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PRIVACY PROTECTION FOR SMART
METERING DATA

FIELD

[0001] Embodiments described herein relate to privacy
protection of data collected in smart metering.

BACKGROUND

[0002] Smart metering offers an opportunity to collect and
store information (such as power consumption) from a utility
grid at household level with increased granularity. Although
current policy regulations are restrictive from the point of
view of the collected data reuse, the storage of this data opens
up a possibility for its misuse. If the collected and stored data
become available to parties other than the intended user (in
this case a utility company), such as law enforcement agen-
cies, marketing agencies and malicious individuals, this
could represent a privacy and/or security risk for consumers.
[0003] The term “smart grid” is a recently coined term
which represents a large number of different technologies
aiming at improving existing electrical power distribution
networks. Existing power distribution networks tend to be of
an aging character, and one of the general goals of smart grid
technology is to bring intelligence into networks to improve
efficiency and robustness such that they will be more capable
of responding to new higher consumption demands.

[0004] One way to adjust to new demands is to employ
communication and control networks which will enable a
frequent scanning of the power network state and carrying out
appropriate actions to provide its stability and functionality.
[0005] Power data is being collected with increased granu-
larity. Storage of this detailed data in the smart grid introduces
concerns about consumers’ privacy. These concerns may be
justified by the use of non-intrusive appliance load monitors
(NALM), which analyse power signals to track appliance
usage patterns. Research suggests that information gathered
from the power signals accompanied with other available
information can be used to build profiles of house occupants.
This could represent a serious privacy threat both for indi-
viduals, and for companies and government organisations.
[0006] One way of addressing privacy requirements is to
develop regulatory data privacy frameworks and policies,
based on standard privacy principles such as notice, choice
and consent. Anonymity services can also help protect pri-
vacy. For example, metering data can be aggregated and
encrypted. Alternatively, the data can be separated into low
frequency attributable data (for example, data used for bill-
ing) and high frequency anonymous technical data (for
example, data used for demand-side management).

BRIEF DESCRIPTION OF DRAWINGS

[0007] FIG. 1 is a schematic diagram of a smart meter in
accordance with a described embodiment;

[0008] FIG. 2 is a schematic diagram of a signal conceal-
ment unit of the smart meter illustrated in FIG. 1;

[0009] FIG.3 is a graph of typical output of the smart meter
illustrated in FIG. 1;

[0010] FIG. 4 is a graph of test results for a deterministic
method of concealment; and

[0011] FIG. 5 is a graph of test results for a stochastic
method of concealment, in accordance with an example of
operation of a smart meter of a described embodiment.
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DETAILED DESCRIPTION

[0012] Classical methods of privacy protection assume that
there is a threat outside the system from which the system
should be protected. However, another type of threat comes
from within the system; for example, the utility company
which collects the data could misuse the data, breaching the
privacy of their customers. Methods which address this type
of threat have been introduced recently. For example, an
alternative protection scheme has been proposed in which
energy flow within a home is controlled by running a portion
of a consumption demand off a rechargeable battery, rather
than directly off the grid. That method tends to keep the value
of' the transformed signal constant as long as battery capacity
allows. Generally speaking, in accordance with information
theory, the low variability of the signal corresponds to a low
amount of information exposed by the signal. Thus, an
intruder will obtain only limited amount of information about
the consumer if the transformed signal is observed. That
approach transforms a consumer power signal in such a way
to mask appliance usage patterns; the transformed signal is
then sent to the utility company. Of course, the transformed
signal has to retain certain features of the original signal
which are operationally important to the utility company.
However, the utility company will not obtain details which, if
misused, could represent a privacy threat.

[0013] To protect the privacy of the consumer, embodi-
ments described herein provide an appropriate signal map-
ping which transforms collected power consumption data
into a form which hides information critical for consumers’
privacy. On the other hand, the transformation preserves cer-
tain features of the collected data which are important for
operation of the utility company. The transformed data is
further available to the utility company.

[0014] Embodiments described herein employ a stochastic
method for privacy protection which is based on an informa-
tion theoretic measure for a distance between two probability
distributions, known as divergence. The described method is
a stochastic scheme that maximizes the distance between the
distribution of the collected data and the distribution of the
transformed data while at the same time it preserves impor-
tant features ofthe originally collected signal. From this point
of view, embodiments of the described method can be made
optimal, to give the best possible protection against an
intruder.

[0015] An embodiment provides a method to transform a
smart metering data to protect the privacy by using a stochas-
tic mapping.

[0016] The above described method can involve mixing of
a random signal with the collected smart metering data pro-
ducing the transformed output signal.

[0017] The random signal may be generated accordingto a
distribution which maximizes the distance between the col-
lected smart metering data and the transformed data distribu-
tions.

[0018] The distance between two distributions may be
measured by one of information or measure theory distances
(for example K-divergence).

