wO 20247205907 A1 |0 00000 KOO0 000 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
03 October 2024 (03.10.2024)

(10) International Publication Number

WO 2024/205907 Al

WIPO I PCT

(51) International Patent Classification:
GO6F 21/57 (2013.01) GO6F 8/75 (2018.01)
GO6F 8/33 (2018.01) GO6F 11/36 (2006.01)
GO6F 8/41 (2018.01)

(21) International Application Number:
PCT/US2024/019627

(22) International Filing Date:
13 March 2024 (13.03.2024)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

18/190,278 27 March 2023 (27.03.2023) UsS

(71) Applicant: MICROSOFT TECHNOLOGY LI-
CENSING, LLC [US/US]; One Microsoft Way, Redmond,
Washington 98052-6399 (US).

(72) Inventors: MILLER, Anitta Maria; Microsoft Technolo-
gy Licensing, LLC, One Microsoft Way, Redmond, Wash-
ington 98052-6399 (US). MADDERLA, Sangeetha; Mi-
crosoft Technology Licensing, LLC, One Microsoft Way,
Redmond, Washington 98052-6399 (US). CRANFILL,
Cody Ray; Microsoft Technology Licensing, LLC, One
Microsoft Way, Redmond, Washington 98052-6399 (US).
NIELSEN, Joshua Thomas; Microsoft Technology Li-
censing, LLC, One Microsoft Way, Redmond, Washington
98052-6399 (US). MURRAY, Lori Ann; Microsoft Tech-
nology Licensing, LLC, One Microsoft Way, Redmond,
Washington 98052-6399 (US). MOCK, Jason Lancast-
er;, Microsoft Technology Licensing, LLC, One Microsoft
Way, Redmond, Washington 98052-6399 (US). CHKO-

(54) Title: GENERATING AND FORMATTING A FLOWCHART FROM EMBEDDED OBJECTS IN SOURCE CODE

AST
800

Merge Ve ~\
805 Node

S,
/

Flowchart
810

,________________,

’
.

Declare Variable

Flowchart Node

815

Text
820

Friendly Name
825

Figure 8

(57) Abstract: Techniques for generating a workflow diagram automatically from code are described herein. The diagram can be
generated in real-time with code changes or as a batch-processing operation to generate drawings as documentation. An extent delineator
is identified in the source code. Based on the location of that extent delineator, a determination is made that multiple lines of the source
code share a relationship with one another. An extent is formed by grouping those lines together. An AST, which is based on the code,
is accessed. Multiple AST nodes are identified. These nodes correspond to the extent. A flowchart is generated based on (i) the AST, (ii)
the source code, and (iii) the extent delineator. One of the flowchart nodes commonly represents the multiple AST nodes corresponding
to the extent. This flowchart node is annotated with text that generally describes that node's logic.

[Continued on next page]

WO 2024/205907 A1 | [I 1]} 00 000000 0 O

DROY, Gueorgui Bonov; Microsoft Technology Licens-
ing, LLC, One Microsoft Way, Redmond, Washington
98052-6399 (US). NICOLESCU, Dan Alexandru;, Mi-
crosoft Technology Licensing, LLC, One Microsoft Way,
Redmond, Washington 98052-6399 (US). BASHA, Akrem
Juneidi; Microsoft Technology Licensing, LLC, One Mi-
crosoft Way, Redmond, Washington 98052-6399 (US).
MACKENZIE, William Duncan, Microsoft Technology
Licensing, LLC, One Microsoft Way, Redmond, Washing-
ton 98052-6399 (US).

(74) Agent: CHATTERJEE, Aaron C. ¢t al.; Microsoft Tech-
nology Licensing, LLC, One Microsoft Way, Redmond,
Washington 98052-6399 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CV, CZ, DE, DJ, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN,HR,HU, ID, IL, IN, IQ, IR, IS, IT, JM, JO, JP,KE, KG,
KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY,
MA, MD, MG, MK, MN, MU, MW, MX, MY, MZ, NA,
NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO,
RS, RU,RW, SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS,
ZA,ZM,ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, CV,
GH, GM, KE, LR,LS, MW, MZ,NA,RW, SC, SD, SL, ST,
SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ,
RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ,
DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT,
LU, LV, MC, ME, MK, MT, NL, NO, PL, PT, RO, RS, SE,
SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— as to applicant's entitlement to apply for and be granted a
patent (Rule 4.17(ii))

— as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

— with international search report (Art. 21(3))

— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

10

15

20

25

35

WO 2024/205907 PCT/US2024/019627

GENERATING AND FORMATTING A FLOWCHART FROM EMBEDDED OBJECTS
IN SOURCE CODE

BACKGROUND

[0001] When a program is being developed, one of the first steps often involves creating a
flowchart or workflow diagram that outlines the proposed logic for the program. This flowchart
operates as a guide for developing the source code. It also operates to help developers think
through many of the issues that the program will likely face, so the developers can then create
logic to address those issues. During the actual development of the program, developers will often
incorporate new logic changes in the code’s decision steps or will integrate new enrichments to
the code.
[0002] There are various programs available for manually creating a flowchart. One problem
that exists today is that no manual solution for generating or updating the flowchart can keep up
with the changes that are made while developing code while also scaling at an enterprise level.
What is needed, therefore, is an improved technique for updating flowcharts that represent the
changing logic of source code.
[0003] The subject matter claimed herein is not limited to embodiments that solve any
disadvantages or that operate only in environments such as those described above. Rather, this
background is only provided to illustrate one exemplary technology area where some
embodiments described herein may be practiced.

BRIEF SUMMARY
[0004] Embodiments disclosed herein relate to systems, devices, and methods for generating
a flowchart from embedded objects (e.g., extent delineators, text, hints, etc.) in source code.
[0005] Some embodiments identify, from within a body of source code, an extent delineator.
Based on a location of the extent delineator within the body of source code, a determination is
made that multiple lines of the source code share a relationship with one another. An extent is
formed by grouping the multiple lines of the source code together. An abstract syntax tree (AST)
is accessed. where this AST is generated based on the body of source code. The embodiments
identify multiple AST nodes in the AST. The identified AST nodes correspond to the extent. The
embodiments generate a [lowchart based on (i) the AST, (ii) the source code, and (iii) the extent
delineator. One of the flowchart nodes commonly represents the multiple AST nodes
corresponding to the extent. This flowchart node is annotated with text, and the text describes the
multiple AST nodes as a whole.
[0006] Some embodiments determine, based on a location of an identified extent delineator

included within source code, that multiple logical lines of code (LLOC), which are included in the

1

10

15

20

25

35

WO 2024/205907 PCT/US2024/019627

source code, share a relationship with one another. The embodiments form an extent by grouping
the multiple LLOC. An abstract syntax tree (AST) is accessed, and this AST is generated based
on the source code. Multiple AST nodes in the AST are identified. These AST nodes correspond
to the multiple LLOC forming the extent. The embodiments generate a flowchart outlining logic
defined by the source code. One of the flowchart nodes commonly represents multiple logic
operations defined by the AST nodes corresponding to the extent. The embodiments annotate the
flowchart node with text. This text collectively describes the multiple logic operations.
[0007] This Summary is provided to introduce a selection of concepts in a simplified form
that are further described below in the Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed subject matter, nor is it intended to be
used as an aid in determining the scope of the claimed subject matter.
[0008] Additional features and advantages will be set forth in the description which follows,
and in part will be obvious from the description, or may be learned by the practice of the teachings
herein. Features and advantages of the invention may be realized and obtained by means of the
instruments and combinations particularly pointed out in the appended claims. Features of the
present invention will become more fully apparent from the following description and appended
claims, or may be leamed by the practice of the invention as set forth hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS
[0009] In order to describe the manner in which the above-recited and other advantages and
features can be obtained, a more particular description of the subject matter briefly described
above will be rendered by reference to specific embodiments which are illustrated in the appended
drawings. Understanding that these drawings depict only typical embodiments and are not
therefore to be considered to be limiting in scope, embodiments will be described and explained
with additional specificity and detail through the use of the accompanying drawings in which:
[0010] Figure 1 illustrates an example of a code editor that includes code, including multiple
logical lines of code (LLOC).
[0011] Figure 2 illustrates an example architecture for generating and formatting a flowchart
using embedded objects (e.g., extent delineators, comment text, hints, etc.) in source code.
[0012] Figure 3 illustrates an example of an abstract syntax tree (AST).
[0013] Figure 4 illustrates an example of an extent and an extent delineator.
[0014] Figure 5 illustrates other examples of extent delineators.
[0015] Figure 6 illustrates other examples of extent delineators.
[0016] Figure 7 illustrates other examples of extent delineators.
[0017] Figure 8 illustrates how a flowchart can be generated.

[0018] Figure 9 illustrates examples of extents.

2

10

15

20

25

WO 2024/205907 PCT/US2024/019627

[0019] Figures 10, 11, 12, 13, 14, and 15 illustrate various examples of flowcharts.
[0020] Figure 16 illustrates an example of a customization that can be made to a flowchart by
embedding a hint in the source code.
[0021] Figure 17 illustrates a customized flowchart.
[0022] Figure 18 illustrates various formatting that can be applied to a flowchart.
[0023] Figures 19 and 20 illustrate flowcharts of example methods for generating workflow
diagrams.
[0024] Figure 21 illustrates an example computer system that can be configured to perform
any of the disclosed operations.

