US 20240340315A1

a2y Patent Application Publication o) Pub. No.: US 2024/0340315 A1

a9y United States

HALES et al.

43) Pub. Date: Oct. 10, 2024

(54) DETECTING COMPROMISED WEB PAGES
IN A RUNTIME ENVIRONMENT

(71) Applicant: Shape Security, Inc., Seattle, WA (US)

(72) Inventors: Wesley HALES, Atlanta, GA (US);
Jarrod OVERSON, Santa Clara, CA
(US)

(21) Appl. No.: 18/746,008

(22) Filed: Jun. 17, 2024

Related U.S. Application Data

(63) Continuation of application No. 16/709,198, filed on
Dec. 10, 2019, now Pat. No. 12,047,411.

Publication Classification

(52) US.CL
CPC ... HO4L 63/1483 (2013.01); GOGF 16/986
(2019.01); HO4L 63/1416 (2013.01)
(57) ABSTRACT

Techniques are provided for detecting compromised web
pages in a runtime environment. A first version of a web
page is retrieved and loaded in a browser comprising a
browser extension configured to detect event listeners added
when web pages are loaded by the browser. First data is
generated describing a first set of event listeners detected by
the browser extension when the first version of the web page
is loaded. At a second time a second version of the web page
is retrieved and loaded in the browser. Second data is
generated describing a second set of event listeners detected
by the browser extension when the second version of the
web page is loaded. It is determined that the web page is

(51) Int. CL compromised based on comparing the first data and the
HO4L 9/40 (2006.01) second data. In response to determining that the web page is
GO6F 16/958 (2006.01) compromised, a threat response action is performed.

RETRIEVE AND LOAD FIRST VERSION OF WEB PAGE IN 400

BROWSER COMPRISING BROWSER EXTENSION 402

e

3

GENERATE FIRST DATA DESCRIBING A FIRST SET OF EVENT
LISTENERS DETECTED BY BROWSER EXTENSION 404

¥

RETRIEVE AND LOAD SECOND VERSION OF WEB PAGE IN
BROWSER COMPRISING BROWSER EXTENSION 406

X

GENERATE SECOND DATA DESCRIBING A SECOND SET OF
EVENT LISTENERS DETECTED BY BROWSER EXTENSION 408

¥

COMPARE FIRST DATA AND SECOND DATA 410

e

\\\\ 4312

T TOMPROMI

SEDS e

PERFORM THREAT RESPONSE ACTION 414

¥
[E—

7

S
{ RETURN :1..1..@)
N

Patent Application Publication Oct. 10, 2024 Sheet 1 of 6 US 2024/0340315 A1

100

WEB CODE 106 /

WER PAGE 104 15

o

WEB SERVER SYSTEM 102

o e e e e e e e 1
{ o !
EVENT
130 b
EVENT ! =22 N ANDLER 134 |
LISTENER P FLEMENT 124 |} |
DETECTION s Py ;
§ ELEMENT 128 E ; m— 3
| : ;
BROWSER § LBa141 apusies
EXTENSION 114 || ELEMENT 126 | i
| ;
{ 5 ¥
| ; ;
| | CALLBACK STACK
QUEUE 142
| DOCUMENT | 144 42
| OBJECT MODEL | ==
f_ 122 _j WEB CODE ENGINE 118
RUNTIME ENVIRONMENT 120
BROWSER 112

COMPROMISE DETECTION MODULE 110

COMPROMISE DETECTION SYSTEM 108

Patent Application Publication Oct. 10, 2024 Sheet 2 of 6 US 2024/0340315 A1

200

/

WEB PAGE 204 WEB PAGE 205

WEB SERVER SYSTEM 202 WEB SERVER SYSTEM 203

A

&

BROWSER 234
BROWSER
EXTENSION 214 CLIENT COMPUTING
DEVICE 232
BROWSER 212
COMPROMISE
DETECTION
MODULE 210
BROWSER 235
COMPROMISE .
DETECTION SYSTEM "
208 CLIENT COMPUTING
DEVICE 233
CODE
INSTRUMENTATION
MODULE 218
SECURITY SERVER SYSTEM
218 FIG. 2

Patent Application Publication Oct. 10, 2024 Sheet 3 of 6 US 2024/0340315 A1

WEB CODE 306

XHR WHITELIST CODE 21

SECURITY
INSTRUMENTATION CODE 208

INGTRUMENTED WEB PAGE
VERSION 300

FIG. 3

Patent Application Publication Oct. 10, 2024 Sheet 4 of 6 US 2024/0340315 A1

RETRIEVE AND LOAD FIRST VERSION OF WEB PAGE IN 400
BROWSER COMPRISING BROWSER EXTENSION 402 /

ki

GENERATE FIRST DATA DESCRIBING AFIRST SET OF EVENT
LISTENERS DETECTED BY BROWSER EXTENSION 404

¥

RETRIEVE AND LOAD SECOND VERSION OF WEB PAGE IN
BROWSER COMPRISING BROWSER EXTENSION 406

¥

GENERATE SECOND DATA DESCRIBING A SECOND 3ET OF
EVENT LISTENERS DETECTED BY BROWSER EXTENSION 408

¥

COMPARE FIRST DATA AND SECOND DATA 410

COMPROMISED?
412 -

Yes

{

PERFORM THREAT RESPONSE ACTION 414

Patent Application Publication Oct. 10, 2024 Sheet 5 of 6 US 2024/0340315 A1

500

RETRIEVE AND LOAD FIRST VERSION OF WEB PAGE IN /
BROWSER COMPRISING BROWSER EXTENSION 502

¥

GENERATE BASELINE DATA DESCRIBING AFIRST SET OF
EVENT LISTENERS DETECTED BY BROWSER EXTENSION 504

¥

PERIODICALLY COMPARE SUBSEQUENT DATA DESCRIBING
EVENT LISTENERS DETECTED BY BROWSER EXTENSION TG
BASELINE DATA 506

&

¥

RECEIVE INDICIATION THAT THE WEB PAGE HAS CHANGED
AT THE WEB SERVER SYSTEM 508

¥

RETRIEVE AND LOAD UPDATED VERSION OF WEB PAGE [N
BROWGSER COMPRISING BROWSER EXTENSION 510

¥

GENERATE UPDATED DATA DESCRIBING AN UPDATED SET
OF EVENT LISTENERS DETECTED BY BROWSER EXTENSION
512

¥

UPDATE BASELINE DATAWITH UPDATED DATA 51

Patent Application Publication

Oct. 10, 2024 Sheet 6 of 6

US 2024/0340315 Al

PROCESSOR/S MAIN MEMORY ROM
; 804 606 608 :
: 4 4 & j
g ¥ v ¥ ;
BUS 602
: A 4 & :
i ¥ i
STORAGE COMMUNICATION
| DEVICE/S DEVICE/S |
| 610 618 ;
i 800,
¥
4
HOST/S @NIS VO DEVICE/S
624 " 822 £i2
/ ISP
SERVER/S N 626
£30 L INTERNET/
WAN/S

628

US 2024/0340315 Al

DETECTING COMPROMISED WEB PAGES
IN A RUNTIME ENVIRONMENT

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application is a continuation of U.S. patent
application Ser. No. 16/709,198, filed Dec. 10, 2019, which
is referenced herein in its entirety.

