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Abstract

A method for providing Cheon-resistance security for a static elliptic curve
Diffie- Hellman cryptosystem (ECDH), the method including providing a system
for message communication between a pair of correspondents, a message being
exchanged in accordance with ECDH instructions executable on computer
processors of the respective correspondents, the ECDH instructions using a
curve selected from a plurality of curves, the selecting including choosing a range
of curves; selecting, from the range of curves, curves matching a threshold
efficiency; excluding, within the selected curves, curves which may include
intentional vulnerabilities; and electing, from non-excluded selected curves, a
curve with Cheon resistance, the electing comprising a curve from an additive
group of order q, wherein q is prime, such that g-1 = cr and q+1 = ds, where r
and s are primes and ¢ and d are integer Cheon cofactors of the group, such that

cd < 48.



METHOD AND SYSTEM FOR CHEON RESISTANT STATIC DIFFIE-HELLMAN SECURITY

FIELD OF THE DISCLOSURE

[0001] The present disclosure relates to static groups in the field of cryptography.

BACKGROUND

[0002] The Diffie-Hellman key exchange is a method of securely exchanging cryptographic keys
over a public channel. In various systems, the protocol uses a multiplicative group of integers
modulo p, where p is a prime. A public value g is a primitive root of modulo p and is raised to an
exponent that is secret on each side of the cryptographic transaction. Due to the features of
multiplicative groups, the exchange of two primitive roots, each raised to a secret for one of the
parties, can be combined together to form a shared secret between the two parties. Due to the
discrete logarithm problem an eavesdropper is unable to easily derive the shared secret.

[0003] A variation or a special case of the Diffie-Hellman key exchange utilizes elliptic curve
cryptography (ECC). In ECC, the group is not a multiplicative group of a finite field, but rather a
subgroup of an elliptic curve. The use of elliptic curves allows for a smaller group size than a
multiplicative group to achieve the same level of security.

[0004] In some forms of Diffie-Hellman key exchange, one party may re-use a secret value
many times. This practice may be called static Diffie-Hellman. Jung Hee Cheon, in a paper
entitled "Security analysis of the strong Diffie-Hellman problem." Advances in Cryptology -
EuroCrypt 2006, LNCS 4004, pg. 1, Springer, 2006, found that in a group size q, if g-1 or g+1
has factors of a certain size, then the static Diffie-Helilman problem is actually considerably
easier than best known attacks on the Diffie-Hellman problem. In particular, the Cheon
algorithm involves the adversary choosing
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various points Q and seeing a shared secret xQ by getting a first participant to
apply the static private key x to Q. Such Cheon attack makes the Diffie-Hellman
protocol less secure.

BRIEF DESCRIPTION OF THE DRAWINGS
[0005] The present disclosure will be better understood with reference to the
drawings, in which:

Figure 1 is a block diagram showing participants exchanging information
utilizing cryptographic modules;

Figure 2 is a data flow diagram showing the establishment of a shared
secret in an elliptic cryptography Diffie-Hellman system;

Figure 3 is a process diagram showing a process for selecting a Cheon-
resistant curve;

Figure 4 is a data flow diagram showing the establishment of a shared
secret in an elliptic cryptography Diffie-Hellman system using specific criteria; and

Figure 5 is a block diagram of a simplified computing device capable of
performing the embodiments of the present disclosure.

DETAILED DESCRIPTION OF THE DRAWINGS

[0006] The present disclosure provides a method for providing Cheon-resistance
security for a static elliptic curve Diffie-Hellman cryptosystem (ECDH), the method
comprising: providing a system for message communication between a pair of
correspondents, a message being exchanged in accordance with ECDH
instructions executable on computer processors of the respective correspondents,
the ECDH instructions using a curve selected from a plurality of curves, the
selecting comprising: choosing a range of curves; selecting, from the range of
curves, curves matching a threshold efficiency; excluding, within the selected
curves, curves which may include intentional vulnerabilities; and electing, from
non-excluded selected curves, a curve with Cheon resistance, the electing
comprising a curve from an additive group of order g, wherein q is prime, such that
g-1 = crand g+1 = ds, where rand s are primes and ¢ and d are integer Cheon
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cofactors of the group, such that cd < 48.

[0007] The present disclosure further provides a method for providing Cheon-
resistance security for a static elliptic curve Diffie-Hellman cryptosystem (ECDH),
the method comprising: providing a system for message communication between
a pair of correspondents, a message being exchanged in accordance with ECDH
instructions executable on computer processors of the respective correspondents,
the ECDH instructions using a curve comprising: an additive group of order g,
wherein gis prime, such that -7 = crand g+1 = ds, where rand s are primes and
¢ and d are integer Cheon cofactors of the group, such that cd < 48; an affine
equation in the form y2 = x® + ix, where i=v/—1; a length of 454 bits; a field size
p=2%4 1+ (3 x 17 x 11287)?; an order g=24%2+(7x41117)?; r=(q— 1)/8; and s=(g+1)/6.

[0008] The present disclosure further provides computing device for providing
Cheon-resistance security for a static elliptic curve Diffie-Hellman cryptosystem
(ECDH), the computing device comprising a processor for executing program
instructions configured to: provide a system for message communication between
a pair of correspondents, a message being exchanged in accordance with ECDH
instructions executable on computer processors of the respective correspondents,
the ECDH instructions using a curve selected from a plurality of curves, the
selecting comprising: choose a range of curves; select, from the range of curves,
curves matching a threshold efficiency; exclude, within the selected curves, curves
which may include intentional vulnerabilities; and elect, from non-excluded
selected curves, a curve with Cheon resistance, the electing comprising a curve
from an additive group of order g, wherein gis prime, such that g-7 = crand g+1 =
ds, where rand s are primes and cand d are integer Cheon cofactors of the group,
such that cd =< 48.

[0009] The present disclosure further provides a computing device for providing
Cheon-resistance security for a static elliptic curve Diffie-Hellman cryptosystem
(ECDH), the computing device comprising a processor for executing program
instructions configured for: providing a system for message communication
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between a pair of correspondents, a message being exchanged in accordance
with ECDH instructions executable on computer processors of the respective
correspondents, the ECDH instructions using a curve comprising: an additive
group of order g, wherein gis prime, such that ¢-1 = crand g+1 = ds, where rand
s are primes and ¢ and d are integer Cheon cofactors of the group, such that cd <
48; an affine equation in the form y? = x® + i, where i=v—1; a length of 454 bits; a
field size p=2%%% + (3 x 17 x 11287)?; an order q=2452+(7x41117)?; r=(q — 1)/8; and
s=(g+1)/6.

[0010] Reference is now made to Figure 1, which show a system 10 for message
communication between a pair of correspondents. Specifically, in Figure 1, a pair
of correspondents A and B are connected by a data communication link 12. Each
of correspondents A and B has a cryptographic module or unit 14 which performs
public key cryptography operations according to established protocols to permit
secure communication over link 12, The cryptographic units 14 operate within a
cryptographic domain whose parameters are shared by other entities.

[0011] In one example, correspondents A and B utilize a Diffie-Hellman (DH) key
exchange. Specifically, a Diffie-Hellman key exchange uses a commutative group,
which is a type of algebraic system with one binary operation and obeying certain
axioms.

