wo 20217201825 A1 |0 000 KOO 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

WO 2021/201825 Al

07 October 2021 (07.10.2021) WIPO | PCT
(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
GOG6F 16/951 (2019.01) G060 30/02 (2012.01) kind of national protection available). AE, AG, AL, AM,
(21) International Application Number: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
PCT/US2020/025757 CA, CH, CL, CN, CO, CR, CU, CZ,DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
(22) International Filing Date: HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
30 March 2020 (30.03.2020) KR, KW,KZ,LA,LC,LK,LR,LS,LU,LY, MA, MD, ME,
- . MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
(25) Filing Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
(26) Publication Language: English SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN, TR,
.) TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW.

(71) Applicant: GOOGLE LLC [US/US]; 1600 Amphitheatre
Parkway, Mountain View, California 94043 (US). (84) Designated States (unless otherwise indicated, for every
)) kind of regional protection available): ARIPO (BW, GH,

(72) Inventors: BENDERSKY, Michael;, 1600 Amphitheatre

(74)

Parkway, Mountain View, California 94043 (US). GAJ-
DA, Przemyslaw, 1600 Amphitheatre Parkway, Mountain
View, California 94043 (US). NOVIKOV, Sergey; 1600
Amphitheatre Parkway, Mountain View, California 94043
(US). NAJORK, Marc Alexander; 1600 Amphitheatre
Parkway, Mountain View, California 94043 (US). HAN,
Shuguang; 1600 Amphitheatre Parkway, Mountain View,
California 94043 (US).

Agent: GORDON, Ronald L. et al.; BRAKE HUGHES
BELLERMANN LLP, P.O. Box 1077, Middletown, Mary-

GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

of inventorship (Rule 4.17(iv))

Published:

land 21769 (US).

with international search report (Art. 21(3))

(54) Title: ADVERSARIAL BANDITS POLICY FOR CRAWLING HIGHLY DYNAMIC CONTENT

Computer 120
Network Interface 122

Processing Units 124

(57) Abstract: Techniques of generating recrawl policies for commercial

Memory 126

Entity Manager 130

Prediction Manager 140

w Metadata Training Manager |]

Fntity 122/NY
Frtity 1227V
1

Quantity Data 133(1) |
’ Click Rate Data 134(1)

Impression Rate Data
13511

Price Change Liklihood
Data 138(1

History Training Manager

Metadata 144

History Data 146

Recrawl Manager 150

Recrawl Strategy Data 15:

| Recrawl Strategy 1D Data 153 :

152
153
154

w Recrawl Constraint Data 1

Recrawl Rate Data 155

‘ Updated Price Data 156

i Recrawl| Policy Manager 160

Recrawl! Policy Data 162
i Pél\cy Weighi Ija{ta 1§§

Policy Probability Data 164

Reward Data 165

FIG.

offer pages include generating a multiple strategy approach using a number
of different strategies. In some implementations, each strategy is an arm of a
K-armed adversarial bandits algorithm with reinforcement learning. More-
over, in some implementations, the multiple strategy approach also uses a
machine learning algorithm to estimate parameters such as a click rate, im-
pression rate,
assumed known in the conventional approaches.

and likelihood of price change, i.e., change rate, which was

WO 2021/201825 PCT/US2020/025757

ADVERSARIAL BANDITS POLICY FOR CRAWLING
HIGHLY DYNAMIC CONTENT

TECHNICAL FIELD
[0001] This description relates to generating web recrawling policies for highly
dynamic content, such as webpages.
BACKGROUND
[0002] Web crawlers include internet bots configured to systematically browse the

Internet. A web crawler begins with an initial, or seed, list of URLSs to visit. From there, the
web crawler identifies webpages to which each URL links and stores the identified webpages
in a repository. In order to identify relevant webpages, a web crawler visits the webpages. But
some webpages change over time. To ensure that content is fresh, e.g., accurately reflects

changes, the web crawler needs to recrawl, or revisit, a webpage periodically.

SUMMARY

[0003] Implementations provide a refresh strategy that is configured to deliver accurate
information to a user while minimizing use of computer resources. For example, web page
content, such as an offer page, presents a product to a user at a price within the browser. The
dynamic nature of presenting offers on the Internet means that a repository of data obtained
from the offer pages may need to be updated frequently. Such updates occur using a web
crawler — more specifically, a recrawl operation by the web crawler on a repository of URLs.
Each recrawl operation uses a certain amount of network resources and accordingly a recrawl
strategy that works within a limited amount of network resources is desired. While individual
recrawl strategies over a given number of offers have been used, the efficacy of these strategies
is not always optimal. In contrast, disclosed techniques use a combination of multiple recrawl
strategies to optimize factual freshness within network resource constraints. Disclosed
implementations determine a policy for selecting a recrawl strategy at any given instant in time
using a K-armed adversarial bandit algorithm, where each arm is a different recrawl strategy.
The K-armed adversarial bandit determines a distribution of importance weights assigned to
each recrawl strategy. Moreover, each recrawl strategy corresponds to a respective recrawl
rate, which is determined from parameter values such as click rate, impression rate, and change

rate. Conventional recrawl strategies assume particular, static values of these parameters,

WO 2021/201825 PCT/US2020/025757

although such parameter values are not in reality static. In contrast, disclosed implementations
include a process for estimating these parameter values using both history data and metadata,
alone and in combination, in a deep learning algorithm. Using this K-armed adversarial
bandits process along with a deep learning parameter value estimation, improved factual
freshness results are attained with minimal computing resources.

[0004] In one general aspect, a method can include receiving, from a repository, entity
data representing a plurality of entities, each of the plurality of entities having a respective
value of a quantity, the values of the quantities being accurate at a previous time. The method
can also include, for each of the plurality of entities, generating a respective value for each of a
plurality of parameters at a current time, the parameters including at least one of an access rate
of that entity from the repository and a likelihood of a change in the value of the quantity of
that entity. The method can further include selecting a refresh strategy of a plurality of refresh
strategies for updating the value of the quantity of each of the plurality of entities according to
a refresh policy. The method can further include generating a respective refresh rate for each
of the plurality of entities according to the selected refresh strategy, the refresh rate for an
entity of the plurality of entities being based on the values of the plurality of parameters at a
sequence of times prior to the current time. The method can further include performing a
refresh operation on the repository based on the respective refresh rates for the plurality of
entities, the refresh operation being configured to obtain the value of the quantity of an entity at
the current time. The method can further include updating the refresh policy based on a
difference between the value of the quantity at the previous time and the value of the quantity
at the current time of each of the plurality of entities.

[0005] In another general aspect, a computer program product comprises a non-
transitory storage medium, the computer program product including code that, when executed
by processing circuitry of a computing device, causes the processing circuitry to perform a
method. The method can include receiving, from a repository, entity data representing a
plurality of entities, each of the plurality of entities having a respective value of a quantity, the
values of the quantities being accurate at a previous time. The method can also include, for
each of the plurality of entities, generating a respective value for each of a plurality of
parameters at a current time, the parameters including at least one of an access rate of that
entity from the repository and a likelihood of a change in the value of the quantity of that
entity. The method can further include selecting a refresh strategy of a plurality of refresh
strategies for updating the value of the quantity of each of the plurality of entities according to

a refresh policy. The method can further include generating a respective refresh rate for each

WO 2021/201825 PCT/US2020/025757

of the plurality of entities according to the selected refresh strategy, the refresh rate for an
entity of the plurality of entities being based on the values of the plurality of parameters at a
sequence of times prior to the current time. The method can further include performing a
refresh operation on the repository based on the respective refresh rates for the plurality of
entities, the refresh operation being configured to obtain the value of the quantity of an entity at
the current time. The method can further include updating the refresh policy based on a
difference between the value of the quantity at the previous time and the value of the quantity
at the current time of each of the plurality of entities.

[0006] In another general aspect, an electronic apparatus configured to generate a
refresh policy comprises memory and controlling circuitry coupled to the memory. The
controlling circuitry can be configured to receive, from a repository, entity data representing a
plurality of entities, each of the plurality of entities having a respective value of a quantity, the
values of the quantities being accurate at a previous time. The controlling circuitry can also be
configured to, for each of the plurality of entities, generate a respective value for each of a
plurality of parameters at a current time, the parameters including at least one of an access rate
of that entity from the repository and a likelihood of a change in the value of the quantity of
that entity. The controlling circuitry can also be configured to select a refresh strategy of a
plurality of refresh strategies for updating the value of the quantity of each of the plurality of
entities according to a refresh policy. The controlling circuitry can also be configured to
generate a respective refresh rate for each of the plurality of entities according to the selected
refresh strategy, the refresh rate for an entity of the plurality of entities being based on the
values of the plurality of parameters at a sequence of times prior to the current time. The
controlling circuitry can also be configured to perform a refresh operation on the repository
based on the respective refresh rates for the plurality of entities, the refresh operation being
configured to obtain the value of the quantity of an entity at the current time. The controlling
circuitry can also be configured to update the refresh policy based on a difference between the
value of the quantity at the previous time and the value of the quantity at the current time of
each of the plurality of entities.

