a2 United States Patent

Livesley et al.

US012112197B2

US 12,112,197 B2
Oct. 8, 2024

(10) Patent No.:
45) Date of Patent:

(54) PROCESSOR WITH HARDWARE PIPELINE

(71) Applicant: Imagination Technologies Limited,
Kings Langley (GB)

(72) Inventors: Michael John Livesley, Hertfordshire
(GB); Ian King, Hertfordshire (GB);
Alistair Goudie, Hertfordshire (GB)

(73) Assignee: Imagination Technologies Limited,
Kings Langley (GB)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 14 days.

(21) Appl. No.: 17/953,821

(22) Filed: Sep. 27, 2022

(65) Prior Publication Data
US 2023/0120307 A1 Apr. 20, 2023

(30) Foreign Application Priority Data

Sep. 30, 2021 (GB) woovoovoveeeeecceeeeeeeeeeee 2113979

(51) Int. CL
GOGF 9/48
GOGF 9/46

(52) US.CL

CPC ... GOGF 9/4881 (2013.01); GOGF 9/462
(2013.01)

(2006.01)
(2006.01)

(58) Field of Classification Search
None
See application file for complete search history.

Write first task descriptor
o first register set

Assert first Kick fla
715

Write second task
72@/ descriptor to second
register set

705 &1

(56) References Cited
U.S. PATENT DOCUMENTS

5,630,149 A 5/1997 Bluhm
5,713,038 A * 1/1998 Motomura GOGF 9/30127
712/228
5,742,822 A * 4/1998 Motomura GOGF 9/462
712/228

(Continued)

FOREIGN PATENT DOCUMENTS

CN 1719375 A 1/2006
CN 102436393 A 5/2012
(Continued)

OTHER PUBLICATIONS

Eisemann et al; “Fast Ray / Axis-Aligned Bounding Box Overlap
Tests using Ray Slopes™; Jan. 8, 2008; Computer Graphics Lab;
2 1pages.

(Continued)

Primary Examiner — Van H Nguyen
(74) Attorney, Agent, or Firm — Potomac Law Group,
PLLC; Vincent M Deluca

(57) ABSTRACT

A processor has a register bank to which software writes
descriptors specifying tasks to be processed by a hardware
pipeline. The register bank includes a plurality of register
sets, each for holding the descriptor of a task. The processor
includes a first selector operable to connect the execution
logic to a selected one of the register sets and thereby enable
the software to write successive ones of said descriptors to
different ones of said register sets. The processor also
includes a second selector operable to connect the hardware
pipeline to a selected one of the register sets. The processor

(Continued)

735 Assert second Kick flag

720
Process first task
Assert first completion 730
flag

Write further task
74@/ descriptar to first register
set

Process second task

Assert second completion 750
flag
765 Re-assert first kick flag

%
@
&

Process further task

¥

US 12,112,197 B2
Page 2

further comprises control circuitry configured to control the
hardware pipeline to begin processing a current task based
on the descriptor in a current one of the register sets while
the software is writing the descriptor of another task to
another of the register sets.

20 Claims, 4 Drawing Sheets

2020/0193685 Al
2020/0380758 Al
2021/0142438 Al
2021/0149679 Al

FOREIGN PATENT DOCUMENTS

6/2020 Saleh et al.
12/2020 Novales et al.

5/2021 Appu et al.

5/2021 Burns et al.

(56) References Cited
U.S. PATENT DOCUMENTS
6,621,925 Bl 9/2003 Ohmori et al.
7,080,234 B2* 7/2006 Saulsbury GOGF 9/30101
712/E9.035
9,182,992 B2* 11/2015 Guerrero GOG6F 9/3867
9,286,069 B2* 3/2016 Airaudcco... GOG6F 9/3858
10,445,295 Bl 10/2019 Han et al.
2002/0032849 Al* 3/2002 Saulsbury ... GOG6F 9/3853
712/228
2006/0007234 Al 1/2006 Hutchins et al.
2013/0046951 Al 2/2013 Jones
2014/0118380 Al 5/2014 Hakura et al.
2015/0109314 Al 4/2015 Redshaw
2015/0363970 Al 12/2015 Spinella-Mamo et al.
2017/0256020 Al 9/2017 Sansottera et al.
2017/0329632 Al 11/2017 Ma et al.
2018/0286010 Al 10/2018 Koker et al.
2019/0205745 Al 7/2019 Sridharan et al.
2019/0221024 Al 7/2019 Howson
2019/0377503 Al 12/2019 Schluessler et al.
2020/0004587 Al 1/2020 Griffin et al.
2020/0104170 Al 4/2020 Else et al.

CN 110659115 A 1/2020
CN 110998649 A 4/2020
CN 111353928 A 6/2020
CN 111527485 A 8/2020
CN 111796574 A 10/2020
CN 113342513 A 9/2021
CN 113377524 A 9/2021
EP 3185128 Al 6/2017
EP 3385850 A1 10/2018
EP 3751507 A1 12/2020
EP 3796263 Al 3/2021
WO 2007002592 A2 1/2007

OTHER PUBLICATIONS

Kay et al; “Ray Tracing Complex Scenes”; ACM SIGGRAPH
Computer Graphics; vol. 20; No. 4; 1986; pp. 269-278.
Mahovsky et al; Fast Ray-Axis Aligned Bounding Box Overlap
Tests with Plucker Coordinates; Journal of Graphics Tool; vol. 9;
No. 1; pp. 35-46.

Majercik et al; “A Ray-Box Intersection Algorithm and Efficient
Dynamic Voxel Rendering”; Journal of Computer Graphics Tech-
niques; vol. 7; No. 3; 2018.

Wald; “Realtime Ray Tracing and Interactive Global Illumination”;
PHD Thesis; 308 pages.

* cited by examiner

US 12,112,197 B2

Sheet 1 of 4

Oct. 8, 2024

U.S. Patent

® o, et

Lo

" x\
e

#rd

. P
4 %,
i v A
Kigs
H A,
e . .
3
- 3 P
“ohed e’ e ;
2 K d * poo
g O, .
¢ -
pd o
bra, 74 5 w 7
SAk (928
rever s o eoress
PN . .
it . Yot 7%
bk 7 oot Yendsen.
] \ T

e

oy, [
b e " lrwid
o Y y

A b *
g

US 12,112,197 B2

Sheet 2 of 4

Oct. 8, 2024

U.S. Patent

‘g
P

P
[
451
e
st
Y ",
~ i
H
H
H
H
H
H
H
H
P 2
m " kg
] H
H
H
H
H
H
H
y)
o
By
o0
SAG
s
%
Y
7
#ooesd
%
” prerrs Sy
IR s] L
RN e p (9
i L prrerene®
[s £y
I p— ert
(22
Z corenr, {
w
o ",
Peov] *,
i ‘\\\\\\\\\\\\\N\\\\\\\\\A‘\\\
£ o
. i
B H
71} H
s “
st H
< H
o rrea H
. :
-
(98] H
& H
i
g
[
oo,
y o
§ o] e
o i Sdit]
P
., whed P}
o P At
I} e
Pt e e
HEy] i o T
sy st s
i [aa]
L

"

4 e
s
b
£ro i

)

Vi

P

N
H
H
3

oy

7

[
)

Lo

ScsesEesen |

g

Py

et

US 12,112,197 B2

Sheet 3 of 4

Oct. 8, 2024

U.S. Patent

o e,

P
7%
Lo

2]

g

Ly

-

{
et

<

o

1
L

3

. &

e
Lt

b
e
5]
.
%
?
P
.
i
?
%
%
5
=5 e
e s
(s Tl Y RSB
Sl g B
W i
oy -
g o -
oo A
5 S P B s
L bl

R —

3

3y
H
N

£
3

oy
4 L

e
Yechuids
7% %
L2

H
24

(A
po
P
%
s
G,
o
“attls
P

i g
Yedbiren;

P

o

i

-

H
‘
‘
7 -
P L
8ty P
7 e e
H 805
“ il
H
‘
‘
‘
‘
‘
H
2
~h
L
%
%
st
s
[
. 3
-
A
i
. - oy
iy I
i P I oy
1 B m D e
= [%e]
(9]
L
rny
7
Lo
werd
i
L5

US 12,112,197 B2

Sheet 4 of 4

Oct. 8, 2024

U.S. Patent

ey

gy

‘.
ey
“chek
(A

%
e

)
pd

‘;\
b 7
kil
PR
PRy

v e

o

:-~=\.\.\ o

P

o 2
s anepe
s, <,
P P
E Y [Y
))
Feoend Fond
! %
4 %
% ,
o
9]
P
5]
5
s
s
preg
Iy
o o
by} P ol t]
P piss . P 7 oo P
==~~~\\\\ bes \\\\\\\\V\\\\ ---~\\\.\\ \UW [==~~~\\\\
Vedrea e tpes
o
Iy
'
G
s 7] P ot
S ! [
4
[
“
fobe,
P
2
%
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H b
‘ 7
: g
ben
'3
P “u Py
] P (547
. s oo
T v
17 AN \
i H iy .
e o5 it
4. e e [
5 e
copeg s
i Al
hod i
P P s P P Z
\\\\\\\V\\ ! erreereedige & \\\\\\\\V\\ o P rrrserreerreerreons oo o Gl
o Chees
5]
i
)
Sre
(3]
]
i
i
=

.-“"‘:i
F 0 s

1]

L,

%
)
P
:
g
4
PRig]
L
L
fren

US 12,112,197 B2

1
PROCESSOR WITH HARDWARE PIPELINE

BACKGROUND

Some processors can be designed with application-spe-
cific hardware that performs certain dedicated operations in
fixed-function circuitry. An example of such a processor is
a GPU (graphics processing unit), which may comprise one
or more dedicated graphics processing pipelines imple-
mented in hardware (note that for the purpose of the present
disclosure, the term “processing” does not necessarily imply
processing in software).

