

(51) ΜΠΚ **C07D 211/90** (2006.01) **C07C 309/07** (2006.01) **A61K 31/4422** (2006.01) **A61P 9/00** (2006.01)

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

- (21), (22) Заявка: 2009106073/04, 16.07.2007
- (24) Дата начала отсчета срока действия патента: 16.07.2007
- (30) Конвенционный приоритет: 21.07.2006 KR 10-2006-0068401
- (45) Опубликовано: 10.11.2010 Бюл. № 31
- (56) Список документов, цитированных в отчете о поиске: WO 02/79158 A1, 10.10.2002. WO 95/25722 A1, 28.09.1995. WO 04/67512 A1, 12.08.2004. WO 03/43989 A1, 30.05.2003. WO 06/043148 A1, 27.04.2006. WO 04/11432 A1, 05.02.2004. RU 2000100282 A, 10.09.2001.
- (85) Дата перевода заявки РСТ на национальную фазу: 24.02.2009
- (86) Заявка РСТ: **KR 2007/003444 (16.07.2007)**
- (87) Публикация РСТ: WO 2008/010659 (24.01.2008)

Адрес для переписки:

129090, Москва, ул.Б.Спасская, 25, стр.3, ООО "Юридическая фирма Городисский и Партнеры", пат.пов. Е.Е.Назиной

(72) Автор(ы):

ЛИ Дзаехеон (КR), ЛИ Моон Суб (КR), ЯНГ Веон Ки (КR), ЙОО Дзаехо (КR), ЛИ Дзае-Чул (КR), ЧОИ Чанг-Дзу (КR), КИМ Хан Кионг (КR), ЧАНГ Янг-Кил (KR), ЛИ Гвансун (КR)

(73) Патентообладатель(и):ХАНМИ ФАРМ. КО., ЛТД. (KR)

(54) **(S)-(-)-АМЛОДИПИНА КАМЗИЛАТ ИЛИ ЕГО ГИДРАТ И ФАРМАЦЕВТИЧЕСКАЯ КОМПОЗИЦИЯ, ВКЛЮЧАЮЩАЯ ИХ**

(57) Реферат:

ი 0

4

2

Данное изобретение относится к (S)-(-)-амлодипина камзилату формулы

$${\rm MeO_2C}$$
 — ${\rm CO_2Et}$ — ${\rm Kampop}$ суль фоновая: кислота

где камфорсульфоновая кислота представляет

собой (1S)-(+)-10-камфорсульфоновую кислоту или (±)-10-камфорсульфоновую кислоту, а также к его гидрату и к фармацевтической композиции, включающей их, которая может применяться в лечении сердечно-сосудистых заболеваний. Технический результат: полученный и описанный (S)-(-)-амлодипина камзилат имеет хорошую фотостабильность и высокую растворимость. 3 н. и 5 з.п. ф-лы, 5 табл., 4 ил.

(51) Int. Cl. CO7D 211/90 (2006.01) CO7C 309/07 (2006.01) A61K 31/4422 (2006.01) A61P 9/00 (2006.01)

(12) ABSTRACT OF INVENTION

- (21), (22) Application: 2009106073/04, 16.07.2007
- (24) Effective date for property rights: **16.07.2007**
- (30) Priority:

21.07.2006 KR 10-2006-0068401

- (45) Date of publication: 10.11.2010 Bull. 31
- (85) Commencement of national phase: 24.02.2009
- (86) PCT application: **KR 2007/003444 (16.07.2007)**

(87) PCT publication: WO 2008/010659 (24.01.2008)

Mail address:

129090, Moskva, ul.B.Spasskaja, 25, str.3, OOO "Juridicheskaja firma Gorodisskij i Partnery", pat.pov. E.E.Nazinoj

(72) Inventor(s):

LI Dzaekheon (KR), LI Moon Sub (KR), JaNG Veon Ki (KR), JOO Dzaekho (KR), LI Dzae-Chul (KR), ChOI Chang-Dzu (KR), KIM Khan Kiong (KR), ChANG Jang-Kil (KR),

(73) Proprietor(s):

LI Gvansun (KR)

KhANMI FARM. KO., LTD. (KR)

$(54) \ \textbf{(S)-(-)-AMLODIPINE CAMSYLATE OR ITS HYDRATE AND PHARMACEUTICAL COMPOSITION INCLUDING THEM}$

(57) Abstract:

FIELD: medicine, pharmaceutics.

SUBSTANCE: claimed invention relates to (S)-(-

)-amlodipine

camsylate

of formula

 $\begin{array}{c|c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$

, where camphorsulfonic acid represents (1S)-(\pm)-10-camphorsulfonic acid or (\pm)-10- camphorsulfonic acid, as well as to its hydrate and to pharmaceutical composition, including them, which can be applied in treatment of cardiovascular diseases.