[0007] The details of one or more implementations are set forth in the accompanying
drawings and the description below. Other features will be apparent from the description and

drawings, and from the claims.

WO 2021/201825 PCT/US2020/025757

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] FIGs. 1A and 1B are diagrams that illustrate an example electronic environment
in which improved techniques described herein may be implemented.

[0009] FIG. 2 is a flow chart that illustrates an example method of determining a web
recrawl policy, according to disclosed implementations.

[0010] FIG. 3 is a diagram of an example method of generation of a web recrawl
policy, according to disclosed implementations.

[0011] FIG. 4 is a diagram of an example dataset generation process for daily
predictions, in accordance with disclosed implementations.

[0012] FIG. 5 illustrates an example of a computer device and a mobile computer
device that can be used to implement the described techniques.

[0013] FIG. 6 illustrates an example of a distributed computer device that can be used

to implement the described techniques.

DETAILED DESCRIPTION

[0014] Web crawlers provide content of webpages to a search system, e.g., for indexing
and retrieval. Because web crawlers can use significant network resources, web crawlers often
employ one or more strategies to determine what webpages to visit. Some example scheduling
strategies include breadth-first, backlink count, and PageRank computations.

[0015] Because some webpages are dynamic and constantly changing, some web
crawlers perform recrawling of websites to ensure that the content of those websites in the
search system is fresh. That is, content is fresh when the content of a webpage delivered to a
user’s web browser from the search system is identical to the content of that webpage stored on
the server hosting the webpage. A conventional approach to generating policies for recrawling
websites includes recrawling websites at a uniform rate, i.e., each page recrawled with equal
probability.

[0016] A technical problem in generating policies for recrawling websites is that the
above-described conventional approach performs poorly when the recrawling is performed for
highly dynamic content. A domain may have highly dynamic content when the domain
includes webpages that change (e.g., are added/deleted) frequently and/or has webpages where
factual information on the page changes frequently. Examples of such highly dynamic content
include commercial web content, news outlets, weather forecasts, movie reviews, etc.
Commercial domains may include web content having quantity data, such as an offer to a user

to purchase a product at a price. Such content may also be referred to as an offer page. But not

WO 2021/201825 PCT/US2020/025757

all content of a domain changes at the same rate. For example, in some cases, the price of a
first offer on a first webpage in the domain varies rapidly over time, while the price of a second
offer on a second webpage in the domain varies slowly. Moreover, the rate of change of the
first webpage may not be constant, e.g., with prices changing more rapidly close to a holiday or
some other event and less rapidly after the holiday or event. The goal of a web crawler is to
optimally synchronize the factual content (e.g., quantity information including price
information) stored in the search system’s repository with the content stored at the domain. The
content stored in the search system is referred to as stale if that content does not match the
content stored at the domain.

[0017] Refreshing dynamic factual content, such as offer pages, at a uniform rate does
not optimally use network resources. To ensure content is fresh, the web crawler would crawl
frequently, but frequent crawl requests consume unnecessary network resources if the content
has not changed and can also overwhelm the domain. Crawling less often ensures the domain
is not overwhelmed and conserves network resources but results in more stale content. Thus,
recrawl scheduling is often a balance between network resources (frequency of crawling) and
staleness. One conventional recrawl scheduling strategy includes a page selection heuristic
which chooses webpages based on change rates. Another conventional strategy, known as
LambdaCrawl, seeks optimal recrawl rates under resource constraints.

[0018] Some web crawlers focus on a single strategy. Such single strategy crawlers,
however, usually crawl one particular type of webpage, and accordingly may fail to effectively
crawl other page types.

[0019] In accordance with the implementations described herein, a technical solution to
the above-described technical problem includes generating an adaptive multiple strategy
approach using a number of different recrawl strategies. In some implementations, each
strategy is an arm of a K-armed adversarial bandit algorithm with reinforcement learning. In
some implementations, the multiple strategy approach may use machine learning to estimate
parameters such as a click rate, impression rate, and likelihood of price change, i.e., change
rate. These parameters are assumed to be known in the conventional approaches. The problem
with such conventional approaches is that the knowledge of the change rate beforehand, for
example, is usually unavailable in practice. To obtain such information, conventional methods
developed various estimation approaches. A simple one involves estimating the change rate
from the past history. However, such an approach suffers from the cold start issue and is
subject to the feedback loop. These drawbacks motivated other approaches to incorporate

predictive features that are universally available or relatively static, e.g. page content, when

WO 2021/201825 PCT/US2020/025757

predicting change rate. In contrast, disclosed implementations may include estimating the
change rate, click rate, and impression rate using not only history data but also metadata, both
separately and in combination.

[0020] A technical advantage of disclosed implementations is that such a multiple
strategy approach achieves higher freshness than any single strategy and is robust under tight
resource constraints (e.g., computer processing cycles, network bandwidth, etc.). Also, the
parameter estimation substantially affects the effectiveness of a recrawl strategy. Accordingly,
disclosed implementations use a predictive model that takes both the past history and metadata
information into account. The disclosed predictive model improves upon a history-based
model. The K-armed adversarial bandits approach, used by disclosed implementations,
combines multiple recrawl strategies under a unified policy with provable freshness
guarantees. Disclosed implementations outperform single strategies, including a resource-
optimized strategy such as LambdaCrawl (which is contingent on the constancy of content
change rate), even when such a resource-optimized strategy is not included as a candidate
strategy.

[0021] Generally, the above-described technical solution can be configured to update a
refresh policy, of which a recrawl policy is a special case. Accordingly, the technical solution
is not limited to recrawling operations. Nevertheless, unless explicitly stated, the
implementations herein are directed to updating recrawl policies.

[0022] FIG. 1A and 1B are diagrams that illustrate an example electronic environment
100 in which the above-described technical solution may be implemented. The computer 120
is configured to generate and execute policies for recrawling websites. Put another way, the
computer 120 may be referred to as a production crawler.

[0023] The computer 120 includes a network interface 122, one or more processing
units 124, and memory 126. The network interface 122 includes, for example, Ethernet
adaptors, Token Ring adaptors, and the like, for converting electronic and/or optical signals
received from the network 150 to electronic form for use by the computer 120. The set of
processing units 124 include one or more processing chips and/or assemblies. The memory
126 includes both volatile memory (e.g., RAM) and non-volatile memory, such as one or more
ROMs, disk drives, solid state drives, and the like. The set of processing units 124 and the
memory 126 together form control circuitry, which is configured and arranged to carry out
various methods and functions as described herein.

[0024] In some implementations, one or more of the components of the computer 120

can be, or can include processors (e.g., processing units 124) configured to process instructions

WO 2021/201825 PCT/US2020/025757

stored in the memory 126. Examples of such instructions as depicted in FIG. 1 include an entity
manager 130, a prediction manager 140, a recrawl manager 150, and recrawl policy manager

160. Further, as illustrated in FIG. 1A, the memory 126 is configured to store various data, which
is described with respect to the respective managers that use such data. Note that, in some
implementations, an entity page corresponds to an offer page that includes an offer to sell a
product.

[0025] FIG. 1B illustrates an example electronic environment 100 in which the improved
techniques may be performed. Electronic environment 100 includes a repository of crawling
logs 102, a repository of entity page signals 104, an Internet 106 (or, alternatively, the World
Wide Web), a repository of content 108, and the computer 120 of FIG. 1A.

[0026] The repository of crawling logs 102 is configured to store crawl history data. The
crawl history data is used, in some implementations, by the prediction manager 140 and, more
specifically, training managers 142 configured to train models, to estimate parameters for crawl
rate computations.

[0027] The repository of entity page signals 104 is configured to store metadata related
to content included in the entity pages. Example metadata stored in entity page signals 104
include brand identifier, merchant identifier, country code, and the like. Further details about
metadata are described with regard to Table 3. In some implementations, the metadata is also
used by the prediction manager 140 to train the models used to estimate parameters for crawl
rate computations.

[0028] The repository of content data 108 is configured to store content extracted from
the entity web pages as well as the URLs pointing to the entity web pages. The content data 108
can include factual data for an entity. Factual data can include, for example, a price or availability
of a product offered for sale, or product ratings The factual data may also be referred to as a
quantity. It is understood that each quantity (e.g., fact) has a value. Thus, for example, a price is
understood to have a value representing the price and availability has a value representing the
availability. Accordingly, as used herein, quantity can refer to the label (e.g., price, availability)
or the value for the label, as appropriate. The freshness of the factual data is indicated by
agreement between the values of the quantities (e.g., prices of offers) stored in the repository of
content data 108 and the values of the quantities found on the domain (not shown), e.g., obtained
via the Internet 106. A value stored in the content data 108 for an entity is considered fresh if it
matches the value of the same quantity for the entity on the domain. Otherwise a value stored in

the content data 108 for an entity is stale.