DETAILED DESCRIPTION
[0025] Embodiments disclosed herein relate to systems, devices, and methods for generating
and optionally formatting a flowchart from embedded objects (e.g., extent delineators, comment
text, hints, etc.) in source code. The flowchart diagram can be generated automatically from code.
Also, the diagram can be generated in real-time with code changes or as a batch-processing
operation to generate drawings as documentation.
[0026] Some embodiments identify an extent delineator in a body of source code. Based on a
location of that extent delineator, a determination is made that multiple lines of the source code
share a relationship with one another. An extent is formed by grouping those lines together. In
some cases, an extent can be based on a selection experience in a coding editor. For instance, an
example of an extent can be the selection of certain lines of code. An abstract syntax tree (AST),
which is based on the code, is accessed. Multiple AST nodes are identified. These nodes
correspond to the extent. A flowchart is generated based on (i) the AST, (i1) the source code, and
(i11) the extent delineator. One of the flowchart nodes commonly represents the multiple AST
nodes corresponding to the extent. This flowchart node is annotated with text that generally
describes the multiple AST nodes.
[0027] Some embodiments determine, based on a location of an extent delineator included in
source code, that multiple logical lines of code (LLOC) share a relationship. The embodiments
form an extent by grouping these multiple LLOC. An AST is accessed. Multiple AST nodes are
identified. These AST nodes correspond to the multiple LLOC forming the extent. The
embodiments generate a flowchart outlining logic delined by the source code. As used herein, the
terms “logic™ and “logical operations™ generally refers to a set of actions or elements arranged in
a manner so as to achieve a specific task or desired outcome. One of the flowchart nodes
commonly represents logic operations defined by the AST nodes corresponding to the extent. The

flowchart node is annotated with text, which collectively describes the logic.

10

15

20

25

35

WO 2024/205907 PCT/US2024/019627

Examples Of Technical Benefits. Improvements. And Practical Applications

[0028] The following section outlines some example improvements and practical applications
provided by the disclosed embodiments. It will be appreciated, however, that these are just
examples only and that the embodiments are not limited to only these improvements.

[0029] When a program is being developed, one of the first steps often involves creating a
flowchart that outlines the logic for the program. This flowchart operates as a guide for developing
the source code. It also operates to help developers think through many of the issues that the
program will likely face, so the developers can then create logic to address those issues. During
the actual development of the program, developers will often incorporate new logic changes in
the code’s decision steps or will integrate new enrichments to the code. One problem that exists
today is that no manual solution for generating or updating the flowchart can keep up with these
changes while also scaling at an enterprise level. The disclosed embodiments solve the problem
of maintaining accurate flow charts representing the logic of a program’s source code.

[0030] To do so, the embodiments intelligently group logically related program statements
into extents. These extents are often defined by or identified through the use of extent delineators,
one of which can be in the form of a code comment. The flowchart can then be generated and/or
updated by integrating comments into the source code. When the comments are updated, the
embodiments update the flowchart, thereby rendering an accurate and up-to-date flow chart
through the development process's lifecycle.

[0031] Experienced developers read large amounts of code. It is often the case, however, that
these developers do not attempt to read the code from beginning to end like one would read a
book. Instead, they glimpse at the method/function signatures and occasional comments that are
sprinkled through the code. Doing so allows them to mentally construct a global picture.
Traditionally, one of the primary ways to convey such global understanding to non-coders was by
manually creating a workflow diagram (aka a flowchart). Looking at the diagram allows non-
coders to understand the logic at a level of abstraction and to express opinions about what should
be done differentlyv. Unfortunately, the price to get such feedback was manual work to maintain
the workflow diagrams so that they remained in sync with the code. If a top-down definition of a
process changed, somebody would have had to spend time to update not only the code but also
the flowchart.

[0032] Beneficially, the disclosed embodiments are able to generate a workflow diagram
automatically from extents in the code, which may include comments. Doing so eliminates the
necessity of manual work to create diagrams and to keep the code and the diagrams always in
sync. It also allows leveraging of the ecosystem of tools for code version control, showing version

differences, and even automatic deplovment. Additionally, there is now no need to keep the

4

10

15

20

25

35

WO 2024/205907 PCT/US2024/019627

diagrams as extra files.

[0033] Flowcharts play a beneficial role in displaying information and assisting reasoning by
making explicit the structure of problems, tasks, and logic. As indicated above, this process can
be quite costly if the code changes or if new features are introduced into the program.
Advantageously. the embodiments enable the generation of a scalable and low-cost graphical
representation of the logic that is included in source code. In some cases, these benefits are
achieved by auto-generating the flowchart based on comments in the code.

[0034] Beneficially, the disclosed diagrams can be produced from the code. The diagrams
represent a level of abstraction such that thev do not or might not show all of the code details. The
embodiments also beneficially provide a real-time interactive experience in which the developer
writes the code and the diagram is auto-updated.

[0035] It is worth observing that there are some products that do the opposite. That is, these
products generate code from an existing diagram. There are also products that claim to be “low-
code™ and “workflow,” but the developer is required to define every step and decision, which is
essentially just coding. In contrast, the disclosed embodiments support a wide range of options.
For instance, the embodiments can operate in a scenario involving an isomorphic diagram to a
scenario involving top-level pseudo-code in which comments are interleaved into scripts of
arbitrary size and complexity.

[0036] By following the disclosed principles, additional benefits will also be realized. For
instance, the source code will be more legible because the code will be populated with descriptive
comments. The embodiments also incentive the use of established and correct coding principles,
thereby bringing a level of standardization to how code is developed. The disclosed processes can
also help improve version control of code as well as provide documentation as to how the code
has changed over time. Accordingly, these and many other benefits will now be described in more
detail throughout the remaining portions of this disclosure.

Developing Source Code

[0037] Attention will now be directed to Figure 1, which illustrates an example code editor
100 that may be used to assist a developer in developing a software application. The code editor
100 can be any type of code editor. For instance, in some scenarios, the code editor 100 can be in
the form of a website code editor 100A hosted in an online platform. In some scenarios, the code
editor 100 can be in the form of an integrated development environment (IDE) 100B. Other types
of code editors can be used, even ones configured as a simple text editor.

[0038] As shown, the code editor 100 is being used to develop source code 105. The source
code 105 includes any number of logical lines of code (LLOC), such as LLOC 110, 115, and 120.

As used herein, an “LLOC™ refers to a program statement that is implemented by a code

10

15

20

25

35

WO 2024/205907 PCT/US2024/019627

development application. An LLOC can optionally be presented on multiple different lines in the
code editor 100. Regardless, an LLOC is an executable statement that will be interpreted by a
compiler.

[0039] An LLOC should be viewed as being distinct relative to statements that will not be
compiled and executed even though those statements are included in the source code 105. One
example of a non-executable statement is a comment, such as comment 125. Comment 125
typically includes text used to help improve the readability of the source code 105 and/or to
otherwise provide additional useful information describing various LLOC. In the example shown
in Figure 1, comment 125 is shown has having a number of delimiters or delineators in the form
of the forward slashes (“//”). Different programming languages will use different delimiters to
reflect whether a statement is a comment.

[0040] Comment 125 is associated with text, which reads “Declare variables.” In the lines of
code following the comment (e.g., lines 18, 19, and 20), the program includes a number of
declarations for a number of variables. Comment 125 is thus providing additional context with
regard to the next few lines of code.

Example Architecture

[0041] Attention will now be directed to Figure 2, which illustrates an example architecture
200 that 1s able to provide the benefits mentioned earlier and that is able to facilitate the generation
of a flowchart based on (1) source code, (i1) certain identified delineators embedded in that source
code, and (ii1) an abstract syntax tree (AST).

[0042] Architecture 200 is shown as including a service 205. As used herein, the term
“service” refers to an automated program that is tasked with performing different actions based
on input. In some cases, service 205 can be a deterministic service that operates fully given a set
of inputs and without a randomization factor. In other cases, service 205 can be or can include a
machine learning (ML) or artificial intelligence engine.

[0043] As used herein, reference to any type of machine learning or artificial intelligence may
include any type of machine leaming algorithm or device, convolutional neural network(s),
multilayer neural network(s), recursive neural network(s), deep neural network(s), decision tree
model(s) (e.g., decision trees, random forests, and gradient boosted trees) linear regression
model(s), logistic regression model(s), support vector machine(s) (“SVM?”), artificial intelligence
device(s), or any other type of intelligent computing system. Any amount of training data may be
used (and perhaps later refined) to train the machine leaming algorithm to dynamically perform
the disclosed operations.

[0044] In some cases, service 205 is a local service implemented on a computing device. In

some cases, service 205 is a cloud service operating in a cloud environment. In some cases, service

6

10

15

20

25

35

WO 2024/205907 PCT/US2024/019627

205 can be a hybrid type of service that includes a local component operating on a local system
and a cloud component operating in a cloud environment.

[0045] Service 205 is shown as accessing a file 210. File 210 includes source code 215, such
as the source code 105 from Figure 1. The code 215 can include any number or type of comments,
as shown by comment 220. Comment 220 is representative of the comment 125 from Figure 1.
File 210 can also include or be associated with an abstract syntax tree (AST) 225. Some text,
particularly source code, often has a syntactic structure. An “AST” is a tree-based view or
hierarchical view of that text’s structure. Figure 3 provides a simplistic example.

[0046] Figure 3 shows an AST 300, which is representative of the AST 225 of Figure 2. AST
300 includes any number of AST nodes. As an example, all of the blocks shown in Figure 3 can
be viewed as being different AST nodes. Notice, the nodes are arranged in a tree-like structure,
with the node 305 being a top-most node, and then a number of child nodes underneath. Each node
in the AST 300 represents a logical operation for the source code 215 of Figure 2 and the source
code 105 of Figure 1.

[0047] As an example, consider the assign 310 node with its two children (e.g., name 310A
and value 310B). This assign 310 node corresponds to the LLOC 110 of Figure 1, where the
variable “ThisInputl™ is being assigned a value of **". AST 300 represents this logical operation
using the assign 310 node, the name 310A node, which corresponds to the name of the variable
(e.g., “Thislnputl™), and the value 310B node, which corresponds to the value for that variable
(e.g..). The assign 315 node, name 315A node, and value 315B node correspond to the LLOC
115. Similarly, the assign 320 node, name 320A node. and value 320B node correspond to the
LLOC 120.