FIELD OF THE DISCLOSURE

[0002] The present disclosure generally relates to security
techniques applicable to web server systems, and relates
more specifically to detecting compromised web pages in a
runtime environment.

BACKGROUND

[0003] The approaches described in this section are
approaches that could be pursued, but not necessarily
approaches that have been previously conceived or pursued.
Therefore, unless otherwise indicated, it should not be
assumed that any of the approaches described in this section
qualify as prior art merely by virtue of their inclusion in this
section.

[0004] Web servers can host web pages and serve the web
pages to users in response to requests. Often, web servers
provide web pages with web code that executes at client
computing devices. Attackers may gain access to sensitive
information by causing malicious code to execute at the
client computing devices. For example, an attacker can
insert malicious code into a hosted web page at a web server,
causing the web serve to serve compromised web pages. The
malicious web code may be provided to users along with
legitimate content corresponding to the web page, including
legitimate web code.

[0005] A user may visit a trusted web site and download
the malicious web code if a web page at the trusted web site
is compromised. Such malicious code may gather data in
one or more objects defined in the web page, load and run
additional malicious web code, and/or transmit data gath-
ered at the user’s computing device. For example, when the
user enters authentication information and/or credit card
information to submit to a trusted web site, the malicious
web code may gather and forward the information to a server
under control of the attacker, enabling the attacker to use the
information for illicit gain. Such activity may occur without
being detectable by a typical user. In some instances, the
activity is triggered by an actions detected by the malicious
web code when the user interacts with the web page in a
browser, such as entering or submitting financial informa-
tion in a web form.

[0006] Furthermore, when a web page is loaded at a
browser, the browser may also load other resources as
indicated by the web page. Such resources may include
third-party web code for advertising, trackers, social media,
or other widgets that can be embedded in web pages.
Third-party web code can also load libraries at the client
computing devices. The resources, third-party web code,
and associated libraries may also be compromised by attack-
ers, causing malicious web code to execute at the user’s
computing device. Web server administrators may wish to
protect their users from such malicious attacks.

Oct. 10, 2024

SUMMARY

[0007] The appended claims may serve as a summary of
the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] In the drawings:

[0009] FIG. 1 illustrates a computer system that includes
a compromise detection system in an example embodiment;
[0010] FIG. 2 illustrates a computer system that includes
a security server system in an example embodiment;
[0011] FIG. 3 illustrates an instrumented web page version
at a client computing device comprising XML HttpRequest
(XHR) whitelist code in an example embodiment;

[0012] FIG. 4 is a flow diagram of a process for detecting
compromised web pages in a runtime environment in an
example embodiment;

[0013] FIG. 5 is a flow diagram of a process for detecting
compromised web pages in a runtime environment for an
updated web page in an example embodiment;

[0014] FIG. 6 illustrates a computer system upon which an
embodiment may be implemented.

[0015] While each of the drawing figures illustrates a
particular embodiment for purposes of illustrating a clear
example, other embodiments may omit, add to, reorder, or
modify any of the elements shown in the drawing figures.
For purposes of illustrating clear examples, one or more
figures may be described with reference to one or more other
figures, but using the particular arrangement illustrated in
the one or more other figures is not required in other
embodiments.

DETAILED DESCRIPTION

[0016] In the following description, for the purpose of
explanation, numerous specific details are set forth in order
to provide a thorough understanding of the present inven-
tion. It will be apparent, however, that the present invention
may be practiced without these specific details. In other
instances, well-known structures and devices are shown in
block diagram form in order to avoid unnecessarily obscur-
ing the present invention.

[0017] It will be further understood that: the term “or”
may be inclusive or exclusive unless expressly stated oth-
erwise; the term “set” may comprise zero, one, or two or
more elements; the terms “first”, “second”, “certain”, and
“particular” are used as naming conventions to distinguish
elements from each other does not imply an ordering,
timing, or any other characteristic of the referenced items
unless otherwise specified; the term “and/or” as used herein
refers to and encompasses any and all possible combinations
of one or more of the associated listed items; that the terms
“comprises” and/or “comprising” specify the presence of
stated features, but do not preclude the presence or addition
of one or more other features.

[0018] A “module” may be software and/or hardware
stored in, or coupled to, a memory and/or one or more
processors on one or more computers. Additionally or alter-
natively, a module may comprise specialized circuitry. For
example, a module, such as the compromise detection
module 110 or the event listener detection module 116, in
FIG. 1 and discussed further herein, may be hardwired or
persistently programmed to support a set of instructions to,
and/or that are useful to, perform the functions discussed
herein.

US 2024/0340315 Al

[0019] A “client” refers to a combination of integrated
software components and an allocation of computational
resources, such as memory, a computing device, and pro-
cesses on a computing device for executing the integrated
software components. The combination of the software and
computational resources are configured to interact with one
or more servers over a network, such as the Internet. A client
may refer to either the combination of components on one or
more computers, or the one or more computers (also referred
to as “client computing devices”).

[0020] A “server” refers to a combination of integrated
software components and an allocation of computational
resources, such as memory, a computing device, and pro-
cesses on the computing device for executing the integrated
software components. The combination of the software and
computational resources are dedicated to providing a par-
ticular type of function on behalf of clients of the server. A
server may refer to either the combination of components on
one or more computing devices, or the one or more com-
puting devices (also referred to as “server system”). A server
system may include multiple servers; that is, a server system
may include a first computing device and a second comput-
ing device, which may provide the same or different func-
tionality to the same or different set of clients.

[0021] A “system” (such as but not limited to web server
system 102, compromise detection system 108, web server
systems 202-203, security server system 218, and compro-
mise detection system 208) may include one or more com-
puters, such as physical computers, virtual computers, or
computing devices. For example, a system may be, or may
comprise, one or more server computers, cloud-based com-
puters, cloud-based cluster of computers, virtual machine
instances or virtual machine computing elements such as
virtual processors, storage and memory, data centers, storage
devices, desktop computers, laptop computers, mobile
devices, or any other special-purpose computing devices. A
system may include another system, and computers may
belong to two or more systems.

General Overview

[0022] This document generally describes systems, meth-
ods, devices, and other techniques for detecting compro-
mised web pages in a runtime environment. A browser is
provided extended functionality, such as in the form of a
browser extension. The browser extension detects event
listeners added in a runtime environment of the browser
when an initial version of the web page is loaded in a
browser of a system, such as a compromise detection
system.

[0023] When a web page is loaded in a browser at runtime,
some web code instructions are immediately executed upon
loading the web page, while other web code instructions are
executed only when an event occurs. For example, imme-
diately-executed instructions may create an event listener
that detects the occurrence of the event and, in response,
causes the event-driven instructions to execute. Event lis-
teners may detect user interactions with a web page in a
browser, such as after a user enters and/or submits financial
data, authentication credentials, or other sensitive informa-
tion.