WO 2021/201825 PCT/US2020/025757

[0029] Implementations are not limited to the exact configuration illustrated in FIG. 1B.
For example, any of crawling logs 102, entity page signals 104, and/or content data 108 may be
included as part of computer 120, e.g., stored in memory 126. As another example, any of
crawling logs 102, entity page signals 104, and/or content data 108 may be remote from but
accessible to computer 120. In some implementations, one or more of crawling logs 102, entity
page signals 104, content data 108 and computer 120 may be part of a distributed computing
system.

[0030] Returning to FIG. 1A, the entity manager 130 is configured to receive entity
data 132 representing entities 132(1), 132(2),..., 132(N). In some implementations, the entity
manager 130 receives the entity data 132 over the network interface 122, i.e., over a network
(such as Internet 106) from a remote computer (not pictured). In some implementations, the
entity manager 130 receives the entity data 132 from local storage (e.g., a disk drive, flash
drive, SSD, or the like).

[0031] The entities (e.g., offers) 132(1), 132(2),..., 132(N) represented by the entity
data 132 are, in some implementations, each offers to purchase a product, for example. Such
offers may be found within a search tool in a browser, e.g., Google Shopping. Such entities
may also be referred to as product offers or just offers. Other examples of entities include
[event pages (e.g., a time or location of an event that is subject to change) or user-generated
reviews of an event. Each of the entities 132(1), 132(2),..., 132(N) (e.g., entities 132(1))
includes respective quantity data 133(1) representing a quantity at a previous time. Each
quantity at a previous time (e.g., price) may need to be updated with the latest information
from the Internet 106 via URLs from the content data 108. Entity data 132 also includes, for
each entity (e.g., entity 132(1)) values of parameters: click rate u represented by click rate data
134(1), impression rate v represented by impression rate data 135(1), and a likelihood A of a
price change, represented by quantity (e.g., price) change likelihood data 136(1). Click rate u
represents the number of times a user selects the entity from a search result per time interval.
The impression rate v indicates the number of times an entity is displayed in a search result per
time interval.

[0032] For ease in discussing FIG. 1A, the remaining discussion of FIG. 1A will use an
example where the entity data 132 represents offer data, i.e., an offer to sell a product, and the
quantity data represents a price of an offer. The entities 132(1),..., 132(N) are therefore
referred to as offers and the quantity data 133 as price data. However, implementations are not

limited to offers and price data.

WO 2021/201825 PCT/US2020/025757

[0033] The prediction manager 140 is configured to generate predictions of the values
of the click rate, impression rate, and change rate based on metadata 144 and history data 146.
Specifically, the price change prediction is modeled as a classification task, for which a goal is
to predict whether an offer’s price will change in the next day. Similarly, for click rate and
impression rate prediction, a forecast includes determining whether an offer will be clicked or
impressed in the next day. The prediction outputs will be directly used as y, v and A when
computing the crawling rate. In some implementations, the prediction horizon is set at the daily
granularity since click and impression statistics are aggregated on the daily basis. However,
implementations can use other prediction horizons, e.g., hourly, weekly, every-other-day, etc.

[0034] The recrawl manager 150 is configured to perform a recrawl operation to
recrawl a repository of URLs for webpages. The webpages may have quantity (e.g., pricing)
information for the offers 132(1), 132(2),..., 132(N). The recrawl operation is performed by
the recrawl manager 150 according to one of a plurality of recrawl strategies. Each recall
strategy is represented by recrawl strategy data 152.

[0035] The recrawl strategy data 152 includes data items that define the plurality of
recrawl strategies. For example, the recrawl strategy data 152 can include recrawl strategy
identifier data 153, which represents identifiers corresponding to each of the recrawl strategies.
For example, recrawl strategies considered herein include a uniform strategy, a change-
weighted strategy, a click-weighted strategy, an impression-weighted strategy, and a resource-
optimized strategy. These strategies are not exhaustive and other recrawling strategies may be
used. The recrawl strategy data 152 can include recrawl constraint data 154. The recrawl
constraint data 154 represents a constraint on network resources that limits the amount of
recrawls per time step that may be carried out. In some implementations, this constraint may
be expressed in terms of an aggregated recrawl rate, i.e., a total number of recrawl events per
time step, across all recrawl strategies. The recrawl strategy data 152 can include recrawl rate
data 155, which represents a number of recrawl events performed per time step. The time step
is dependent on the crawler. In some examples the time step may be an hour. In addition, the
recrawl strategy data 152 may include updated quantity (e.g., price) data 156 for each offer
132(1),..., 132(N) obtained as a result of a recrawl according to a recrawl strategy.

[0036] The recrawl policy manager 160 is configured to generate a recrawl policy,
represented by recrawl policy data 162. A recrawl policy is a distribution of weights over the
multiple recrawl strategies, each weight indicating a level of importance of a strategy and,
accordingly, how often that strategy is used in recrawl operations. In some implementations,

the recrawl policy manager 160 generates recrawl policy data 162 using reinforcement

WO 2021/201825 PCT/US2020/025757

learning. Reinforcement learning is a type of machine learning that determines actions to be
taken to maximize a reward. Implementations may use a reward for a recrawl that results in an
updated quantity for an entity, e.g., a recrawl that extracts a change in price for a product
offered for sale. No reward may be given for a recrawl that does not result in an updated
quantity, e.g., a recrawl that extracts the same quantity that is already stored in the repository
for the product.

[0037] The recrawl policy data 162 represents the recrawl policy and may include
policy weight data 163. The policy weight data 163 ultimately includes a distribution of
weights over the recrawl strategies. Each recrawl strategy has its own weight distribution in
the policy weight data 163. A weight for a strategy & may be denoted as wr. Each weight
corresponds to a likelihood that, at the next instant of time, a particular recrawl strategy will be
selected. Thus, the weight may be distributed over a time series. The importance weight of a
strategy k at time step 7 in the time series may be denoted as wf.

[0038] The recrawl policy data 162 may include policy probability data 164. Policy
probability data 164 is an intermediate quantity used in a K-armed adversarial bandits
algorithm from which adjustments to the policy weight data are derived at each time step. For
example, the policy probability data 164 includes an exploration probability and represents a
probability that a recrawl strategy will be selected according to the current weight and the
exploration probability. The exploration probability itself indicates a likelihood that the “arm”
of the adversarial bandits, or recrawl strategy chosen, is not chosen solely according to the
historical policy represented by the policy weight data 163, but rather a uniformly-weighted
policy. In other words, the exploration probability prevents the system from selecting a next
recrawl strategy based solely on historical data, which makes the system robust and avoids
historical bias.

[0039] The recrawl policy data 162 may include reward data 165. The reward data 165
is also an intermediate quantity used in the K-armed adversarial bandits algorithm from which
adjustments to the policy weight data are derived at each time step. The reward data 165
represents a reward for selecting a particular arm, or recrawl strategy, over all offers at an
instant of time. The reward per offer, or per-offer utility, indicates whether the reward strategy
for that offer produced an update for the price of that offer. Put another way, the reward data
165 represents a reward for a recrawl that identifies a change in the quantity.

[0040] The components (e.g., modules, processing units 124) of the user device 120

can be configured to operate based on one or more platforms (e.g., one or more similar or

10

WO 2021/201825 PCT/US2020/025757

different platforms) that can include one or more types of hardware, software, firmware,
operating systems, runtime libraries, and/or so forth. In some implementations, the
components of the computer 120 can be configured to operate within a cluster of devices (e.g.,
a server farm). In such an implementation, the functionality and processing of the components
of the computer 120 can be distributed to several devices of the cluster of devices.

[0041] The components of the computer 120 can be, or can include, any type of
hardware and/or software configured to generate and/or update a recrawl policy. In some
implementations, one or more portions of the components shown in the components of the
computer 120 in FIG. 1 can be, or can include, a hardware-based module (e.g., a digital signal
processor (DSP), a field programmable gate array (FPGA), a memory), a firmware module,
and/or a software-based module (e.g., a module of computer code, a set of computer-readable
instructions that can be executed by a computer). For example, in some implementations, one
or more portions of the components of the computer 120 can be, or can include, a software
module configured for execution by at least one processor (not shown). In some
implementations, the functionality of the components can be included in different modules
and/or different components than those shown in FIG. 1, including combining functionality
illustrated as two components into a single component.

[0042] Although not shown, in some implementations, the components of the computer
120 (or portions thereof) can be configured to operate within, for example, a data center (e.g., a
cloud computing environment), a computer system, one or more server/host devices, and/or so
forth. In some implementations, the components of the computer 120 (or portions thereof) can
be configured to operate within a network. Thus, the components of the computer 120 (or
portions thereof) can be configured to function within various types of network environments
that can include one or more devices and/or one or more server devices. For example, the
network can be, or can include, a local area network (LAN), a wide area network (WAN),
and/or so forth. The network can be, or can include, a wireless network and/or wireless
network implemented using, for example, gateway devices, bridges, switches, and/or so
forth. The network can include one or more segments and/or can have portions based on
various protocols such as Internet Protocol (IP) and/or a proprietary protocol. The network can
include at least a portion of the Internet.

