=O)_2NR^{a1}R^{f1},\ -S(=O)_2R^{b1}R^{b1},\ -S(=O)_2R^{b1}R^{b1}R^{b1},\ -S(=O)_2R^{b1}R^{b1}R^{b1},\ -S(=O)_2R^{b1}R^{b1}R^{b1}R^{b1},\ -S(=O)_2R^{b1}R^{b1$ 50 -C(=O)R^{b1}, -C(=O)OR^{a1}, -C(=O)NR^{e1}R^{f1}, -OC(=O)R^{b1}, -OC(=O)NR^{e1}R^{f1}, -NR^{e1}R^{f1}, -NR^{c1}C(=O)R^{d1}, $-NR^{c1}C(=O)OR^{d1}, -NR^{c1}S(=O)_2R^{d1}, and -NR^{c1}S(=O)_2NR^{e1}R^{f1}; wherein said C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkyl, C_{2-6} alkyl,$ nyl, C_{3-7} cycloalkyl, C_{3-7} cycloalkyl- C_{1-3} -alkyl, C_{2-7} heterocycloalkyl, C_{2-7} heterocycloalkyl- C_{1-3} -alkyl, phenyl, phenyl-C₁₋₃-alkyl, C₁₋₇ heteroaryl, and C₁₋₇heteroaryl-C₁₋₃-alkyl are each optionally substituted with 1, 2, 3, or 55 4 independently selected R^h groups; each R^{a1}, R^{c1}, R^{d1}, R^{e1}, and R^{f1} is independently selected from H, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₂₋₆alkenyl, C₂₋₆ alkynyl, C_{3-7} cycloalkyl, C_{3-7} cycloalkyl- C_{1-3} -alkyl, C_{2-7} heterocycloalkyl, C_{2-7} heterocycloalkyl, C_{1-3} -alkyl, phenyl, phenyl-C1-3-alkyl, C1-7 heteroaryl, and C1-7 heteroaryl-C1-3-alkyl; wherein said C1-6 alkyl, C2-6 alkenyl, C2-6 alky-

nyl, C_{3-7} cycloalkyl, C_{3-7} cycloalkyl- C_{1-3} -alkyl, C_{2-7} heterocycloalkyl, C_{2-7} heterocycloalkyl- C_{1-3} -alkyl, phenyl, phenyl- C_{1-3} -alkyl, C_{1-7} -heteroaryl, and C_{1-7} heteroaryl- C_{1-3} -alkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R^h groups;

- each R^{b1} is independently selected from C₁₋₆alkyl, C₁₋₆haloalkyl, C₂₋₆ alkenyl, C_{2⁻⁶} alkynyl, C₃₋₇ cycloalkyl, C₃₋₇ cycloalkyl, C₂₋₇ heterocycloalkyl, C₂₋₇ heterocycloalkyl-C₁₋₃-alkyl, phenyl, phenyl-C₁₋₃-alkyl, C₁₋₇ heteroaryl, and C₁₋₇ heteroaryl-C₁₋₃-alkyl; wherein said C₁₋₆ alkyl, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₇ cycloalkyl, C₃₋₇ cycloalkyl, C₂₋₇ heterocycloalkyl, C₂₋₇ heterocycloalkyl, C₁₋₇ heteroaryl, and C₁₋₇ heterocycloalkyl, C₂₋₇ heterocycloalkyl, C₂₋₇ heterocycloalkyl, C₁₋₇ heterocycloalkyl-C₁₋₃-alkyl, C₁₋₇ heterocycloalkyl, C₁₋₇ heterocycloalkyl, C₁₋₇ heterocycloalkyl, C₁₋₇ heterocycloalkyl, C₁₋₇ heteroaryl, and C₁₋₇ heteroaryl-C₁₋₃-alkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R^h groups;
- - m is 0, 1, or 2; n is 0, 1, 2, 3, or 4; and r is 1, 2, or 3.
- 20 2. The compound of claim 1, or a pharmaceutically acceptable salt thereof, wherein X is N.
 - 3. The compound of claim 1 or 2, or a pharmaceutically acceptable salt thereof, wherein Z is N.
 - 4. The compound of any one of claims 1 to 3, or a pharmaceutically acceptable salt thereof, wherein L is O.
 - 5. The compound of any one of claims 1 to 4, or a pharmaceutically acceptable salt thereof, wherein Y is cyano.
 - 6. The compound of any one of claims 1 to 5, or a pharmaceutically acceptable salt thereof, wherein R¹, R², R³, and R⁴ are each H.
 - 7. The compound of any one of claims 1 to 6, or a pharmaceutically acceptable salt thereof, wherein each R⁵ is fluorine.
 - 8. The compound of any one of claims 1 to 7, or a pharmaceutically acceptable salt thereof, wherein n is 0 or 1.
- **9.** The compound of any one of claims 1 to 8, or a pharmaceutically acceptable salt thereof, wherein m is 1.
 - 10. The compound of any one of claims 1 to 9, or a pharmaceutically acceptable salt thereof, wherein r is 1.
 - **11.** The compound of any one of claims 1 to 10, or a pharmaceutically acceptable salt thereof, wherein:
- 40

25

30

5

a) A is phenyl, a 5-membered heteroaryl ring, or a 6-membered heteroaryl ring; each of which is optionally substituted with 1, 2, 3, 4, or 5 independently selected R⁷ substituents; or
b) A is phenyl; which is optionally substituted with 1, 2, 3, 4, or 5 independently selected R⁷ substituents.

- 45 **12.** The compound of any one of claims 1 to 11, or a pharmaceutically acceptable salt thereof, wherein each R⁷ is independently selected from halo, cyano, C₁₋₆ alkyl, C₁₋₆ haloalkyl, -C(=O)R^b, and -C(=O)NR^eR^f; wherein said C₁₋₆ alkyl is optionally substituted by 1, 2, 3, or 4 independently selected R^g groups.
 - **13.** The compound of claim 1, or a pharmaceutically acceptable salt thereof, wherein:

50

55

a)

X is N; Z is N; L is O; R¹, R², and R³ are each H; each R⁵ is fluorine; A is C₃₋₁₀ cycloalkyl, C₂₋₁₀ heterocycloalkyl, C₆₋₁₀ aryl, or C₁₋₁₀ heteroaryl, each of which is optionally

substituted with 1, 2, 3, 4, or 5 independently selected R⁷ substituents;

each R^7 is independently selected from halo, cyano, nitro, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{3-10} cycloalkyl, C_{3-10}
cycloalkyl-C ₁₋₄ -alkyl, C ₂₋₁₀ heterocycloalkyl, C ₂₋₁₀ heterocycloalkyl-C ₁₋₄ -alkyl, -OR ^a , -SR ^a , -S(=O)R ^b ,
-S(=O) ₂ R ^b , -S(=O) ₂ NR ^e R ^f , -C(=O)R ^b , -C(=O)OR ^a , -C(=O)NR ^e R ^f , -OC(=O)R ^b , -OC(=O)NR ^e R ^f , -NR ^e R ^f ,
-NR ^c C(=O)R ^d , -NR ^c C(=O)OR ^d , -NR ^c S(=O) ₂ R ^d , and -NR ^c S(=O) ₂ NR ^e R ^f ; wherein said C ₁₋₆ alkyl, C ₃₋₁₀ cy-
cloalkyl, C ₃₋₁₀ cycloalkyl-C ₁₋₄ -alkyl, C ₂₋₁₀ heterocycloalkyl, C ₂₋₁₀ heterocycloalkyl-C ₁₋₄ -alkyl are each op-
tionally substituted by 1, 2, 3, or 4 independently selected R ^g groups;

 $\begin{array}{l} \mbox{each } {\mathbb R}^g \mbox{ is independently selected from halo, cyano, } {\mathbb C}_{1-6} \mbox{ alkyl, } {\mathbb C}_{1-6} \mbox{ haloalkyl, } {\mathbb C}_{3-7} \mbox{ cycloalkyl, } {\mathbb C}_{2-7} \mbox{ hetero-cycloalkyl, } -{\mathbb O}{\mathbb Q}{\mathbb R}^{51}, \mbox{ -S}(={\mathbb O})_2 {\mathbb R}^{51}, \mbox{ -S}(={\mathbb O})_2 {\mathbb R}^{51}, \mbox{ -C}(={\mathbb O}){\mathbb R}^{51}, \mbox{ -OC}(={\mathbb O}){\mathbb R}^{51}, \mbox{ -NR}^{c1}{\mathbb C}(={\mathbb O}){\mathbb R}^{61}, \mbox{ -NR}^{c1}{\mathbb C}(={\mathbb O})_2 {\mathbb R}^{61}, \mbox{ -NR}^{c1}{\mathbb C}(={\mathbb O})_2 {\mathbb R}^{61}, \mbox{ and } {\mathbb C}_{1-6} \mbox{ alkyl, } {\mathbb C}_{3-7} \mbox{ cycloalkyl, and } {\mathbb C}_{2-7} \mbox{ heterocycloalkyl are each optionally substituted with 1, 2, 3, or 4 \mbox{ independently selected } {\mathbb R}^{\rm h} \mbox{ groups; } \end{array}$

each R^a, R^c, R^d, and R^e is independently selected from H, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{3-7} cycloalkyl, and C_{2-7} heterocycloalkyl, wherein said C_{1-6} alkyl, C_{3-7} cycloalkyl, and C_{2-7} heterocycloalkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R^g groups;

each R^b is independently selected from C_{1-6} alkyl, C_{1-6} haloalkyl, C_{3-7} cycloalkyl, and C_{2-7} heterocycloalkyl; wherein said C_{1-6} alkyl, C_{3-7} cycloalkyl, and C_{2-7} heterocycloalkyl are optionally substituted by 1, 2, 3, or 4 independently selected R^g groups;

- each R^f is independently selected from H and C₁₋₆ alkyl;
- 20 each R^{a1}, R^{c1}, R^{d1}, and R^{e1} is independently selected from H, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₃₋₇ cycloalkyl, and C₂₋₇ heterocycloalkyl; wherein said C₁₋₆ alkyl, C₃₋₇ cycloalkyl, and C₂₋₇ heterocycloalkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R^h groups; and

each \mathbb{R}^{b1} is independently selected from \mathbb{C}_{1-6} alkyl, \mathbb{C}_{1-6} haloalkyl, \mathbb{C}_{3-7} cycloalkyl, and \mathbb{C}_{2-7} heterocycloalkyl, wherein said \mathbb{C}_{1-6} alkyl, \mathbb{C}_{3-7} cycloalkyl, and $\mathbb{C}_{2^{-7}}$ heterocycloalkyl optionally substituted by 1, 2, 3, or 4 independently selected \mathbb{R}^{h} groups;

each R^{f1} is independently selected from H and C₁₋₆ alkyl; m is 1; n is 0, 1, or 2; and r is 1; or

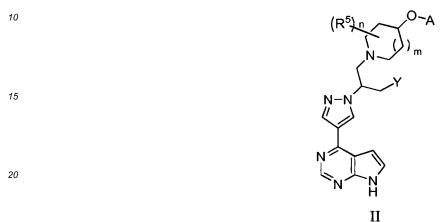
h	۱
υ	,

5

15

	XisN;
	Z is N;
35	L is O;
	R ¹ , R ² , and R ³ are each H;
	each R ⁵ is fluorine;
	A is C_{6-10} aryl or C_{1-10} heteroaryl, each of which is optionally substituted with 1, 2, 3, 4, or 5 independently selected R^7 substituents;
40	each R ⁷ is independently selected from halo, cyano, C ₁₋₆ alkyl, C ₁₋₆ haloalkyl, -OR ^a , -S(=O)2R ^b , -S(=O) ₂ NR ^e R ^f , -C(=O)R ^b , -C(=O)OR ^a , and -C(=O)NR ^e R ^f ; wherein said C ₁₋₆ alkyl is optionally substituted by 1, 2, 3, or 4 independently selected R ^g groups;
45	each R ^g is independently selected from halo, cyano, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{2-7} heterocycloalkyl, -OR ^{a1} , -C(=O)NR ^{e1} R ^{f1} , and -NR ^{e1} R ^{f1} ; wherein said C_{1-6} alkyl and C_{2-7} heterocycloalkyl is optionally substituted with 1, 2, 3, or 4 independently selected R ^h groups;
	each R ^a and R ^e is independently selected from H, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{3-7} cycloalkyl, and C_{2-7} heterocycloalkyl; wherein said C_{1-6} alkyl, C_{3-7} cycloalkyl, and C_{2-7} heterocycloalkyl are optionally substituted by 1, 2, 3, or 4 independently selected R ^g groups;
	each R^b is independently selected from C_{1-6} alkyl, C_{1-6} haloalkyl, C_{3-7} cycloalkyl, and C_{2-7} heterocycloalkyl;
50	wherein said C_{1-6} alkyl, C_{3-7} cycloalkyl, and C_{2-7} heterocycloalkyl are optionally substituted by 1,2, 3, or 4 independently selected R ^g groups;
	each R ^f is independently selected from H and C ₁₋₆ alkyl;
	each R ^{e1} is independently selected from H, C ₁₋₆ alkyl, C ₁₋₆ haloalkyl, C ₃₋₇ cycloalkyl, and C ₂₋₇ heterocy- cloalkyl, wherein said C ₁₋₆ alkyl, C ₃₋₇ cycloalkyl, and C ₂₋₇ heterocycloalkyl are each optionally substituted
55	by 1, 2, 3, or 4 independently selected \mathbb{R}^h groups;
	each R ^{f1} is independently selected from H and C ₁₋₆ alkyl;
	m is 1;
	n is 0, 1, or 2; and

r is	1;	or


c)

