w0 2022/171127 A1 |0 00 K00 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
18 August 2022 (18.08.2022)

(10) International Publication Number

WO 2022/171127 A1l

WIPO I PCT

(51) International Patent Classification:
GO6F 9/54 (2006.01) GO6F 9/50 (2006.01)

(21) International Application Number:
PCT/CN2022/075667

(22) International Filing Date:
09 February 2022 (09.02.2022)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

17/172,407 10 February 2021 (10.02.2021) US
(71) Applicant: INTERNATIONAL BUSINESS

MACHINES CORPORATION [US/US]; New Orchard

Road, Armonk, New York 10504 (US).

(71) Applicant (for MG only): IBM (CHINA) CO., LIMIT-
ED [CN/CN]; 7F, Bldg 10, Zhangjiang Innovation Park,
399 Keyuan Road, Zhangjiang High-Tech Campus, Pudong
New Area, Shanghai 201203 (CN).

Inventors: JONES, David Richard; Hursley Park, Hurs-
ley, SO212JN (GB). PARTRIDGE, Ian; IBM, Hurs-
ley Park, Hursley, Hampshire, SO212JN (GB). BAILEY,
Christopher Neil;, Hursley Park, Hursley, SO212JN (GB).
HAYWARD, Sandra; Hursley Park, Hursley, Hampshire,
SO212JN (GB). SALADAS ZAAIJER, Johanna; Build-
ing G, Hursley, Hampshire (GB). WILSON, Matthew
Paul; Hursley Park, Hursley, SO212JN (GB).

(72)

(74) Agent: ZHONGZI LAW OFFICE; 7F, New Era Build-
ing, 26 Pinganli, Xidajie, Xicheng District, Beijing 100034

(CN).

(54) Title: REDUCING START LATENCY OF SERVERLESS MICROSERVICES

FIG. 1

INCOMING R

INCOMING
REQUEST/

EVENT

EVENT T
MIGROSERVIGE 111

!

SELECTION OF

ALE UP IN RESPONSE
TO INCOMING REQUEST
OR EVENT 112

|

MICROSERVICE
pral

AGTIVATION OF SCALE
UP OF SELECTED
MICROSERVICES]
113
INITIAL SUBSEQUENT SUBSEQUENT

MICROSERVICE

i22

MICHOSERVICE
123

(57) Abstract: A process may reduce start latency of serverless microservices. The processor may detect an incoming request or
event to an application in a serverless microservice environment. The incoming request or event may initiate a chain of invocations
of one or more microservices of the application. The processor may select an amount of selected microservices from the one or more
microservices of the application. The amount of selected microservices may perform a task of the incoming request or event. The task
may apply one or more predefined application-specific rules to one or more elements of the incoming request or event to determine the
amount of selected microservices. The processor may trigger scaling up activation of the one or more microservices of the application.
The processor may invoke the one or more microservices of the application to match the amount of selected microservices.

[Continued on next page]

WO 2022/1711:27 A [IN 000000 00O 0 OO0

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL,CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, IT, JO, JP, KE, KG, KH, KN,
KP,KR,KW,KZ LA, LC,LK,LR,LS,LU,LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,
NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW,
SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ,UA, UG, US,UZ, VC, VN, WS, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

WO 2022/171127 PCT/CN2022/075667

REDUCING START LATENCY OF SERVERLESS MICROSERVICES

BACKGROUND
[0001] The present invention relates to microservice computing systems, and more
specifically, to a microservice activation method for reducing start latency of serverless
microservices.
[0002] It is common practice to decompose complex applications into many independent
parts (referred to as “microservices”), that cooperate via messaging, and the combined set of
microservices represents a complete application.
[0003] Containers are used for deploying microservices of applications in the cloud.
Containers offer significant advantages over previous technologies like Virtual Machines as
they are more portable, quicker to start and stop, and integrate better with continuous
integration and continuous deliver (CI/CD) systems. Multiple containers can be run or
"orchestrated” together, where each container runs a separate microservice and the combined
set of microservices represents a complete application. For example, Kubernetes (Kubernetes
is a trademark of The Linux Foundation) is an open-source container orchestration system for

automating application deployment, scaling, and management.

WO 2022/171127 PCT/CN2022/075667

SUMMARY
[0004] Embodiments of the present disclosure include a method, system, and computer
program product for reducing start latency of serverless microservices. The processor may
detect an incoming request or event to an application in a serverless microservice
environment. The incoming request or event may initiate a chain of invocations of one or
more microservices of the application. The processor may select an amount of selected
microservices from the one or more microservices of the application. The amount of selected
microservices may perform a task of the incoming request or event. The task may apply one
or more predefined application-specific rules to one or more elements of the incoming
request or event to determine the amount of selected microservices. The processor may
trigger scaling up activation of the one or more microservices of the application. The
processor may invoke the one or more microservices of the application to match the amount
of selected microservices.
[0005] The above summary is not intended to describe each illustrated embodiment or every

implementation of the present disclosure.

WO 2022/171127 PCT/CN2022/075667

BRIEF DESCRIPTION OF THE DRAWINGS
[0006] The drawings included in the present disclosure are incorporated into, and form part
of, the specification. They illustrate embodiments of the present disclosure and, along with
the description, serve to explain the principles of the disclosure. The drawings are only
illustrative of certain embodiments and do not limit the disclosure.
[0007] Figure 1 illustrates a flowchart diagram of a method, in accordance with embodiments
of the present disclosure.
[0008] Figure 2 depicts a block diagram of an example embodiment of a system, in
accordance with embodiments of the present disclosure.
[0009] Figure 3A illustrates a block diagram of an example embodiment of an
implementation of a system, in accordance with embodiments of the present disclosure.
[0010] Figure 3B illustrates a flowchart diagram of an example method, in accordance with
embodiments of the present disclosure.
[0011] Figure 4 depicts a schematic diagram, in accordance with embodiments of the present
disclosure.
[0012] Figure 5 illustrates a cloud computing environment, in accordance with embodiments
of the present disclosure.
[0013] Figure 6 illustrates abstraction model layers, in accordance with embodiments of the
present disclosure.
[0014] Figure 7 illustrates a high-level block diagram of an example computer system that
may be used in implementing one or more of the methods, tools, and modules, and any
related functions, described herein, in accordance with embodiments of the present
disclosure.
[0015] While the embodiments described herein are amenable to various modifications and

alternative forms, specifics thereof have been shown by way of example in the drawings and

WO 2022/171127 PCT/CN2022/075667

will be described in detail. It should be understood, however, that the particular embodiments
described are not to be taken in a limiting sense. On the contrary, the intention is to cover all

modifications, equivalents, and alternatives falling within the scope of the disclosure.

WO 2022/171127 PCT/CN2022/075667

DETAILED DESCRIPTION
[0016] A system and a method are provided for reducing start latency of serverless
microservices by reducing cold-start time. Embodiments described herein may reduce cold-
start time by proactively scaling microservices. Such scaling of microservices, may be based
on the detection of an incoming request or event.
[0017] Cloud environments typically bill users according the resources consumed and,
despite containers being less resource hungry, the cost of such "compute" capacity can still be
substantial if left unchecked. Often, idle containers continue to consume resources despite
being idle. Such consumption of resources during an idle state can result, not only in resource
waste but an unnecessary increase in cost. As such, methods and techniques associated with
minimizing the time containers run unnecessarily, particularly during idle states, is desired.
[0018] The practice of running containers on demand, and in particular "scaling to zero"
when idle, is known as "serverless". A variety of open-source projects offer serverless
technologies, for example, the Knative Serving ® project (Knative is a trademark of Google
LLC), which provides "scale to zero" for workloads running on the Kubernetes container
orchestration system. Scaling to zero involves allowing a scaling service to terminate all
instances of a service when there are no requests for the service to process. It is accompanied
by a corresponding ability to scale the service up to one or more instances once such a
request arrives.
[0019] The advantage of serverless is evident as containers are only scaled up and resources
only consumed when there is work in the system. However, serverless comes with a cost as it
takes time to start a container and the application within it. The time taken between a request
coming in and the serverless application being available, also known as the "cold-start"

problem, can result in a significant time delay.