റ

EFFECT: high photostability and solubility.

8 cl, 3 ex, 5 tbl, 4 dwg

Область техники, к которой относится изобретение

Данное изобретение относится к (S)-(-)-амлодипина камзилату или его гидрату, который имеет хорошую фотостабильность и высокую растворимость, и к фармацевтической композиции, включающей их.

Уровень техники

Амлодипин, непатентованное название для 3-этил-5-метил-2-(2-аминоэтоксиметил)-4-(2-хлорфенил)-6-метил-1,4-дигидро-3,5-пиридиндикарбоксилата, представляет собой длительно действующий блокатор кальциевых каналов, применимый для лечения сердечно-сосудистых заболеваний, таких как стенокардия, гипертензия и застойная кардиоплегия.

Как показано ниже, амлодипин существует в форме двух энантиомеров, имеющих хиральный углерод в 4-положении.

$$MeO_2C$$
 — CO_2Et — MeO_2C — CO_2Et — NH_2 — N

(R)-(+)-Амлодипин и (S)-(-)-амлодипин имеют фармакологические функции, отличающиеся друг от друга. Например, (R)-(+)-амлодипин, вопреки его недостаточной активности по блокированию кальциевых каналов, является мощным ингибитором миграции гладкомышечных клеток, который применяется для предупреждения атеросклероза и рестеноза. (S)-(-)-Амлодипин обладает более высокой активностью по снижению кровяного давления по сравнению с (R)-(+)-амлодипином (см. РСТ публикацию WO 1995/05822): его активность в 2 раза выше, чем активность (R/S)-амлодипина (см. *J. Med. Chem.* 1986, 29, 1696-1702).

Амлодипин в виде свободного основания показывает низкую устойчивость. Поэтому он предпочтительно вводится в форме фармацевтически приемлемой кислотно-аддитивной соли. В этом отношении были разработаны различные кислотно-аддитивные соли (S)-(-)-амлодипина.

В РСТ публикации WO 2006/043148 описан (S)-(-)-амлодипина безилата гемипентагидрат и (S)-(-)-амлодипина безилата дигидрат, но без указания их специфических фармакологических, физических или химических свойств.

В публикации корейской патентной заявки №2005-37498 описано, что (S)-(-)-амлодипина безилата дигидрат имеет повышенную растворимость в воде и высокую биоактивность. Однако данная соль обладает слабой фотостабильностью при воздействии солнечного света. Корейский патент №515294 раскрывает (S)-(-)-амлодипина никотината дигидрат, обладающий хорошим действием на снижение кровяного давления. Однако данная соль также обладает слабой фотостабильностью при воздействии солнечного света.

Публикация корейской патентной заявки №2005-61317 раскрывает (S)-(-)-амлодипина гентизат, который имеет более высокую фотостабильность, чем (S)-(-)-амлодипина безилат. Однако данная соль обладает слабой растворимостью в воде (ее растворимость в дистиллированной воде равна примерно 1 мг/мл), которая не подходит для фармацевтического применения.

Таким образом, существует потребность в создании новой соли (S)-(-)-амлодипина,

имеющей улучшенную фотостабильность и растворимость.

Сущность изобретения

Главная цель данного изобретения состоит в том, чтобы представить новую кислотно-аддитивную соль (S)-(-)-амлодипина, обладающую повышенной стабильностью и растворимостью.

В соответствии с одним аспектом данного изобретения представлен (S)-(-)-амлодипина камзилат формулы (I):

где камфорсульфоновая кислота представляет собой (1S)-(+)-10-камфорсульфоновую кислоту или (±)-10-камфорсульфоновую кислоту.

В данном изобретении также предлагается (S)-(-)-амлодипина камзилата гидрат формулы (II):

где камфорсульфоновая кислота представляет собой (1S)-(+)-10-камфорсульфоновую кислоту или (\pm)-10-камфорсульфоновую кислоту и n равно 1-2.

В данном изобретении также предлагается фармацевтическая композиция для лечения сердечно-сосудистых заболеваний, содержащая (S)-(-)-амлодипина камзилат или его гидрат в качестве активного ингредиента.

Краткое описание чертежей

Приведенные выше и другие цели и признаки данного изобретения станут очевидными из последующего описания изобретения, представленного в сочетании со следующими сопровождающими чертежами, которые соответственно показывают:

фиг.1: рентгенограмма (S)-(-)-амлодипина (1S)-(+)-10-камзилата гидрата;

фиг.2: рентгенограмма (S)-(-)-амлодипина (1S)-(+)-10-камзилата ангидрида;

фиг.3: рентгенограмма (S)-(-)-амлодипина (±)-10-камзилата гидрата; и

фиг.4: график, показывающий зависимое от времени разложение солей (S)-амлодипина при воздействии солнечного света.