5	XisN; Z is N; L is O; Y is cyano; R ¹ , R ² , and R ³ are each H;
10	each R ⁵ is fluorine; A is C_{6-10} aryl, optionally substituted with 1, 2, 3, 4, or 5 independently selected R ⁷ substituents; each R ⁷ is independently selected from halo, cyano, C_{1-6} alkyl, C_{1-6} haloalkyl, -C(=O)R ^b , and -C(=O)NR ^e R ^f ; wherein said C_{1-6} alkyl is optionally substituted by 1, 2, 3, or 4 independently selected R ^g groups; each R ^g is independently selected from halo, cyano, C_{1-6} alkyl, C_{2-7} heterocycloalkyl, -C(=O)NR ^{e1} R ^{f1} , and
15	-NR ^{e1} R ^{f1} ; wherein said C ₁₋₆ alkyl and C ₂₋₇ heterocycloalkyl is optionally substituted with 1 or 2 independently selected R ^h groups; each R ^h is independently selected from halo, C ₁₋₄ alkyl, and C ₁₋₄ alkoxy; each R ^e is independently selected from H, C ₁₋₆ alkyl, C ₁₋₆ haloalkyl, C ₃₋₇ cycloalkyl, and C ₂₋₇ heterocycloalkyl, wherein said C ₁₋₆ alkyl, C ₃₋₇ cycloalkyl, and C ₂₋₇ heterocycloalkyl are each optionally substituted
20	by 1, 2, 3, or 4 independently selected R ⁹ groups; each R ^f is independently selected from H and C ₁₋₆ alkyl; each R ^b is independently selected from C ₁₋₆ alkyl, C ₁₋₆ haloalkyl, C ₃₋₇ cycloalkyl, and C ₂₋₇ heterocycloalkyl; wherein said C ₁₋₆ alkyl, C ₃₋₇ cycloalkyl, and C ₂₋₇ heterocycloalkyl are optionally substituted by 1, 2, 3, or 4
25	independently selected R ^g groups; each R ^{e1} is independently selected from H, C ₁₋₆ alkyl, C ₁₋₆ haloalkyl, C ₃₋₇ cycloalkyl, and C ₂₋₇ heterocy- cloalkyl, wherein said C ₁₋₆ alkyl, C ₃₋₇ cycloalkyl, and C ₂₋₇ heterocycloalkyl are each optionally substituted by 1, 2, 3, or 4 independently selected R ^h groups; each R ^f is independently selected from H and C ₁₋₆ alkyl;
30	m is 1; n is 0 or 1; and r is 1; or
	d)
35	d) X is N; Z is N; L is O; Y is cyano; R ¹ , R ² , and R ³ are each H;
	X is N; Z is N; L is O; Y is cyano; R ¹ , R ² , and R ³ are each H; each R ⁵ is fluorine; A is phenyl, optionally substituted with 1, 2, 3, 4, or 5 independently selected R ⁷ substituents; each R ⁷ is independently selected from halo, cyano, C ₁₋₆ alkyl, C ₁₋₆ haloalkyl, -C(=O)R ^b , and -C(=O)NR ^e R ^f ; wherein said C ₁₋₆ alkyl is optionally substituted by 1, 2, 3, or 4 independently selected R ⁸ groups;
35	X is N; Z is N; L is O; Y is cyano; R ¹ , R ² , and R ³ are each H; each R ⁵ is fluorine; A is phenyl, optionally substituted with 1, 2, 3, 4, or 5 independently selected R ⁷ substituents; each R ⁷ is independently selected from halo, cyano, C ₁₋₆ alkyl, C ₁₋₆ haloalkyl, -C(=O)R ^b , and -C(=O)NR ^e R ^f ; wherein said C ₁₋₆ alkyl is optionally substituted by 1, 2, 3, or 4 independently selected R ⁸ groups; each R ⁸ is independently selected from halo, cyano, C ₁₋₆ alkyl, C ₂₋₇ heterocycloalkyl, -C(=O)NR ^{e1} R ^{f1} , and -NR ^{e1} R ^{f1} ; wherein said C ₁₋₆ alkyl and C ₂₋₇ heterocycloalkyl is optionally substituted with 1 or 2 independently selected R ^h groups; each R ^h is independently selected from halo, C ₁₋₄ alkyl, and C ₁₋₄ alkoxy; each R ^e is independently selected from H, C ₁₋₆ alkyl, C ₁₋₆ haloalkyl, C ₃₋₇ cycloalkyl, and C ₂₋₇ heterocy-
35 40	X is N; Z is N; L is O; Y is cyano; R ¹ , R ² , and R ³ are each H; each R ⁵ is fluorine; A is phenyl, optionally substituted with 1, 2, 3, 4, or 5 independently selected R ⁷ substituents; each R ⁷ is independently selected from halo, cyano, C_{1-6} alkyl, C_{1-6} haloalkyl, $-C(=O)R^{b}$, and $-C(=O)NR^{e}R^{f}$; wherein said C_{1-6} alkyl is optionally substituted by 1, 2, 3, or 4 independently selected R ⁸ groups; each R ⁸ is independently selected from halo, cyano, C_{1-6} alkyl, C_{2-7} heterocycloalkyl, $-C(=O)NR^{e1}R^{f1}$, and $-NR^{e1}R^{f1}$; wherein said C_{1-6} alkyl and C_{2-7} heterocycloalkyl is optionally substituted with 1 or 2 independently selected R ^h groups; each R ^h is independently selected from halo, C_{1-4} alkyl, and C_{1-4} alkoxy;

m is 1; n is 0 or 1; and r is 1.

5 **14.** The compound of any one of claims 1 to 13, wherein:

a) said compound is a compound of Formula II:

or a pharmaceutically acceptable salt thereof; or b) said compound is a compound of Formula III:

35

40

or a pharmaceutically acceptable salt thereof

45

15. A compound of claim 1,

a) selected from:

4-[4-(3,5-difluorophenoxy)piperidin-1-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1 H-pyrazol-1-yl]butaneni-50 trile; 4-[4-(3-chloro-5-fluorophenoxy)piperidin-1-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1 H-pyrazol-1-yl]butanenitrile; 4-{4-[3-fluoro-5-(trifluoromethyl)phenoxy]piperidin-1-yl}-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1 H-pyrazol-55 1-yl]butanenitrile; 3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]-4-[4-(3,4,5-trifluorophenoxy)piperidin-1-yl]butanenitrile; 3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]-4-[4-(2,3,5-trifluorophenoxy)piperidin-1-yl]butanen-

(R5)

m

Ш

R⁷)_p

	itrile;
	3-[((1-{3-cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl} piperidin-4-yl)oxy]-5-fluor-
	obenzonitrile;
	3-[((1-{3-cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}piperidin-4-yl)oxyl-5-fluoro-
5	N-methylbenzamide;
	3-[((1-{3-cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}piperidin-4-yl)oxy]-5-fluoro-
	N,N-dimethylbenzamide;
	3-[((1-{3-cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}piperidin-4-yl)oxy]-N-ethyl-5- fluorobenzamide;
10	3-[((1-{3-cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}piperidin-4-yl)oxy]-N-cyclo-
	propyl-5-fluorobenzamide;
	3-[((1-{3-cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}piperidin-4-yl)oxy]-5-fluoro-
	N-isopropylbenzamide;
	N-(2-cyanoethyl)-3-[(1-{3-cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl} piperidin-4-
15	yl)oxy] -5-fluorobenzamide;
	4-{4-[3-fluoro-5-(pyrrolidin-1-ylcarbonyl)phenoxy]piperidin-1-yl}-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1 H- pyrazol-1-yl]butanenitrile;
	N-(3-amino-3-oxopropyl)-3-[(1-{3-cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}pip-
	eridin-4-yl)oxy]-5-fluorobenzamide;
20	N-(tert-butyl)-3-[(1-{3-cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}piperidin-4-
	yl)oxy]-5-fluorobenzamide;
	3-[((1-{3-cyano-2-[4-(7H-pyrrolo[2, 3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}piperidin-4-yl)oxy]-5-fluoro-
	N- (2-morpholin-4-ylethyl)benzamide; 4-{4-[3-fluoro-5-(piperidin-1-ylcarbonyl)phenoxy]piperidin-1-yl}-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-
25	pyrazol-1-yl]butanenitrile;
	4-{4-[3-fluoro-5-(morpholin-4-ylcarbonyl)phenoxy]piperidin-1-yl}-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-
	pyrazol-1-yl]butanenitrile;
	4-((4-{3-[(3,3-difluoropyrrolidin-1-yl)carbonyl]-5-fluorophenoxy} piperidin-1-yl)-3-[4-(7H-pyrrolo[2,3-d]pyri-
20	midin-4-yl)-1H-pyrazol-1-yl]butanenitrile;
30	4-((4-{3-[(dimethylamino)methyl]-5-fluorophenoxy}piperidin-1-yl)-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)- 1H-pyrazol-1-yl]butanenitrile;
	4-[4-(3-{[cyclopropyl(methyl)amino]methyl}-5-fluorophenoxy)piperidin-1-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimi-
	din-4-yl)-1H-pyrazol-1-yl]butanenitrile;
	4-{4-[3-(azetidin-1-ylmethyl)-5-fluorophenoxy]piperidin-1-yl}-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-
35	pyrazol-1-yl]butanenitrile;
	4-((4-{3-[(cyclobutylamino)methyl]-5-fluorophenoxy}piperidin-1-yl)-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-
	1H-pyrazol-1-yl]butanenitrile; 4-{4-[3-fluoro-5-(pyrrolidin-1-ylmethyl)phenoxy]piperidin-1-yl}-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1 H-
	pyrazol-1-yl] butanenitrile;
40	4-{4-[3-fluoro-5-(piperidin-1-ylmethyl)phenoxy]piperidin-1-yl}-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-
	pyrazol-1-yl]butanenitrile;
	4-{4-[3-fluoro-5-(morpholin-4-ylmethyl)phenoxy]piperidin-1-yl}-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-
	pyrazol-1-yl]butanenitrile;
45	4-((4-{3-[(3,3-difluoropyrrolidin-1-yl)methyl]-5-fluorophenoxy}piperidin-1-yl)-3-[4-(7H-pyrrolo[2,3-d]pyrimi- din-4-yl)-1H-pyrazol-1-yl]butanenitrile;
10	4-[4-(3-fluoro-5-{[2-methylpyrrolidin-1-yl]methyl}phenoxy)piperidin-1-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-
	4-yl)-1 H-pyrazol-1-yl]butanenitrile;
	4-[4-(3-fluoro-5-{[(2-methoxyethyl)amino]methyl}phenoxy)piperidin-1-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-
	4-yl)-1H-pyrazol-1-yl]butanenitrile;
50	3-[((1-{3-cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}-3-fluoropiperidin-4-yl)oxy]-
	5-fluorobenzonitrile; and 4-[3-fluoro-4-(3-fluoro-5-{[2-methylpyrrolidin-l-yl]methyl}phenoxy)piperidin-1-yl]-3-[4-(7H-pyrrolo[2,3-d]py-
	rimidin-4-yl)-1H-pyrazol-1-yl]butanenitrile;
	· · · · · · · · · · · · · · · · · · ·
55	or a pharmaceutically salt of any of the aforementioned; or
	b) selected from:

 $\label{eq:2.3.4} 4-[4-(3-fluoro-5-\{[(2R)-2-methylpyrrolidin-1-yl]methyl\} phenoxy) piperidin-1-yl]-3-[4-(7H-pyrrolo\ [2,3-d]pyri-1-yl]methyl] phenoxy) piperidin-1-yl] phenoxy) phenoxy$

midin-4-yl)-1H-pyrazol-1-yl]butanenitrile;
4-[4-(3-fluoro-5-{[(2S)-2-methylpyrrolidin-1-yl]methyl}phenoxy)piperidin-1-yl]-3-[4-(7H-pyrrolo[2,3-d]pyri-midin-4-yl)-1H-pyrazol-1-yl]butanenitrile;
4-[3-fluoro-4-(3-fluoro-5-{[(2R)-2-methylpyrrolidin-1-yl]methyl}phenoxy)piperidin-1-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]butanenitrile; and
4-[3-fluoro-4-(3-fluoro-5-{[(2S)-2-methylpyrrolidin-1-yl]methyl}phenoxy)piperidin-1-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]butanenitrile;

- or a pharmaceutically salt of any of the aforementioned.
- 10

5

- **16.** The compound according to any one of claims 1 to 15, wherein the compound is the (R)-enantiomer, or a pharmaceutically acceptable salt thereof.
- 17. The compound according to any one of claims 1 to 15, wherein the compound is the (S)-enantiomer, or a pharma-ceutically acceptable salt thereof.
 - **18.** A composition comprising a compound according to any one of claims 1 to 17, or a pharmaceutically acceptable salt thereof, and at least one pharmaceutically acceptable carrier.
- 20 19. A compound according to any one of claims 1 to 17, or a pharmaceutically acceptable salt thereof, for use in a method of modulating an activity of JAK1.
 - **20.** A compound, or a pharmaceutically acceptable salt thereof, for use according to claim 19, wherein said compound, or pharmaceutically acceptable salt thereof, is selective for JAK1 over JAK2.
- 25
- **21.** A compound according to any one of claims 1 to 17, or a pharmaceutically acceptable salt thereof, for use in a method of treating an autoimmune disease, a cancer, a myeloproliferative disorder, an inflammatory disease, a bone resorption disease, or organ transplant rejection in a patient in need thereof.
- 30 **22.** A compound, or a pharmaceutically acceptable salt thereof, for use according to claim 21, wherein:
- a) said autoimmune disease is a skin disorder, multiple sclerosis, rheumatoid arthritis, psoriatic arthritis, juvenile arthritis, type I diabetes, lupus, inflammatory bowel disease, Crohn's disease, myasthenia gravis, immunoglobulin nephropathies, myocarditis, or autoimmune thyroid disorder; or 35 b) said autoimmune disease is rheumatoid arthritis; or c) said autoimmune disease is a skin disorder; or d) said autoimmune disease is a skin disorder which is atopic dermatitis, psoriasis, skin sensitization, skin irritation, skin rash, contact dermatitis or allergic contact sensitization; or e) said cancer is a solid tumor; or 40 f) said cancer is prostate cancer, renal cancer, hepatic cancer, breast cancer, lung cancer, thyroid cancer, Kaposi's sarcoma, Castleman's disease or pancreatic cancer; or g) said cancer is lymphoma, leukemia, or multiple myeloma; or h) said myeloproliferative disorder (MPD) is polycythemia vera (PV), essential thrombocythemia (ET), myeloid metaplasia with myelofibrosis (MMM), primary myelofibrosis (PMF), chronic myelogenous leukemia (CML), 45 chronic myelomonocytic leukemia (CMML), hypereosinophilic syndrome (HES), idiopathic myelofibrosis (IMF), or systemic mast cell disease (SMCD); or i) said myeloproliferative disorder is myelofibrosis; or j) said myeloproliferative disorder is primary myelofibrosis (PMF); or k) said bone resorption disease is osteoporosis, osteoarthritis, bone resorption associated with hormonal im-50 balance, bone resorption associated with hormonal therapy, bone resorption associated with autoimmune disease, or bone resorption associated with cancer.

