

ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

- (21), (22) Заявка: **2006145306/13**, **18.05.2005**
- (24) Дата начала отсчета срока действия патента: **18.05.2005**
- (30) Конвенционный приоритет: **20.05.2004 ES P200401219**
- (43) Дата публикации заявки: 27.06.2008
- (45) Опубликовано: 10.07.2010 Бюл. № 19
- (56) Список документов, цитированных в отчете о поиске: **ES** 2156958, 01.08.2001. **WO** 9815636, 16.04.1998. **WO** 9822143, 28.05.1998.
- (85) Дата перевода заявки РСТ на национальную фазу: 20.12.2006
- (86) Заявка РСТ: ES 2005/000277 (18.05.2005)
- (87) Публикация РСТ: WO 2005/112541 (01.12.2005)

Адрес для переписки:

2

C

4

ത

က

~

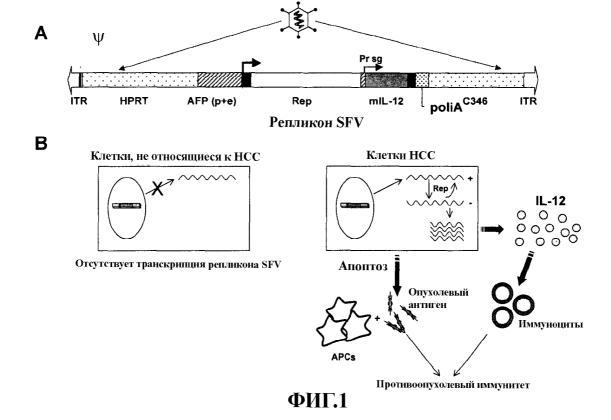
129090, Москва, ул. Б.Спасская, 25, стр.3, ООО "Юридическая фирма Городисский и Партнеры", пат.пов. Е.Е.Назиной, рег. № 517

(72) Автор(ы):

ЦЯНЬ Чэн (ES), ГУАНЬ Минь (ES), СМЕРДОУ ПИКАЗО Кристиан (ES), ПРЬЕТО Вальтуэнья Хесус (ES)

(73) Патентообладатель(и): ПРОЕКТО ДЕ БИОМЕДИСИНА СИМА, С.Л. (ES)

双


(54) АДЕНОВИРУСНЫЙ/АЛЬФА-ВИРУСНЫЙ ГИБРИДНЫЙ ВЕКТОР ДЛЯ ЭФФЕКТИВНОГО ВВЕДЕНИЯ И ЭКСПРЕССИИ ТЕРАПЕВТИЧЕСКИХ ГЕНОВ В ОПУХОЛЕВЫЕ КЛЕТКИ

(57) Реферат:

Изобретение относится к области биотехнологии, генной инженерии и медицины. Аденовирусный гибридный вектор содержит первую цепь из аденовируса, содержащую последовательность первого инвертированного концевого повтора (ITR) и сигнальную последовательность для упаковки аденовируса; первую некодирующую последовательность наполнителя; последовательность,

соответствующую тканеспецифическому промотору; цепь кДНК, полученную из альфавируса, последовательность которой частично комплементарна РНК альфавируса, включающую, последовательность,

кодирующую, один интересующий экзогенный ген; последовательность полиаденилирования; и последовательность второго инвертированного концевого повтора (ITR). Раскрыты также фармацевтические композиции, содержащие такой аденовирусный гибридный вектор, и их применение. Заявляемая группа изобретений может быть использована в способе переноса генетического материала в клетку, в частности, опухолевую клетку, которая предпочтительно экспрессирует альфа-фетопротеин (AFP), и к его применению для индукции иммунного ответа против чужеродных антигенов. 8 н. и 30 з.п. флы, 16 ил.

2

C

3 9

~

Стр.: 2

Z

ဖ

C

FEDERAL SERVICE FOR INTELLECTUAL PROPERTY, PATENTS AND TRADEMARKS

(12) ABSTRACT OF INVENTION

(21), (22) Application: **2006145306/13**, **18.05.2005**

(24) Effective date for property rights: 18.05.2005

(30) Priority:

20.05.2004 ES P200401219

(43) Application published: 27.06.2008

(45) Date of publication: 10.07.2010 Bull. 19

(85) Commencement of national phase: 20.12.2006

(86) PCT application: ES 2005/000277 (18.05.2005)

(87) PCT publication: WO 2005/112541 (01.12.2005)

Mail address:

129090, Moskva, ul. B.Spasskaja, 25, str.3, OOO "Juridicheskaja firma Gorodisskij i Partnery", pat.pov. E.E.Nazinoj, reg. № 517

(72) Inventor(s):

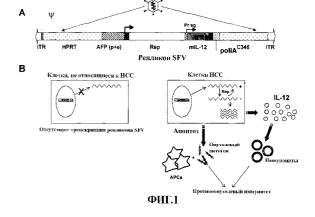
TsJaN' Chehn (ES), GUAN' Min' (ES), SMERDOU PIKAZO Kristian (ES), PR'ETO Val'tuehn'ja Khesus (ES)

(73) Proprietor(s):

PROEKTO DE BIOMEDISINA SIMA, S.L. (ES)

(54) ADENOVIRUS/ALFAVIRUS HYBRID VECTOR FOR EFFECTIVE ADMINISTRATION AND EXPRESSION OF THERAPEUTIC GENES IN TUMOR CELLS

(57) Abstract:


FIELD: medicine.

SUBSTANCE: adenoviral hybrid vector contains the first chain of adenovirus containing sequence of the first inverted terminal repeat (ITR) and signal sequence for packaging of adenovirus, the first noncoding sequence of the filler; sequence corresponding to tissue-specific promoter; chain of cDNA derived from alphavirus, which sequence is partially complementary to alphavirus RNA, including encoding sequence, an exogenous gene under interest; polyadenylation sequence and sequence of the second inverted terminal repeat (ITR). Pharmaceutical compositions containing such adenoviral vector hybrid and their application are revealed as well. The declared group of inventions can be used in the method of transfer of genetic material into cell, in particular into tumor cell which preferably expresses

alpha-fetoprotein (AFP), and its application for induction of immune response against foreign antigens.

EFFECT: increasing of efficiency of therapeutic genes administration.

38 cl, 17 dwg

2 C

4 4 တ က

 $\mathbf{\alpha}$

Область техники, к которой относится изобретение

Настоящее изобретение относится к векторам для экспрессии гена, полученным из аденовирусов, для получения терапевтических продуктов.