WO 2022/171127 PCT/CN2022/075667

[0020] This problem is exacerbated in a system of microservices where a single incoming
request or event may require the invocation of multiple microservices before the response can
be returned to the user. If each microservice in the system is serverless and has to scale from
zero, the cumulative cold-start time of each microservice may cause large response latencies.
In the worst case, the latency would be the sum of the cold-start time of each microservice.
Hence, there is a need to minimize cold-start latency for serverless microservices.

[0021] Embodiments disclosed herein minimize/reduce cold-start latency for serverless
microservices. Incoming requests or events to a microservice system are typically routed via
an ingress controller such as a boundary firewall, application programming interface (API)
gateway, or other form of ingress controller that validates the incoming request or event and
routes it to an initial microservice inside the orchestration system. After such processes,
handling of the request or event occurs inside the microservice system until a response is
returned from the initial microservice.

[0022] A single incoming request or event may require the invocation of multiple
microservices before the response can be returned to the user. Microservice based
applications are not typically designed so that each microservice is invoked separately by the
client. Instead, the microservices generally invoke each other as needed, forming a
cooperative system. This causes a chain of microservices that may be invoked from a single
incoming request.

[0023] In embodiments, after validating the incoming request or event, a set of required
microservices in the system may be proactively scaled from zero simultaneously. In these
embodiments, by beginning the cold start proactively may increase the likelihood that each
microservice is ready/available by the time it receives a call (e.g., when the microservice is

needed) or, in situations where the microservice is not yet readily available, reduces the cold-

WO 2022/171127 PCT/CN2022/075667

start time. In these embodiments, often cold-start time is reduced because scaling may
already be underway when a request or event is received.

[0024] Embodiments of methods and systems described herein, may scale all the
microservices involved in a single request or event. In addition to reducing cold-start time,
embodiments described herein may also reduce resource waste by scaling the microservice
containers to zero and starting the microservice containers up when it is determined that they
are needed for an incoming request can result in reducing resource waste.

[0025] Referring to Figure 1, a flowchart illustrating an example method 100 is depicted, in
accordance with embodiments of the present disclosure. An incoming request or event 120
may be directed to an application. Such an application may be provided by multiple
microservices. The described microservice activation embodiments contemplated herein,
may be broadly applicable to various microservice deployments. In some embodiments,
microservice deployments may communicate by hypertext transfer protocol
HTTP/representational state transfer (REST) or events.

[0026] In embodiments, incoming request or event 120 may be directed to an initial
microservice 121. In these embodiments, initial microservice 121 may invoke subsequent
microservices 122, 123. In some embodiments microservices 122, 123 may be required for
the fulfillment of a response to the request or event 120.

[0027] In embodiments, microservice activation method 110 may detects 111 an incoming
request or event 120 to an initial microservice 121. In these embodiments, microservice
activation method 110 may select 112 a set of microservices. Such a set of microservices may
be required for the fulfillment of the incoming request or event 120 and therefore need to be
scaled up.

[0028] In embodiments, selection 112 may be based on a set of defined rules that can

determine a set of the microservices of an application that could be required for the incoming

WO 2022/171127 PCT/CN2022/075667

request or event. In some embodiments, a static rule set is defined and applied to selectively
and proactively scale only the components of the application that are predicted to be required
(e.g., those required to process the incoming request). The application of the rules may be
based on elements of the request or event. For example, in embodiments where the request or
event is an HTTP request, the elements may include the request payload and request metadata
or may also include, the elements obtained by parsing the event structure or schema.

[0029] In some embodiments, not all microservices may be involved in every transaction. As
such, selecting only the microservices involved in fulfilling the incoming request may
conserve resources. For example, an application may include a user profile, order processing,
and billing components, and a user's incoming request to update their profile may not involve
the order processing or billing components. As a result, microservices associated with the
user’s request to update their profile would be selected, while the microservices associated
with order processing or billing components would not be selected.

[0030] In embodiments, microservice activation method 110 may activate 113 a scaling up of
the selected microservices 122, 123. This activation may allow selected microservices 122,
123 to be ready and/or getting ready, to be invoked by either the initial microservice 121
and/or an intermediate microservice. This invocation can allow for the fulfillment of the
incoming request or event 120.

[0031] In embodiments, by applying rules to select a subset of the microservices of an
application, may ensure only microservices that are likely to be used in processing the
specific incoming request or event are scaled, rather than scaling the entire application. This
avoids consuming resources, and the associated costs incurred, by needlessly scaling
components that will not be used in the current request or event. The embodiments associated
with the method and system, as contemplated herein, can be applicable to applications with

arbitrary sequences of calls between the individual microservices. By predicting which

WO 2022/171127 PCT/CN2022/075667

microservices may be called, can allow for a more dynamic response to an event or request
that can ensure containers, that are unlikely to be used, that will not be used or activated in
response to the event or request. Minimizing the number of microservices activated/used to
only those required to be used can result in a reduction of resource usage and minimize the
corresponding costs. In these embodiments, the latency associated with a cold start can be
reduced to the time taken by the startup time of the slowest microservice involved, rather than
the cumulative startup time where each service scales as it is invoked. The microservice
activation method may be carried out at various possible stages of a microservices system.
[0032] Referring to Figure 2, a block diagram 200 shows a system that may be provided by
multiple computing systems across a cloud-based computing infrastructure 205 providing a
cloud-based application using microservices 261, 271, 281. The cloud-based computing
infrastructure 205 may include multiple computing systems that each include at least one
processor, a hardware module, or a circuit for executing the functions of components which
may be software units executing on the at least one processor. Each computing system may
include multiple processors running parallel processing threads may be provided enabling
parallel processing of some or all of the functions of the components. Memory may be
configured to provide computer instructions to the at least one processor to carry out the
functionality of the components.

[0033] A client system 201 may interact with the cloud-based application by making
application requests or events 202 and the application will typically perform work in response
to the request or event. An ingress controller 210 may receive the request or event 202 and
may determine the microservice 261, 271, 281 that should receive it.

[0034] An orchestration system 250 is provided for automating application deployment
across microservices. Containers 260, 270, 280 are provided that are orchestrated together

with each container 260, 270, 280 running a separate microservice 261, 271, 281 with a

WO 2022/171127 PCT/CN2022/075667

combined set of microservices providing a complete application. The microservices 261,
271, 281 can be scaled by upscaling or downscaling a number of microservice replicas 262,
263, 272, 273, 282, 283 as required to process incoming requests to an application. The
orchestration system 250 may have an autoscaler system 240 that provides automatic scaling
of the microservices 261, 271, 281. This may be an orchestration system integrated
autoscaler system or another form of autoscaler system such as an event-driven autoscaler.
[0035] The described system includes a microservice activation system 220 for carrying out
the described microservice activation method including a detection component 221, a
selection component 222, and an activation component 223. The components of the
microservice activation system 220 may be provided across various systems in the
infrastructure in order to provide the described method functions to activate required
microservices for an incoming application request or event 202. For example, the
microservice activation system 220 may include components across an ingress controller 210
and an autoscaler system 240 and may use an orchestration system API 230 for interacting
with the orchestration system 250.