For instance, a tile-based GPU may comprise a dedicated
geometry processing pipeline, and/or a dedicated fragment
processing pipeline. As will be familiar to a person skilled
in the art, geometry processing transforms a 3D model from
3D world space to 2D screen space, which is divided into
tiles in a tile-based system. The 3D model is typically
comprised of primitives such as points, lines, or triangles.
Geometry processing comprises applying a viewpoint trans-
form, and may also comprise vertex shading, and/or culling
and clipping the primitives. It may involve writing a data
structure (the “control stream”) for each tile, which
describes a subset of the primitives from which the GPU can
render the tile. Thus the geometry processing involves
determining which primitives fall in which tile. The frag-
ment processing, also called the rendering stage, takes the
list of primitives falling within a tile, converts each primitive
to fragments (precursors of pixels) in 2D screen space,
determines what colour the fragments should be and how the
fragments contribute to pixels (the elements to be lit up on
screen) within the tile. This may involve applying fragment
shading which performs texturing, lighting, and/or applying
effects such as fog, etc. Textures may be applied to the
fragments using perspective correct texture mapping.

The software running on the execution logic of an appli-
cation-specific processor, such as a GPU, requires a mecha-
nism to be able to delegate tasks to one of its dedicated
hardware pipelines for processing. To enable this the pro-
cessor comprises a register bank to which the software can
write a descriptor of a task. The descriptor describes the task
(i.e. workload) to be performed. To do this, the descriptor
may comprise data to be operated on by the task, or more
usually pointers to the data in memory. And/or, the descrip-
tor may comprise one or more parameters of the task, or
pointers to such parameters in memory. The descriptor may
be constructed by the software according to an instruction
from elsewhere, e.g. a driver running on a host CPU, and
may require that data relating to the task is read from
memory. Alternatively the descriptor may have been con-
structed by a hardware pipeline running a previous task (e.g.
which is how a fragment pipeline may work, running on data
structures previously written by a geometry pipeline).

Once the descriptor is written, the software asserts a ready
flag, also sometimes called a “kick flag”, which triggers the
hardware pipeline to start processing the task based on the
descriptor found in the register bank. The processing of a
task by the hardware pipeline may also be referred to as a
“kick”. Once it has completed the task, the hardware pipe-
line writes a result of the processing to a structure in
memory. For example in the geometry phase, the geometry
pipeline may write an internal parameter format (control
stream and primitive blocks), and in the fragment phase the
fragment pipeline writes the frame buffer (pixel colour and
alpha data) and depth buffer (pixel depth values). The
pipeline may also write a result such as a final status of the
task back to the register bank. Once the results are written,

10

20

25

30

35

40

45

50

55

60

65

2

the pipeline then asserts another flag in an interrupt register.
This causes the software to read the results from the memory
and/or registers. The software can then write a descriptor of
a new task to the register bank, and so forth.

SUMMARY

However, an issue with this is that constructing a task
descriptor and writing to the register bank takes time. There
is therefore a period while the hardware pipeline is idle
between tasks, waiting for the software to write the descrip-
tor of the next task to the register bank before it can start
processing the next task. It would be desirable to mitigate
this effect.

According to one aspect disclosed herein, there is pro-
vided a processor comprising: execution logic comprising
one or more execution units for running software; a hard-
ware pipeline comprising fixed-function hardware; and a
register bank to which the software can write descriptors
specifying tasks to be processed by the hardware pipeline.
The register bank comprises a plurality of register sets, each
for holding the descriptor of one of the tasks at any one time.
The circuit comprises a first selector operable to connect the
execution logic to a selected one of the register sets at any
one time, and thereby enable the software to write succes-
sive ones of said descriptors to different ones of said register
set. The circuit also comprises a second selector operable to
connect the hardware pipeline to a selected one of the
register sets at any one time. The circuit further comprises
control circuitry configured to control the hardware pipeline
to begin processing a current one of said tasks based on the
descriptor in a current one of the register sets while the
software is writing the descriptor of another of said tasks to
another of the register sets, the current register set being that
currently connected to the hardware pipeline by the second
selector.

In an example implementation, each of the register sets
may be arranged to further hold a respective ready flag, and
the processor may further comprise a respective completion
register arranged to hold a respective completion flag asso-
ciated with each of the register sets. The hardware pipeline
may be configured to assert the respective completion flag
once it has completed processing the task specified by the
descriptor in the current register set. The control circuitry
may be configured to connect the hardware pipeline to a next
one of the register sets, holding the descriptor of a next one
of the tasks to be processed, once: a) the completion flag
associated with the current register set has been asserted, and
b) the respective ready flag of the next register set has been
asserted by the software to indicate that the write of the next
task’s descriptor has been done. The next register set may be
said other register set and the next task may be said other
task.

It also takes time for the software to respond when a task
completes—such as servicing the interrupt, fetching inter-
rupt handling code from memory, executing it, reading
registers to obtain status information, etc. It would be
desirable to mitigate this idle time that can exist after
processing a task, as well as before.

Preferably therefore, in embodiments the hardware pipe-
line may be configured to write one or more results of the
processing of the current task to memory and/or the current
register set; and the control circuitry may be configured to
control the hardware pipeline to begin processing the next
task based on the descriptor in the next register set while the
software is reading out and/or post-processing one, some or
all of the results of the current task.

US 12,112,197 B2

3

In embodiments, the control circuitry or hardware pipe-
line may be configured to de-assert the respective ready flag
once the processing of the task specified by the descriptor in
the current register set has begun; and the respective
completion flag, when asserted, signals to the software to
read out corresponding results that have been written back to
the register set by the hardware pipeline, and to overwrite
with a descriptor of a further task.

In embodiments the register sets may consist of a first and
a second register set, and the control logic may be operable
to alternate back and forth between using the first and second
register sets for the current and the next task. Alternatively
there could be more than two register sets. In this case the
software may setup and kick n tasks, as long as sufficient
number of register sets exist to utilise.

The processor may be embodied in hardware on an
integrated circuit. There may be provided a method of
manufacturing, at an integrated circuit manufacturing sys-
tem, a processor. There may be provided an integrated
circuit definition dataset that, when processed in an inte-
grated circuit manufacturing system, configures the system
to manufacture a processor. There may be provided a
non-transitory computer readable storage medium having
stored thereon a computer readable description of a proces-
sor that, when processed in an integrated circuit manufac-
turing system, causes the integrated circuit manufacturing
system to manufacture an integrated circuit embodying a
processor.

There may be provided an integrated circuit manufactur-
ing system comprising: a non-transitory computer readable
storage medium having stored thereon a computer readable
description of the processor; a layout processing system
configured to process the computer readable description so
as to generate a circuit layout description of an integrated
circuit embodying the processor; and an integrated circuit
generation system configured to manufacture the processor
according to the circuit layout description.

There may be provided computer program code for per-
forming any of the methods described herein. There may be
provided non-transitory computer readable storage medium
having stored thereon computer readable instructions that,
when executed at a computer system, cause the computer
system to perform any of the methods described herein.

The above features may be combined as appropriate, as
would be apparent to a skilled person, and may be combined
with any of the aspects of the examples described herein.

This Summary is provided merely to illustrate some of the
concepts disclosed herein and possible implementations
thereof. Not everything recited in the Summary section is
necessarily intended to be limiting on the scope of the
disclosure. Rather, the scope of the present disclosure is
limited only by the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

Examples will now be described in detail with reference
to the accompanying drawings in which:

FIG. 1 is a schematic block diagram of a processor
comprising a hardware pipeline,

FIG. 2 is a timeline schematically illustrating the process-
ing of a series of tasks by a hardware pipeline,

FIG. 3 is a schematic block diagram of a processor
comprising control logic for controlling the processing of
tasks by a hardware pipeline in accordance with embodi-
ments disclosed herein,

10

15

20

25

30

35

40

45

50

55

60

4

FIG. 4 is a timeline schematically illustrating the process-
ing of a task by a hardware pipeline including overlapping
of set-up and processing in accordance with embodiments
disclosed herein,

FIG. 5 is a schematic block diagram of a computer system
in which a graphics processing system is implemented, and

FIG. 6 is a schematic block diagram of an integrated
circuit manufacturing system for generating an integrated
circuit embodying a graphics processing system, and

FIG. 7 is a flow chart of a method of controlling the
processing of tasks by a hardware pipeline in accordance
with embodiments disclosed herein.