Patentansprüche

- 55
- **1.** Verbindung der Formel I:

	(\mathbb{R}^{5})
5	
Ū	X-N Y
	\mathbb{R}^2
10	
15	Ι
	oder ein pharmazeutisch unbedenkliches Salz davon, wobei:
	X für CH oder N steht; Y für H, Cyano, Halogen, C ₁₋₃ -Alkyl oder C ₁₋₃ -Halogenalkyl steht;
20	Z für CR ⁴ oder N steht; L für 0 oder S steht;
	R ¹ , R ² , R ³ und R ⁴ jeweils unabhängig voneinander für H, Hydroxy, Halogen, C ₁₋₃ -Alkyl oder C ₁₋₃ -Halogenalkyl stehen;
25	R ⁵ jeweils unabhängig für Hydroxy, C ₁₋₄ -Alkoxy, Fluor, C ₁₋₄ -Alkyl, Hydroxy-C ₁₋₄ -alkyl, C ₁₋₄ -Alkoxy-C ₁₋₄ -alkyl oder C ₁₋₄ -Fluoralkyl steht;
20	A für C ₁₋₆ -Alkyl, C ₃₋₁₀ -Cycloalkyl, C ₂₋₁₀ -Heterocycloalkyl, C ₆₋₁₀ -Aryl oder C ₁₋₁₀ -Heteroaryl steht, jeweils gegebenenfalls substituiert durch p unabhängig voneinander ausgewählte R ⁷ -Substituenten; wobei p für 1, 2, 3, 4
	oder 5 steht;
30	R ⁷ jeweils unabhängig aus Halogen, Cyano, Nitro, C ₁₋₆ -Alkyl, C ₁₋₆ -Halogenalkyl, C ₂₋₆ -Alkenyl, C ₂₋₆ -Alkinyl, C ₃₋₁₀ -Cycloalkyl, C ₃₋₁₀ -Cycloalkyl-C ₁₋₄ -alkyl, C ₂₋₁₀ -Heterocycloalkyl, C ₂₋₁₀ -Heterocycloalkyl-C ₁₋₄ -alkyl,
	$C_{6-10}-Aryl, C_{6-10}-Aryl-C_{1-4}-alkyl, C_{1-10}-Heteroaryl, C_{1-10}-Heteroaryl-C_{1-4}-alkyl, - ORa, -SRa, -S (=O) Rb, -S (=O) R$
	-NR ^c C(=O)OR ^d , - NR ^c S(=O) ₂ R ^d und -NR ^c S(=O) ₂ NR ^e R ^f ausgewählt ist; wobei diese C ₁₋₆ -Alkyl-, C ₂₋₆ -Alkenyl-, C ₂₋₆ -Alkinyl-, C ₂₋₁₀ -Alkinyl-, C ₂₋₁₀ -Alkinyl-, C ₂₋₁₀ -Heterocycloalkyl-, C ₂₋₁₀ -Heterocycloalkyl-, C ₂₋₁₀ -Heterocycloalkyl-
35	C_{1-4} -alkyl-, C_{6-10} -Aryl, C_{6-10} -Aryl- C_{1-4} -alkyl-, C_{1-10} -Heteroaryl- und C_{1-10} -Heteroaryl- C_{1-4} -alkylreste jeweils gegebenenfalls durch 1, 2, 3 oder 4 unabhängig voneinander ausgewählte R ^g -Gruppen substituiert sind;
	R ^a , R ^c , R ^d , R ^e und R ^f jeweils unabhängig voneinander aus H, C ₁₋₆ -Alkyl, C ₁₋₆ -Halogenalkyl, C ₂₋₆ -Alkenyl, C ₂₋₆ -Al- kinyl, C ₃₋₁₀ -Cycloalkyl, C ₃₋₁₀ -Cycloalkyl-C ₁₋₄ -alkyl, C ₂₋₁₀ -Heterocycloalkyl, C ₂₋₁₀ -Heterocycloalkyl-C ₁₋₄ -alkyl,
40	C ₆₋₁₀ -Aryl, C ₆₋₁₀ -Aryl-C ₁₋₄ -alkyl, C ₁₋₁₀ -Heteroaryl und C ₁₋₁₀ -Heteroaryl-C ₁₋₄ -alkyl ausgewählt sind; wobei diese C ₁₋₆ -Alkyl-, C ₂₋₆ -Alkenyl-, C ₂₋₆ -Alkinyl-, C ₃₋₁₀ -Cycloalkyl-, C ₃₋₁₀ -Cycloalkyl-C ₁₋₄ -alkyl-, C ₂₋₁₀ -Heterocycloalkyl-,
	C ₂₋₁₀ -Heterocycloalkyl-C ₁₋₄ -alkyl-, C ₆₋₁₀ -Aryl-, C ₆₋₁₀ -Aryl-C ₁₋₄ -alkyl-, C ₁₋₁₀ -Heteroaryl- und C ₁₋₁₀ -Heteroaryl- C ₁₋₄ -alkylreste jeweils gegebenenfalls durch 1, 2, 3 oder 4 unabhängig voneinander ausgewählte R ^g -Gruppen
	substituiert sind; R ^b jeweils unabhängig aus C ₁₋₆ -Alkyl, C ₁₋₆ -Halogenalkyl, C ₂₋₆ -Alkenyl, C ₂₋₆ -Alkinyl, C ₃₋₁₀ -Cycloalkyl, C ₃₋₁₀ -Cy-
45	cloalkyl- C_{1-4} -alkyl, C_{2-10} -Heterocycloalkyl, C_{2-10} -Heterocycloalkyl- C_{1-4} -alkyl, C_{6-10} -Aryl, C_{6-10} -Aryl- C_{1-4} -alkyl, C_{1-10} -Heteroaryl und C_{1-10} -Heteroaryl- C_{1-4} -alkyl ausgewählt ist; wobei diese C_{1-6} -Alkyl-, C_{2-6} -Alkenyl-, C_{2-6} -Al-
	kinyl-, C ₃₋₁₀ -Cycloalkyl-, C ₃₋₁₀ -Cycloalkyl-C ₁₋₄ -alkyl-, C ₂₋₁₀ -Heterocycloalkyl-, C ₂₋₁₀ -Heterocycloalkyl-C ₁₋₄ -al-kyl-, C ₆₋₁₀ -Aryl-, C ₆₋₁₀ -Aryl-C ₁₋₄ -alkyl-, C ₁₋₁₀ -Heteroaryl- und C ₁₋₁₀ -Heteroaryl-C ₁₋₄ -alkylreste jeweils gegebe-
50	nenfalls durch 1, 2, 3 oder 4 unabhängig voneinander ausgewählte R9-Gruppen substituiert sind;
00	R^{g} jeweils unabhängig aus Halogen, Cyano, Nitro, C ₁₋₆ -Alkyl, C ₁₋₆ -Halogenalkyl, C ₂₋₆ -Alkenyl, C ₂₋₆ -Alkinyl, C ₃₋₇ -Cycloalkyl, C ₃₋₇ -Cycloalkyl-C ₁₋₃ -alkyl, C ₂₋₇ -Heterocycloalkyl, C ₂₋₇ -Heterocycloalkyl-C ₁₋₃ -alkyl, Phenyl, Phenyl, C ₁₋₃ -Cycloalkyl-C ₁₋₃ -alkyl, C ₂₋₇ -Heterocycloalkyl, C ₂₋₇ -Heterocycloalkyl-C ₁₋₃ -alkyl, Phenyl, C ₁₋₃ -Alkyl, C ₁₋₃ -Alky
	Phenyl-C ₁₋₃ -alkyl, C ₁₋₇ -Heteroaryl, C ₁₋₇ -Heteroaryl-C ₁₋₃ -alkyl, -OR ^{a1} , -SR ^{a1} , -S(=O) ₂ R ^{b1} , -S(=O) ₂ N ^{e1} R ^{f1} , -C(=O)R ^{b1} , -C(=O)OR ^{a1} , -C(=O)NR ^{e1} R ^{f1} , -OC(=O)R ^{b1} , -OC(=O)NR ^{e1} R ^{f1} , -NR ^{e1} R ^{f1} , -DC(=O)R ^{b1} , -OC(=O)NR ^{e1} R ^{f1} , -NR ^{e1} R ^{f1} , -DC(=O)NR ^{e1} R ^{f1} , -DC(=O)NR ^{e1} R ^{f1} , -NR ^{f1} R ^{f1} ,
55	$-NR^{c1}C(=O)R^{d1}, -NR^{c1}C(=O)OR^{d1}, -NR^{c1}S(=O)_2R^{d1} \text{ und } -NR^{c1}S(=O)_2NR^{e1}R^{f1} \text{ ausgewählt ist; wobei diese } C_{1-6}-Alkyl-, C_{2-6}-Alkenyl-, C_{2-6}-Alkinyl-, C_{3-7}-Cycloalkyl-, C_{3-7}-Cycloalkyl-, C_{1-3}-alkyl-, C_{2-7}-Heterocycloalkyl-, C_{3-7}-Cycloalkyl-, C_{3-7}$
	C_{2-7} -Heterocycloalkyl- C_{1-3} -alkyl-, Phenyl-, Phenyl- C_{1-3} -alkyl-, C_{1-7} -Heteroaryl- und C_{1-7} -Heteroaryl- C_{1-3} -alkyl-reste jeweils gegebenenfalls durch 1, 2, 3 oder 4 unabhängig voneinander ausgewählte R ^h -Gruppen substituiert
	sind;

R^{a1}, R^{c1}, R^{d1}, R^{e1} und R^{f1} jeweils unabhängig voneinander aus H, C₁₋₆-Alkyl, C₁₋₆-Halogenalkyl, C₂₋₆-Alkenyl, C₂₋₆-Alkinyl, C₃₋₇-Cycloalkyl, C₃₋₇-Cycloalkyl-C₁₋₃-alkyl, C₂₋₇-Heterocycloalkyl, C₂₋₇-Heterocycloalkyl, C₂₋₇-Heterocycloalkyl, C₂₋₇-Heterocycloalkyl-C₁₋₃-alkyl, Phenyl, Phenyl-C₁₋₃-alkyl, C₁₋₇-Heteroaryl und C₁₋₇-Heteroaryl-C₁₋₃-alkyl ausgewählt sind; wobei diese C₁₋₆-Alkyl-, C₂₋₆-Alkenyl-, C₂₋₆-Alkinyl-, C₃₋₇-Cycloalkyl-, C₃₋₇-Cycloalkyl-, C₁₋₃-alkyl-, C₂₋₇-Heterocycloalkyl-C₁₋₃-alkyl-, C₂₋₇-Heterocycloalkyl-C₁₋₃-alkyl-, C₂₋₇-Heterocycloalkyl-, C₂₋₇-Heterocycloalkyl-, C₁₋₃-alkyl-, C₂₋₇-Heterocycloalkyl-, C₁₋₃-alkyl-, C₂₋₇-Heterocycloalkyl-, C₁₋₃-alkyl-, C₂₋₇-Heterocycloalkyl-, C₁₋₃-alkyl-, C₁₋₃-alkyl-, C₁₋₃-alkyl-, C₁₋₃-alkyl-, C₂₋₇-Heterocycloalkyl-, C₁₋₃-alkyl-, C₁₋₃-, C

R^{b1} jeweils unabhängig aus C₁₋₆-Alkyl, C₁₋₆-Halogenalkyl, C₂₋₆-Alkenyl, C₂₋₆-Alkinyl, C₃₋₇-Cycloalkyl, C₃₋₇-Cycloalkyl, C₁₋₃-alkyl, C₁₋₃-alkyl, C₁₋₃-alkyl, C₁₋₃-alkyl, C₁₋₇-Heterocycloalkyl, C₂₋₇-Heterocycloalkyl-C₁₋₃-alkyl, Phenyl-C₁₋₃-alkyl, C₁₋₇-Heteroaryl und C₁₋₇-Heteroaryl-C₁₋₃-alkyl ausgewählt ist; wobei diese C₁₋₆-Alkyl-, C₂₋₆-Alkenyl-, C₂₋₆-Alkinyl-, C₃₋₇-Cycloalkyl-, C₃₋₇-Cycloalkyl-C₁₋₃-alkyl-, C₂₋₇-Heterocycloalkyl-, C₂₋₇-Heterocycloalkyl-, C₂₋₇-Heterocycloalkyl-, C₂₋₇-Heterocycloalkyl-, C₂₋₇-Heterocycloalkyl-, C₁₋₃-alkyl-, Phenyl-, Phenyl-C₁₋₃-alkyl-, C₁₋₇-Heteroaryl- und C₁₋₇-Heteroaryl-C₁₋₃-alkylreste jeweils gegebenenfalls durch 1, 2, 3 oder 4 unabhängig voneinander ausgewählte R^h-Gruppen substituiert sind;

- R^h jeweils unabhängig aus Cyano, Halogen, Hydroxy, C₁₋₄-Alkyl, C₁₋₄-Halogenalkyl, C₁₋₄-Alkoxy, C₁₋₄-Halogenalkyl, C₁₋₄-Alkoxy, C₁₋₄-Halogenalkyl, C₁₋₄-Alkoxy, C₁₋₄-Halogenalkyl, C₁₋₆-Alkylamino, Di-C₁₋₄-alkylamino, Thio, C₁₋₆-Alkylthio, C₁₋₆-Alkylsulfinyl, C₁₋₆-Alkylsulfonyl, C₁₋₆-Alkylsulfonyl, C₁₋₆-Alkylcarbonyl, C₁₋₆-Alkylsulfonyl, C₁₋₆-Alkylsulfonyl, C₁₋₆-Alkylsulfonyl, C₁₋₆-Alkylsulfonyl, C₁₋₆-Alkylsulfonyl, Di-(C₁₋₆-alkyl) aminosulfonyl, Aminosulfonylamino, C₁₋₆-Alkylaminosulfonylamino, Di-(C₁₋₆-alkyl) aminosulfonyl, Aminosulfonylamino, C₁₋₆-Alkylaminosulfonylamino, Di-(C₁₋₆-alkyl) aminosulfonylamino, Aminocarbonylamino, C₁₋₆-Alkylaminocarbonylamino ausgewählt ist;
 m für 0, 1 oder 2 steht;
 - n für 0, 1, 2, 3 oder 4 steht und r für 1, 2 oder 3 steht.
 - 2. Verbindung nach Anspruch 1 oder ein pharmazeutisch unbedenkliches Salz davon, wobei X für N steht.
- 25

30

5

10

- 3. Verbindung nach Anspruch 1 oder 2 oder ein pharmazeutisch unbedenkliches Salz davon, wobei Z für N steht.
- 4. Verbindung nach einem der Ansprüche 1 bis 3 oder ein pharmazeutisch unbedenkliches Salz davon, wobei L für 0 steht.
- 5. Verbindung nach einem der Ansprüche 1 bis 4 oder ein pharmazeutisch unbedenkliches Salz davon, wobei Y für Cyano steht.
- 6. Verbindung nach einem der Ansprüche 1 bis 5 oder ein pharmazeutisch unbedenkliches Salz davon, wobei R¹, R²,
 ³⁵ R³ und R⁴ jeweils für H stehen.
 - Verbindung nach einem der Ansprüche 1 bis 6 oder ein pharmazeutisch unbedenkliches Salz davon, wobei R⁵ jeweils für Fluor steht.
- 40 8. Verbindung nach einem der Ansprüche 1 bis 7 oder ein pharmazeutisch unbedenkliches Salz davon, wobei n für 0 oder 1 steht.
 - **9.** Verbindung nach einem der Ansprüche 1 bis 8 oder ein pharmazeutisch unbedenkliches Salz davon, wobei m für 1 steht.
- 45
- **10.** Verbindung nach einem der Ansprüche 1 bis 9 oder ein pharmazeutisch unbedenkliches Salz davon, wobei r für 1 steht.
- 11. Verbindung nach einem der Ansprüche 1 bis 10 oder ein pharmazeutisch unbedenkliches Salz davon, wobei:
- 50

55

a) A für Phenyl, einen 5-gliedrigen Heteroarylring oder einen 6-gliedrigen Heteroarylring steht, die jeweils gegebenenfalls durch 1, 2, 3, 4 oder 5 unabhängig voneinander ausgewählte R⁷-Substituenten substituiert sind oder

- b) A für Phenyl steht, welches gegebenenfalls durch 1, 2, 3, 4 oder 5 unabhängig voneinander ausgewählte R⁷-Substituenten substituiert ist.
- 12. Verbindung nach einem der Ansprüche 1 bis 11 oder ein pharmazeutisch unbedenkliches Salz davon, wobei R⁷ jeweils unabhängig aus Halogen, Cyano, C_{1⁻⁶}-Alkyl, C₁₋₆-Halogenalkyl, -C(=O)R^b und -C(=O)NR^eR^f ausgewählt

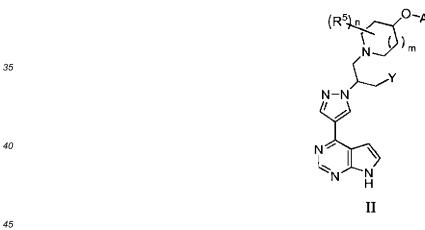
ist; wobei dieser C₁₋₆-Alkylrest gegebenenfalls durch 1, 2, 3 oder 4 unabhängig voneinander ausgewählte R^g-Gruppen substituiert ist.