[0012] The group originally proposed by Diffie and Hellman is known as the
multiplicative group of the finite field of size p, where pis a prime number. Using
such multiplicative group, the set of numbers {1, 2, ..., p-1}, may have a binary
operation defined to be multiplication modulo p, which means multiplication after
computing the remainder upon division by p. This group is well-known in
mathematics and was applied to cryptography by Diffie and Hellman.

[0013] For illustration purposes, consider a small prime p= 5. The binary operation,
multiplication modulo p for the group can be represented in the following table:
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B W N = X
W NN - =
W - b NN
N A - W oW
- N W b

TABLE 1: Binary operation, multiplication modulo 5

[0014] In this group, we have for example 2 x 4 = 3. Specifically, a normal
multiplication 2 x 4 = 8, but in this group, the remainder is computed modulo 5
which gives 3 since B=1x 5 + 3.

[0015) For any element g of a group, and some positive integral number x, we can
define g* by applying the binary operation between x copies of g. This operation
is called group exponentiation, and g is called the base and x the exponent. In the
case where the group is the multiplicative group of a finite field, group
exponentiation is also called modular exponentiation.

[0016] Thus, for illustration, let p = 5 as in Table 1 above. If g=2 and x=6, then in
modular exponentiation, g= 26 = 4. This is because, under conventional
exponentiation, 2% = 64 and the remainder of 64 modulo 5 is 4.

[0017] Group exponentiation can be done quite efficiently, even in a large group of
size nearly 2255, using algorithms such as the square-and-multiply algorithm. This
algorithm requires at most logz (x) group operations to compute g*. In a group size
225 g group exponentiation takes 512 group operations or less, which is typically
practical.

[0018] A discrete logarithm is the inverse of group exponentiation. The discrete
logarithm of y = g*to the base gis x. Computing the discrete logarithm is a “hard”
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problem in some groups. The hardness of this problem is central to the security of
Diffie-Heliman key exchange and related public-key cryptography algorithms,
called the discrete logarithm problem (DLP). Hard is a term of art in cryptography
and as used herein generally means beyond the reach of an adversary that must
be prevented from breaking the system as long as the security of the system is
deemed important. Mathematically, the term may mean that the solution to the
problem is unsolvable in asymptotic polynomial time.

[0019] Thus, public key cryptography relies on the DLP being hard.

[0020] Referring again to Figure 1, in the Diffie-Hellman key exchange, contributor
A generates a secret exponent x, and contributor B generates a secret exponent
y. A sends A =g*to B, and B sends B = g"to A. Contributor A computes z = B*
and contributor B computes w= A¥. The computed values are equal since z= g*
= w, so both contributors have computed the same shared value w = z.

[0021] For groups in which the discrete logarithm problem is hard, it is typically
believed that it is hard for an adversary E to compute zand w from g, A, and B.
The problem is now known as the Diffie-Hellman problem (DHP). The DHP can
be solved by solving the DLP: given A=g*, find x by solving the DLP, and then
compute BX, by group exponentiation, thereby solving the DHP, since w=z=B*.
Therefore, the DHP is no harder than the DLP. The DHP might be easier than the
DLP, but in some cases, one ¢an solve the DLP by solving the DHP, although the
conversion may be mare costly.

[0022] The above is the basic general form of the Diffie-Hellman key exchange.

[0023] Subsequent io the Diffie-Hellman key exchange being described, ElGamal
introduced a method of using the same Diffie-Hellman groups for digital signatures,
which allow contributors A and B to be sure of each other's messages. ElGamal
also clarified the Diffie-Hellman key exchange could be used to build public-key
encryption schemes. In one example, contributor B can use a fixed Diffie-Hellman
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private key, while contributor A can use an ephemeral private key which has only
one key per message it wishes to send to contributor B.

[0024] Elliptic curve cryptography
[0025] Elliptic curve cryptography (ECC) may be viewed as a special case of the
Diffie-Hellman system for public-key cryptography.

[0026] In ECC, the group is not a multiplicative group for a finite field, but rather a
subgroup of an elliptic curve. As indicated above, one reason 1o use ECC is that,
for groups of the same size, the DLP is harder in ECC than the DLP in classic DH
groups. This allows for smaller groups to be used for the same level of security.
Although use of elliptic curve (EC) groups is slower than use of finite field (FF)
groups of the same size, because EC groups can be much smaller for the same
level of security, they can have similar speeds for FF groups of the same security.

[0027] In general, a curve is any 1-dimensional set of points. An algebraic curve
is defined by a polynomial equation. A planar curve is a curve embedded in a
plane. One simple example of a planar algebraic curve, is a circle having the
equation x? +y? =1 in the (x,y)-plane.

[0028] Every curve, according to the mathematical theory known as algebraic
geometry, has a number called its genus. Genus 0 curves include lines, circles,
ellipses, parabolas and hyperbolas. Generally, a genus 0 curve is any curve
whose points can be reversibly transformed into numbers, using only rational
functions in both directions of the transformation. For example, a circle has a
genus 0 by mapping the point (x,y) to the number w = y/(x+1). This mapping can
be reversed by (x.y) = ((1-w?2)/(1+wR) , 2w/(1+wR)).

[0029] Consequently, a genus 0 curve can have only a component in the real (x,y)
plane. While hyperbolas appear to have two components, these are connected in
the extension of the plane to the projective line, which considers asymptotes to act
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like points at infinity.

[0030} The simplest class of curves after genus O curves are genus 1 curves.
These are traditionally also called elliptic curves, due to their origins in measuring
the arc length of an ellipse.

[0031] A simple form of an elliptic curve is a planar cubic curve. Planar cubic curves
are those defined by the cubic equation in the plane. A small class of cubic curves
have genus 0, and these exceptions are called singular cubics. Otherwise, most
cubic planar curves have genus 1.

[0032] A traditional form of cubic equation for elliptic curves is the Weierstrass
cubic, which includes equations such as y? = x® + ax + b, where aand b are fixed
numbers and (x,y) are the coordinates of points in the plane.

[0033] Other types of cubic equations are also interesting to study, and can be
useful in ECC.

[0034] The theory of algebraic geometry defines a group on the set of points of an
elliptic curve. More generally, every curve has an associated group, called its
Jacobian group. For genus O curves, the group has size 1, so it is not very
interesting or useful for cryptography. For genus 2 or higher curves, the group is
quite complicated, but these groups have received consideration for use in

cryptography.

[0035] The Jacobian group of planar cubic curves is defined as follows. A point O
is fixed to be the group identity. By tradition this elliptic curve is written using
addition for the binary operation. So instead of writing xy for a group operation
applied to group elements x and y, we write X+ Y for group elements X and Y.

[0036] To add points X and Y, form the line L through X and Y. If Xand Y are the
same point, then choose the line through X'that is tangent to the curve. Since the
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curve is cubic, the line intersects at either 0,1, or 3 points, where tangencies are
counting as two points, and inflections are counted as 3 points.

[0037] Since the line L. already intersects the curve in two points, it must intersect
the curve in 3 points. Two of these points are X and Y, the third is point Z.

[0038] The same procedure may be done on another point O and on Zto obtain
another point, which serves as the definition of X+Y.