The accompanying drawings illustrate various examples.
The skilled person will appreciate that the illustrated ele-
ment boundaries (e.g., boxes, groups of boxes, or other
shapes) in the drawings represent one example of the
boundaries. It may be that in some examples, one element
may be designed as multiple elements or that multiple
elements may be designed as one element. Common refer-
ence numerals are used throughout the figures, where appro-
priate, to indicate similar features.

DETAILED DESCRIPTION

The following description is presented by way of example
to enable a person skilled in the art to make and use the
invention. The present invention is not limited to the
embodiments described herein and various modifications to
the disclosed embodiments will be apparent to those skilled
in the art. Embodiments will now be described by way of
example only.

Conventionally, idle time is introduced into a processor
such as a GPU when software running on execution logic of
the processor is configuring the processor’s hardware for a
new workload, or post-processing an existing workload
(such as by examining dependencies to determine what
should be submitted next, for example).

The present disclosure provides for the addition of mul-
tiple buffered configuration registers, intelligently parti-
tioned and managed by control circuitry (the “kick tracker”)
along with mux/demux circuitry, in order to allow the
above-mentioned idle time to be reduced or even eradicated.
The software (e.g. firmware) can set up and issue a kick on
the hardware which will be held internally pending until it
can be processed by the hardware. Completion of the
workload may be immediately followed by the next pending
workload, with the software able to post-process offline
preserved state from the first workload while the hardware
continues processing the next workload.

FIG. 1 illustrates a conventional application-specific pro-
cessor such as a GPU. The processor comprises execution
logic 102, a register bank 104 and a hardware pipeline 106.
The execution logic 102 comprises one or more execution
units for executing software in the form of machine code
instructions stored on a memory of the processor (not
shown). The software may be referred to as firmware. The
execution logic 102 is operatively coupled to the register
bank 104 in order to allow the software running on the
execution logic 102 to write values to the register bank 104
and read values from the register bank 104. The hardware
pipeline 106 is also operably coupled to the register bank
104, so as to be able to write values to the register bank 104
and read values from the register bank 104. The register
bank 104 includes a “kick pulse” register 108 for holding a
flag referred to as the “kick pulse”, and an interrupt register
110 for holding an interrupt flag.

US 12,112,197 B2

5

In a GPU, the hardware pipeline 106 may be a geometry
processing pipeline or a fragment processing pipeline. Other
examples found in GPUs include 2D processing pipelines,
ray tracing, and compute pipelines. A GPU would typically
have multiple such hardware pipelines, each with a respec-
tive register bank 104. For convenience FIG. 1 shows just
one such pipeline 106 and its respective register bank 104.

By means of the register bank 104, the software running
on the execution unit(s) 102 of the processor can issue a task
(comprising a workload) to a hardware pipeline 106. This is
done by the firmware writing a descriptor of the task to the
register bank 104. The descriptor may comprise values
pertaining to configuration of the hardware pipeline 106,
and/or may provide addresses in external memory for the
pipeline 106 to fetch the workload. E.g. in the case of a GPU,
the values written to the register bank 104 may comprise
things such as the screen resolution in pixels, what anti-
aliasing factor is enabled, and what format to write the frame
buffer output in, etc., as well as pointers to data to be
processed.

In embodiments, a given task, as described by a given
descriptor, may comprise the processing of a given render,
or a given sub-render of a given render. Different tasks
described by different descriptors may comprise the pro-
cessing of different renders or performing different sub-
renders of the same render. For example within a frame there
may be many geometry kicks and many fragment kicks as
the processing of a given frame may involve separate passes,
or renders, that do things like generate depth data used in an
additional kick or do render to texture which is then refer-
enced in another kick. Any given render may process a
render area that differs to the frame area. For example the
render may only relate to a section of the frame, or may not
even necessarily directly correspond to a section of the
frame (e.g. it may relate to a small area to be used as a
texture in another render pass, or a shadow map that may be
much larger in area than the eventually output frame). A
render may itself be composed of multiple sub-renders or
passes. In embodiments there may be a one-to-one or
many-to-one relationship between geometry kicks and frag-
ment kicks, and a many-to-one relationship between frag-
ment kicks and a frame. So for example ten geometry kicks
may generate the data for one fragment kick, and that may
be done twice for a frame. Or another example could be to
run forty-five geometry kicks each with a single fragment
kick after to form the frame.

Once the software has written a descriptor to the register
bank 104, it then writes a “kick pulse” to the kick pulse
register 108. This acts as a flag to the hardware pipeline 106
that the descriptor is ready to be serviced, and triggers the
hardware pipeline 106 to start processing the workload
defined by the descriptor. When thus “kicked”, the pipeline
106 reads the descriptor from the register bank 104 and
performs the task specified by the descriptor. The hardware
pipeline reads the workload and processes it according to the
configuration registers, and then indicates completion to the
firmware via an interrupt, by writing an interrupt flag to the
interrupt register 110.

One or more results of the processing may be written back
to memory, or to the register bank 104, or a combination. An
example of a result written back to the register bank would
be a status of the task at the end of the processing. In the case
where a result is written back to the register banks 104, the
interrupt causes the software running on the execution logic
102 to read the result back from the registers 104. Examples
of a status that may be written back to the register bank 104
include: whether or not the task was successful, or whether

10

15

20

25

30

35

40

45

50

55

60

65

6

it was completed in full or was context switched in the
middle of processing and so ended early. In the latter case,
this is an asynchronous interface between software and
hardware, and so when the software issues a context switch
request (to do something else higher priority and so stop mid
progress work), the hardware may or may not act on it
depending on when it arrives (it could arrive after the
hardware is already naturally completing the kick). This is
one such status register, which tells the software whether the
in-flight context switch request had an effect (which means
the kick was not complete, and may need to be resumed later
if this work is required). Other examples of status that may
be written back to the register bank 104 include things like
checksums which can be used to compare against a refer-
ence to determine if the processing was correct.

From a software perspective, the software might be
receiving work from a number of queues, each of which is
associated with a workload type, e.g. a queue for 3D
geometry processing, one for fragment processing, one for
2D graphics operations, etc. The firmware monitors these
queues for work, and when scheduling one on the GPU
writes the configuration registers and issues the ‘kick’ on the
hardware through a final register write which starts the GPU
working on it.

The period when the software is writing a descriptor to the
register bank 104 may be referred to as the setup. The period
when the hardware pipeline 106 is processing the task
specified by the descriptor, and writing its result(s) to
memory and/or registers 104, may simply be referred to as
the processing period, or the “kick”. Post-processing refers
to the period when the results are there to be read, and the
software is acting to service the result of the task and read
any hardware registers 104 required in doing so. These are
shown illustrated on a timeline in FIG. 2, where the setup is
labelled 202, the hardware processing is labelled 204 and the
post-processing is labelled 206. Once the hardware pipeline
106 has finished writing the result(s) and the software has
finished post-processing the result(s), the software can then
start writing a descriptor of the next task to the register bank
104. It then issues a new kick pulse to the kick register 108,
triggering the hardware pipeline 106 to begin processing the
next task based on the new descriptor, and so forth.

An issue with the conventional approach is that it creates
bubbles in the pipeline 106. During the set-up and post-
processing phases, the pipeline 106 has nothing to do. I.e. at
the beginning of a cycle it is idle while waiting for the
firmware 102 to set up the next descriptor in the registers
104. Also, at the end of the cycle the hardware pipeline 106
may be idle again while waiting for the software 102 to read
out and-post-process the results from the registers 104 (and
then set up the next task). The software needs to wait for the
hardware pipeline 106 to finish writing its results before the
software can start setting up a new descriptor, because those
registers are still in use by the hardware—they are connected
to modules in the hardware pipeline which would produce
volatile behaviour if the contents was modified in the middle
of'akick. In principle if the registers to which descriptors are
written are separate to those which take the results, the
software could start setting up a new descriptor before or
during post-processing 206. However, the software is work-
ing on a queue of work, and with only a single set of result
registers, it is most efficient (e.g. in terms of memory access
patterns) to deal with one element of the queue (the post-
processing) before moving onto the next.

It would be desirable to be able to temporally overlap the
set-up of the next task with the processing of the current
task. Preferably, it would also be desirable to be able to

US 12,112,197 B2

7

efficiently overlap the post-processing of the current task
with the setup of the next task. An example of this aim is
illustrated in FIG. 4.