[0036] In another form of implementation, the microservice activation system 220 may be
provided by an operator microservice in a container provided in the orchestration system 250
and may detect when an initial microservice scales from zero to one instance, and may scale
the other microservices in the application in response.

[0037] The various embodiments may alert the system to the incoming traffic and proactively
initiate the activation of "scale from zero" for selected microservices of the application. This
allows the microservices required for the incoming traffic to begin their cold-start scaling
before they actually receive any requests or events from other microservices, thereby

reducing or eliminating their cold-start times.

10

WO 2022/171127 PCT/CN2022/075667

[0038] The stages of the method shown in Figure 1 may be implemented in various different
options described below. References to incoming requests may also refer to incoming events
in event-based systems.

[0039] Detection:

[0040] In embodiments, the first stage of the detection 111 of incoming network requests (as
shown in Figure 1) may be provided by a detection component 221. In embodiments,
detection component 221 may perform such detection activates using a variety of
configurations. One such configuration could include, configuring an existing autoscaler
system to scale a single microservice deployment from zero in response to a request. Such a
configuration may be modified to detect an incoming request to scale selected microservices
of the application. Another configuration could include, configuring an operator (e.g.,
running independently in an orchestration system) to monitor the replica count of an initial
microservice that is scaled up (e.g., via existing technology) in response to an incoming
request. In this configuration, when the replica count increases from zero, the selection stage
may be activated. Another configuration could include, configuring an ingress controller to
be responsible for routing incoming requests to their respective endpoints (microservices).
Such a configuration can be configured to know which microservice to route a request to
and/or be modified to activate the selection stage. While the aforementioned configurations
associated with detection component 221 may be discussed separately, detection component
221 may also be configured to have any combination of configurations contemplated herein.
[0041] Selection:

[0042] In embodiments, the second stage of the selection 112 of microservices that are
required for the fulfillment of the incoming request (as shown in Figure 1) may be provided
by the selection component 222. In embodiments, selection component 222 may be

implemented in a variety of configurations. In some embodiments, selection component 222

11

WO 2022/171127 PCT/CN2022/075667

may be configured/implemented by adding Orchestration labels to microservice deployments
in the application relating to selection rules. In these embodiments, a selector can be used to
identify the set of microservices that require scaling. In these embodiments, after the
detection component observes the scaling up of the initial deployment, it may use the
orchestration system API to look up the deployments with the matching label.

[0043] In some embodiments, selection component 222 may be configured/implemented by
an event-driven autoscaler system (e.g., Kubernetes Event-driven Autoscaling (KEDA)). In
these embodiments, an event-driven autoscaler system may be configured so that when a
message arrives on a dedicated event source (e.g., a Kafka topic), microservices selected by
selection rules may be scaled. In these embodiments, a scaling service may apply the
selection rules based on the incoming message and send a wake-up message to the selected
microservices that each receives and consumes the wake-up message. While the
aforementioned configurations associated with selection component 222 may be discussed
separately, selection component 222 may also be configured to have any combination of
configurations contemplated herein.

[0044] Activation:

[0045] The third stage of the activation 113 of microservices that may be required for the
fulfillment of the incoming request (as shown in Figure 1) may be provided by the activation
component 223. In in some embodiments, the activation component 223 may be implemented
in a variety of configurations. In some embodiments, the activation component 223 may be
configured to scale up the microservices by using the orchestration system API to increase
the replica count of subsequent microservices to one. In some embodiments, the activation
component 223 may be configured send an HTTP request to a known endpoint provided by
each of the subsequent microservices. In these embodiments, this can trigger an existing

scaling controller (e.g., Knative Serving® activator) to scale up the microservices to one.

12

WO 2022/171127 PCT/CN2022/075667

Often, in such embodiments, such a request does not cause the microservice to perform actual
work, but simply triggers the microservice to scale. As aresult, a request to a health check
endpoint (such as "/health”) may be used. In some embodiments, the activation component
223 may be configured to send a wake-up message to a dedicated event source (e.g., an event
service topic). While the aforementioned configurations associated with activation
component 223 may be discussed separately, activation component 223 may also be
configured to have any combination of configurations contemplated herein.

[0046] Implementation 1:

[0047] In some embodiments, existing autoscaling technology in an orchestration system or a
serverless system may be enhanced to allow scaling policies to be applied across a set of
microservices. Such an embodiment may reduce the need to have each microservice have its
own individual policy.

[0048] In some embodiments associated with detection, an existing scaling controller may be
configured to already scale a single microservice deployment from zero in response to a
request. In these embodiments, such a configuration may be modified to scale selected
microservices required for the request.

[0049] In some embodiments associated with selection implementations, orchestration labels
may be added to microservice deployments in the application relating to selection rules, such
that a selector can be used to identify the set of microservices that require scaling. After the
detection observes the scaling up of the initial deployment, it may use the orchestration
system API to look up the other deployments with the matching label. In other embodiments,
an event-based scaling controller may be configured so that when a message arrives on a
dedicated event source (e.g., an event topic), selection rules can be applied and the selected

microservices may be scaled.

13

WO 2022/171127 PCT/CN2022/075667

[0050] In some embodiments associated with activation implementations, the selected
microservices may be scaled up by using the orchestration system API to increase the replica
count of subsequent microservices to one.

[0051] Implementation 2:

[0052] In embodiments, an orchestration microservice known as an "Operator" may be
provided to detect when a first microservice scales from zero to one instance and may scale
selected other microservices in the application in response.

[0053] In some embodiments associated detection, an operator (e.g., an operator running
independently in the orchestration system) may monitor the replica count of the initial
microservice. For example, a microservice that is scaled up (e.g., using existing technology)
in response to an incoming request, and when that replica count increases from zero, the
operator may trigger the selection and activation steps as contemplated herein generally, and
particularly below.

[0054] In some embodiments associated selection, orchestration labels may be added to
microservice deployments in the application relating to selection rules, such that a selector
can be used to identify the set of microservices that require scaling. In embodiments, after the
detection component observes the scaling up of the initial deployment, it may use the
orchestration system API to look up the deployments with the matching label.

[0055] In some embodiments associated with activation, microservices may be scaled up by
using the orchestration system API to increase the replica count of subsequent microservices
to one.

[0056] Implementation 3:

[0057] In embodiments, an existing ingress controller or autoscaler may send a broadcast

message to all the microservices in an application to wake them up. Such embodiments may

14

WO 2022/171127 PCT/CN2022/075667

be achieved using a number of known technologies such as an HTTP request to a predefined
endpoint (e.g., "/health").

[0058] In some embodiments associated with detection, the ingress controller may be
responsible for routing incoming requests to their respective endpoints (e.g., microservices).
Such embodiments may enable systems to already know which microservice to route a
request to, and can be modified to implement the selection and activation steps as described
below.

[0059] In some embodiments associated with selection, orchestration labels may be added to
microservice deployments in the application relating to selection rules, such that a selector
can be used to identify the set of microservices that require scaling. In embodiments, after the
detection component observes the scaling up of the initial deployment, it may use the
orchestration system API to look up the deployments with the matching label.

[0060] In some embodiments associated with activation, an HTTP request may be sent to a
known endpoint provided by each of the subsequent microservices. This will trigger an
existing scaling controller to scale up the microservices to one. In these embodiments, this
request must not cause the microservice to do actual work, but simply trigger it to scale. As a
result, a request to a health check endpoint (such as "/health™) would be suitable.

[0061] Implementation 4:

[0062] In embodiments, in an event-driven scaling system, an initial microservice may first
receive the incoming request and may publish a message to a message broker on a predefined
topic. In these embodiments, a subscriber system may subscribe to this topic and scale the
other microservices on receipt of the message.

[0063] In embodiments associated with detection, a first microservice may receive the

message as normal.

