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TRACKING COMPUTER DEVICES IN
EXTENDED DETECTION AND RESPONSE
SYSTEMS

CROSS-REFERENCES TO RELATED
APPLICATION(S)

[0001] This present application claims priority to U.S.
Provisional Patent Application No. 63/461,379, titled “Asset
Representation and Tracking for Extended Detection and
Response (XDR) Systems,” filed on Apr. 24, 2023, which is
incorporated by reference herein in its entirety.

TECHNICAL FIELD

[0002] This present application pertains to the field of
computer security and more specifically, to techniques for
device tracking in extended detection and response systems.

BACKGROUND

[0003] Extended detection and response (XDR) systems
are an emerging technology for advanced threat detection
and security incident response. XDR platforms integrate
data from the entire information technology (IT) infrastruc-
ture of a computing system to provide unified visibility and
automated actions against cyberattacks.

[0004] A core challenge in XDR systems is correlating
security events and identifying common assets across the
various data sources ingested from different security moni-
toring tools. Endpoint detection and response (EDR) sys-
tems, intrusion detection systems (IDS), firewalls, email
security platforms and more each use different schemes to
identify assets like devices, users, and applications. For
example, an EDR may utilize agent identifiers while an IDS
may use internet protocol (IP) addresses for device identi-
fication.

[0005] This fragmentation means that, without effective
translation and mapping capabilities, the XDR cannot estab-
lish connections between related events involving the same
assets across different monitoring tools. However, accurate
and efficient asset tracking is important for XDR systems to
perform cross-domain data analytics, detect multi-stage
attacks, and initiate appropriate incident response work-
flows.

[0006] Therefore, there is a need for novel techniques to
enable reliable asset identification and monitoring within
XDR platforms even in the face of heterogeneous and
large-scale security data feeds. Robust asset tracking mecha-
nisms are crucial for XDRs to realize their full potential in
amplifying security operation center (SOC) capabilities.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] The detailed description is set forth below with
reference to the accompanying figures. In the figures, the
left-most digit(s) of a reference number identifies the figure
in which the reference number first appears. The use of the
same reference numbers in different figures indicates similar
or identical items. The systems depicted in the accompany-
ing figures are not to scale and components within the
figures may be depicted not to scale with each other.
[0008] FIG. 1 depicts an environment with an Extended
Detection and Response (XDR) system that interacts with a
set of monitoring components.

[0009] FIG. 2 depicts an example architecture for a track-
ing component of an XDR system.
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[0010] FIG. 3 is a flowchart diagram of an example
process for providing feedback data regarding device iden-
tifier mappings to a requesting component.

[0011] FIG. 4 is a flowchart diagram of an example
process for determining one or more global device identi-
fiers based on a device identifier graph.

[0012] FIGS. 5A-5G provide operational examples of
generating global device identifiers for device identifier
graphs.

[0013] FIG. 6 provides an operational example of a mis-

match of device identifiers that can happen when two or
more monitoring components asynchronously report secu-
rity events to a tracking component.

[0014] FIG. 7 is a flowchart diagram of an example
process for mapping a local device identifier reported by a
monitoring component to a global device identifier.

[0015] FIG. 8 provides an operational example of deter-
mining a batch in response to a first request and a second
request, both of which are associated with the same time-
stamp.

[0016] FIG. 9 provides a data flow diagram of an example
process 900 providing global device identifiers in response
to two requesting devices.

[0017] FIG. 10 shows an example computer architecture
for a computing device (or network routing device) capable
of executing program components for implementing the
functionality described above.

DESCRIPTION OF EXAMPLE EMBODIMENTS

Overview

[0018] This disclosure describes techniques for mapping
local device identifiers used in monitoring data from differ-
ent sources to a common global identifier to enable corre-
lation of monitoring events related to the same device. In
some cases, the techniques described herein relate to a
method including receiving first monitoring data from a first
computing entity, wherein the first monitoring data repre-
sents a first event determined by monitoring a computing
device, and wherein the first monitoring data comprises a
first identifier for the computing device. The method may
further include receiving second monitoring data from a
second computing entity, wherein the second monitoring
data represents a second event determined by monitoring the
computing device, and wherein the second monitoring data
comprises a second identifier for the computing device. The
method may further include determining, based on mapping
data, that both the first identifier and the second identifier
map to a common global identifier for the computing device.
The method may further include, based on determining that
both the first identifier and the second identifier map to the
common global identifier, providing first feedback data to
the first computing entity, wherein the first feedback data
represents that the first identifier and the second identifier
relate to the common global identifier.

[0019] In some cases, the techniques described herein
relate to a method including receiving a first association
graph representing links between nodes associated with
computing device identifiers, wherein the nodes include a
highest-order subset; determining that the highest-order sub-
set comprises at least two nodes from nodes. The method
may further include, for each of a first node and a second
node from the nodes, determining one or more most-proxi-
mate nodes from the highest-order subset. The method may
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further include, based on determining that the one or more
most-proximate nodes associated with the first node com-
prise a single highest-order node, assigning a first global
device identifier associated with the single highest-order
node to the first node. The method may further include,
based on determining that the one or more most-proximate
nodes associated with the second node comprise two or
more highest-order nodes, assigning a second global device
identifier to the second node, wherein the second global
device identifier is distinct from global device identifiers
assigned to the two or more highest-order nodes. The
method may further include determining mapping data asso-
ciated with the computing device identifiers based on the
first global device identifier and the second global device
identifier.

[0020] Additionally, the techniques described herein may
be performed by a system and/or device having non-transi-
tory computer-readable media storing computer-executable
instructions that, when executed by one or more processors,
performs the method described above.

Example Embodiments

[0021] This disclosure describes techniques for mapping
local device identifiers used in monitoring data from differ-
ent sources to a common global identifier to enable corre-
lation of monitoring events related to the same device. The
techniques can be used in the context of an Extended
Detection and Response (XDR) system architecture for
advanced threat detection and response in a computer sys-
tem. In some cases, the XDR system ingests security data
from various monitoring components like Endpoint Detec-
tion and Response (EDR), Intrusion Detection Systems
(IDSs), Intrusion Prevention Systems (IPSs), firewall
engines, and email security systems.

[0022] In some cases, each monitoring component gener-
ates events using local device identifiers specific to its
domain. An EDR may use agent identifiers, user emails, or
usernames to identify devices. An IDS/UPS may use Inter-
net Protocol (IP) addresses, Media Access Control (MAC)
addresses or hostnames. A firewall engine may use IP
addresses or user information for device identification. An
email security system may use email addresses. A key
challenge is associating events and identifiers across
domains for the same device. In some cases, a tracking
component maps local device identifiers to global identifiers
used within the XDR. These mappings may be stored in a
database and provided using translation APIs.

[0023] In some cases, the techniques described herein
relate to receiving first and second monitoring data repre-
senting events detected on a computing device, where the
data come from different monitoring components and uses
different local identifiers for the device. If the system
determines both identifiers map to a common global iden-
tifier, the system provides feedback to the monitoring com-
ponents enabling them to associate their respective events
with the common identifier. The system can also provide
global identifier mapping to components that store the
monitoring data to enable retrieval using the common iden-
tifier, perform security analytics, or initiate responsive
actions.

[0024] In some cases, the techniques described herein
relate to determining global identifiers by analyzing asso-
ciations between device identifiers and assigning global
identifiers based on proximity to highest-order identifiers in
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an association graph. Global identifiers can be assigned
when proximal to one highest order identifier or new global
identifiers assigned when proximal to multiple. The system
may perform preprocessing operations to build associations
and determine highest order identifiers, and then perform
periodic inference phases to assign global identifiers.
[0025] In some cases, the techniques described herein
relate to processing monitoring data asynchronously by
waiting for a threshold period to collect all data related to a
time period, then determining a consolidated device identi-
fier for that batch of data. Smoothing windows are used to
assemble related data across time batches. The system may
provide the mapped global identifier back to a monitoring
component after the async threshold period.

[0026] In some cases, the techniques described herein
relate to a mapping engine for determining associations
between local device identifiers from different monitoring
tools and the global identifiers used within the XDR system.
The mapping engine may apply various techniques like
rules, heuristics, and machine learning models to analyze
asset attributes in events and predict identifier mappings. By
continuously learning from new data, the mapping engine
can adapt its mapping logic to changing environments. The
mapping engine may use optimized data processing plat-
forms for efficient analytics computations.

[0027] In some cases, to balance performance and com-
pleteness, mappings are stored in two separate data stores: a
fast in-memory cache for recent mappings, and a distributed
database for historic mappings. Segregating in this way
allows fast lookup of common mappings while still provid-
ing comprehensive coverage. Mappings are transferred from
recent to historic store based on age and access patterns. This
hybrid approach delivers low latency, high capacity, and
optimized identifier translation.

[0028] In some cases, a device identifier mapping algo-
rithm allocates nodes in a device identifier graph to sets
centered around high-reliability nodes like IP addresses. In
some cases, this algorithm recursively expands the sets by
symmetric distance until no conflicts remain. Conflicting
nodes are assigned their own global identifier. This tech-
nique provides computationally efficient identifier grouping
and global identifier assignment at scale.

[0029] In some cases, to handle delayed data, mapping
requests wait for a smoothing window before compiling a
batch. All data associated with the time period is included
before determining the global identifier. Smoothing win-
dows across batches improves accuracy. Batching limits the
impact of asynchronous data while providing consolidated
device IDs required for effective XDR analytics and
response.