[0024] In some embodiments, a compromise detection
system detects changes in event listeners when different
versions of a web page are loaded in a browser. At a first
time, the compromise detection system generates baseline

Oct. 10, 2024

data that describes event listeners detected by the browser
extension when an initial version of the web page is initially
retrieved and loaded in the browser. The web page may be
considered clean, or free from malicious code, when the
baseline data is obtained. At a subsequent time, the com-
promise detection system generates second data that
describes event listeners detected by the browser extension
when a second version of the web page is retrieved and
loaded in the browser. By comparing the first data and the
second data, the compromise detection system can detect
changes to the event listeners added during runtime when
loading the second version of the web page.

[0025] Based on the comparison, the compromise detec-
tion system can determine that the web page has been
compromised. For example, the web page may be compro-
mised at the web server, such as by the addition of malicious
web code to the web page. The web page may also be
compromised due to loading one or more resources that are
compromised, such as third-party web code, resources that
are embedded in the web page, and/or libraries loaded with
such resource/s in the browser.

[0026] In some implementations, the various techniques
described herein may achieve one or more of the following
advantages: an owner of a web server system may better
protect its users and itself from fraudsters; the protection
may be provided relatively simply for the web server system
in certain implementations, such as by using a security
service that monitors hosted web pages using the techniques
described herein to detect a compromised web page; the
security service can be provided flexibly by an organization
that specializes in web security, which can in turn keep the
functionality updated to address ever-changing security
threats; such a security organization can also aggregate data
received from multiple web server systems across many
clients that operate many domains, and can use that aggre-
gated information to generate countermeasures that are more
effective than countermeasures that could be developed
using only data from a single domain. Additional features
and advantages are apparent from the specification and the
drawings.

System Overview

[0027] FIG. 1 illustrates a computer system that includes
a compromise detection system in an example embodiment.
The computer system 100 includes a web server system 102
and a compromise detection system 108. The web server
system 102 serves a web page 104 over a network 150, such
as the Internet. The compromise detection system 108
communicates with the web server system 102 over a
network that includes the Internet 150 and/or one or more
other networks.

[0028] The compromise detection system 108 may func-
tion as a client of the web server system 102 by requesting
the web page 104 from the web server system 102 over the
Internet 150. The compromise detection system 108
includes a browser 112 with a browser extension 114 that
detects event listeners added when web pages such as web
page 104 are loaded by the browser. The browser extension
114 is described in greater detail hereinafter.

Runtime Environment

[0029] The web browser 112 retrieves and loads the web
page 104, such as by requesting the web page 104 from the

US 2024/0340315 Al

web server system 102. The web page 104 may include one
or more sets of instructions or data, such as but not limited
to HTML, CSS, and/or JavaScript. Such instructions and
data describe web page 104 presentation and define opera-
tions for the browser 112 to perform when the web page 104
is loaded in the browser 112.

[0030] As used herein, the term “web code” refers to
instructions in a programming language that are executed in
a web code engine 118 provided in a browser 112, where the
web code engine 118 interprets and executes the web code
106 of a web page 104. The web code 106 may also refer to
additional web code, such as third-party web code that can
be embedded in web pages. The additional web code may be
obtained by the browser 112 at runtime and processed as part
of'the web code 106. Thus, the term “web code” may include
such additional web code referred to in web code hosted by
the web server 102.

[0031] For example, one or more embodiments described
herein may involve JavaScript web code 106 that is inter-
preted and executed by a JavaScript Engine in a JavaScript
runtime environment embedded in the browser 112. As used
herein, the term “runtime” refers to a time during which a
program is running, such as when the browser 112 loads a
web page 104 and when a user is able to interact with the
web page 104. One or more embodiments are described
herein with respect to JavaScript web code 106 that is
processed by a JavaScript web code engine 118 in a
JavaScript runtime environment 120 without limiting the
techniques thereto.

[0032] When the web page 104 is loaded in the browser
112, a Document Object Model (DOM) 122 is created that
represents the web page 104 as a tree structure of tags, also
referred to herein as a “DOM tree”. The DOM 112 may
serve as an interface between the web code 106 and the web
page 104 as presented in the browser 112. For example,
JavaScript web code 106 may use elements 124-128 of the
DOM 122 to implement event-driven functionality, as
described in greater detail hereinafter.

Event-Driven Instructions

[0033] When a web page 104 is loaded in the browser 112
at runtime, the web code engine 118 processes the corre-
sponding web code 106. Generally, the web code 106
includes immediately-executable instructions, such as func-
tion calls, that are pushed to the stack 142 as the web code
106 is processed by the web code engine 118. Items on the
stack 142 are immediately processed until the stack 142 is
empty.

[0034] The web code engine 118 may also be configured
to process event-driven instructions. Event-driven instruc-
tions may be supported by one or more Application Program
Interfaces (APIs) 123 or other libraries made available in the
runtime environment 120 of the browser 112. For example,
immediately-executed instructions in the web code 106 may
create an event listener that detects the occurrence of a
particular event. When the particular event occurs, specified
event-driven instructions are executed in the runtime envi-
ronment 120. As used herein, the term event handler refers
to event-driven instructions that are performed in response
to a specified event. For example, an event handler may be
a user-defined JavaScript function that will execute in the
runtime environment 120 when the event occurs.

[0035] In some embodiments, the web code 106 includes
immediately-executed instructions that add one or more

Oct. 10, 2024

event listeners 130-132 to one or more elements 124-126 of
the DOM 122 corresponding to the web page 104, and
register the corresponding event handlers 134-136 in the
runtime environment 120. If an event listener 130-132 is
added to a particular element 124-126 of the DOM 122, then
when the specified event is triggered with respect to the
element 124-126, the corresponding event handler 134-136
is called. For example, the corresponding event handler
134-136 may be placed in a callback queue 144 of the web
code engine 118. Instructions in the callback queue 144 are
executed when the stack 142 is empty. Examples of events
that can be triggered in the browser 112 include, but are not
limited to: mouse events, touch events, keyboard events,
focus events, change events, submit events, and other events
that may be triggered in a browser.

[0036] As an example, an “on-click” event listener 130
may be added to a “Submit” button element 124. When a
user clicks the “Submit” button corresponding to the ele-
ment 124, the event listener 130 is triggered, causing the
corresponding event handler 134 to be executed. As a further
example, the corresponding event handler 134 may create
XMLHttpRequest (XHR request) object. An XHR object
includes methods that allow data transfer between a browser
112 and a web server, allowing for modifications to a loaded
web page 104 during runtime without a full page request that
may disrupt a user’s interactions with the web page 104. An
XHR object may be used to post, or transmit, sensitive data
to a server that is accessible to an attacker. When used in an
event handler 134, the XHR object may post sensitive data
that is entered by a user during runtime after the immedi-
ately-executed instructions are processed, and after the user
interacts with the web page 104 using the browser 112, such
as by entering credentials and/or financial data.

Browser Extension

[0037] The browser 112 includes a browser extension 114
configured to detect event listeners added when web pages
such as web page 104 are loaded by the browser 112. The
browser extension 114 includes software that, when
executed, extends the functionality of the browser 112. In
some embodiments, the browser extension 114 includes an
event listener detection module 116 that detects events
listeners 130-132 that were added to elements 124-126 of
the DOM 122 when the web page 104 is loaded by the
browser 112. For example, the browser extension 114 may
detect the event listeners 130-132 by traversing the DOM
122 tree for the web page 104.