15

WO 2022/171127 PCT/CN2022/075667

[0064] In embodiments associated with selection, an event-based scaling controller may be
configured so that when a message arrives on a dedicated event source (e.g., event topic),
microservices selected by selection rules are scaled. In embodiments, scaling service applies
the selection rules based on the incoming message and sends a wake-up message to the
selected microservices that each receives and consumes the wake-up message.

[0065] In embodiments associated with activation, a wake-up message may be sent to the
selected microservices for activation and the message may be consumed by the microservice.

[0066] Implementations with further details for selecting a subset of microservice of an

application for activation:

[0067] In embodiments the selection stage 112 may be provided by the selection component
222. In these embodiments selection component 222 may select a subset of the microservices
of an application and this is described further with two example embodiments. A first
embodiment uses an HTTP based scaling using an ingress controller. A second embodiment
uses event-based scaling using an autoscaler.

[0068] In embodiments, the selection component 222 may provide a proactive scaling service
which can analyze the incoming request and apply a set of pre-defined rules to map a request
to a set of microservices. In embodiments, the selection component 222 may receive the
request and analyzes the request to produce a classification or label. In these embodiments
the selection component 222 applies a set of application-specific rules that map the
classifications or labels to a set of microservices.

[0069] In embodiments, examples of attributes of a request, which may be inspected by the
scaling service, include, but are not limited to. request metadata and request payload. In
embodiments, request metadata may include: HTTP headers (e.g., Content-Type, Content-

Length, custom "x-" headers), HTTP method (e.g., GET, POST), HTTP query parameters,

16

WO 2022/171127 PCT/CN2022/075667

HTTP request path, event topic name. In embodiments, request payload may include the
HTTP body data or event message contents.

[0070] Implementation using HTTP based scaling using an ingress controller:

[0071] In embodiments, a conventional ingress controller is capable of analyzing attributes of
an HTTP request and using this information to determine which microservice should receive
that request. Referring to Figure 3A, an implementation 300 is shown that leverages analysis
of an HTTP request (for example, the method, path, query parameters, and headers) to select
and scale a number of microservices.

[0072] In embodiments, when a request 301 arrives at an ingress controller 310, the request
may be analyzed to determine which microservice 341 the request 301 should be delivered to
and to route the request 301 to an existing autoscaler system 340 for microservice A 341 as
part of its normal function. In embodiments, the ingress controller 310 routes may provide
details of the request to a microservice activation system 320 that may provide a proactive
activation service.

[0073] In embodiments, the microservice activation system 320 may be implemented in a
variety of configurations. In some embodiments one configuration may include the
microservice activation system 320 as an embedded component, such as an ingress controller
plugin, that performs the proactive activation service in addition to the normal function of the
ingress controller 310 of routing requests to the intended endpoint. In some embodiments
another configuration may include the microservice activation system 320 as a separate
component called by the ingress controller 310 in addition to its normal routing function. In
some embodiments another configuration may include the microservice activation system
320 as a separate component that acts as a forwarding proxy. In this embodiment, the ingress

controller 310 may route all traffic to the microservice activation system 320, and the

17

WO 2022/171127 PCT/CN2022/075667

microservice activation system 320 may both forward the request to the intended endpoint as
well as perform the proactive activation service.

[0074] In embodiments, the microservice activation system 320 may include components for
carrying out the method 350 as shown in the flow diagram of Figure 3B. The microservice
activation system 320 may include rules defining component 321 for configuring 351
application-specific rules for types of requests to an application using request attributes and
payloads. Such embodiments may be user-defined rules that may be adapted and
reconfigured as required for the application.

[0075] In embodiments, the microservice activation system 320 may include components for
handling the selection of microservices for an incoming request including, but not limited to:
a request details receiving component 322, a request to rules matching component 323, a
classification component 324, a mapping component 325, a query component 326, and an
activation instruction component 327.

[0076] Referring to Figure 3B, illustrates a flowchart of method 350 depicting operations
associated with microservice activation system 320, in accordance with embodiments of the
disclosure. In embodiments, the microservice activation system 320 receives 352 details for
the incoming request to the application and applies 353 the defined rules to the request
attributes and payloads to determine 354 a classification for the request.

[0077] In embodiments, the classification may be mapped 355 to a selection of microservices
such as by using an orchestration label (such as a text-based label) applied for the
classification or by looking up a list of deployments.

[0078] In embodiments, the method may scale each selected microservice if it is currently
scaled to zero. The microservice activation system 320 may query 356 the orchestrator

system API 330 to obtain the desired replica counts for the deployments. For example, by

18

WO 2022/171127 PCT/CN2022/075667

matching the label, the microservice activation system 320 may use 357 the orchestration
system API 330 to set the replica count for the selected microservices.
[0079] In some embodiments, (e.g., examples discussed in reference to Figure 3A), the
request 301 may be an HTTP POST to "/orders" representing a user creating a new order. In
these embodiments, the initial microservice A 341 may scale from zero using an existing
scaling service.
[0080] The following is an example configuration for a set of rules that may be configured to
match on HTTP request attributes and map them to a set of orchestration deployments or a
single orchestration label:

rules:

- match: method == POST & & path == /orders

- classification = create_order
- match: method == POST && path == /customers

- classification = create_customer

mappings:
- classification: create_order
- deployments: order_service, customer_service, payment_service
- classification: create_customer
- label: create_customer_participant
[0081] In an example embodiments, the deployments may be determined to be microservice
A 341 (order_service), microservice B 342 (customer_service), and/or microservice C 343
(payment_service). In these embodiments, Microservice D 344 is not involved in this request.
The microservice activation system 320 may set the desired replica count to one for any

deployment whose count was currently zero. Such embodiments can allow one method to

19

WO 2022/171127 PCT/CN2022/075667

directly modifying the replica count of each deployment via the orchestration system API
330.

[0082] Continuing this example embodiment, microservice B 342 and microservice C 343
can be scaled to one 331, 332. Microservice A 341 may already be scaled to one via the
existing autoscaler system 340 handling the initial microservice for the request 301.n
Microservice A 341 may processe the request and make a request to microservice B 342,
which is already scaled up and can handle the request immediately. Microservice B 342
processes the request and makes a request to microservice C 343, which is already scaled up.

[0083] Implementation using event-based scaling using an autoscaler:

[0084] In embodiments using an event-driven autoscaler, it may be possible to scale a service
when an event arrives on the event queue. This mechanism is leveraged to intelligently scale
the required microservices within the application.

[0085] An example configuration is provided below for matching an event to a set of services
that are involved assuming a structured format or schema for the event that can be used by

scaling service to parse the message.

rules:
- match: queue == orders && event_type = CREATE
- classification: create_order
- match: queue == customers && event_type = CREATE

- classification: create_customer

mappings:
- classification: create_order

- deployments: order_service, customer_service, payment_service

20

WO 2022/171127 PCT/CN2022/075667

- classification: create_customer
- label: create_customer_participant

[0086] Referring to Figure 4, an example schematic 400 is illustrated, in accordance with
embodiments of the disclosure. In embodiments, schematic 400 includes four microservices
441, 442, 443, 444 in an application, scaling service 450. Scaling service 450 may be
configured to handle the scaling of the required microservices depending on a received event
401. In some embodiments, scaling service 450 may apply predefined application-specific
rules to an incoming event to classify the event and map the classification to microservices to
be activated.
[0087] In embodiments, event 401 may arrive to queue A 451. Scaler A 461 may be
watching 402 queue A 451 and can be configured to detect the activity. In embodiments,
when activity is detected scaler A 461 may initiate 404 the scaling process for microservice A
441. In embodiments, a scaler 460 for the scaling service 450 may also watch queues and
may detect 403 activity on queue A 451. In these embodiments, responsive to detecting 403
activity on queue A 451, scaler 460 may initiate scaling service 450 and scaled up 405, or
initiate scaling processes for the associated microservices.
[0088] Once microservice A 441 and the scaling service 450 are up, the event from queue A
451 can be sent 406, 407 to be processed.
[0089] In embodiments, the scaling service 450 may determine what microservices that are
needed for the event 401 that should be scaled up. If scaling service 450 determines that a
microservice is needed, scaling service 450 can send a “wake up” event 408 to queue B 452
for microservice B 442 and a “wake up” event 409 to queue C 453 for microservice C 443.
In these exemplary embodiments, microservice D 444, that has a scaler D 464 and queue D

454, may be determined to not be part of the event process for this incoming event 401. In

21

WO 2022/171127 PCT/CN2022/075667

some embodiments, multiple scaling services 450 may be available to handle the scaling
more efficiently in bigger applications.