[0039) Since elliptic curves traditionally use addition instead of multiplication to
write their group operation, the previous terminology and notation for DH groups
may be adjusted. The previous operation of group exponentiation, written as g*,
is now called scalar multiplication, and is written as xG. Further, the discrete
logarithm is sometimes referred to as “elliptic curve discrete logarithm problem”
(ECDLP) as needed to avoid confusion with the discrete logarithm problem in other
groups.

[0040] The elliptic curve Diffie-Hellman (ECDH) groups used in cryptography
represent the coordinates of a point with a finite field. Thus, finite field Diffie-
Hellman groups (FFDH groups) and ECDH groups both use finite fields. In FFDH
groups, a group element is a nonzero finite field element. In ECDH groups, a group
element is typically a pair of finite field elements, which together satisfy a cubic
eqguation. The finite field used in ECDH groups is typically called the underlying
field of the curve and of the ECDH group. In some embodiments, the term field of
definition is also used.

[0041] As indicated above, one advantage of the ECDH group is that the discrete
logarithm problem seems to be harder for a group size than the FFDH group.
Thus, if we choose an ECDH group and an FFDH group in which the discrete logs
are about equally hard, and too hard for any practical algorithm to solve, then
typically the ECDH group will be faster for users.

[0042] One main reason that an FFDLP is easier than an ECDLP is that FFDH
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groups have better notions of large and small elements. These notions of size in
FFDLP permit discrete logs by breaking large elements into combinations of
smaller elements, whose discrete logarithms are easier to find. This general
strategy to solving the FFDLP is sometimes called index calculus or sieving. No
effective index calculus algorithms have been discovered for typical elliptic curve
groups.

[0043] In most ECDH groups, the best known algorithms to compute discrete logs
are generic group algorithms. Generic group algorithms work in any group, and
simply use group operations as a black box. The speed of the generic group
algorithms for computing the discrete log is limited. Specifically, if the group has
a size divisible by a prime n, then computing discrete logs with generic group
algorithms at significant success rate requires at least approximately n'”2 group.

[0044] Some rare cases of elliptic curves have discrete logs that are easier to
solve. These may be solved using the Menezes, Okamoto, Vanstone (MOV)
attack and the Satoh, Araki, Semaev, Smart (SASS) attack. These rare cases can
be detected easily and standards for ECC explicitly avoid these special-case
attacks.

[0045] Further, beyond the hard discrete logarithm problem, secure ECC needs to
avoid side-channel attacks. Side channels arise when the implementation of
ECDH and other algorithms leak additional information, such as information about
correspondents A and B.

[oo46] In static Diffie-Hellman, as described below, securtity is desirable against
side channels. This is defined in accordance with the following. Suppose that
correspondent A has a secure key m and a static DH module that computes mP
for any input Pin a given static Diffie—Hellman secure group. Further suppose that
the module leaks no absolutely no other information about m (so the module has
no side-channels or computes no signatures with m). In this case, correspondent
A can use the module in any set of protocols whatsoever without revealing m.

10
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Further, even if the protocols are insecure, they may compromise each other, but
they will not reveal m.

[0047] Care is needed to implement such ECDH without side channels. In some
embodiments, certain algorithms are found to be easier to implement without side
channels and one such algorithm is the Montgomery ladder.

[0048] An efficient form of the Montgomery ladder uses equations of the form: by?
=X+ ax + X

[0049] The above equation is cubic and generally defines an elliptic curve. The
Montgomery ladder equation above is not usual in the Weierstrass equation, and
has historically not been preferred by mathematical treatments of elliptic curves
since it is slightly less general than the Weierstrass equation.

[0050] In elliptic curve cryptography, the equations are defined over a finite field
rather the usual numbers on a real line. Typically, the finite field is a prime field
and has integers modulo a prime p. This helps ensure that the points in the group
are easily represented within a finite amount of information, and also helps to
ensure that the discrete logarithm problem is hard.

[0051] Much of the efficiency for the ECC users depends on the choice of p, since
the arithmetic involves computing remainders modulo p. By choosing p close to a
power of two, or some other special form, the speed of ECC in software nearly
doubles compared to a random prime p.

[0052] The use of ECDH is provided, for example, to obtain a shared secret over
a public connection. Reference is now made to Figure 2.

[0053] In Figure 2, correspondent A and correspondent B wish to communicate

securely over a public channel 12. Correspondents A and B agree to use elliptic
curve Diffie-Hellman to obtain the shared secret for communication.

11
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[0054] In particular, correspondent A may choose the curve and parameters and
communicate these to correspondent B in order to assure the use of the same
curve between the parties.

[0055] Further, each of correspondents A and B have a secret integer value, which
may be considered the private key for each correspondent. Thus, correspondent
A has a secret integer m and correspondent B has a secret integer n.

[0056] The parameters that are shared may include p, which is a prime number
that indicates the order of the field Fp. Parameters a and b are the values from the
Weierstrass equation y?= x®+ ax + b. The parameters further include the group
generator G which has an order q.

[0057] Referring again to Figure 2, at the initiation of the session, correspondent
A sends, in message 212, parameters p, a, b, G, g to correspondent B. Message
212 further includes the value m(@G, which may be considered the public key for
correspondent A.

[0058] Correspondent B receives message 212 and extracts the parameters.
Correspondent B then provides value nG, which may be considered the public key

for correspondent B, back to correspondent A in message 220.

[0059) Correspondent B further utilizes the curve to calculate the shared secret
nmG@G using its private key along with the public key of correspondent A,

[0060] Similarly, correspondent A utilizes the curve to calculate the shared secret
mnG using its private key along with the public key of correspondent B.

[0061] Since nmG =mnG the correspondents A and B now have a shared secret.

12
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[0062] An eavesdropper 230 can see all communications between correspondents
A and B. Therefore eavesdropper 230 will know the curve parameters, along with
public keys mG and nG. However, due to the discrete logarithmic problem, the
eavesdropper will be unable to calculate shared secret nmaG.

[0063] The present disclosure relates to determination of a curve and curve
parameters.

[0064] Point counting

[0065] One of the main challenges in choosing an elliptic curve group for
cryptography is determining its size. Although elliptic curve Diffie-Hellman (ECDH)
can be operated without knowledge of the group’s size, its security depends on the
largest prime factor of the group’s size due to the Pohlig-Hellman and Pollard rho
algorithms. In particular, using ECDH with a group of unknown size n carries a
risk that the largest prime factor of nis too small.

[0066] Other cryptographic applications of elliptic curve groups, such as digital
signatures, may need direct knowledge of the group’s size in order to work

properly.

[0067] Schoof-Elkies-Atkin (SEA) is a general method of determining the size of
an elliptic curve group. Counting the number of points on a random elliptic curve
over a finite field of the sizes needed for secure cryptography using the SEA
method takes, typically, under a second for 256-bit curves or under a minute for
larger curves of a 512-bit field.

[0068] Based on this, point-counting is practical uniess one needs to try a very
large number of elliptic curves in order to meet strict criteria. However, in the
embodiments described herein, curves are sought that need to meet very strict
criteria. These rather strict criteria may mean that millions of curves need to be
tried and a million minutes is approximately 2 years.