[0048] Retuming to Figure 2, when the code 215 is being developed in an IDE, it is typically
the case that the AST 225 is generated in response to a save event for that code 215. When the
code 215 is being developed in a website code editor, then the code editor may be tasked with
triggering the generation of the AST 225 in accordance with a predefined frequency. That is, the
coding editor can trigger the saving of a code file, perhaps in accordance with a defined frequency
or perhaps based on detected changes. The AST 225 is then generated as a result of the file
changing. Thus, the AST 225 is generated based on the code 215. The generation of the AST 225
can be viewed as a triggering evenl 230 by the service 205 as to when the service 205 will then
trigger the generation of a flowchart, as will be discussed shortly.

[0049] Figure 2 also shows how the service 205 is able to identify, from within the code 215,
any number or type of so-called extent delineator(s) 235. As used herein, an “extent” refers to a
number of LLOCs that have been identified as sharing a relationship with one another and have

been grouped together. As used herein, an “extent delineator™ refers to a machine recognizable

7

10

15

20

25

35

WO 2024/205907 PCT/US2024/019627

marker that facilitates the identification of LLOCs that can be grouped together to form an extent.
In accordance with the disclosed principles, multiple different types of markers can operate as
extent delineators. Examples of such markers will be provided shortly.

[0050] Service 205 also includes or has access to a natural language processing (NLP) engine
240. As used herein. the term “NLP” generally refers to a computing ability. often performed by
a machine learning algorithm, to recognize text and spoken words in a manner that is similar to
how a human recognizes that text and spoken words. More generally, an NLP engine is able to
determine not only a syntactic meaning to text or audio input but also a semantic meaning to that
input. Optionally, the service 205 can use the NLP engine 240 to interpret the text included as a
part of the comment 220 and/or the code 215. Further details on this functionality will be provided
later.

[0051] One task of the service 205 is to use the code 215, the comment 220, and the AST 225
to generate an easily readable flowchart 245 that generally outlines the logic of the code 215.
Generally, the service 205 is able to group LLOCs together to form multiple extents 250 and then
generate flowchart nodes 255 to represent those extents 250 in a compact and intuitive manner.
That is, the flowchart 245 is designed to provide an easy-to-read representation of the logic 260
that is included in the code 215. The flowchart 245 can also have various different style 265
attributes, as will be discussed in more detail later.

Examples Of Extent Delineators

[0052] Figures 4, 5, 6, and 7 provide further details regarding extents and extent delineators.
Figure 4 shows a recognized extent delineator 400 in the form of a comment embedded in the
source code. Figure 4 also shows an extent 405, which includes a number of LLOCs. Here, this
extent 405 is formed using the variable assignment or declaration statements. A review of the
source code determined that these LLOCs are related to one another because each one of these
LLOCs is a variable assignment statement. Thus, these LLOCs share a relationship 410 with one
another. The comment is also related to this extent 405 because the comment is generally
describing what is happening in those lines of code. Ending or terminating an extent can optionally
be achieved by adding an empty line, by closing a bracket (e.g., an if-then statement bracket), or
by various other techniques as will be described herein. Use of the bracket is one reason as to why
the embodiments rely on the AST so as 1o not add lines outside of a specific code block. Here, the
comment is a type of extent delineator. The embodiments are also able to determine a location
415 of the extent delineator 400 within the body of source code. For instance, in this case, the
location 415 is line 17 for the extent delineator 400.

[0053] Figure 5 shows additional examples of extent delineators that are represented in the

form of a comment. For instance, the comment “//Correct Answer” is determined to be an extent

10

15

20

25

35

WO 2024/205907 PCT/US2024/019627

delineator 500. Similarly, the comment “//Incorrect Answer” is determined to be an extent
delineator 505. Figure 5 illustrates various different scenarios in which an extent can be defined.
In one scenario, an extent is defined using a comment as an extent delineator. In another scenario,
an extent is defined using a line break as an extent delineator.

|0054] Different markers can also serve as extent delineators. For instance, the blank line at
line 17 is determined to be an extent delineator 510. Thus, in some implementations, a source code
comment delimiter 515 (e.g., the comment “//Correct Answer”) can be recognized as being an
extent delineator. Similarly, a blank line 520 can be recognized as being an extent delineator.
[0055] The lines of code between various extent delineators can be determined to be related
to one another and can be grouped together to form an extent. For instance, the lines of code
starting at line 9 and ending at line 11 can be grouped together to form an extent based on the
extent delineator 500. The presence of a different extent delineator can indicate the end to a
previous extent. For instance, extent delineator 505 can trigger that a new extent is being formed
by lines 14, 15, and 16. Extent delineator 510 triggers that the previous extent ends at line 16.
[0056] In some cases, embedded language can be used as an extent delineator. For instance,
Figure 6 shows that certain embedded language 600 can be used to define a range of LLOC that
is to be grouped together. In particular, extent delineator 605 and extent delineator 610 are
examples of embedded language that group or cordon various LLOC off so those LLOC can be
grouped together in the same extent.

[0057] Figure 7 shows that a control flow statement 700 can also operate as an extent
delineator. For instance, line 5 shows an “if-then” statement. This if-then statement is an example
of a control flow statement. In this example, control flow statements can operate as extent
delineators, as shown by extent delineator 705 and 710. Accordingly, the embodiments are able
to analyze any type of text in a file or body of source code. The embodiments can operate using a
predefined list of recognized extent delineators. When those types of extent delineators are
recognized in the source code, the embodiments are able to group the associated LLOCs with
those delineators to form various different extents. The LLOCs included in an extent are
determined to share a relationship with one another, as discussed previously. As various non-
limiting examples, that relationship can be a control flow relationship, an assignment or
declaration relationship, a predefined relationship (e.g., as in the case where the embedded
language was used), a function relationship. or any other type of relationship.

[0058] Figure 8 shows one example of how a flowchart can be created. The embodiments are
able to access an AST 800 and the source code. The embodiments analyze the source code to
group LLOCs together to generate any number of extents using identified extent delineators. The

embodiments are able to analyze the nodes of the AST 800. Whichever nodes in the AST 800 are

9

10

15

20

25

35

WO 2024/205907 PCT/US2024/019627

associated with the LLOCs grouped together in the form of an extent can be merged together. as
shown by merge 805. A flowchart 810 is then formed.

[0059] This flowchart 810 can include any number of flowchart nodes, such as flowchart node
815. Flowchart node 815 includes descriptive text 820, which often has a friendly name 825 or
easily readable text. In this example, the flowchart node 815 1s a single node in the flowchart 810,
but this single flowchart node 815 commonly represents multiple logic statements, operations, or
nodes that were included in the AST 800. As an example, the flowchart node 815 commonly
represents the assign 310 node, name 310A node, value 310B node, assign 315 node, name 315A
node, value 315B node, assign 320 node, name 320A node, value 320B node. Thus, multiple
logical nodes in an AST can be singularly represented by a single flowchart node in the flowchart
810.

[0060] It should be noted how the visualization can operate using any code language or code
parser (e.g., a code editor) or scripting language (e.g., PowerShell). An example will be helpful.
[0061] Suppose a developer is attempting to define a new process in the source code. At the
beginning, the script will be empty. The workflow diagram will also be empty. The developer may
then type the first two lines, which may include a comment and then a PowerShell empty
statement. The embodiments will then display a first block in the flowchart diagram. The user can
edit the comment in the text to see how changes are instantaneously reflected on the diagram.
[0062] The developer may then type the rest of the pseudo-code. The developer can also
observe how the diagram changes in real-time. Clicking on a shape in the diagram can trigger the
highlight of the corresponding code. In this mode, the flowchart generator is used instead of other
(e.g., manual) design tools in which the developer builds the diagram from shapes and connectors.
In contrast, here, the developer can simply type a few lines of text, and the flowchart is
automatically created.

[0063] The embodiments can also be implemented using existing script. For instance, consider
ascenario where there is a paragraph starting with a comment followed by several code lines. This
data is translated into the first step of the diagram. Subsequent paragraphs also result in steps. A
comment, which (as an example) is just below an if-statement, can be interpreted as a decision
shape. Comments on decision branches can be visualized as blocks of the diagram containing
further steps.

[0064] In this mode, if the script is commented properly it takes essentially no effort on the
developer’s part to create a diagram. The disclosed tools/embodiments support both interactive
editing (e.g., diagram changes in real-time) and batch processing of one or more script files into
diagrams.

[0065] As indicated earlier, the embodiments make use of an AST. The AST is the first step

10

10

15

20

25

35

WO 2024/205907 PCT/US2024/019627

in translating any programming language to machine-usable form. While the implementation of
AST has slight language-dependent differences, the embodiments generally receive, as input, a
text file that includes the programming language. The output is a tree of objects representing each
statement of the language. The embodiments use this tree to construct a workflow map or
flowchart.

Further Details On Generating A Flowchart

[0066] Figure 9 shows a body of source code. In accordance with the disclosed principles, the
embodiments are able to identify multiple LLOCs that share a relationship with one another. These
LLOCs are grouped together to form an extent. This grouping is typically facilitated through the
identification of an extent delineator.

[0067] In Figure 9, lines 1, 2, and 3 are grouped together to form the extent 900. Lines 4 and
5 are grouped together to form extent 905. Lines 6 and 7 are grouped together to form extent 910.
Lines 8,9, 10, and 11 are grouped together to form extent 915. Lines 12, 13, 14, and 15 are grouped
together to form extent 920.