Уровень техники

Одной из основных проблем, с которыми сталкивается обычная противоопухолевая терапия, является отсутствие специфичности к опухолям, ситуация, которая часто приводит к проявлению тяжелых побочных эффектов и ограничивает применяемую терапевтическую дозу. Несмотря на то, что генная терапия остается многообещающей для лечения злокачественных опухолей, для нее также характерна проблема специфичности: целенаправленная трансгенная экспрессия в области опухоли. На основании результатов ряда исследований можно предположить, что когда вирусные векторы вводят в область поражения, несмотря на то, что трансгенная экспрессия в основном ограничена областью, смежной с ходом иглы, такая экспрессия также может иметь место в других тканях. Следовательно, важной целью генной терапии по отношению к злокачественным опухолям является направление экспрессии терапевтического гена к опухолям посредством специфического введения в ткань новообразований («тканевая цель») и/или специфической активации («транскрипционная цель») в ткани новообразований без влияния на здоровые клетки. «Тканевой цели» можно достичь созданием направленного вектора посредством модификаций взаимодействия рецептор-лиганд, что позволяет инфицировать клетки, которые экспрессируют специфический рецептор. «Транскрипционной цели» можно достичь при использовании опухолеспецифического промотора для контроля трансгенной экспрессии. В предшествующих исследованиях использовались различные опухолеспецифические промоторы. Однако таковые представляют серьезное ограничение в том плане, что они не приводят к экспрессии на высоком уровне, в результате чего противоопухолевая активность ограничивается.

Обзор самых последних достижений в разработке вирусных векторов для генной терапии можно найти у Lundstrom K. «Latest development in viral vectors for gene therapy»; Trends in Biotechnology, 2003, 21, 118-122.

Используемые в настоящее время вирусные векторы включают альфавирусы. Альфавирусы представляют вирусы с оболочкой, которые содержат простую «плюсцепь» РНК в качестве генома. Были сконструированы и разработаны экспрессирующие векторы, полученные из альфавирусов, вируса Синдбай (SIN), вируса леса Семлики (SFV) и вируса венесуэльского энцефалита лошадей (VEE). Альфавирусные векторы основаны на применении самореплицирующихся молекул РНК, полученной из геномов альфавирусов, в которой сохраняются 5'- и 3'последовательности, необходимые для репликации, и ген репликазы (Rep), в то время как гены, кодирующие вирусные структурные белки, подвергаются делеции и замещаются трансгеном. После трансфекции клеток данными векторами Rep транслируется, и РНК-вектор копируется в «минус-цепь» РНК, которая будет использоваться в качестве матрицы для амплификации РНК-вектора. Rep также может узнавать субгеномный промотор в «минус-цепи» РНК, из которой синтезируется меньший субгеномный сегмент РНК, который, в свою очередь, может транслироваться с продукцией гетерологичных белков на высоком уровне. Альфавирусные векторы можно непосредственно использовать в качестве РНК при транскрипции в условиях in vitro от прокариотического промотора, такого как SP6 или Е7, или в качестве ДНК, когда последовательность репликона расположена

ниже эукариотического промотора, такого как CMV. РНК-вектор может быть упакован в вирусные частицы посредством котрансфекции в клетки вместе с одной или более «хелперной» РНК, которая кодирует вирусные структурные белки. Альфавирусные векторы обладают рядом свойств, которые делают их привлекательными для генной терапии: очень высокий тропизм, низкая иммуногенность и экспрессия гетерологичных белков на высоком уровне. Однако такая экспрессия является временной за счет индукции апоптоза клеток, в которых происходит репликация. В статье Rayner J.O., Dryga S.A., Kamrud K.I. «Alphavirus vectors and vaccination»; Rev. Med. Virol. 2002; 12, 279-296, описывается разработка экспрессирующих векторов на основе альфавирусов для применения в области вакцин.

Другие группы вирусных векторов основаны на аденовирусах. Имеется большое количество литературы по применению аденовирусов, которые были разработаны для преодоления некоторых недостатков генной терапии, и в качестве источника для создания экспрессирующих векторов. Статья о самых последних достижениях в области аденовирусных векторов опубликована Volpers C., Kochanek S. «Adenoviral vectors for gene transfer and therapy»; J. Gene. Med. 2004; 6: S164-S171. Аденовирусы обладают преимуществом достижения высокой эффективности трансдукции и способностью сохраняться в эписомальной форме. Однако экспрессия аденовирусных белков вызывает сильные иммунные ответные реакции, которые ограничивают продолжительность трансгенной экспрессии и вызывают токсичность в клетках, инфицированных вектором. Для решения данных проблем были получены аденовирусы «с усеченным геномом» («gutless adenoviruses»). Данные аденовирусы «с усеченным геномом» лишены всех соответствующих аденовирусных генов (сохраняются только последовательности, представляющие собой последовательности двух инвертированных концевых повторов и сигналы для упаковки), следовательно, трансдуцированные клетки не экспрессируют аденовирусного продукта и не индуцируют иммунного ответа на вектор. Кратко, элиминация всех аденовирусных генов оставляет достаточное пространство для размещения крупных экспрессирующих кассет и по этой причине аденовирусы «с усеченным геномом» также называют аденовирусными векторами с высокой емкостью. Опубликована статья, описывающая конкретные аспекты аденовирусных векторов, относящаяся к делеции всех последовательностей, кодирующих вирусные белки, Morsy M.A. et al. «An adenoviral vector deleted for all viral coding sequences results in enhanced safety and extended expression of a leptin transgene»; Proc. Natl. Acad. Sci. USA 1998, 95: 7866-7871. В статье, опубликованной Schiedner G. et al., «Variables affecting in vivo performance of high-capacity adenovirus vectors»; J. Virol. 2002, 76: 1600-1609, описывается применение «лишней» ДНК в экспрессирующих векторах на основе аденовирусов «с усеченным геномом», показывая, что наличие такой «лишней» ДНК важно для достижения значительного усиления экспрессии гена и что, в основном, конструирование векторов на основе аденовируса («с усеченным геномом») с высокой емкостью может существенно модифицировать степень и продолжительность экспрессии гена.

С другой стороны, в патенте США № 5981225 описывается вектор для переноса гена на основе аденовирусов, который включает последовательности инвертированного концевого повтора (ITR), по меньшей мере, одну последовательность сигнала для упаковки и аденовирусный ген VAI и/или аденовирусный ген VAII; и включает ген, являющийся чужеродным для аденовируса,

функционально связанный с функциональным промотором в клетках-мишенях для аденовируса.

В патенте США № 5985846 описывается вектор для переноса гена, включающий последовательности инвертированного концевого повтора (ITR) аденовируса и рекомбинантные частицы аденовируса, содержащие данные последовательности.