[0043] In some implementations, one or more of the components of the computer 120
can be, or can include, processors configured to process instructions stored in a memory. For
example, an entity manager 130 (and/or a portion thereof), a prediction manager 140 (and/or a

portion thereof), a recrawl manager 150 (and/or a portion thereof), and a recrawl policy

11

WO 2021/201825 PCT/US2020/025757

manager 160 (and/or a portion thereof) can be a combination of a processor and a memory
configured to execute instructions related to a process to implement one or more functions.

[0044] In some implementations, the memory 126 can be any type of memory such as a
random-access memory, a disk drive memory, flash memory, and/or so forth. In some
implementations, the memory 126 can be implemented as more than one memory component
(e.g., more than one RAM component or disk drive memory) associated with the components
of the computer 120. In some implementations, the memory 126 can be a database
memory. In some implementations, the memory 126 can be, or can include, a non-local
memory. For example, the memory 126 can be, or can include, a memory shared by multiple
devices (not shown). In some implementations, the memory 126 can be associated with a
server device (not shown) within a network and configured to serve the components of the
computer 120. As illustrated in FIG. 1A, the memory 126 is configured to store various data,
including entity data 132, metadata 144, history data 146, recrawl strategy data 152, and
recrawl policy data 162.

[0045] It will be assumed herein that the entity data 132 represents offer data which
represents an offer to sell a product. Along these lines, the value of the quantity is a price of an
offer. The entities 132(1),..., 132(N) are assumed to be offers.

[0046] Before delving into the details for generating a recrawl policy, a formal
description of the problem is presented. Suppose there are a total number of n offers (04, 0,,
..., 0p) 1n the search environment, e.g., crawling logs 102. Each offer o; (also referred to as an
entity) is represented as a time series, with the data point at time step ¢ denoted by a vector of
three parameters (uf, vi, A%). In this example, u} € R™ represents the click rate, vi € R*
represents the impression rate and A} € [0, 1] represents the probability of price change (change
in quantity). Because of the price change, the crawler needs to periodically recrawl offers so
that a local repository (e.g., content data 108) can store the latest information. A recrawl rate
pf€ R" is then defined to represent the amount of recrawls made for offer o; at time step t.

[0047] Furthermore, the latest price of offer o; at time step t as is denoted as rf, which
might or might not be observed by a recrawl strategy. In other words, 77 represents the actual
price for the offer o; at time step 7 at the domain (source of the offer). In the meantime, each
recrawl strategy also maintains a price I} in the content data 108 for serving end users. At
access time, users will see the right price only if rfmatches I}, i.e. 1(r{ = [}), where 1(")is a
binary indicator. The price match is a function of two factors — the price change history and the

recrawl history.

12

WO 2021/201825 PCT/US2020/025757

[0048] Production crawlers, e.g., such as computer 120, also need to deal with resource
constraints. In this example, a fixed crawling constraint of b offers is assumed at each time
step. A goal is to find recrawling rates Pt = (pf, pi,..., pb) that can maximize the overall
utility given the resource restrictions. Thus, if recrawling an offer updates the local price (e.g.,
in content data 108) to the latest price in the domain, a crawl is useful. Thus, for web crawling,
freshness is often adopted to represent the utility. Disclosed implementations may employ two
freshness metrics to determine utility: click-weighted freshness and page-level freshness. An
offer is said to be fresh if its local price I} matches its true price r{. Here, since each page
corresponds to one product offer, page-level freshness may be referred to as the offer-level
freshness. The click-weighted freshness measures the percentage of clicks when users see the
right price, whereas the offer-level freshness examines, at a certain time step, the proportion of
offers with price information updated regardless of clicks.

[0049] Table 1 summarizes the notation used to represent the data elements used in the

disclosed environment.

0; A product offer i t A time step or instant of time

n A total number of offers b Offer crawling constraint at

instant of time ¢

ut Click rate of o; at instant of vf Impression rate of o; at instant
time ¢ of time ¢

It Local price of o; at instant of rf True price of o; at instant of
time ¢ time ¢

pf Recrawl rate of o; at instant of A Change rate of o; at instant of
time ¢ time ¢

X;, | The reward of applying a recrawl strategy k for o; at instant of time ¢

Xy, The aggregated reward accumulated over all offers 0;, i = 1,2, ...,n

A, The recrawling strategy (i.e., arm of the K-adversarial bandits) applied at

instant of time ¢

Table 1 Notations used herein
[0050] The recrawling task, e.g., of the recrawl manager 150, is modeled as a K-armed
adversarial bandits (KAB) problem, where each recrawl strategy is treated as an arm. At each
time step, one arm is selected based on its historical performance, entities (offers) to crawl

using the selected arm are determined, rewards are observed and the selected arm’s

13

WO 2021/201825 PCT/US2020/025757

performance is updated. By repeating this process, the arm selection process can improve as
time goes on.

[0051] Table 2 summarizes the recrawl strategies discussed herein. It is understood
that the recrawl strategies listed here or even the number of recrawl strategies are not required,
and other recrawl strategies, or more or less than five recrawl strategies listed are possible

using the improved techniques.

Recrawl Strategy Recrawl Rate pf
Uniform b-1/n
Change-weighted (A) b A/ %A
Click-weighted (1) b-ui/ ¥ pi
Impression-weighted (V) b-vi/Yivi
Resource-optimized (1) 2
T

Table 2 Recrawl strategies and their respective recrawl rates. Note that b = ¥; pf.

[0052] FIG. 2 is a flow chart depicting an example method 200 of generating and using
a recrawl policy for recrawling websites, according to an implementation. The method 200
may be performed by software constructs described in connection with FIG. 1, which reside in
memory 126 of the computer 120 and are run by the set of processing units 124. Method 200
generates and uses a recrawl policy by estimating parameters for recrawl rates of various
recrawl strategies, and then employs a reinforcement learning via, e.g., a K-armed adversarial
bandits algorithm to derive a distribution of weights over the recrawl strategies that define the
recrawl policy.

[0053] At 202, the entity manager 130 receives, from a repository, entity data 132
representing a plurality of entities (e.g., offer 132(1),..., 132(N)), each of the plurality of
entities having a respective value of a quantity (e.g., a price at which to sell a product), the
values of the quantity being accurate at a previous time. For example, prices at the previous
time may have been obtained from the content repository 108 during a previous crawl.

[0054] At 204, the prediction manager 140, for each of the plurality of entities,
generates values of a plurality of parameters at a current time. The parameters include at least

one of a click rate, an impression rate, or a likelihood of a change in the value of the quantity

14

WO 2021/201825 PCT/US2020/025757

of that entity (e.g., price of that offer). In conventional approaches, these parameter values
were taken from historical data. In contrast, disclosed implementations generate these
parameter values using a neural network. The neural network is based on not only historical
data, but also metadata, e.g., stored in entity signal repository 104. As discussed below with
regard to FIG. 4, a model based on metadata and history outperforms a model based only on
history or price change prediction

[0055] At 206, the recrawl manager 150 selects a recrawling strategy of a plurality of
recrawling strategies (represented by recrawl strategy data 152). The selected recrawling
strategy is used to update the local repository, e.g., content data 108 by recrawling the entity
pages. As will be described with regard to FIG. 3, the selection may be made in accordance
with a probability distribution over the plurality of recrawl strategies.

[0056] At 208, the recrawl manager 150 generates a respective recrawl rate
(represented by recrawl rate data 155) for each of the plurality of entities according to the
selected recrawl strategy. The recrawl rate for an entity of the plurality of entities is based on
the values of the plurality of parameters (click rate, an impression rate, or a likelihood of a
change) at the sequence of times. For example, if the selected recrawl strategy is a uniform
recrawl strategy, the recrawl rate is equal over all entities. As another example, if the selected
recrawl strategy is change weighted, the selected recrawl rate is proportional to a change rate
for an entity. In this case, the change rate is determined through the prediction discussed with
regard to FIG. 4. The recrawl rate for other recrawl strategies may be similarly generated, as
outlined in Table 2.

[0057] At 210, the recrawl manager 150 schedules recrawl operations on the repository
108 based on the recrawl rate for each of the plurality of entities. In other words, for the current
time step (e.g., an hour, a week, twice a day, etc.) the recrawl manager 150 schedules a
particular entity for recrawl p times during the time step. Each recrawl of an offer obtains the
value of the quantity of each of the plurality of entities. This updated value is as-of the current
time.