[0030] In some cases, the techniques described herein
improve computational efficiency of device identifier map-
ping. For example, the graph-based recursive set expansion
technique for assigning global identifiers provides signifi-
cant improvements in computation efficiency compared to
pairwise comparison or linear search approaches. By lever-
aging graph topology and expanding from high-order nodes,
global identifiers can be rapidly assigned for large datasets.
[0031] In some cases, the techniques described herein
enable optimized storage infrastructure for storing device
identifier mapping data. For example, the techniques
described herein enable a two-tier mapping data storage
approach minimizes latency by putting common mappings
in fast in-memory caches while also providing comprehen-
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sive coverage through a distributed database. This optimized
design reduces storage costs while delivering the perfor-
mance needed for real-time ID mapping.

[0032] In some cases, the techniques described herein
enable increased accuracy of device identifier mapping
through batch-based asynchronous mapping. Temporally
grouping data into batches aligned to specific time periods
provides greater mapping accuracy compared to processing
events independently. Smoothing windows further improve
accuracy across batches. This technique enhances reliability
despite asynchronous data feeds.

[0033] In some cases, the techniques described herein
provide computational, storage, scalability and accuracy
improvements that enable XDR systems to perform robust
and reliable asset tracking across huge volumes of hetero-
geneous security data for enhanced threat detection and
response. Accordingly, the techniques described herein pro-
vide practical solutions to key technical challenges in this
domain.

[0034] FIG. 1 depicts an environment 100 with an
Extended Detection and Response (XDR) system 104 that
interacts with a set of monitoring components 102, such as
an EDR system 102A, an Intrusion Detection System (IDS)/
Intrusion Prevention System (IPS) 102B, a firewall engine
102C, an email protection system 102D, and other security
protection systems 102N.

[0035] The EDR system 102A may monitor activity on
endpoints such as servers, desktops, and laptops. The EDR
system 102A may generate monitoring events for suspicious
or malicious activity observed on endpoints. The EDR
system 102A may be implemented as agent software
installed on each endpoint. The agent operates in the back-
ground, continuously collecting endpoint telemetry data and
sending it to a central management console and/or the XDR
system 104. The EDR agent can employ various techniques
to detect threats, such as signature-based detection, behav-
ioral analysis, and machine learning algorithms. Signature-
based detection involves comparing observed activities
against known patterns of malicious behavior or attack
signatures. Behavioral analysis identifies anomalies or
deviations from normal endpoint behavior which might
indicate a potential threat. Machine learning algorithms can
enhance detection capabilities by learning from historical
data and adapting to new and emerging threats.

[0036] The IDS/IPS 102B may monitor network activity
by analyzing network traffic. The IDS/IPS 102B may gen-
erate monitoring events for anomalous network traffic or
known attack patterns. To achieve its monitoring and detec-
tion capabilities, the IDS/IPS 102B may use a combination
of techniques, including signature-based detection, anomaly
detection, and heuristic analysis. Signature-based detection
involves comparing network traffic against a database of
known attack signatures or patterns. Anomaly detection
focuses on identifying deviations from normal network
behavior, which could indicate possible intrusions or suspi-
cious activities. Heuristic analysis involves applying pre-
defined rules and behavioral models to detect unknown or
emerging threats. In some cases, the IDS/IPS 102B performs
at least one of an IDS or an IPS functionality. The IDS
functionality may identify suspicious or anomalous network
behaviors, such as port scans, unusual data transfer patterns,
or unauthorized access attempts. The IPS functionality may
take immediate action to block or prevent identified threats
from progressing further into the network.
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[0037] The IDS/IPS 102B may be implemented as a
hardware or virtual network appliance deployed on the
network. For example, the IDS/IPS 102B can be realized as
a hardware appliance installed at strategic points within the
network infrastructure. Alternatively, the IDS/IPS 102B may
be deployed as a virtual network appliance running on
virtualized servers or cloud-based instances.

[0038] The firewall engine 102C may filter incoming and
outgoing network traffic according to configured rules. The
firewall engine 102C may generate monitoring events when
traffic is blocked or allowed. In some cases, the firewall
engine 102C operates as a barrier between the internal
network and the external world, controlling the flow of
network traffic based on predefined rules. In some cases, the
firewall engine 102C is configured to filter incoming and
outgoing network traffic to enforce security policies and
protect the organization’s assets from unauthorized access,
data exfiltration, and potential threats.

[0039] In some cases, when network packets arrive at the
firewall, they are inspected against a set of configured rules
and policies. These rules can be based on various criteria,
such as source and destination [P addresses, port numbers,
application protocols, or specific content within the packets.
If a packet matches an allow rule, the firewall engine 102C
permits it to pass through to its intended destination. On the
other hand, if the packet matches a deny rule, the firewall
engine blocks it, preventing unauthorized access or poten-
tially malicious traffic from entering or leaving the network.
[0040] The firewall engine 102C may be implemented as
a hardware or virtual network appliance. Hardware-based
solutions may offer dedicated processing power for packet
inspection, making them suitable for high-performance net-
work environments where low latency is crucial. Virtual
network appliances, running on virtualized servers or cloud
instances, may provide flexibility and ease of management,
making them ideal for dynamic and rapidly changing net-
work infrastructures.

[0041] The email protection system 102D may scan
incoming and outgoing emails for malware and spam. The
email protection system 102D may generate monitoring
events for blocked or allowed emails. The email protection
system 102D may be implemented as a software service
integrated with email servers. In some cases, the email
protection system 102D continually evaluates the content,
attachments, and/or sender reputation of incoming emails.
To do so, the email protection system 102D may use
databases of known threat signatures to identify and block
emails that exhibit malicious behavior or contain harmful
content. In some cases, the email protection system 102D
scrutinizes outgoing emails to ensure that they do not
inadvertently transmit sensitive information or include sus-
picious links or attachments. In some cases, whenever the
email protection system 102D identifies a potentially mali-
cious or spam email, the email protection system 102D
generates monitoring events to record the incident. These
monitoring events can include details such as the sender’s
information, recipient details, timestamp, and/or a descrip-
tion of the threat or spam category.

[0042] Additional security protection systems 102N may
provide other types of security monitoring and generate
associated monitoring events. Examples of such additional
security protection systems 102N include Web Application
Firewalls (WAFs), Data Loss Prevention (DLP) systems,
Network Access Control (NAC) systems, threat intelligence
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platforms, advanced threat detection systems, Security
Information and Event Management (SIEM) systems, vul-
nerability management systems, and Endpoint Protection
Platforms (EPPs). The additional security protection sys-
tems 102N may generate monitoring events that contribute
to a comprehensive security posture to enable organizations
to detect and respond to cyber threats. In some cases,
integration of the additional security protection systems
102N with the XDR system 104 and other security compo-
nents allows for centralized management, correlation of
security data, and streamlined incident response efforts.

[0043] In some cases, each monitoring component 102
provides monitoring events that identify devices using a set
of device identifiers that are local to that monitoring com-
ponent. These “local device identifiers” may be distinct from
the device identifiers used by other monitoring components.
For example, the EDR system 102A may identify a device
using an agent identifier (ID) assigned to the EDR agent
software installed on that device, the username of the user
logged into the device, the email address associated with the
user account on the device, or other identifiers that are
specific to the EDR system 102A. The IDS/IPS 102B may
identify devices by their Internet Protocol (IP) address on
the monitored network, Media Access Control (MAC)
address, hostname, or other network-specific identifiers. The
firewall engine 102C may identify devices by IP address,
MAC address, or hostname if doing 1.2/.3 monitoring, or
may identify devices by user if doing [.7 application moni-
toring. The email protection system 102D may identify
devices by the email address associated with the user
account that is sending or receiving emails from that device.

[0044] Other monitoring components may use local iden-
tifiers like process name, database credentials, application
usernames, or other identifiers specific to that monitoring
domain. For example, WAFs may identify devices based on
the session token or user account associated with web
application interactions. As another example, DLP systems
may identify devices based on user login credentials, file
names, or file metadata. As yet another example, NAC
systems may identify devices based on their MAC address
or authenticated user credentials. As an additional example,
advanced threat detection systems employ a combination of
behavioral patterns, IP addresses, and user behavior to
identify devices exhibiting suspicious activities.

[0045] The XDR system 104 may include a data lake 106
that receives and stores the monitoring events generated by
the monitoring components 102. The data lake 106 may
operate as a central hub for collecting, storing, and analyzing
the monitoring events generated by the various monitoring
components 102. The data lake 106 may receive the moni-
toring events in real-time from the monitoring components
102, storing them in a structured or semi-structured format
for efficient retrieval and analysis. The data lake 106 may be
implemented using a database, data warchouse, and/or cloud
storage. If implemented as a database, the data lake 106
might utilize NoSQL databases like Apache Cassandra or
MongoDB, providing horizontal scaling capabilities to
handle large volumes of data. A data warehouse approach
might use solutions like Amazon Redshift or Google Big-
Query to enable complex analytics and reporting on histori-
cal data. Alternatively, cloud-based object storage services
like Amazon S3 or Microsoft Azure Blob Storage might be
utilized.
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[0046] The XDR system 104 may also include a cross-
domain analytics component 108 that retrieves monitoring
events from the data lake 106 and performs cross-domain
data analytics to detect security threats. The analytics may
involve correlating events reported by the monitoring com-
ponents 102 to detect security incidents. By analyzing and
correlating data from various sources, such as EDR system
102A, IDS/IPS 102B, firewall engine 102C, email protec-
tion system 102D, and other security protection systems
102N, the cross-domain analytics component 108 can iden-
tify patterns and anomalies that might indicate potential
security breaches or malicious activities. For example, the
component may correlate an EDR system event indicating a
suspicious file modification with an IDS/IPS event reporting
unusual network traffic associated with the same endpoint.
This correlation might suggest a potential ransomware
attack or unauthorized data exfiltration. Similarly, the com-
ponent may analyze email protection system events that
detect phishing attempts and cross-reference them with the
IDS/IPS events capturing network connections to known
malicious domains to discover a sophisticated email-borne
threat campaign.