В патенте США № 6566093 описываются векторы кДНК, полученные из альфавирусов, которые состоят из ДНК, комплементарной, по меньшей мере, в отношении части РНК альфавируса, необходимой для репликации альфавируса, и гетерологичную кДНК, например кДНК, кодирующую желаемое соединение. Последнее может представлять собой биологически активный белок или полипептид, а также иммуногенный или антигенный белок или полипептид, терапевтически активный белок или полипептид, или терапевтически активную РНК.

Целью настоящего изобретения является повышение трансгенной экспрессии и индукции апоптоза опухолевых клеток, опосредуемое гибридными векторами в условиях in vitro и in vivo. Дополнительной целью является повышение эффективности терапии опухолей на моделях на животных с помощью гибридных векторов.

Дополнительной целью также является разработка способа генной терапии, в частности, для лечения злокачественных опухолей с помощью применения гибридных векторов.

Цели настоящего изобретения достигаются объединением следующего в одном векторе:

- высокой инфицирующей способности путем использования системы высвобождения аденовируса,
- высокой трансгенной экспрессии и индукции апоптоза путем использования вектора, полученного из альфавируса, такого как SFV, и
- специфичности к опухолям путем использования опухолеспецифического промотора.

Сущность изобретения

20

25

Настоящее изобретение, во-первых, относится к аденовирусному гибридному вектору для экспрессии гена, отличающемуся тем, что он содержит, по меньшей мере, следующие элементы, ориентированные в направлении от 5' к 3':

- і) первую цепь из аденовируса, содержащую последовательность первого инвертированного концевого повтора (ITR) и сигнальную последовательность для упаковки аденовируса;
 - іі) первую некодирующую «лишнюю» последовательность;
 - ііі) последовательность, соответствующую тканеспецифическому промотору;
- iv) цепь кДНК, полученную из альфавируса, последовательность которой частично комплементарна РНК альфавируса, включающую, по меньшей мере, последовательность, кодирующую, по меньшей мере, один интересующий экзогенный ген;
 - v) последовательность полиаденилирования; и
- vi) последовательность второго инвертированного концевого повтора аденовируса (ITR).

Конкретнее, настоящее изобретение относится к конструкции аденовирусного гибридного вектора, содержащей в качестве элемента іv цепь кДНК, полученной из альфавируса, соответствующую последовательности рекомбинантного репликона SFV под контролем транскрипции опухолеспецифического промотора

(элемента ііі), который представляет собой промотор альфа-фетопротеина (AFP). В данной конструкции трансген можно вставить в репликон SFV, управляемый субгеномным промотором SFV. После инфицирования опухолевых клеток данным гибридным вектором мРНК репликона SFV транскрибируется от опухолеспецифического промотора, и неструктурные белки - nsP, которые составляют ген репликазы SFV, транслируются из указанной мРНК репликона SFV. Данные белки nsP вирусной репликазы инициируют репликацию мРНК репликона SFV с получением субгеномной РНК SFV. Следовательно, трансген можно экспрессировать на высоком уровне из субгеномной РНК SFV. Данный общий процесс репликации вируса будет приводить к апоптозу инфицированных клеток. В том случае, когда данный гибрид заражает неопухолевые клетки, мРНК SFV не будет транскрибироваться под действием опухолеспецифического промотора, который не будет активным в данных клетках. Таким образом, трансген не будет экспрессироваться, и апоптоз будет отсутствовать в нормальных клетках, инфицированных гибридным вектором.

Настоящее изобретение дополнительно относится к способу получения указанного аденовирусного гибридного вектора, предусматривающему сборку элементов i-vi аденовирусного гибридного вектора, определенного выше, с помощью методов генной инженерии.

Также настоящее изобретение относится к применению указанного гибридного вектора для переноса генетического материала в клетку, и конкретнее, для введения и экспрессии чужеродных генов в эукариотических клетках, которые могут представлять собой клетки-мишени для аденовируса.

Перенос генетического материала предпочтительно приводит к индукции иммунного ответа против чужеродных антигенов в указанной клетке.

Настоящее изобретение также относится к фармацевтической композиции, содержащей указанный аденовирусный/альфавирусный гибридный вектор, и ее применению в терапевтическом лечении злокачественной опухоли, предусматривающему введение указанной фармацевтической композиции субъекту.

Настоящее изобретение также относится к способу лечения злокачественной опухоли с помощью применения определенного выше гибридного вектора, предусматривающему введение указанного гибридного вектора субъекту.

Настоящее изобретение относится аденовирусному гибридному вектору для экспрессии гена, отличающемуся тем, что он содержит, по меньшей мере, следующие элементы, ориентированные в направлении от 5' к 3':

- i) первую цепь из аденовируса, содержащую последовательность первого инвертированного концевого повтора (ITR) и сигнальную последовательность для упаковки аденовируса;
 - іі) первую некодирующую «лишнюю» последовательность;
 - ііі) последовательность, соответствующую тканеспецифическому промотору;
- iv) цепь кДНК, полученную из альфавируса, последовательность которой частично комплементарна РНК альфавируса, включающую, по меньшей мере, последовательность, кодирующую, по меньшей мере, один интересующий экзогенный ген;
 - v) последовательность полиаденилирования; и

45

vi) последовательность второго инвертированного концевого повтора аденовируса (ITR).

Происхождение элемента і в альфавирусном/аденовирусном гибридном векторе

по настоящему изобретению, т.е. происхождение цепи из аденовируса, содержащей последовательность первого инвертированного концевого повтора (ITR) и сигнальную последовательность для упаковки (ψ) аденовируса, не является критическим аспектом для настоящего изобретения, и он может происходить из аденовируса любого серотипа. Указанные серотипы хорошо известны в данной области и включают, например, Ad12 (подрод A), Ad3 и Ad7 (подрод B), Ad2 и Ad5 (подрод C), Ad8 (подрод D), Ad4 (подрод E), Ad40 (подрод F) и другие известные не относящиеся к человеческим аденовирусы, которые могут происходить от таких видов, как свиньи, овцы, коровы и птицы. Следовательно, данная последовательность первого инвертированного концевого повтора, которая может содержать примерно от 100 до 500 п.н. в длину, может варьировать в зависимости от используемого серотипа аденовируса. Аналогично сигнальная последовательность для упаковки аденовируса может варьировать в зависимости от используемого серотипа аденовируса.

По предпочтительному конкретному варианту осуществления изобретения указанный аденовирусный вектор для экспрессии гена содержит элемент і, имеющий последовательность SEQ ID № 1 или какую-либо другую последовательность, обладающую достаточной гомологией с SEQ ID № 1, для выполнения такой же функции.

Происхождение элемента іі в аденовирусном гибридном векторе по настоящему изобретению не является его критическим аспектом. Указанный элемент іі, функция которого заключается в увеличении общего размера конструкции, может представлять любую некодирующую «лишнюю» последовательность. Указанная последовательность предпочтительно является некодирующей последовательностью человека. Даже более предпочтительно, когда данная некодирующая «лишняя» последовательность представляет собой область интрона человеческой геномной гипоксантинфосфорибозилтрансферазы (HPRT).