[0090] In embodiments, scaler B 462 and scaler C 463 may detect 410, 411 and the wake-up
event on their respective queues 452, 453. In embodiments, responsive to detecting 410, 411,
scaler B 462 and scaler C 463 may initiate 412, 413 the scaling processes of microservice B
442 and microservice C 443 respectively.

[0091] At this point in exemplary embodiments referenced in Figure 4, or earlier,
microservice A 441 may have finished processing the initial event. In these embodiments,
microservice A441 may continue the process by sending 414 an event to queue B 452 while
microservice B 442 and microservice C 443 are being scaled up.

[0092] In this example embodiment, since microservice B 442 has already been requested to
scale up, microservice B 442 should not take as long to be available. Once microservice B
442 is up/available the event from queue B 452 will be sent 415 to microservice B 442 for
processing. Microservice B 442 may then process the event and send an event 416 to queue C
453. Microservice B 442 may also consume the “wake up” event 408 sent by the scaling
service 450 to remove it from the queue B 452. This embodiment may also prevent
microservice B 442 from being scaled down in the meantime if something else consumes the
event.

[0093] Microservice C 443 may be already up. If microservice C 443 is up, microservice C
443 may receive 417, the event from queue C 453, and processes it. Microservice C 443 may
also consume the “wake up” event 409. “Wake up” event 409 may be sent by the scaling
service 450 to remove it from the queue C 453.

[0094] Figure 5 depicts a block diagram of components of a computing system as used for
the computing system, in accordance with an embodiment of the present disclosure. It should

be appreciated that Figure 5 provides only an illustration of one implementation and does not

22

WO 2022/171127 PCT/CN2022/075667

imply any limitations with regard to the environments in which different embodiments may
be implemented. Many modifications to the depicted environment may be made.

[0095] The computing system can include one or more processors 502, one or more
computer-readable RAMs 504, one or more computer-readable ROMs 506, one or more
computer readable storage media 508, device drivers 512, read/write drive or interface 514,
and network adapter or interface 516, all interconnected over a communications fabric 518.
Communications fabric 518 can be implemented with any architecture designed for passing
data and/or control information between processors (such as microprocessors,
communications and network processors, etc.), system memory, peripheral devices, and any
other hardware components within the system.

[0096] One or more operating systems 510, and application programs 511, such as the
microservice activation system 230 are stored on one or more of the computer readable
storage media 508 for execution by one or more of the processors 502 via one or more of the
respective RAMs 504 (which typically include cache memory). In the illustrated
embodiment, each of the computer readable storage media 508 can be a magnetic disk
storage device of an internal hard drive, CD-ROM, DVD, memory stick, magnetic tape,
magnetic disk, optical disk, a semiconductor storage device such as RAM, ROM, EPROM,
flash memory, or any other computer readable storage media that can store a computer
program and digital information, in accordance with embodiments of the disclosure.

[0097] The computing system can also include a R/W drive or interface 514 to read from and
write to one or more portable computer readable storage media 526. Application programs
511 on the computing system can be stored on one or more of the portable computer readable
storage media 526, read via the respective R/W drive or interface 514 and loaded into the

respective computer readable storage media 508.

23

WO 2022/171127 PCT/CN2022/075667

[0098] The computing system can also include a network adapter or interface 516, such as a
TCP/IP adapter card or wireless communication adapter. Application programs 511 on the
computing system can be downloaded to the computing device from an external computer or
external storage device via a network (for example, the Internet, a local area network or other
wide area networks or wireless networks) and network adapter or interface 516. From the
network adapter or interface 516, the programs may be loaded into the computer readable
storage media 508. The network may comprise copper wires, optical fibers, wireless
transmission, routers, firewalls, switches, gateway computers and edge servers.

[0099] The computing system can also include a display screen 520, a keyboard or keypad
522, and a computer mouse or touchpad 524. Device drivers 512 interface to display screen
520 for imaging, to keyboard or keypad 522, to computer mouse or touchpad 524, and/or to
display screen 520 for pressure sensing of alphanumeric character entry and user selections.
The device drivers 512, R/W drive or interface 514, and network adapter or interface 516 can
comprise hardware and software stored in computer readable storage media 508 and/or ROM
506.

[0100] The present disclosure may be a system, a method, and/or a computer program
product at any possible technical detail level of integration. The computer program product
may include a computer readable storage medium (or media) having computer readable
program instructions thereon for causing a processor to carry out aspects of the present
disclosure.

[0101] The computer readable storage medium can be a tangible device that can retain and
store instructions for use by an instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an electronic storage device, a magnetic
storage device, an optical storage device, an electromagnetic storage device, a semiconductor

storage device, or any suitable combination of the foregoing. A non-exhaustive list of more

24

WO 2022/171127 PCT/CN2022/075667

specific examples of the computer readable storage medium includes the following: a
portable computer diskette, a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory),
a static random access memory (SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a floppy disk, a mechanically encoded
device such as punch-cards or raised structures in a groove having instructions recorded
thereon, and any suitable combination of the foregoing. A computer readable storage
medium, as used herein, is not to be construed as being transitory signals per se, such as radio
waves or other freely propagating electromagnetic waves, electromagnetic waves propagating
through a waveguide or other transmission media (e.g., light pulses passing through a fiber-
optic cable), or electrical signals transmitted through a wire.

[0102] Computer readable program instructions described herein can be downloaded to
respective computing/processing devices from a computer readable storage medium or to an
external computer or external storage device via a network, for example, the Internet, a local
area network, a wide area network and/or a wireless network. The network may comprise
copper transmission cables, optical transmission fibers, wireless transmission, routers,
firewalls, switches, gateway computers and/or edge servers. A network adapter card or
network interface in each computing/processing device receives computer readable program
instructions from the network and forwards the computer readable program instructions for
storage in a computer readable storage medium within the respective computing/processing
device.

[0103] Computer readable program instructions for carrying out operations of the present
invention may be assembler instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions, microcode, firmware instructions,

state-setting data, configuration data for integrated circuitry, or either source code or object

25

WO 2022/171127 PCT/CN2022/075667

code written in any combination of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++, or the like, and procedural
programming languages, such as the "C" programming language or similar programming
languages. The computer readable program instructions may execute entirely on the user's
computer, partly on the user's computer, as a stand-alone software package, partly on the
user's computer and partly on a remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be connected to the user's computer
through any type of network, including a local area network (LAN) or a wide area network
(WAN), or the connection may be made to an external computer (for example, through the
Internet using an Internet Service Provider). In some embodiments, electronic circuitry
including, for example, programmable logic circuitry, field-programmable gate arrays
(FPGA), or programmable logic arrays (PLA) may execute the computer readable program
instructions by utilizing state information of the computer readable program instructions to
personalize the electronic circuitry, in order to perform aspects of the present invention.
[0104] Aspects of the present invention are described herein with reference to flowchart
illustrations and/or block diagrams of methods, apparatus (systems), and computer program
products according to embodiments of the invention. It will be understood that each block of
the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart
illustrations and/or block diagrams, can be implemented by computer readable program
instructions.