[0058] At 212, the recrawl policy manager 160 updates the recrawl policy (represented
by recrawl policy data 162) based on the recrawls. Each time an offer page is recrawled, the
recrawl policy manager 160 updates a time series of the value of the quantity for that entity.
This updated quantity value becomes part of the history data that is used to predict parameter
values at a next crawl, e.g., as part of step 204. Updating the recrawl policy also includes

calculating a reward. The reward is boosted by the click rate. In some implementations, reward

15

WO 2021/201825 PCT/US2020/025757

uipf
Tiufpt

may be normalized to [0,1] and may be expressed as x; = ;X[= X; -uf - pf-

1(If=1 = r}). In addition, the updated quantity may be used to further train the prediction
model (e.g., a neural network) for computing parameter values at later times.

[0059] FIG. 3 is a diagram example method 300 of generation of a web recrawl policy.
In FIG. 3, the method starts with choosing every arm having an equal chance of selection at
time step 1 (310(1)). A crawl strategy is selected and recrawls scheduled according to the
strategy. After recrawling, the system calculates the rewards (for each entity) and updates the
historical performance of the crawling strategy. Over time, through aggregating rewards,
certain recrawl strategies gain more preference. In the example of FIG. 3, the click-weighted
strategy and resource-optimized strategy are illustrated as getting progressively more
preference as time passes (see 310(1) at t=1, 310(2) at t=100, and 310(3) at t=100). Note that
implementations may use fewer recrawl strategies than those illustrated in FIG. 3.
Implementations may also use more and/or different recrawl strategies.

[0060] Compared to adopting a single strategy, using adversarial bandits is more
advantageous in the following aspects: (1) incorporating multiple strategies allows us to
explore offers from different angles, making it more robust to the errors made by an individual
strategy; (2) different from stochastic bandit algorithms, adversarial bandits do not make
stationarity assumptions on reward distribution, which is a better choice where the reward
(click-weighted freshness) is dynamic.

[0061] The adversarial bandits approach — more specifically, an adjusted version of an
EXP3 algorithm, may be formalized as follows: assume that there are K candidate arms, and let
xL € [0, 1] indicate the reward one will receive by adopting the k-th arm at time step t. The
goal is to choose a sequence of arms (44, 4,, .., A, ...) so that by applying those arms, a regret
(R) of not using the best arm at every time step is minimized. Note that instead of sampling an
arm per offer per time step, only one arm is selected (e.g., step 206) at each time step and is
applied across all offers. This avoids a joint optimization of resource constraints over multiple
strategies since the crawling rates for each time step have already incorporated the resource
constraint.

[0062] The regret R is given by the following expression:

R = (’Erel%zx,i) —E [z xflt] (D

16

WO 2021/201825 PCT/US2020/025757

The reward x5 (or xflt) is calculated by accumulating per offer utility xf «— the payoft by

applying the k-th arm for offer o; at time step t (e.g., as part of steps 210 and 212) . Regret is
defined as follows: if crawling an offer helps updating the local price to the latest, such a crawl
is considered useful, and accordingly a positive reward is assigned. The local price from time
step (t — 1) is used to verify that it will not match the true price at time step t; if these prices do
match, there will be no utility gain for crawling this offer. To align with the click-weighted
freshness, the reward is boosted by the click rate. In fact, this utility measures the increase of
click-weighted freshness between two time steps. The recrawling rate p! is used to denote
whether the offer will be crawled because there will be no utility gain if not crawling the offer.

In addition, a normalization term is included to rescale the reward to [0, 1].

[0063] The reward is updated as shown in Eq, (2):
t .t
Hipi -
Xy = E xf, = E —— 115t = 1)) (2
k i ik i Ziﬂitpit L L

Minimizing regret R is equivalent to maximizing the expected reward, the second term in Eq.
(1), since the accumulated reward for applying the best strategy at every time step is a
constant factor. Furthermore, based on the definition in Eq. (2), the time aggregated reward
actually represents the click-weighted freshness, meaning that disclosed implementations
using the adversarial bandits approach are essentially optimizing the click-weighted
freshness.
[0064] Example implementation details are described in Algorithm 1. Algorithm 1 is
one example of an implementation of method 200 of FIG. 2.
Algorithm 1 The K-armed adversarial bandits approach
Parameter: y € [0, 1]
1: Vk, set wp=1
2:fortimet=1,2,...T do
3:Vk, setqp = (1 —y)zj,iw—fv‘/;+y%
4: Sample an arm A~ Q,: (¢t, g5...., q%)
5: Set the reward x4 = 0
6: forofferi=1,2, ..., ndo
7: Compute 0;’s crawling rate pf for arm A, according to Table 2
8: Schedule pf crawls (from the crawling log repository 108) and update local price I¢

9: Update reward xj, +=x{ .

17

WO 2021/201825 PCT/US2020/025757

10: end for
t
11: Ve wi™ = wlexp (%1(16 = Ap) %)

12: end for
[0065] Algorithm 1 starts by initializing a uniform importance weight w;= 1 for each
arm (line 1). Here, k indicates the k-th arm and 0 stands for the time step t=0. At each time
step t, a probability distribution Q, is computed with each element g denoting the probability
of choosing the k-th arm (line 3). g, is determined by the importance weight wi and the
exploration probability y. Next, an arm A, is sampled from @, (line 4) and the corresponding
offer crawling rate p! according to Table 2 (line 7) is computed. Note that the resource

constraint b has already been integrated into pf. While crawling, the reward x} s also

aggregated for the sampled arm (line 9). At last, wi for the arm A, is calculated based on the
reward (line 11). This updates the crawl policy. The method repeats for a next time step.

[0066] Algorithm 1 solves the exploitation-exploration trade-off in reinforcement
learning by introducing the exploration probability y. Algorithm 1 samples arms
proportionally to their past performances at a probability of 1 — y, and also maintains a
probability of y to choose a random arm for exploration. In some implementations, y =0.1.

[0067] In some implementations, the time step is assumed to be two hours. The
crawling rate of Table 2 is calculated using a two-hour time step. In some implementations, the
time step 1s every other hour. When the crawling rate in Table 2 is computed for each bi-hourly
time step, the crawling rate should be multiplied by (12 hours / time unit).

[0068] Deploying the recrawl strategies used as arms in the K-armed adversarial bandit
(except the uniform crawl) requires knowing the click rate, the impression rate, and the change
rate. Disclosed implementations use a predictive modeling approach where both metadata and
past history information are employed in the model for better parameter estimation accuracy.

[0069] Specifically, implementations may initially train prediction models based on
existing crawl log data. In some implementations, the price change prediction is modeled as a
classification task, for which a goal is to predict whether an offer’s price will change in the
next day or any time horizon depending on the data granularity. Similarly, for click and
impression prediction, it is forecast whether an offer will be clicked or impressed in the next
day. The prediction outputs are directly used as u, v and A when computing the crawling rate.
In some implementations, the prediction horizon may be set at the daily granularity since click

and impression statistics are aggregated on the daily basis.

18

WO 2021/201825 PCT/US2020/025757

[0070] Implementations may adopt two change history features, including the monthly
price change frequency and the most recent change. A set of click and impression history
features, which are strong signals for predicting future clicks and impressions, may also be
included. All of these features and their descriptions are provided in Table 3. The product
category information may come from a shopping taxonomy, such as the Google Shopping
product taxonomy. The change frequencies, click and impression statistics may be treated as
numerically dense features, and the metadata information may be modeled by sparse features

and is embedded into a low-dimensional space.

History features for the predictive model

Change frequency (1 month) Price change frequency in last month
Most recent change Time since most recent change
Clicks (1 day) Clicks yesterday

Clicks (1 week) Clicks in the past week

Clicks (2 weeks) Clicks in the past 2 weeks

Clicks (1 month) Clicks in the past month

Impressions (1 day) Impressions yesterday

Impressions (1 week) Impressions in the past week
Impressions (2 weeks) Impressions in the past 2 weeks
Impressions (1 month) Impressions in the past month

Metadata features for the predictive model

Brand Unique ID for a brand

Condition Condition: new, used, or refurbished
Country Country code

Day of Week Day of week for prediction time
Language Offer page language

Merchant Unique ID for a merchant

Product Category Product category

Table 3 History and metadata features that may be used in a predictive model
[0071] For each prediction task, a model is trained with metadata and history features
combined. An example model, which may be a feed-forward deep neural network (DNN)
model, is adopted with TensorFlow DNNClassifier, where three hidden layers are set to 256,
128 and 64 hidden units in each layer. ReLU (Rectified Linear Unit) is used as the activation

function for hidden units and the Adagrad algorithm to optimize the cross-entropy loss is

19

WO 2021/201825 PCT/US2020/025757

chosen. Other neural network configurations may also be used. In some implementations, to
deal with overfitting, both L1 and L2 regularization may be adopted and both set to 0.001.
Implementations may use multiple sets of hyper-parameters. Such implementations have
similar results.

[0072] An example crawl log may include millions of entities. For example, an
example crawl log (e.g., 102) may include 1.3 million indexed offers with hourly crawls
scheduled for these offers. Samples for training predictive models used by disclosed
implementations may come from two types: (a) random uniform samples from the entire
corpus of offers; and (b) click-weighted samples, to better represent popular offers with clicks.
In total, billions of offer page snapshots may be crawled. For ease of discussion, an example
time period covered by the logs may be from 2018/08/01 to 2019/04/10.