Referring to FIG. 3, the presently disclosed processor
enables this by having two sets of registers 3094, 3096 in its
register bank 304, each for setting-up a respective task.

The processor of FIG. 3 comprises execution logic 302, a
register bank 304, a hardware pipeline 306, and control
circuitry 305 which may be referred to herein as the “kick
tracker”. It will be appreciated that this is just a convenient
label and any reference herein to the kick tracker could
equally be replaced with the term “control circuitry”.

The processor takes the form of an application-specific
processor in that it has at least one hardware pipeline 306 for
performing a certain type of processing, comprising special-
purpose circuitry including at least some fixed-function
hardware. This could consist purely of fixed-function hard-
ware, or a mix of fixed-function hardware and program-
mable multi-function logic. The fixed function circuitry
could still be configurable (such as to operate in different
modes or with different parameters), but it is not program-
mable in the sense that it does not run sequences of instruc-
tions. Also, note that fixed-function or special-purpose does
not necessarily mean the processor can only be used for the
intended application, but rather that the hardware pipeline
306 comprises dedicated circuitry, configured to perform
certain types of operation that are common in the intended
application. For example the processor may take the form of
a GPU and the hardware pipeline 306 may be a geometry
pipeline, fragment pipeline, 2D processing pipeline, render-
ing pipeline or compute pipeline. The processor may in fact
comprise multiple hardware pipelines of different types such
as these. In this case the disclosed techniques may be applied
independently to each hardware pipeline (a separate instance
of the register bank 304 and kick tracker 305 being used for
each), but for simplicity the following is described in
relation to just one hardware pipeline 306. Note also that the
applicability of the disclosed idea is not limited to a GPU.
Other examples of processors which may include dedicated
hardware pipelines include digital signal processors (DSPs),
cryptoprocessors and Al accelerator processors.

The execution logic 302 comprises one or more execution
units for executing software in the form of machine code
instructions stored in a memory of the processor (not shown
in FIG. 1). In certain implementations the software may be
referred to as firmware in that it is low-level software for
handling core functions of the application-specific proces-
sor, rather than user- or application-level software. However
this is not essential and in general the software could be any
kind of software.

The register bank 304 comprises a first register set 309a
and a second register set 3095. The processor further com-
prises a first selector 311 associated with the register bank
304. The control circuitry (or “kick tracker”) 305 comprises
a management circuit (the “kick manager”) 313 and a
second selector 312. The kick tracker 313 is implemented in
dedicated (fixed-function) hardware circuitry (as are the
selectors 311, 312).

The execution logic 302 is operatively coupled to the
register bank 304 via the first selector 311 in order to allow
the software running on the execution logic 302 to write
values to the register bank 304 and read values from the
register bank 304. The hardware pipeline 306 is operably
coupled to the register bank 304 via the second selector, so
as to be able to write values to the register bank 304 and read
values from the register bank 304. The first selector 311 is
arranged to couple the execution logic 302 to either of the

10

15

20

25

30

35

40

45

50

55

60

65

8

first register set 309q or the second register set 3095 (but not
both) at any one time. Thus the software running on the
execution logic 302 can write to and read from either the first
register set 3094 or the second register set 3095, depending
on which it is currently connected to. The second selector
312 is arranged to connect the hardware pipeline 306 to
either the first register set 309a or the second register set
3095 (but not both) at any one time. Thus the hardware
pipeline 306 can read from and write back to either the first
register set 3094 or the second register set 3095, depending
on which it is currently connected to. Each of the first and
second selectors 311, 312 may also be described as a
multiplexer-demultiplexer; in that the first selector 311
demultiplexes in the direction from execution logic 302 to
register sets 309a, 3096 and multiplexes in the direction
from register sets 309a, 3095 to execution logic 302; and the
second selector 312 multiplexes in the direction from reg-
ister sets 309a, 3095 to hardware pipeline 306 and demul-
tiplexes in the direction from hardware pipeline 306 to
register sets 309a, 3095.

The software running on the execution logic 302 can thus
write a descriptor of a task to either the first or second
registers sets 309a, 3095 at any one time; and the hardware
pipeline 306 can read a descriptor of a task from either the
first or second register set 3094, 3095 at any one time.
Similarly, in embodiments, the hardware pipeline 306 can
write a result of a task back to either the first or second
register set 3094, 3095 at any one time; and the software can
read a result of a task from either the first or second register
set 309a, 3095 at any one time. Alternatively or additionally,
the hardware pipeline 306 may write some or all of its
result(s) to a shared memory (not shown), from where the
software may read back these result(s).

In embodiments the first and second tasks may comprise
processing of different renders, or performing different sub-
renders of the same render.

By controlling the second selector 312 to connect the
hardware pipeline 306 to a different one of the first and
second register sets 3094, 3095 than the execution logic 302
is currently connected to via the first selector, the kick
manager (i.e. management circuitry) 313 can thus control
the hardware pipeline 306 to begin processing a current one
of said tasks based on the descriptor in a current one of the
first and second register sets 3094, 3095 while the software
is writing the descriptor of a next one of said tasks to the
other of said first and second register sets 3095, 309a. Thus
the set-up phase 202 of the next cycle can be overlapped
partially or wholly with the processing stage 204 of the
current cycle, as shown in FIG. 4.

Optionally, the post-processing 206 of the current cycle
can also be overlapped with the processing stage 204 of the
next cycle, as also shown in FIG. 4. However, this overlap-
ping is not essential, for example if the post-processing is
relatively brief compared to set-up.

An example implementation is as follows.

Each of the first and second register sets 309a, 3095
includes its own respective ready register 308a, 3085 for
holding a respective ready flag. Each of these is somewhat
akin to the kick pulse register 108 described in relation to
FIG. 1, but with a separate instance for each the first and
second register sets 308a, 3085. Also, when the software
asserts the ready flag, this does not necessarily immediately
issue a kick to the hardware pipeline 306. Instead this is
arbitrated by the kick tracker 305, as will be discussed in
more detail shortly. The ready registers 3084, 3085 may each
be referred to as a respective kick register of the respective
register set 309a, 309h; and each ready flag may be

US 12,112,197 B2

9

described as a respective kick flag. However, again it will be
appreciated that these is just convenient labels and could
equally be replaced anywhere herein with the “ready” ter-
minology.

In some embodiments there may also be a set of global
registers 303 common to both tasks. Global registers are
used for quantities that do not vary from kick to kick or
frame to frame (in the case of a GPU), e.g. the power/clock
gating setup of the pipeline 306, or whether parts of the
pipeline 306 are powered down or up, or what parts of the
pipeline 306 are statically configured to work together or
not. Another example would be resets, etc.

The register bank 304 also comprises a kick ID register
307, and two completion registers 310a, 3105 corresponding
to the two individual register sets 309a, 3095 respectively.
Apart from these fields the register space of the bank 304
looks exactly the same to the software as it would in the prior
system (so minimal modification to the software is needed).

The kick ID in the kick ID register 307 is writeable by the
software, and controls the first selector 311 to connect either
the first set of registers 309a or second set 3095 to the
execution logic 302. Thus the software can control which
register set 309a, 3095 it is currently connected to. Which-
ever one is currently connected, that is the register set to
which the software can currently set-up a task by writing a
task descriptor to that set. Once it has written a full task
descriptor to a given one of the register sets 309a, 3095, the
software then asserts the respective kick flag in the respec-
tive kick register 308a or 308b. Depending on implemen-
tation, the software may assert the kick flag by writing
directly to the respective kick flag register 308a/b, or by
sending a signal to the kick tracker 305 which causes the
kick manager 313 to assert the kick flag. In other imple-
mentations a write to a kick register 308a/b may assert a kick
flag that is maintained in other hardware, e.g. as a state
change or in an internal register of the kick tracker 305.

As well as this, the system now comprises the kick tracker
circuit 305 on the hardware side, which comprises another
selector 312 which can connect a selected one of the two sets
of registers 309a, 30956 to the pipeline 306. The kick
manager 313 of the kick tracker module 305 monitors the
two kick registers 308a, 3085 to determine when their
respective kick flags are asserted, indicating that their
respective sets of registers 309a, 3096 are ready for pro-
cessing, and controls the multiplexer 312 to select which one
to connect to the pipeline 306 at any given time in order to
keep the pipeline busy. In other words, the kick manager 313
accepts the kick inputs from kick registers 308a, 3095 of the
register bank 304, and keeps track of the order in which the
software issued kicks to be processed. It marks them as
pending until they are submitted for processing on the
hardware, when they are marked active. The kick manager
313 is in control of the hardware kick selection (muxing
registers 309a, 3095 to HW) and also has a kick output
which is connected to the hardware pipeline 306 which
issues the actual kick pulse when it is determined to process
it within the hardware 306.