[0068] The embodiments are able to access an AST corresponding to the code shown in Figure
9. The embodiments use this AST as well as the source code and the identified extents to generate
a flowchart that outlines the various logic included in the source code.

[0069] Figure 10 shows a flowchart 1000 that is generated based on the source code shown in
Figure 9. This flowchart 1000 includes various different flowchart nodes, such as node 1005.
Notice, node 1005 has been annotated to include text 1010.

[0070] In this example scenario, the text 1010 was pulled, extracted. or otherwise generated
based on the comment shown in line 1 of the code in Figure 9. For instance, the comment in line
1 was identified as being an extent delineator. Lines 2 and 3 included program statements for
assigning values to variables. As a result, those two lines of code were determined to be related to
one another. The comment included text generally describing what was happening in lines 2 and
3. This comment text included the following language: “Assign Variables.™

[0071] That same language (i.e. the language in the comment) was used to annotate the
flowchart node 1005. Thus, the embodiments are able to pull language from the source code (e.g..
comment language) and use that language to annotate flowchart nodes. Notice, nodes 1015, 1020,
1025, and 1030 also include language pulled (rom the comments shown in Figure 9.

[0072] The different flowchart nodes can optionally have different shapes. as represented by
node shape 1035. For instance, nodes that generally refer to program declaratory statements are
shown has having a rectangular shape. On the other hand, nodes that refer to program flow control
statements (e.g., if-then statement, while statements, for statements, go to statements, etc.) are

shown as having a rhomboid shape (e.g.. see node 1025). The embodiments are able to modify the

11

10

15

20

25

35

WO 2024/205907 PCT/US2024/019627

shape of a flowchart node based on any predefined criteria.

[0073] It should also be noted how a single node can represent multiple LLOCs. Stated
differently, a single flowchart node can represent multiple logic nodes that were included in an
AST. As an example, the single node 1005 commonly represents two different logic statements.
In particular, node 1005 represents the statement shown in line 2 of Figure 9 as well as the
statement shown in line 3.

[0074] Figure 11 shows a flowchart 1100 that includes a flowchart node 1105, In this example
scenario, a user's cursor 1110 is shown as hovering over the node 1105. Some embodiments
configure the flowchart 1100 to trigger the display of code 1115 that corresponds to the node 1105.
For instance, the node 1105 is a node that refers to an extent in which the user is being prompted
to provide input. More particularly, node 1105 corresponds to the source code shown in extent
910 of Figure 9. Optionally, when the cursor 1110 hovers over a node, the embodiments can
trigger the display of that node’s corresponding source code. Optionally, the embodiments can
trigger the display of the AST nodes corresponding to that flowchart node. The code 1115 is shown
as being displayed simultaneously with the flowchart 1100. Optionally, the code 1115 can be
displayed in a view that overlaps at least a portion of the node 1105.

[0075] Figure 12 shows a scenario where the user’s cursor 1200 is hovering over the same
flowchart node. In this example scenario, the embodiments have triggered the display of the code
editor that includes the LLOC 1205 corresponding to the node over which the cursor 1200 is
hovering. Optionally, the LLOC 1205 can be visually emphasized in some manner, such as
through the use of highlighting, bold text, flashing text, or any other visual emphasis technique.
In this example scenario, the code editor, including the LLOC 1205, is displayed simultaneously
with the flowchart, as represented by simultaneous display 1210.

[0076] Figure 13 shows a flowchart 1300 that includes a node 1305. Node 1305 includes a
user interface (UI) element 1310. The user’s cursor 1315 can optionally click the Ul element 1310
to trigger the display of information for that node 1305, as shown in Figure 14.

[0077] Figure 14 shows a flowchart 1400 that is representative of the flowchart 1300 from
Figure 13. In this scenario, the user’s cursor was used to click on the UI element 1310. As a result
of clicking that UI element 1310, the embodiments triggered the display of additional information
for the node 1405, as shown by the detailed view 1410. In this example scenario, the detailed view
1410 includes the various AST nodes that were generated for lines 2 and 3 of the source code
shown in Figure 12. These AST nodes were assignment nodes. Thus, the embodiments can
optionally trigger the display of more granular information for a particular node. That granular
information can optionally include various AST nodes and/or source code.

[0078] Figure 15 shows yet another flowchart 1500. Here, a cursor is hovering over or

12

10

15

20

25

35

WO 2024/205907 PCT/US2024/019627

optionally selecting anode 1505. In response to that action, the embodiments triggered the display
of a detailed view 1510. Notice, the embodiments are displaying the code from lines 8 through 15
of the source code shown in Figure 9. Lines 8 through 11 corresponded to extent 915, and lines
12 through 15 corresponded to extent 920. In this scenario, a single flowchart node (e.g., node
1505) is being used to represent multiple different extents (e.g., extents 915 and 920). The
embodiments determined that these two extents shared a relationship with one another and could
be logically merged or combined with one another, resulting in a single flowchart node
representing both of those extents. Thus, not only might LLOCs share a relationship with one
another, but different extents might share a relationship with one another. In this example scenario,
the two extents were identified as being alternative options as a part of a program flow control
scenario.

Customization Of The Flowchart

[0079] Different customizations can be applied to the flowchart. Some of these customizations
can be automatically performed, such as the size of the nodes, the placement of the nodes within
a display window, and optionally the text that is used to annotate a node. Some of these
customizations can be manually defined. An example is shown in Figures 16 and 17.

[0080] Figure 16 shows a code editor displaying source code. Line 6 of that source code is a
comment, and this comment is being used as an extent delineator. The embodiments are able to
allow a user to embed a flowchart customization 1600 in the source code (e.g.. in the comment).
This embedded customization 1600 will alter how the resulting flowchart appears. Thus, a user
can make in-line text inputs to the source code, and those in-line inputs can be viewed by the
embodiments as being customizations that will alter how a flowchart will appear.

[0081] In this example scenario, the user typed ““red” in the comment in line 6. The carrot
“7” with the parameter “red” can be referred to as “hints” and will be interpreted by the
embodiments as a customization in which the resulting flowchart node for the extent associated
with the extent delineator of line 6 will appear as having a red color, as shown in Figure 17.
[0082] Figure 17 shows a flowchart 1700 that includes a node 1705. Node 1705 corresponds
to lines 6 and 7 of the source code shown in Figure 16. Notice, the node 1705 has shading. This
shading would appear to have a red color, as defined by the customization 1600 of Figure 16.
[0083] In addition to color customizations, the embodiments allow [lor other types of
customizations to be entered in-line in the source code via the use of hints. Such customizations
include, but certainly are not limited to, the size of a node, the placement of a node relative to the
placement of other nodes in the flowchart, the placement of a node with respect to a display screen,
the text that will be used to annotate a node, how or when to wrap text included in a node, and so

on.

13

10

15

20

25

35

WO 2024/205907 PCT/US2024/019627

[0084] Regarding the text, some embodiments are configured to extract all of a comment’s
text and use the entirety of that text to annotate a flowchart node. That text can be wrapped inside
anode. Optionally, the size of the text can also be modified to ensure that the entirety of the text
fits inside the node. As another option, the size of the node and/or the size of the text can be
modified.

[0085] Some embodiments, on the other hand, perform natural language processing (NLP) on
the comment text in an effort to condense or reduce the amount of text that will populate a
flowchart node. Optionally, if no comment text is present, the NLP engine can even analyze the
source code of an extent and automatically generate text and then annotate the corresponding
flowchart node with that text. Thus, in some implementations, the NLP engine can be used to
automatically create comments for source code. An example will be helpful.

[0086] Suppose a comment included the following text: “The following five lines of code are
all concerned with assigning a value to a corresponding variable.” The embodiments can use an
NLP engine (e.g., the NLP engine 240 of Figure 4) to analvze this text. The NLP engine 240 may
be tasked with generating text for a flowchart node, where that text is based on the comment text.
Because flowcharts are meant to be brief, the NLP engine 240 may determine that a shortened
form of the comment text is warranted. After analyzing the comment text, the NLP engine 240
may determine the following language is sufficient to annotate the flowchart node: “Assign
Variable Values.” That text 1s based on the text in the comment, and that text can be used to
annotate the flowchart node.

[0087] As another example, the node 1505 in Figure 15 includes a single word of text (e.g.,
“Correct?”). Despite this node being associated with multiple different extents and multiple
different comments, the embodiments were able to significantly reduce the comment text and
generate a brief phrase that adequately captures the logic associated with the corresponding extents
(e.g., was the input the player provided correct?).

[0088] As mentioned previously, various other customizations can also be implemented, as
shown in Figure 18. Such customizations include customizations to a flowchart’s overall layout
1800, a node size 1805, a node location 1810, including the coordinates 1815 where a node will
be placed. Other customizations include the visual appearance of a node, the appearance of the
text within a node, and so on.

[0089] In one example scenario, the visual layvout can be determined using the following
algorithmic processes. To illustrate, one process involves determining whether each step or node
of the flowchart is large enough to wrap text.

[0090] For each branch in the flowchart, there may be a sequence of steps. One step includes

determining what width a node may be set to in order to accommodate text. The height of a node

14

10

15

20

25

35

WO 2024/205907 PCT/US2024/019627

can be determined as the sum of the heights for the steps in the branch plus distance for connector
arrows between the nodes.

[0091] For a thombus shaped node, the decision can involve determining the area or size
needed to accommodate the text for that node. The determination can further include summing
each branch width to determine the width of the rhombus area. The height can be the maximum
branch height.

[0092] In some implementations, the embodiments can use coordinates to emit an SVG
(Scalable Vector Graphics). Optionally, the nodes can be represented as hypertext markup
language (HTML) DIV tags. The browser can then calculate the coordinates for the nodes.
Connecting arrows can then be added by drawing an SVG on the background. Optionally, the
output of the drawing can be a self-contained HTML file, or it can be a page on a web-site
implemented with plan HTML/CSS. It can also be integrated with any of the popular web
frameworks.