13
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[0069] Certain elliptic curves over finite fields are special in the sense of having a
small value for their fundamental determinant D. The fundamental determinant is
a number that relates the size n of the curve to the size p of the underlying field.
Such curves are often described as having complex multiplication (CM), and are
called CM curves. CM curves are rare and typically a random curve has very large
discriminant D.

[0070] Knowing p and D allows one to determine n quickly. Furthermore, if D is
small, it is possible to find a curve with fundamental determinant D. This is part
of the complex multiplication method.

[0071] One form of the CM method is to fix p, and try various small D until a curve
with suitable properties is found. Searching using the CM method is much faster
than searching using the SEA method.

[0072] Another variant of the CM method fixes D to a very small value, in which
case finding the curve is trivial. The method then searches through different
possible values of p. This method is faster because it avoids the slowest steps of
the previous CM method, which is finding the curve from various small D. The
main disadvantage of the method is that it requires considering various p values.

[0073] The embodiments described herein utilize the above method, with a fixed D
and a varying p. Because the method is fast, it can be used to find curves meeting
very strict criteria.

[0074] The static Diffie-Hellman problem
[0075] In some form of Diffie-Hellman key exchange, contributor A will re-use the
secret value many times. This practice can be called static Diffie-Hellman.

[0076] Examples of static Diffie-Heliman includes EiGamal encryption and its
variants elliptic curve integrated encryption scheme (ECIES), a recently proposed

optimized layer security (OPTLS) key agreement algorithm for transport layer

14
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security (TLS) 1/3, and the Ford-Kaliski password-hardening scheme.

[0077] Thus, the static Diffie-Hellman problem is a variant of the general Diffie-
Hellman problem in which an adversary tries to exploit the constant re-use of a
secret value.

[0078] Static Diffie-Heliman groups protect some cryptographic protocols from the
risk of certain types of failures. Specifically, an additive group of order g is a static
Diffie~Hellman group if, for a uniformly random secret integer a€ {0,1, 2, ..., q ~
1}, no feasibly-efficient algorithm can use an oracle A for the function that
computes A(P) = aP (for any input P in the group) to find the secret a.
Quantitatively: a group is (¢, o, s) static Diffie~Hellman secure if no algorithm
costing at most ¢ group operations, making at most o queries to the oracle A, has
success rate at least s at finding secret a.

foo79] Diffie-Hellman group security is provided through three notions. First, a
discrete logarithm group is a group in which the discrete logarithm problem
(computing a from aP) is infeasible, and discrete logarithm security quantifies how
difficult the problem is.

[0080] Second, Diffie-Hellman security quantifies the difficulty of the Diffie—
Hellman problem (computing abP from aP and bP), with Diffie~-Hellman groups
being those with intractable Diffie-Hellman problem.

[oo81] Third, Diffie-Hellman groups and security are defined similarly.

[o082] The Cheon atlack

[0083] As indicated above, the Cheon attack showed that, if a group size gis such
that g—1 or g+1 has factors of a certain size, then the static Diffie-Heliman problem
is actually considerably easier than the best known attacks on the Diffie-Hellman
problem.
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[0084] The Cheon algorithm involves an adversary choosing various points Q and
seeing correspondent A shared secret xQ by getting correspondent A to apply her
static private key xto Q.

[0085] Some Diffie-Heliman protocols are believed to thwart Cheon’s attack in any
group. Correspondent A could, for example apply a key derivation function to xQ
to get key ., and then correspondent A discards xQ. if the key derivation function
is one-way then in practice this could thwart the Cheon algorithm. Nonetheless, it
may be safer to also rely on Cheon’s algorithm not being feasible in the first place,
rather than to rely on a key derivation function and the secure deletion of xQ.

[0086] In other words, choosing a group in which Cheon’s attack is infeasible
provides a second tier of defence against a Cheon attack, where the first tier of
defence would be the key derivation function itself.

[0087] In other cases, such as for example the Ford-Kaliski password-hardening
the xQ may be made public. However for such groups, the need to resist the
Cheon attack is much stronger.

[0088] Thus, in accordance with the embodiments of the present disclosure, a
Cheon resistant curve is a curve that has a group size q such that both ¢-1 and
g+1 avoid the factorization conditions that make Cheon’s algorithm faster than
Pollard rho.

[0089] In accordance with the above, Cheon resistance is defined as follows. An
additive group of order qis near-optimally Cheon-resistant if g is prime, and g-1 =
crand g+1 = dsfor primes rand s and integers ¢ and d such that cd = 48. The pair
(c, d) are the Cheon cofactors of the group.

[0090] In the above, the condition on the Cheon cofactors (c,d) is arbitrary and
chosen for simplicity. In an alternative embodiment, a more complicated definition

16



ca 03020828 2018~10-12

WO 2017/190223 PCT/CA2017/050175

may be provided. For example, for each prime g, consider optimal parameters the
Cheon’s algorithm. Let ¢ be the cost c of this optimal version of Cheon algorithm
against a generic group of size q. Let g = logq(c). Now consider a set of candidate
primes g that are potentially suitable for implementation of static Diffie~Hellman.
For example, the set might be all primes of some bit length. Let y. be the maximum
value of yq for all candidate values of q. An alternative definition of nearly-optimal
Cheon-resistant group size q is that yg= (1-€q) y+ under some definition of a small
upper bound on €q. This alternative definition, though not complete, is already
almost too complicated for any practical application, hence the simpler definition
above.

[0091] Subverted cryptographic algorithms

[0092] Another consideration for choosing curves is the avoidance of cryptographic
algorithms that have been deliberately subverted to be vulnerable to secret
attacks. One known countermeasure to subverted cryptographic algorithms is to
choose an algorithm whose overall description is very compact. A compact
algorithm tends to prevent the possibility of a saboteur tinkering with the algorithm
parameters by trial and error. In this case, a trial-and-error search could force
weak parameters to be relatively large, and thus less compact than more honest
parameters. As used herein, “honest” means parameters or algorithms that are
not specifically chosen to be weak. Such countermeasure is often calied “nothing-
up-my-sieeve”. More recently, it has been called “rigidity”, with a slightly different

meaning.

[0093] Therefore, in accordance with another embodiment of the present
disclosure, a compact algorithm is chosen. While choosing the compact algorithm
does not protect against all sabotage, in some cases the weakest versions of
algorithms have the smallest values of the parameters and thus are more compact
and more honest versions of the algorithm. The main countermeasure to sabotage
this form is to properly identify the weak versions of the algorithm. In other words,
traditional cryptanalysis is utilized. A secondary countermeasure it to prove that
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equivalence of any hypothetical attacks over any values of the algorithm's
parameters.

[0094] Based on the above, given that Cheon-resistant curves are desirable, and
that some protocols need to rely on the security of the static Diffie-Hellman
problem, the present disclosure provides for elliptic curves that are more likely to
have optimal static Diffie-Hellman security, as constrained by other characteristics
of the curves.

[0095] Conversely, one does not want to sacrifice important properties of the Diffie-
Hellman, either security or efficiency. Therefore, the challenge is to boost
evidence for Cheon resistance of a static Diffie-Hellman group, without
compromising other features.

[0096] In accordance with one embodiment of the present disclosure, a set of very
specific criteria may be established in order to solve the main deficiency of most
other elliptic curve proposals, namely the risk of weak static Diffie-Hellman
probiem.