The kick flag acts as a “kick™ to the kick tracker 305 in the
hardware, saying this kick is pending, and the hardware
maintains it in a register saying it’s pending, at least until
such a time as the kick starts (goes active). In embodiments
the kick flag is de-asserted as soon as the kick starts (i.e. the
start of the hardware processing period 204). Alternatively
however it could instead be de-asserted later, either during
the kick or at the end of the kick (i.e. hardware processing
period 204), as long as it is done before the software needs
to set up a new task descriptor in the same set of registers

10

15

20

25

30

35

40

45

50

55

60

65

10

309a or 3095. Depending on implementation, the kick flag
may be de-asserted automatically by the kick manager 313
or hardware pipeline 106, or by the software. Also, in
embodiments, the software may have the option de-assert
the flag early in order to cancel a task before it starts, or to
cancel the task by writing to another register.

The hardware pipeline 306 may write one or more results
of'the processing of the task to a memory (not shown in FIG.
3 but e.g. see FIG. 5), or the respective register set 309 or
3095, or a combination of memory and the registers.

When the hardware pipeline 306 has finished processing
a current task based on the descriptor from the register set
309a or 3095 to which it is currently connected, the hard-
ware pipeline 306 will assert the respective completion flag
310a or 3104. This signals to the software that it can now
start reading the result(s) of the respective task (which may
be from memory, or the respective register set 309 or 3095,
or a combination of memory and the registers).

The completion flag may be de-asserted by the software,
at the earliest once it has begun the respective post process-
ing 206. It could be de-asserted later, such as once the
software has completed the respective post-processing phase
206, as long as it is de-asserted before the hardware pipeline
106 starts the processing 204 of the next task from the same
set of registers 209a or 3095.

In embodiments the completion registers 310a, 3105 may
each be an interrupt register, in which case each completion
flag is a respective interrupt tflag which raises an interrupt
when asserted. An ‘interrupt’ is a signal which when set
causes the firmware to stop doing what it is currently doing
and read a status register to determine what interrupted it and
why, and then service that. However, the use of interrupts is
not essential and in alternative implementations the software
may simply observe the completion flags and decide for
itself when to service the results of the corresponding tasks.

The kick manager 313 is also arranged to monitor the
completion flags 310a, 3105 (either directly or via another
signal giving the same information). It will select to connect
the hardware pipeline 306 to the next register set, and issue
a kick pulse, once both: a) the completion flag of the current
task is asserted, and b) the kick flag of the next task is
asserted. The kick pulse then triggers the hardware pipeline
306 to service the task descriptor in the next register set, to
which it is now connected.

At least at times, the register set 309a or 3095 connected
to the execution logic 302 for set-up can be different than the
set connected to the pipeline 306 for processing. This allows
the software run on the execution logic 302 to be setting up
a new task in the second set of registers 3095 while the
hardware pipeline 306 is still processing the task from the
first set of registers 309a. In embodiments, the software also
finishes the cycle by reading out the result(s) of the first task
from the first set of registers 309a while the pipeline 306
gets on with processing the data now set up in the second set
3095. This can repeat in an alternating cycle, switching the
roles mutatis mutandis between the first and second register
sets 3094, 3095. Le. after each cycle, what was the next
register set (and task therein) now becomes the new current
one, and what was the current register set (and task) now
becomes the new next.

The software 302 keeps track of the next firmware kick ID
to process (i.e. the order of kicks submitted to hardware, e.g.
so if it has multiple completion interrupts for the same
workload it knows which to service first). In response to the
completion flags in the interrupt registers 310a, 3105, the
software reads back the results of the respective tasks. Apart

US 12,112,197 B2

11

from this the register bank 304 looks exactly the same as the
bank 104 in the conventional system of FIG. 1.

In contrast to that conventional system, the flag in the kick
pulse register 308 no longer directly triggers the pipeline
306 to process a task. Instead, it acts as a signal from the
software to the kick tracker 305 that the data in the respec-
tive set of registers 309 is ready for processing, and it is the
kick tracker 305 that selects the exact time to trigger the
pipeline 306 once the data is ready to be processed.

FIG. 7 is a flow chart illustrating a method in accordance
with embodiments disclosed herein. Steps in the left-hand
column are performed by the software running on the
execution logic 302, and steps in the right-hand column are
performed by the hardware pipeline 306.

At step 705, the software selects to connect itself to the
first register set 3094 by writing the ID (e.g. 0) of the first
register set 309a to the kick ID register 307. This controls
the first selector 311 to connect the execution logic 302 to
the first set of registers 3094. The software then writes a first
task descriptor to the first register set 309a. Following this
at step 715, the software asserts the first kick flag in the first
kick register 308a. The kick manager 313 detects this, and
in response (although perhaps not immediately, if the hard-
ware pipeline 306 is processing a previous kick, as discussed
further below with respect to steps 750, 755 and 760)
controls the second selector 312 to connect the hardware
pipeline 306 to the first register set 309a, and issues a kick
pulse to the hardware pipeline 306. This causes, at step 720,
the hardware pipeline 306 to start processing the first task as
defined by the descriptor found in the first register set 309a.
The kick manager 313 or hardware pipeline 306 may
automatically de-assert the first kick flag once the processing
of the first task has begun.

At step 725, while the hardware pipeline 306 is still
processing the first task, the software selects to connect itself
to the second register set 3096 by writing the ID (e.g. 1) of
the second register set 3095 to the kick ID register 307. This
controls the first selector 311 to connect the execution logic
302 to the second set of registers 3095. The software then
writes a second task descriptor to the second register set
3095. This may be done partially or wholly while the
hardware pipeline 306 is still processing the first task. Then
at step 735, the software asserts the second kick flag in the
second kick register 3085.

At step 730, the hardware pipeline 306 completes the
processing of the first task, and signals this by asserting the
first completion flag in the first completion flag register
310a. Note that step 730 may occur after step 735.

The kick manager 313 detects the assertion of the first
completion flag, as well as the assertion of the second kick
flag by the software. In response, on condition of both, the
kick manager 313 controls the second selector 312 to
connect the hardware pipeline 306 to the second register set
309h, and issues another a kick pulse to the hardware
pipeline 306. This causes, at step 740, the hardware pipeline
306 to start processing the second task as defined by the
descriptor found in the second register set 3095. The kick
manager 313 or hardware pipeline 306 may automatically
de-assert the second kick flag once the processing of the
second task has begun.

The assertion of the first completion flag also signals to
the software that it can start reading the result(s) of the first
task (after which it may proceed to step 745 to write a new
descriptor, as discussed shortly), and perform any post-
processing required. In embodiments, the software may read
and/or post-process some or all of the result(s) of the first
task after the hardware pipeline 306 has started processing

25

30

40

45

50

60

12

the second task. The software may de-assert the first comple-
tion flag once it has begun the post-processing of the
result(s) of the first task.

At step 745, while the hardware pipeline 306 is still
processing the second task, the software selects to connect
itself back to the first register set 3094 by writing the ID (e.g.
0) of the first register set 309a to the kick ID register 307.
This controls the first selector 311 to connect the execution
logic 302 back to the first set of registers 309a. The software
then writes a further task descriptor to the first register set
309q. This may be done partially or wholly while the
hardware pipeline 306 is still processing the second task.
Then at step 755, the software re-asserts the first kick flag in
the first kick register 3085.

At step 750, the hardware pipeline 306 completes the
processing of the second task, and signals this by asserting
the second completion flag in the second completion flag
register 3105. Note that step 750 may occur after step 755.
The kick manager 313 detects the assertion of the second
completion flag, as well as the assertion of the first kick flag
by the software. In response, on condition of both, the kick
manager 313 controls the second selector 312 to connect the
hardware pipeline 306 back to the first register set 309a, and
issues another a kick pulse to the hardware pipeline 306.
This causes, at step 760, the hardware pipeline 306 to start
processing the further task as defined by the new descriptor
now found in the first register set 309a. The kick manager
313 or hardware pipeline 306 may automatically de-assert
the first kick flag again once the processing of the further
task has begun.

The assertion of the second completion flag also signals to
the software that it can start reading the result(s) of the
second task, and perform any post-processing on the
result(s) of the second task. In embodiments, the software
may read and/or post-process some or all of the result(s) of
the second task after the hardware pipeline 306 has started
processing the further task. The software may de-assert the
second completion flag once it has begun the post-process-
ing of the result(s) of the second task.

The method may continue in this manner over a plurality
of cycles, alternating between the hardware 306 processing
the task specified in the first register set 309a in one cycle
while the software is writing the next descriptor to the
second register set 3095, and then in the next cycle the
hardware 306 processing the task specified in the second
register set 30956 while the software is writing the next
descriptor to the first register set 308a. In each cycle,
optionally, the software may also read the result of the task
processed in the previous cycle while the hardware 306 is
processing the current cycle’s task.