Предпочтительно определенный аденовирусный гибридный вектор также содержит элемент vii, который представляет вторую некодирующую «лишнюю» последовательность, расположенную между элементом v и элементом vi, определенными выше.

35

Происхождение элемента ііі в аденовирусном гибридном векторе по настоящему изобретению не является его критическим аспектом. Тканеспецифический промотор ііі предпочтительно представляет опухолеспецифический промотор. Примеры опухолеспецифических промоторов включают промоторы AFP, теломеразы TERT, PAP (связанный с поджелудочной железой протеин), E2F и HIF.

По предпочтительному конкретному варианту осуществления изобретения опухолеспецифический промотор имеет последовательность SEQ ID №7, соответствующую промотору/энхансеру AFP (AFP p+e), или последовательность SEQ ID № 15, соответствующую теломеразе TERT, или любую другую последовательность, обладающую достаточной гомологией соответственно с последовательностью SEQ ID №7 или с последовательностью SEQ ID № 15, для выполнения такой же функции.

Происхождение элемента iv в аденовирусном гибридном векторе по настоящему изобретению не является его критическим аспектом. Альфавирусные последовательности элемента iv предпочтительно происходят из вируса леса Семлики (SFV). Однако возможно использовать другие альфавирусные последовательности, полученные из любых видов, относящихся к

семейству Togaviridae, например, SIN, RRV и VEE.

10

45

Указанная цепь іv кДНК, полученная из альфавируса, последовательность которой частично комплементарна РНК альфавируса, предпочтительно содержит (в дополнении к последовательности, кодирующей, по меньшей мере, один интересующий экзогенный ген):

- а) 5'-последовательность, необходимую для репликации альфавируса,
- b) последовательность, кодирующую неструктурные белки, необходимые для репликации РНК альфавируса,
 - с) по меньшей мере, один субгеномный промотор альфавируса, и
 - d) 3'-последовательность, необходимую для репликации альфавируса.

Элемент іv предпочтительно образует репликон, функционально контролируемый промотором ііі, и где, в свою очередь, альфавирусный субгеномный промотор, входящий в состав іv c), функционально контролирует экспрессию интересующего экзогенного гена.

По предпочтительному конкретному варианту осуществления изобретения последовательности а) - с) элемента iv в целом имеют последовательность, выбранную из SEQ ID № 3 (SFV 5'-rep-Psg), или любую другую последовательность, обладающую достаточной гомологией с SEQ ID № 3 для выполнения такой же функции, и последовательность SEQ ID № 4 (SFV 5'-rep-Psg-enh) или любую другую последовательность, обладающую достаточной гомологией с SEQ ID № 4, для выполнения такой же функции.

По особо предпочтительному конкретному варианту осуществления изобретения элемент iv d) имеет последовательность SEQ ID № 5 (SFV3') или любую другую последовательность, обладающую достаточной гомологией с SEQ ID № 5, для выполнения такой же функции.

В элементе iv альфавирусного-аденовирусного гибридного вектора по настоящему изобретению интересующий экзогенный ген предпочтительно представляет собой терапевтический ген или ген-репортер или комбинацию обоих. Без рассмотрения в качестве ограничения, терапевтический ген предпочтительно выбран из генов интерлейкина млекопитающих IL-12, колониестимулирующего фактора GMCSF, альфа-интерферона и тимидинкиназы вируса герпеса простого.

Интересующий экзогенный ген в элементе iv дополнительно может быть геномрепортером. Без рассмотрения в качестве ограничения, ген-репортер может быть выбран из генов LacZ, люциферазы, tk и GFP.

Терапевтический ген особо предпочтительно представляет ген интерлейкина IL-12 и даже более предпочтительно терапевтический ген является геном человеческого интерлейкина hIL-12.

Аденовирусный гибридный вектор для экспрессии гена может включать в элементе iv одну или нескольких подгрупп (субгеномный промотор + интересующий экзогенный ген).

Происхождение элемента v в аденовирусном гибридном векторе по настоящему изобретению не является его критическим аспектом. Элемент v предпочтительно представляет последовательность полиаденилирования SV40. Указанная последовательность полиаденилирования SV40 особо предпочтительно является последовательностью SEQ ID № 6 или любой другой последовательностью, обладающей достаточной гомологией с SEQ ID № 6, для выполнения такой же функции.

Происхождение элемента vi в аденовирусном гибридном векторе по настоящему

изобретению не является его критическим аспектом. По предпочтительному варианту осуществления указанный аденовирусный вектор для экспрессии гена содержит последовательность инвертированного концевого повтора (ITR) в качестве элемента vi, который имеет последовательность SEQ ID \mathbb{N}_2 2 или любую другую последовательность, обладающую достаточной гомологией с SEQ ID \mathbb{N}_2 2, способную выполнять такую же функцию.

Происхождение элемента vii в аденовирусном гибридном векторе по настоящему изобретению не является его критическим аспектом. Вторая некодирующая «лишняя» последовательность может представлять любую такую последовательность. Предпочтительно это некодирующая последовательность человека и особо предпочтительно это последовательность из человеческой космиды С346.

Аденовирусный гибридный вектор для экспрессии гена по настоящему изобретению может иметь различную длину, и предпочтительно его длина находится в пределах от 27 до 38 т.п.н.

По предпочтительному конкретному варианту осуществления изобретения аденовирусный гибридный вектор содержит ITR 5' в качестве последовательности первого инвертированного концевого повтора; HPRT, область интрона человеческой геномной гипоксантинфосфорибозилтрансферазы в качестве первой «лишней» последовательности; AFP (p+e), опухолеспецифический промотор; последовательность репликона SFV, содержащую mIL-12, мышиный интерлейкин-12; полиА SV40, последовательность полиаденилирования SV40; C346, человеческую геномную космиду C346 в качестве второй «лишней» последовательности и ITR 3' в качестве последовательности второго инвертированного концевого повтора.

По дополнительному предпочтительному конкретному варианту осуществления изобретения аденовирусный гибридный вектор содержит ITR 5' в качестве последовательности первого инвертированного концевого повтора; HPRT, область интрона человеческой геномной гипоксантинфосфорибозилтрансферазы в качестве первой «лишней» последовательности; AFP (p+e), опухолеспецифический промотор; последовательность репликона SFV, содержащую LacZ; полиА SV40, последовательность полиаденилирования SV40; C346, человеческую геномную космиду C346 в качестве второй «лишней» последовательности и ITR 3' в качестве последовательности второго инвертированного концевого повтора.