[0097] Particularly, various criteria exist for both security and efficiency of the
elliptic curve. These include resistance to the usual elliptic curve attacks such as:
large bit length to resist Pollard rho attack; small cofactor to resist Pohlig-Hellman
attack; high embedding degree to resist MOV attack; curve order not equal to field
order to resist SASS attacks; and cofactor divisible by four for better side-channel
resistance and efficiency.

[0098] However, these basic criteria do not address the risk of a weak static Diffie-
Hellman problem. Accordingly, a further criterion is added in accordance with the
present disclosure to the above basic criteria and that is that Cheon's attack is
resisted nearly optimally for a bit length in order to implement strong static Diffie-
Hellman security.
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[0098] Since Cheon-resistance is an advanced security property, the present
disclosure provides an emphasis on security rather than efficiency. Therefore,
rather than opt to choose the most efficient or smallest curve of adequate security,
in accordance with the present disclosure a range of more secure or larger curves
of adequate efficiency are considered. Among such curves, efficiency is sought
utilizing the following criteria: small enough bit length to be practical; relatively
efficient for bit length including field size close to a power of two and an efficient
endomorphism.

[00100] Further, in accordance with the embodiments of the present
disclosure, some effort, or by-products of the above criteria, are applied to address
concerns of intentionally vulnerable cryptographic algorithms. These include
factors including that the curve is compact. In particular, all the curve’s parameters
are compact, expressible as a compressed form. Further, the curve is compact by
ensuring the curve was not maliciously manipulated.

[00101] The vulnerabilities are addressed through ease of generation and
regeneration. Thus, in accordance with the embodiments described below, only
seconds are needed to check each candidate curve on an older PC model rather
than months on a cluster of servers.

foo102) In accordance with the above, in one embodiment a near-optimally
Cheon-resistant elliptic curve with complex multiplication by i suggesting superior
Boneh-Boyen static Diffie-Heliman security and admitting a Bernstein ladder, with
length of 454 bits, referred to herein as Crib454, is provided. However, this curve
is merely one example, and the principles described herein can be applied to find
other curves matching the criteria described.

[00103] The criteria for Crib454 is based on both security and efficiency as
described below.

[00104] The CRIB454 curve is described utilizing the following criteria:
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p=2"44(3x17x11287)?
g=2*"+(7x41117)

r=(g-1)/8
s=(g+1)/6
[00105] The above criteria are probable primes.
[00106] Further, the elliptic curve with affine equation is defined as: y2 = x® +
ix.
[00107] The above curve has n=4q points, including a point at infinity, over a

field Fp of size p As usual, i = (-1)"2 mod p. In this respect, £2227/(3x17x11287)
mod p.

[00108] The above criteria provide one example of a curve that may be used
in accordance with the present disclosure. Other curves, based on the factors
provided below, may also be used.

[00109] For ease of generation, efficiency and compaciness, the specific
criteria require complex muitiplication {CM). Further, complex multiplication by J
was chosen since such multiplication provides very efficient endomorphism and
maiches with the cofactor 4 criteria. The alternative linear endomorphism curves
have complex multiplication by a cube root of unity, but these have a cofactor 3,
which may be less desirable.

[00110] While it has been suggested in the art that curves with complex
multiplication are risky, in 30 years no attacks on CM curves have materialized,
which provides strong evidence that CM curves are as good as non-CM curves.
In fact, two reasons that CM curves might offer better security than non-CM curves
include, first, that efficient endomorphism permits use of a larger curve, which
increases the difficulty of known attacks for a given level of efficiency, and
potentially provides a margin of error against mild attacks on CM. In this case,
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mild is defined in the sense of being only slightly better than Pollard rho attacks.

[00111] Secondly, CM curves belong to a special class of curves, which
potentially avoid some problems of most non-CM curves. For example, consider
resistance to Pohlig-Hellman attacks, which is strongest for the special class of
almost-prime (low cofactor) DH groups. Other examples exist to show that special
curves may be safer than non-CM curves.

[00112] There only a few elliptic curves, up to isomorphism, over a given
prime finite field, having complex multiplication by i. Some of these have a cofactor
divisible by 8 and therefore should be avoided. This typically fixes the curve
equation, up to isomorphism.

[00113] For Cheon-resistance security, the embodiments of the present
disclosure attempt to select near-optimal Cheon resistance relative to curve size,
as this can be viewed as the strongest evidence for having a strong static Diffie-
Hellman security. To achieve this near-optimal Cheon-resistance, the Cheon
cofactors were then defined to be nearly minimal. In the notation of Crib454, the
chosen Cheon cofactors are 8 and 6, because r = (g-1)/8 and s=(g-1)/6. In the
above, group order is the prime g, while r and s are primes related to q.

[00114] The specific choice of Cheon cofactor pair (8,6), instead of (1,1) or
(6,8) or (2,24) was made for two reasons. First, some pairs like (1,1) are
impossible due to the divisibility properties of numbers invoived. Indeed, the
product of the numbers in the pair should be divisible by 12, because the product
of the two numbers adjacent to any prime larger than or equal to five is divisible by
12.

[00115] Specifically, if g is such a prime, then g-1 or g+1 must be divisible by
3. Both g-1 and g+1 are even and one must be divisible by 4.

[00116] Secondly, the prime p, which is the size the underlying field, was
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selected to a have a special form. Specifically, the special form is a quasi-Fermat
prime because this form permits fairly good efficiency for its size. This special
form implies that the first Cheon cofactor is divisible by 8, and the product of the
Cheon cofactors is divisible by 48.

[00117] The general criteria for p is that it is simple, compact and efficient.
The specific criteria is that p is a power of two plus or minus a small number. In
some embodiments, the smaller the number the better. With p being a power of
two plus or minus a small number, p is very simple, compact and efficient. The
specific criteria that p be a quasi-Fermat prime, which it is a power of two plus a
small number (not minus), seems to be imposed by the abbreviated form of the
CM method.

[00118] The abbreviated form of the CM method is a further criterion. In this
form of the CM method, the usual step of determining g from p, via Cornacchia’s
algorithm, is replaced by a simpler formula, in which both p and g are calculated
from some given integers. The abbreviated approach is faster than the usual CM
method because it avoids Cornacchia’s algorithm, which aids in the reproducibility
of the method.

[00119] The abbreviated method also results in a more compact form for p
and g, which aids in arguing that the curve was not manipulated, since it lacks any
random-looking parameters.

{00120] The last specific criterion is defining how to measure closeness to
the power of two. For this, a simple and natural rule as possible was chosen.
Rather than using absolute differences as a measure of closeness, a relative
difference was used. Specifically, the relative difference is the absolute difference
divided by the exponent to the power of two.

[00121] For example, in Crib454, p = 2454 4+ (3x17x11287)?, so the relative
difference is (3x17x11287)2 / 454. The relative difference is more natural than
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the absolute difference, because of the prime number theorem, which gives
heuristic predictions of the probability of numbers being prime. Under this heuristic,
the rarity of primes is a function of the relative difference, not the absolute
difference.

[00122] The closeness to the power of two is the last and thus it is given the
lowest priority of the criteria. Thus, the other criteria are decided first, but the
previous criteria can all be expressed in the formula. Thus it only remains to do
the calculations, most consisting of primality tests. This generates a list of
candidate curves. Of the suitable curves, the one having minimal reiative
difference is selected.