[0093] Accordingly, each parser (e.g., code editor) can be tasked with producing an AST,
which has internal details specific to the language. To achieve a level of abstraction, the
embodiments then detail and keep (i) a summary, such as the comment before a paragraph of code,
and (i1) a code extent, which is information that highlights the relevant code in a code editor. The
embodiments calculate the visual lavout for the flowchart. For example, each step of the diagram
is set to be large enough to wrap the summary or annotated text. For each branch (e.g., a sequence
of steps), the width and height are determined for the node that will represent the branch.

[0094] It is worthwhile to note that the flowchart does not necessarily show all the details that
are 1:1 with the code. Instead. the embodiments perform various translations using the AST and
then group related logic into a single shape. Different hints can be used to change the visual
appearance of the flowchart, such as the shape, color, layout, and so on. For instance, a hint can
be used to force the use of a particular layout, such as by grouping multiple paragraphs of code
together as opposed to relying on new lines as a separator.

Example Methods

[0095] The following discussion now refers to a number of methods and method acts that may
be performed. Although the method acts may be discussed in a certain order or illustrated in a
Mow chart as occurring in a particular order, no particular ordering is required unless specifically
stated, or required because an act is dependent on another act being completed prior to the act
being performed.

[0096] Attention will now be directed to Figure 19, which illustrates a flowchart of an example
method 1900 for generating a flowchart based on source code. Method 1900 can be implemented

in the architecture 200 of Figure 2; furthermore, method 1900 can be performed by the service

15

10

15

20

25

35

WO 2024/205907 PCT/US2024/019627

205.

[0097] Method 1900 includes an act (act 1905) of identifying, from within a body of source
code (e.g., source code 105 from Figure 1), an extent delineator (e.g., extent delineator 400 from
Figure 4). In some implementations, the extent delineator includes one or more of a source code
comment delimiter, a blank line in the body of source code, or a source code control flow
statement. Optionally, when the extent delineator is a source code comment delimiter, the text that
is subsequently used to annotate a flowchart node can be extracted from comment text that is
marked as being a comment by the source code comment delimiter.

[0098] Optionally, the body of source code can be included in a website code developer. In
another scenario, the body of source code can be included in an integrated development
environment (IDE).

[0099] Act 1910 includes determining, based on a location of the extent delineator within the
body of source code, that multiple lines of the source code share a relationship with one another.
These lines of code can share any type of relationship with one another based on a detected set of
characteristics that are determined to be similar. As various examples, the relationship can be or
can include any of the following types of relationships: a function call relationship, a programming
routine relationship, a relationship in which similar logic operations are being performed (e.g.,
variable assignments), or even a manually defined or established relationship.

[00100] Act 1915 includes forming an extent by grouping the multiple lines of the source code
together. Optionally, the embodiments can include a database or a listing of information. This list
can include information identifying which lines of code are related to one another. The list can
further include information specifving the type of relationship that exists. This list can be queried
or even modified by a user.

[00101] Act 1920 includes accessing an abstract syntax tree (AST) that is generated based on
the body of source code. The AST can be updated in response to various events or conditions. For
instance, when the code is being developed in an IDE, then a save event for the code can trigger
the update or generation of the AST. Consequently, the AST can be generated in response to a
triggering event. The triggering event can include a change to the source code, a change to a
comment, or even a save event for the body of source code. When the code is being developed in
a web or online platform, then the platform may be configured to automatically and periodically
trigger the generation of the AST. The generation of a resulting flowchart can be triggered in
response to the detection of a new or updated AST. Thus, the generation of the flowchart can also
be based on the save event.

[00102] Act 1925 includes identifying multiple AST nodes in the AST. In this scenario, the

identified AST nodes correspond to the extent. By way of example, the assignment nodes in the

16

10

15

20

25

35

WO 2024/205907 PCT/US2024/019627

AST 300 of Figure 3 are logical operations for the LLOC 110, 115, and 120 of Figure 1. These
assignment nodes thus correspond to the extent forming the LLOC 110, 115, and 120 in as much
as those nodes defined programmatic operations for implementing the tasks defined by LLOC
110, 115, and 120.

[00103] Act 1930 includes generating a flowchart based on (i) the AST, (i1) the source code,
and (iii) the extent delineator. One of the flowchart nodes commonly represents the multiple AST
nodes corresponding to the extent. The embodiments use, as input, the AST, the source code, and
even the extent delineators to generate the flowchart. The flowchart can include any number of
nodes, where these nodes reflect the logic of the source code. As indicated above, some of the
nodes can represent multiple logic statements or AST nodes in a compressed manner. For instance,
a single node can commonly represent any number of variable assignment logic statements that
have been grouped together in the same extent. In some cases, a single flowchart node can even
commonly represent multiple extents.

[00104] Act 1935 includes annotating the one flowchart node with text. The text describes the
multiple AST nodes and/or the extent as a whole. As an example, if the flowchart node represents
multiple logic statements that define values for variables, then the text can include something like
the following: “variable assignments.” In some implementations, the text is extracted from the
body of source code. such as the logic code statements or such as comments embedded in the text.
In some implementations, natural language processing (NLP) is used to summarize the comment
text such that the NLP facilitates in the generation of the text used to annotate the flowchart node.

Additional Methods

[00105] Figure 20 shows an example method 2000 for generating a flowchart using embedded
objects in the source code. Method 2000 can also be implemented by the service 205 of Figure 2.
[00106] Method 2000 includes an act (act 2005) of determining, based on a location of an
identified extent delineator included within source code, that multiple logical lines of code
(LLOC), which are included in the source code, share a relationship with one another. As an
example, the extent delineator may be present in the source code before a number of LLOCs that
are related to one another. The location of the extent delineator can operate as a flag for identifying
which LLOC share a relationship with one another. Optionally, multiple extent delineators may
be present. For instance, a first extent delineator may be present at the beginning ol a number of
LLOC that share a relationship and a second extent delineator may be present at the end of the
LLOC.

[00107] Act 2010 includes forming an extent by grouping the multiple LLOC. As mentioned,
this grouping action may involve the use of a list, database, or some other tagging mechanism to

identify related lines of code.

17

10

15

20

25

35

WO 2024/205907 PCT/US2024/019627

[00108] Act 2015 includes accessing an abstract syntax tree (AST) that is generated based on
the source code. In some cases, the process of accessing the AST may include actually generating
the AST. In some cases, the AST may be generated by a first device, and the AST is accessed by
a second device. Optionally, the AST can be generated by a local device and then uploaded to a
cloud environment.

[00109] Act 2020 includes identifying multiple AST nodes in the AST. The identified AST
nodes correspond to the multiple LLOC forming the extent.

[00110] Act 2025 includes generating a flowchart outlining logic defined by the source code,
where that logic can be determined based on a review of the AST nodes. Stated differently, the
AST nodes provide an outline of the logic of the source code. The embodiments are able to analyze
the AST nodes to identify the logic, and the embodiments are able to use that logic to then create
an easy-to-read and intuitive flowchart that summarizes and generalizes the logic of the source
code. One flowchart node included in the flowchart commonly represents multiple logic
operations defined by the AST nodes corresponding to the extent.

[00111] Act 2030 includes annotating the one flowchart node with text. The text collectively
describes the multiple logic operations. The text is extracted from the source code. The size of the
one flowchart node can be dependent on the text. Optionally, source code can be displayed
simultaneously with the one flowchart node. The location of the one flowchart node can be
dependent on a set of characteristics associated with a display of the flowchart. Those
characteristics can include the screen resolution of the display, the screen size of the display, how
much of the display is reserved for displaying the flowchart, and so on.

[00112] The flowchart can be displayed on a display. When a cursor hovers over the one
flowchart node, the multiple LLOC are displayed. In some cases, the one flowchart node includes
a user interface (Ul) element, and the UI element, when selected, triggers display of the multiple
AST nodes. In some cases, selection of the one flowchart node triggers display of the source code,
and the multiple LLOC are visually emphasized in the source code.

[00113] Accordingly. the embodiments are able to dynamically generate a visualization of a
code or script flow while the code or script is being entered. As each parser (e.g., a code editor)
produces an AST, the output is abstracted to a higher level relevant to show the script or code flow
with parser specific details abstracted out. The code and comments are then mapped to a visual
layout artifact. The visual layout is then calculated using an algorithm. As an example, each step
of the diagram is large enough to wrap the summary text. By performing these operations, the
embodiments enable the generation of a low cost graphical representation of logical operations
included in source code.

[00114] Accordingly, the embodiments are able to use code in any programming language to

18

10

15

20

25

35

WO 2024/205907 PCT/US2024/019627

display a workflow diagram showing the logic of the code. A real-time interactive visualization
can be generated, where, as a user changes the code, the diagram is updated instantaneously. The
embodiments provide for a local machine mode, in which the developer can edit code with a
favorite code editor (e.g.. VS Code). File changes are detected and used for real-time visualization
of the workflow diagram. The embodiments also provide for a web-site mode, in which the
developer edits the code and can observe the diagram on the same webpage. The embodiments
also facilitate one-time processing in which code file(s) are used as input to generate
accompanying workflow diagrams as documentation. The embodiments can create self-contained
HTML files which include the code. such as script and the workflow diagrams. The embodiments
also support usage of version control and continuous deployment pipelines without the need to
maintain documentation separately.