Подробное описание изобретения

(S)-(-)-амлодипина камзилат может быть приготовлен: (а) превращением рацемата амлодипина в свободное основание (S)-(-)-амлодипина и (b) взаимодействием свободного основания (S)-(-)-амлодипина с камфорсульфоновой кислотой в растворителе, как показано на схеме реакции 1.

Схема реакций 1

50

20

25

30

15

25

в которой камфорсульфоновая кислота представляет собой (1S)-(+)-10-камфорсульфоновую кислоту или (\pm) -10-камфорсульфоновую кислоту и n равно 1-2.

В схеме реакций 1 стадию (а) можно проводить способом, описанным в РТС публикации WO 95/25722, для получения свободного основания (S)-(-)-амлодипина, имеющего оптическую чистоту, равную 99% (ее) или выше.

Стадию (b) можно проводить в смеси органического растворителя и воды или в смеси полярного растворителя и неполярного растворителя для получения (S)-(-)-амлодипина камзилата в гидратной или ангидридной форме в зависимости от использованного растворителя.

Например, когда растворитель для реакции представляет собой смесь воды и органического растворителя, смешивающегося с водой, например, метанол, этанол, изопропанол, ацетонитрил или ацетон, предпочтительно изопропанол, (S)-(-)-амлодипина камзилат получается в гидратной форме, в которой одна молекула (S)-(-)-амлодипина камзилата окружена одной-двумя молекулами H_2O . В частности, (S)-(-)-амлодипина (1S)-(+)-10-камзилата гидрат имеет содержание влаги от 4 до 6%, и (S)-(-)-амлодипина (\pm)-10-камзилата гидрат имеет содержание влаги от 5 до 6%.

Смесь органического растворителя и воды может иметь смесевое соотношение от 1: 1 до 1:30 (об./об.), предпочтительно от 1:5 до 1:15 (об./об.).

Когда растворитель для реакции представляет собой смесь полярного растворителя (например, метанол, этанол, изопропанол, ацетонитрил, ацетон, диэтиловый эфир, метил-трет-бутиловый эфир и их смесь) и неполярного растворителя (например, гексан, гептан и их смесь), получается (S)-(-)-амлодипина (1S)-(+)-10-камзилата ангидрид. Такая ангидридная форма превращается в гидратную форму, когда она абсорбирует влагу из атмосферы.

В данном изобретении реакционный растворитель может применяться в количестве от 5 до 50 мл, предпочтительно от 10 до 30 мл в расчете на 1,0 г свободного основания (S)-(-)-амлодипина.

Кроме того, стадию (b) можно выполнять при температуре от 0 до 50° С, предпочтительно от 10 до 30° С, в течение 2-24 часов.

- (S)-(-)-амлодипина камзилат или его гидрат, полученный таким образом, имеет определенную рентгенограмму, которая отличается от рентгенограмм известных солей (S)-(-)-амлодипина, как показано на фиг.1-3.
- (S)-(-)-амлодипина камзилат может быть превращен в аморфную форму обычным способом, таким как осаждение растворителем, сушка вымораживанием и распылительная сушка.

Кроме того, из (S)-(-)-амлодипина камзилата или его гидрата может быть изготовлена препаративная форма вместе с традиционным антигипертензивным средством (например, диуретиком, АСЕ ингибитором, блокатором кальциевых

каналов и блокатором рецептора ангиотензина), а также с обычным антигиперлипидемическим средством (например, ловастатином, симвастатином, аторвастатином, росурвастатином и флувастатином).

В соответствии с этим, в данном изобретении предлагается фармацевтическая композиция для лечения сердечно-сосудистых заболеваний, содержащая заявленный (S)-(-)-амлодипина камзилат или его гидрат в качестве активного ингредиента.

Фармацевтическую композицию можно вводить разными путями, включающими пероральное и парентеральное введение, и изготавливать препаративную форму с использованием обычных фармацевтически приемлемых разбавителей или наполнителей, таких как наполнитель, сухой наполнитель, связующее вещество, смачивающие средства, дезинтегрирующие средства и поверхностно-активные вещества.

Твердые препаративные формы для перорального введения могут быть в форме таблетки, пилюли, порошка, гранулы или капсулы, которые могут содержать, по меньшей мере, один наполнитель, такой как крахмал, сахароза, лактоза или желатин, и смазывающее вещество, такое как стеарат магния и тальк.

Жидкая препаративная форма для перорального введения может быть в форме суспензии, раствора, эмульсии или сиропа, который может содержать разбавитель, такой как вода или парафиновое масло, и, по меньшей мере, один наполнитель, такой как смачивающее средство, подсластитель, вкусовая добавка и консерванты.