13. Verbindung nach Anspruch 1 oder ein pharmazeutisch unbedenkliches Salz davon, wobei:

a)

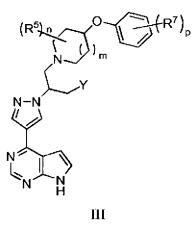
	u)	
		X für N steht;
		Z für N steht;
10		L für 0 steht;
		R ¹ , R ² und R ³ jeweils für H stehen;
		R ⁵ jeweils für Fluor steht;
		A für C ₃₋₁₀ -Cycloalkyl, C ₂₋₁₀ -Heterocycloalkyl, C ₆₋₁₀ -Aryl oder C ₁₋₁₀ -Heteroaryl steht, die jeweils gegebe-
		nenfalls durch 1, 2, 3, 4 oder 5 unabhängig voneinander ausgewählte R ⁷ -Substituenten substituiert sind;
15		R ⁷ jeweils unabhängig aus Halogen, Cyano, Nitro, C ₁₋₆ -Alkyl, C ₁₋₆ -Halogenalkyl, C ₃₋₁₀ -Cycloalkyl, C ₃₋₁₀ -Cy-
		cloalkyl- C_{1-4} -alkyl, C_{2-10} -Heterocycloalkyl, C_{2-10} -Heterocycloalkyl- C_{1-4} -alkyl, -OR ^a , -SR ^a , -S(=O)R ^b ,
		-S(=0) ₂ R ^b , -S(=0) ₂ NR ^e R ^f , -C(=0)R ^b , -C(=0)OR ^a , -C(=0)NR ^e R ^f , -OC(=0)R ^b , -OC(=0)NR ^e R ^f , -NR ^e R ^f ,
		-NR ^c C(=O)R ^d , -NR ^c C(=O)OR ^d , -NR ^c S(=O) ₂ R ^d und -NR ^c S (=O) ₂ NR ^e R ^f ausgewählt ist; wobei diese C ₁₋₆ -Al-
20		kyl-, C ₃₋₁₀ -Cycloalkyl-, C ₃₋₁₀ -Cycloalkyl-C ₁₋₄ -alkyl-, C ₂₋₁₀ -Heterocycloalkyl-, C ₂₋₁₀ -Heterocycloalkyl-C ₁₋₄ -al- kylreste jeweils gegebenenfalls durch 1, 2, 3 oder 4 unabhängig voneinander ausgewählte R ^g -Gruppen
20		substituiert sind;
		R ^g jeweils unabhängig aus Halogen, Cyano, C ₁₋₆ -Alkyl, C ₁₋₆ -Halogenalkyl, C ₃₋₇ -Cycloalkyl, C ₂₋₇ -Hetero-
		cycloalkyl, $-OR^{a1}$, $-S(=O)_2R^{b1}$, $-S(=O)_2NR^{e1}R^{f1}$, $-C(=O)R^{b1}$, $-C(=O)OR^{a1}$, $-C(=O)NR^{e1}R^{f1}$, $-OC(=O)R^{b1}$,
		-OC(=O)NR ^{e1} R ^{f1} , -NR ^{e1} R ^{f1} , -NR ^{c1} C(=O)R ^{d1} , -NR ^{c1} C(=O)OR ^{d1} , -NR ^{c1} S(=O) ₂ R ^{d1} und
25		-NR ^{c1} S(=O) ₂ NR ^{e1} R ^{f1} ausgewählt ist; wobei diese C ₁ -6-Alkyl-, C ₃₋₇ -Cycloalkyl- und C ₂₋₇ -Heterocycloalkyl-
		reste jeweils gegebenenfalls durch 1, 2, 3 oder 4 unabhängig voneinander ausgewählte R ^h -Gruppen sub-
		stituiert sind;
		R ^a , R ^c , R ^d und R ^e jeweils unabhängig voneinander aus H, C ₁₋₆ -Alkyl, C ₁₋₆ -Halogenalkyl, C ₃₋₇ -Cycloalkyl
30		und C ₂₋₇ -Heterocycloalkyl ausgewählt sind, wobei diese C ₁₋₆ -Alkyl-, C ₃₋₇ -Cycloalkyl- und C ₂₋₇ -Heterocyc- loalkylreste jeweils gegebenenfalls durch 1, 2, 3 oder 4 unabhängig voneinander ausgewählte R ^g -Gruppen
		substituiert sind;
		R ^b jeweils unabhängig aus C ₁₋₆ -Alkyl, C ₁₋₆ -Halogenalkyl, C ₃₋₇ -Cycloalkyl und C ₂₋₇ -Heterocycloalkyl aus-
		gewählt ist; wobei diese C1-6-Alkyl-, C3-7-Cycloalkyl- und C2-7-Heterocycloalkylgruppen gegebenenfalls
		durch 1, 2, 3 oder 4 unabhängig voneinander ausgewählte R ^g -Gruppen substituiert sind;
35		R ^f jeweils unabhängig aus H und C ₁₋₆ -Alkyl ausgewählt ist;
		R ^{a1} , R ^{c1} , R ^{d1} und R ^{e1} jeweils unabhängig voneinander aus H, C ₁₋₆ -Alkyl, C ₁₋₆ -Halogenalkyl, C ₃₋₇ -Cycloalkyl
		und C ₂₋₇ -Heterocycloalkyl ausgewählt sind; wobei diese C ₁₋₆ -Alkyl-, C ₃₋₇ -Cycloalkyl- und C ₂₋₇ -Heterocyc-
		loalkylreste jeweils gegebenenfalls durch 1, 2, 3 oder 4 unabhängig voneinander ausgewählte R ^h -Gruppen substituiert sind; und
40		R ^{b1} jeweils unabhängig aus C ₁₋₆ -Alkyl, C ₁₋₆ -Halogenalkyl, C ₃₋₇ -Cycloalkyl und C ₂₋₇ -Heterocycloalkyl aus-
		gewählt ist; wobei diese C_{1-6} -Alkyl-, C_{3-7} -Cycloalkyl- und C_{2-7} -Heterocycloalkylreste gegebenenfalls durch
		1, 2, 3 oder 4 unabhängig voneinander ausgewählte R ^h -Gruppen substituiert sind;
		R ^{f1} jeweils unabhängig aus H und C ₁₋₆ -Alkyl ausgewählt ist;
		m für 1 steht;
45		n für 0, 1 oder 2 steht und
		r für 1 steht; oder
	b)	
	b)	
50		X für N steht;
		Z für N steht;
		L für 0 steht;
		R ¹ , R ² und R ³ jeweils für H stehen;
		R ⁵ jeweils für Fluor steht;
55		A für C_{6-10} -Aryl oder C_{1-10} -Heteroaryl steht, die jeweils gegebenenfalls durch 1, 2, 3, 4 oder 5 unabhängig
		voneinander ausgewählte R ⁷ -Substituenten substituiert sind; R ⁷ jeweils unabhängig aus Halogen, Cyano, C ₁₋₆ -Alkyl, C ₁₋₆ -Halogenalkyl, -OR ^a , -S(=O) ₂ R ^b , -S(=O) ₂ NR ^e R ^f ,
		-C(=O)R ^b , -C(=O)OR ^a und -C(=O)NR ^a R ^f ausgewählt ist; wobei dieser C ₁₋₆ -Alkylrest gegebenenfalls durch
		$\sigma_1 = \sigma_1 \cdots \sigma_{1-6}$ function of $\sigma_1 \cdots \sigma_{1-6}$ function of σ_{1-6} functions graduated in the second

5	1, 2, 3 oder 4 unabhängig voneinander ausgewählte R ^g -Gruppen substituiert ist; R ^g jeweils unabhängig aus Halogen, Cyano, C ₁₋₆ -Alkyl, C ₁₋₆ -Halogenalkyl, C ₂₋₇ -Heterocycloalkyl, -OR ^{a1} , -C(=O)NR ^{e1} R ^{f1} und -NR ^{e1} R ^{f1} ausgewählt ist; wobei diese C ₁₋₆ -Alkyl- und C ₂₋₇ -Heterocycloalkylreste ge- gebenenfalls durch 1, 2, 3 oder 4 unabhängig voneinander ausgewählte R ^h -Gruppen substituiert sind; R ^a und R ^e jeweils unabhängig voneinander aus H, C ₁₋₆ -Alkyl, C ₁₋₆ -Halogenalkyl, C ₃₋₇ -Cycloalkyl und C ₂₋₇ -Heterocycloalkyl ausgewählt sind; wobei diese C ₁₋₆ -Alkyl-, C ₃₋₇ -Cycloalkyl- und C ₂₋₇ -Heterocycloal-
10	 kylreste gegebenenfalls durch 1, 2, 3 oder 4 unabhängig voneinander ausgewählte R^g-Gruppen substituiert sind; R^b jeweils unabhängig aus C₁₋₆-Alkyl, C₁₋₆-Halogenalkyl, C₃₋₇-Cycloalkyl und C₂₋₇-Heterocycloalkyl ausgewählt ist; wobei diese C₁₋₆-Alkyl-, C₃₋₇-Cycloalkyl- und C₂₋₇-Heterocycloalkylreste gegebenenfalls durch 1, 2, 3 oder 4 unabhängig voneinander ausgewählte R^g-Gruppen substituiert sind; R^f jeweils unabhängig aus H und C₁₋₆-Alkyl ausgewählt ist;
15	R ^{e1} jeweils unabhängig aus H, C ₁₋₆ -Alkyl, C ₁₋₆ -Halogenalkyl, C ₃₋₇ -Cycloalkyl und C ₂₋₇ -Heterocycloalkyl ausgewählt ist; wobei diese C ₁₋₆ -Alkyl-, C ₃₋₇ -Cycloalkyl- und C ₂₋₇ -Heterocycloalkylreste jeweils gegebenenfalls durch 1, 2, 3 oder 4 unabhängig voneinander ausgewählte R ^h -Gruppen substituiert sind; R ^{t1} jeweils unabhängig aus H und C ₁₋₆ -Alkyl ausgewählt ist; m für 1 steht;
20	n für 0, 1 oder 2 steht und r für 1 steht; oder
20	c)
25	X für N steht; Z für N steht; L für 0 steht; Y für Cyano steht; R ¹ , R ² und R ³ jeweils für H stehen;
30	 R⁵ jeweils für Fluor steht; A für C₆₋₁₀-Aryl steht, gegebenenfalls substituiert durch 1, 2, 3, 4 oder 5 unabhängig voneinander ausgewählte R⁷-Substituenten; R⁷ jeweils unabhängig aus Halogen, Cyano, C₁₋₆-Alkyl, C₁₋₆-Halogenalkyl, -C(=O)R^b und- C(=O)NR^eR^f ausgewählt ist; wobei dieser C₁₋₆-Alkylrest gegebenenfalls durch 1, 2, 3 oder 4 unabhängig voneinander ausgewählte R^g-Gruppen substituiert ist;
35	R ^g jeweils unabhängig aus Halogen, Cyano, C ₁₋₆ -Alkyl, C ₂₋₇ -Heterocycloalkyl, -C(=O)NR ^{e1} R ^{f1} und -NR ^{e1} R ^{f1} ausgewählt ist; wobei diese C ₁₋₆ -Alkyl- und C ₂₋₇ -Heterocycloalkylreste gegebenenfalls durch 1 oder 2 un- abhängig voneinander ausgewählte R ^h -Gruppen substituiert sind; R ^h jeweils unabhängig aus Halogen, C ₁₋₄ -Alkyl und C ₁₋₄ -Alkoxy ausgewählt ist; R ^e jeweils unabhängig voneinander aus H, C ₁₋₆ -Alkyl, C ₁₋₆ -Halogenalkyl, C ₃₋₇ -Cycloalkyl und C ₂₋₇ -Hete-
40	rocycloalkyl ausgewählt ist; wobei diese C ₁₋₆ -Alkyl-, C ₃₋₇ -Cycloalkyl- und C ₂₋₇ -Heterocycloalkylreste jeweils gegebenenfalls durch 1, 2, 3 oder 4 unabhängig voneinander ausgewählte R ^g -Gruppen substituiert sind; R ^f jeweils unabhängig aus H und C ₁₋₆ -Alkyl ausgewählt ist; R ^b jeweils unabhängig aus C ₁₋₆ -Alkyl, C ₁₋₆ -Halogenalkyl, C ₃₋₇ -Cycloalkyl und C ₂₋₇ -Heterocycloalkyl ausgewählt ist; wobei diese C ₁₋₆ -Alkyl-, C ₃₋₇ -Cycloalkyl- und C ₂₋₇ -Heterocycloalkyl ausgewählt ist;
45	1, 2, 3 oder 4 unabhängig voneinander ausgewählte R ^g -Gruppen substituiert sind; R ^{e1} jeweils unabhängig aus H, C ₁₋₆ -Alkyl, C ₁₋₆ -Halogenalkyl, C ₃₋₇ -Cycloalkyl und C ₂₋₇ -Heterocycloalkyl ausgewählt ist; wobei diese C ₁₋₆ -Alkyl-, C ₃₋₇ -Cycloalkyl- und C ₂₋₇ -Heterocycloalkylreste jeweils gegebe- nenfalls durch 1, 2, 3 oder 4 unabhängig voneinander ausgewählte R ^h -Gruppen substituiert sind; R ^f jeweils unabhängig aus H und C ₁₋₆ -Alkyl ausgewählt ist; m für 1 steht;
50	n für 0 oder 1 steht und r für 1 steht; oder
	d)


X für N steht; Z für N steht; L für 0 steht; Y für Cyano steht;

	R ¹ , R ² und R ³ jeweils für H stehen; R ⁵ jeweils für Fluor steht;
	A für Phenyl steht, gegebenenfalls substituiert durch 1, 2, 3, 4 oder 5 unabhängig voneinander ausgewählte R ⁷ -Substituenten;
5	R ⁷ jeweils unabhängig aus Halogen, Cyano, C ₁₋₆ -Alkyl, C ₁₋₆ -Halogenalkyl, -C(=O)R ^b und -C (=O) NR ^e R ^f ausgewählt ist; wobei dieser C ₁₋₆ -Alkylrest gegebenenfalls durch 1, 2, 3 oder 4 unabhängig voneinander ausgewählte R ^g -Gruppen substituiert ist;
	R ^g jeweils unabhängig aus Halogen, Cyano, C ₁₋₆ -Alkyl, C ₂₋₇ -Heterocycloalkyl, -C(=O)NR ^{e1} R ^{f1} und -NR ^{e1} R ^{f1} ausgewählt ist; wobei diese C ₁₋₆ -Alkyl- und C ₂₋₇ -Heterocycloalkylreste gegebenenfalls durch 1 oder 2 un-
10	abhängig voneinander ausgewählte R ^h -Gruppen substituiert sind; R ^h jeweils unabhängig aus Halogen, C ₁₋₄ -Alkyl und C ₁₋₄ -Alkoxy ausgewählt ist;
	R ^e jeweils unabhängig voneinander aus H, C ₁₋₆ -Alkyl, C ₁₋₆ -Halogenalkyl, C ₃₋₇ -Cycloalkyl und C ₂₋₇ -Heterocycloalkyl ausgewählt ist, wobei diese C ₁₋₆ -Alkyl-, C ₃₋₇ -Cycloalkyl- und C ₂₋₇ -Heterocycloalkylreste jeweils gegebenenfalls durch 1, 2, 3 oder 4 unabhängig voneinander ausgewählte R ^g -Gruppen substituiert sind;
15	R ^f jeweils unabhängig voneinander aus H und C ₁₋₆ -Alkyl ausgewählt ist; R ^b jeweils unabhängig aus C ₁₋₆ -Alkyl, C ₁₋₆ -Halogenalkyl, C ₃₋₇ -Cycloalkyl und C ₂₋₇ -Heterocycloalkyl aus- gewählt ist; wobei diese C ₁₋₆ -Alkyl-, C ₃₋₇ -Cycloalkyl- und C ₂₋₇ -Heterocycloalkylreste gegebenenfalls durch
	1, 2, 3 oder 4 unabhängig voneinander ausgewählte R ^g -Gruppen substituiert sind; R ^{e1} jeweils unabhängig voneinander aus H, C_{1-6} -Alkyl, C_{1-6} -Halogenalkyl, C_{3-7} -Cycloalkyl und C_{2-7} -Hete-
20	rocycloalkyl ausgewählt ist, wobei diese C_{1-6} -Alkyl-, C_{3-7} -Cycloalkyl- und C_{2-7} -Heterocycloalkyl reste jeweils gegebenenfalls durch 1, 2, 3 oder 4 unabhängig voneinander ausgewählte R ^h -Gruppen substituiert sind; R ^{f1} jeweils unabhängig voneinander aus H und C ₁₋₆ -Alkyl ausgewählt ist;
	m für 1 steht; n für 0 oder 1 steht und
25	r für 1 steht.