[00115] Beneficially, the embodiments create a level of abstraction so that the workflow
diagram is not necessarily 1:1 with code. Instead, the flowchart represents the algorithm flow in
terms of major building blocks such as paragraphs of code. The embodiments beneficially display
paragraphs (e.g., lines of code without empty lines in between) as steps of the workflow. The
embodiments can display names of decisions and decision branches based on comments around
the control statements. Comments can be used to change color and other visual style attributes.
Comments can also be used to change the layout such as, for example, by displaying a sub-tree as
ablock as if it was a separate function.

Example Computer / Computer systems

[00116] Attention will now be directed to Figure 21 which illustrates an example computer
system 2100 that may include and/or be used to perform any of the operations described herein.
For instance, computer system 2100 can implement the service 205 of Figure 2.

[00117] Computer system 2100 may take various different forms. For example, computer
system 2100 may be embodied as a tablet, a desktop. a laptop, a mobile device, or a standalone
device, such as those described throughout this disclosure. Computer system 2100 may also be a
distributed system that includes one or more connected computing components/devices that are in
communication with computer system 2100.

[00118] In its most basic configuration, computer system 2100 includes various different
components. Figure 21 shows that computer system 2100 includes a processor system 2105 that
can include one or more processor(s) (aka a “hardware processing unit™). Computer system 2100
also includes a storage system 2110.

[00119] Regarding the processor(s) of the processor system 2105, it will be appreciated that the
functionality described herein can be performed, at least in part, by one or more hardware logic

components (e.g., the processor(s)). For example, and without limitation, illustrative types of

19

10

15

20

25

35

WO 2024/205907 PCT/US2024/019627

hardware logic components/processors that can be used include Field-Programmable Gate Arrays
(“FPGA”™), Program-Specific or Application-Specific Integrated Circuits (“ASIC”), Program-
Specific Standard Products (“ASSP”), System-On-A-Chip Systems (“SOC”), Complex
Programmable Logic Devices (“CPLD™), Central Processing Units (“CPU”), Graphical
Processing Units ("GPU™), or any other type of programmable hardware.

[00120] As used herein, the terms “executable module,” “executable component,”
“component,” “module,” “service,” or “engine” can refer to hardware processing units or to
software objects, routines, or methods that may be executed on computer system 2100. The
different components, modules, engines, and services described herein may be implemented as
objects or processors that execute on computer system 2100 (e.g. as separate threads).

[00121] Storage system 2110 can include physical system memory, which may be volatile, non-
volatile, or some combination of the two. The term “memory™ may also be used herein to refer to
non-volatile mass storage such as physical storage media. If computer system 2100 is distributed,
the processing, memory, and/or storage capability may be distributed as well.

[00122] Storage system 2110 is shown as including executable instructions 2115. The
executable instructions 2115 represent instructions that are executable by the processor(s) of
computer system 2100 to perform the disclosed operations, such as those described in the various
methods.

[00123] The disclosed embodiments may comprise or utilize a special-purpose or general-
purpose computer including computer hardware, such as, for example, one or more processors
and system memory, as discussed in greater detail below. Embodiments also include physical and
other computer-readable media for carrying or storing computer-executable instructions and/or
data structures. Such computer-readable media can be any available media that can be accessed
by a general-purpose or special-purpose computer system. Computer-readable media that store
computer-executable instructions in the form of data are “physical computer storage media™ or a
“hardware storage device.” Furthermore, computer-readable storage media, which includes
physical computer storage media and hardware storage devices, exclude signals, carrier waves,
and propagating signals. On the other hand, computer-readable media that carry computer-
executable instructions are “transmission media” and include signals, carrier waves, and
propagating signals. Thus. by way of example and not limitation, the current embodiments can
comprise at least two distinctly different kinds of computer-readable media: computer storage
media and transmission media.

[00124] Computer storage media (aka “hardware storage device™) are computer-readable
hardware storage devices, such as RAM, ROM, EEPROM, CD-ROM, solid state drives (“SSD™)
that are based on RAM, Flash memory, phase-change memory (“PCM”), or other types of

20

10

15

20

25

35

WO 2024/205907 PCT/US2024/019627

memory, or other optical disk storage, magnetic disk storage or other magnetic storage devices,
or any other medium that can be used to store desired program code means in the form of
computer-executable instructions, data, or data structures and that can be accessed by a general-
purpose or special-purpose computer.

[00125] Computer system 2100 may also be connected (via a wired or wireless connection) to
external sensors (e.g., one or more remote cameras) or devices via a network 2120. For example,
computer system 2100 can communicate with any number devices or cloud services to obtain or
process data. In some cases, network 2120 may itself be a cloud network. Furthermore, computer
system 2100 may also be connected through one or more wired or wireless networks to
remote/separate computer systems(s) that are configured to perform any of the processing
described with regard to computer system 2100.

[00126] A “network,” like network 2120, is defined as one or more data links and/or data
switches that enable the transport of electronic data between computer svstems, modules, and/or
other electronic devices. When information is transferred, or provided, over a network (either
hardwired, wireless, or a combination of hardwired and wireless) to a computer, the computer
properly views the connection as a transmission medium. Computer system 2100 will include one
or more communication channels that are used to communicate with the network 2120.
Transmissions media include a network that can be used to carry data or desired program code
means in the form of computer-executable instructions or in the form of data structures. Further,
these computer-executable instructions can be accessed by a general-purpose or special-purpose
computer. Combinations of the above should also be included within the scope of computer-
readable media.

[00127] Upon reaching various computer system components, program code means in the form
of computer-executable instructions or data structures can be transferred automatically from
transmission media to computer storage media (or vice versa). For example, computer-executable
instructions or data structures received over a network or data link can be buffered in RAM within
a network interface module (e.g.. a network interface card or “NIC”) and then eventually
transferred to computer system RAM and/or to less volatile computer storage media at a computer
system. Thus, it should be understood that computer storage media can be included in computer
system components that also (or even primarily) utilize transmission media.

[00128] Computer-executable (or computer-interpretable) instructions comprise, for example,
instructions that cause a general-purpose computer, special-purpose computer, or special-purpose
processing device to perform a certain function or group of functions. The computer-executable
instructions may be, for example, binaries, intermediate format instructions such as assembly

language, or even source code. Although the subject matter has been described in language

21

10

15

WO 2024/205907 PCT/US2024/019627

specific to structural features and/or methodological acts, it is to be understood that the subject
matter defined in the appended claims is not necessarily limited to the described features or acts
described above. Rather, the described features and acts are disclosed as example forms of
implementing the claims.

[00129] Those skilled in the art will appreciate that the embodiments may be practiced in
network computing environments with many types of computer system configurations, including
personal computers, desktop computers, laptop computers, message processors, hand-held
devices, multi-processor systems, microprocessor-based or programmable consumer electronics,
network PCs, minicomputers, mainframe computers. mobile telephones. PDAs. pagers. routers,
switches, and the like. The embodiments may also be practiced in distributed system environments
where local and remote computer systems that are linked (either by hardwired data links, wireless
data links, or by a combination of hardwired and wireless data links) through a network each
perform tasks (e.g. cloud computing, cloud services and the like). In a distributed system
environment, program modules may be located in both local and remote memory storage devices.
[00130] The present invention may be embodied in other specific forms without departing from
its characteristics. The described embodiments are to be considered in all respects only as
illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended
claims rather than by the foregoing description. All changes which come within the meaning and

range of equivalency of the claims are to be embraced within their scope.

22

WO 2024/205907 PCT/US2024/019627

CLAIMS
1. A computer system (2100) that generates a flowchart, said computer system
comprising:
a processor system (2105); and
a storage system (2110) comprising instructions that are executable by the processor
system to cause the computer system to:
identify (1905), from within a body of source code (215), an extent delineator
(400);
based on a location of the extent delineator within the body of source code,
determine (1910) that multiple lines of the source code share a relationship with one
another;
form (1915) an extent (405) by grouping the multiple lines of the source code
together;
access (1920) an abstract syntax tree (AST) (800) that is generated based on the
body of source code;
identify (1925) multiple AST nodes in the AST, wherein the identified AST nodes
correspond to the extent;
generate (1930) a flowchart (810) based on (i) the AST, (ii) the source code, and
(ii1) the extent delineator, wherein one flowchart node included in the flowchart commonly
represents the multiple AST nodes corresponding to the extent; and
annotate (1935) the one flowchart node with text, wherein the text describes the
multiple AST nodes as a whole.
2. The computer system of claim 1, wherein the extent delineator includes a source
code comment delimiter.
3. The computer system of claim 1, wherein the extent delineator includes a blank
line in the body of source code.
4, The computer system of claim 1, wherein the extent delineator includes a source
code control flow statement.
5. The computer system of claim 1, wherein the body of source code is included in a
website code developer.
6. The computer system of claim 1, wherein the body of source code is included in
an integrated development environment (IDE).
7. The computer system of claim 1, wherein the AST is generated in response to a
triggering event.

8. The computer system of claim 1, wherein the text is extracted from the body of

23

WO 2024/205907 PCT/US2024/019627

source code.

9. The computer system of claim 1, wherein the extent delineator is a source code
comment delimiter, and wherein the text used to annotate the one flowchart node is extracted from
comment text that is marked as being a comment by the source code comment delimiter.

10. The computer system of claim 9, wherein natural language processing (NLP) is
used to summarize the comment text such that the NLP facilitates in generation of the text used
to annotate the one flowchart node.

11. A method (2000) for generating a flowchart, said method comprising:

based on a location of an identified extent delineator (400) included within source
code, determining (2005) that multiple logical lines of code (LLOC), which are included
in the source code, share a relationship with one another;

forming (2010) an extent (405) by grouping the multiple LLOC;

accessing (2015) an abstract syntax tree (AST) (800) that is generated based on the
source code;

identifying (2020) multiple AST nodes in the AST, wherein the identified AST
nodes correspond to the multiple LLOC forming the extent;

generating (2025) a flowchart (810) outlining logic defined by the source code,
wherein one flowchart node included in the flowchart commonly represents multiple logic
operations defined by the AST nodes corresponding to the extent; and

annotating (2030) the one flowchart node with text, wherein the text collectively
describes the multiple logic operations.