Препаративная форма для парентерального введения может быть в форме стерильного водного раствора, неводного раствора, суспензии, эмульсии, лиофилизированного продукта или суппозитория. Неводные растворы или суспензии могут содержать пропиленгликоль, полиэтиленгликоль, растительное масло, такое как оливковое масло и инъецируемый сложный эфир, такой как этилолат.

Суппозиторий можно приготовить с использованием основы, такой как витепсол, макрогол, твин 61, масло какао, лауриновое масло и глицериновый желатин.

Обычная суточная доза (S)-(-)-амлодипина камзилата или его гидрата может находиться в интервале от примерно 1,0 до 5,0 мг/кг массы тела, предпочтительно от 2,5 до 4,0 мг/кг массы тела, и может быть введена в разовой дозе или разделенными дозами.

Данное изобретение будет описано более подробно со ссылкой на примеры. Однако следует понимать, что представленное описание не ограничивается определенными примерами.

Пример

40

15

Приготовление 1: Приготовление (S)-(-)-амлодипин-геми-D-тартрат-монодиметилсульфоксид сольвата

1,5 кг (R/S)-амлодипина растворяли в 7,5 л диметилсульфоксида, к которому медленно по каплям добавляли раствор 275,3 г D-(-)винной кислоты в 7,5 л диметилсульфоксида с перемешиванием при комнатной температуре. Полученную суспензию затем перемешивали при комнатной температуре в течение 12 часов, и осажденное твердое вещество фильтровали, промывали 6,0 л диметилсульфоксида и 6,0 л ацетона, и сушили в теплом воздушном потоке при 40°С ночь, получая 771 г (выход: 37,4%) указанного в заголовке соединения в виде белого твердого вещества.

Оптическая чистота: 98.2% ее (обогащенного энантиомера)

Приготовление 2: Приготовление свободного основания (S)-(-)-амлодипина 770 г (S)-(-)-амлодипин-геми-D-тартрат-моно-диметилсульфоксид сольвата,

полученного в приготовлении 1, добавляли к 7,7 л дихлорметана, к этой смеси медленно по каплям добавляли 8,6 л 2 Н раствора гидроксида натрия, и полученную смесь перемешивали при комнатной температуре в течение 40 минут. Органический слой отделяли, промывали 7,7 л воды, сушили над безводным сульфатом натрия и фильтровали. Дихлорметан удаляли при пониженном давлении, и к маслянистому остатку добавляли 1,5 л гексана с последующим выпариванием гексана для получения осадка. К осадившейся белой суспензии медленно добавляли 9 л гексана, и полученную смесь затем перемешивали при комнатной температуре в течение 4 часов, фильтровали, промывали гексаном, и сушили в теплом воздушном потоке при 40°С, получая 525,8 г (выход: 93,9%) указанного в заголовке соединения в виде белого твердого вещества.

Оптическая чистота: 99,9% ее

Пример 1: Приготовление (S)-(-)-амлодипина (1S)-(+)-10-камзилата гидрата

300 г свободного основания (S)-(-)-амлодипина, полученного в приготовлении 2, добавляли к смеси 900 мл изопропанола и 900 мл дистиллированной воды, и к данному содержимому добавляли 170,4 г (1S)-(+)-10-камфорсульфонофой кислоты, и полученную смесь нагревали для получения гомогенного раствора. К данному раствору добавляли 30,0 г активированного угля и перемешивали при комнатной температуре в течение 1 часа. Затем смесь фильтровали через целит и промывали 300 мл изопропанола и 300 мл дистиллированной воды. К фильтрату медленно добавляли 6,3 л дистиллированной воды, перемешивали при 20°С в течение 3 часов, и осадившееся твердое вещество фильтровали. Твердое вещество промывали 600 мл смеси изопропанол-вода (1:5, об./об.), сушили в теплом воздушном потоке при 40°С, получая 414 г (выход: 88,0%) указанного в заголовке соединения в виде белого твердого вещества.

Оптическая чистота: >99,9% ее Содержание влаги: 4.4~4.6%

Т. пл.: 146,3~150,5°С

¹H-ЯМР (300 МГц, CDCl₃) δ (м.д.): 7,75 (c, 4H), 7,45~6,09 (м, 4H, ArH), 5,39 (c, 1H), 4,77 (кв, 2H), 4,03 (м, 2H), 3,85 (м, 2H), 3,58 (с, 3H), 3,35 (м, 2H), 3,05 (кв, 2H), 2,50~2,20 (м, 2H), 2,38 (с, 3H), 2,10~1,80 (м, 3H), 1,75 (м, 1H), 1,38 (м, 1H), 1,15 (т, 3H), 1,00 (с, 3H), 0,80 (с, 3H).