[00123] One computer algorithm for doing the above is provided in Appendix
A. The computer code in Appendix A verifies the Crib454 criteria, but could easily
be adapted by those skilled in the art to produce other curves meeting the criteria
above.

[00124] Further, the above may be summarized with reference to Figure 3.
In particular, Figure 3 shows a flow diagram for the derivation of a curve that has
near-optimal Cheon resistance.

[00125] The process of Figure 3 starts at block 310 and proceeds to block
312 in which a range of curves is chosen. Specifically, the size of the curve may
be determined at block 312 to meet minimal security requirements for the ECDH
application.

[00126] From block 312 the process proceeds to block 320 in which the range
of curves from block 312 is further reduced to select a curve with a threshold
efficiency. In particular, the selected curve as described above should be small
enough to be practical. Further, the field size should be close to a power of two.
Further, the selection at block 320 should limit the curves to those exhibiting
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etficient endomorphism.

[00127] From block 320 the process proceeds to block 330 in which the
curves selected at block 320 are further reduced to eliminate curves that may
exhibit vulnerabilities. In particular, at block 330 the selected curves are reduced
to those that are compact and not maliciously manipulated. Further, the curves
are reduced to those that are easy to generate.

[00128] From block 330 the process proceeds to block 340 in which Cheon
resistance is ensured by ensuring the curves avoid the factorization conditions that
make Cheon’s algorithm faster than Pollard rho.

[00129] The process then proceeds to block 350 and ends.

[00130] Using the Crib454 parameters above, reference is now made 1o
Figure 4. In particular Figure 4 shows the embodiment of Figure 2 in which the
generic parameters for the curve are specifically substituted for the Crib454
parameters.

[00131] Thus, correspondent A communicates with correspondent B over a
secure channel. In the embodiment of Figure 4 correspondent A sends message
412, which includes p=2%4+(3x17x11287)2 and q=2*2+(7x41117)2. Further, a=i
and b=0. (G is any fixed point on the curve provided it has order q.

[00132] Correspondent A further sends its public key mG in message 412 to
correspondent B, However, in other embodiments the public key may be sent in

a subsequent message.

[00133]) Correspondent B sends its public key nG to correspondent A in
message 420,
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[00134] At this point, due to the curve parameters and the public keys, each
of correspondents A and B can calculate the shared secret, while eavesdropper
430 cannot calculate the shared secret due to the discrete logarithmic problem.
Further, the eavesdropper 430 will be unable to use the Cheon attack due to the
Cheon resistance built into the curve parameters.

[00135] The above may be implement using any computing device. For
example, one simplified computing device is provided with regards to Figure 5.

[00136] In Figure 5, device 510 includes a processor 520 and a
communications subsystem 530, where the processor 520 and communications
subsystem 530 cooperate to perform the methods of the embodiments described
above.

[00137] Processor 520 is configured to execute programmable logic, which
may be stored, along with data, on device 510, and shown in the example of Figure
5 as memory 540. Memory 540 can be any tangible, non-transitory computer
readable storage medium. The computer readable storage medium may be a
tangible or in transitory/non-transitory medium such as optical (e.g., CD, DVD,
etc.), magnetic (e.g., tape), flash drive, hard drive, or other memory known in the
art.

[00138] Alternatively, or in addition to memory 540, device 510 may access
data or programmable logic from an external storage medium, for example through

communications subsystem 530.

[00139] Communications subsystem 530 allows device 510 to communicate
with other devices or network elements.

[00140] Communications between the various elements of device 510 may
be through an internal bus 560 in one embodiment. However, other forms of
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communication are possible.

[00141] The structure, features, accessories, and alternatives of specific
embodiments described herein and shown in the Figures are intended to apply
generally to all of the teachings of the present disclosure, including to all of the
embodiments described and illustrated herein, insofar as they are compatible. In
other words, the structure, features, accessories, and alternatives of a specific
embodiment are not intended to be limited to only that specific embodiment unless
s0 indicated.

[00142] Furthermore, additional features and advantages of the present
disclosure will be appreciated by those skilled in the art.

[00143]) The embodiments described herein are examples of structures,
systems or methods having elements corresponding to elements of the techniques
of this application. This written description may enable those skilled in the art to
make and use embodiments having alternative elements that likewise correspond
to the elements of the techniques of this application. The intended scope of the
techniques of this application thus includes other structures, systems or methods
that do not differ from the techniques of this application as described herein, and
further includes other structures, systems or methods with insubstantial
differences from the techniques of this application as described herein.
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APPENDIX A
Code used to generate CRIB454

// strong ecdh.cc

// Dan Brown

// 2015-ARugust-25

// Compile using:

// gt+ -03 strong ecdh.cc -lntl

// Try to find triples (t,z,u) with u= +/~1, such that the following
// numbers:

/] p = 27(28) + (12z+2u+l) ~2
// g = 2~(2t=2) + (6z+tu)"2
// r = (g-1)/8

// s = (gtl) /6

// are prime. (If t,z,u are integers and t >= 3, then p,q,r,s are
// integers.)

// Note t-1 loosely corresponds to "security level”

// Like t >= 127 for sufficient DH security.

// Like t <= 300 for practical DH performance.

// Look at smaller and larger t just for completeness.
// Like |z| as small as possible for efficiency.

// Try |lz| < t~d for d=1,2,3,4, getting successively more hits.
# include <NTL/ZZ.h>

using namespace std ;

using namespace NTL ;

// T MAX is maximum size of t, a constant

// 7 _ABS is maximum size |z|: e.g. expresion in t

# if O

# elif 1 // Crib4b4 only non-trivial hit

// Slowly test for medium |z]

// Found Crib454 in ~ 4 sec on old PC

# define Z ABS t*t //

# define T MAX 400 // Took ~ 30 sec to 1.5 min old PC
// 500 // Took ~ 2-5 min on old PC

// Don’t expect any non-trivial hits, since not enough z
// Got five trivial hits plus

// (t,z,u) = (227,-47970,1)

// yielding the interesting elliptic curve Crib4541

// other test parameters given below

# elif O

// Quickly test for smaller |z|, but larger t.

# define Z_ABS t

# define T MAX /* 1024 // Took ~ 10 sec on old PC */ \
3072 // Took ~ 7 min on old PC.

// Don’t expect (m)any hits for non-trivial t.

// Trivially small hits:

// (t,z,¥) = (3,2,1) -——> (p,q,r,s) = (593, 137, 17, 23)
// (t,z,u) = (6,-2,~1) -—=> (p,q,r,s) = (4721, 1193, 149, 199)
# elif 0 // Allow slightly larger |z| than for Crib454
# define 7z ABS 10¥t*t //

# define T MAX 300 // Took ~ 1.5 min on old PC

// new hit: (t,z,u) = (173,-125658,-1)

20

# elif 1

// __SLOWLY  test for medium |z|

//

// 11l === very slow, e.g. > 30min --- 11!

//

# define Z_ABS t*t*t

# define T MAX 300 // took ~46min on old PC

// Decent chance of a hit for each t.