12. The method of claim 11, wherein the flowchart is displayed on a display. and
wherein, when a cursor hovers over the one flowchart node, the multiple LLOC are displayed.

13. The method of claim 11, wherein the one flowchart node includes a user interface
(UI) element, and wherein the UI element, when selected, triggers display of the multiple AST
nodes.

14. The method of claim 11, wherein selection of the one flowchart node triggers
display of the source code, and wherein the multiple LLOC are visually emphasized in the source
code.

15. The method of claim 14, wherein the source code is displayed simultaneously with
the one flowchart node.

16. A computer system (2100) that generates a flowchart, said computer system
comprising:

a processor system (2105); and

a storage system (2110) that stores instructions that are executable by the processor system

24

WO 2024/205907 PCT/US2024/019627

to cause the computer system to:

code.

based on a location of an identified extent delineator (400) included within source
code, determine (2005) that multiple logical lines of code (LLOC), which are included in
the source code, share a relationship with one another:;

form (2010) an extent (405) by grouping the multiple LLOC;

access (2015) an abstract syntax tree (AST) (800) that is generated based on the
source code;

identify (2020) multiple AST nodes in the AST, wherein the identified AST nodes
correspond to the LLOC forming the extent:

generate (2025) a flowchart (810) outlining logic defined by the source code,
wherein one flowchart node included in the flowchart commonly represents multiple logic
operations defined by the AST nodes corresponding to the extent; and

annotate (2030) the one flowchart node with text, wherein the text collectively
describes the multiple logic operations.

17. The computer system of claim 16, wherein the text is extracted from the source

18. The computer system of claim 16, wherein a size of the one flowchart node is

dependent on the text.

19. The computer system of claim 16, wherein a location of the one flowchart node is

dependent on a set of characteristics associated with a display of the flowchart.

20. The computer system of claim 16, wherein natural language processing (NLP) is

used to determine the text.

25

PCT/US2024/019627

WO 2024/205907

1/21

—— —— a.inbi —
g00T V00T L odnbH S
3ai J0}Ip3 °p0) SGIM 9p0) 924n0S
0zT - ‘0 =}nsaysiyLs|gnop 0¢
30T L = CANdugsiy] uns 6T
STT \\ = Tandujsiyl 8us 8T
50T so|geleA asepPaq // LT
} 9T
o1t (ddvpudj) 3jiym ST
20T v
cz1 (,4\ weasoud Aw sy siy|,, Jauraiipn-9|0suo) €T
uaWWOoY anJ} =ddypug00q v rd
11
(sdie[]8umns)uiely pioa Jnijels 0T
} 6
weadoud ssed 8
L
9
} s
weudoudsiyldojanag asedsawey ¢
€
[4
T
s>'weldoud
s|oo] 9zAjeuy 1s91 8ngaq piing 399loud i[5} MIIA 1p3 914
001
1011p3 9p0)

SUBSTITUTE SHEET (RULE 26)

PCT/US2024/019627

WO 2024/205907

2/21

S9¢

Z 2.nbiy

9|A1s

09¢
21807

A

SSC

(1] 74
auidul 41N

SEC
(s)4o3eauipq
a3

(744
1Sv

S9pON

0S¢

S1U91X3

0¢€C
JUdA]

Supodsia)

(1144
JusWIWO)

574
MeYoMo|4

STC
9po)

S0¢
9IAISS

00¢C
94n301YdIY

(1] ¥4
9|4

SUBSTITUTE SHEET (RULE 26)

PCT/US2024/019627

WO 2024/205907

3/21

0 3NsaysIyL

€ aunbiy

wn = CINAUISIYL

“wn

TIindujsiyl

[:[or43
anjeA

/1143
aweN

g9T7¢
anjep

VaTe
aweN

901¢
anjep

VOT1¢E
aweN

0ce
udissy

S1¢€
udissy

01¢
udissy

S0E
9poN

00€
1Sv

SUBSTITUTE SHEET (RULE 26)

PCT/US2024/019627

WO 2024/205907

4/21

¥ 24nbi4

STV (1157
uoI1ed07 diysuoneay

(‘0 3Inseysiy13iqnop | 0z

‘b = TANAUISIYL Buis | 6T

iy = TINAUISIYL Buns | 8T

",;W_n_m_zw> aJepaa //) LT

} 9T

sop (ddypusj) ajiym ST
JU21x3 14"
! es8oad Aw si s1y],,) ureyIpn S|0SUO) €T

anJ] =ddypu3aooq I

} T

00v (s8se[]8us)uieN pioA Jness o1
Jojeaul2q uax3 } 6
weido.d sse|d 8

L

9

} s

wessoudsiyldoonaq adedssweN ¥

€

[4

T
sJ'weJsdold

s|jool 9zAjeuy 191 8ngaq piing 129(oJd uo M3IA 1p3 94

SUBSTITUTE SHEET (RULE 26)

PCT/US2024/019627

WO 2024/205907

5/21

G aunbi4 0Z% TIC
aur J91lwI[3Q UBAWWO)
juelg 9p0o) 324n0S
0¢
6T
0TS 8T
Jojeauljag eI —— /1
anJ} Ae|daweo 9T
S0S (,urese Ail ‘8uoim os aJe noy,,)rund ST
Jojesul|eg 1udixy !u_mmm:mul&_ VI
JOMSUY Jo3.J00U|// €T
(4"
9s|ej Ae|dawen IT
00S (. iowosame aJe noy j199410),,)utid 0T
Jojeauleq 1uaix3 \Lummmso di 6
Jamsuy 102110)// 8
((,, :Bunjuiyy w | Jaquinu jeym ssang,, indul)iul = ssang d L
indu Joj soAeid ayr1dwoud// 9
anJ} =Ae|doweDdIym s
swes oyl jouersoaylse8dul// ¢
anil =Ae|dowen ¢
(00T T)1UIpURBI WOpURI=Y 109100 ¢
sa|qeuep udissy// 1
s>'weldoud
s|jool 9zAjeuy 1591 8ngaq piing 129loJd 1[5) MIIA 1p3 9|4

SUBSTITUTE SHEET (RULE 26)

PCT/US2024/019627

WO 2024/205907

6/21

9 a.nbiy

009
o28en8ue pappeaqui

0¢

61

019 \N\\\\\\:o_mmxuvcmn 8T

JoleaullaQ Jua1x3 A

91

ST

Vi

<09 €T
JojeauljeQq 1ua1x3 71
11

ot

6

uoigoy uidagy g

((,, :8upjuiyr w,| Jaquunu 1eym ssano, Jindul)iul = ssang d L
indu Joj soAeid ayr1dwoud// 9

anJ) Ae|doweod|iym S

swes oyl jouersoaylse8dul// ¢

anil Aejdawen ¢

(00T T)1UIpURBI WOpURI=Y 109100 ¢

sa|qeuep udissy// 1
s>'weldoud

s|jooL 9zAjeuy 1s91 8Sngaqg piing 1209loud "o MIIA 1p3 94

SUBSTITUTE SHEET (RULE 26)

PCT/US2024/019627

WO 2024/205907

7/21

Z 3inbig

00/
JUSWALLIS MO|H |043U0)

0TL
Jojeauljaq Jua1x3

S0L
JojeaujjaQ Jua1x3

((,, :8unjuiys w,| 19quinu 1eym ssano,,)indui)iul = ssang d
anJ] Ae|daweo|Iiym

anu} Ae|dawen
(00T‘T) WIpuBS WOpURI=Y 1284107 T

8

L

j9WOSIME 3B NOA j 9
1V 109110)==5S3aN5 dJI S

14

13

[4

anJl =Aejdowen oI
uie8e A1] ‘8uoum os aie no,,)iulid 6
VY 193110D={SSaND dJl

as|e} =Ae|dawen

199440),,)1und

0¢
61
8T
LT
91
ST
Vi
€T
4"
11

s>'weldoud

sjool azAjeuy 1591

gngaq

piing

199[0ud

no

MIIA

1p3 9|4

SUBSTITUTE SHEET (RULE 26)

PCT/US2024/019627

WO 2024/205907

8/21

Sz8
dwepN Ajpuan4

Sa|qeldeA alepaq

3poN

018
Heyomo|4

A

8 ainbi4

0¢8
X3l

ST8
9pON Heyomo|4

<08
SEIEIN

008
1Sv

SUBSTITUTE SHEET (RULE 26)

PCT/US2024/019627

WO 2024/205907

9/21

6 24nbiy4

0¢

61

81

LT

o1

4 ani1 = Ae|dswen) ST

(,u1e8e Ai] "Buoum os ase no,, Jaund A

0z6 \\ 1V 199140D=jssanD dil €T
Jamsuy 1oa.u0dU|// JZT

U] Y 95[eJ Ae[dowen A TT
(iowosame aJe nNo, j123440),,)utid o1

c16 — 2 1V 1094110D)==553anD dl| 6

U813 \ Jamsuy 129.10)//) 8

(,, :8upjuyl w, | Jaquinu 1eym ssano,)indui)iul = ssang d) £

016 Indui Joj JoAe|d ayy 1dwoud// | 9
U9IX] SNil = AB[dOWEDIIYM | §
506 swed ayrjouersayrsasdul// | v

IEIVE =%l €

006 (00T ‘T)auIpuBI WOpPURI=Y 103010) | ¢

uapg sa|qelep udissy// | 1

/

$3'welsold

s|jool 9zAjeuy 191 8ngaqg piing 329loid 81[5) MBIA 1p3 94

SUBSTITUTE SHEET (RULE 26)