Although in the above embodiments the register bank 304
comprises only a pair or register sets 309a, 3095 and the
method alternates between them, this is not limiting. In other
variants the register bank 304 may comprise more than two
(e.g. three or four) register sets 309, each for holding a
respective descriptor. In this case the first selector 311 is
arranged to connect the execution logic 302 to any selected
one of the multiple register sets 309, and the second selector
312 is arranged to connect the hardware pipeline 306 to any
selected one of the multiple register sets 309. This enables
the software to set-up more than two task descriptors while
the hardware pipeline 106 is performing its processing. The
software may cycle through the multiple register sets, writ-
ing a respective task descriptor to each, and the kick
manager 313 may also cycle through the registers, servicing
the descriptors therein out of phase with the writing of the
descriptors to those registers by the software.

US 12,112,197 B2

13

In such embodiments, each of the multiple register sets
may have its own respective kick flag register 308. A
respective completion register 310 may also be associated
with each set. L.e. the completion registers can be provided
as N flags (e.g. N bits), where N is the number of register sets
(e.g. two in FIGS. 3, 309a & 3095). So enough bits are
provided to allow a bit to be set for each register set
associated with the kick tracker. The kick manager 313 may
keep track of the kick flags asserted by the software and
services them in order. The software may keep track of
which register ID is next to write to and sets the kick ID
register 307 accordingly. The software may keep track of the
order in which the completion flags are raised and perform
the post-processing of the respective tasks’ results in that
order.

In the case of more than two register sets 309, the writing
and processing do not necessarily have to be done in an
alternating sequence, whereby the software writes just one
next task descriptor per cycle while the pipeline 306 pro-
cesses the current task (though that is certainly one possi-
bility). In other embodiments, the software could for
example write multiple descriptors during the first kick
being processed by the pipeline 306. Alternatively or addi-
tionally, the hardware may complete a kick in respect of
multiple register sets before the software (e.g. firmware) can
process any of the associated interrupts.

FIG. 5 shows a computer system in which the graphics
processing systems described herein may be implemented.
The computer system comprises a CPU 502, a GPU 504, a
memory 506 and other devices 514, such as a display 516,
speakers 518 and a camera 519. A processing block 510
(comprising the register bank 304, logic 305 and hardware
pipeline 306 of FIG. 3) is implemented on the GPU 504. In
other examples, the processing block 510 may be imple-
mented on the CPU 502. The components of the computer
system can communicate with each other via a communi-
cations bus 520. Software 512 is stored in the memory 506.
This may comprise the software (e.g. firmware) run on the
execution logic 302 as described in relation to FIG. 3.

The processor of FIG. 3 and system of FIG. 5 are shown
as comprising a number of functional blocks. This is sche-
matic only and is not intended to define a strict division
between different logic elements of such entities. Each
functional block may be provided in any suitable manner. It
is to be understood that intermediate values described herein
as being formed by a processor need not be physically
generated by the processor at any point and may merely
represent logical values which conveniently describe the
processing performed by the processor between its input and
output.

The processor described herein may be embodied in
hardware on an integrated circuit. The processor described
herein may be configured to perform any of the methods
described herein. Generally, any of the functions, methods,
techniques or components described above can be imple-
mented in software, firmware, hardware (e.g., fixed logic
circuitry), or any combination thereof. The terms “module,”
“functionality,” “component”, “element”, “unit”, “block”
and “logic” may be used herein to generally represent
software, firmware, hardware, or any combination thereof.
In the case of a software implementation, the module,
functionality, component, element, unit, block or logic rep-
resents program code that performs the specified tasks when
executed on a processor. The algorithms and methods
described herein could be performed by one or more pro-
cessors executing code that causes the processor(s) to per-
form the algorithms/methods. Examples of a computer-

10

15

20

25

30

35

40

45

50

55

60

65

14

readable storage medium include a random-access memory
(RAM), read-only memory (ROM), an optical disc, flash
memory, hard disk memory, and other memory devices that
may use magnetic, optical, and other techniques to store
instructions or other data and that can be accessed by a
machine.

The terms computer program code and computer readable
instructions as used herein refer to any kind of executable
code for processors, including code expressed in a machine
language, an interpreted language or a scripting language.
Executable code includes binary code, machine code, byte-
code, code defining an integrated circuit (such as a hardware
description language or netlist), and code expressed in a
programming language code such as C, Java or OpenCL.
Executable code may be, for example, any kind of software,
firmware, script, module or library which, when suitably
executed, processed, interpreted, compiled, executed at a
virtual machine or other software environment, cause a
processor of the computer system at which the executable
code is supported to perform the tasks specified by the code.

A processor, computer, or computer system may be any
kind of device, machine or dedicated circuit, or collection or
portion thereof, with processing capability such that it can
execute instructions. A processor may be any kind of general
purpose or dedicated processor, such as a CPU, GPU,
System-on-chip, state machine, media processor, an appli-
cation-specific integrated circuit (ASIC), a programmable
logic array, a field-programmable gate array (FPGA), or the
like. A computer or computer system may comprise one or
more processors.

It is also intended to encompass software which defines a
configuration of hardware as described herein, such as HDL
(hardware description language) software, as is used for
designing integrated circuits, or for configuring program-
mable chips, to carry out desired functions. That is, there
may be provided a computer readable storage medium
having encoded thereon computer readable program code in
the form of an integrated circuit definition dataset that when
processed (i.e. run) in an integrated circuit manufacturing
system configures the system to manufacture a processor
configured to perform any of the methods described herein,
or to manufacture a processor comprising any apparatus
described herein. An integrated circuit definition dataset
may be, for example, an integrated circuit description.

Therefore, there may be provided a method of manufac-
turing, at an integrated circuit manufacturing system, a
processor as described herein. Furthermore, there may be
provided an integrated circuit definition dataset that, when
processed in an integrated circuit manufacturing system,
causes the method of manufacturing a processor to be
performed.

An integrated circuit definition dataset may be in the form
of computer code, for example as a netlist, code for config-
uring a programmable chip, as a hardware description lan-
guage defining hardware suitable for manufacture in an
integrated circuit at any level, including as register transfer
level (RTL) code, as high-level circuit representations such
as Verilog or VHDL, and as low-level circuit representations
such as OASIS (RTM) and GDSII. Higher level represen-
tations which logically define hardware suitable for manu-
facture in an integrated circuit (such as RTL) may be
processed at a computer system configured for generating a
manufacturing definition of an integrated circuit in the
context of a software environment comprising definitions of
circuit elements and rules for combining those elements in
order to generate the manufacturing definition of an inte-
grated circuit so defined by the representation. As is typi-

US 12,112,197 B2

15

cally the case with software executing at a computer system
so as to define a machine, one or more intermediate user
steps (e.g. providing commands, variables etc.) may be
required in order for a computer system configured for
generating a manufacturing definition of an integrated cir-
cuit to execute code defining an integrated circuit so as to
generate the manufacturing definition of that integrated
circuit.

An example of processing an integrated circuit definition
dataset at an integrated circuit manufacturing system so as to
configure the system to manufacture a processor will now be
described with respect to FIG. 6.

FIG. 6 shows an example of an integrated circuit (IC)
manufacturing system 602 which is configured to manufac-
ture a processor as described in any of the examples herein.
In particular, the IC manufacturing system 602 comprises a
layout processing system 604 and an integrated circuit
generation system 606. The IC manufacturing system 602 is
configured to receive an IC definition dataset (e.g. defining
a processor as described in any of the examples herein),
process the IC definition dataset, and generate an IC accord-
ing to the IC definition dataset (e.g. which embodies a
processor as described in any of the examples herein). The
processing of the IC definition dataset configures the IC
manufacturing system 602 to manufacture an integrated
circuit embodying a processor as described in any of the
examples herein.

The layout processing system 604 is configured to receive
and process the IC definition dataset to determine a circuit
layout. Methods of determining a circuit layout from an IC
definition dataset are known in the art, and for example may
involve synthesising RTL code to determine a gate level
representation of a circuit to be generated, e.g. in terms of
logical components (e.g. NAND, NOR, AND, OR, MUX
and FLIP-FLOP components). A circuit layout can be deter-
mined from the gate level representation of the circuit by
determining positional information for the logical compo-
nents. This may be done automatically or with user involve-
ment in order to optimise the circuit layout. When the layout
processing system 604 has determined the circuit layout it
may output a circuit layout definition to the IC generation
system 1006. A circuit layout definition may be, for
example, a circuit layout description.

The IC generation system 606 generates an IC according
to the circuit layout definition, as is known in the art. For
example, the IC generation system 606 may implement a
semiconductor device fabrication process to generate the IC,
which may involve a multiple-step sequence of photo litho-
graphic and chemical processing steps during which elec-
tronic circuits are gradually created on a wafer made of
semiconducting material. The circuit layout definition may
be in the form of a mask which can be used in a lithographic
process for generating an IC according to the circuit defi-
nition. Alternatively, the circuit layout definition provided to
the IC generation system 606 may be in the form of
computer-readable code which the IC generation system 606
can use to form a suitable mask for use in generating an IC.