[0047] The cross-domain analytics component 108 may be
implemented using data analytics and machine learning
platforms. Data analytics platforms may offer powerful data
processing capabilities to analyze large-scale datasets and
perform complex data transformations. Technologies like
Apache Spark, Hadoop, and Elasticsearch may be used for
distributed data processing and storage to enable the cross-
domain analytics component 108 to handle the high volume
and variety of security data generated by the monitoring
components. In some cases, the cross-domain analytics
component 108 can utilize machine learning algorithms to
continuously improve its correlation and threat detection
capabilities. Machine learning models can learn from his-
torical data, identify evolving attack patterns, and adapt to
new and emerging threats.

[0048] The XDR system 104 may also include an incident
response component 110 that initiates automated or manual
responses to security incidents detected by the cross-domain
analytics component 108. Responses may include isolating
affected endpoints, blocking IP addresses, or notifying secu-
rity teams. The incident response component 110 may
integrate with security workflows. To streamline and opti-
mize incident response efforts, the incident response com-
ponent 110 may integrate with the Security Information and
Event Management (SIEM) systems, ticketing systems, or
other incident response platforms.

[0049] In some cases, when the cross-domain analytics
component 108 identifies a security incident, the incident
response component 110 is triggered to initiate appropriate
responses. These responses can be automated, where pre-
defined response actions are executed based on predefined
playbooks and policies, or manual, where security analysts
are involved in making informed decisions on response
actions based on the severity and nature of the incident.
Automated responses may involve isolating affected end-
points or devices from the network to prevent lateral move-
ment of threats and contain the spread of malware. The
incident response component 110 can use network access
control (NAC) systems or firewall rules to implement these
isolation measures. Furthermore, the incident response com-
ponent 110 may take automated actions to block or blacklist
malicious IP addresses or domains associated with the
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detected threats. In the case of sophisticated threats that
require a deeper investigation or involve critical assets, the
incident response component 110 may trigger manual
responses. Security analysts can investigate the incident
further, gather additional context, and collaborate to devise
and execute appropriate remediation actions. Additionally,
the incident response component 110 may alert security
teams and relevant stakeholders when a security incident is
detected. These notifications can be in the form of email
alerts, ticketing system integrations, or other communication
channels to ensure timely attention and action.

[0050] The XDR system 104 may also include a tracking
component 112 that maps local device identifiers used in
monitoring events to global device identifiers used within
the XDR system 104. In some cases, tracking component
112 handles mapping these disparate local device identifiers
from each monitoring component 102 to the global device
identifiers used within the XDR system 104 for unified
tracking and analytics. As the monitoring components 102
generate monitoring events with their specific local device
identifiers, they may lack a standardized format or unique-
ness across the organization. For instance, an endpoint
device might be identified differently by the EDR system
102A using its agent identifier, while the IDS/IPS 102B uses
the device’s IP address, and the email protection system
102D references the device through its associated email
account. To create a cohesive view of the security landscape,
the tracking component 112 bridges these differences by
associating each local device identifier with a corresponding
global device identifier used within the XDR system 104.
This global device identifier may operate as a common
reference point that enables the XDR system to consolidate
and correlate security data from multiple sources effectively.

[0051] In some cases, the local device identifiers used by
different monitoring components 102 may refer to the same
device. However, the disparity between the local identifiers
makes it difficult to associate all the monitoring events
related to a given device across the different data sources.
The tracking component 112 handles mapping these dispa-
rate local device identifiers from each monitoring compo-
nent 102 to the global device identifiers used within the
XDR system 104 for unified tracking and analytics. This
allows the cross-domain analytics component 108 and inci-
dent response component 110 to correlate events and ana-
lyze activity associated with a device across endpoints,
network, email, and other monitoring domains. The tracking
component 112 may maintain mappings in a database and
provide APIs for device identifier translation.

[0052] The tracking component 112 may translate
between local device identifiers used in monitoring events
and the global device identifiers used within the XDR
system 104. The tracking component 112 can provide these
identifier translations to the other components of the envi-
ronment 100. For example, tracking component 112 may
provide translations of global device identifiers to local
device identifiers back to the monitoring components 102.
This may enable the monitoring components 102 to enrich
future monitoring events with global context received from
the XDR system 104, thus avoiding the need for future
mappings of local device identifiers by the tracking com-
ponent 112. In some cases, when the tracking component
112 receives a security event that embeds a previously
provided global device identifier (e.g., a previously provided
global device identifier whose time-to-live (T'TL) measure
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has not expired), the tracking component 112 can avoid
mapping of local device identifiers provided in the event to
global device identifiers because such global identifiers are
already provided in the event itself. In some cases, when a
monitoring component generates an event that includes a
global device identifier already translated by the tracking
component, there is no need for the tracking component to
remap the local identifiers in that event. This optimization
reduces computational overhead, streamlines the data pro-
cessing pipeline, and ensures real-time responsiveness for
incident detection and response. In some cases, the time-to-
live (TTL) measure placed on previously provided global
device identifiers allows the tracking component 112 to
manage the relevance of mappings efficiently. By consider-
ing the TTL of global device identifiers, the tracking com-
ponent can dynamically update or expire mappings to pro-
vide the monitoring components 102 and/or components of
the XDR system 104 with reliable device identifier infor-
mation.

[0053] Additionally, in some cases, when a monitoring
component 102 receives data about mapping between its
local device identifiers and other device identifiers from the
tracking component 112, the monitoring component 102
gains the ability to detect more informative events while
monitoring the devices’ activities. This mapping data may
enable the monitoring component 102 to establish connec-
tions and relationships between events that involve the same
device, user, or entity, regardless of the specific local iden-
tifier used. In some cases, using device identifier mappings
provided by the tracking component 112, a monitoring
component 102 can contextualize security events and gen-
erate more comprehensive and informative alerts. For
instance, when the EDR system 102A identifies a specific
endpoint using its agent identifier and finds a corresponding
mapping to the device’s IP address used by the IDS/IPS
102B, it can combine these local identifiers to identify an
endpoint-device relationship while monitoring a computing
device. In some cases, an enhanced understanding of device
identifier mappings across different domains allows a moni-
toring component 102 to detect complex attack patterns that
span multiple areas of a security infrastructure.

[0054] In some cases, the tracking component 112 pro-
vides translations of local device identifiers to global device
identifiers to the data lake 106 to enable the data lake 106 to
store events consistently indexed by global device identifier.
In some cases, when monitoring components 102 provide
events to the data lake 106, the monitoring components 102
typically include local device identifiers specific to their
domain. However, storing events in the data lake 106
indexed by local device identifiers may create challenges in
correlating and retrieving information across different
domains. This fragmented approach could hinder efficient
cross-domain analytics and comprehensive threat detection.
In some cases, to address this issue, the tracking component
112 bridges the gap by mapping the local device identifiers
to their corresponding global device identifiers used within
the XDR system 104. It then communicates this translated
information to the data lake 106, allowing the data lake to
index and store the events consistently using the globally
recognized device identifiers. By leveraging global device
identifiers for indexing, the data lake 106 can efficiently
retrieve and present historical security events associated
with specific devices or users across different domains. This
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capability enables security analysts to perform in-depth
investigations and gain critical insights into the full scope of
security incidents.

[0055] In some cases, the tracking component 112 pro-
vides device identifier mappings to the cross-domain ana-
Iytics component 108 to enable the cross-domain analytics
component 108 to correlate events associated with a device
across different monitoring sources. In some cases, without
the tracking component’s translations of device identifiers
across domain, the cross-domain analytics component 108
would face challenges in connecting local device identifiers
and understanding the relationships between events involv-
ing the same device. However, the tracking component 112
bridges this gap by maintaining a centralized record of
device identifier mappings. When the cross-domain analyt-
ics component 108 requires correlation between events
related to a particular device, it can access these mappings
to find the corresponding global device identifier used within
the XDR system 104. With access to the mapped global
device identifiers, the cross-domain analytics component
108 can efficiently and accurately correlate events originat-
ing from different monitoring components that pertain to the
same device. This correlation capability enables the cross-
domain analytics component to identify patterns, trends, and
behaviors associated with a device across various domains,
leading to a more comprehensive understanding of the
device’s activities and potential security risks.

[0056] By leveraging the device identifier mappings, the
cross-domain analytics component 108 can detect sophisti-
cated attack campaigns that involve coordinated actions
across multiple security domains. For example, the cross-
domain analytics component can link events reported by the
EDR system 102A. IDS/IPS 102B, email protection system
102D, and other security protection systems 102N to reveal
a multi-stage attack targeting a specific device or user.
Furthermore, this correlation capability empowers the cross-
domain analytics component 108 to identify lateral move-
ment of threats, where an attacker attempts to traverse the
network by exploiting different entry points. By connecting
related events through device identifier mappings, the cross-
domain analytics component can provide early detection of
lateral movement, enabling security teams to respond
swiftly and contain the threat.