PCT/US2024/019627

WO 2024/205907

10/21

01 a4nbiy

0€0T1
3poN J\\ puj
A
N
1 Y40))
9pPON
anduj
Jo4 J9hAe|d oyl 1dwoid R
awen 0¢0t1
3yl JO Meis ay] 498811 9PON
/ croT
sa|qelep udissy apoN
0101 \N\ //
IXo| Mwwd—m_
0001
Heyomo|4

Se01
adeys aponN

SUBSTITUTE SHEET (RULE 26)

PCT/US2024/019627

WO 2024/205907

11/21

[T anbiy

pul

OTT1T
Josin) N

anduj

|
((, :8upjuiyy w,| Joquinu d

leym ssono, Jindui)iui= ssano (

- oo
x\ 9yl JO Hels ay] 19331

STt

9pod sa|qelep usissy

00TT
Meyomol4

SOTT
apoN

SUBSTITUTE SHEET (RULE 26)

PCT/US2024/019627

WO 2024/205907

12/21

00¢T
losin)

pul

1ndu
104 J2Ae|d 9yl 1dwoud

aweo

3yl JO HeIs d

yl 4988111

sa|qelen

usissy

Soct
20711

Zr aunbiy

(1) ¥4
Ae|dsig snoaueynwis

0c

617

8T

LT

anJ} Ae|dowen 9T

(,wede A1l “Buoum os aue no, , Jrund ST
Y 109.10)=jssanD dJlI VI

Jamsuy 1dau10oul// €T

(4}

9s|e} Ae|dowen IT

(jowosame ale no, j109.10),,)aund 0T
1Y 1091410)==55an9 d}I 6

Jamsuy 192.100// 8

((,, :8upjuiyy w,| ;oquinu 1eym ssano,,)indui)ul = ssano ¢ L
Indui Joj s9Ae|d ayr1dwoud// 9

ani} =Ae|doweDa|iym S

swes3 ayljoueisayraadsul// ¢

anJ1 =Ae|dswen ¢

(00T T)IuIpuesWOpURI=Y 109110)

sa|qeep udissy// 1
s>'wesdold

I 3nqgag piing 393foud 19 MIIA 1p3 ClIE|

SUBSTITUTE SHEET (RULE 26)

PCT/US2024/019627

WO 2024/205907

13/21

€T 3.nbi4

pul

anduj
104 J13Ae|d 9y 1dwioid

oTEl
JosJn)

sweo
9yl JO Hwelsay] 19331

4

S

Mf so|geneA usissy

\

otel
SEINETE

In

00eT
Meyomol4

SO€T
SpoN

SUBSTITUTE SHEET (RULE 26)

PCT/US2024/019627

14/21

vT 2.nbi4

pu3

ndy|

104 J13Ae|d ay] 1dwioid

aweon

9yl JO Helsay] 193831

anjep

aweN

+|_|+

anjep

aweN

+|_|+

N

SUBSTITUTE SHEET (RULE 26)

WO 2024/205907

, usissy ugissy 0TVt
\. . MIIA
i pajielaqg
4 sajqeuep udissy N~ —
oovt
10174
SPON Heyamol4

PCT/US2024/019627

WO 2024/205907

15/21

ST aunbiy

anJ} Ae|dowen
(,uieSe Al "S8uoum os ase no,,,)und
1Y 109440D=jSsang dji

pu Jamsuy 1da.u00u|//
7|. Is|e} Ae|dawen

(. ijdwosame aie no j}a110),)auud
'V 109110D)==55an5 dyl

Jamsuy 133.110)//
S0ST
Jo4 JaAe|d ay] 1dwou < SPON
4 Id YL} d OTST
MIIA
pajieaqg
dwen
3yl JO Wels ay]l 4238l
sa|qeneA udissy

00sT1
HeyoMo|4

SUBSTITUTE SHEET (RULE 26)

PCT/US2024/019627

WO 2024/205907

16/21

91 aunbiy

414

617

8T

LT

91

anJ} Aejdaweo ST

(,ure8e A1l -Buoum os aie nop,,)jund A

I 103110D=(ssann dyl €1

JOMmsuy 1221400U|// 7T

9s|ej Ae|dawen IT

(.jowosame ale no, j103440),,)aund o1

Y 193410)==SsanD d}I 6

Jamsuy 102110)// 8

((,, :Bunjuiyl w,| Jaquinu jeym ssano, Jandui)iul = ssang ¢ L
paJy Indu Joj soAeid syri1dwoud// 9

\\ anJ) Aejdawenaiym S

0091 swes oyl jouersoaylse8dul// ¢
uoI1eZIWOISNY) anil =Aejdswen ¢
(00T‘T) ulpuerwopuel=y 129110) ¢

sa|qeuep udissy// 1
s>'weldoud

s|joo1 9zAjeuy 1s91 8Sngaqg piing 1209loud "o MIIA 1p3 9|4

SUBSTITUTE SHEET (RULE 26)

PCT/US2024/019627

WO 2024/205907

17/21

LT 3inbiJ

puj

awen
3yl JO Wels ay]l 4238l

sa|qelep udissy

0041
HeyoMo|4

S0LT
9pPON

SUBSTITUTE SHEET (RULE 26)

PCT/US2024/019627

WO 2024/205907

18/21

81T aunbiy

pu3

indu
Jo4 JahAe|d ay] 1dwoud

4

swen
9yl JO Weis ay| Jed3u]|

sa|qelep udissy

S181

s

S9]eUlplo0) Ih

0181
uol1e’07 apoN

S08T
92IS 3poN

0081
1noAeT ||_1aAD

SUBSTITUTE SHEET (RULE 26)

PCT/US2024/019627

WO 2024/205907

19/21

SE61

oeet

SZ61

oc¢el

S16T

Ot6T

S06T

6T a4nbij

IXOL UIAN OPON HEYIMO[] duQ) Y] djejouty

1IBYOMO[] 9)BIOUIN)

LSV Y[U] SOpoN LSV d[dnny Aynuapy

opoD) 901n0S JO Apog YL UQ paseq PAIeIoudn) [jey L ISV UV SS90y

1oy030], sour] ordnmp oy Surdnoin Ag judixy Uy WO

1oy SUQ YHIM
diysuoneoy v o1eys 9po)) 201n0g Ay I JO SAur] o[dnnpy 1ey] UuIIdRg

—2—

JOTBQUITO(] JURIXH UY ‘Opo)) 92In0S JO APOg V UIYIA\ WO ‘AJIuop]|

0061

SUBSTITUTE SHEET (RULE 26)

PCT/US2024/019627

WO 2024/205907

20721

0Z 34nbiy4

080C —2

IXOL UIAN OPON HEYIMO[] duQ) Y] djejouty

SC0C —2

OpOD) A0IN0S AY [, A PAULR(J1307T SUMUIPNQO EYIMO[] YV dJBIOUIL)

020C ——=

LSV 9Y[u] sopoN LSV d[dnny Ajnuopy

mHON — 21

9pO)) 90IN0S YL, UQ PIseq PAIeIdUAD) ST ey [SV UV SS90y

0T0C ——

DOTT 1NN oy [Surdnoiny Ag juo)xg Uy Wio]

S00C ——2

1yjouy 2uQ YA drysuone[ay v axeys DOTT NN Jey L Surug

000¢

SUBSTITUTE SHEET (RULE 26)

PCT/US2024/019627

WO 2024/205907

21721

IZ 24nbi4

N

ST1¢
suoinJIsu)

01T¢

SOtT¢

WID1SAS 10559201

00T¢
wia1sAs Ja1ndwo)

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2024/019627
A. CLASSIFICATION OF SUBJECT MATTER
INV. GO6F21/57 GO6F8/33 GO6F8/41 GO6F8/75 GO6F11/36
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2014/331203 Al (ELSHISHINY HISHAM E 1-8,11,
[EG] ET AL) 6 November 2014 (2014-11-06) 16-20
Y paragraph [0001] - paragraph [0068]; 9,10,
figures 1-4 12-15
X UsS 2009/222799 Al (STEWART NEIL. [GBR] ET 1,11,16
AL) 3 September 2009 (2009-09-03)
paragraph [0012] - paragraph [0216]
X US 10 528 731 B1 (SYME PHILIP [US] ET AL) 1-4,
7 January 2020 (2020-01-07) 9-11,16
Y column 1 - column 9 9,10
Y US 2016/266896 Al (FAN SI BIN [CN] ET AL) 12-15
15 September 2016 (2016-09-15)
paragraph [0003] - paragraph [0039]
-/--

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance;; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance;; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

12 July 2024

Date of mailing of the international search report

23/07/2024

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Veshi, Erzim

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2024/019627

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A PENGYU NIE ET AL: "Executable 1-20

Trigger-Action Comments",

ARXIV.ORG, CORNELIL UNIVERSITY LIBRARY, 201

OLIN LIBRARY CORNELL UNIVERSITY ITHACA, NY

14853,

6 August 2018 (2018-08-06), XP081095832,

the whole document
A US 2011/179347 Al (PROCTOR IAIN ANDREW 1-20

RUSSELIL [US] ET AL)
21 July 2011 (2011-07-21)
paragraph [0003] - paragraph [0067]

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2024/019627
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2014331203 Al 06-11-2014 NONE
Us 2009222799 Al 03-09-2009 NONE
Us 10528731 B1 07-01-2020 NONE
US 2016266896 Al 15-09-2016 NONE
Us 2011179347 Al 21-07-2011 uUs 2011179347 Al 21-07-2011
uUs 2014196005 Al 10-07-2014
uUs 2018004489 Al 04-01-2018

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - wo-search-report
	Page 50 - wo-search-report
	Page 51 - wo-search-report