[0038] In some embodiments, the browser is a standard
instance of a commercially available browser that is instru-
mented with the browser extension 114. The commercially
available browser may be a browser that provides develop-
ers a getListener() method or another method that exposes
any event listeners 130-132 added to the elements 124-128
of the DOM 122. Alternatively and/or in addition, the
browser extension may scan the web code 106 for instruc-
tions that add event listeners 130-132 to elements 124-126
of the DOM 122.

[0039] In some embodiments, the browser extension 114
is the only browser extension, plugin, or other modification
to the browser 112 at the compromise detection system 108.
Such modifications may cause additional resources to be
loaded to the browser 112. In this case, the event listeners
130-132 detected by the browser extension 114 will not be
affected by resources that may be loaded in a browser in an

US 2024/0340315 Al

environment that is not similarly restricted. When such
external modifications cause resources to be loaded that
create new event listeners, these new event listeners are not
created due to the web page 104 being compromised.
Alternatively, the clean version of the web page 104 may be
loaded in a browser 112 with a pre-selected set of plug-ins,
browser extensions, and/or other modifications that have
been cleared as free from known vulnerabilities.

Compromise Detection Module

[0040] In some embodiments, the compromise detection
system 108 has a compromise detection module 110 per-
forms one or more functions described herein. A web page
104 is compromised if loading a version of the web page 104
retrieved from the web server system 102 causes malicious
web code to be loaded in the runtime environment 120 of the
browser 112. For example, the malicious web code may add
a malicious event listener that creates an XML HttpRequest
(XHR) object that posts data to a server that is accessible to
an attacker.

[0041] In some embodiments, the compromise detection
module 110 causes the browser 112 to retrieve and load a
first version of the web page 104 at a first time, and the
browser extension 114 and/or the compromise detection
module generates first data that describes a first set of event
listeners detected by the browser extension 114 when the
first version of the web page 104 is loaded. The compromise
detection module 110 also causes the browser 112 to retrieve
and load a second version of the web page 104 at a second
time, and the browser extension 114 and/or the compromise
detection module generates second data that describes a
second set of event listeners detected by the browser exten-
sion 114 when the second version of the web page 104 is
loaded.

[0042] The compromise detection module 110 compares
the first data and the second data. By comparing the first data
and the second data, the compromise detection system 108
can detect changes in the event listeners added in the runtime
environment 120 between the first time and the second time.
[0043] Insome embodiments, the first data is baseline data
that is generated when the browser 112 loads a clean version
of' a web page 104, and the first data is generated in a clean
environment where. the browser 112 does not have browser
extensions, plug-ins, or other browser modifications
installed other than browser extension 114. When the base-
line data is compared to the second data, new event listeners
added in the runtime environment 120 can be detected.
Because the first data is generated in a clean environment,
the source of the additional event listeners detected in the
runtime environment 120 must be the second version of the
web page 104. That is, when the second version of the web
page 104 is loaded in the browser 112, some web code
created the event listener and event handler. Such web code
is either present in the second version of the web page 104
or obtained due to web code in the second version of the web
page. For this reason, it may be determined that the web
page 104, as hosted at the web server system 102 at the
second time, is compromised.

[0044] In some embodiments, the compromise detection
module 110 periodically retrieves and loads subsequent
versions of the web page 104, generating subsequent data
describing event listeners detected by the browser extension
114 when the subsequent versions of the web page 104 are
loaded. The compromise detection module 110 compares the

Oct. 10, 2024

subsequent data for each subsequent version of the web page
104 to the baseline data describing a set of event listeners
detected by the browser extension when a clean version of
the web page 104 is loaded.

[0045] The compromise detection module 110 may moni-
tor the web page 104 by performing the comparison peri-
odically, such as on a regular interval, in association with a
recurring event, or on any other repeated basis. For example,
the compromise detection module 110 may determine that
the web page 104 is not compromised at a first subsequent
time and that the web page 104 is compromised at a second
subsequent time that is after the first subsequent time. The
compromise detection module 110 may then determine that
the web page 104 was compromised between the first
subsequent time and the second subsequent time.

[0046] The compromise detection module 110 may update
the baseline data for the web page 104. For example, the
compromise detection module 110 may receiving an indi-
cation from the web server system that 102 the web page has
changed at the web server system 102. In response, the
compromise detection module 110 may cause the browser
112 to retrieve and load an updated version of the web page
104 and generate updated data describing an updated set of
event listeners.

Threat Response Action

[0047] In some embodiments, when the compromise
detection module 110 determines that the web page 104 is
compromised, the compromise detection module 110 per-
forms a threat response action. For example, the threat
response action may include notifying the web server system
102 that the web page 104 is compromised. The web server
system 102 may perform additional response actions based
on the notification from the compromise detection module
110.

[0048] In some embodiments, the threat response action
may include preventing a client computing device that
requests the web page 104 from receiving the web page 104
from the web server system 102. For example, compromise
detection module 110 may block or instruct another server
system to block requests for the web page 104 directed to the
web server system 102 and/or responses comprising the web
page 104 sent from the client server system 102.

Security Server System

[0049] FIG. 2 illustrates a computer system that includes
a security server system in an example embodiment. System
200 includes one or more web server systems 202-203, a
plurality of client computing devices 232-233, and a security
server system 218.

[0050] The web server system/s 202-203 deliver one or
more web page/s 204-205 over a network 250, such as the
Internet. The web server system/s 202-203 provide the web
page/s 204-205 in response to requests for the web page/s
204-205 from client computing devices, such as client
computing devices 232-233. For example, the requests may
include requests generated by the browsers 234-235 oper-
ating on the client computing devices 232-233 when users of
the client computing devices 232-233 control the browsers
234-235. The users of the client computing devices 232-233
may include human users and/or automated software, which
may include legitimate software and/or malicious software.

US 2024/0340315 Al

[0051] The security server system 218 provides security
services for the web server systeny/s 202-203. The security
server system 218 includes a compromise detection system
208 that detects compromised web pages in a runtime
environment. The compromise detection system 208 is con-
figured to monitor web page/s 204-205 hosted by the web
server system/s 202-203 to when a monitored web page
becomes compromised.

[0052] The security server system 218 may be operated by
a security company on behalf of customers that operate the
web server system/s 202-203. In some embodiments, the
security server system 218 may also perform other security
services. For example, the security server system 218 may
include additional systems that provide an array of security
monitoring and/or security countermeasures to protect web
server systems from cybersecurity attacks. For example, the
security server system 218 may include one or more systems
that detect, prevent, or mitigate attacks performed using
malicious automated software, including automated soft-
ware that act as clients of the web server system/s 202-203.
Such systems may operate on the same computing device/s
and/or different computing device/s of the security server
system 218 as the compromise detection system 208.
[0053] The web server system/s 202-203 may provide the
web pages 204-205 in response to one or more requests
generated by the browser 212 operating in the security
server system 218. For example, the security server system
218 may include a compromise detection system 208 with a
compromise detection module 210 that controls a browser
212 that has a browser extension 214. The browser extension
214 is configured to detect event listeners added when web
pages such as web page/s 204-205 are loaded by the browser
112. In some embodiments, the security server system 218
may use data generated by the compromise detection system
208 to implement additional security countermeasure/s, as
described in greater detail hereinafter.