[0105] These computer readable program instructions may be provided to a processor of a
computer, or other programmable data processing apparatus to produce a machine, such that
the instructions, which execute via the processor of the computer or other programmable data
processing apparatus, create means for implementing the functions/acts specified in the

flowchart and/or block diagram block or blocks. These computer readable program

26

WO 2022/171127 PCT/CN2022/075667

instructions may also be stored in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/or other devices to function in a
particular manner, such that the computer readable storage medium having instructions stored
therein comprises an article of manufacture including instructions which implement aspects
of the function/act specified in the flowchart and/or block diagram block or blocks.

[0106] The computer readable program instructions may also be loaded onto a computer,
other programmable data processing apparatus, or other device to cause a series of
operational steps to be performed on the computer, other programmable apparatus or other
device to produce a computer implemented process, such that the instructions which execute
on the computer, other programmable apparatus, or other device implement the functions/acts
specified in the flowchart and/or block diagram block or blocks.

[0107] The flowchart and block diagrams in the Figures illustrate the architecture,
functionality, and operation of possible implementations of systems, methods, and computer
program products according to various embodiments of the present invention. In this regard,
each block in the flowchart or block diagrams may represent a module, segment, or portion of
instructions, which comprises one or more executable instructions for implementing the
specified logical function(s). In some alternative implementations, the functions noted in the
blocks may occur out of the order noted in the Figures. For example, two blocks shown in
succession may, in fact, be accomplished as one step, executed concurrently, substantially
concurrently, in a partially or wholly temporally overlapping manner, or the blocks may
sometimes be executed in the reverse order, depending upon the functionality involved. It
will also be noted that each block of the block diagrams and/or flowchart illustration, and
combinations of blocks in the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems that perform the specified functions

or acts or carry out combinations of special purpose hardware and computer instructions.

27

WO 2022/171127 PCT/CN2022/075667

[0108] Cloud Computing:

[0109] It is to be understood that although this disclosure includes a detailed description on
cloud computing, implementation of the teachings recited herein are not limited to a cloud
computing environment. Rather, embodiments of the present invention are capable of being
implemented in conjunction with any other type of computing environment now known or
later developed.

[0110] Cloud computing is a model of service delivery for enabling convenient, on-demand
network access to a shared pool of configurable computing resources (e.g., networks, network
bandwidth, servers, processing, memory, storage, applications, virtual machines, and
services) that can be rapidly provisioned and released with minimal management effort or
interaction with a provider of the service. This cloud model may include at least five
characteristics, at least three service models, and at least four deployment models.

[0111] Characteristics are as follows:

[0112] On-demand self-service: a cloud consumer can unilaterally provision computing
capabilities, such as server time and network storage, as needed automatically without
requiring human interaction with the service’s provider.

[0113] Broad network access: capabilities are available over a network and accessed through
standard mechanisms that promote use by heterogeneous thin or thick client platforms (e.g.,
mobile phones, laptops, and PDAs).

[0114] Resource pooling: the provider’s computing resources are pooled to serve multiple
consumers using a multi-tenant model, with different physical and virtual resources
dynamically assigned and reassigned according to demand. There is a sense of location
independence in that the consumer generally has no control or knowledge over the exact
location of the provided resources but may be able to specify location at a higher level of

abstraction (e.g., country, state, or datacenter).

28

WO 2022/171127 PCT/CN2022/075667

[0115] Rapid elasticity: capabilities can be rapidly and elastically provisioned, in some cases
automatically, to quickly scale out and rapidly released to quickly scale in. To the consumer,
the capabilities available for provisioning often appear to be unlimited and can be purchased
in any quantity at any time.

[0116] Measured service: cloud systems automatically control and optimize resource use by
leveraging a metering capability at some level of abstraction appropriate to the type of service
(e.g., storage, processing, bandwidth, and active user accounts). Resource usage can be
monitored, controlled, and reported, providing transparency for both the provider and
consumer of the utilized service.

[0117] Service Models are as follows:

[0118] Software as a Service (SaaS): the capability provided to the consumer is to use the
provider’s applications running on a cloud infrastructure. The applications are accessible
from various client devices through a thin client interface such as a web browser (e.g., web-
based e-mail). The consumer does not manage or control the underlying cloud infrastructure
including network, servers, operating systems, storage, or even individual application
capabilities, with the possible exception of limited user-specific application configuration
settings.

[0119] Platform as a Service (PaaS): the capability provided to the consumer is to deploy
onto the cloud infrastructure consumer-created or acquired applications created using
programming languages and tools supported by the provider. The consumer does not manage
or control the underlying cloud infrastructure including networks, servers, operating systems,
or storage, but has control over the deployed applications and possibly application hosting
environment configurations.

[0120] Infrastructure as a Service (IaaS): the capability provided to the consumer is to

provision processing, storage, networks, and other fundamental computing resources where

29

WO 2022/171127 PCT/CN2022/075667

the consumer is able to deploy and run arbitrary software, which can include operating
systems and applications. The consumer does not manage or control the underlying cloud
infrastructure but has control over operating systems, storage, deployed applications, and
possibly limited control of select networking components (e.g., host firewalls).

[0121] Deployment Models are as follows:

[0122] Private cloud: the cloud infrastructure is operated solely for an organization. It may
be managed by the organization or a third party and may exist on-premises or off-premises.
[0123] Community cloud: the cloud infrastructure is shared by several organizations and
supports a specific community that has shared concerns (e.g., mission, security requirements,
policy, and compliance considerations). It may be managed by the organizations or a third
party and may exist on-premises or off-premises.

[0124] Public cloud: the cloud infrastructure is made available to the general public or a large
industry group and is owned by an organization selling cloud services.

[0125] Hybrid cloud: the cloud infrastructure is a composition of two or more clouds
(private, community, or public) that remain unique entities but are bound together by
standardized or proprietary technology that enables data and application portability (e.g.,
cloud bursting for load-balancing between clouds).

[0126] A cloud computing environment is service oriented with a focus on statelessness, low
coupling, modularity, and semantic interoperability. At the heart of cloud computing is an
infrastructure that includes a network of interconnected nodes.

[0127] Referring now to Figure 6, illustrative cloud computing environment 50 is depicted.
As shown, cloud computing environment 50 includes one or more cloud computing nodes 10
with which local computing devices used by cloud consumers, such as, for example, personal
digital assistant (PDA) or cellular telephone 54A, desktop computer 54B, laptop computer

54C, and/or automobile computer system 54N may communicate. Nodes 10 may

30

WO 2022/171127 PCT/CN2022/075667

communicate with one another. They may be grouped (not shown) physically or virtually, in
one or more networks, such as Private, Community, Public, or Hybrid clouds as described
hereinabove, or a combination thereof. This allows cloud computing environment 50 to offer
infrastructure, platforms and/or software as services for which a cloud consumer does not
need to maintain resources on a local computing device. It is understood that the types of
computing devices 54A-N shown in Figure 6 are intended to be illustrative only and that
computing nodes 10 and cloud computing environment 50 can communicate with any type of
computerized device over any type of network and/or network addressable connection (e.g.,
using a web browser).