[0057] In some cases, the tracking component 112 pro-
vides device identifier mappings to the incident response
component 110 to enable the incident response component
110 to take actions on the appropriate device when respond-
ing to a security incident. In some cases, when the incident
response component 110 receives an alert or security event
triggered by the cross-domain analytics component 108, the
incident response component 110 needs to act swiftly and
decisively to mitigate the impact of the security incident.
However, to execute targeted responses effectively, the
incident response component 110 should know precisely
which device or user is involved in the incident. By using
device identifier mappings provided by the tracking com-
ponent, the incident response component 110 can initiate
appropriate and tailored responses directly on the identified
device. For example, if the cross-domain analytics compo-
nent 108 raises an alert indicating potential malware activity
associated with a specific local device identifier, the incident
response component 110 can use the deice identifier map-
pings to identify device by its global identifiers before
responding to the alert. Furthermore, the device identifier
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mappings provided by the tracking component 112 can
streamline coordination between the incident response com-
ponent 110 and the monitoring components 102. This col-
laboration may ensure that incident response actions are
well-coordinated across different security domains.

[0058] FIG. 2 depicts an example architecture 200 for the
tracking component 112 of the XDR system 104. As
depicted in FIG. 2, the tracking component 112 includes an
access interface 202 that receives security events from the
monitoring component 102 and device identifier mapping
requests from other devices/components, such as from the
monitoring components 102, the data lake 106, the cross-
domain analytics component 108, and/or the incident
response component 110. The tracking component 112 also
includes a mapping engine 204 that determines mappings
across device identifiers (e.g., mappings of local device
identifiers to global device identifiers and/or vice versa,
mappings local device identifiers to other local device
identifiers, etc.). The tracking component 112 also includes
recent mapping data 206 and historic mapping data 208. In
some cases, to determine a device identifier mapping, the
tracking component 112 queries recent mapping data 206
and historic mapping data 208.

[0059] In some cases, after the tracking component 112
determines a device identifier mapping between a first
device identifier and a second device identifier, the tracking
component 112 stores the mapping in the recent mapping
data 206 (e.g., a cache memory medium). In some cases,
after a threshold period of time from storing the mapping on
recent mapping data 206, the mapping is moved to historic
mapping data 208. In some cases, after a threshold period of
time from the last time that a mapping on recent mapping
data 206 was the target of a query by the tracking component
112, the mapping is moved to historic mapping data 208.

[0060] In some cases, the access interface 202 of the
tracking component 112 receives incoming security events
from the monitoring components 102 and also handles
requests for device identifier mappings from other XDR
components. The access interface 202 may be implemented
as a set of APIs and event ingestion services.

[0061] In some cases, the mapping engine 204 of the
tracking component 112 determines mappings between local
device identifiers and global device identifiers. The mapping
engine 204 may also determine mappings between pairs of
local device identifiers from different monitoring compo-
nents 102. The mapping engine 204 may process asset
attributes in security events to derive relationships between
identifiers. To do so, the mapping engine 204 may apply
rules, heuristics, and machine learning models to predict
mappings. The mapping engine 204 may be implemented on
a processing platform optimized for data analytics compu-
tations.

[0062] In some cases, the recent mapping data 206 stores
the most recent device identifier mappings determined or
queried by the mapping engine 204. Storing recent map-
pings in a fast cache improves performance for looking up
frequently accessed mappings. The recent mapping data 206
may be implemented using an in-memory database or cache
optimized for low-latency reads.

[0063] Insome cases, the historic mapping data 208 stores
older device identifier mappings that are still useful but
queried less frequently. This provides the mapping engine
204 access to an expanded set of known mappings for
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enhanced coverage. The historic mapping data 208 may be
implemented using a distributed database scaled for high
storage capacity.

[0064] FIG. 3 is a flowchart diagram of an example
process 300 for providing feedback data regarding device
identifier mappings to a requesting component (e.g., a moni-
toring component, a data lake, a cross-domain analytics
component, an incident response comment, etc.). The pro-
cess 300 may be performed by a tracking component, such
as tracking component 112 of FIG. 1.

[0065] As depicted in FIG. 3, at operation 302, the process
300 includes receiving a mapping request associated with a
first device identifier. The mapping request may be a request
for mapping the first device identifier to one or more other
device identifiers associated with the request.

[0066] At operation 304, the process 300 includes query-
ing mapping data. In some cases, a tracking component
queries to retrieve the corresponding device identifier map-
pings for the first device identifier received in the mapping
request at operation 302. The tracking component may
access its centralized mapping database, which contains a
comprehensive record of local and global device identifier
associations. During the querying process, the tracking
component may cross-reference the received first device
identifier with the stored mapping data to find its corre-
sponding global device identifier used within the XDR
system 104. Additionally, the tracking component may iden-
tify any other local device identifiers associated with the
same device from different monitoring components 102.
[0067] At operation 306, the process 300 includes deter-
mining whether the query results received at operation 304
indicates that the first device identifier is associated with a
global device identifier. If the query results indicate that the
first device identifier is not associated with a global device
identifier, then the process 300 includes (at operation 308)
creating a new global device identifier for the first device
identifier (e.g., setting the first device identifier as the global
device identifier for the corresponding computing device)
and (at operation 314) providing the new global device
identifier as feedback data.

[0068] However, if the query results received at operation
304 indicate that the first device identifier is associated with
a global device identifier, then the process 300 includes (at
operation 310) determining whether the corresponding
global device identifier is associated with any other local
device identifiers. In some cases, a group of device identi-
fiers that are mapped to the same device include a global
device identifier and optionally a set of local device identi-
fiers. If the global device identifier for the first device
identifier is not associated with any existing local device
identifiers, then the process 300 includes (at operation 314)
providing the first device identifier and the corresponding
global device identifier as feedback data. However, if the
global device identifier for the first device identifier is
associated with existing local device identifiers, then the
process 300 includes (at operation 312) querying the exist-
ing local device identifiers and (at operation 314) providing
the first device identifier, the corresponding global device
identifier, and the queried existing local device identifiers as
feedback data.

[0069] In some cases, if the query results received at
operation 304 indicate that the first device identifier is
associated with a global device identifier, then the process
300 includes adding the first device identifier as a new local
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device identifier for the global device identifier. In some
cases, if the query results received at operation 304 indicate
that the first device identifier is associated with a global
device identifier, then the process 300 includes determining
whether the first device identifier should become the new
global device identifier and adding the first device identifier
as a member of a device identifier set that includes the first
device identifier and the existing global device identifier.
[0070] FIG. 4 is a flowchart diagram of an example
process 400 for determining one or more global device
identifiers based on a device identifier graph. The process
400 may be performed by a tracking component, such as
tracking component 112 of FIG. 1.

[0071] As depicted in FIG. 4, at operation 402, the process
400 includes receiving the device identifier graph. In some
cases, each node of the device identifier graph represents a
device identifier that is provided in a security event reported
by a monitoring component. In some cases, each edge of the
device identifier graph represents a relationship between two
device identifiers, such as a relationship between two device
identifiers as indicated by at least one security event reported
by a monitoring component. For example, if a security event
reported by a networking monitoring device indicates that a
first IP address and a first MAC address are associated with
the same device, then the device identifier graph may
represent an edge between a first node corresponding to the
first IP address and a second node corresponding to the first
MAC address.

[0072] In some cases, to determine a device identifier
graph, the system may receive data representing associations
between a set of local device identifiers (e.g., associations
indicated by security events reported by the monitoring
components). In some cases, the system may determine one
or more disjoint graphs based on the association data (e.g.,
one or more graphs without edges between them). Each
disjoint graph may then be a device identifier graph with
respect to which operations of the process 400 are per-
formed. In some cases, generating device identifier graphs
and identifying the highest-order node(s) of each graph is
performed at a preprocessing phase that occurs before an
inference phase in which the graphs and highest-order node
identifications are used to determine global device identifiers
(e.g., operation 402 may be performed in the preprocessing
phase, while operations 404-416 may be performed in the
inference phase). In some cases, the inference phase (e.g.,
operations 404-416) is periodically repeated.

[0073] At operation 404, the process 400 includes identi-
fying a subset of nodes of the device identifier graph that
have the highest order among the graph nodes. In some
cases, the system configuration data defines a hierarchy of
the identifier types that represents which identifier types
have a higher order (e.g., are determined to have higher
reliability) relative to others. For example, a hierarchy may
describe that IP addresses are the highest-order identifier
type, MAC addresses are the second-highest-order identifier
type, and the like. In some cases, the highest-order nodes of
a device identifier graph are a set of nodes whose respective
identifier types have a higher or equal order with respect to
identifier types of other nodes. For example, if IP addresses
are the highest-order identifier type and MAC addresses are
the second-highest-order identifier type, and if the device
identifier graph includes IP address nodes, then those IP
address nodes are the highest-order nodes. As another
example, if IP addresses are the highest-order identifier type
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and MAC addresses are the second-highest-order identifier
type, and if the device identifier graph does not include IP
address nodes but includes MAC address nodes, then those
MAC address nodes are the highest-order nodes. In some
cases, a highest-order node is a node whose respective
device identifier type is the highest-reliability identifier type
among identifier types associated with the graph.

[0074] At operation 406, the process 400 includes deter-
mining whether the entire device identifier graph includes
only one highest-order node. If so, then the process 400
includes (at operation 408) determining that all of the device
identifiers associated with the nodes of the graph are part of
the same set of identifiers and the set is associated with the
device identifier of the highest-order node as its global
device identifier. As another example, if IP addresses are the
highest-order identifier type and MAC addresses are the
second-highest-order identifier type, and if the device iden-
tifier graph includes a single IP address node, then the
corresponding single IP address is the global device identi-
fier for all of the device identifiers associated with nodes of
the graph.