XHR Whitelist

[0054] In some embodiments, an XHR whitelist is gener-
ated using the set of event listeners detected by the browser
extension 214 when the browser 212 loads a clean version
of'a web page 204. The XHR whitelist includes a set of one
or more server addresses associated with the event listener/s
detected in the clean version of the web page 204.

[0055] In some embodiments, the browser 212 does not
have any additional browser extensions 214 installed or
otherwise loaded when the clean version of the web page
204 is loaded. In this case, the event listeners detected by the
browser extension 214 after loading the clean version of the
web page 204 will not be affected by resources loaded due
to factors outside of the web page 204, including resources
that may be compromised but that are not loaded due to the
web page 204.

[0056] FIG. 3 illustrates an instrumented web page version
at a client computing device comprising XML HttpRequest
(XHR) whitelist code in an example embodiment. For
explanatory purposes, the instrumented web page version
300 is described herein with respect to the security server
system 218, client computing device 232 and web server
system 202 of FIG. 2 without requiring these components to
operate.

[0057] The compromise detection system 208 generates
an XHR whitelist for the web page 204 from baseline data
for the web page 204. The baseline data is generated by the

Oct. 10, 2024

browser extension 214 and describes the event listeners
added when a clean version of the web page 204 is loaded
in the browser 212 of the compromise detection system 208.
The XHR whitelist code 310 in the instrumented web page
version 300 is generated based on the XHR whitelist gen-
erated for the web page 204.

[0058] The XHR whitelist code 310 prevents XHR
requests to server addresses not included in the XHR
whitelist generated for the web page 204. The instrumented
web page version 300 includes the XHR whitelist code 310.
The instrumented web page version 300 also includes web
code 306, which corresponds to the web code 206 of the web
page 204 hosted on the web server system 202. When the
browser 204 loads the instrumented web page version 300,
the browser 234 executes both the web code 306 and the
XHR whitelist code 310. Execution of the XHR whitelist
code prevents, in the browser 234 at the client computing
device 232 during runtime, XHR requests to server
addresses not included in the XHR whitelist for the web
page 204.

[0059] In some embodiments, the XHR whitelist code 310
is provided by the security server system 218. For example,
the security server system 218 may provide XHR whitelist
code 310 for execution on the client computing device 232
by causing insertion of the XHR whitelist code 310 into the
instrumented web page version 300. After the client com-
puting device 232 requests the web page 204 hosted on the
web server system 202, the client computing device 232 may
receive the instrumented web page version 300.

[0060] In some embodiments, the security server system
218 causes insertion of the XHR whitelist code 310 into an
instrumented web page version 300 such that a browser 234
executing on the client computing device 232 executes the
XHR whitelist code 310 when loading the instrumented web
page version 300. For example, the security server system
218 may include a code instrumentation module 216 that
handles providing the XHR whitelist code 310. The code
instrumentation module 216 may be implemented in the
compromise detection system 208 and/or another system of
the security server system 218. In some embodiments, the
security server system 218 also causes insertion of other
security code into the instrumented web page version 300,
such as to monitor, detect, or implement one or more other
security countermeasures.

[0061] In some embodiments, the security server system
218 is arranged in an in-line security server configuration
with respect to the web server system 202. In an in-line
security server configuration, requests from the client com-
puting device 232 are received by the security server system
218 and analyzed before valid requests are forwarded to the
web server system 202, and responses from the web server
system 202 to the client computing device 232 are for-
warded to the client computing device 232 through the
security server system 218. In an in-line security server
configuration, the security server system 218 may add the
XHR whitelist code 310 and/or other security instrumenta-
tion code 308 to the instrumented web page version 300
when the web server system 202 provides the web page 204
to the client computing device 232 in response to a request
for the web page 204 hosted on the web server 202.
[0062] In some embodiments, the security server system
218 is arranged in an out-of-band security server configu-
ration with respect to the web server system 202. In an
out-of-band security server configuration, requests from the

US 2024/0340315 Al

client computing device 232 are transmitted directly to the
web server system 202, and responses from the web server
system 202 are transmitted directly to the client computing
device 232. The web server system 202 may communicate
with the security server system 218 over the network 250 to
perform one or more security functions. For example, the
security server system 218 may provide the XHR whitelist
code 310 or other security instrumentation code 308 to the
web server system 202 so that the web server system 202 can
instrument the web page 204 with the security instrumen-
tation code 308 before responding to the request for the web
page 204 from the client computing device 232.

[0063] Insome embodiments, the XHR whitelist code 310
that is added to the instrumented web page version 300
comprises instructions that, when executed in the browser
234, obtain additional XHR whitelist code and/or XHR
whitelist parameters from a server, such as from another
server system of the security server system 218.

Example Processes

[0064] FIG. 4 is a flow diagram of a process for detecting
compromised web pages in a runtime environment in an
example embodiment. Process 400 may be performed by
one or more computing devices and/or processes thereof.
For example, one or more blocks of process 400 may be
performed by computer system 600. In one embodiment,
one or more blocks of process 400 are performed by a
compromise detection system, such as but not limited to
compromise detection system 108 and compromise detec-
tion system 208. Process 400 will be described with respect
to compromise detection system 108, but is not limited to
performance by compromise detection system 108.

[0065] At block 402, the compromise detection system
108 retrieves and loads a first version of a web page 104 in
a browser 112. For example, the compromise detection
system 108 may cause a browser 112 to request the web page
104 from a web server system 102 that hosts the web page
104, receive the first version of the web page in response to
the request, and load the first version of the web page in the
browser 112. The browser 112 has a browser extension 114
configured to detect event listeners added when a web page
is loaded by the browser 112.

[0066] At block 404, the compromise detection system
108 generates first data describing a first set of event
listeners detected by the browser extension 114 when the
first version of the web page 104 is loaded by the browser
112. The first version of the web page 104 may include web
code, such as JavaScript instructions that, when executed,
add one or more event listeners to one or more elements of
a DOM tree generated when the first version of the web page
104 is loaded by the browser 112. In some embodiments, the
browser extension 114 detects the first set of handlers by
traversing the DOM tree for the first version of the web page
104.

[0067] At block 406, at a second time after the first time,
the compromise detection system 108 retrieves and loads a
second version of the web page 104 in the browser 112. For
example, at the second time, the compromise detection
system 108 may cause the browser 112 to request the web
page 104 from the web server system 102, receive the
second version of the web page 104 in response to the
request, and load the second version of the web page 104 in
the browser 112.