[0128] Referring now to Figure 7, a set of functional abstraction layers provided by cloud
computing environment 50 (Figure 6) is shown. It should be understood in advance that the
components, layers, and functions shown in Figure 7 are intended to be illustrative only and
embodiments of the invention are not limited thereto. As depicted, the following layers and
corresponding functions are provided:

[0129] Hardware and software layer 60 includes hardware and software components.
Examples of hardware components include: mainframes 61; RISC (Reduced Instruction Set
Computer) architecture based servers 62; servers 63; blade servers 64; storage devices 65;
and networks and networking components 66. In some embodiments, software components
include network application server software 67 and database software 68.

[0130] Virtualization layer 70 provides an abstraction layer from which the following
examples of virtual entities may be provided: virtual servers 71; virtual storage 72; virtual
networks 73, including virtual private networks; virtual applications and operating systems
74; and virtual clients 75.

[0131] In one example, management layer 80 may provide the functions described below.

Resource provisioning 81 provides dynamic procurement of computing resources and other

31

WO 2022/171127 PCT/CN2022/075667

resources that are utilized to perform tasks within the cloud computing environment.
Metering and Pricing 82 provide cost tracking as resources are utilized within the cloud
computing environment, and billing or invoicing for consumption of these resources. In one
example, these resources may include application software licenses. Security provides
identity verification for cloud consumers and tasks, as well as protection for data and other
resources. User portal 83 provides access to the cloud computing environment for consumers
and system administrators. Service level management 84 provides cloud computing resource
allocation and management such that required service levels are met. Service Level
Agreement (SLA) planning and fulfillment 85 provide pre-arrangement for, and procurement
of, cloud computing resources for which a future requirement is anticipated in accordance
with an SLA.

[0132] Workloads layer 90 provides examples of functionality for which the cloud
computing environment may be utilized. Examples of workloads and functions which may
be provided from this layer include: mapping and navigation 91; software development and
lifecycle management 92; virtual classroom education delivery 93; data analytics processing
94; transaction processing 95; and microservice activation processing 96.

[0133] A computer program product of the present invention comprises one or more
computer readable hardware storage devices having computer readable program code stored
therein, said program code executable by one or more processors to implement the methods
of the present invention.

[0134] A computer system of the present invention comprises one or more processors, one or
more memories, and one or more computer readable hardware storage devices, said one or
more hardware storage device containing program code executable by the one or more

processors via the one or more memories to implement the methods of the present invention.

32

WO 2022/171127 PCT/CN2022/075667

[0135] The descriptions of the various embodiments of the present invention have been
presented for purposes of illustration, but are not intended to be exhaustive or limited to the
embodiments disclosed. Many modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope of the described embodiments. The
terminology used herein was chosen to best explain the principles of the embodiments, the
practical application or technical improvement over technologies found in the marketplace, or
to enable others of ordinary skill in the art to understand the embodiments disclosed herein.
[0136] Improvements and modifications can be made to the foregoing without departing

from the scope of the present invention.

33

WO 2022/171127 PCT/CN2022/075667

CLAIMS

What is claimed is:

1. A computer-implemented method for reducing start latency of serverless
microservices, comprising:

detecting an incoming request or event to an application in a serverless microservice
environment, wherein the incoming request or event initiates a chain of invocations of one or
more microservices of the application;

selecting an amount of selected microservices from the one or more microservices of
the application, wherein the amount of selected microservices perform a task of the incoming
request or event, and wherein the task applies one or more predefined application-specific
rules to one or more elements of the incoming request or event to determine the amount of
selected microservices;

triggering scaling up activation of the one or more microservices of the application;
and

invoking the one or more microservices of the application to match the amount of

selected microservices.

2. The method of claim 1, wherein selecting the one or more microservices of the
application further includes:

extracting the one or more elements from a payload or one or more attributes of the
incoming request or even, wherein the one or more elements extracted from the payload or
the one or more attributes are extracted elements; and

applying the one or more predefined application-specific rules to the extracted

elements.

34

WO 2022/171127 PCT/CN2022/075667

3. The method of claim 2, wherein extracting one or more elements further includes:
parsing a message of an incoming event according to a structured format for the

event.

4. The method of claim 1, wherein selecting the one or more microservices of the
application further includes:
classifying an incoming request or event, wherein classifying the incoming request or
event includes:
applying the predefined application-specific rules to one or more elements of
the incoming request or event; and
mapping a classification to a subset of the one or more microservices of the

application.

5. The method of claim 4, further including:

applying a label to a microservice deployment, wherein a selector uses the label to
identify the one or more microservices of the application for activating; and

mapping the label to the subset of the one or more microservices of the application,
wherein the label is applied to a list of deployments of the subset the one or more

microservices of the application.

6. The method of claim 5, further including:

querying a microservice orchestrator application programming interface to obtain one

or more replica counts for the amount of selected microservices.

35

WO 2022/171127 PCT/CN2022/075667

7. The method of claim 1, wherein detecting an incoming request or event further
includes:

monitoring a replica count of an initial microservice, wherein the initial microservice
controls the incoming request or event and selects the amount of selected microservices by

detecting a change in the replica count.

8. The method of claim 1, wherein detecting an incoming event further includes:
observing incoming event queues using a scaling service, wherein the scaling service

selects the amount of selected microservices.

9. The method of claim 8, wherein the scaling service further includes:
sending a wake-up event to the incoming event queues to scale up the amount of
selected microservices, wherein the wake-up event is consumed by the microservice to

remove the wake-up event from the incoming event queues.

10. The method of claim 1, further including:
sending a request to a defined endpoint, provided by the one or more selected
microservices, to activate scaling up activation without causing the amount of selected

microservices to perform work.

11. A system for reducing start latency of serverless microservices, the system comprising:

a memory; and

a processor in communication with the memory, the processor being configured to

perform operations comprising:

36

WO 2022/171127 PCT/CN2022/075667

detecting an incoming request or event to an application in a serverless
microservice environment, wherein the incoming request or event initiates a chain of
invocations of one or more microservices of the application;

selecting an amount of selected microservices from the one or more
microservices of the application, wherein the amount of selected microservices perform a
task of the incoming request or event, and wherein the task applies one or more predefined
application-specific rules to one or more elements of the incoming request or event to
determine the amount of selected microservices;

triggering scaling up activation of the one or more microservices of the
application; and

invoking the one or more microservices of the application to match the amount

of selected microservices.

12. The system of claim 11, wherein selecting the amount of selected microservices
includes:

classifying the incoming request or event by applying predefined a set of application-
specific rules to elements of the incoming request or event; and

mapping a classification to a subset of the one or more microservices of the

application microservices of the application.

13. The system of claim 12, further comprises:

querying a microservice orchestrator application programming interface to obtain one
or more replica counts for the amount of selected microservices.
14. The system of claim 11, wherein detecting an incoming request or event further

includes:

37

WO 2022/171127 PCT/CN2022/075667

monitoring a replica count of an initial microservice, wherein the initial microservice
controls the incoming request or event and selects the amount of selected microservices by

detecting a change in the replica count.

15. The system of claim 11, wherein detecting an incoming event further includes:
observing incoming event queues using a scaling service, wherein the scaling service

selects the amount of selected microservices.

16. The system of claim 15, wherein the scaling service further includes:
sending a wake-up event to the incoming event queues to scale up the amount of
selected microservices, wherein the wake-up event is consumed by the microservice to

remove the wake-up event from the incoming event queues.

17. The system of claim 11, wherein the operation further includes:
augmenting an ingress controller to route incoming traffic to an autoscaler of the

microservices environment.

18. The system of claim 11, wherein the operation further includes:
sending a request to a defined endpoint, provided by the one or more selected
microservices, to activate scaling up activation without causing the amount of selected

microservices to perform work.

19. The system of claim 11, wherein the operation further includes:

forwarding and calling one or more proxy components.