14. Verbindung nach einem der Ansprüche 1 bis 13, wobei:


30

a) es sich bei der Verbindung und eine Verbindung der Formel II:

oder ein pharmazeutisch unbedenkliches Salz davon handelt; oder b) es sich bei der Verbindung und eine Verbindung der Formel III:

50

10

1	5

oder ein pharmazeutisch unbedenkliches Salz davon handelt.

- 15. Verbindung nach Anspruch 1,
- a) ausgewählt aus:

	4-[4-(3,5-Difluorphenoxy)piperidin-1-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]butannitril; 4-[4-(3-Chlor-5-fluorphenoxy)piperidin-1-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]butan- nitril:
25	4-{4-[3-Fluor-5-(trifluormethyl)phenoxy]piperidin-1-yl}-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]butannitril;
	3-[4-(7H-Pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]-4-[4-(3,4,5-trifluorphenoxy)piperidin-1-yl]-butannit- ril;
30	3-[4-(7H-Pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]-4-[4-(2,3,5-trifluorphenoxy)piperidin-1-yl]-butannit- ril;
	3-[((1-{3-Cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}piperidin-4-yl)oxy]-5-fluor- benzonitril;
	3-[((1-{3-Cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}piperidin-4-yl)oxy]-5-fluor-N- methylbenzamid;
35	3-[((1-{3-Cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}piperidin-4-yl)oxy]-5-fluor- N,N-dimethylbenzamid;
	3-[((1-{3-Cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}piperidin-4-yl)oxy]-N-ethyl- 5-fluorbenzamid;
40	3-[((1-{3-Cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}piperidin-4-yl)oxy]-N-cyclop- ropyl-5-fluorbenzamid;
	3-[((1-{3-Cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}piperidin-4-yl)oxy]-5-fluor-N- isopropylbenzamid;
	N-(2-Cyanoethyl)-3-[(1-{3-cyano-2-[4-(7H-pyrrolo-[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}-piperidin- 4-yl)oxy]-5-fluorbenzamid;
45	4-{4-[3-Fluor-5-(pyrrolidin-1-ylcarbonyl)phenoxy]-piperidin-1-yl}-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H- pyrazol-1-yl]butannitril;
	N-(3-Amino-3-oxopropyl)-3-[(1-{3-cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]-propyl}pi- peridin-4-yl)oxy]-5-fluorbenzamid;
50	N-(tertButyl)-3-[(1-{3-cyano-2-[4-(7H-pyrrolo-[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}-piperidin-4- yl)oxy]-5-fluorbenzamid;
	3-[((1-{3-Cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}piperidin-4-yl)oxy]-5-fluor- N-(2-morpholin-4-ylethyl)benzamid;
	4-{4-[3-Fluor-5-(piperidin-1-ylcarbonyl)phenoxy]-piperidin-1-yl}-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-
55	pyrazol-1-yl]butannitril; 4-{4-[3-Fluor-5-(morpholin-4-ylcarbonyl)phenoxy]-piperidin-1-yl}-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-
	1H-pyrazol-1-yl]butannitril; 4-((4-{3-[(3,3-Difluorpyrrolidin-1-yl)carbonyl]-5-fluorphenoxy}piperidin-1-yl)-3-[4-(7H-pyrrolo[2,3-d]pyrimi- din-4-yl)-1H-pyrazol-1-yl]butannitril;

	4-((4-{3-[(Dimethylamino)methyl]-5-fluorphenoxy}-piperidin-1-yl)-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-
	1H-pyrazol-1-yl]butannitril; 4-[4-(3-{[Cyclopropyl(methyl)amino]methyl}-5-fluorphenoxy)piperidin-1-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimi- din 4-th 4-th average 4-o llbot agrificit.
5	din-4-yl)-1H-pyrazol-1-yl]butannitril; 4-{4-[3-(Azetidin-1-ylmethyl)-5-fluorphenoxy]-piperidin-1-yl}-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-py-
	razol-1-yl]butannitril; 4-((4-{3-[(Cyclobutylamino)methyl]-5-fluorphenoxy}-piperidin-1-yl)-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-
	1H-pyrazol-1-yl]butannitril;
10	4-{4-[3-Fluor-5-(pyrrolidin-1-ylmethyl)phenoxy]-piperidin-1-yl}-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H- pyrazol-1-yl]butannitril;
10	4-{4-[3-Fluor-5-(piperidin-1-ylmethyl)phenoxy]-piperidin-1-yl}-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-
	pyrazol-1-yl]butannitril;
	4-{4-[3-Fluor-5-(morpholin-4-ylmethyl)phenoxy]-piperidin-1-yl}-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-
15	pyrazol-1-yl]butannitril; 4-((4-{3-[(3,3-Difluorpyrrolidin-1-yl)methyl]-5-fluorphenoxy}piperidin-1-yl)-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-
	4-yl)-1H-pyrazol-1-yl]butannitril;
	4-[4-(3-Fluor-5-{[2-methylpyrrolidin-1-yl]methyl}-phenoxy)piperidin-1-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-
	4-yl)-1H-pyrazol-1-yl]butannitril; 4-[4-(3-Fluor-5-{[(2-methoxyethyl)amino]methyl}-phenoxy)piperidin-1-yl]-3-[4-(7H-pyrrolo[2,3-d]-pyrimi-
20	din-4-yl)-1H-pyrazol-1-yl]butannitril;
	3-[((1-{3-Cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}-3-fluorpiperidin-4-yl)oxy]-5-
	fluorbenzonitril; und 4-[3-Fluor-4-(3-fluor-5-{[2-methylpyrrolidin-1-yl]methyl}phenoxy)piperidin-1-yl]-3-[4-(7H-pyrrolo[2,3-d]pyri-
	midin-4-yl)-1H-pyrazol-1-yl]-butannitril;
25	oder einem pharmazeutischen Salz einer der oben erwähnten Verbindungen; oder
	b) ausgewählt aus:
	4-[4-(3-Fluor-5-{[(2R)-2-methylpyrrolidin-1-yl]-methyl}phenoxy)piperidin-1-yl]-3-[4-(7H-pyrrolo-[2,3-d]pyri-
30	midin-4-yl)-1H-pyrazol-1-yl]butannitril; 4-[4-(3-Fluor-5-{[(2S)-2-methylpyrrolidin-1-yl]-methyl}phenoxy)piperidin-1-yl]-3-[4-(7H-pyrrolo-[2,3-d]pyri-
	midin-4-yl)-1H-pyrazol-1-yl]butannitril;
	4-[3-Fluor-4-(3-fluor-5-{[(2R)-2-methylpyrrolidin-1-yl]methyl}phenoxy)piperidin-1-yl]-3-[4-(7H-pyrrolo[2,3-
35	d]pyrimidin-4-yl)-1H-pyrazol-1-yl]-butannitril; und 4-[3-Fluor-4-(3-fluor-5-{[(2S)-2-methylpyrrolidin-1-yl]methyl}phenoxy)piperidin-1-yl]-3-[4-(7H-pyrrolo[2,3-
00	d]pyrimidin-4-yl)-1H-pyrazol-1-yl]-butannitril;
	oder einem pharmazeutischen Salz einer der oben erwähnten Verbindungen.
	16. Verbindung nach einem der Ansprüche 1 bis 15, wobei es sich bei der Verbindung um das (R)-Enantiomer handelt,
40	oder ein pharmazeutisch unbedenkliches Salz davon.
	17. Verbindung nach einem der Ansprüche 1 bis 15, wobei es sich bei der Verbindung um das (S)-Enantiomer handelt,
	oder ein pharmazeutisch unbedenkliches Salz davon.
45	18. Zusammensetzung, umfassend eine Verbindung nach einem der Ansprüche 1 bis 17 oder ein pharma-zeutisch

- ⁴⁵ **18.** Zusammensetzung, umfassend eine Verbindung nach einem der Ansprüche 1 bis 17 oder ein pharma-zeutisch unbedenkliches Salz davon und mindestens einen pharmazeutisch unbedenklichen Träger.
 - **19.** Verbindung nach einem der Ansprüche 1 bis 17 oder ein pharmazeutisch unbedenkliches Salz davon zur Verwendung bei einem Verfahren zum Modulieren einer Aktivität von JAK1.
- 50
- **20.** Verbindung oder ein pharmazeutisch unbedenkliches Salz davon zur Verwendung nach Anspruch 19, wobei die Verbindung oder ein pharmazeutisch unbedenkliches Salz davon Selektivität für JAK1 über JAK2 zeigt.
- 21. Verbindung nach einem der Ansprüche 1 bis 17 oder ein pharmazeutisch unbedenkliches Salz davon zur Verwendung bei einem Verfahren zur Behandlung einer Autoimmunkrankheit, einer Krebserkrankung, einer myeloproliferativen Erkrankung, einer entzündlichen Krankheit, einer Knochenresorptionskrankheit oder einer Organtransplantatabstoßung bei einem dessen bedürftigen Patienten.

22. Verbindung oder ein pharmazeutisch unbedenkliches Salz davon zur Verwendung nach Anspruch 21, wobei:

5	 a) es sich bei der Autoimmunkrankheit um eine Hauterkrankung, multiple Sklerose, rheumatoide Arthritis, Pso- riasisarthritis, juvenile Arthritis, Typ-I-Diabetes, Lupus, entzündliche Darmkrankheit, Morbus Crohn, Myasthenia gravis, Immunglobulinnephropathien, Myokarditis oder autoimmune Schilddrüsenerkrankung handelt; oder b) es sich bei der Autoimmunkrankheit um rheumatoide Arthritis handelt; oder c) es sich bei der Autoimmunkrankheit um eine Hauterkrankung handelt; oder
	d) es sich bei der Autoimmunkrankheit um eine Hauterkrankung handelt, bei der es sich um atopische Dermatitis,
	Psoriasis, Hautsensibilisierung, Hautreizung, Hautausschlag, Kontaktdermatitis oder allergische Kontaktsen-
10	sibilisierung handelt; oder
	e) es sich bei der Krebserkrankung um einen festen Tumor handelt; oder
	f) es sich bei der Krebserkrankung um Prostatakrebs, Nierenkrebs, Leberkrebs, Brustkrebs, Lungenkrebs,
	Schilddrüsenkrebs, Kaposi-Sarkom, Morbus Castleman oder Bauchspeicheldrüsenkrebs handelt; oder
	g) es sich bei der Krebserkrankung um Lymphom, Leukämie oder multiples Myelom handelt; oder
15	h) es sich bei der myeloproliferativen Erkrankung (MPD) um Polycythaemia vera (PV), essentielle Thrombo-
	zythämie (ET), myeloide Metaplasie mit Myelofibrose (MMM), primäre Myelofibrose (PMF), chronische myelo-
	ische Leukämie (CML), chronische myelomonozytäre Leukämie (CMML), hypereosinophiles Syndrom (HES),
	idiopathische Myelofibrose (IMF) oder systemische Mastzellenkrankheit (SMCD) handelt; oder
	i) es sich bei der myeloproliferativen Erkrankung um Myelofibrose handelt; oder
20	j) es sich bei der myeloproliferativen Erkrankung um primäre Myelofibrose (PMF) handelt; oder
	k) es sich bei der Knochenresorptionskrankheit um Osteoporose, Osteoarthritis, mit einer Hormonstörung as-
	soziierte Knochenresorption, mit einer Hormontherapie assoziierte Knochenresorption, mit einer Autoim-
	munkrankheit assoziierte Knochenresorption oder mit Krebs assoziierte Knochenresorption handelt.

25

50

55

Revendications

1. Composé de Formule I :

30	$(\mathbb{R}^5)_n$ $($
35	X-N X-N
40	$R^{3} \xrightarrow{R^{2}} N \xrightarrow{R^{2}} R^{1}$
	I

45 ou l'un des sels pharmaceutiquement acceptables de celui-ci ; où :

X représente un groupement CH ou N ;

Y représente H ou un groupement cyano, halogéno, alkyle en C_{1-3} ou halogénoalkyle en C_{1-3} ;

Z représente CR⁴ ou N ; L représente 0 ou S ;

chacun des radicaux R¹, R², R³ et R⁴ représente indépendamment H ou un groupement hydroxy, halogéno, alkyle en C₁₋₃ ou halogénoalkyle en C₁₋₃ ;

chacun des radicaux R⁵ représente indépendamment un atome de fluor ou un groupement hydroxy, alkoxy en C₁₋₄, alkyle en C₁₋₄, hydroxyalkyle en C₁₋₄, (alkoxy en C₁₋₄)-(alkyle en C₁₋₄) ou fluoroalkyle en C₁₋₄;

A représente un groupement alkyle en C_{1-6} , cycloalkyle en C_{3-10} , hétérocycloalkyle en C_{2-10} , aryle en C_{6-10} ou hétéroaryle en C_{1-10} ; chacun étant éventuellement substitué par p substituants R^7 indépendamment substitués ; où p est égal à 1, 2, 3, 4 ou 5 ;

chacun des radicaux R⁷ est indépendamment choisi parmi les groupements halogéno, cyano, nitro, alkyle en

 $\begin{array}{l} C_{1-6}, halogénoalkyle en C_{1-6}, alcényle en C_{26}, alcynyle en C_{2-6}, cycloalkyle en C_{3-10}, (cycloalkyle en C_{3-10})-(alkyle en C_{1-4}), hétérocycloalkyle en C_{2-10}, (hétérocycloalkyle en C_{2-10})-(alkyle en C_{1-4}), aryle en C_{6-10}, (aryle en C_{6-10})-(alkyle en C_{1-4}), hétéroaryle en C_{1-10}, (hétéroaryle en C_{1-10})-(alkyle en C_{1-4}), -OR^a, -SR^a, -S(=O) R^b, -S(=O)_2 R^b, -S (=O)_2 NR^eR^f, -C(=O) R^b, -C(=O) OR^a, -C(=O) NR^eR^f, -OC(=O) R^b, -OC(=O) NR^eR^f, -NR^eR^f, -NR^eC(=O) R^d, -NR^cC(=O) OR^d, -NR^cC(=O) QR^d et -NR^cS (=O)_2 NR^eR^f; où chacun desdits groupements alkyle en C_{1-6}, alcényle en C_{2-6}, cycloalkyle en C_{3-10}, (cycloalkyle en C_{3-10}) - (alkyle en C_{1-4}), hétérocycloalkyle en C_{2-10}, (hétérocycloalkyle en C_{2-10})-(alkyle en C_{1-4}), aryle en C_{6-10}, (aryle en C_{6-10})-(alkyle en C_{1-4}), hétéroaryle en C_{1-10} et (hétéroaryle en C_{1-10})-(alkyle en C_{1-4}) est éventuellement substitué par 1, 2, 3 ou 4 groupements R^g indépendamment choisis ; \\ \end{array}$