Oct. 10, 2024

[0068] At block 408, the compromise detection system
108 generates second data describing a second set of event
listeners detected by the browser extension 114 when the
second version of the web page 104 is loaded by the browser
112. The second version of the web page 104 may include
web code, such as JavaScript instructions that, when
executed, add one or more event listeners to one or more
elements of a DOM tree generated when the second version
of the web page 104 is loaded by the browser 112. In some
embodiments, the browser extension 114 detects the second
set of handlers by traversing the DOM tree for the second
version of the web page 104.

[0069] At block 410, the compromise detection system
108 compares the first data and the second data. By com-
paring the first data and the second data, the compromise
detection system 108 can detect changes in the event listen-
ers added in the runtime environment 120 between the first
time and the second time.

[0070] At decision block 412, based on comparing the first
data and the second data, the compromise detection system
108 determines whether the web page 104 is compromised.
In some embodiments, the compromise detection system
108 determines whether loading the second version of the
web page 114 causes malicious web code to be loaded in a
runtime environment 120 of the browser 112. When the
compromise detection system 108 determines that the web
page 104 is compromised, processing continues to block
414. Otherwise, processing continues to block 416.

[0071] At block 414, in response to determining that the
web page 104 is compromised, the compromise detection
system 108 performs a threat response action. For example,
the threat response action may include notifying the web
server system 102 that the web page 104 is compromised. In
some embodiments, the threat response action may include
blocking requests for the web page 104 from one or more
client computing devices and/or preventing the client com-
puting device/s from receiving the web page 104.

[0072] At block 416, process 400 returns and/or termi-
nates. For example, process 400 may pass control to a
calling process, generate any appropriate record or notifi-
cation, return after a method or function invocation, process
another web page monitored by the compromise detection
system 108, process the same web page 104 at a later time
to monitor the web page 104, or terminate.

[0073] FIG. 5 is a flow diagram of a process for detecting
compromised web pages in a runtime environment for an
updated web page in an example embodiment. Process 500
may be performed by one or more computing devices and/or
processes thercof. For example, one or more blocks of
process 500 may be performed by a computer system such
as but not limited to computer system 600. In one embodi-
ment, one or more blocks of process 500 are performed by
a compromise detection system, such as but not limited to
compromise detection system 108 and compromise detec-
tion system 208. Process 500 will be described with respect
to compromise detection system 108, but is not limited to
performance by compromise detection system 108.

[0074] At block 502, the compromise detection system
108 retrieves and loads a first version of a web page 104 in
a browser 112. For example, the compromise detection
system 108 may cause a browser 112 to request the web page
104 from a web server system 102 that hosts the web page
104, receive the first version of the web page 104 in response
to the request, and load the first version of the web page 104

US 2024/0340315 Al

in the browser 112. The browser 112 has a browser extension
114 configured to detect event listeners added when a web
page is loaded by the browser 112.

[0075] At block 504, the compromise detection system
108 generates baseline data describing a first set of event
listeners detected by the browser extension 114 when the
first version of the web page 104 is loaded by the browser
112. The baseline data reflects the event listeners added
when a clean version of the web page 104 is loaded in the
browser 112.

[0076] At block 506, the compromise detection system
108 periodically compares subsequent data describing event
listeners detected by the browser extension 114 to the
baseline data. The subsequent data describes event listeners
added when subsequent versions of the web page 104 are
loaded in the browser 112 with the browser extension 114 at
later points in time. For example, subsequent versions of the
web page 104 may be periodically retrieved and loaded in
the browser 112 with the browser extension 114 to provide
runtime environment monitoring of the web page 104. By
periodically comparing the subsequent data with the base-
line data, changes in the event listeners added in the runtime
environment can be detected.

[0077] At block 508, the compromise detection system
108 receives an indication that the web page 104 has
changed at the web server system 102. For example, a new
version of the web page 104 may be published and available
from the web server system 102. In some embodiments, the
indication is in version information included with the web
page 104. Alternatively and/or in addition, the compromise
detection system 108 may receive a notification from the
web server system 102 when a new version of the web page
104 is published or otherwise made available over the
Internet.

[0078] At block 510, the compromise detection system
108 retrieves and loads an updated version of the web page
104 in the browser 112 with the web extension 114. The
updated version of the web page 104 reflects legitimate
changes to the web page 104 at the web server system 102.
[0079] At block 512, the compromise detection system
108 generates updated data describing an updated set of
event listeners detected by the browser extension 114 when
the updated web page 104 is loaded by the browser 112. The
updated data reflects the event listeners added when a clean
version of the updated web page 104 is loaded in the browser
112.

[0080] At block 514, the compromise detection system
108 updates the baseline data with the updated data. Pro-
cessing continues to block 508, where the compromise
detection system 108 periodically compares subsequent data
to the updated baseline data, thereby continuing to monitor
the web page 104.

Implementation Mechanisms-Hardware Overview

[0081] According to one embodiment, the techniques
described herein are implemented by one or more special-
purpose computing devices. The special-purpose computing
devices may be hard-wired to perform one or more tech-
niques described herein, including combinations thereof.
Alternatively and/or in addition, the one or more special-
purpose computing devices may include digital electronic
devices such as one or more application-specific integrated
circuits (ASICs) or field programmable gate arrays (FPGAs)
that are persistently programmed to perform the techniques.

Oct. 10, 2024

Alternatively and/or in addition, the one or more special-
purpose computing devices may include one or more general
purpose hardware processors programmed to perform the
techniques described herein pursuant to program instruc-
tions in firmware, memory, other storage, or a combination.
Such special-purpose computing devices may also combine
custom hard-wired logic, ASICs, or FPGAs with custom
programming to accomplish the techniques. The special-
purpose computing devices may be desktop computer sys-
tems, portable computer systems, handheld devices, net-
working devices and/or any other device that incorporates
hard-wired or program logic to implement the techniques.

[0082] For example, FIG. 6 is a block diagram that illus-
trates a computer system 600 upon which an embodiment of
the invention may be implemented. Computer system 600
includes a bus 602 or other communication mechanism for
communicating information, and one or more hardware
processors 604 coupled with bus 602 for processing infor-
mation, such as basic computer instructions and data. Hard-
ware processor/s 604 may include, for example, one or more
general-purpose microprocessors, graphical processing units
(GPUs), coprocessors, central processing units (CPUs), and/
or other hardware processing units.

[0083] Computer system 600 also includes one or more
units of main memory 606 coupled to bus 602, such as
random access memory (RAM) or other dynamic storage,
for storing information and instructions to be executed by
processor/s 604. Main memory 606 may also be used for
storing temporary variables or other intermediate informa-
tion during execution of instructions to be executed by
processor/s 604. Such instructions, when stored in non-
transitory storage media accessible to processor/s 604, turn
computer system 600 into a special-purpose machine that is
customized to perform the operations specified in the
instructions. In some embodiments, main memory 606 may
include dynamic random-access memory (DRAM) (includ-
ing but not limited to double data rate synchronous dynamic
random-access memory (DDR SDRAM), thyristor random-
access memory (T-RAM), zero-capacitor (Z-RAM™)) and/
or non-volatile random-access memory (NVRAM).