По дополнительному предпочтительному конкретному варианту осуществления изобретения аденовирусный гибридный вектор содержит ITR 5' в качестве последовательности первого инвертированного концевого повтора; НРRТ, область интрона человеческой геномной гипоксантинфосфорибозилтрансферазы в качестве первой «лишней» последовательности; AFP (p+e), опухолеспецифический промотор; последовательность репликона SFV, содержащую hIL-12, человеческий интерлейкин-12; полиА SV40, последовательность полиаденилирования SV40; C346, человеческую космиду C346 в качестве второй «лишней» последовательности и ITR 3' в качестве последовательности второго инвертированного концевого повтора.

По предпочтительному конкретному варианту осуществления изобретения аденовирусный гибридный вектор для экспрессии гена имеет последовательность SEQ ID № 8 или любую другую последовательность, обладающую достаточной гомологией с SEQ ID № 8, для выполнения такой же функции.

По дополнительному предпочтительному конкретному варианту осуществления

изобретения аденовирусный гибридный вектор для экспрессии гена имеет последовательность SEQ ID № 9 или любую другую последовательность, обладающую достаточной гомологией с SEQ ID № 9, для выполнения такой же функции.

По дополнительному предпочтительному конкретному варианту осуществления изобретения аденовирусный гибридный вектор для экспрессии гена имеет последовательность SEQ ID № 10 или любую другую последовательность, обладающую достаточной гомологией с SEQ ID № 10, для выполнения такой же функции.

Настоящее изобретение дополнительно относится к способу получения указанного аденовирусного гибридного вектора, включающему сборку элементов i-vi или i-vii аденовирусного гибридного вектора, определенного выше, с помощью методов генной инженерии.

Также настоящее изобретение относится к применению указанного гибридного вектора для переноса генетического материала в клетку, и конкретнее, для введения и экспрессии чужеродных генов в эукариотических клетках, которые могут представлять собой клетки-мишени для аденовирусов. Указанное применение предусматривает введение указанного гибридного вектора субъекту.

15

Инфицирование опухолевых клеток аденовирусным гибридным вектором по изобретению приводит к транскрипции мРНК репликона альфавируса SFV от опухолеспецифического промотора, следовательно, ген Rep будет транслироваться, и PHK SFV будет амплифицироваться. Rep также продуцирует субгеномную PHK SFV, из которой будут экспрессироваться на высоких уровнях терапевтический или ген-репортер. Продукт терапевтического гена, секретируемый инфицированными клетками, будет активировать иммуноциты в области заражения. Репликация SFV будет дополнительно индуцировать апоптоз инфицированных клеток, приводя к высвобождению опухолевых антигенов из клеток, подвергшихся апоптозу; которые могут захватываться антигенпредставляющими клетками (APC), тем самым активируя иммунный ответ, направленный против опухоли. Однако если данный гибридный вектор инфицирует неопухолевые клетки, то мРНК репликона SFV не будет транскрибироваться, следовательно, трансгенная экспрессия или апоптоз будут отсутствовать.

Опухолевые клетки предпочтительно инфицируются аденовирусным гибридным вектором по изобретению таким образом, что мРНК репликона SFV транскрибируется от опухолеспецифического промотора, следовательно, ген Rep будет транслироваться, и PHK SFV будет амплифицироваться. Rep также будет продуцировать субгеномную PHK SFV, из которой будут экспрессироваться на высоких уровнях mIL-12 или hIL-12. Секретируемые инфицированными клетками mIL-12 или hIL-12 будут активировать иммуноциты в области заражения. Репликация SFV будет дополнительно индуцировать апоптоз инфицированных клеток, приводя к высвобождению опухолевых антигенов из клеток, подвергшихся апоптозу; которые могут захватываться антигенпредставляющими клетками (APC), тем самым активируя иммунный ответ, направленный против опухоли. Однако если данный гибридный вектор инфицирует неопухолевые клетки, то мРНК репликона SFV не будет транскрибироваться, следовательно, трансгенная экспрессия или апоптоз будут отсутствовать.

Дополнительным предметом настоящего изобретения является применение аденовирусного гибридного вектора, определенного ранее, в способе переноса

генетического материала в клетку, предпочтительно опухолевую клетку, который включает введение указанного гибридного вектора субъекту. Еще более предпочтительно указанная клетка представляет собой опухолевую клетку, которая экспрессирует AFP.

Дополнительным предметом настоящего изобретения является применение определенного аденовирусного гибридного вектора для получения эффективного лекарственного препарата при лечении опухолей, и его применение для индукции иммунного ответа против чужеродных антигенов. Указанное применение предусматривает введение указанного лекарственного препарата субъекту.

Дополнительным предметом настоящего изобретения является фармацевтическая композиция, содержащая, по меньшей мере, аденовирусный гибридный вектор, определенный по настоящему изобретению, и ее применение в способе лечения опухолей или индукции иммунного ответа против чужеродных антигенов.

Указанная фармацевтическая композиция предпочтительно содержит аденовирусный гибридный вектор по настоящему изобретению, в котором интересующий экзогенный ген представляет ген интерлейкина млекопитающих, IL-12, предпочтительно человеческого интерлейкина hIL-12. Указанное применение предусматривает введение фармацевтической композиции, содержащей указанный гибридный вектор субъекту.

Настоящее изобретение также относится к способу лечения злокачественной опухоли с помощью применения гибридного вектора по настоящему изобретению, где указанный способ включает введение указанного гибридного вектора субъекту.

Следовательно, по предпочтительным вариантам осуществления настоящего изобретения AFP (p+e) выбран в качестве опухолеспецифического промотора, было сконструировано два аденовирусных гибридных вектора, в которых репликон SFV контролируется промотором AFP, и ген-репортер LacZ и терапевтический ген IL-12 вставлены под контролем субгеномного промотора SFV, соответственно - Ad/AFP-SFV-LacZ и Ad/AFP-SFV-mIL-12 и два аденовирусных вектора «с усеченным геномом», несущих LacZ и IL-12 от мышей, непосредственно контролируемых промотором AFP - Ad/AFP-LacZ и Ad/AFP-mIL-12 в качестве контрольных векторов. Было показано, что гибридный вектор по настоящему изобретению функционирует более эффективно по сравнению с контрольными векторами, использованными до настоящего времени.

По настоящему изобретению было показано, что вектор Ad/AFP-SFV-mIL-12 может быть пригодным вектором в лечении опухолей HCC (гепатокарцином), экспрессирующих AFP.

Также было показано, что применение других опухолевых промоторов, таких как промотор теломеразы, TERT, который находится в высоко активном состоянии в большинстве злокачественных опухолей, для контроля SFV, может превратить применение гибридного вектора, такого как по настоящему изобретению, в общую стратегию лечения всех злокачественных опухолей.