[0073] FIG. 4 is a diagram of an example dataset generation process 400 for daily
predictions used in training predictive models used in disclosed implementations. As shown in
FIG. 4, for each simulated prediction date d, the prediction time ¢ is defined as the beginning
of d (12:00 am). Features are then extracted from the crawling logs up to time t. Hourly
crawls after t provide a full observation for the future price information, which helps generate
a binary label reflecting whether the price will change in the next day. Similarly, the click and
impression information on date d+1 are used to create a binary click/impression label denoting
whether the offer will be clicked/impressed in the next day. By shifting the prediction date d
and repeating the above process, a set of training, testing and validation examples are created.

[0074] The training, validation and testing datasets in this example are created with
data from different dates. Particularly, in the example of FIG. 4, data from 2018/08/01 to
2018/12/31 1s used for training, data from 2019/01/01 to 2019/01/09 is used for validation and
the rest is used for testing. In total, 0.6 million validation examples, 8 million testing examples
and 100 million training examples are obtained. In the testing and validation data, the
positive/negative label ratios are 1:20 for price change, 1:75 for click and 1:6 for impression,
whereas for the training data, we observe higher positive/negative ratios due to the
involvement of click-weighted samples. The ratios become 1:20 for price change, 1:1 for click
and 4:1 for impression. Note that since the uniform samples are picked randomly from the
entire corpus, many are obsolete, removed or have no price extracted. This causes the number
of testing and validation examples being lower than expected.

[0075] Implementations may be used with a predictive model based on metadata only, a

predictive model based on history only, or a predictive model based on metadata and history.

20

WO 2021/201825 PCT/US2020/025757

Table 4 illustrates that a model based on metadata and history is more accurate (as measured by
Area Under Receiver Operating Characteristic Curve where value of 0.5 means a random guess

while 1.0 indicates a perfect prediction).

Task \ Model Metadata History Metadata + History
Price change 0.860 (0.008) 0.833 (0.011) 0.882 (0.007)
Click 0.796 (0.021) 0.948 (0.006) 0.949 (0.006)
Impression 0.736 (0.008) 0.896 (0.003) 0.895 (0.003)
Table 4 Testing AUCs (and standard deviations) for predictive models
[0076] FIG. 5 illustrates an example of a generic computer device 600 and a generic

mobile computer device 650, which may be used with the techniques described here.
Computer device 600 is one example configuration of computer 120 of FIG. 1 and FIG. 2.

[0077] As shown in FIG. 5, computing device 600 is intended to represent various
forms of digital computers, such as laptops, desktops, workstations, personal digital assistants,
servers, blade servers, mainframes, and other appropriate computers. Computing device 650 is
intended to represent various forms of mobile devices, such as personal digital assistants,
cellular telephones, smart phones, and other similar computing devices. The components
shown here, their connections and relationships, and their functions, are meant to be exemplary
only, and are not meant to limit implementations of the inventions described and/or claimed in
this document.

[0078] Computing device 600 includes a processor 602, memory 604, a storage device
606, a high-speed interface 608 connecting to memory 604 and high-speed expansion ports
610, and a low speed interface 612 connecting to low speed bus 614 and storage device 606.
Each of the components 602, 604, 606, 608, 610, and 612, are interconnected using various
busses, and may be mounted on a common motherboard or in other manners as appropriate.
The processor 602 can process instructions for execution within the computing device 600,
including instructions stored in the memory 604 or on the storage device 606 to display
graphical information for a GUI on an external input/output device, such as display 616
coupled to high speed interface 608. In other implementations, multiple processors and/or
multiple buses may be used, as appropriate, along with multiple memories and types of
memory. Also, multiple computing devices 600 may be connected, with each device providing
portions of the necessary operations (e.g., as a server bank, a group of blade servers, or a multi-

processor system).

21

WO 2021/201825 PCT/US2020/025757

[0079] The memory 604 stores information within the computing device 600. In one
implementation, the memory 604 is a volatile memory unit or units. In another
implementation, the memory 604 is a non-volatile memory unit or units. The memory 604
may also be another form of computer-readable medium, such as a magnetic or optical disk.

[0080] The storage device 606 is capable of providing mass storage for the computing
device 600. In one implementation, the storage device 606 may be or contain a computer-
readable medium, such as a floppy disk device, a hard disk device, an optical disk device, or a
tape device, a flash memory or other similar solid state memory device, or an array of devices,
including devices in a storage area network or other configurations. A computer program
product can be tangibly embodied in an information carrier. The computer program product
may also contain instructions that, when executed, perform one or more methods, such as those
described above. The information carrier is a computer- or machine-readable medium, such as
the memory 604, the storage device 606, or memory on processor 602.

[0081] The high speed controller 608 manages bandwidth-intensive operations for the
computing device 500, while the low speed controller 612 manages lower bandwidth-intensive
operations. Such allocation of functions is exemplary only. In one implementation, the high-
speed controller 608 is coupled to memory 604, display 616 (e.g., through a graphics processor
or accelerator), and to high-speed expansion ports 610, which may accept various expansion
cards (not shown). In the implementation, low-speed controller 612 is coupled to storage
device 506 and low-speed expansion port 614. The low-speed expansion port, which may
include various communication ports (e.g., USB, Bluetooth, Ethernet, wireless Ethernet) may
be coupled to one or more input/output devices, such as a keyboard, a pointing device, a
scanner, or a networking device such as a switch or router, e.g., through a network adapter.

[0082] The computing device 600 may be implemented in a number of different forms,
as shown in the figure. For example, it may be implemented as a standard server 620, or
multiple times in a group of such servers. It may also be implemented as part of a rack server
system 624. In addition, it may be implemented in a personal computer such as a laptop
computer 622. Alternatively, components from computing device 600 may be combined with
other components in a mobile device (not shown), such as device 650. Each of such devices
may contain one or more of computing device 600, 650, and an entire system may be made up
of multiple computing devices 600, 650 communicating with each other.

[0083] FIG. 6 shows an example of a generic computer device 700, which may be
computer 120 of FIG. 1A or FIG. 1B, which may be used with the techniques described here.

Computing device 700 is intended to represent various example forms of large-scale data

22

WO 2021/201825 PCT/US2020/025757

processing devices, such as servers, blade servers, datacenters, mainframes, and other large-
scale computing devices. Computing device 700 may be a distributed system having multiple
processors, possibly including network attached storage nodes, that are interconnected by one
or more communication networks. The components shown here, their connections and
relationships, and their functions, are meant to be examples only, and are not meant to limit
implementations of the inventions described and/or claimed in this document.

[0084] Distributed computing system 700 may include any number of computing
devices 780. Computing devices 780 may include a server or rack servers, mainframes, etc.
communicating over a local or wide-area network, dedicated optical links, modems, bridges,
routers, switches, wired or wireless networks, etc.

[0085] In some implementations, each computing device may include multiple racks.
For example, computing device 780a includes multiple racks 758a — 758n. Each rack may
include one or more processors, such as processors 752a-752n and 762a-762n. The processors
may include data processors, network attached storage devices, and other computer controlled
devices. In some implementations, one processor may operate as a master processor and
control the scheduling and data distribution tasks. Processors may be interconnected through
one or more rack switches 758, and one or more racks may be connected through switch 778.
Switch 778 may handle communications between multiple connected computing devices 700.

[0086] Each rack may include memory, such as memory 754 and memory 764, and
storage, such as 756 and 766. Storage 756 and 766 may provide mass storage and may include
volatile or non-volatile storage, such as network-attached disks, floppy disks, hard disks,
optical disks, tapes, flash memory or other similar solid state memory devices, or an array of
devices, including devices in a storage area network or other configurations. Storage 756 or
766 may be shared between multiple processors, multiple racks, or multiple computing devices
and may include a computer-readable medium storing instructions executable by one or more
of the processors. Memory 754 and 764 may include, e.g., volatile memory unit or units, a non-
volatile memory unit or units, and/or other forms of computer-readable media, such as a
magnetic or optical disks, flash memory, cache, Random Access Memory (RAM), Read Only
Memory (ROM), and combinations thereof. Memory, such as memory 754 may also be shared
between processors 752a-752n. Data structures, such as an index, may be stored, for example,
across storage 756 and memory 754. Computing device 700 may include other components not
shown, such as controllers, buses, input/output devices, communications modules, etc.

[0087] An entire system may be made up of multiple computing devices 700

communicating with each other. For example, device 780a may communicate with devices

23

WO 2021/201825 PCT/US2020/025757

780b, 780c¢, and 780d, and these may collectively be known as computer 120. As another
example, computer 120 of FIG. 1 may include one or more computing devices 700. Some of
the computing devices may be located geographically close to each other, and others may be
located geographically distant. The layout of system 700 is an example only and the system
may take on other layouts or configurations.