38

WO 2022/171127 PCT/CN2022/075667

20. A computer program product for reducing start latency of serverless microservices,
the computer program product comprising a computer readable storage medium having
program instructions embodied therewith, the program instructions executable by a processor
to cause the processors to perform a function, the function comprising:

detecting an incoming request or event to an application in a serverless microservice
environment, wherein the incoming request or event initiates a chain of invocations of one or
more microservices of the application;

selecting an amount of selected microservices from the one or more microservices of
the application, wherein the amount of selected microservices perform a task of the incoming
request or event, and wherein the task applies one or more predefined application-specific
rules to one or more elements of the incoming request or event to determine the amount of
selected microservices;

triggering scaling up activation of the one or more microservices of the application;
and

invoking the one or more microservices of the application to match the amount of

selected microservices.

39

WO 2022/171127

1/8

100

PCT/CN2022/075667

MICROSERVICE ACTIVATION METHOD

110

INCOMING
REQUEST/

EVENT
120

¥

DETECTION OF
INCOMING REQUEST OR
EVENT TO INITIAL
MICROSERVICE 111

'

SELECTION OF
MICROSERVICES TO
SCALE UP IN RESPONSE
TO INCOMING REQUEST
OR EVENT 112

X

4

ACTIVATION OF SCALE
UP OF SELECTED
MICROSERVICES

113

A4

4

INITIAL
MICROSERVICE
121

¥

SUBSEQUENT SUBSEQUENT
MICROSERVICE MICROSERVICE
lez 123

FIG. 1

WO 2022/171127 PCT/CN2022/075667

2/8

CLIENT SYSTEM 201

§ 200

p
APPLICATION REQUEST/EVENT J
202

CLOUD-BASED INFRASTRUCTURE 205

INGRESS CONTROLLER 210

MICROSERVICE ACTIVATION S8YSTEM 220

DETECTION
COMPONENT 221

SELECTION
COMPONENT 222

ACTIVATION
COMPONENT 223

ORCHESTRATION SYSTEM AP1 230

ORCHESTRATION SYSTEM 250

AUTOSCALER SYSTEM 240

CONTAINER
280

CONTAINER
270

MICROSERVICE
261

MICROSERVICE

MICROSERVICE
REPLICA
262

MICROSERVICE
REPLICA
272

MICROSERVICE
REPLICA
283

MICROSERVICE
REPLICA
273

CONTAINER
280

MICROSERVICE
281

MICROSERVICE
REPLICA
282

MICROSERVICE
REPLICA
283

FIG. 2

WO 2022/171127 PCT/CN2022/075667

300
AUTOSCALER MICRO- MICRO- MIGRO- MICRO-
SYSTEM 340 »| SERVICE || SERVICE || SERVICE || SERVICE
A 341 B 342 C 343 D 344
,? & y
;

- INGRESS

REQUEST CONTROLLER
241 310
MICROSERVICE REPLICAS REPLICAS
ACTIVATION SYSTEM 320 0 -1 0-> 1

RULES DEFINING
COMPONENT 321 g ;

AREQUEST DETAILS
RECEIVING
COMPONENT 322

AULES TO REQUEST
MATCHING
COMPONENT 323

CLASSIFICATION
COMPONENT 324

ORCHESTRATION

MAPPING SYSTEM AP! 330
COMPONENT 325

¥

QUERY COMPONENT &
326

ACTIVATION
INSTRUCTION
COMPONENT 327

FI1G. 3A

WO 2022/171127

4/8

CONFIGURE RULES FOR
AN APPLICATION 351

¥

RECEIVE DETAILS OF
INCOMING REQUEST FOR
THE APPLICATION 352

4

APPLY RULES TO THE
REQUEST ATTRIBUTES
AND PAYLOAD 353

v

DETERMINE A
CLASSIFICATION FOR THE
REQUEST 354

kA

MAP CLASSIFICATIONTO
DETERMINE
MICROSERVICES
SELECTION 355

:

QUERY THE
ORCHESTRATOR APl TO
OBTAIN REPLICA GOUNTS
FOR THE MICROSERVICES
356

‘

USE ORCHESTRATOR API
TO SET THE REPLICA
COUNT FOR THE
MICROSERVICES 857

FI1G. 3B

o
(9]
[en]

PCT/CN2022/075667

WO 2022/171127 PCT/CN2022/075667

400
Sgpjﬁiﬂ MICRO- SCALER
e 1 SERVICE B 462
)
---’-6- ¥ ¥ ¥
QUEUE MICRO-
B 452 415 SERVICE
—— B442

WAKE UP
408

scm;;\\

SCALER = 8
460 SERVICE
— 450
MICRO-
SERVICE
C 443
MICRO- QUEUE
A 411 SCALER 413
S%R;/;ZJE D454 G463

& E:y

SCALER
D464

F1G. 4

WO 2022/171127 PCT/CN2022/075667
520
s 512
500 518
b) ! 2
PROCESSOR(S) e /
. g 3o
504 — L DEVICE
RAM(S) - DRIVERS
508 “§8finonnonnannannannannonnonnonnonnones : 3
ROM(S) 530
\t__azz;
514
il - . PORTABLE
COMPUTER READABLE Bl DRIVE OR |denl COMPUTER
INTERFAGE READABLE
STORAGE MEDIA = = STORAGE
g
~ OPERATING SYSTEM(S)
510 516
526
~ APPLICATION PROGRAMS 2
511 NETWORK
— =" Ll ADAPTER OR Hg—# TO NETWORK
{ INTERFAGE
508

FIG. 5

PCT/CN2022/075667

WO 2022/171127

7/8

FI1G. 6

WO 2022/171127 PCT/CN2022/075667

8/8

WORKLOADS

71
VIRTUALIZATION

HARDWARE AND SOFTWARE

4

60

FI1G. 7

INTERNATIONAL SEARCH REPORT International application No.
PCT/CN2022/075667

A. CLASSIFICATION OF SUBJECT MATTER
GOG6F 9/54(2006.01)i; GO6F 9/50(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WPIL, EPODOC, CNPAT, CNKI, IEEE: microservice, latency, serverless, knative, kubernetes, event driv+/al, FaaS, function as
a service, service, session, docker

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 2020364098 A1 (HUAWEI TECHNOLOGIES CO., LTD.) 19 November 2020 1-20
(2020-11-19)
description, paragraphs[0105]-[0194]

A US 2020081745 A1 (NUWEBA LABS LTD.) 12 March 2020 (2020-03-12) 1-20
the whole document

D Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents: “T” later document published after the international filing date or priority
«A” document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand the
to be of particular relevance principle or theory underlying the invention
«g” earlier application or patent but published on or after the international «X» document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive step
«1» document which may throw doubts on priority claim(s) or which is when the document is taken alone
cited to establish the publication date of another citation or other «y» document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is
“0” document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art

“p» document published prior to the international filing date but later than ~ « & document member of the same patent family
the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
28 April 2022 07 May 2022
Name and mailing address of the ISA/CN Authorized officer
National Intellectual Property Administration, PRC
6, Xitucheng Rd., Jimen Bridge, Haidian District, Beijing TANG,Yingyan
100088, China
Facsimile No. (86-10)62019451 Telephone No. 86-(10)-53961367

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/CN2022/075667

Patent document

Publication date

Patent family member(s)

Publication date

cited in search report (day/month/year) (day/month/year)
Us 2020364098 Al 19 November 2020 EP 3742293 Al 25 November 2020
WO 2019153973 Al 15 August 2019
CN 110162413 A 23 August 2019
Us 2020081745 Al 12 March 2020 None

Form PCT/ISA/210 (patent family annex) (January 2015)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - wo-search-report
	Page 51 - wo-search-report