Дополнительно и преимущественно, гибридный вектор по настоящему изобретению избирательно функционирует с опухолевыми клетками и разрушает опухолевые клетки без необходимости включения терапевтического гена. Кроме того, было показано, что гибридный вектор по настоящему изобретению преимущественно индуцирует высокую противоопухолевую активность, когда он включает терапевтический ген, такой как ген IL-12.

Краткое описание фигур

15

Фиг. 1 (А): представлена схема гибридного вектора по варианту осуществления изобретения, Ad/SFV, содержащего аденовирусную последовательность «с усеченным геномом», в которой репликон SFV вставлен под контролем промотора/энхансера AFP (AFP (р+е)), и содержащего гетерологичный ген mIL-12, который помещен под контролем субгеномного промотора SFV (Pr sg). На фиг. 1 (В) показана противоопухолевая активность гибридного вектора по настоящему изобретению: после инфицирования опухолевых клеток HCC данным гибридным вектором (справа), благодаря наличию в гибридном векторе репликона SFV, включающего mIL-12, имеет место экспрессия mIL-12 на высоком уровне, который будет активировать иммуноциты в области заражения. Затем репликация SFV будет индуцировать апоптоз инфицированных клеток. Однако если данный гибридный вектор инфицирует неопухолевые клетки, то мРНК репликона SFV не будет транскрибироваться и, следовательно, будут отсутствовать трансгенная экспрессия или апоптоз. На данной фигуре:

- ITR, последовательности аденовирусного инвертированного концевого повтора;
- ψ, аденовирусный сигнал упаковки;
- HPRT и C346, последовательности «лишней» ДНК соответственно из области интрона человеческой геномной гипоксантин-фосфори-бозил-трансферазы или из человеческой космиды C346;
 - ПолиА, сигнал полиаденилирования (например, из SV40);
 - АРС, антигенпрезентующие клетки.

На фиг. 2 представлено строение аденовирусных гибридных векторов «с усеченным геномом» и аденовирусных векторов «с усеченным геномом». AFP-SFV-LacZ и AFP-SFV-mIL-12 являются гибридными аденовирусными векторами, в которых последовательность репликона SFV находится под контролем промотора/энхансера AFP (AFP (p+e)), и гетерологичные гены LacZ или mIL-12 клонированы соответственно под контролем субгеномного промотора SFV (Pr sg). AFP-lacZ и AFP-mIL-12 представляют аденовирусные векторы, содержащие LacZ или mIL-12, непосредственно контролируемые AFP (p+e). SFV nsp1-4, неструктурные белки SFV.

На фиг. 3 показана специфическая экспрессия mIL-12 в условиях in vitro в клетках гепатокарциномы, экспрессирующих AFP, HCC (A), и в клетках, полученных не из HCC (B), после заражения гибридными векторами Ad-SFV: AFP-mIL-12 (AFP-12), AFP-SFV-mIL-12 (AFP-SFV-12) или контрольным вектором AdCMVmIL-12 (CMV-12). Тестировали различные множественности заражения «moi» (10, 100 и 1000). Нер3В, Huh-7, HepG2 и PLC/PRF/5: клеточные линии HCC; Hela, A549, MHC1, SK-Hep-1 и Clone 9: линии, полученные не из HCC. На фиг. 3В показана только экспрессия, соответствующая moi, равной 1000.

На фиг. 4 показана специфическая экспрессия β-gal в 4 клеточных линиях HCC: (Hep3B, Huh-7, HepG2 и PLC/PRF/5) после инфицирования в условиях in vitro гибридным вектором AFP-SFV-lacZ или контрольным вектором AFP-LacZ при различных значениях «moi» (10, 100 и 1000).

На фиг. 5 представлен анализ экспрессии β-gal в клеточных линиях HCC, инфицированных AFP-LacZ и AFP-SFV-LacZ. Микрофотографии клеток, инфицированных AFP-LacZ (A-C) или AFP-SFV-LacZ (D-F) и окрашенных X-Gal. А и D, Hep3B; В и E, Huh-7; С и F, HepG2.

На фиг. 6 представлена кинетика экспрессии IL-12 в клеточных линиях HCC Hep3B (A) и Huh-7 (B), инфицированных в условиях in vitro аденовирусными векторами AFP-

mIL-12 (AFP-12) или AFP-SFV-mIL-12 (AFP-SFV-12) при значении «moi», равном 1000. На фиг. 7 показана индукция гибели клеток после инфицирования в условиях in vitro клеточных линий HCC - Hep3B (A) и McA-RH7777 (B)- векторами AFP-IL-12 (AFP-12), AFP-SFV-IL-12 (AFP-SFV-12), AFP-LacZ, AFP-SFV-LacZ или контрольным вектором Ad/CMVmIL-12 (CMV-12). Выживаемость клеток представлена в виде процента живых клеток в зараженных лунках по сравнению с живыми клетками в незараженных контрольных лунках.

На фиг. 8 представлена экспрессия Rep SFV в клетках HCC -Hep3B (A-D) и Huh-7 (Е и F) - после инфицирования векторами AFP-mIL-12 (A и B) или AFP-SFV-mIL-12 (С и F) при значении «moi», равном 1000. Через 2 суток после инфицирования клетки фиксировали и анализировали иммунофлуоресценцией со специфическим антителом против Rep. Клетки, экспрессирующие Rep, визуализировали под флуоресцентным микроскопом с фильтром FITC (A, C и E), в то время как ядра, окрашенные DAPI во всех клетках, визуализировали с использованием Уф фильтра (B, D и F).

На фиг. 9 представлен перенос гена с помощью гибридных векторов «с усеченным геномом» в условиях in vivo, (A-D), эффективность переноса гена и индукция апоптоза в опухолях Huh-7. Человеческие опухоли Huh-7, прижившиеся у голых мышей с иммунодефицитом, обрабатывали инъекцией в опухоль векторов AFP-LacZ (n=4) или AFP-SFV-LacZ (n=4) из расчета 1×10¹⁰ вирусных частиц/животное. Через 3 суток после введения вируса мышей умерщвляли и анализировали срезы опухоли для оценки экспрессии трансгена окрашиванием X-Gal (A-B) или для оценки индукции апоптоза с помощью TUNEL (C-D). А, С; Микрофотографии опухолей, получивших AFP-LacZ. В, D. Микрофотографии опухолей, получивших AFP-SFV-LacZ. (E-G). Специфичность экспрессии гена с гибридными векторами «с усеченным геномом». Здоровым мышам Balb/с вводили внутривенно 1×10¹⁰ вирусных частиц векторов AFP-LacZ (E), AFP-SFV-LacZ (F) или Ad/CMV-LacZ (G). Представлены микрофотографии срезов ткани печени, отобранной через 3 суток после заражения, и окрашенной X-Gal.