[0019] A battery may be used to moderate the transformed
signal.
[0020] One aim which may be achieved by certain embodi-

ments described herein is to enable a smooth transition to the
smart grid without compromising privacy.

[0021] To measure the performance of privacy algorithms,
embodiments described herein apply an information theoretic
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measure known as K-divergence. Previously proposed algo-
rithms do not optimize the performance with respect to the
performance measures, so in this disclosure methods are pro-
posed which maximize the distance between the collected
power data and the transformed data (available to the utility
company) with respect to K-divergence. The assumption is
that the larger the distance between collected power data and
transformed data, the better the data protection. Improve-
ments in performance become achievable by the introduction
of randomness into the method.

[0022] FIG. 1 provides a schematic illustration of a smart
meter 10 implementing the embodiment described herein.

[0023] The smart meter 10 is illustrated in situ installed on
a single phase AC power supply, with a live rail and a neutral
rail. An earth rail would no doubt also be present, but is
omitted for clarity.

[0024] The meter 10 comprises a current sensor 12 on the
live rail, and a voltage sensor 14 between the live rail and the
neutral rail. Outputs from the sensors 12, 14 feed into an
analogue to digital converter (ADC) 16 which passes quan-
tised voltage and current data to a processing unit 20. The
processing unit 20 in use produces a consumer power signal
p(t) which could, in a simple case, be passed directly back to
a consumer power supply utility. In the present embodiment,
however, the power signal p(t) is passed to a signal conceal-
ment unit 30.

[0025]
ment unit 30 is to apply a mapping § to p(t) to obtain a

In general terms, the purpose of the signal conceal-

transformed signal p,~9 (p). p,(t) is made available to the
utility company, and the probability distribution of p,(t) is at
a distance as large as possible from the probability distribu-
tion of p(t). This conceals, from the utility company, and from
any third parties, the exact nature of power consumption
behaviour of the metered party.

[0026] The signal concealment unit 30, of a first example of
the embodiment, is illustrated in FIG. 2. The signal conceal-
ment unit 30 comprises a random signal generator 32 and a
signal subtractor 34. The random signal generator 32 is oper-
able to generate a random signal p,(t) whose probability
distribution is chosen in a manner which will be described in
due course.

[0027] The signal p,(t) is mixed with the signal p(t)
obtained from the smart meter 20 and then further processed
by a battery algorithm unit 36 to generate the transformed
signal p,(t). The battery algorithm unit 36 relies on a battery
38to assist in moderating the consumer power signal p(t). The
computation of the p,(t) probability distribution and the
operation of the battery algorithm are explained below.

Computation of Optimal p,(t) Distribution

[0028] The distribution of p,4(t) is obtained by solving a
constrained optimization problem which is described next.
The solution is based on the Markov chain representation of
p(®) and p ().

[0029] First, an objective function and constraints are
defined. The objective function can be expressed in terms of
information divergence function, for example, the K-diver-
gence. For two probability distributions P, (x) and P,(x), the
K-divergence is defined by
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2P (x)

K(PilIPy) = Z P s

[0030] A conditional K-divergence is also defined follow-
ing a definition of the conditional Kullback-Leibler diver-
gence [T. M. Cover and J. A. Thomas, “Elements of informa-
tion theory” John Wiley & Sons, Inc. New York, N.Y., USA,
2006]. For two conditional probability distributions P,(yIx)
and P,(yIx), the conditional K-divergence is defined by

) 2Py )
Kyx(PrlIP) = Z P (x)% P I

x

[0031] The conditional K-divergence is required since
Markov chains are used to model the signals p(t) and p,(t).
[0032] One way to represent a continuous amplitude signal
(such as p(t) and p, (1) by a Markov chain is to quantize or
cluster it into M clusters. Then, a Markov chain representa-
tion of the signal is characterized by its transition probability
matrix T:=[t,], 1=1,j=M, where t,~Pr{ilj} is the conditional
probability of moving from state j to state i. When the signal
is clustered into M clusters, t,; represents the probability of
moving from cluster j to cluster i.

[0033] The transition probability matrices of the Markov
chain representations of p(t) and p,(t) are denoted T and
T,m, respectively. Then, the conditional K-divergence
between the signals p, (1) and p(t) is the objective function of
the optimization problem and is written as

2tpR,ij
K i(TurllT) = E Pour()) > tyriln .
i1j\ L MR : pMRUJ Z MR,ij T+ ey

J

[0034] Here, P, represents the steady-state distribution
of (1) [Cover and Thomas]. The constraints on the opti-
mization problem come from the requirements that the modi-
fied signal p, (t) retain certain characteristics of the consumer
power signal p(t), for example in terms of a mean value
E[p,x(®]=E[p(t)] and variance Var[P,,(O)]=Var[p(t)].
Hence, the optimization problem can be defined as

max K j(TurllT)
Tmr

[0035] subjectto

[0036]  E[pa=(H)]=E[p(1]

[0037]  Var[py(t)]—cVarlp()]

[0038] where ¢ is a positive constant. This optimization

problem can be solved numerically giving the matrix T, “
which maximizes the K-divergence. The signal p, ,z(t) is now
created by the random number (Markov) generator and mixed
with p(t).