// Most interesting outputs: // log t(|zl)

// (t,z,u) = (116,-1330894,1) // 2.966

// (t,z,u) = (159,-522010,1) // 2.597

// (t,z,u) = (161,-3559998,-1) // 2.969

// (t,z,u) (173,-125658,-1) // 2.278

// (t,z,q) (224,-2710302,-1) // 2.737

i
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// (t,z,u)y = {(227,-47970,1) // 1.987

// {(t,z,u) = (289,13349730,1) // 2.895

# else

// Sanity check:

# define Z ABS t*t*t*t

# define T MAX 128

# endif

// Expect many hits ... need to limit # per t.

// Got 7 hits at t = 32.

// For <= 256-bit field, the most interesting example:

// (t,z,u)y = (127,-10402698,-1)

// Convert |z| bound into a string.

# define STRING 1(x) #x

# define STRING 2(x) STRING 1 (x)

# define 7 STRING STRING 2 (7 ARS)

// Following NTL style guide to use long instead of int.

bool five or more test (long t, long z, long u)

{

// for meaning of t,z,u, see comments in function mod test.

// uncomment this to remove sieving test ...

// return true ; // Much slower!

// Sieving risks knocking trivially small t

// so let’s skip sieving for small t

if ( t <= 15 ) {

// note r >= 2°(2t-5).

// If €>20, then r > 2735

// TIf £>15, then r > 2725

return true ;

}

4 define SIEVE MAX ({sizeof (primes) )/ (sizeof (long)))

const long primes[] = {

// what is the most efficient set of primes to put here?

// the savings are achieved by avoiding big integer math ...

// it’s silly to include the list of primes in the code

// should instead generate them at a start-up.

// it seems to make sense to sieve pretty far given the NTL

// primality testing interface. Although NTL could try trial

// division, which should not be significantly slower than the
// stuff here, 1t will also do Miller—--Rabin on one of p,d,r,s
// before doing trial division on the others.

5,7,

11,13,17,19, 23,29, 31,37, 41,43,47,

53,59, 61,67, 71,73,79, 83,89, 97,

101,103,107,109, 113, 127, 131,

137,139, 149, 151,157, 163,167,

173,179, 181, 191,193,197,199,
211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,
307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,
401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491, 499,
503,509,521,523,541,547,557,563,569,571,577,587,593,599,
601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,
701,709,719,727,733,739,743,751,757,761,769,773,787,797,
809,811,821,823,827,829,839,853,8657,859,863,6877,881,883,887,
907,911, 919,929, 937,941,947,953,967,971,977,983, 991,997,

/* The following does not help too much, except for larger t */
1009,1013,1019,1021,1031,1033,1039,1049,1051,1061,1063,1069,1087,
1091,1093,1097,1103,1109,1117,1123,1129,1151,1153,1163,1171,1181,
1187,1193,1201,1213,1217,1223,1229,1231,1237,1249,1259,1277,1279,
1283,1289,1291,1297,1301,1303,1307,1319,1321,1327,1361,1367,1373,
1381,1399,1409,1423,1427,1429,1433,1439,1447,1451,1453,1459,1471,
1481,1483,1487,1489,1493,1499,1511,1523,1531,1543,1549,1553,1559,
1567,1571,1579,1583,1597,1601,1607,1609,1613,1619,1621,1627,1637,
1657,1663,1667,1669,1693,1697,1699,1709,1721,1723,1733,1741,1747,
1753,175%,1777,1783,1787,1789,16801,1811,1823,1831,1847,1861,1867,
1871,1873,1877,1879,1889,1901,1907,1913,1931,1933,1949,1951,1973,
1979,1987,1993,1997,1999,2003,2011,2017,2027,2029,2039,2053,2063,
2069,2081,2083,2087,2089,2099,2111,2113,2129,2131,2137,2141,2143,
2153,2161,2179,2203,2207,2213,2221, 2237, 2239, 2243, 2251, 2267, 2269,
2273,2281,2287,2293,2297,2309,2311, 2333,2339, 2341, 2347, 2351, 2357,
2371,2377,2381,2383,2389,2393,2399,2411,2417,2423,2437,2441, 2447,
2459,2467,2473,2477,2503,2521,2531,2539,2543,2549,2551,2557,2579,
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2591,2593,2609,2617,2621,2633,2647,2657,2659,2663,2671,2677, 2683,
2687,2689,2693,2699,2707,2711,2713,2719,2729,2731, 2741, 2749, 2753,
2767,2717,2789,2791,2797,2801,2803, 2819, 2833, 2837, 2843, 2851, 2857,
2861,2879,2887,2897,2903,2909,2917,2927,2939,2953,2957,2963, 2969,
2971,2999,3001,3011,3019,3023,3037,3041, 3049, 3061, 3067,3079,3083,
}os

long index ;

static long last t = -1;
static long powers[SIEVE MAX];
if (t I= last t) {

// compute 27 (2t-4) modulo each prime in primes.
long prime ;

if (b = + last_t) |

// do a full computation ...

long t reduced ;

for( index = 0 ; index < SIEVE MAX; index ++ ) {
prime = primes[index];

// reduce t by Fermat’s little theorem
t_reduced = (2*L - 4) % (prime-1) ;

// compute power by repeated doubling

// for larger moduli, would need square and multiply
powers [index] = 1;

for {(long i = 0; i < t_reduced; i++) {

powers [index] += powers[index] ;

powers [index] %= prime ;

}

}

} else {

// t == 1+ last t ;

// just do an update of the last computation ...
for( index = 0 ; index < SIEVE MAX; index ++ ) {
prime = primes[index];

// double twice ...

for (long i = 0; i < 2; i++) {

powers [index] += powers[index] ;

powers [index] %= prime ;

}

}

}

last_ t =t ;

}

// now powers|[index] is 27 (2t-4) mod primes[index].
for (index = 0 ; index < SIEVE MAX ; index++ ) {
long power = powers|[index];

long prime = primes[index];

long tester ;

// check for small factors in 3s

// recall 3s = 27(2t-3) + 1 + 3z (6z+2u)

tester = 2*power + 1 + 3*z*(6%*z + 2*u) ;

if (0 == tester%prime ) {

return false ;

}

// check for small factors in 2%r

// recall 2r = 27(2t-4) + z(9z+3u)

tester = power + z * (9%z + 3%u) ;

if (0 == tester%prime ) {

return false ;

}

// check for small factors in g

// recall g = 27(2t-2) + (6z+u)"2

tester = 4*power + (6*z+u)*(6*z+u) ;

if (0 == tester%prime ) {

return false ;

}

// check for small factors in p

// recall p = 2"~(2t) + (12z+2u+l)"2

tester = 1l6*power + (12*%z+2*%u+l)* (12*z+2%u+l) ;
if (0 == tester%prime ) {

return false ;

}

}
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return true ; // sieving passed

}

bool mod test(long t, long z, long u)

{

// Quickly check p,q,r,s for small prime factors, without any big
// integer math.

// Primes 2 and 3 are special cases handled in this funection,
// because divisions by 2 and 3 are involved, we must work modulo
// powers of 2 and 3.

// Primes 5 and larger handled more systematically by a call to
// another function.

// Here are the definitions of p,q,r,s in terms of t,z,u.

[/ p o= 27°(2t) + (12z+2u+l) "2

// a 27 (2t-2) + (6z+u) "2

// r = 2°{(2t-5) + z{9z+t3u)/2

// s = (27(2€-3)+1) /3 + z(6z+2u}

// Ensure that p,dq,r,s are odd.