На фиг. 10 показана обработка опухолей НСС гибридными векторами. Ортотопические опухоли НСС вводили имплантацией клеток МсН-RH7777 в печень крыс. Когда опухоли достигали размера 7-10 мм в диаметре, животных обрабатывали 10^{11} (A-C) или 2×10^{11} (D-G) вирусных частиц AFP-mIL-12, AFP-SFV-mIL-12 или физиологическим раствором в качестве контроля. Размер опухолей определяли на 15 и 30 сутки после введения физиологического раствора (A и E), AFP-mIL-12 (B и F) или AFP-SFV-mIL-12 (C и G). G; выживаемость животных.

На фиг. 11 представлены результаты токсикологического исследования на крысах, которым вводили векторы, экспрессирующие IL-12. Определяли уровень трансаминаз (GPT, GOLT и GGTL) (A) или IL-12 (B) в сыворотке крови крыс с опухолями HCC в печени, которым вводили в опухоль аденовирусные векторы AFP-SFV-IL-12, AFP-SFV-mIL-12, альфавирусный вектор SFV-IL-12 или физиологический раствор. Определение проводили на 4 и 8 сутки после обработки.

На фиг. 12 показаны результаты окрашивания гематоксилин/эозином срезов печени крыс, обработанных аденовирусными гибридными векторами. Крыс с опухолями НСС обрабатывали инъекцией в опухоль физиологическим раствором (А), аденовирусными векторами AFP-IL-12 (В), AFP-SFV-IL-12 (С) или вирусными частицами SFV-IL-12 (D). Через 3 суток после обработки животных умерщвляли, печени удаляли и фиксировали в формалине, делали срезы и окрашивали гематоксилин/эозином. Черные стрелки указывают зоны с эозинофильными

гепатоцитами.

10

На фиг. 13A и 13B представлены рестрикационные карты соответственно плазмид pGL3/AFP и pBS/mIL-12.

На фиг. 14A и 14B представлены рестрикационные карты соответственно плазмид pTGC3001 и pTGC3011.

На фиг. 15A и 15B представлены рестрикационные карты соответственно плазмид pTGC3012 и pTGC3013.

На фиг. 16 представлена рестрикационная карта плазмиды pTGC3014.

Описание предпочтительных вариантов осуществления Плазмиды

рGEM-Т «легкую» и рСМVb получали от Promega, USA, и pBS-SK+ от Stratagene, USA. pSTK120 была предоставлена Dr. Kochanek (University of Ulm, Германия). pBK-SFV-1 и pBK-SFV-3 были описаны Berglund P. et al. «Enhancing immune responses using suicidal DNA vaccines». Nature Biotechnology 1998, 16: 562-565. pGL3/AFP и pBS/mIL-12 (Yonglian Sun, Cheng Qian, Dacheng Peng and Jesus Prieto. 2000. Gene transfer to liver cancer cells of B7-1 in addition to IL-12 changes immunoeffector mechanisms and supresses Th1 суtokine production induced by IL-12 alone. Human Gene Therapy 11: 127-138) получали в лаборатории заявителей.

Для конструирования pGL3/AFP получали области промотора/энхансера AFP (p+e) амплификацией ПЦР человеческой геномной ДНК. Праймеры, использованные для амплификации промотора AFP (AFP pro), представляли собой CTCTAGATTTCTGCCCCAAAGAGCTC

и CGGGATCCTGTTATTGGCAGTGGTGGAA. Праймеры, использованные для амплификации энхансера AFP, представляли собой CGGAATTCGCCTGTCATACAGCTAATAA

и СТСТАGACTGTCAAATAAGTGGCCTGG. Последовательности промотора (217 пар нуклеотидов) и энхансера (785 пар нуклеотидов) клонировали в плазмиды рGEM-T. Затем проводили подтверждение амплифицированных фрагментов секвенированием. Промотор AFP вырезали из плазмиды рGEM-T/AFP-р рестрикцией XbaI/BamHI и вставляли лигированием по тупым концам в рGL3-основную плазмиду, расщепленную Sma I. Таким образом, получали плазмиду рGEM/AFP-р.

Энхансер AFP вырезали из плазмиды pGEM-T/AFP-е рестрикцией Xba I/Eco RI и вставляли лигированием по тупым концам в плазмиду pGL3/ AFP-р, расщепленную Nhe I, с получением в конце плазмиды pGL3/AFP.

Клеточные линии и культуры тканей

Человеческие клеточные линии HCC Hep3B, PLC/PRF/5, HepG2 и SK-Hep-1, клеточную линию человеческой эпителиальной аденокарциномы шейки матки HeLa, клеточную линию человеческой карциномы легких A549, клеточную линию эмбриональных почечных клеток 293, крысиные клетки HCC McA-RH7777, MHC1 и Clone 9 нормальных крысиных гепатоцитов и клеточную линию крысиных HCC Hepa1-6 получали из ATCC. Клетки 293, экспрессирующие рекомбиназу Cre (293Cre4) получали от Merck Research Laboratories. Клетки Hep3B, PLC/PRF/5, HeLa, SK-Hep-1, Clone 9, Huh-7 и Hepa1-6 культивировали в среде DMEM с добавлением 10% фетальной бычьей сыворотки (FBS), инактивированной тепловой обработкой, и пенициллина/стрептомицина. Клетки HepG2 и A549 культивировали в среде RPMI 1640 с добавлением 10% фетальной бычьей сыворотки (FBS), инактивированной тепловой обработкой, и пенициллина/стрептомицина. Клетки McH-RH7777 и MHC1 культивировали в среде DMEM с добавлением 20% лошадиной сыворотки и 5% FBS.

Клетки 293Cre4 культивировали в среде DMEM с добавлением 10% FBS и 0,4 мг/мл G418.

Животные

45

Голых мышей-самок с иммунодефицитом BALB/с в возрасте 7 недель получали из Charles Rivers laboratories (Barcelona, Испания). Крыс-самцов Буффало в возрасте 4-6 недель получали из CIFA (Animal Installations of the University of Navarra). Мышей и крыс содержали в обычных условиях в CIFA. Голые мыши получали обработанный облучением корм с автоклавированной питьевой водой. Манипуляции с голыми мышами всегда проводили в ламинарной камере. Все процедуры с животными проводили согласно стандартным рекомендациям и протоколам по уходу и использованию лабораторных животных.