[0039] From the above consideration, it can be seen that the
underlying principle embodied in the method is the construc-
tion of a distribution for the signal p, (t) which will produce
a modified signal p,(t) whose distribution is far away from
the distribution of p(t) as measured by the K-divergence.
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Battery Algorithm

[0040] The described battery 38 is a source of a battery
signal pg(t). The battery 34 has the following characteristics:
[0041] 1. The battery has a finite energy capacity E.
(hence, it has to maintain its energy by recharging), i.e.
0=["p,(Odt=E,. for all t,€[0,T] (assuming that for
t,=0, the battery is fully charged).
[0042] 2. The battery has a maximum discharge and
recharge power of P, and Py, i.e. ~Px=pz(1)=P, forall
t.
[0043] As can be seen from FIG. 2, the input to the battery
algorithm unit 36 is the difference between p(t) and p,x(1).
The difference p(t)—p,.(t), denoted by p' (1), is dealt with by
the battery algorithm. The battery 38 recharges or discharges
depending on its current state and on the size and sign of
p'5(0). If p(t)—p, = (D=p'5(t)>0 the battery discharges by p';(1);
otherwise, it recharges by Ip'z(t)!. Here, it is assumed that:
[0044] 1.1p'z(DI=P,=P
[0045] 2. the battery capacity [,"pg(t)dt is in such a state
that it can be discharged/recharged by Ip'z(t)!.
[0046] Then, the output of the battery algorithm unit 36 is
given by p,t)=p,.&(t). If the conditions 1) and 2) are not
satisfied, the battery algorithm unit 36 has to modify the
signal p,,x(t) so it complies to the conditions 1) and 2).
[0047] The described approach introduces a random source
Pasx(t) with the optimal distribution as the input to the battery
algorithm. This situation is illustrated in FIG. 3. It can be seen
that the output p,(t) is a random signal which has the same
mean value as the input signal p(t).
[0048] It will be observed through an example (set out
below) that the K-divergence between p, (t) and p(t) is larger
for the described stochastic method than for previously pro-
posed deterministic approaches.

Other Embodiments

[0049] The described approach can also be used in cases
where different constraint functions (requirements) are
imposed by the system. In such a case, the optimization
problem is modified and the obtained p,,(t) may also be
modified, which will ultimately result in a different p, (t), and
in a different level of measured privacy protection.

[0050] More specifically, the following example considers
a case wherein a system (for example utility or a user) applies
further constraints. There could be different reasons under-
pinning this requirement. For example, the utility may wish
the consumer to exhibit more stable power consumption. That
is, in this case, the utility may wish p,(t) to be closer to
pat=1). According to this alternative embodiment, an
attempt is made to maximise the K-divergence between p,
(t) and p(t) with the given constraints. In one possible alter-
native implementation, it is desired to bound p,(t) so that
Par(t) is close to p, (1).

[0051] In all cases, it will be noted that the success of
obtaining a power consumption p, (t) that is equal to p, (1),
or p,{t-1), depends on the physical battery energy/power
limitations.

[0052] In general, other alternative optimization problems
may be considered, where the signals p,(t) and/or p'4(t) are
further modified.

[0053] Inthe following the performances of previously dis-
closed deterministic methods are compared with a particular
example of the above described embodiment (which uses a
stochastic approach). In this example, the size of the battery is
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P,=Pr=1kW/E =2 kWh. For the input signal p(t), real data
are used, obtained by measuring the overall power consump-
tion (mains) in an apartment for 30 days. The sampling inter-
val is chosen to be T (=30 s.

[0054] FIG. 4 and FIG. 5 show typical input and output
signals for deterministic and stochastic privacy methods,
respectively. The two figures underline an evident difference
between the two approaches; the deterministic approach
tends to smooth the input data, while the stochastic method
gives very noisy output p,,(t). If the measure of the perfor-
mance is the K-divergence, its value for the deterministic
algorithm is 0.25 while for the stochastic approach it is 0.44.
The maximum value for the K-divergence is 0.69=In 2. The
efficiency of the stochastic method is 0.44/0.69=0.64, while
for the deterministic method it is 0.25/0.69=0.36. So, this
particular example provides a performance improvement
over the deterministic approach used as a comparison.
[0055] Similar ratios are obtained when the size of the
battery is varied. For example, when P,,=P,=1.2 kW/E 2.4
kWh, the K-divergence for the stochastic method is 0.4691,
while for the deterministic case 0.2759.