5

- ¹⁰ chacun des radicaux R^a, R^c, R^d, R^e et R^f est indépendamment choisi parmi H et les groupements alkyle en C_{1-6} , halogénoalkyle en C_{1-6} , alcényle en C_{2-6} , alcynyle en C_{2-6} , cycloalkyle en C_{3-10} , (cycloalkyle en C_{3-10}) (alkyle en C_{1-4}), hétérocycloalkyle en C_{2-10} , (hétérocycloalkyle en C_{2-10})-(alkyle en C_{1-4}), aryle en C_{6-10})-(alkyle en C_{1-4}), hétéroaryle en C_{2-6} , alcynyle en C_{2-10})-(alkyle en C_{1-4}); où chacun desdits groupements alkyle en C_{1-6} , alcényle en C_{2-6} , alcynyle en C_{2-6} , cycloalkyle en C_{3-10} , (cycloalkyle en C_{3-10} , (aryle en C_{6-10})-(alkyle en C_{1-6}), alcényle en C_{2-6} , alcynyle en C_{2-6} , cycloalkyle en C_{3-10} , (cycloalkyle en C_{3-10}) (alkyle en C_{1-4}), hétérocycloalkyle en C_{2-10} , (hétérocycloalkyle en C_{2-10})-(alkyle en C_{1-4}), aryle en C_{6-10} , (aryle en C_{6-10})-(alkyle en C_{1-4}), hétérocycloalkyle en C_{2-10} , (hétéroaryle en C_{2-10})-(alkyle en C_{1-4}), aryle en C_{6-10} , (aryle en C_{6-10})-(alkyle en C_{1-4}), hétéroaryle en C_{1-10} , et (hétéroaryle en C_{1-10})-(alkyle en C_{1-4}) est indépendamment substitué par 1, 2, 3 ou 4 groupements R^g indépendamment choisis ;
- chacun des radicaux R^b est indépendamment choisi parmi les groupements alkyle en C₁₋₆, halogénoalkyle en C₁₋₆, alcényle en C₂₋₆, alcynyle en C₂₋₆, cycloalkyle en C₃₋₁₀, (cycloalkyle en C₃₋₁₀)- (alkyle en C₁₋₄), hétérocycloalkyle en C₂₋₁₀)-(alkyle en C₁₋₄), aryle en C₆₋₁₀, (aryle en C₆₋₁₀)-(alkyle en C₁₋₄), hétéroaryle en C₁₋₆, alcényle en C₂₋₆, cycloalkyle en C₃₋₁₀)-(alkyle en C₁₋₄); où chacun desdits groupements alkyle en C₁₋₆, alcényle en C₂₋₆, alcynyle en C₂₋₆, cycloalkyle en C₃₋₁₀, (cycloalkyle en C₃₋₁₀)- (alkyle en C₁₋₆), hétérocycloalkyle en C₂₋₆, cycloalkyle en C₃₋₁₀, (cycloalkyle en C₃₋₁₀)- (alkyle en C₁₋₄), hétérocycloalkyle en C₂₋₁₀, (hétérocycloalkyle en C₂₋₁₀)-(alkyle en C₁₋₄), aryle en C₆₋₁₀, (aryle en C₁₋₄), hétéroaryle en C₂₋₁₀)-(alkyle en C₁₋₄), aryle en C₆₋₁₀, (aryle en C₁₋₄), hétéroaryle en C₁₋₁₀)-(alkyle en C₁₋₄), et (hétéroaryle en C₁₋₁₀)-(alkyle en C₁₋₄), aryle en C₆₋₁₀, (aryle en C₆₋₁₀)-(alkyle en C₁₋₄), hétéroaryle en C₁₋₁₀)-(alkyle en C₁₋₁₀)-(alkyle en C₁₋₄), et (hétéroaryle en C₁₋₁₀)-(alkyle en C₁₋₄) et (hétéroaryle en C₁₋₁₀)-(alkyle en C₁₋₄) et (hétéroaryle en C₁₋₁₀)-(alkyle en C₁₋₄) et éventuellement substitué par 1, 2, 3 ou 4 groupements R⁹ indépendamment choisis ;
- chacun des radicaux R⁹ est indépendamment choisi parmi les groupements halogéno, cyano, nitro, alkyle en C₁₋₆, halogénoalkyle en C₁₋₆, alcényle en C₂₋₆, alcynyle en C₂₋₆, cycloalkyle en C₃₋₇, (cycloalkyle en C₃₋₇) (alkyle en C₁₋₃), hétérocycloalkyle en C₂₋₇, (hétérocycloalkyle en C₂₋₇)-(alkyle en C₁₋₃), phényle, phényl- (alkyle en C₁₋₃), hétéroaryle en C₁₋₇, (hétéroaryle en C₁₋₇)-(alkyle en C₁₋₃), -OR^{a1}, -SR^{a1}, -S(=O)R^{b1}, -S(=O)₂R^{b1}, -C(=O)OR^{a1}, -C(=O)OR^{a1}, -C(=O)N^{e1}R^{f1}, -OC(=O)R^{b1}, OC(=O)N^{e1}R^{f1}, -NR^{e1}R^{f1}, -NR^{e1}R^{f1}, -NR^{e1}C(=O)OR^{d1}, -NR^{c1}C(=O)OR^{d1}, -NR^{c1}S(=O)₂R^{d1} et NR^{c1}S(=O)₂NR^{e1}R^{f1}; où chacun desdits groupements alkyle en C₁₋₆, alcényle en C₂₋₆, alcynyle en C₂₋₇)-(alkyle en C₃₋₇, (cycloalkyle en C₃₋₇)-(alkyle en C₁₋₃), hétérocycloalkyle en C₂₋₇, (hétérocycloalkyle en C₂₋₇)-(alkyle en C₁₋₃), phényle, phényl- (alkyle en C₁₋₃), hétérocycloalkyle en C₂₋₇, (hétérocycloalkyle en C₁₋₃), est éventuellement substitué par 1, 2, 3 ou 4 groupements R³⁵
 - chacun des radicaux R^{a1}, R^{c1}, R^{d1}, R^{e1} et R^{f1} est indépendamment choisi parmi H et les groupements alkyle en C₁₋₆, halogénoalkyle en C₁₋₆, alcényle en C₂₋₆, alcynyle en C₂₋₆, cycloalkyle en C₃₋₇, (cycloalkyle en C₃₋₇)-(alkyle en C₁₋₃), hétérocycloalkyle en C₂₋₇, (hétérocycloalkyle en C₂₋₇)-(alkyle en C₁₋₃), phényle, phényl- (alkyle en C₁₋₃), hétéroaryle en C₁₋₇ et (hétéroaryle en C₁₋₇)-(alkyle en C₁₋₃); où chacun desdits groupements alkyle en C₁₋₆, alcényle en C₂₋₆, alcynyle en C₂₋₇, (cycloalkyle en C₂₋₇)-(alkyle en C₃₋₇) - (alkyle en C₁₋₃); où chacun desdits groupements alkyle en C₁₋₆, alcényle en C₂₋₆, alcynyle en C₂₋₆, cycloalkyle en C₃₋₇, (cycloalkyle en C₃₋₇) - (alkyle en C₁₋₃), hétérocycloalkyle en C₂₋₇, (hétérocycloalkyle en C₂₋₇)-(alkyle en C₁₋₃), phényle, phényl- (alkyle en C₁₋₃), hétéroaryle en C₁₋₇)-(alkyle en C₁₋₃), phényle, phényl- (alkyle en C₁₋₃), hétéroaryle en C₁₋₇)-(alkyle en C₁₋₃), phényle, phényl- (alkyle en C₁₋₃), hétéroaryle en C₁₋₇)-(alkyle en C₁₋₃), phényle, phényl- (alkyle en C₁₋₃), hétéroaryle en C₁₋₇)-(alkyle en C₁₋₃) est éventuellement substitué par 1, 2, 3 ou 4 groupements R^h indépendamment choisis ;
- chacun des radicaux R^{b1} est indépendamment choisi parmi les groupements alkyle en C₁₋₆, halogénoalkyle en 45 C_{1-6} , alcényle en C_{2-6} , alcynyle en C_{2-6} , cycloalkyle en C_{3-7} , (cycloalkyle en C_{3-7})-(alkyle en C_{1-3}), hétérocycloalkyle en C_{2-7} , (hétérocycloalkyle en C_{2-7})-(alkyle en C_{1-3}), phényle, phényl- (alkyle en C_{1-3}), hétéroaryle en C₁₋₇ et (hétéroaryle en C₁₋₇) - (alkyle en C₁₋₃) ; où chacun desdits groupements alkyle en C₁₋₆, alcényle en C₂₋₆, alcynyle en C2-6, cycloalkyle en C3-7, (cycloalkyle en C3-7)-(alkyle en C1-3), hétérocycloalkyle en C2-7, (hétérocycloalkyle en C_{2-7})-(alkyle en C_{1-3}), phényle, phényl- (alkyle en C_{1-3}), hétéroaryle en C_{1-7} et (hétéroaryle en C1-7)-(alkyle en C1-3) est éventuellement substitué par 1, 2, 3 ou 4 groupements R^h indépendamment choisis ; 50 chacun des radicaux R^h est indépendamment choisi parmi les groupements cyano, halogéno, hydroxy, alkyle en C1-4, halogénoalkyle en C1-4, alkoxy en C1-4, halogénoalkoxy en C1-4, amino, (alkyle en C1-4)-amino, di-(alkyle en C₁₋₄)-amino, thio, (alkyle en C₁₋₆)-thio, (alkyle en C₁₋₆)-sulfinyle, (alkyle en C₁₋₆)-sulfonyle, carbamyle, (alkyle en C1-6)-carbamyle, di- (alkyle en C1-6)-carbamyle, carboxy, (alkyle en C1-6)-carbonyle, (alkoxy en 55 C1-6)-carbonyle, (alkyle en C1-6)-carbonylamino, (alkyle en C1-6)-sulfonylamino, aminosulfonyle, (alkyle en C1-6)-aminosulfonyle, di- (alkyle en C1-6)-aminosulfonyle, aminosulfonylamino, (alkyle en C1-6)-aminosulfonylamino, di- (alkyle en C1-6)-aminosulfonylamino, aminocarbonylamino, (alkyle en C1-6)-aminocarbonylamino et di- (alkyle en C₁₋₆)-aminocarbonylamino ;

m est égal à 0, 1 ou 2 ; n est égal à 0, 1, 2, 3 ou 4 ; et r est égal à 1, 2 ou 3.

- ⁵ 2. Composé selon la revendication 1, ou l'un des sels pharmaceutiquement acceptables de celui-ci, où X représente N.
 - 3. Composé selon la revendication 1 ou 2, ou l'un des sels pharmaceutiquement acceptables de celui-ci, où Z représente N.
- Composé selon l'une quelconque des revendications 1 à 3, ou l'un des sels pharmaceutiquement acceptables de celui-ci, où L représente O.
 - 5. Composé selon l'une quelconque des revendications 1 à 4, ou l'un des sels pharmaceutiquement acceptables de celui-ci, où Y représente un groupement cyano.
- 15

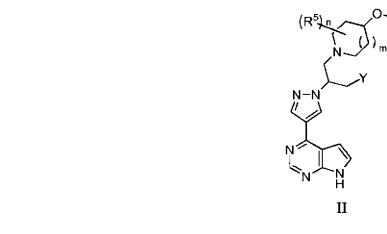
20

- 6. Composé selon l'une quelconque des revendications 1 à 5, ou l'un des sels pharmaceutiquement acceptables de celui-ci, où chacun des radicaux R¹, R², R³ et R⁴ représente H.
- Composé selon l'une quelconque des revendications 1 à 6, ou l'un des sels pharmaceutiquement acceptables de celui-ci, où chacun des radicaux R⁵ représente un atome de fluor.
 - 8. Composé selon l'une quelconque des revendications 1 à 7, ou l'un des sels pharmaceutiquement acceptables de celui-ci, où n est égal à 0 ou 1.
- 25
 9. Composé selon l'une quelconque des revendications 1 à 8, ou l'un des sels pharmaceutiquement acceptables de celui-ci, où m est égal à 1.
 - **10.** Composé selon l'une quelconque des revendications 1 à 9, ou l'un des sels pharmaceutiquement acceptables de celui-ci, où r est égal à 1.
- 30
- **11.** Composé selon l'une quelconque des revendications 1 à 10, ou l'un des sels pharmaceutiquement acceptables de celui-ci, où :
- a) A représente un groupement phényle, un cycle hétéroarylique à 5 chaînons ou un cycle hétéroarylique à 6
 ³⁵ chaînons ; chacun étant éventuellement substitué par 1, 2, 3, 4 ou 5 substituants R⁷ indépendamment choisis ;
 ou

b) A représente un groupement phényle ; qui est éventuellement substitué par 1, 2, 3, 4 ou 5 substituants R⁷ indépendamment choisis.