The different processes performed by the IC manufactur-
ing system 602 may be implemented all in one location, e.g.
by one party. Alternatively, the IC manufacturing system
602 may be a distributed system such that some of the
processes may be performed at different locations, and may
be performed by different parties. For example, some of the
stages of: (i) synthesising RTL code representing the IC
definition dataset to form a gate level representation of a
circuit to be generated, (ii) generating a circuit layout based
on the gate level representation, (iii) forming a mask in

10

15

20

25

30

35

40

45

50

55

60

65

16

accordance with the circuit layout, and (iv) fabricating an
integrated circuit using the mask, may be performed in
different locations and/or by different parties.

In other examples, processing of the integrated circuit
definition dataset at an integrated circuit manufacturing
system may configure the system to manufacture a processor
without the IC definition dataset being processed so as to
determine a circuit layout. For instance, an integrated circuit
definition dataset may define the configuration of a recon-
figurable processor, such as an FPGA, and the processing of
that dataset may configure an IC manufacturing system to
generate a reconfigurable processor having that defined
configuration (e.g. by loading configuration data to the
FPGA).

In some embodiments, an integrated circuit manufactur-
ing definition dataset, when processed in an integrated
circuit manufacturing system, may cause an integrated cir-
cuit manufacturing system to generate a device as described
herein. For example, the configuration of an integrated
circuit manufacturing system in the manner described above
with respect to FIG. 6 by an integrated circuit manufacturing
definition dataset may cause a device as described herein to
be manufactured.

In some examples, an integrated circuit definition dataset
could include software which runs on hardware defined at
the dataset or in combination with hardware defined at the
dataset. In the example shown in FIG. 6, the IC generation
system may further be configured by an integrated circuit
definition dataset to, on manufacturing an integrated circuit,
load firmware onto that integrated circuit in accordance with
program code defined at the integrated circuit definition
dataset or otherwise provide program code with the inte-
grated circuit for use with the integrated circuit.

The implementation of concepts set forth in this applica-
tion in devices, apparatus, modules, and/or systems (as well
as in methods implemented herein) may give rise to perfor-
mance improvements when compared with known imple-
mentations. The performance improvements may include
one or more of increased computational performance,
reduced latency, increased throughput, and/or reduced
power consumption. During manufacture of such devices,
apparatus, modules, and systems (e.g. in integrated circuits)
performance improvements can be traded-off against the
physical implementation, thereby improving the method of
manufacture. For example, a performance improvement
may be traded against layout area, thereby matching the
performance of a known implementation but using less
silicon. This may be done, for example, by reusing func-
tional blocks in a serialised fashion or sharing functional
blocks between elements of the devices, apparatus, modules
and/or systems. Conversely, concepts set forth in this appli-
cation that give rise to improvements in the physical imple-
mentation of the devices, apparatus, modules, and systems
(such as reduced silicon area) may be traded for improved
performance. This may be done, for example, by manufac-
turing multiple instances of a module within a predefined
area budget.

The applicant hereby discloses in isolation each indi-
vidual feature described herein and any combination of two
or more such features, to the extent that such features or
combinations are capable of being carried out based on the
present specification as a whole in the light of the common
general knowledge of a person skilled in the art, irrespective
of whether such features or combinations of features solve
any problems disclosed herein. In view of the foregoing

US 12,112,197 B2

17

description it will be evident to a person skilled in the art that
various modifications may be made within the scope of the
invention.

According to one aspect disclosed herein, there is pro-
vided a processor as set out in the Summary section.

In embodiments each task may be to process a different
render or a different pass over a render.

There may be a hierarchy to the way a frame is pro-
cessed—each frame may involve one or more renders, and
each render may be composed of a single render or multiple
sub-renders. So a pass over a frame is a render, and a pass
over a render is a sub-render—although in both cases it is
possible that there is only a single pass.

The render area may be a frame area or a subarea of the
frame area of one or more frames. In embodiments at least
some of the different tasks may comprise different renders
over the frame area or the same subarea area, or overlapping
parts of the frame area. E.g. the different renders may
comprise renders of different ones of said frames, or differ-
ent renders over a same one of said frames or the same
subarea of the same frame, or the different passes may
comprise different passes over the same frame or same
subarea of the same frame. Alternatively the render area
does not necessarily have to bear a direct relationship to the
eventual frame. An example of this would be rendering a
texture to a relatively small area that might only be a few
hundred pixels square, to be mapped onto objects in the
scene (e.g. which might be at an angle within the scene, and
so the rendered texture doesn’t appear ‘as rendered’ in the
final scene, but skewed/transformed); whilst the screen or
frame size may be much larger, e.g. 1920x780 pixels. In
another example, it might be required to render a shadow
map that is actually bigger than the screen size, which is then
subsequently sampled from when producing the frame
image for the screen.

Note also that while in some literature the fragment stage
or pipeline is sometimes called the “rendering” stage or
pipeline, or such like, more generally the term “render” or
“rendering” does not limit to fragment processing and can
refer to an overall graphical processing task the GPU
performs on the data provided to it.

In embodiments, each of the completion registers may be
an interrupt register and the respective completion flag may
be an interrupt flag, so as when asserted to cause the
execution logic to service the respective completed task as
an interrupt.

In embodiments, the next register set is said other register
set, and the next task is said other task.

In embodiments, the register bank may further comprise
a set of global registers for specifying parameters common
to tasks to performed based on descriptors in the register
sets. For example the global registers may include an 1D
register, enabling the software to select which register set to
write to by writing an ID of the selected register set to the
1D register.

In embodiments the processor may take the form of a
GPU. In some such embodiments the hardware pipeline may
comprise a geometry pipeline or a fragment pipeline.

The processor may be sold in a form programmed with the
software, or yet to be programmed.

According to further aspects disclosed herein, there may
be provided a corresponding method of operating the pro-
cessor, and a corresponding computer program configured to
operate the processor.

According to one such aspect, there is provided a method
whereby software writes descriptors to a register bank to
specify tasks to be processed by a hardware pipeline, the

10

15

20

25

30

35

40

45

55

60

18

register bank comprising a plurality of register sets including
at least a first and a second register set, each register set
being for holding one of the descriptors at any one time. The
method comprises: software writing a descriptor specitying
a first task to the first register set; control circuitry connect-
ing the first register set to a hardware pipeline and triggering
the hardware pipeline to process the first task based on the
descriptor in the first register set; and while the hardware
pipeline is connected to the first register set and processing
the first task, the software writing a descriptor of a second
task to the second register set.

In embodiments, in response to the hardware pipeline
completing the processing of the first task, the control
circuitry may connect the hardware pipeline to another of
the register sets instead of the first and trigger the hardware
pipeline to process another task based on the descriptor in
said other register set.

In embodiments, once the hardware pipeline has com-
pleted processing the first task, the hardware pipeline may
write one or more first results to memory and/or the first
register set and assert a first completion flag, the one or more
first results being a result of the processing of the first task.
In response to the first completion flag being asserted and the
software having completed writing said other task to said
other register set, the software may read out and/or post-
processes one, some or all of the one or more first results
while the hardware pipeline is processing the other task.

In embodiments, said other task may be the second task
and said other register set may be the second register set.
Once the descriptor of the first task has been written to the
first register set, the software may assert a ready flag in the
first register set, and once the descriptor of the second task
has been written to the second register set, the software may
assert a ready flag in the second register set. The connecting
of the hardware pipeline to the first register set may be
performed in response to the first ready flag being asserted,
and the connecting of the hardware pipeline to the second
register set may be further conditional on the second ready
flag being asserted. After the processing of the first task has
been triggered, the control logic or hardware pipeline may
de-assert the first ready flag.

After the software has begun reading out or post-process-
ing the first result, the software may de-asserts the first
completion flag. While the hardware pipeline is connected to
the second register set and processing the second task, the
processor may overwrite the descriptor of the first task with
a new descriptor of a further first task, and once overwritten
re-asserts the first ready flag. In response to the re-assertion
of the first ready flag and the hardware pipeline having
completed the processing of the second task, the control
logic may re-connect the hardware pipeline back to the first
register set instead of the second and triggers the hardware
pipeline to process the further first task based on the new
descriptor in the first register set.

In some use cases of any embodiment, the method may
repeat cyclically, alternating back-and-forth between the
first and second register sets.

According to yet further aspects there may be provided a
corresponding method of manufacturing the processor, a
corresponding manufacturing facility arranged to manufac-
ture the processor, and a corresponding circuit design data
set embodied on computer-readable storage.