Кристаллическое состояние полученного (S)-(-)-амлодипина (1S)-(+)-10-камзилата гидрата анализировали рентгеновской спектроскопией (фиг.1). Наблюдаемые основные пики при характеристических углах дифракции перечислены в таблице 1.

					Таблиц
2θ	d	I \(\bullet\)	2θ	đ	I /I ⁰
4,2	21,2	100	17,6	5,0	31,4
7,8	11,4	45,9	19,5	4,6	87,1
8,3	10,7	66,3	20,2	4,4	62,7
11,3	7,8	53,3	20,4	4,3	55,2
11,9	7,4	80,3	20,7	4,3	57,2
12,5	7,1	36,3	21,3	4,2	44,9
12,9	6,9	46,7	24,4	3,7	48,0
16,7	5,7	54,6	25,6	3,5	53,5
17,3	5,1	51,9	26,2	3,4	46,9

20: угол дифракции

d: межплоскостное расстояние

 $I/I_0(\%)$: относительная интенсивность пика

Стр.: 7

45

40

15

30

Пример 2: Приготовление (S)-(-)-амлодипина (1S)-(+)-10-камзилата ангидрида

5 г свободного основания (S)-амлодипина, полученного в приготовлении 2, добавляли к 25 мл изопропанола, в котором были растворены 2,85 г (1S)-(+)-10-камфорсульфоновой кислоты. К полученному раствору добавляли 99 мл метил-трет-бутилового эфира (МТВЕ) и 2 мл гексана и смесь перемешивали при комнатной температуре в течение 2 часов. Образовавшееся твердое вещество фильтровали в атмосфере азота и сушили в вакууме, получая 6,4 г (выход: 81,5%) указанного в заголовке соединения в виде белого твердого вещества.

Оптическая чистота: >99,9% ее

Содержание влаги: 0,3% Т. пл.: 145,5~149,4°С

10

45

50

 1 Н-ЯМР данные были одинаковыми с 1 Н-ЯМР данными в примере 1.

Кристаллическое состояние полученного (S)-(-)-амлодипина (1S)-(+)-10-камзилата ангидрида анализировали рентгеновской спектроскопией (фиг.2). Наблюдаемые основные пики при характеристических углах дифракции перечислены в таблице 2.

						Таблица 2
• •	2θ	d	I \(\bullet{I}\)	2θ	d	N 10
20	4,8	18,6	28,0	18,2	4,9	30,9
	10,0	8,9	35,5	18,8	4,7	39,2
	11,0	8,0	27,3	19,8	4,5	100
	13,8	6,4	30,0	20,0	4,5	67,2
	14,3	6,2	25,8	20,5	4,3	27,6
25	16,4	5,4	26,9	23,7	3,8	36,1

20: угол дифракции

d: межплоскостное расстояние

 $I/I_0(\%)$: относительная интенсивность пика

Пример 3: Приготовление (S)-(-)-амлодипина (±)-10-камзилата гидрата

10 г свободного основания (S)-амлодипина, полученного в приготовлении 2, добавляли к 20 мл изопропанола, в котором были полностью растворены 5,68 г (±)-камфорсульфоновой кислоты. В эту смесь медленно по каплям добавляли 200 мл дистиллированной воды. Полученный раствор перемешивали при комнатной температуре в течение 3 часов и затем при 15°C в течение 2 часов и осадившееся твердое вещество фильтровали. Твердое вещество промывали 25 мл смеси изопропанол-вода (1:10, об./об.), сушили в теплом воздушном потоке при 40°C, получая 13,7 г (выход: 87,4%) указанного в заголовке соединения в виде белого твердого вещества.

Оптическая чистота: >99,9% ее

Содержание влаги: 5,4% Т. пл.: 140,2~142,6°С

 1 H-ЯМР данные были одинаковыми с 1 H-ЯМР данными в примере 1.

Кристаллическое состояние полученного гидрата (S)-(-)-амлодипина (±)-10-камзилата анализировали рентгеновской спектроскопией (фиг.3). Наблюдаемые основные пики при характеристических углах дифракции перечислены в таблице 3.