- 12. Composé selon l'une quelconque des revendications 1 à 11, ou l'un des sels pharmaceutiquement acceptables de celui-ci, où chacun des radicaux R⁷ est indépendamment choisi parmi les groupements halogéno, cyano, alkyle en C₁₋₆, halogénoalkyle en C₁₋₆, -C(=O)R^b et -C(=O)NR^eR^f; où chacun desdits groupements alkyle en C₁₋₆ est éventuellement substitué par 1, 2, 3 ou 4 groupements R⁹ indépendamment choisis.
- 45 **13.** Composé selon la revendication 1, ou l'un des sels pharmaceutiquement acceptables de celui-ci, où :
 - a)

	X représente N ;
50	Z représente N ;
	L représente 0 ;
	chacun des radicaux R ¹ , R ² et R ³ représente H ;
	chacun des radicaux R ⁵ représente un atome de fluor ;
	A représente un groupement cycloalkyle en C ₃₋₁₀ , hétérocycloalkyle en C ₂₋₁₀ , aryle en C ₆₋₁₀ ou hétéroaryle
55	en C ₁₋₁₀ , chacun étant éventuellement substitué par 1, 2, 3, 4 ou 5 substituants R ⁷ indépendamment
	choisis ; chacun des radicaux R ⁷ est indépendamment choisi parmi les groupements halogéno, cyano,
	nitro, alkyle en C ₁₋₆ , halogénoalkyle en C ₁₋₆ , cycloalkyle en C ₃₋₁₀ , (cycloalkyle en C ₃₋₁₀)-(alkyle en C ₁₋₄),
	hétérocycloalkyle en C ₂₋₁₀ , (hétérocycloalkyle en C ₂₋₁₀)-(alkyle en C ₁₋₄), -OR ^a , -SR ^a , -S(=O)R ^b , -S(=O) ₂ R ^b ,


5	$-S(=O)_2NR^eR^f$, $-C(=O)R^b$, $-C(=O)OR^a$, $-C(=O)NR^eR^f$, $-OC(=O)R^b$, $-OC(=O)NR^eR^f$, $-NR^eR^f$, $-NR^eC(=O)R^d$, $-NR^eC(=O)OR^d$, $-NR^eS(=O)_2R^d$ et $-NR^eS(=O)_2NR^eR^f$; où chacun desdits groupements alkyle en C_{1-6} , cycloalkyle en C_{3-10} , (cycloalkyle en C_{3-10})- (alkyle en C_{1-4}), hétérocycloalkyle en C_{2-10} , (hétérocycloalkyle en C_{2-10}) - (alkyle en C_{1-4}) est éventuellement substitué par 1, 2, 3 ou 4 groupements R^g indépendamment choisis ;
10	chacun des radicaux R ^g est indépendamment choisi parmi les groupements halogéno, cyano, alkyle en C ₁₋₆ , halogénoalkyle en C ₁₋₆ , cycloalkyle en C ₃₋₇ , hétérocycloalkyle en C ₂₋₇ , -OR ^{a1} , -S(=O) ₂ R ^{b1} , -S(=O) ₂ NR ^{e1} R ^{f1} , -C(=O)R ^{b1} , -C(=O)OR ^{a1} , -C(=O)NR ^{e1} R ^{f1} , - OC(=O)R ^{b1} , -OC(=O)NR ^{e1} R ^{f1} , -NR ^{e1} R ^{f1} , -NR ^{e1} C(=O)OR ^{d1} , -NR ^{c1} S(=O) ₂ R ^{d1} et -NR ^{c1} S(=O) ₂ NR ^{e1} R ^{f1} ; où chacun desdits groupements alkyle en C ₁₋₆ , cycloalkyle en C ₃₋₇ et hétérocycloalkyle en C ₂₋₇ est éventuellement substitué par 1,
15	2, 3 ou 4 groupements R ^h indépendamment choisis ; chacun des radicaux R ^a , R ^a , R ^d et R ^e est indépendamment choisi parmi H et les groupements alkyle en C ₁₋₆ , halogénoalkyle en C ₁₋₆ , cycloalkyle en C ₃₋₇ et hétérocycloalkyle en C ₂₋₇ , où chacun desdits groupe- ments alkyle en C ₁₋₆ , cycloalkyle en C ₃₋₇ et hétérocycloalkyle en C ₂₋₇ est éventuellement substitué par 1, 2, 3 ou 4 groupements R ^g indépendamment choisis ;
	chacun des radicaux R ^b est indépendamment choisi parmi les groupements alkyle en C ₁₋₆ , halogénoalkyle en C ₁₋₆ , cycloalkyle en C ₃₋₇ et hétérocycloalkyle en C ₂₋₇ ; où chacun desdits groupements alkyle en C ₁₋₆ , cycloalkyle en C ₃₋₇ et hétérocycloalkyle en C ₂₋₇ est éventuellement substitué par 1, 2, 3 ou 4 groupements R ^g indépendamment choisis ;
20	chacun des radicaux R ^f est indépendamment choisi parmi H et les groupements alkyle en C ₁₋₆ ; chacun des radicaux R ^{a1} , R ^{c1} , R ^{d1} et R ^{e1} est indépendamment choisi parmi H et les groupements alkyle en C ₁₋₆ , halogénoalkyle en C ₁₋₆ , cycloalkyle en C ₃₋₇ et hétérocycloalkyle en C ₂₋₇ , où chacun desdits grou- pements alkyle en C ₁₋₆ , cycloalkyle en C ₃₋₇ et hétérocycloalkyle en C ₂₋₇ est éventuellement substitué par 1, 2, 3 ou 4 groupements R ^h indépendamment choisis ; et
25	chacun des radicaux R ^{b1} est indépendamment choisi parmi les groupements alkyle en C ₁₋₆ , halogénoalkyle en C ₁₋₆ , cycloalkyle en C ₃₋₇ et hétérocycloalkyle en C ₂₋₇ ; où chacun desdits groupements alkyle en C ₁₋₆ , cycloalkyle en C ₃₋₇ et hétérocycloalkyle en C ₂₋₇ est éventuellement substitué par 1, 2, 3 ou 4 groupements R ^h indépendamment choisis ;
30	chacun des radicaux R ^{f1} est indépendamment choisi parmi H et les groupements alkyle en C ₁₋₆ ; m est égal à 1 ; n est égal à 0, 1 ou 2 ; et r est égal à 1 ; ou
35	X représente N ; Z représente N ; L représente 0 ; chacun des radicaux R ¹ , R ² et R ³ représente H ;
40	chacun des radicaux R ⁵ représente un atome de fluor ; A représente un groupement aryle en C ₆₋₁₀ ou hétéroaryle en C ₁₋₁₀ , chacun étant éventuellement substitué par 1, 2, 3, 4 ou 5 substituants R ⁷ indépendamment choisis ; chacun des radicaux R ⁷ est indépendamment choisi parmi les groupements halogéno, cyano, alkyle en C ₁₋₆ , halogénoalkyle en C ₁₋₆ , -OR ^a , -S(=O) ₂ R ^b , -S(=O) ₂ NR ^e R ^f , C(=O)R ^b , -C(=O)OR ^a et -C(=O)NR ^e R ^f ; où chacun desdits groupements alkyle en C ₁₋₆ est
45	éventuellement substitué par 1, 2, 3 ou 4 groupements R ⁹ indépendamment choisis ; chacun des radicaux R ⁹ est indépendamment choisi parmi les groupements halogéno, cyano, alkyle en C ₁₋₆ , halogénoalkyle en C ₁₋₆ , hétérocycloalkyle en C ₂₋₇ , -OR ^{a1} , -C(=O)NR ^{e1} R ^{f1} et -NR ^{e1} R ^{f1} ; où chacun desdits groupements alkyle en C ₁₋₆ et hétérocycloalkyle en C ₂₋₇ est éventuellement substitué par 1, 2, 3 ou 4 groupements R ^h indépendamment choisis ;
50	chacun des radicaux R ^a et R ^e est indépendamment choisi parmi H et les groupements alkyle en C ₁₋₆ , halogénoalkyle en C ₁₋₆ , cycloalkyle en C ₃₋₇ et hétérocycloalkyle en C ₂₋₇ ; où chacun desdits groupements alkyle en C ₁₋₆ , cycloalkyle en C ₃₋₇ et hétérocycloalkyle en C ₂₋₇ est éventuellement substitué par 1, 2, 3 ou 4 groupements R ^g indépendamment choisis ; chacun des radicaux R ^b est indépendamment choisi parmi les groupements alkyle en C ₁₋₆ , halogénoalkyle en C ₁₋₆ , cycloalkyle en C ₁₋₆ , halogénoalkyle en C ₁₋₆ , cycloalkyle en C ₂₋₇ et hétérocycloalkyle en C ₂₋₇ est éventuellement substitué par 1, 2, 3 ou
55	où chacun desdits groupements alkyle en C ₁₋₆ , cycloalkyle en C ₃₋₇ et hétérocycloalkyle en C ₂₋₇ est éven- tuellement substitué par 1, 2, 3 ou 4 groupements R ⁹ indépendamment choisis ; chacun des radicaux R ^f est indépendamment choisi parmi H et les groupements alkyle en C ₁₋₆ ; chacun des radicaux R ^{e1} est indépendamment choisi parmi H et les groupements alkyle en C ₁₋₆ , halogé-

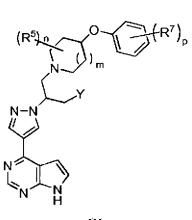
50		Z représente N ; L représente 0 ; Y représente un groupement cyano ; chacun des radicaux R ¹ , R ² et R ³ représente H ; chacun des radicaux R ⁵ représente un atome de fluor ; A représente un groupement phényle, qui est éventuellement substitué par 1, 2, 3, 4 ou 5 substituants R ⁷ indépendamment choisis ; chacun des radicaux R ⁷ est indépendamment choisi parmi les groupements halogéno, cyano, alkyle en C ₁₋₆ , halogénoalkyle en C ₁₋₆ , -C(=O)R ^b et -C(=O)NR ^e R ^f ; où chacun desdits groupements alkyle en C ₁₋₆ est éventuellement substitué par 1, 2, 3 ou 4 groupements R ^g indépendamment choisis ; chacun des radicaux R ^g est indépendamment choisi parmi les groupements halogéno, cyano, alkyle en
45	d)	X représente N ;
40		chacun des radicaux R ^f est indépendamment choisi parmi H et les groupements alkyle en C ₁₋₆ ; m est égal à 1 ; n représente 0 ou 1 ; et r est égal à 1 ; ou
35		R ^g indépendamment choisis ; chacun des radicaux R ^{e1} est indépendamment choisi parmi H et les groupements alkyle en C ₁₋₆ , halogé- noalkyle en C ₁₋₆ , cycloalkyle en C ₃₋₇ et hétérocycloalkyle en C ₂₋₇ ; où chacun desdits groupements alkyle en C ₁₋₆ , cycloalkyle en C ₃₋₇ et hétérocycloalkyle en C ₂₋₇ est éventuellement substitué par 1, 2, 3 ou 4 groupements R ^h indépendament choisis ;
		chacun des radicaux R ^f est indépendamment choisi parmi H et les groupements alkyle en C ₁₋₆ ; chacun des radicaux R ^b est indépendamment choisi parmi les groupements alkyle en C ₁₋₆ , halogénoalkyle en C ₁₋₆ , cycloalkyle en C ₃₋₇ et hétérocycloalkyle en C ₂₋₇ ; où chacun desdits groupements alkyle en C ₁₋₆ , cycloalkyle en C ₃₋₇ et hétérocycloalkyle en C ₂₋₇ est éventuellement substitué par 1, 2, 3 ou 4 groupements
30		C_{1-4} et alkoxy en C_{1-4} ; chacun des radicaux R ^e est indépendamment choisi parmi H et les groupements alkyle en C_{1-6} , halogé- noalkyle en C_{1-6} , cycloalkyle en C_{3-7} et hétérocycloalkyle en C_{2-7} ; où chacun desdits groupements alkyle en C_{1-6} , cycloalkyle en C_{3-7} et hétérocycloalkyle en C_{2-7} est éventuellement substitué par 1, 2, 3 ou 4 groupements R ^g indépendamment choisis ;
25		est éventuellement substitué par 1, 2, 3 ou 4 groupements R ^g indépendamment choisis ; chacun des radicaux R ^g est indépendamment choisi parmi les groupements halogéno, cyano, alkyle en C_{1-6} , hétérocycloalkyle en C_{2-7} , -C(=O)NR ^{e1} R ^{f1} et -NR ^{e1} R ^{f1} ; où chacun desdits groupements alkyle en C_{1-6} et hétérocycloalkyle en C_{2-7} est éventuellement substitué par 1 ou 2 groupements R ^h indépendamment choisis ; chacun des radicaux R ^h est indépendamment choisi parmi les groupements halogéno, alkyle en
20		chacun des radicaux R ⁵ représente un atome de fluor ; A représente un groupement aryle en C ₆₋₁₀ , éventuellement substitué par 1, 2, 3, 4 ou 5 substituants R ⁷ indépendamment choisis ; chacun des radicaux R ⁷ est indépendamment choisi parmi les groupements halogéno, cyano, alkyle en C ₁₋₆ , halogénoalkyle en C ₁₋₆ , -C(=O)R ^b et -C(=O)NR ^e R ^f ; où chacun desdits groupements alkyle en C ₁₋₆
15		X représente N ; Z représente N ; L représente 0 ; Y représente un groupement cyano ; chacun des radicaux R ¹ , R ² et R ³ représente H ;
10	c)	
5		chacun des radicaux R ^{f1} est indépendamment choisi parmi H et les groupements alkyle en C ₁₋₆ ; m est égal à 1 ; n est égal à 0, 1 ou 2 ; et r est égal à 1 ; ou
		noalkyle en C ₁₋₆ , cycloalkyle en C ₃₋₇ et hétérocycloalkyle en C ₂₋₇ ; où chacun desdits groupements alkyle en C ₁₋₆ , cycloalkyle en C ₃₋₇ et hétérocycloalkyle en C ₂₋₇ est éventuellement substitué par 1, 2, 3 ou 4 groupements R ^h indépendamment choisis ;

	C_{1-6} , hétérocycloalkyle en C_{2-7} , -C(=O)NR ^{e1} R ^{f1} et -NR ^{e1} R ^{f1} ; où chacun desdits groupements alkyle en C_{1-6} et hétérocycloalkyle en C_{2-7} est éventuellement substitué par 1 ou 2 groupements R ^h indépendamment choisis ; chacun des radicaux R ^h est indépendamment choisi parmi les groupements halogéno, alkyle en C_{1-4} et alkoxy en C_{1-4} ;
5	chacun des radicaux R ^e est indépendamment choisi parmi H et les groupements alkyle en C ₁₋₆ , halogé- noalkyle en C ₁₋₆ , cycloalkyle en C ₃₋₇ et hétérocycloalkyle en C ₂₋₇ , où chacun desdits groupements alkyle en C ₁₋₆ , cycloalkyle en C ₃₋₇ et hétérocycloalkyle en C ₂₋₇ est éventuellement substitué par 1, 2, 3 ou 4 groupements R ^g indépendamment choisis ;
10	chacun des radicaux R ^f est indépendamment choisi parmi H et les groupements alkyle en C ₁₋₆ ; chacun des radicaux R ^b est indépendamment choisi parmi les groupements alkyle en C ₁₋₆ , halogénoalkyle en C ₁₋₆ , cycloalkyle en C ₃₋₇ et hétérocycloalkyle en C ₂₋₇ ; où chacun desdits groupements alkyle en C ₁₋₆ , cycloalkyle en C ₃₋₇ et hétérocycloalkyle en C ₂₋₇ est éventuellement substitué par 1, 2, 3 ou 4 groupements R ^g indépendamment choisis ;
15	chacun des radicaux R ^{e1} est indépendamment choisi parmi H et les groupements alkyle en C ₁₋₆ , halogé- noalkyle en C ₁₋₆ , cycloalkyle en C ₃₋₇ et hétérocycloalkyle en C ₂₋₇ , où chacun desdits groupements alkyle en C ₁₋₆ , cycloalkyle en C ₃₋₇ et hétérocycloalkyle en C ₂₋₇ est éventuellement substitué par 1, 2, 3 ou 4 groupements R ^h indépendamment choisis ;
20	chacun des radicaux R ^{f1} est indépendamment choisi parmi H et les groupements alkyle en C ₁₋₆ ; m est égal à 1 ; n représente 0 ou 1 ; et r est égal à 1.

14. Composé selon l'une quelconque des revendications 1 à 13, où :

a) ledit composé est un composé de Formule II :

ou l'un des sels pharmaceutiquement acceptables de celui-ci ; ou b) ledit composé est un composé de Formule III :



45

30

35

ou l'un des sels pharmaceutiquement acceptables de celui-ci.