[0056] Whilethe above description suggests the implemen-
tation of a smart meter in accordance with a described
embodiment by way of hardware, the reader will appreciate
that processing of a signal can be implemented in software on
a suitable software configurable signal processing apparatus.
The software may be embodied in the form of a computer
program, delivered as a computer program product. The com-
puter program product may be in the form of a carrier
medium, such as a storage medium, for example an optically
readable disk or a solid state electronic storage device. On the
other hand, the carrier medium may be in the form of a signal,
bearing digital information defining the computer program
product, which may be receivable by the configurable signal
processing apparatus. In one arrangement, the smart meter
may be operable to receive communications on a recognised
communications protocol. Appropriately, the smart meter
may be operable to receive powerline communications on a
powerline communications protocol, and it may be by this
means that a smart meter, of general construction, may
receive a computer program product to enable it to be con-
figured in accordance with a described embodiment.

[0057] As will be understood, the computer program prod-
uct may encompass all of the computer executable instruc-
tions required for a smart meter to perform in accordance with
a described embodiment. Alternatively, a computer program
product could be provided which refers to or uses pre-existing
(and assumed to be pre-existing) software and hardware
facilities of the smart meter, such as applications, call-outs
and routines. The computer program product could then be
described as an “app” or a “patch” depending on whether the
computer program product provides entirely new facilities to
the smart meter or if it enhances existing facilities. The com-
puter program product may be self executing and delivered
without a user’s knowledge, or could be retrieved from a
remote server by user request, either by controls offered on a
control panel of the smart meter itself or by a smart meter user
interface provided by, for example, wireless connection to a
laptop or the like.

[0058] While certain embodiments have been described,
these embodiments have been presented by way of example
only, and are not intended to limit the scope of the inventions.
Indeed, the novel methods and systems described herein may
be embodied in a variety of other forms; furthermore, various
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omissions, substitutions, and changes in the form of the meth-
ods and systems described herein may be made without
departing form the spirit of the inventions. The accompanying
claims and their equivalents are intended to cover such forms
or modifications as would fall within the scope and spirit of
the inventions.

1. A metering device for metering a physical characteristic
and for delivering information to a third party on the basis of
collected metering information, the metering device compris-
ing signal collecting means operable to collect a metering
signal comprising information relating to the metered physi-
cal characteristic, random signal generating means operable
to generate a random signal, signal processing means oper-
able to process the metering signal and the random signal to
produce a modified metering signal, and signal emission
means operable to emit said modified metering signal to said
third party.

2. A metering device in accordance with claim 1 wherein
the random signal generating means is operable to determine
a random signal on the basis of the received metering signal.

3. A metering device in accordance with claim 2 wherein
the random signal generating means is operable to determine
a distribution, in time, of the metering signal, and to deter-
mine a probability distribution for the random signal on the
basis of the distribution of the metering signal.

4. A metering device in accordance with claim 3 wherein
the random signal generating means is operable to determine
the probability distribution of the random signal by maximis-
ing a statistical distance between the probability distribution
of the random signal and the distribution of the metering
signal.

5. A metering device in accordance with claim 4 wherein
the statistical distance is the K-divergence.

6. A metering device in accordance with claim 1 and com-
prising mixing means for mixing the random signal with the
metering signal to produce a mixed signal.

7. A metering device in accordance with claim 6 and further
comprising a rechargeable battery and battery discharge
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means, the battery discharge means being operable to apply a
battery discharge to the mixed signal dependent on the dif-
ference between the mixed signal and the voltage state of the
battery, to produce the modified metering signal.

8. A method of metering a physical characteristic and
delivering information to a third party on the basis of col-
lected metering information, the metering comprising col-
lecting a metering signal comprising information relating to
the metered physical characteristic, generating a random sig-
nal, processing the metering signal and the random signal to
produce a modified metering signal, and emitting said modi-
fied metering signal to said third party.

9. A method in accordance with claim 8 wherein the gen-
erating of the random signal comprises determining a random
signal on the basis of the received metering signal.

10. A method in accordance with claim 9 wherein the
generating of the random signal comprises determining a
distribution, in time, of the metering signal, and determining
aprobability distribution for the random signal on the basis of
the distribution of the metering signal.

11. A method in accordance with claim 10 wherein the
determining of the probability distribution of the random
signal comprises maximising a statistical distance between
the probability distribution of the random signal and the dis-
tribution of the metering signal.

12. A method in accordance with claim 11 wherein the
statistical distance is the K-divergence.

13. A method in accordance with claim 8 and comprising
mixing the random signal with the metering signal to produce
a mixed signal.

14. A method in accordance with claim 13 and further
comprising applying a battery discharge to the mixed signal
dependent on the difference between the mixed signal and the
voltage state of the battery, to produce the modified metering
signal.