For instance according to one aspect there may be pro-
vided a non-transitory computer readable storage medium
having stored thereon a computer readable description of the
processor of any embodiment herein which, when processed
in an integrated circuit manufacturing system, causes the

US 12,112,197 B2

19

integrated circuit manufacturing system to: process, using a
layout processing system, the computer readable description
of the processor so as to generate a circuit layout description
of an integrated circuit embodying said processor; and
manufacture, using an integrated circuit generation system,
the processor according to the circuit layout description.

According to another aspect, there may be provided an
integrated circuit manufacturing system comprising: a non-
transitory computer readable storage medium having stored
thereon a computer readable description of the processor of
any embodiment disclosed herein; a layout processing sys-
tem configured to process the computer readable description
s0 as to generate a circuit layout description of an integrated
circuit embodying said processor; and an integrated circuit
generation system configured to manufacture the processor
according to the circuit layout description.

According to another aspect there may be provided a
method of manufacturing, using an integrated circuit manu-
facturing system, a processor of any embodiment disclosed
herein, the method comprising: processing, using a layout
processing system, a computer readable description of said
circuit so as to generate a circuit layout description of an
integrated circuit embodying the processor; and manufac-
turing, using an integrated circuit generation system, the
processor according to the circuit layout description.

According to another aspect there may be provided a
layout processing system configured to determine positional
information for logical components of a circuit derived from
the integrated circuit description so as to generate a circuit
layout description of an integrated circuit embodying the
processor of any embodiment disclosed herein.

Other variants, implementations and/or applications of the
disclosed techniques may become apparent to a person
skilled in the art once given the disclosure herein. The scope
of the present disclosure is not limited by the above-
described embodiments but only by the claims.

What is claimed is:

1. A processor comprising:

execution logic comprising one or more execution units
for running software;

a hardware pipeline comprising fixed-function hardware;
and

a register bank to which the software can write descriptors
specifying tasks to be processed by the hardware pipe-
line; wherein the register bank comprises a plurality of
register sets, each for holding one of the descriptors of
one of the tasks at any one time;

the processor comprises a first selector operable to con-
nect the execution logic to a selected one of the register
sets at any one time, and thereby enable the software to
write successive ones of said descriptors to different
ones of said register sets;

the processor comprises a second selector operable to
connect the hardware pipeline to a selected one of the
register sets at any one time; and

the processor further comprises control circuitry config-
ured to control the hardware pipeline to begin process-
ing a current one of said tasks based on the descriptor
in a current register set of the register sets while the
software is writing the descriptor of another of said
tasks to another of the register sets, the current register
set being that currently connected to the hardware
pipeline by the second selector.

2. The processor of claim 1, wherein:

each of the register sets is arranged to further hold a
respective ready flag, and the processor further com-

25

35

40

45

50

55

65

20

prises a respective completion register arranged to hold
a respective completion flag associated with each of the
register sets;

the hardware pipeline is configured to assert the respec-

tive completion flag once it has completed processing
the task specified by the descriptor in the current
register set; and

the control circuitry is configured to connect the hardware

pipeline to a next one of the register sets, holding the
descriptor of a next one of the tasks to be processed,
once: a) the completion flag associated with the current
register set has been asserted, and b) the respective
ready flag of the next register set has been asserted by
the software to indicate that the write of the next task’s
descriptor has been done.

3. The processor of claim 2, wherein:

the hardware pipeline is configured to write one or more

results of the processing of the current task to memory
and/or the current register set; and

the control circuitry is configured to control the hardware

pipeline to begin processing the next task based on the
descriptor in the next register set while the software is
reading out and/or post-processing one, some or all of
the results of the current task.

4. The processor of claim 3, wherein:

the control circuitry or hardware pipeline is configured to

de-assert the respective ready flag once the processing
of the task specified by the descriptor in the current
register set has begun; and

the respective completion flag, when asserted, signals to

the software to read out corresponding results that have
been written back to the register set by the hardware
pipeline, and to overwrite with a descriptor of a further
task.

5. The processor of claim 4, wherein each of the comple-
tion registers is an interrupt register and the respective
completion flag is an interrupt flag, so as when asserted to
cause the execution logic to service the respective completed
task as an interrupt.

6. The processor of claim 2, wherein the next register set
is said another register set, and the next task is said another
task.

7. The processor of claim 1, wherein the register bank
further comprises a set of global registers for specifying
parameters common to tasks to performed based on descrip-
tors in the register sets.

8. The processor of claim 7, wherein the global registers
include an ID register, enabling the software to select which
register set to write to by writing an ID of the selected
register set to the ID register.

9. The processor of claim 1, wherein the processor takes
the form of a GPU.

10. The processor of claim 9, wherein the hardware
pipeline comprises a geometry pipeline or a fragment pipe-
line.

11. The processor of claim 1, wherein the processor is
programmed with the software.

12. A method of manufacturing a processor, comprising
inputting a computer readable dataset description of a pro-
cessor as claimed in claim 1, to an integrated circuit manu-
facturing system, causing the integrated circuit manufactur-
ing system to manufacture an integrated circuit embodying
the processor.

13. A non-transitory computer readable storage medium
having stored thereon a computer readable description of a
processor as claimed in claim 1 that, when processed in an
integrated circuit manufacturing system, causes the inte-

US 12,112,197 B2

21

grated circuit manufacturing system to manufacture an inte-
grated circuit embodying the processor.

14. An integrated circuit manufacturing system config-
ured to manufacture a processor as claimed in claim 1.

15. A method comprising:

running software on execution logic, the execution logic

comprising one or more execution units;
writing, by the software, descriptors to a register bank to
specify tasks to be processed by a hardware pipeline,
wherein the register bank comprises a plurality of
register sets, each register set being for holding one of
the descriptors of one of the tasks at any one time;
connecting, by a first selector, the execution logic to a
selected one of the register sets at any one time, and
thereby enabling the software to write successive ones
of'said descriptors to different ones of said register sets;

connecting, by a second selector, the hardware pipeline to
a selected one of the register sets at any one time; and

controlling, by control circuitry, the hardware pipeline to
begin processing a current one of said tasks based on
the descriptor in a current register set of the register sets
while the software is writing the descriptor of another
of said tasks to another of the register sets, the current
register set being that currently connected to the hard-
ware pipeline by the second selector.

16. The method of claim 15 wherein, in response to the
hardware pipeline completing the processing of the first
task, the control circuitry connects the hardware pipeline to
another of the register sets instead of the first and triggers the
hardware pipeline to process another task based on the
descriptor in said another register set.

17. The method of claim 16, wherein:

once the hardware pipeline has completed processing the

first task, the hardware pipeline writes one or more first
results to memory and/or the first register set and
asserts a first completion flag, the one or more first
results being a result of the processing of the first task;
and

in response to the first completion flag being asserted and

the software having completed writing said other task
to said another register set, the software reads out
and/or post-processes one, some or all of the one or
more first results while the hardware pipeline is pro-
cessing the other task.

18. The method of claim 17, wherein:

said other task is the second task and said another register

set is the second register set;

once the descriptor of the first task has been written to the

first register set, the software asserts a ready flag in the
first register set, and once the descriptor of the second

15

30

40

45

22

task has been written to the second register set, the
software asserts a ready flag in the second register set;

the connecting of the hardware pipeline to the first register
set is in response to the first ready flag being asserted,
and the connecting of the hardware pipeline to the
second register set is further conditional on the second
ready flag being asserted; and

after the processing of the first task has been triggered, the
control logic or hardware pipeline de-asserts the first
ready flag.

19. The method of claim 18, wherein:

after the software has begun reading out or post-process-
ing the first result, the software de-asserts the first
completion flag;

while the hardware pipeline is connected to the second
register set and processing the second task, the proces-
sor overwrites the descriptor of the first task with a new
descriptor of a further first task, and once overwritten
re-asserts the first ready flag; and

in response to the re-assertion of the first ready flag and
the hardware pipeline having completed the processing
of the second task, the control logic re-connects the
hardware pipeline back to the first register set instead of
the second and triggers the hardware pipeline to pro-
cess the further first task based on the new descriptor in
the first register set.

20. A non-transitory computer readable storage medium

having stored thereon computer readable code, the computer
readable code when executed by a processor performing a
method of:

running software on execution logic, the execution logic
comprising one or more execution units;

writing, by the software, descriptors to a register bank to
specify tasks to be processed by a hardware pipeline,
wherein the register bank comprises a plurality of
register sets, each register set being for holding one of
the descriptors of one of the tasks at any one time;

connecting, by a first selector, the execution logic to a
selected one of the register sets at any one time, and
thereby enabling the software to write successive ones
of said descriptors to different ones of said register sets;

connecting, by a second selector, the hardware pipeline to
a selected one of the register sets at any one time; and

controlling, by control circuitry, the hardware pipeline to
begin processing a current one of said tasks based on
the descriptor in a current register set of the register sets
while the software is writing the descriptor of another
of said tasks to another of the register sets, the current
register set being that currently connected to the hard-
ware pipeline by the second selector.

#* #* #* #* #*