[0088] Various implementations of the systems and techniques described here can be
realized in digital electronic circuitry, integrated circuitry, specially designed ASICs
(application specific integrated circuits), computer hardware, firmware, software, and/or
combinations thereof. These various implementations can include implementation in one or
more computer programs that are executable and/or interpretable on a programmable system
including at least one programmable processor, which may be special or general purpose,
coupled to receive data and instructions from, and to transmit data and instructions to, a storage
system, at least one input device, and at least one output device.

[0089] These computer programs (also known as programs, software, software
applications or code) include machine instructions for a programmable processor and can be
implemented in a high-level procedural and/or object-oriented programming language, and/or
in assembly/machine language. As used herein, the terms “machine-readable medium” and
“computer-readable medium” refer to any computer program product, apparatus and/or device
(e.g., magnetic discs, optical disks, memory, Programmable Logic Devices (PLDs)) used to
provide machine instructions and/or data to a programmable processor, including a machine-
readable medium that receives machine instructions as a machine-readable signal. The term
“machine-readable signal” refers to any signal used to provide machine instructions and/or data
to a programmable processor.

[0090] To provide for interaction with a user, the systems and techniques described
here can be implemented on a computer having a display device (e.g., a CRT (cathode ray
tube) or LCD (liquid crystal display) monitor) for displaying information to the user and a
keyboard and a pointing device (e.g., a mouse or a trackball) by which the user can provide
input to the computer. Other kinds of devices can be used to provide for interaction with a user
as well; for example, feedback provided to the user can be any form of sensory feedback (e.g.,
visual feedback, auditory feedback, or tactile feedback); and input from the user can be
received in any form, including acoustic, speech, or tactile input.

[0091] The systems and techniques described here can be implemented in a computing
system that includes a back end component (e.g., as a data server), or that includes a

middleware component (e.g., an application server), or that includes a front end component

24

WO 2021/201825 PCT/US2020/025757

(e.g., a client computer having a graphical user interface or a Web browser through which a
user can interact with an implementation of the systems and techniques described here), or any
combination of such back end, middleware, or front end components. The components of the
system can be interconnected by any form or medium of digital data communication (e.g., a
communication network). Examples of communication networks include a local area network
(“LAN”), a wide area network (“WAN”), and the Internet.

[0092] The computing system can include clients and servers. A client and server are
generally remote from each other and typically interact through a communication network.
The relationship of client and server arises by virtue of computer programs running on the
respective computers and having a client-server relationship to each other.

[0093] A number of implementations have been described. Nevertheless, it will be
understood that various modifications may be made without departing from the spirit and scope
of the specification.

[0094] It will also be understood that when an element is referred to as being on,
connected to, electrically connected to, coupled to, or electrically coupled to another element, it
may be directly on, connected or coupled to the other element, or one or more intervening
elements may be present. In contrast, when an element is referred to as being directly on,
directly connected to or directly coupled to another element, there are no intervening elements
present. Although the terms directly on, directly connected to, or directly coupled to may not
be used throughout the detailed description, elements that are shown as being directly on,
directly connected or directly coupled can be referred to as such. The claims of the application
may be amended to recite exemplary relationships described in the specification or shown in
the figures.

[0095] While certain features of the described implementations have been illustrated as
described herein, many modifications, substitutions, changes and equivalents will now occur to
those skilled in the art. It is, therefore, to be understood that the appended claims are intended
to cover all such modifications and changes as fall within the scope of the implementations. It
should be understood that they have been presented by way of example only, not limitation,
and various changes in form and details may be made. Any portion of the apparatus and/or
methods described herein may be combined in any combination, except mutually exclusive
combinations. The implementations described herein can include various combinations and/or
sub-combinations of the functions, components and/or features of the different

implementations described.

25

WO 2021/201825 PCT/US2020/025757

[0096] In addition, the logic flows depicted in the figures do not require the particular
order shown, or sequential order, to achieve desirable results. In addition, other steps may be
provided, or steps may be eliminated, from the described flows, and other components may be
added to, or removed from, the described systems. Accordingly, other implementations are

within the scope of the following claims.

26

WO 2021/201825 PCT/US2020/025757

WHAT IS CLAIMED IS:

1. A computer-implemented method, comprising:

receiving, from a repository, entity data representing a plurality of entities, each
of the plurality of entities having a respective value of a quantity, the values of the
quantities being accurate at a previous instant in time;

for each of the plurality of entities, generating associated values of a plurality of
parameters at a current time, the plurality of parameters including at least one of an
access rate of that entity from the repository or a likelihood of a change in the value of
the quantity of that entity;

selecting a refresh strategy of a plurality of refresh strategies for updating the
value of the quantity of each of the plurality of entities according to a refresh policy;

generating a respective refresh rate for each of the plurality of entities according
to the selected refresh strategy, the respective refresh rate for each entity of the plurality
of offers being based on the associated values of the plurality of parameters at a
sequence of times comprising the previous instant in time and the current instant of
time;

performing a refresh operation on the repository based on the respective refresh
rates for the plurality of entities, the refresh operation being configured to obtain the
value of the quantity of an entity at the current instant of time; and

updating the refresh policy based on a difference between the value of the
quantity at the previous instant in time and the value of the quantity at the current

instant of time of each of the plurality of entities.

2. The method as in claim 1, wherein the refresh policy includes a weight distribution, the
weight distribution representing a respective likelihood that each of the plurality of

refresh strategies is selected.

3. The method as in claim 2, wherein selecting the refresh strategy of the plurality of
refresh strategies includes:
generating a probability distribution for the refresh strategy over the plurality of
refresh strategies, the probability distribution including a respective probability

corresponding to each of the plurality of refresh strategies; and

27

WO 2021/201825 PCT/US2020/025757

performing a random sample of the plurality of refresh strategies according to

the probability distribution to produce the selected refresh strategy.

The method as in claim 3, wherein generating the probability distribution includes:
performing an average of a weight of the weight distribution and a reciprocal of
a number of refresh strategies of the plurality of refresh strategies, the weight

corresponding to the refresh strategy.

The method as in any previous claim, wherein the plurality of refresh strategies
includes at least two of a uniform strategy, a change-weighted strategy, an access-

weighted strategy, and a resource-optimized strategy.

The method as in any previous claim, wherein generating the respective refresh rate for
each of the plurality of entities according to the selected refresh strategy includes:

for a parameter of the plurality of parameters, generating a respective neural
network model corresponding to the parameter; and

generating the respective refresh rate for the parameter using the neural network

model corresponding to the parameter.

The method as in claim 6, wherein the parameter of the plurality of parameters is the
likelihood of a change in the value of the quantity of an entity of the plurality of
entities, and
wherein generating the neural network model corresponding to the parameter
includes:
training a model based on a set of history features, the set of history
features including at least one of a quantity change frequency in a previous time

period and a length of time since most recent change.

The method as in claim 6, wherein the parameter of the plurality of parameters is the
access rate for an entity of the plurality of entities, and
wherein generating the neural network model corresponding to the parameter

includes:

28

WO 2021/201825 PCT/US2020/025757

training a model based on a set of history features, the set of history
features including at least one of a number of accesses over a previous time

period and a number of accesses over the previous time period.

0. The method as in claim 6, wherein generating the neural network model corresponding
to the parameter includes:
training a model based on metadata, the metadata including at least one of a day

of the week for a prediction time, and a characteristic of each of the plurality of entities.

10. The method as in claim 6, wherein:

the repository includes a plurality of offer web pages;

each of the plurality of entities includes an offer web page of the plurality of
offer web pages, the offer web page featuring a product offer;

the refresh operation for an entity includes recrawling that web page from the
merchant web site;

the plurality of parameters for an entity of the plurality of entities include an
impression rate of an offer web page and the click rate of the offer web page;

that entity including a brand identifier of that offer web page, a merchant
identifier of that offer web page, and a country identifier of that offer web page, and

wherein generating the neural network model corresponding to the parameter
includes:

training a model based on metadata, the metadata including at least one
of the brand identifier, the country identifier, a day of the week for a prediction

time, and the merchant identifier.

11. A computer program product comprising a nontransitory storage medium, the computer
program product including code that, when executed by processing circuitry of a user
device configured to generate a refresh policy, the method comprising:

receiving, from a repository, entity data representing a plurality of entities, each
of the plurality of entities having a respective value of a quantity, the values of the

quantities being accurate at a previous instant in time;

29

12.

13.

14.

WO 2021/201825 PCT/US2020/025757

for each of the plurality of entities, generating associated values of a plurality of
parameters at a current time, the plurality of parameters including at least one of an
access rate of that entity from the repository or a likelihood of a change in the value of
the quantity of that entity;

selecting a refresh strategy of a plurality of refresh strategies for updating the
value of the quantity of each of the plurality of entities according to a refresh policy;

generating a respective refresh rate for each of the plurality of entities according
to the selected refresh strategy, the refresh rate for an entity of the plurality of entities
being based on the associated values of the plurality of parameters at a sequence of
times comprising the previous instant in time and the current instant of time;

performing a refresh operation on the repository based on the respective refresh
rates for the plurality of entities, the refresh operation being configured to obtain the
value of the quantity of an entity at the current instant of time; and

updating the refresh policy based on a difference between the value of the
quantity at the previous instant in time and the value of the quantity at the current

instant of time of each of the plurality of entities.