[0075] If the device identifier graph includes more than
one highest-order node, then the process 400 includes (at
operation 410) allocating each highest-order node to a
respective identifier set. After that, at operation 412, the N
identifier sets associated with the N highest-order nodes
(where N>1) are symmetrically expanded to include nodes
with incrementally larger distances from the highest-order
node until either: (i) all nodes are allocated to a symmetri-
cally-expanded identifier set and thus there are no “conflict-
ing” nodes that can be allocated to more than one set based
on the symmetric expansion logic (as determined in the No
branch of operation 414), or (ii) there is at least one
“conflicting” node that can be allocated to more than one set
based on the symmetric expansion logic (as determined in
the Yes branch of operation 414). If all nodes are allocated
to a symmetrically-expanded identifier set (as determined in
the No branch of operation 414), then the process 400 goes
to operation 418 to assign each symmetrically-expanded set
to the corresponding highest-order identifier in the set as the
global device identifier for the set. If there is at least one
“conflicting” node that can be allocated to more than one set
based on the symmetric expansion logic (as determined in
the Yes branch of operation 414), then the process 400 goes
to operation 416 to assign conflicting nodes to new identifier
sets and then proceeds to operation 418 to: (i) assign each
symmetrically-expanded set to the respective highest-order
identifier in the set as the global device identifier for the set,
and (ii) assign each “new” identifier set corresponding to a
conflicting identifier to the conflicting identifier as the global
device identifier for the set.

[0076] For example, consider a device identifier graph in
which a first node corresponding to IP address IP1 is
connected to a second node corresponding to a MAC
address MAC1, the second node is connected to a third node
corresponding to a MAC address MAC2, and the third node
is connected to a fourth node corresponding to IP address
1P2. In this example, assuming 1P addresses are the highest-
order identifiers, two identifier sets are first initialized: one
including IP1 and another including IP2. After a first sym-
metric expansion, the first set is expanded to include MAC1
which has a distance of one to IP1, and the second set is
expanded to include MAC2 which has a distance of one to
1P2. After this first expansion, all of the nodes belong to a
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symmetrically-expanded set. Thus, the process 400 arrives
at operation 418 to assign the first set (i.e., IP1 and MAC1)
to the corresponding highest-order identifier (IP1) as the
global device identifier and the second set (i.e., IP2 and
MAC?2) to the corresponding highest-order identifier (IP2)
as the global device identifier.

[0077] As another example, consider a device identifier
graph in which a first node corresponding to IP address IP1
is connected to a second node corresponding to a MAC
address MAC1, the second node is connected to a third node
corresponding to email address EM1, the third node is
connected to a fourth node corresponding to email address
EM2, the fourth node is connected to a fifth node corre-
sponding to a MAC address MAC2, and the fifth node is
connected to a sixth node corresponding to the IP address
1P2. In this example, assuming IP addresses are the highest-
order identifiers, two identifier sets are first initialized: one
including IP1 and another including IP2. After a first sym-
metric expansion, the first set is expanded to include MAC1
which has a distance of one to IP1, and the second set is
expanded to include MAC2 which has a distance of one to
1P2. After the second symmetric expansion, the first set is
expanded to include EM1 which has a distance of two to IP1,
and the second set is expanded to include EM2 which has a
distance of TWO to IP2. After this second expansion, all of
the nodes belong to a symmetrically-expanded set. Thus, the
process 400 arrives at operation 418 to assign the first set
(i.e., IP1, MAC1, and EM1) to the corresponding highest-
order identifier (IP1) as the global device identifier and the
second set (i.e., IP2, MAC2, and EM2) to the corresponding
highest-order identifier (IP2) as the global device identifier.

[0078] As another example, consider a device identifier
graph in which a first node corresponding to IP address IP1
is connected to a second node corresponding to a MAC
address MAC1, the second node is connected to a third node
corresponding to an email address EM1, the third node is
connected to a fourth node corresponding to MAC address
MAC2, and the fourth node is connected to a fifth node
corresponding to IP address IP2. In this example, assuming
IP addresses are the highest-order identifiers, two identifier
sets are first initialized: one including IP1 and another
including IP2. After a first symmetric expansion, the first set
is expanded to include MAC1 which has a distance of one
to IP1, and the second set is expanded to include MAC2
which has a distance of one to IP2. During the second
symmetric expansion, the system detects that EM1 can be
either part of the first set or the second set, because it has a
distance of two from both IP1 and IP2. Accordingly, the
process 400 may arrive at operation 418 to assign the first set
(i.e., IP1 and MAC1) to the corresponding highest-order
identifier (IP1) as the global device identifier, the second set
(i.e., IP2 and MAC?2) to the corresponding highest-order
identifier (IP2) as the global device identifier, and a third set
including EM1 with EM1 as its global device identifier.

[0079] As another example, consider a device identifier
graph in which a first node corresponding to IP address IP1
is connected to a second node corresponding to a MAC
address MAC1, the second node is connected to a third node
corresponding to email address EM1, the third node is
connected to a fourth node corresponding to email address
EM2, the fourth node is connected to a fifth node corre-
sponding to a MAC address MAC2, the fifth node is
connected to a sixth node corresponding to the IP address
1P2, and the second node and the fifth node are connected to



US 2024/0356958 Al

a seventh node corresponding to email address EM2. In this
example, assuming IP addresses are the highest-order iden-
tifiers, two identifier sets are first initialized: one including
IP1 and another including IP2. After a first symmetric
expansion, the first set is expanded to include MAC1 which
has a distance of one to IP1, and the second set is expanded
to include MAC2 which has a distance of one to IP2. During
the second symmetric expansion, the system detects that
EM1 can be either part of the first set or the second set,
because it has a distance of two from both IP1 and IP2.
Additionally, also during the second symmetric expansion,
the system detects that EM2 can be either part of the first set
or the second set, because it has a distance of two from both
IP1 and IP2. Accordingly, the process 400 may arrive at
operation 418 to assign the first set (i.e., IP1 and MAC1) to
the corresponding highest-order identifier (IP1) as the global
device identifier, the second set (i.e., IP2 and MAC2) to the
corresponding highest-order identifier (IP2) as the global
device identifier, a third set including EM1 with EM1 as its
global device identifier, and a fourth set including EM2 with
EM2 as its global device identifier.

[0080] Accordingly, to determine one or more global
device identifiers based on a device identifier graph, the
system may first receive the graph representing links
between nodes associated with computing device identifiers,
where the nodes include a highest-order subset. Afterward,
the system may determine that the highest-order subset
comprises at least two nodes from nodes. Then, for each
node, the system may determine which highest-order nodes
are most proximate to the respective node. If a respective
node is most proximate to a single highest-order node, then
the system may assign the device identifier associated with
that single highest-order node to the respective node. If a
respective node is most proximate to two or more single
highest-order nodes, then the system may assign a device
identifier distinct from the two or more highest-order nodes’
device identifiers (e.g., the node’s own device identifier) to
the respective node.

[0081] FIGS. 5A-5G provide operational examples of
generating global device identifiers for device identifier
graphs. Each of FIGS. 5A-5G depicts a device identifier
graph with one or more highest-order nodes. The highest-
order nodes of each graph are indicated using dashed lines.
[0082] As depicted in FIG. 5A, the depicted graph
includes a highest-order node G1 502(1), a node 1P1 504(1),
and a node U1 506(1). Because the graph depicted in FIG.
5A includes only one highest-order node, the entire graph is
allocated to a single identifier set 500A including node G1
502(1), node IP1 504(1), and node U1 506(1). The global
device identifier of the identifier set 500A may be the device
identifier of the highest-order node G1 502(1).

[0083] As depicted in FIG. 5B, the depicted graph
includes a highest-order node G2 502(2), a node 1P2 504(2),
a node U2 506(2), and a node U3 506(3). Because the graph
depicted in FIG. 5B includes only one highest-order node,
the entire graph is allocated to a single identifier set 500B
including node G2 502(2), node 1P2 504(2), node U2 506(2),
and node U3 506(3). The global device identifier of the
identifier set 500B may be the device identifier of the
highest-order node G2 502(2).

[0084] As depicted in FIG. 5C, the depicted graph
includes a highest-order node G3 502(3), a node 1P3 504(3),
anode IP4 504(4), a node U4 506(4), and a node U5 506(5).
Because the graph depicted in FIG. 5C includes only one
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highest-order node, the entire graph is allocated to a single
identifier set 500C including node G3 502(3), node IP3
504(3), node IP4 504(4), node U4 506(4), and node U5
506(5). The global device identifier of the identifier set 500C
may be the device identifier of the highest-order node G3
502(3).

[0085] As depicted in FIG. 5D, the depicted graph
includes a highest-order node G4 502(4), a node IP5 504(5),
a node IP6 504(6), a node IP7 504(7), a node U6 506(6), and
a node U7 506(7). Because the graph depicted in FIG. 5D
includes only one highest-order node, the entire graph is
allocated to a single identifier set 500D including node G4
502(4), node IP5 504(5), node IP6 504(6), node IP7 504(7),
node U6 506(6), and node U7 506(7). The global device
identifier of the identifier set 500D may be the device
identifier of the highest-order node G4 502(4).