						Таблица 3
)	2θ	d	I /I ₀	2θ	đ	N 0
	3,1	28,6	100	15,7	5,6	48,2
	4,7	19,0	32,5	16,3	5,5	50,8
	5,5	16,2	76,6	17,4	5,1	43,3

9,3	9,6	79,7	19,0	4,7	69,4
11,4	7,8	61,0	20,0	4,4	63,9
12,9	6,9	68,1	20,2	4,4	47,3
13,0	6,8	46,1	21,0	4,2	41,1
15,2	5,8	44,6	25,8	3,5	68,9

20: угол дифракции

10

20

50

d: межплоскостное расстояние

 $I/I_0(\%)$: относительная интенсивность пика

Ссылочный пример 1: Приготовление (S)-(-)-амлодипина (R)-камзилата

10 г свободного основания (S)-амлодипина, полученного в приготовлении 2, и 5,68 г (R)-камфорсульфоновой кислоты растворяли в 20 мл изопропанола, к которому медленно добавляли по каплям 200 мл дистиллированной воды. Полученный раствор перемешивали при комнатной температуре в течение ночи, охлаждали до 15°С и еще перемешивали в течение 1 часа. Осадившееся твердое вещество фильтровали, промывали 25 мл смеси изопропанол-вода (1:10, об./об.), сушили в теплом воздушном потоке при 40°С, получая 9,77 г (выход: 62,3%) указанного в заголовке соединения в виде белого твердого вещества.

Оптическая чистота: >99,9% ее

Содержание влаги: 3,2%

Экспериментальный пример 1: Оценка фотостабильности

Фармацевтическая композиция, содержащая активный ингредиент, должна удовлетворять требуемой стабильности против влажности, температуры и света. В случае лекарственного средства для лечения сердечно-сосудистых заболеваний, таких как гипертензия, в частности, его фотостабильность является важной, так как его обычно назначают вместе с другими лекарственными средствами для продолжительного лечения в запечатанном в бумаге виде, что обычно подвергается воздействию света в течение долгого периода времени. Соответственно, фотостабильность солей (S)-(-)-амлодипина очень важна.

В связи с этим были определены фотостабильности солей (S)-(-)-амлодипина, полученных в примерах 1-3 и ссылочном примере 1, и сравнены с фотостабильностями известного (S)-(-)-амлодипина безилата (РСТ публикация WO 2006/043148) и (S)-(-)-амлодипина никотината дигидрата (корейский патент $N \le 515294$).

100 мг каждой из вышеприведенных 6 солей помещали соответственно в 6 тестпробирок для приготовления 36 образцов (6 образцов на соль), и их подвергали воздействию солнечного света в течение 36 часов. Затем образцы каждой соли забирали с 6-часовыми интервалами и хранили в холодном и темном месте. Спустя 36 часов каждый образец разбавляли смесью 20 мМ буферный раствор ацетата аммония (рH=5,0)-ацетонитрил (1:1, об./об.) и анализировали с помощью ВЭЖХ при следующих условиях:

- колонка: симметрия C8 (4,6 мм × 100 мм, 3,5 мкм, вода, US);
- элюент: 1 л раствора 7 г моногидрата перхлорной кислоты и 1,74 г моногидрофосфата калия в очищенной воде, который устанавливали до рН 2,8 добавлением фосфорной кислоты.

Результаты показаны на фиг.4 и в таблице 4.

							Таблица 4
Corr (C) () oversommen			Чистота	а (площадь, %)			
Соль (S)-(-)-амлодипина	Начальная	6 часов	12 часов	18 часов	24 часа	30 часов	36 часов
Безилат	99,8	99,9	99,4	98,5	96,4	94,4	93,4
Никотината дигидрат	99,8	99,6	99,0	98,3	98,3	98,2	97,9

(R)-Камзилат из ссыл. пр. 1	99,8	99,9	99,7	99,0	98,1	96,2	94,8
(±)-10-Камзилата гидрат из пр. 3	99,8	99,9	99,8	99,7	99,6	99,4	99,3
(1S)-(+)-10-Камзилата ангидрид из пр. 2	99,9	99,9	99,9	99,9	99,8	99,7	99,7
(1S)-(+)-10-Камзилата гидрат из пр. 1	99,9	99,9	99,9	99,8	99,8	99,7	99,7

Как показано на фиг.4 и в таблице 4, (S)-(-)-амлодипина (\pm)-10-камзилата гидрат, а также (S)-(-)-амлодипина (1S)-(+)-10-камзилата гидрат или ангидрид данного изобретения являются высокоустойчивыми, даже когда подвержены воздействию солнечного света в течение 36 часов. В частности, (1S)-(+)-10-камзилатная соль проявляет более высокую фотостабильность по сравнению с (\pm)-10-камзилатной солью. Однако (S)-(-)-амлодипин (R)-камзилат претерпевал примерно 5% разложение, и известный (S)-(-)-амлодипина безилат и (S)-(-)-амлодипина никотината дигидрат примерно 7% и 2% разложение, соответственно, спустя 36 часов.

Кроме того, (S)-(-)-амлодипина безилат и (S)-(-)-амлодипина (R)-камзилат претерпевали изменение в цвете на их поверхности от не совсем белого до коричневого, и они становились частично расплавленными.