[0084] Computer system 600 may further include one or
more units of read-only memory (ROM) 608 or other static
storage coupled to bus 602 for storing information and
instructions for processor/s 604 that are either always static
or static in normal operation but reprogrammable. For
example, ROM 608 may store firmware for computer sys-
tem 600. ROM 608 may include mask ROM (MROM) or
other hard-wired ROM storing purely static information,
programmable read-only memory (PROM), erasable pro-
grammable read-only memory (EPROM), electrically-eras-
able programmable read-only memory (EEPROM), another
hardware memory chip or cartridge, or any other read-only
memory unit.

[0085] One or more storage devices 610, such as a mag-
netic disk or optical disk, is provided and coupled to bus 602
for storing information and/or instructions. Storage device/s
610 may include non-volatile storage media such as, for
example, read-only memory, optical disks (such as but not
limited to compact discs (CDs), digital video discs (DVDs),
Blu-ray discs (BDs)), magnetic disks, other magnetic media
such as floppy disks and magnetic tape, solid state drives,
flash memory, optical disks, one or more forms of non-
volatile random access-memory (NVRAM), and/or other
non-volatile storage media.

US 2024/0340315 Al

[0086] Computer system 600 may be coupled via bus 602
to one or more input/output (I/0) devices 612. For example,
1/0 device/s 612 may include one or more displays for
displaying information to a computer user, such as a cathode
ray tube (CRT) display, a Liquid Crystal Display (LCD)
display, a Light-Emitting Diode (LED) display, a projector,
and/or any other type of display.

[0087] 1/O device/s 612 may also include one or more
input devices, such as an alphanumeric keyboard and/or any
other key pad device. The one or more input devices may
also include one or more cursor control devices, such as a
mouse, a trackball, a touch input device, or cursor direction
keys for communicating direction information and com-
mand selections to processor 604 and for controlling cursor
movement on another I/O device (e.g. a display). This input
device typically has at degrees of freedom in two or more
axes, (e.g. a first axis x, a second axis y, and optionally one
or more additional axes z . . .), that allows the device to
specify positions in a plane. In some embodiments, the one
or more [/O device/s 612 may include a device with com-
bined I/O functionality, such as a touch-enabled display.
[0088] Other I/O device/s 612 may include a fingerprint
reader, a scanner, an infrared (IR) device, an imaging device
such as a camera or video recording device, a microphone,
a speaker, an ambient light sensor, a pressure sensor, an
accelerometer, a gyroscope, a magnetometer, another
motion sensor, or any other device that can communicate
signals, commands, and/or other information with proces-
sor/s 604 over bus 602.

[0089] Computer system 600 may implement the tech-
niques described herein using customized hard-wired logic,
one or more ASICs or FPGAs, firmware or program logic
which, in combination with the computer system causes or
programs, causes computer system 600 to be a special-
purpose machine. According to one embodiment, the tech-
niques herein are performed by computer system 600 in
response to processor/s 604 executing one or more
sequences of one or more instructions contained in main
memory 606. Such instructions may be read into main
memory 606 from another storage medium, such as one or
more storage device/s 610. Execution of the sequences of
instructions contained in main memory 606 causes proces-
sor/s 604 to perform the process steps described herein. In
alternative embodiments, hard-wired circuitry may be used
in place of or in combination with software instructions.
[0090] Computer system 600 also includes one or more
communication interfaces 618 coupled to bus 602. Commu-
nication interface/s 618 provide two-way data communica-
tion over one or more physical or wireless network links 620
that are connected to a local network 622 and/or a wide area
network (WAN), such as the Internet. For example, com-
munication interface/s 618 may include an integrated ser-
vices digital network (ISDN) card, cable modem, satellite
modem, or a modem to provide a data communication
connection to a corresponding type of telephone line. Alter-
natively and/or in addition, communication interface/s 618
may include one or more of: a local area network (LAN)
device that provides a data communication connection to a
compatible local network 622; a wireless local area network
(WLAN) device that sends and receives wireless signals
(such as electrical signals, electromagnetic signals, optical
signals or other wireless signals representing various types
of information) to a compatible LAN; a wireless wide area
network (WWAN) device that sends and receives such

Oct. 10, 2024

signals over a cellular network access a wide area network
(WAN, such as the Internet 628); and other networking
devices that establish a communication channel between
computer system 600 and one or more LANs 622 and/or
WANS.

[0091] Network link/s 620 typically provides data com-
munication through one or more networks to other data
devices. For example, network link/s 620 may provide a
connection through one or more local area networks 622
(LANs) to one or more host computers 624 or to data
equipment operated by an Internet Service Provider (ISP)
626. ISP 626 in turn provides connectivity to one or more
wide area networks 628, such as the Internet. LAN/s 622 and
WAN/s 628 both use electrical, electromagnetic or optical
signals that carry digital data streams. The signals through
the various networks and the signals on network link/s 620
and through communication interface/s 618 are example
forms of transmission media, or transitory media.

[0092] The term “storage media” as used herein refers to
any non-transitory media that stores data and/or instructions
that cause a machine to operate in a specific fashion. Such
storage media may include volatile and/or non-volatile
media. Storage media is distinct from but may be used in
conjunction with transmission media. Transmission media
participates in transferring information between storage
media. For example, transmission media includes coaxial
cables, copper wire and fiber optics, including traces and/or
other physical electrically conductive components that com-
prise bus 602. Transmission media can also take the form of
acoustic or light waves, such as those generated during
radio-wave and infra-red data communications.

[0093] Various forms of media may be involved in carry-
ing one or more sequences of one or more instructions to
processor 604 for execution. For example, the instructions
may initially be carried on a magnetic disk or solid state
drive of a remote computer. The remote computer can load
the instructions into its main memory 606 and send the
instructions over a telecommunications line using a modem.
A modem local to computer system 600 can receive the data
on the telephone line and use an infra-red transmitter to
convert the data to an infra-red signal. An infra-red detector
can receive the data carried in the infra-red signal and
appropriate circuitry can place the data on bus 602. Bus 602
carries the data to main memory 606, from which processor
604 retrieves and executes the instructions. The instructions
received by main memory 606 may optionally be stored on
storage device 610 either before or after execution by
processor 604.

[0094] Computer system 600 can send messages and
receive data, including program code, through the network
(s), network link 620 and communication interface 618. In
the Internet example, one or more servers 630 might trans-
mit signals corresponding to data or instructions requested
for an application program executed by the computer system
600 through the Internet 628, ISP 626, local network 622
and a communication interface 618. The received signals
may include instructions and/or information for execution
and/or processing by processor/s 604. Processor/s 604 may
execute and/or process the instructions and/or information
upon receiving the signals by accessing main memory 606,
or at a later time by storing them and then accessing them
from storage device/s 610.

US 2024/0340315 Al

OTHER ASPECTS OF DISCLOSURE

[0095] Using the networked computer arrangements,
intermediary computer, or processing methods described
herein, security in client-server data processing may be
significantly increased. Polymorphic and/or other tech-
niques discussed herein effectively reduce automated
attacks. Consequently, one or more various attacks, such as
a denial of service (“DOS”) attack, credential stuffing, fake
account creation, ratings or results manipulation, man-in-
the-browser attacks, reserving rival goods or services, scan-
ning for vulnerabilities, or exploitation of vulnerabilities, are
frustrated because object identifiers or polymorphic hooks
may change over time.