[0086] As depicted in FIG. 5E, the depicted graph includes
two highest-order nodes G5 502(5) and G6 502(6). The
depicted graph also includes a node IP8 504(8) whose
most-proximate highest order node is G5 502(5) and a node
1P9 504(9) whose most-proximate highest order node is G6
502(6). The depicted graph also includes a node U8 506(8)
that is a conflicting node. Accordingly, the depicted graph
includes three identifier sets: a first set S00E(1) with the
highest-order node G5 502(5) and node IP8 504(8) whose
global device identifier is the device identifier of the highest-
order node G5 502(5), a second set 500E(2) with the
highest-order node G6 502(6) and node IP9 504(9) whose
global device identifier is the device identifier of the highest-
order node G6 502(6), and a third set S00E(3) with the
conflicting node U8 506(8) whose global device identifier is
the device identifier of the conflicting node U8 506(8).
[0087] As depicted in FIG. 5F, the depicted graph includes
two highest-order nodes G7 502(7) and G8 502(8). The
depicted graph also includes a node IP10 504(10) whose
most-proximate highest order node is G7 502(7), a node U9
506(9) whose most-proximate highest order node is G7
502(7), a node IP12 504(12) whose most-proximate highest
order node is G8 502(8), and a node U10 506(10) whose
most-proximate highest order node is G8 502(8). The
depicted graph also includes a node P11 504(11) that is a
conflicting node. Accordingly, the depicted graph includes
three identifier sets: a first set S00F(1) with the highest-order
node G7 502(7), node IP10 504(10), and node U9 506(9); a
second set 500F(2) with the highest-order node G8 502(8),
node IP12 504(12), and node U10 506(10); and a third set
500F(3) with the conflicting node IP11 504(11) whose
global device identifier is the device identifier of the con-
flicting node IP11 504(11).

[0088] As depicted in FIG. 5G, the depicted graph
includes two highest-order nodes G9 502(9) and G10 502
(10). The depicted graph also includes a node IP13 504(13)
whose most-proximate highest order node is G9 502(9), a
node U11 506(11) whose most-proximate highest order node
is G9 502(9), a node U12 506(12) whose most-proximate
highest order node is G9 502(9), a node IP16 504(16) whose
most-proximate highest order node is G10 502(10), a node
U13 506(13) whose most-proximate highest order node is
G10 502(10), and a node U14 506(14) whose most-proxi-
mate highest order node is G10 502(10). The depicted graph
also includes a node IP11 504(11) and a node IP15 504(15)
that are both conflicting nodes. Accordingly, the depicted
graph includes four identifier sets: a first set 500G(1) with
the highest-order node G9 502(9), node IP13 504(13), node
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U11 506(11), and node U12 506(12); a second set 500G(2)
with the highest-order node G10 502(10), node IP16 504
(16), node U13 506(13), and node U14 506(14); a third set
500G(3) with the conflicting node 1P14 504(14) whose
global device identifier is the device identifier of the con-
flicting node IP14 504(14); and a fourth set 500G (4) with the
conflicting node IP15 504(15) whose global device identifier
is the device identifier of the conflicting node 1P15 504(15).

[0089] FIG. 6 provides an operational example 600 of a
mismatch of device identifiers that can happen when two or
more monitoring components asynchronously report secu-
rity events to a tracking component, such as to tracking
component 112 of FIG. 1. As depicted in FIG. 6, a first
monitoring component reports, at a time T1, that the IP
address of a device is IP1. This report is received by the
tracking component at a time T2. Furthermore, a second
monitoring component reports, at a time T3, that the IP
address of the device is still IP1. This report, however, is
received by the tracking component at a time T6 (where TM
is later than TN if M>N). Moreover, a third monitoring
component reports, at a time T4, that the IP address of the
device is now IP2. This report is received by the tracking
component at a time T5. Accordingly, even though the
second monitoring component’s report is associated with a
time that precedes the timing associated with the third
monitoring component’s report, the latter report is received
by the tracking component before the former report. Because
of this temporal mismatch, the tracking component may
determine that the device is associated with IP1 between T2
and T5, with IP2 between T5 and T6, and again with IP1
after T6. This contrasts with the actual system conditions, in
which the device’s IP address switches from IP1 to IP2 after
T4.

[0090] FIG. 7 is a flowchart diagram of an example
process for mapping a local device identifier reported by a
monitoring component to a global device identifier. The
process 700 may be performed by a tracking component,
such as tracking component 112 of FIG. 1.

[0091] As depicted in FIG. 7, at operation 702, the process
700 includes receiving a request to obtain a global device
identifier for a first local device identifier. For example, the
tracking component may receive a security event from a first
monitoring component that includes the first local device
identifier. The request may include an indication of a first
time (e.g., a first time period), such as a time associated with
generating the request and/or recording the corresponding
security event. The first time may be the time associated with
receiving the request.

[0092] At operation 704, the process 700 includes waiting
for a threshold time period after the first time associated with
the request. The threshold time period may include a
required wait time and a number of timesteps associated
with the size of a smoothing window of timesteps that
includes the first time. For example, if the request is asso-
ciated with a time T4 (e.g., includes a security event
recorded at a time 4), and if the required wait time is four
timesteps and the smoothing window for a timestep includes
two timesteps after the respective timestep, then the system
may wait until T4+6=T10. In this wait period, the system
may continue to receive monitoring data and/or mapping
requests from monitoring components. Accordingly, by
waiting for the threshold time period, the system may
receive monitoring data that is associated with (e.g., that is

Oct. 24, 2024

recorded at) a time before the first time but is received after
the request and within the threshold period from the receipt
time of the request.

[0093] At operation 706, the process 700 includes deter-
mining a monitoring data batch after the threshold time
period expires. The monitoring data batch includes all
monitoring data received before the batch determination that
are associated with times that fall within a batch scope of the
first time. The batch scope may be defined by two param-
eters: the threshold time period size that defines how many
timesteps after the first time are included in the batch, and
a batch size that defines how many timesteps before the first
time are included in the batch.

[0094] For example, if a request is associated with a time
T4, the threshold time period includes six timesteps, and the
batch size is five timesteps, then the batch is generated after
T10 and includes monitoring data associated with (e.g.,
recorded at) times T1-T10 (i.e., six timesteps after T4 and
5-2=3 timesteps before T4). This means that if the moni-
toring data associated with time T3 is received before time
T10, it is included in the monitoring data batch. However,
then the monitoring data associated with time T3 is received
after time T10, then the monitoring data is not included in
the monitoring data batch.

[0095] At operation 708, the process 700 includes deter-
mining a global device identifier for the first local device
identifier based on the monitoring data batch. In some cases,
this operation may involve applying a mapping algorithm or
logic to the collected monitoring data within the batch scope
to determine the corresponding global device identifier. The
mapping algorithm could be designed to analyze various
features or characteristics of the monitoring data and match
them against known patterns or references in a mapping
database.

[0096] For example, the mapping algorithm might take
into account parameters such as the network activity, device
behavior, communication patterns, or any unique identifiers
available within the monitoring data batch. By examining
these parameters, the system can attempt to recognize pat-
terns that are consistent with known devices or device types.
This recognition process can help establish a correlation
between the local device identifier received in the request
and a corresponding global device identifier present in the
mapping database.

[0097] In some cases, operation 708 includes associating
the determined global device identifier with the first local
device identifier and recording this association in the sys-
tem’s database or memory. This association allows the
system to quickly and accurately identify the global device
identifier whenever a request with the same local device
identifier is received in the future. Subsequently, the system
can readily access information related to the corresponding
global device identifier, such as device specifications, own-
ership details, location, or any relevant security events
associated with that device.

[0098] At operation 710, the process 700 includes provid-
ing the global device identifier to the requesting device. In
some cases, after receiving the request, the system provides
a retry request to the request device indicating that the
device should retry obtaining the global device identifier
after the threshold time period. In some cases, after the
threshold time period, the request device generates a new
request and in response obtains the global device identifier,
as determined based on the monitoring data batch. In some



US 2024/0356958 Al

cases, the requesting device is a cross-domain analytics
device that is configured to determine a security prediction
associated with the computing device based on the first
monitoring data. In some cases, the requesting device is a
security response device that is configured to perform a
responsive operation in relation to the computing device
based on the first monitoring data.

[0099] FIG. 8 provides an operational example 800 of
determining a batch 806 in response to a first request 808
and a second request 810, both of which are associated with
a time T. As depicted in FIG. 8, the batch 806 includes
received data associated with 5 timesteps after T, based on
a smoothing window 802 of two and a wait period 804 of
three. Moreover, the batch 806 includes three timesteps
before T, based on a batch size 812 of nine (ie., as
9-(3+2+1)=3).

[0100] FIG. 9 provides a data flow diagram of an example
process 900 for providing global device identifiers in
response to two requesting devices (e.g., two monitoring
components): requester device A 950A and requester device
B 950B. As depicted in FIG. 9, both requester device A 950A
and requester device B 950B provide (at operation 902 and
operation 908 respectively) mapping requests associated
with a time T1. The mapping request received from
requester device A 950A (as received at operation 902)
indicates time T1 and a device identifier IP1. The mapping
request received from requester device B 950B (as received
at operation 90B) indicates time T1 and a device identifiers
1P1 and ID1. At operation 904, the tracking component 960
receives the request from requester device A 950A and
updates the identifier set for the corresponding device to add
IP1. At operation 906, the tracking component 960 requests
that requester device A 950A retries its mapping request at
a time T1+TD+TN, where TD is a required wait period and
TN is determined by a smoothing window size.