The computer program product as in claim 11, wherein each of the plurality of refresh

strategies is represented as an arm of a K-armed adversarial bandits algorithm.

The computer program product as in claim 11, wherein a sum of the respective refresh
rates for the plurality of offers is normalized based on an entity refresh budget

constraint.

The computer program product as in claim 11, wherein updating the refresh policy
includes:

generating, for each of the plurality of entities, a per-entity utility, the per-entity
utility including a product of (i) the access rate for that entity, (i1) the refresh rate for
that entity, and (ii1) a binary function that takes a value of one when the value of the
quantity of the entity at the previous instant in time obtained using a refresh strategy of
the plurality of strategies is not equal to the value of the quantity of the entity at the

current instant of time, and a value of zero when the value of the quantity of the entity

30

15.

16.

WO 2021/201825 PCT/US2020/025757

at the previous instant in time obtained using a refresh strategy of the plurality of

strategies is equal to the value of the quantity of the entity at the current instant of time.

The computer program product as in claim 14, wherein updating the refresh policy
further includes:

adding the per- entity utility for each of the plurality of entities to a reward
parameter at the current instant of time, the reward parameter indicating a relative

usefulness of the refresh strategy at the current instant of time.

An electronic apparatus configured to generate a refresh policy, the electronic apparatus
comprising:

memory; and

controlling circuitry coupled to the memory, the controlling circuitry being
configured to:

receive, from a repository, entity data representing a plurality of entities, each of
the plurality of entities having a respective value of a quantity, the values of the
quantities being accurate at a previous instant in time;

for each of the plurality of entities, generate associated values of a plurality of
parameters at a current time, the plurality of parameters including at least one of n
access rate of that entity from the repository or a likelihood of a change in the value of
the quantity of that entity;

select a refresh strategy of a plurality of refresh strategies for updating the value
of the quantity of each of the plurality of entities according to a refresh policy;

generate a respective refresh rate for each of the plurality of entities according
to the selected refresh strategy, the respective refresh rate for each entity of the plurality
of offers being based on the associated values of the plurality of parameters at a
sequence of times comprising the previous instant in time and the current instant of
time;

perform a refresh operation on the repository based on the respective refresh
rates for the plurality of entities, the refresh operation being configured to obtain the
value of the quantity of an entity at the current instant of time; and

update the refresh policy based on a difference between the value of the quantity
at the previous instant in time and the value of the quantity at the current instant of time

of each of the plurality of entities.

31

17.

18.

19.

20.

WO 2021/201825 PCT/US2020/025757

The electronic apparatus as in claim 16, wherein the refresh policy includes a weight
distribution, the weight distribution representing a respective likelihood that each of the

plurality of refresh strategies is selected.

The electronic apparatus as in claim 17, wherein the controlling circuitry configured to
select the refresh strategy of the plurality of refresh strategies is further configured to:
generate a probability distribution for the refresh strategy over the plurality of
refresh strategies, the probability distribution including a respective probability
corresponding to each of the plurality of refresh strategies; and
perform a random sample of the plurality of refresh strategies according to the

probability distribution to produce the selected refresh strategy.

The electronic apparatus as in claim 18, wherein the controlling circuitry configured to
generate the probability distribution is further configured to:

perform an average of a weight of the weight distribution and a reciprocal of a
number of refresh strategies of the plurality of refresh strategies, the weight

corresponding to the refresh strategy.
The electronic apparatus as in claim 16, wherein the plurality of refresh strategies

includes at least two of a uniform strategy, a change-weighted strategy, a click-

weighted strategy, an impression weighted strategy, and a resource-optimized strategy.

32

WO 2021/201825

PCT/US2020/025757

Computer 120

Network Interface 122

Processing Units 124

Memory 126

Entity Manager 130

Prediction Manager 140

Entity Data 132

Metadata Training Managed

142(1)

Entityvy: 122/N)

Entitv 122(2\

Entity 132(1)

Quantity Data 133(1)

Click Rate Data 134(1)

Impression Rate Data

135(1)

Price Change Liklihood
Data 136(1) |

History Training Manager

142(2)

Metadata and History
Training Manager 142(3)

Metadata 144

History Data 146

Recrawl Manager 150

Recrawl Policy Manager 160

Recrawl Strategy Data 152

Recrawl Strategy ID Data 153

Recrawl Policy Data 162

Recrawl Constraint Data 15

Policy Weight Data 163

Recrawl Rate Data 155

Policy Probability Data 164

Updated Price Data 156

Reward Data 165

FIG. 1A

PCT/US2020/025757
2/7

WO 2021/201825

dl ©ld

. | 7ol
801 W&Eai s|leubig
ejeq jusjuo) ! ~ ebed Amug
\\\\\\\\\\ | } T
o - o . | e o l::iu\,\w
4 M
|
n
|
m
_
;
iiiiiiiiiiiiiiiiiiii e
M i v
;
! ! (ABojess
j - ; Jpueq wie-y|) (C-TICrT
M oSt M G9T Jebeuey siobBeuey
M Jabeue|y |MeIoay M foljod |MeIoay mc_c_mg._.
; |
w ! 07T Jeindwo)
sssssssssssssssssss e
_
| ;
. M o
S = ; Sseuysal
oy i ; e
AN~ S 207
iy O} ietioil ot - - sB07 Bulmes)
) R

WO 2021/201825

2002

PCT/US2020/025757

3/7

Receive entity data including a previous
quantity for each entity 202

é

For each entity, generate current parameter
values 204

i

Select a recrawl strategy for updating the
quantity according to a recrawl policy 208

'

Generate recrawl rate for each entity
according to selected recrawl strategy 208

'

Perform recrawl based on recrawl rate for
each offer to obtain current quantity 210

i

Update recrawl policy based on difference
between current quantity and previous

quantity 212

FIG. 2

PCT/US2020/025757

WO 2021/201825

4/7

[o
LIMesd
-
M 10
. s . g
< pJemal \ <. plemal \

wJoun wJojiun wJojlun

1! 1! 1!

A A A

\Y% \Y% Vv

X X X

(€)ole

(2ole

(L)ole

Moom

PCT/US2020/025757

WO 2021/201825

577

swi|

L+P
2)ep Jo} awly uonoipald

\\ s|eqe

A\

¥ Old

salnjea

<oty
|

v

|melo AlunoH

\

s|ege

4
\\ sainjes

p 8)ep Jo} swi} uololpald

®
N.oov

PCT/US2020/025757

WO 2021/201825

6/7

PCT/US2020/025757

WO 2021/201825

=Y

P
el
-
—
, o
pog
P

9 Ol

3084

\\\ ugss

\\\\

S

A \\ A8 2

,\mmm\,

’ Wﬁ\ g
, Yy £

\%%ﬁﬁ

i)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2020/025757

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F16/951 G06Q30/02
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F GO6Q

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Content",

XP058471353,

DOI: 10.1145/3308558.3313694
ISBN: 978-1-4503-6674-8

the whole document

X HAN SHUGUANG HANSHUGUANG@GOOGLE COM ET AL:
"Predictive Crawling for Commercial Web

THE WORLD WIDE WEB CONFERENCE, ACM, 2 PENN
PLAZA, SUITE 70INEW YORKNY10121-0701USA,
13 May 2019 (2019-05-13), pages 627-637,

1-20

Further documents are listed in the continuation of Box C.

D See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

26 October 2020

Date of mailing of the international search report

03/11/2020

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Chinzer, Azzurra

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2020/025757

C(Continuation).

DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

KOLOBOV ANDREY AKOLOBOV@MICROSOFT COM ET
AL: "Optimal Freshness Crawl Under
Politeness Constraints",

PROCEEDINGS OF THE 42ND INTERNATIONAL ACM
SIGIR CONFERENCE ON RESEARCH AND
DEVELOPMENT IN INFORMATION RETRIEVAL,
ACMPUB27, NEW YORK, NY, USA,

18 July 2019 (2019-07-18), pages 495-504,
XP058454357,

DOI: 10.1145/3331184.3331241

ISBN: 978-1-4503-6172-9

the whole document

Robin Allesiardo ET AL: "The
non-stationary stochastic multi-armed
bandit problem",

International Journal of Data Science and
Analytics, vol. 3, n. 4,

30 March 2017 (2017-03-30), pages 267-283,
XP055726512,

DOI: 10.1007/s41060-017-0050-5

Retrieved from the Internet:
URL:https://Tink.springer.com/content/pdf/
10.1007/s41060-017-0050-5.pdf

[retrieved on 2020-09-01]

1-20

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - wo-search-report
	Page 42 - wo-search-report