Вышеприведенные результаты означают, что (S)-(-)-амлодипина камзилат или его гидрат имеет повышенную фотостабильность по сравнению с известным (S)-(-)-амлодипина безилатом и (S)-(-)-амлодипина никотината дигидратом.

Экспериментальный пример 2: Оценка растворимости

5

40

45

Фармацевтически приемлемый активный ингредиент имеет растворимость в воде не меньше чем 1 мг/мл при рН 1 до 7,5, особенно при значении рН крови, равном примерно 7,4. В соответствии с этим были измерены растворимости и рН величина в точках насыщения амлодипинкамзилатных солей, полученных в примерах 1 и 3 и ссылочном примере 1, и сравнены с теми же величинами амлодипина безилата (Korean Patent Publication No. 1995-7228), амлодипина гентизата (Korean Patent Publication No. 2005-61317) и кристаллического амлодипина камзилата (WO 2002/079158 A1). Измерение выполняли согласно процедуре, описанной в корейской фармакопее, которая включает стадии растворения каждого соединения в дистиллированной воде до насыщения, анализ насыщенного раствора жидкостной хроматографией и измерение растворенного количества каждого соединения в расчете на количество свободного основания амлодипина. Результаты показаны в таблице 5.

				Таблица 5
Соль (S)-(-)-амлодипина	12,5 мг/мл	25,0 мг/мл	50,0 мг/мл	Среднее
Безилат	2,63	2,63	2,61	2,62
Гентизат	1,03	1,03	1,02	1,03
(1S)-(+)-10-Камзилата гидрат из пр. 1	2,72	2,73	2,73	2,72
(R)-Камзилат из ссыл. пр. 1	3,93	3,93	3,94	3,93
(±)-10-Камзилата гидрат из пр. 3	3,42	3,51	3,67	3,54
Кристаллический (R/S)- амлодипина (S)-камзилат	1,02	1,04	1,02	1,03

Как показано в таблице 5, растворимость (S)-(-)-амлодипина камзилата выше, чем растворимость амлодипина безилата, и, в частности, она в 2,6 раза выше, чем известной гентизатной соли или кристаллического амлодипина камзилата.

Несмотря на то, что данное изобретение описано относительно определенных

вариантов осуществления, следует признать, что специалистами в данной области могут быть сделаны различные модификации и изменения в изобретении, которые также попадают в объем изобретения, столь же определенного как приложенная формула изобретения.

Формула изобретения

1. (S)-(-)-Амлодипина камзилат формулы (I)

10

15

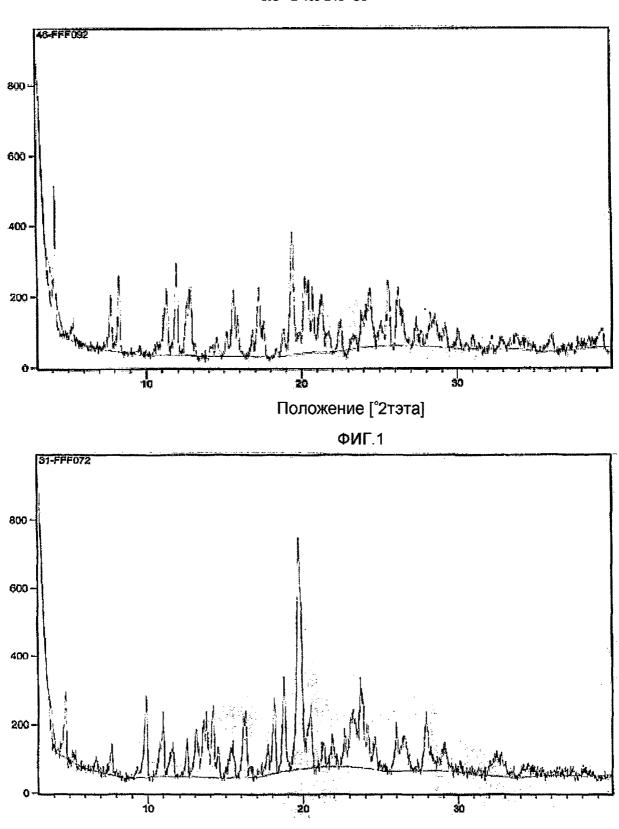
20

MeO
$$_2$$
С Со $_2$ Еt . Камфорсульфоновая кислота

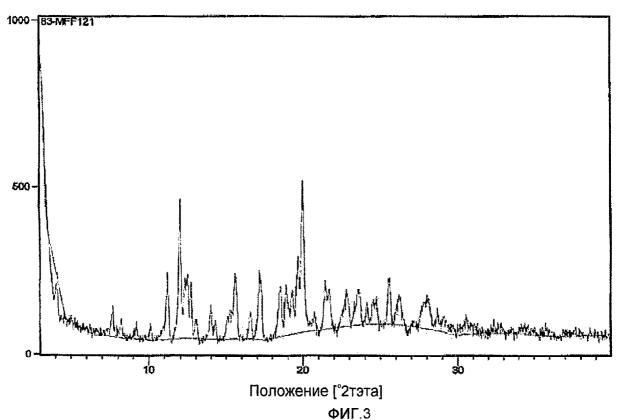
где камфорсульфоновая кислота представляет собой (1S)-(+)-10-камфорсульфоновую кислоту или (\pm) -10-камфорсульфоновую кислоту.