// EBach of p,q,s is eventodd=odd. Only r must be checked.

// We only need that z(9z-3u) is not divisible by four.

// Working mod 4, we see that we z(z+u) = 2 mod 4. We know

// it will be 0 or 2 (or -2 for %), so we eliminate 0.)

if (0 == (z*(z+u))%4){

return false ;

}

// Becond ensure that r and s are not divisible by 3.

// Mod 3:

//p=1+ (2utl)*2 =1 + (0 or 1) = 1 or 2

// g=1+ (Loxr2)y~2=1+1=2

// r =24+ 0 =2

// So, p,dq,r are not divisible by 3.

// To handle s, we congider 3s mod 9, and check that it is 3 or 6,
// or really that it is not 0.

// Mod 9: 3s = 27(2t-3) + 1 + 6uz.

// we can compute (2°(2t-3) + 1} mod 9 by table lookup.

if { == ({(long []1){0,6,3}[t%3] + 6*u*z)%9) {

return false ;

}

// Finally, let’s sieve modulo small primes.

return five or more test(t,z,u) ;

}

long prime test(long t, long z, long u)

{

2% p,dsT,8

long vy;

y = 6%z + u ;

// to do:

// instead of calling power2 77 below, we should instead

// re-use previous value and then double

// also we should avoid the the /

// these efficiencies are probably dominated by the

// cost of calling ProbPrime ... so we defer them.

p = power2 ZZ(2*t) + (2*y+1l)* (2*y+l) ;

q = power2 ZZ{2*t-2) + y*y

r o= (q-1)/8 ;

(q+l) /6 ;

// The modular tests and the form of y should ensure that the
// divisions above are exact.

if{ ProbPrime(s) && ProbPrime (r) && ProbPrime () && ProbPrime(p)) {

s

cout << "\r (t,z,u) = ("
K b <K MM KK oz << M, g oy << My
<< " o< "\b\b\b\b\b\b\b" // over-write "progress"

<< "™\t" // since, tab does not over-write.

if {t >= 127) |

cout << "probably generates ¢-strong ECDH parameters,\n";
} else {

cout «< "too small, otherwige special ...\n"

}

return 1;

}

return O;
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}

long test t z u (long t, long z, long u)
{

// first do some small-integer modular tests:
if (mod test(t,z,u)) {

// If the small integer tests pass, then do big-integer primality
// tests:

return prime test(t,z,u) ;

}

return 0O;

}

long test t z {(long t, long z)

{

long hits = 0;

hits += test t z u(t,+z,+1);

hits += test t z u(t,+z,-1);

if (z > 0) {

hits += test t z u(t,-z,+1);

hits += test t z u(t,-z,~-1);

}

return hits ;

}

int main ()

{

long t, z, hits;

long t max = T MAX;

long t min = (T MAX>128)7? 3 : 126;

cout
<< "Looking for an elliptic curve with: \n"
{( n \n "

<< "1) complex multiplication by i, \n"

<< "™ enabling Gallant--Lambert--Vanstone speed-up.\n"
<< " Curve equation: y*2 = x”3 + ix. \n"

<< " \n"

<< "2) a special field size:\n"

<& " op o= 2°(2t) + (12z42u+l)”2, where u™2 = 1, \n"

<< ™ which may be more efficienct than a random field size.\n"
g " \I}"

<< "3) cofactor 4, a curve size of 4q, for prime, \n"
<< " g o= 27{2t-4) + (6z+u)”2 \n"

<< " which enables Montgomery and Edwards speed-ups. \n"
<< n \n"

<< ™4) near-optimal Cheon-resistance: \n"

<< "™ r=(g-1)/8 and s=(g+l) /6. \n"

<< " are both prime.\n"

<< " An"

H

cout

<< "Testing t with " << t min

<< " <=t <= " << € max

<< "™ and |z| <= " Z STRING ".\n";

for (t = t min ; t <= t max ; t++) {

// test each z

for (z = 0, hits=0 ; (z <= Z _ABS) && (hits <= 4); z++) {
hits += test t z(t,z) ;

if (0=={z+1)%100000) {

// did not check if cerr over—-writes any cout hits :/{
cerr << "\r" << "Progressed past t == " << t

<< ||, IZI K= WKL g K W,

}

}

// Display current value of t

cerr << "\r" << "Progressed past t <= " << t

<< " H;

}

cout << "\n" << "Donel!”™ << "\n"

return 0;

}
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CLAIMS
What is claimed is:

1. A method for providing Cheon-resistance security for a static elliptic curve Diffie-
Hellman cryptosystem (ECDH), the method comprising:
at the first computing device, selecting a curve for message communication between the
first computing device and a second computing device, a message being exchanged in
accordance with ECDH instructions executable on computer processors of the respective first
and second computing devices, the ECDH instructions using a curve selected from a plurality of
curves, the selecting comprising:
choosing a range of curves;
selecting, from the range of curves, curves matching a threshold efficiency;
excluding, within the selected curves, curves which may include intentional
vulnerabilities; and
electing, from non-excluded selected curves, a curve with Cheon resistance, the electing
comprising electing a curve from an additive group of order q, wherein q is prime, such that g-1
= crand g+1 = ds, where rand s are primes and ¢ and d are integer Cheon cofactors of the
group, such that cd < 48
wherein the choosing comprises choosing a range of curves having a length
matching a threshold security level, and
wherein the selecting comprises selecting curves having a field size closeto a

power of two, and having efficient endomorphism.

2. The method of claim 1, wherein the excluding comprising excluding curves which
are non-compact or difficult to generate.

3. The method of claim 1, wherein the curve has an affine equation in the form y* =

x® + ix, where i=v—1.

4. The method of claim 5, wherein the curve has length of 454 bits.

5. The method of claim 6, wherein a field size p=2%4 + (3 x 17 x 11287)?; order
q=2'2+(Tx41117)%;, r=(q — 1)/8; and s=(q+1)/6.
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6. A method for providing Cheon-resistance security for a static elliptic curve Diffie-
Hellman cryptosystem (ECDH), the method comprising:
at the first computing device, selecting a curve for message communication between the
first computing device and a second computing device, a message being exchanged in
accordance with ECDH instructions executable on computer processors of the respective first
and second computing devices, the ECDH instructions using a curve comprising:
an additive group of order g, wherein q is prime, such that g-1 = crand g+1 = ds,
where rand s are primes and ¢ and d are integer Cheon cofactors of the group, such
that cd < 48;
an affine equation in the form y?= x3 + ix, where i=y—1;
a length of 454 bits;
a field size p=24%* + (3 x 17 x 11287)3;
an order q=2%2+(7x41117)?,
r=(q - 1ys;
s=(g+1)/6; and
the selected curve having a length matching a threshold security level, a field

size close to a power of two, and an efficient endomorphism.

7. A computing device for providing Cheon-resistance security for a static elliptic
curve Diffie-Hellman cryptosystem (ECDH), the computing device comprising a processor for
executing program instructions configured to carry out the method of any one of claims 1 o 6.

8. A computer program product comprising a computer readable memory storing

computer instructions thereon that when executed by a computer perform the method of any

one of claims 1 to 6.
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