[0101] At operation 910, the tracking component 960
receives the request from requester device B 950B and
updates the identifier set for the corresponding device to
maintain IP1 and add ID1. At operation 912, the tracking
component 960 requests that requester device B 950B retries
its mapping request at a time T1+TD+TN. Because both the
mapping request received from requester device A 950A and
the mapping request received from requester device B 9508
are associated with (e.g., recorded at) time T, and because
the smoothing window size and required wait period are in
this example assumed to be the assume, the retrial times
provided to both requester devices is the same time.
[0102] At operation 914 and operation 916, the tracking
component 960 receives the retrial requests from requester
device A 950A and requester device B 950B respectively. At
operation 918, the tracking component 960 computes the
global device identifier for the respective device associated
with time T1 and provides the computed identifier to
requester device A 950A and requester device B 950B
respectively, at operation 920 and operation 922 respec-
tively. Operation 918 is performed to determine the respec-
tive device associated with time T1 even if there are no
requests for the global device identifier. After the identifier
is requested in operations 914 and 916, the global identifier
can be directly provided by operations 920 and 922.
[0103] FIG. 10 shows an example computer architecture
for a computing device (or network routing device) 1000
capable of executing program components for implementing
the functionality described above. The computer architec-
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ture shown in FIG. 10 illustrates a conventional server
computer, workstation, desktop computer, laptop, tablet,
network appliance, e-reader, smartphone, or other comput-
ing device, and can be utilized to execute any of the software
components presented herein.

[0104] The computing device 1000 includes a baseboard
1002, or “motherboard,” which is a printed circuit board to
which a multitude of components or devices can be con-
nected by way of a system bus or other electrical commu-
nication paths. In one illustrative configuration, one or more
central processing units (“CPUs”) 1004 operate in conjunc-
tion with a chipset 1006. The CPUs 1004 can be standard
programmable processors that perform arithmetic and logi-
cal operations necessary for the operation of the computing
device 1000.

[0105] The CPUs 1004 perform operations by transition-
ing from one discrete, physical state to the next through the
manipulation of switching elements that differentiate
between and change these states. Switching elements gen-
erally include electronic circuits that maintain one of two
binary states, such as flip-flops, and electronic circuits that
provide an output state based on the logical combination of
the states of one or more other switching elements, such as
logic gates. These basic switching elements can be com-
bined to create more complex logic circuits, including
registers, adders-subtractors, arithmetic logic units, floating-
point units, and the like.

[0106] The chipset 1006 provides an interface between the
CPUs 1004 and the remainder of the components and
devices on the baseboard 1002. The chipset 1006 can
provide an interface to a RAM 1008, used as the main
memory in the computing device 1000. The chipset 1006
can further provide an interface to a computer-readable
storage medium such as a read-only memory (“ROM”) 1010
or non-volatile RAM (“NVRAM”) for storing basic routines
that help to startup the computing device 1000 and to
transfer information between the various components and
devices. The ROM 1010 or NVRAM can also store other
software components necessary for the operation of the
computing device 1000 in accordance with the configura-
tions described herein.

[0107] The computing device 1000 can operate in a net-
worked environment using logical connections to remote
computing devices and computer systems through a net-
work. The chipset 1006 can include functionality for pro-
viding network connectivity through a NIC 1012, such as a
gigabit Ethernet adapter. The NIC 1012 is capable of con-
necting the computing device 1000 to other computing
devices over the network. It should be appreciated that
multiple NICs 1012 can be present in the computing device
1000, connecting the computer to other types of networks
and remote computer systems.

[0108] The computing device 1000 can be connected to a
storage device 1018 that provides non-volatile storage for
the computing device 1000. The storage device 1018 can
store an operating system 1020, programs 1022, and data,
which have been described in greater detail herein. The
storage device 1018 can be connected to the computing
device 1000 through a storage controller 1014 connected to
the chipset 1006. The storage device 1018 can consist of one
or more physical storage units. The storage controller 1014
can interface with the physical storage units through a serial
attached SCSI (“SAS”) interface, a serial advanced technol-
ogy attachment (“SATA”) interface, a fiber channel (“FC”)
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interface, or other type of interface for physically connecting
and transferring data between computers and physical stor-
age units.

[0109] The computing device 1000 can store data on the
storage device 1018 by transforming the physical state of the
physical storage units to reflect the information being stored.
The specific transformation of physical state can depend on
various factors, in different embodiments of this description.
Examples of such factors can include, but are not limited to,
the technology used to implement the physical storage units,
whether the storage device 1018 is characterized as primary
or secondary storage, and the like.

[0110] For example, the computing device 1000 can store
information to the storage device 1018 by issuing instruc-
tions through the storage controller 1014 to alter the mag-
netic characteristics of a particular location within a mag-
netic disk drive unit, the reflective or refractive
characteristics of a particular location in an optical storage
unit, or the electrical characteristics of a particular capacitor,
transistor, or other discrete component in a solid-state stor-
age unit. Other transformations of physical media are pos-
sible without departing from the scope and spirit of the
present description, with the foregoing examples provided
only to facilitate this description. The computing device
1000 can further read information from the storage device
1018 by detecting the physical states or characteristics of
one or more particular locations within the physical storage
units.

[0111] In addition to the mass storage device 1018
described above, the computing device 1000 can have
access to other computer-readable storage media to store and
retrieve information, such as program modules, data struc-
tures, or other data. It should be appreciated by those skilled
in the art that computer-readable storage media is any
available media that provides for the non-transitory storage
of data and that can be accessed by the computing device
1000. In some examples, the operations performed by a
network, and/or any components included therein (e.g., a
router, such as an edge router), may be supported by one or
more devices similar to computing device 1000. Stated
otherwise, some or all of the operations performed by the
network, and or any components included therein, may be
performed by one or more computing device 1000 operating
in a cloud-based arrangement.

[0112] By way of example, and not limitation, computer-
readable storage media can include volatile and non-volatile,
removable and non-removable media implemented in any
method or technology. Computer-readable storage media
includes, but is not limited to, RAM, ROM, erasable pro-
grammable ROM (“EPROM”), electrically-erasable pro-
grammable ROM (“EEPROM”), flash memory or other
solid-state memory technology, compact disc ROM (“CD-
ROM”), digital versatile disk (“DVD”), high definition
DVD (“HD-DVD”), BLU-RAY, or other optical storage,
magnetic cassettes, magnetic tape, magnetic disk storage or
other magnetic storage devices, or any other medium that
can be used to store the desired information in a non-
transitory fashion.

[0113] As mentioned briefly above, the storage device
1018 can store an operating system 1020 utilized to control
the operation of the computing device 1000. According to
one embodiment, the operating system comprises the
LINUX operating system. According to another embodi-
ment, the operating system comprises the WINDOWS®
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SERVER operating system from MICROSOFT Corporation
of Redmond, Washington. According to further embodi-
ments, the operating system can comprise the UNIX oper-
ating system or one of its variants. It should be appreciated
that other operating systems can also be utilized. The storage
device 1018 can store other system or application programs
and data utilized by the computing device 1000.

[0114] In one embodiment, the storage device 1018 or
other computer-readable storage media is encoded with
computer-executable instructions which, when loaded into
the computing device 1000, transform the computer from a
general-purpose computing system into a special-purpose
computer capable of implementing the embodiments
described herein. These computer-executable instructions
transform the computing device 1000 by specifying how the
CPUs 1004 transition between states, as described above.
According to one embodiment, the computing device 1000
has access to computer-readable storage media storing com-
puter-executable instructions which, when executed by the
computing device 1000, perform the various processes
described above with regard to FIGS. 1-9. The computing
device 1000 can also include computer-readable storage
media having instructions stored thereupon for performing
any of the other computer-implemented operations
described herein.

[0115] The computing device 1000 can also include one or
more input/output controllers 1016 for receiving and pro-
cessing input from a number of input devices, such as a
keyboard, a mouse, a touchpad, a touch screen, an electronic
stylus, or other type of input device. Similarly, an input/
output controller 1016 can provide output to a display, such
as a computer monitor, a flat-panel display, a digital projec-
tor, a printer, or other type of output device. It will be
appreciated that the computing device 1000 might not
include all of the components shown in FIG. 10, can include
other components that are not explicitly shown in FIG. 10,
or might utilize an architecture completely different than that
shown in FIG. 10.

[0116] The computing device 1000 may support a virtu-
alization layer, such as one or more components associated
with a computing resource network. The virtualization layer
may provide virtual machines or containers that abstract the
underlying hardware resources and enable multiple operat-
ing systems or applications to run simultaneously on the
same physical machine. The virtualization layer may also
include components for managing the virtualized resources,
such as a hypervisor or virtual machine manager, and may
provide network virtualization capabilities, such as virtual
switches, routers, or firewalls. By enabling the sharing and
efficient utilization of physical resources, virtualization can
help reduce costs, simplify management, and increase flex-
ibility in deploying and scaling computing workloads. The
computing device 1000 may also support other software
layers, such as middleware, application frameworks, or
databases, that provide additional abstraction and services to
application developers and users. In some cases, the com-
puting device 1000 may provide a flexible and scalable
platform for hosting diverse workloads and applications,
from simple web services to complex data analytics and
machine learning tasks.