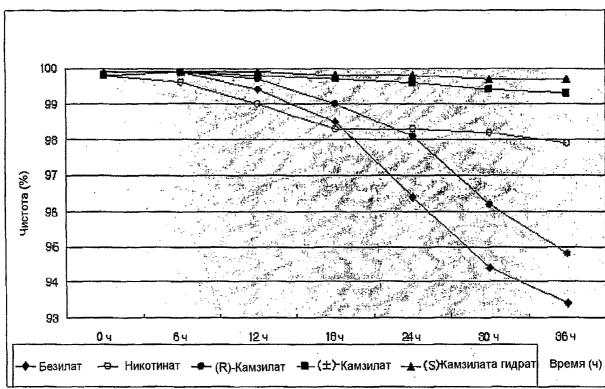
- 2. (S)-(-)-Амлодипина камзилат по п.1, где камфорсульфоновая кислота представляет собой (1S)-(+)-10-камфорсульфоновую кислоту и его порошковая рентгенограмма показывает главные пики при угле 2θ , $4,8\pm0,2$, $10,0\pm0,2$, $11,0\pm0,2$, $13,8\pm0,2$, $14,3\pm0,2$, $16,4\pm0,2$, $18,2\pm0,2$, $18,8\pm0,2$, $19,8\pm0,2$, $20,0\pm0,2$, $20,5\pm0,2$ и $23,7\pm0,2$.
- 3. (S)-(-)-Амлодипина камзилат по п.1, который представляет собой аморфную форму, имеющий т.п. 88°С.
 - 4. (S)-(-)-Амлодипина камзилата гидрат формулы (II)

30
 Cl . $^{\rm nH_2O}$ Камфорсульфоновая кислота $^{\rm NH_2}$


где камфорсульфоновая кислота представляет собой (1S)-(+)-10-камфорсульфоновую кислоту или (±)-10-камфорсульфоновую кислоту и п равно 1-2.

- 5. (S)-(-)-Амлодипина камзилата гидрат по п.4, где камфорсульфоновая кислота представляет собой (1S)-(+)-10-камфорсульфоновую кислоту и его порошковая рентгенограмма показывает главные пики при угле 2θ , $4,2\pm0,2$, $7,8\pm0,2$, $8,3\pm0,2$, $11,3\pm0,2$, $11,9\pm0,2$, $12,5\pm0,2$, $12,9\pm0,2$, $16,7\pm0,2$, $17,3\pm0,2$, $17,6\pm0,2$, $19,5\pm0,2$, $20,2\pm0,2$, $20,4\pm0,2$, $20,7\pm0,2$, $21,3\pm0,2$, $24,4\pm0,2$, $25,6\pm0,2$ и $26,2\pm0,2$.
- 6. (S)-(-)-Амлодипина камзилата гидрат по п.4, в котором камфорсульфоновая кислота представляет собой (\pm)-10-камфорсульфоновую кислоту и его порошковая рентгенограмма показывает главные пики при угле 20, 3,1 \pm 0,2, 4,7 \pm 0,2, 5,5 \pm 0,2, 9,3 \pm 0,2, 11,4 \pm 0,2, 12,9 \pm 0,2, 13,0 \pm 0,2, 15,2 \pm 0,2, 15,7 \pm 0,2, 16,3 \pm 0,2, 17,4 \pm 0,2, 19,0 \pm 0,2, 20,0 \pm 0,2, 20,2 \pm 0,2, 21,0 \pm 0,2 и 25,8 \pm 0,2.
- 7. Фармацевтическая композиция для лечения сердечно-сосудистых заболеваний, содержащая (S)-(-)-амлодипина камзилат по п.1 или (S)-(-)-амлодипина камзилата гидрат по п.4 в качестве активного ингредиента.
 - 8. Фармацевтическая композиция по п.7, где сердечно-сосудистое заболевание


RU 2 403 241 C1


представляет собой стенокардию, гипертензию или застойную кардиоплегию.

5			
10			
15			
20			
25			
<i>30 35</i>			
40			
45			

Положение [°2тэта] ФИГ.2

ФИГ.4