- 15. Composé selon la revendication 1,
- ⁵ a) choisi parmi les suivantes :

	4-[4-(3,5-difluorophénoxy)pipéridin-1-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1- yl]butanenitrile ;
10	4-[4-(3-chloro-5-fluorophénoxy)pipéridin-1-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1- yl]butanenitrile ;
	4-{4-[3-fluoro-5-(trifluorométhyl)phénoxy]pipéridin-1-yl}-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol- 1-yl]butanenitrile ;
	3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]-4-[4-(3,4,5-trifluorophénoxy)pipéridin-1-yl]butane- nitrile;
15	3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]-4-[4-(2,3,5-trifluorophénoxy)pipéridin-1- yl]butanenitrile ;
	3-[((1-{3-cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}pipéridin-4-yl)oxy]-5- fluorobenzonitrile;
20	3-[((1-{3-cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}pipéridin-4-yl)oxy]-5-fluoro- N-méthylbenzamide ;
	3-[((1-{3-cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl}propyl]pipéridin-4-yl)oxy]-5-fluoro- N,N-diméthylbenzamide ;
	3-[((1-{3-cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}pipéridin-4-yl)oxy]-N-éthyl-5- fluorobenzamide ;
25	3-[((1-{3-cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}pipéridin-4-yl)oxy]-N-cyclo- propyl-5-fluorobenzamide ;
	3-[((1-{3-cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}pipéridin-4-yl)oxy]-5-fluoro- N-isopropylbenzamide ;
30	N-(2-cyanoéthyl)-3-[(1-{3-cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}pipéridin-4- yl)oxy]-5-fluorobenzamide ;
	4-{4-[3-fluoro-5-(pyrrolidin-1-ylcarbonyl)phénoxy]pipéridin-1-yl}-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-
	pyrazol-1-yl]butanenitrile ; N-(3-amino-3-oxopropyl)-3-[(1-{3-cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}pi- péridin-4-yl)oxy]-5-fluorobenzamide ;
35	N-(tert-butyl)-3-[(1-{3-cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}pipéridin-4-
	yl)oxy]-5-fluorobenzamide ; 3-[((1-{3-cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}pipéridin-4-yl)oxy]-5-fluoro-
	N-(2-morpholin-4-yléthyl)benzamide ; 4-{4-[3-fluoro-5-(pipéridin-1-ylcarbonyl)phénoxy]pipéridin-1-yl}-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-
40	pyrazol-1-yl]butanenitrile ; 4-{4-[3-fluoro-5-(morpholin-4-ylcarbonyl)phénoxy]pipéridin-1-yl}-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-
	pyrazol-1-yl]butanenitrile ; 4-((4-{3-[(3,3-difluoropyrrolidin-1-yl)carbonyl]-5-fluorophénoxy}pipéridin-1-yl)-3-[4-(7H-pyrrolo[2,3-d]pyri-
45	midin-4-yl)-1H-pyrazol-1-yl]butanenitrile ; 4-((4-{3-[(diméthylamino)méthyl]-5-fluorophénoxy}pipéridin-1-yl)-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-
	1H-pyrazol-1-yl]butanenitrile ; 4-[4-(3-{[cyclopropyl(méthyl)amino]méthyl}-5-fluorophénoxy)pipéridin-1-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimi-
	din-4-yl)-1H-pyrazol-1-yl]butanenitrile ; 4-{4-[3-(azétidin-1-ylméthyl)-5-fluorophénoxy]pipéridin-1-yl}-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-py-
50	razol-l-yl]butanenitrile ; 4-((4-{3-[(cyclobutylamino)méthyl]-5-fluorophénoxy}pipéridin-1-yl)-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-
55	1H-pyrazol-1-yl]butanenitrile ; 4-{4-[3-fluoro-5-(pyrrolidin-1-ylméthyl)phénoxy]pipéridin-1-yl}-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-
	pyrazol-1-yl]butanenitrile ; 4-{4-[3-fluoro-5-(pipéridin-1-ylméthyl)phénoxy]pipéridin-1-yl}-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-py-
	razol-1-yl]butanenitrile ; 4-{4-[3-fluoro-5-(morpholin-4-ylméthyl)phénoxy]pipéridin-1-yl}-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-
	4-{4-[3-huoro-3-(morpholin-4-yinethy)phenoxyjpipehain-1-yi}-3-[4-(7 Π-pyholo[2,3-djpyhinidin-4-yi)-1Π- pyrazol-1-yl]butanenitrile ;

		4-((4-{3-[(3,3-difluoropyrrolidin-1-yl)méthyl]-5-fluorophénoxy}pipéridin-1-yl)-3-[4-(7H-pyrrolo[2,3-d]pyrimi-
		din-4-yl)-1H-pyrazol-1-yl]butanenitrile;
		4-[4-(3-fluoro-5-{[2-méthylpyrrolidin-1-yl]méthyl}phénoxy)pipéridin-1-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-
_		4-yl)-1H-pyrazol-1-yl]butanenitrile;
5		4-[4-(3-fluoro-5-{[(2-méthoxyéthyl)amino]méthyl}phénoxy)pipéridin-1-yl]-3-[4-(7H-pyrrolo[2,3-d]pyrimidin-
		4-yl)-1H-pyrazol-1-yl]butanenitrile;
		3-[((1-{3-cyano-2-[4-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]propyl}-3-fluoropipéridin-4-yl)oxy]-
		5-fluorobenzonitrile ; et 4 [2 fluoro 4 (2 fluoro 5 [[2 méthydoyrrolidio 1 yllméthydlabénovy)pipéridio 1 yll 2 [4 (7]) pyrrolo[2 2
10		4-[3-fluoro-4-(3-fluoro-5-{[2-méthylpyrrolidin-1-yl]méthyl}phénoxy)pipéridin-1-yl]-3-[4-(7H-pyrrolo[2,3- d]pyrimidin-4-yl)-1H-pyrazol-1-yl]butanenitrile ;
10		ou l'un des sels pharmaceutiquement acceptables de n'importe lequel des composés susmentionnés ; ou
		b) choisi parmi les suivantes :
15		4-[4-(3-fluoro-5-{[(2R)-2-méthylpyrrolidin-1-yl]méthyl}phénoxy)pipéridin-1-yl]-3-[4-(7H-pyrrolo[2,3-d]pyri-
		midin-4-yl)-1H-pyrazol-1-yl]butanenitrile;
		4-[4-(3-fluoro-5-{[(2S)-2-méthylpyrrolidin-1-yl]méthyl}phénoxy)pipéridin-1-yl]-3-[4-(7H-pyrrolo[2,3-d]pyri-
		midin-4-yl)-1H-pyrazol-1-yl]butanenitrile;
20		4-[3-fluoro-4-(3-fluoro-5-{[(2R)-2-méthylpyrrolidin-1-yl]méthyl}phénoxy)pipéridin-1-yl]-3-[4-(7H-pyrro- lo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]butanenitrile ; et
20		4-[3-fluoro-4-(3-fluoro-5-{[(2S)-2-méthylpyrrolidin-1-yl]méthyl}phénoxy)pipéridin-1-yl]-3-[4-(7H-pyrro-
		lo[2,3-d]pyrimidin-4-yl)-1H-pyrazol-1-yl]butanenitrile ;
		ou l'un des sels pharmaceutiquement acceptables de n'importe lequel des composés susmentionnés.
25	16.	Composé selon l'une quelconque des revendications 1 à 15, où le composé est l'énantiomère (R), ou l'un des sels
		pharmaceutiquement acceptables de celui-ci.
	47	Compacé colon l'une quelecanque des revendientions 1 à 15, sù le compacé est l'énentiemère (C), su l'un des colo
	17.	Composé selon l'une quelconque des revendications 1 à 15, où le composé est l'énantiomère (S), ou l'un des sels pharmaceutiquement acceptables de celui-ci.
30		
	18.	Composition incluant un composé selon l'une quelconque des revendications 1 à 17, ou l'un des sels pharmaceu-
		tiquement acceptables de celui-ci, et au moins un vecteur pharmaceutiquement acceptable.
	19.	Composé selon l'une quelconque des revendications 1 à 17, ou l'un des sels pharmaceutiquement acceptables de
35		celui-ci, pour utilisation dans une méthode de modulation d'une activité de JAK1.
	20	Composé ou l'un des sels pharmaceutiquement acceptables de celui-ci pour utilisation selon la revendication 19,
	20.	où ledit composé ou sel pharmaceutiquement acceptables de celui-ci pour utilisation selon la revendication 19,
40	21.	Composé selon l'une quelconque des revendications 1 à 17, ou l'un des sels pharmaceutiquement acceptables de
		celui-ci, pour utilisation dans une méthode de traitement d'une maladie auto-immune, d'un cancer, d'un trouble
		myéloprolifératif, d'une maladie inflammatoire, d'une maladie de résorption osseuse, ou d'un rejet de greffon d'organe
		chez un patient le nécessitant.
45	22	Commenté en l'un des sels riserres sutinues entre se satables de selui si reun utilisation selen la reun disation 24
45	22.	Composé, ou l'un des sels pharmaceutiquement acceptables de celui-ci, pour utilisation selon la revendication 21, où :
		a) ladite maladie auto-immune est un trouble cutané, la sclérose en plaques, la polyarthrite rhumatoïde, l'arthrite
		psoriasique, l'arthrite juvénile, le diabète de type I, un lupus, une maladie inflammatoire chronique de l'intestin,
50		la maladie de Crohn, la myasthénie grave, une néphropathie à immunoglobulines, la myocardite ou un trouble
		thyroïdien auto-immun ; ou
		b) ladite maladie auto-immune est la polyarthrite rhumatoïde ; ou
		c) ladite maladie auto-immune est un trouble cutané ; ou
<i></i>		d) ladite maladie auto-immune est un trouble cutané qui est la dermatite atopique, le psoriasis, une sensibilisation
55		cutanée, une irritation cutanée, une éruption cutanée, une dermatite de contact ou une sensibilisation de contact
		allergique ; ou e) ledit cancer est une tumeur solide ; ou

f) ledit cancer est un cancer de la prostate, un cancer du rein, un cancer du foie, un cancer du sein, un cancer

du poumon, un cancer de la thyroïde, un sarcome de Kaposi, la maladie de Castleman ou un cancer du pancréas ; ou

g) ledit cancer est un lymphome, une leucémie ou un myélome multiple ; ou

h) ledit trouble myéloprolifératif (TMP) est la polyglobulie essentielle (PE), la thrombocytémie essentielle (TE), la splénomégalie myéloïde (MMM), la myélofibrose primitive (MP), la leucémie myéloïde chronique (LMC), la leucémie myélomonocytaire chronique (LMMC), le syndrome hyperéosinophile (SHE), la myélofibrose idiopathique (MI) ou la mastocytose systémique (MCS) ; ou

i) ledit trouble myéloprolifératif est une myélofibrose ; ou

j) ledit trouble myéloprolifératif est la myélofibrose primitive (MP) ; ou

k) ladite maladie de résorption osseuse est l'ostéoporose, l'arthrose, la résorption osseuse associée à un déséquilibre hormonal, la résorption osseuse associée à une thérapie hormonale, la résorption osseuse associée à une maladie auto-immune, ou la résorption osseuse associée au cancer.

15		
20		
25		

5

30

35

40

45

- 50

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 11637545 B [0009] [0142] [0155]
- WO 2007070514 A [0009]
- WO 2007117494 A [0009]
- WO 2006056399 A [0162] [0177]
- US 5521184 A [0165]
- WO 04005281 A [0165]
- US 60578491 B [0165]
- WO 03037347 A [0166]
- WO 03099771 A [0166]
- WO 04046120 A [0166]

Non-patent literature cited in the description

- ORTMANN, R. A.; T. CHENG et al. Arthritis Res, 2000, vol. 2 (1), 16-32 [0003]
- RODIG, S. J.; M. A. MERAZ et al. Cell, 1998, vol. 93 (3), 373-83 [0004]
- BOUDNY, V.; KOVARIK, J. Neoplasm., 2002, vol. 49, 349-355 [0006]
- BOWMAN, T. et al. Oncogene, 2000, vol. 19, 2474-2488 [0006]
- LEVIN et al. Cancer Cell, 2005, vol. 7, 387-397 [0007]
- JCl, vol. 113, 1664-1675 [0008]
- Adv Pharmacol., 2000, vol. 47, 113-74 [0008]
- Remington's Pharmaceutical Sciences. Mack Publishing Company, 1985, 1418 [0124]
- Journal of Pharmaceutical Science, 1977, vol. 66, 2 [0124]
- WUTS; GREENE. Protective Groups in Organic Synthesis. John Wiley & Sons, 2007 [0127]
- FONESCA, J.E. et al. Autoimmunity Reviews, 2009, vol. 8, 538-42 [0132]
- GUSCHIN, D., N. et al. Embo J, 1995, vol. 14, 1421
 [0132]
- SMOLEN, J. S. et al. Lancet, 2008, vol. 371, 987
 [0132]
- MULLIGHAN CG. Proc Natl Acad Sci U S A., 2009, vol. 106, 9414-8 [0132]
- FLEX E. et al. J Exp Med., 2008, vol. 205, 751-8
 [0132]
- PARGANAS E et al. Cell, 1998, vol. 93, 385-95 [0133]
- KAUSHANSKY K. NEJM, 2006, vol. 354, 2034-45
 [0133]
- MINEGISHI, Y et al. Immunity, 2006, vol. 25, 745-55
 [0133]
- MACCHI P et al. Nature, 1995, vol. 377, 65-8 [0133]

- WO 0009495 A [0167]
- WO 05028444 A [0167]
- WO 04080980 A [0168]
- WO 04056786 A [0168]
- WO 03024967 A [0168]
- WO 01064655 A [0168]
- WO 00053595 A [0168]
- WO 01014402 A [0168]
- WO 2002000196 A [0183]
- DUDLEY, A.C. et al. Biochem. J., 2005, vol. 390, 427-36 [0149]
- SRIRAM, K. et al. J. Biol. Chem., 02 March 2004, vol. 279 (19), 19936-47 [0149]
- LEMP. The Definition and Classification of Dry Eye Disease: Report of the Definition and Classification Subcommittee of the International Dry Eye Workshop. *The Ocular Surface*, April 2007, vol. 5 (2), 75-92 [0153]
- WAGH et al. Polymers used in ocular dosage form and drug delivery systems. *Asian J. Pharm.*, January 2008, 12-17 [0207]
- PARK et al. Analytical Biochemistry, 1999, vol. 269, 94-104 [0306]
- JAMES, C. et al. Nature, vol. 434, 1144-1148 [0309]
- STAERK, J. et al. JBC, vol. 280, 41893-41899 [0309]
- BURGER, R. et al. *Hematol J.,* 2001, vol. 2, 42-53 [0311]
- Immunol Today., January 1998, vol. 19 (1), 37-44
 [0312]
- Agents Actions, January 1993, vol. 38 (1-2), 116-21
 [0312]
- Current Protocols in Immunology. Wiley Press, vol. 3 [0315]
- Inflammation Protocols. WINYARD, P.G.; WILLOUGHBY, D.A. Methods in Molecular Biology. Humana Press, 2003, vol. 225 [0315]
- BARABINO et al. Experimental Eye Research, 2004, vol. 79, 613-621 [0316]
- SCHRADER et al. Developmental Opthalmology, 2008, vol. 41, 298-312 [0316]
- SMITH et al. Immunology and Cell Biology, 1998, vol. 76, 497-512 [0317]
- GRONEBERG, D.A. et al. Allergy, 2003, vol. 58, 1101-1113 [0318]

- W.S.S. JEE ; W. YAO. J Musculoskel. Nueron. Interact., 2001, vol. 1 (3), 193-207 [0319]
- YAO et al. Arthritis and Rheumatism, 2008, vol. 58 (6), 3485-3497 [0319]
- ARTHRITIS AND RHEUMATISM, vol. 58 (11), 1674-1686 [0319]