[0117] While the invention is described with respect to the
specific examples, it is to be understood that the scope of the
invention is not limited to these specific examples. Since
other modifications and changes varied to fit particular
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operating requirements and environments will be apparent to
those skilled in the art, the invention is not considered
limited to the example chosen for purposes of disclosure,
and covers all changes and modifications which do not
constitute departures from the true spirit and scope of this
invention.
[0118] Although the application describes embodiments
having specific structural features and/or methodological
acts, it is to be understood that the claims are not necessarily
limited to the specific features or acts described. Rather, the
specific features and acts are merely illustrative some
embodiments that fall within the scope of the claims of the
application.
What is claimed is:
1. A method comprising:
receiving first monitoring data from a first computing
entity, wherein the first monitoring data represents a
first event determined by monitoring a computing
device, and wherein the first monitoring data comprises
a first identifier for the computing device;
receiving second monitoring data from a second comput-
ing entity, wherein the second monitoring data repre-
sents a second event determined by monitoring the
computing device, and wherein the second monitoring
data comprises a second identifier for the computing
device;
determining, based on mapping data, that both the first
identifier and the second identifier map to a common
global identifier for the computing device; and
based on determining that both the first identifier and the
second identifier map to the common global identifier,
providing first feedback data to the first computing
entity, wherein the first feedback data represents that
the first identifier and the second identifier relate to the
common global identifier.
2. The method of claim 1, further comprising:
receiving a query from a third computing entity, wherein
the third computing entity is configured to store the first
monitoring data and the second monitoring data and
enable retrieval of the first monitoring data and the
second monitoring data using a common access inter-
face, and wherein the query comprises the first identi-
fier; and
providing second feedback data to the third computing
entity, wherein the second feedback data represents that
the first identifier and the second identifier relate to the
common global identifier, and wherein the third com-
puting entity is configured to determine an association
of the first monitoring data and the second monitoring
data based on the second feedback data and store the
first monitoring data and the second monitoring data
based on the association.
3. The method of claim 1, further comprising:
receiving a query from a third computing entity, wherein
the third computing entity is configured to determine a
security prediction based on the first monitoring data
and the second monitoring data, and wherein query
comprises the first identifier; and
providing second feedback data to the third computing
entity, wherein the second feedback data represents that
the first identifier and the second identifier relate to the
common global identifier, and wherein the third com-
puting entity is configured to determine the security
prediction based on the second feedback data.
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4. The method of claim 1, further comprising:

receiving a query from a third computing entity, wherein
the third computing entity is configured to perform a
responsive operation in relation to the computing
device based on the first monitoring data and the
second monitoring data, and wherein query comprises
the first identifier; and

providing second feedback data to the third computing

entity, wherein the second feedback data represents that
the first identifier and the second identifier relate to the
common global identifier, and wherein the third com-
puting entity is configured to determine the responsive
operation based on the second feedback data.

5. The method of claim 1, further comprising:

providing second feedback data to at least one of: (i) a

third computing entity that is configured to enable
retrieval of the first monitoring data and the second
monitoring data using a common interface, (ii) a fourth
computing entity that is configured to retrieve the first
monitoring data and the second monitoring data using
the common interface and determine a security predic-
tion based on the first monitoring data and the second
monitoring data, or (iii) a fifth computing entity that is
configured to perform a responsive operation based on
the security prediction, wherein the second feedback
data represents that the first identifier and the second
identifier relate to the common global identifier.

6. The method of claim 1, further comprising determining
the mapping data, and wherein determining the mapping
data comprises:

determining a first association between the first identifier

and the common global identifier;
storing the first association on a first storage component at
a first time, wherein the first storage component stores
a recent subset of the mapping data;

at a second time, based on determining that a threshold
period has passed since the first time, storing the first
association on a second storage component, wherein
the second storage component stores a historical subset
of the mapping data;

determining a second association between the first iden-

tifier and the common global identifier; and
storing the second association at a third time, wherein
the third time occurs after the second time.

7. The method of claim 6, wherein:

the first monitoring data and the second monitoring data

are both received after the third time but before the

threshold period has passed since the third time, and

determining that both the first identifier and the second

identifier relate to the common global identifier com-

prises:

based on receiving the first monitoring data, querying
the first storage component to determine that the first
identifier maps to the common global identifier, and

based on receiving the second monitoring data: (i)
querying the first storage component to determine a
need to query the second storage component, and (ii)
querying the second storage component to determine
that the second identifier maps to the common global
identifier.

8. The method of claim 1, wherein the first computing
entity is configured to:

determine a third event associated with the first identifier;

and
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determine third monitoring data based on the third event
and the first feedback data, wherein:
the third monitoring data represents that the third event
relates to at least one of the common global identifier
or the second identifier, and
the method comprises receiving the third monitoring
data.

9. The method of claim 1, wherein the first computing
entity is configured to:

determine a third event associated with the first identifier;

determine a fourth event associated with the second

identifier; and

based on the first feedback data, determine third moni-

toring data based on both the third event and the fourth
event,

wherein the method comprises receiving the third moni-

toring data.

10. A method comprising:

receiving a first association graph representing links

between nodes associated with computing device iden-
tifiers, wherein the nodes include a highest-order sub-
set;

determining that the highest-order subset comprises at

least two nodes from nodes;

for each of a first node and a second node from the nodes,

determining one or more most-proximate nodes from
the highest-order subset;

based on determining that the one or more most-proxi-

mate nodes associated with the first node comprise a
single highest-order node, assigning a first global
device identifier associated with the single highest-
order node to the first node;

based on determining that the one or more most-proxi-

mate nodes associated with the second node comprise
two or more highest-order nodes, assigning a second
global device identifier to the second node, wherein the
second global device identifier is distinct from global
device identifiers assigned to the two or more highest-
order nodes; and

determining mapping data associated with the computing

device identifiers based on the first global device identifier

and the second global device identifier.

11. The method of claim 10, further comprising:

receiving a second association graph representing second

links between second nodes associated with second
computing device identifiers, wherein the second nodes
include a second highest-order subset;

determining that the second highest-order subset com-

prises a single node;

assigning a third global device identifier to each of the

second nodes; and

determining the mapping data based on the third global

device identifier.
12. The method of claim 10, further comprising deter-
mining the first association graph, and wherein determining
the first association graph comprises:
receiving first associations between a set of local device
identifiers, wherein the set of local device identifiers
comprise the computing device identifiers; and

determining one or more disjoint graphs based on the first
associations, wherein the one or more disjoint graphs
include the first association graph.
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13. The method of claim 10, further comprising:

receiving reliability data representing a reliability mea-
sure for each one of a set of identifier types; and

determining the highest-order subset based on the reli-
ability data.

14. The method of claim 13, wherein:

determining the first association graph and the highest-
order subset is performed at a preprocessing phase; and

determining the first global device identifier and the
second global device identifier is performed at an
inference phase that occurs subsequent to the prepro-
cessing phase.

15. The method of claim 14, wherein the inference phase

periodically repeated.

16. A system comprising:

one or more processors; and

one or more computer-readable media storing computer-
executable instructions that, when executed by the one
or more processors, cause the one or more processors
to perform operations comprising:

receiving first monitoring data from a first computing
entity, wherein the first monitoring data represents a
first event determined by monitoring a computing
device, and wherein the first monitoring data comprises
a first identifier for the computing device;

receiving second monitoring data from a second comput-
ing entity, wherein the second monitoring data repre-
sents a second event determined by monitoring the
computing device, and wherein the second monitoring
data comprises a second identifier for the computing
device;

determining, based on mapping data, that both the first
identifier and the second identifier map to a common
global identifier for the computing device; and

based on determining that both the first identifier and the
second identifier map to the common global identifier,
providing first feedback data to the first computing
entity, wherein the first feedback data represents that
the first identifier and the second identifier relate to the
common global identifier.

17. The system of claim 16, further comprising:

receiving a query from a third computing entity, wherein
the third computing entity is configured to store the first
monitoring data and the second monitoring data and
enable retrieval of the first monitoring data and the
second monitoring data using a common access inter-
face, and wherein the query comprises the first identi-
fier; and

providing second feedback data to the third computing
entity, wherein the second feedback data represents that
the first identifier and the second identifier relate to the
common global identifier, and wherein the third com-
puting entity is configured to determine an association
of the first monitoring data and the second monitoring
data based on the second feedback data and store the
first monitoring data and the second monitoring data
based on the association.

18. The system of claim 16, further comprising:

receiving a query from a third computing entity, wherein
the third computing entity is configured to determine a
security prediction based on the first monitoring data
and the second monitoring data, and wherein query
comprises the first identifier; and

providing second feedback data to the third computing
entity, wherein the second feedback data represents that
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the first identifier and the second identifier relate to the
common global identifier, and wherein the third com-
puting entity is configured to determine the security
prediction based on the second feedback data.

19. The system of claim 16, further comprising:

receiving a query from a third computing entity, wherein
the third computing entity is configured to perform a
responsive operation in relation to the computing
device based on the first monitoring data and the
second monitoring data, and wherein query comprises
the first identifier; and

providing second feedback data to the third computing
entity, wherein the second feedback data represents that
the first identifier and the second identifier relate to the
common global identifier, and wherein the third com-
puting entity is configured to determine the responsive
operation based on the second feedback data.

20. The system of claim 16, further comprising:

providing second feedback data to at least one of: (i) a
third computing entity that is configured to enable
retrieval of the first monitoring data and the second
monitoring data using a common interface, (ii) a fourth
computing entity that is configured to retrieve the first
monitoring data and the second monitoring data using
the common interface and determine a security predic-
tion based on the first monitoring data and the second
monitoring data, or (iii) a fifth computing entity that is
configured to perform a responsive operation based on
the security prediction, wherein the second feedback
data represents that the first identifier and the second
identifier relate to the common global identifier.
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