[0096] In the foregoing specification, embodiments of the
invention have been described with reference to numerous
specific details that may vary from implementation to imple-
mentation. The specification and drawings are, accordingly,
to be regarded in an illustrative rather than a restrictive
sense. The sole and exclusive indicator of the scope of the
invention, and what is intended by the applicants to be the
scope of the invention, is the literal and equivalent scope of
the set of claims that issue from this application, in the
specific form in which such claims issue, including any
subsequent correction.

What is claimed is:

1. A non-transitory computer readable medium having
stored thereon instructions for managing servers comprising
executable code which when executed by processors, causes
the processors to:

at a first time, retrieve and load baseline data comprising

a first version of a web page hosted on a web server
system in a browser in a clean environment without
browser extensions and browser modifications;

at a second time after the first time, generate subsequent

data describing a set of event listeners detected by a
browser extension when a second version of the web
page is retrieved and loaded in the browser;
determine whether the web page is compromised by
comparing the baseline data and the subsequent data to
identify a change in the set of event listeners; and

in response to determining that the web page is compro-

mised, perform a threat response action.

2. The medium of claim 1, wherein the executable code
which when executed by the processors, further causes the
processors to:

periodically retrieve and load subsequent versions of the

web page in the browser and retrieving subsequent data
describing event listeners detected by the browser
extension when the subsequent versions of the web
page are loaded; and

compare the subsequent data with baseline data to deter-

mine whether the web page is compromised.

3. The medium of claim 1, wherein the threat response
action comprises notifying the web server system that the
web page is compromised.

4. The medium of claim 1, wherein the threat response
action comprises preventing a client computing device that
requests the web page from receiving the web page from the
web server system.

5. The medium of claim 1, wherein the executable code
which when executed by the processors, further causes the
processors to:

receive an indication from the web server system that the

web page has changed at the web server system;

Oct. 10, 2024

retrieve and load an updated version of the web page in

the browser;

generate updated data describing an updated set of event

listeners detected by the browser extension when the
updated version of the web page is loaded; and
update the baseline data with the updated data.

6. A method implemented by one or more computer
systems, server devices, or client devices, the method com-
prising:

at a first time, retrieving and loading baseline data com-

prising a first version of a web page hosted on a web
server system in a browser in a clean environment
without browser extensions and browser modifications;
at a second time after the first time, generating subsequent
data describing a set of event listeners detected by a
browser extension when a second version of the web
page is retrieved and loaded in the browser;
determining whether the web page is compromised by
comparing the baseline data and the subsequent data to
identify a change in the set of event listeners; and

in response to determining that the web page is compro-

mised, performing a threat response action.

7. The method of claim 6, further comprising:

periodically retrieving and loading subsequent versions of

the web page in the browser and retrieving subsequent
data describing event listeners detected by the browser
extension when the subsequent versions of the web
page are loaded; and

comparing the subsequent data with baseline data to

determine whether the web page is compromised.

8. The method of claim 6, wherein the threat response
action comprises notifying the web server system that the
web page is compromised.

9. The method of claim 6, wherein the threat response
action comprises preventing a client computing device that
requests the web page from receiving the web page from the
web server system.

10. The method of claim 6, further comprising:

receiving an indication from the web server system that

the web page has changed at the web server system;
retrieving and loading an updated version of the web page
in the browser;

generating updated data describing an updated set of

event listeners detected by the browser extension when
the updated version of the web page is loaded; and
updating the baseline data with the updated data.

11. An apparatus, comprising memory comprising pro-
grammed instructions stored in the memory and processors
configured to be capable of executing the programmed
instructions stored in the memory to:

at a first time, retrieve and load baseline data comprising

a first version of a web page hosted on a web server
system in a browser in a clean environment without
browser extensions and browser modifications;

at a second time after the first time, generate subsequent

data describing a set of event listeners detected by a
browser extension when a second version of the web
page is retrieved and loaded in the browser;
determine whether the web page is compromised by
comparing the baseline data and the subsequent data to
identify a change in the set of event listeners; and

in response to determining that the web page is compro-

mised, perform a threat response action.

US 2024/0340315 Al

12. The device as set forth in claim 11, wherein the
processors are further configured to be capable of executing
the programmed instructions stored in the memory to:

periodically retrieve and load subsequent versions of the

web page in the browser and retrieving subsequent data
describing event listeners detected by the browser
extension when the subsequent versions of the web
page are loaded; and

compare the subsequent data with baseline data to deter-

mine whether the web page is compromised.

13. The device as set forth in claim 11, wherein the threat
response action comprises notifying the web server system
that the web page is compromised.

14. The device as set forth in claim 11, wherein the threat
response action comprises preventing a client computing
device that requests the web page from receiving the web
page from the web server system.

15. The device as set forth in claim 11, wherein the
processors are further configured to be capable of executing
the programmed instructions stored in the memory to:

receive an indication from the web server system that the

web page has changed at the web server system;
retrieve and load an updated version of the web page in
the browser;

generate updated data describing an updated set of event

listeners detected by the browser extension when the
updated version of the web page is loaded; and
update the baseline data with the updated data.

16. A system, comprising traffic management apparatuses,
client devices, or server devices, the system comprising
memory comprising programmed instructions stored
thereon and processors configured to be capable of execut-
ing the stored programmed instructions to:

at a first time, retrieve and load a first version of a web

page hosted on a web server system in a browser
comprising a browser extension configured to detect
event listeners added when web pages are loaded by the
browser;

at a first time, retrieve and load baseline data comprising

a first version of a web page hosted on a web server

Oct. 10, 2024

system in a browser in a clean environment without
browser extensions and browser modifications;

at a second time after the first time, generate subsequent

data describing a set of event listeners detected by a
browser extension when a second version of the web
page is retrieved and loaded in the browser;
determine whether the web page is compromised by
comparing the baseline data and the subsequent data to
identify a change in the set of event listeners; and

in response to determining that the web page is compro-

mised, perform a threat response action.

17. The system as set forth in claim 16, wherein the
processors are further configured to be capable of executing
the programmed instructions stored in the memory to:

periodically retrieve and load subsequent versions of the

web page in the browser and retrieving subsequent data
describing event listeners detected by the browser
extension when the subsequent versions of the web
page are loaded; and

compare the subsequent data with baseline data to deter-

mine whether the web page is compromised.

18. The system as set forth in claim 16, wherein the threat
response action comprises notifying the web server system
that the web page is compromised.

19. The system as set forth in claim 16, wherein the threat
response action comprises preventing a client computing
device that requests the web page from receiving the web
page from the web server system.

20. The system as set forth in claim 16, wherein the
processors are further configured to be capable of executing
the programmed instructions stored in the memory to:

receive an indication from the web server system that the

web page has changed at the web server system;
retrieve and load an updated version of the web page in
the browser;

generate updated data describing an updated set of event

listeners detected by the browser extension when the
updated version of the web page is loaded; and
update the baseline data with the updated data.

#* #* #* #* #*