Конструирование векторов

Конструирование экспрессирующих кассет AFP-SFV

15 5'-концевую последовательность SFV (1-292 нт) амплифицировали ПЦР с использованием плазмиды pBK-SFV-1 (содержащей полноразмерную последовательность репликона SFV) в качестве матрицы. Праймер 1 содержал сайт рестрикции Spe I в 5'-конце (подчеркнут), за которым следовали 50 нт последовательности промотора AFP и первые 20 нт последовательности SFV (курсивом): 5'-ACT AGTTAA CAG GCA TTG CCT GAA AAG AGT ATA AAA GAA TTTCAG CAT GAT TTT CCA TGG CGG ATG GAC ATA C-3'. Праймер 2 содержал сайт рестрикции Xho I (подчеркнут), за которым следовали 19 нт последовательности SFV (курсивом): 5'-CTC GAG GAT ATC CAA GAT GAG TGT GT-3'. Фрагмент ДНК размером 342 п.н. получали ПЦР и непосредственно клонировали в плазмиду рGEM-Т-«легкую» с получением плазмиды pGEM-Te-SFV-1. Отсутствие ошибок ПЦР в данной плазмиде подтверждали секвенированием. Фрагмент размером 342 п.н. вырезали из плазмиды pGEM-Te-SFV-1 расщеплением Spe I и Xho I и клонировали в плазмиду pGL3/AFP, расщепленную теми же ферментами, с получением плазмиды pGL3/AFP-SFV-1, которая содержит полный промотор AFP (217 п.н.) и энхансер (785 п.н.), за которыми следует 5'-концевая последовательность SFV (SFV, включающая 292 п.н.). Кассету AFP-SFV-1 (1342 п.н.) получали из pGL3/AFP-SFV-1 расщеплением Mlu I/Xho I, обрабатывали фрагментом Кленова и клонировали в pBS-SK+, расщепленную EcoR V, с получением pBS/AFP-SFV-1. Позднюю полиА SV40 (262 п.н.) вырезали из pGL3/AFP расщеплением Xho I/BamH I, затупляли фрагментом Кленова и вставляли в сайт Sal I в pGL3/AFP-SFV-1, также затупляли фрагментом Кленова с получением таким образом pBS/AFP-SFV-1-pA. Полилинкер, содержащий оба уникальных сайта Ара I и Nru I, вставляли между сайтами BamH I и Xma I в pBS /AFP-SFV-1-рА. 3'-концевую последовательность SFV, включающую 7985 п.н., вырезали из pBK-SFV-1 расщеплением Spe I/EcoR V, затупляли фрагментом Кленова и вставляли в положение EcoR V в pBS/AFP-SFV-1-pA с получением pBS/AFP-SFVpA.

Ген-репортер LacZ получали из pCMVb расщеплением not I, обрабатывали фрагментом Кленова и вставляли в сайт BamH I в pBS /AFP-SFV-pA, обработанной фрагментом Кленова, с получением pBS /AFP-SFV-LacZ-pA. Кассету mIL-12, содержащую гены, кодирующие субъединицы p35 и p40, связанные с внутренним сайтом входа рибосомы (IRES) отделяли от pBS/mIL-12 расщеплением Spe I/Xho I, обрабатывали фрагментом Кленова и вставляли в положение BamH I в pBS/AFP-SFV-mIL-12-pA, также затупляли фрагментом Кленова, получали плазмиду pBS/AFP-SFV-mIL-12-pA.

Конструирование гибридных аденовирусных векторов «с усеченным геномом» Конструировали четыре аденовирусных вектора «с усеченным геномом», представленных на фиг. 2. AFP-SFV-lacZ и AFP-SFV-mIL-12 включали последовательность рекомбинантного репликона SFV, контролируемого промотором и энхансером AFP. В данных векторах ген-репортер LacZ или терапевтический ген mIL-12 клонировали соответственно под контролем субгеномного промотора SFV. AFP-lacZ и AFP-mIL-12 также представляют аденовирусные векторы «с усеченным геномом», которые включают гены LacZ и mIL-12, непосредственно контролируемые соответственно промотором/энхансером AFP. Способ конструирования данных векторов описан ниже. Для получения аденовирусного вектора с достаточной клонирующей емкостью для расположения экспрессирующей кассеты AFP-SFV-IL-12 модифицировали плазмиду pSTK120, содержащую последовательность аденовируса «с усеченным геномом». В конце элиминировали фрагмент размером 9 т.п.н. из плазмиды pSTK120 расщеплением Ара I. Кроме того, полилинкер, содержащий сайты Asc I и Sbf I, вставляли в данную новую плазмиду, получая рТGС3001. Данная плазмида содержала левый ITR, сигнал упаковки, «лишнюю» ДНК из HPRT и С346, и правый ITR. Кассету AFP-SFV-LacZ вырезали расщеплением Apa I из pBS/AFP-SFVlacZ-pA и вставляли в сайт Apa I в pTGC3001 с получением pTGC3011. Аналогично кассету AFP-SFV-mIL-12 вырезали из pBS/AFP-SFV-mIL-12-рА расщеплением BssH II, обрабатывали фрагментом Кленова и вставляли в сайт Asc I в pTGC3001, также обрабатывали фрагментом Кленова с получением pTGC3012.

Конструирование контрольных векторов

25

45

Конструирование аденовирусного вектора «с усеченным геномом» AFP-LacZ Последовательность энхансера/промотора AFP (AFP p+e) вырезали из pGL3/AFP расщеплением Mlu I/Xho I, обрабатывали фрагментом Кленова и вставляли в pCMVb, которую ранее расщепляли EcoR I/Xho I и обрабатывали фрагментом Кленова. При этом сильный ранний промотор CMV вырезали из pCMVb и замещали на AFP p+e с получением pAFPb. Затем кассету AFP-LacZ (5077 т.п.н.) вырезали из pAFPb расщеплением Xba I/Nar I, обрабатывали фрагментом Кленова и вставляли в сайт Swa I в pSTK120, также затупляли фрагментом Кленова с получением плазмиды pTGC3013.

Конструирование аденовирусного вектора «с усеченным геномом» AFP-mIL-12 Кассету mIL-12 вырезали из pBS/mIL-12 расщеплением Xho I/Spe I и вставляли в pGL3/AFP, которую ранее расщепляли Xho I/Xba I, в результате чего ген люциферазы удалялся из данной последней плазмиды и получали pAFP-mIL-12. Кассету AFP-mIL-12 (3760 т.п.н.) вырезали из pAFP-mIL-12 расщеплением Ват I/Sca I, обрабатывали фрагментом Кленова и вставляли в pSTK120, расщепленной Swa I, и аналогично обрабатывали фрагментом Кленова с получением pTGC3014.

«Спасение» аденовирусных векторов «с усеченным геномом»

После расщепления Pme I, экстракции фенолом/хлороформом и осаждения этанолом 2 мкг ДНК рТGC3011, рТGC3012, рТGC3013 и рТGC3014 трансфектировали соответственно в клетки 293Cre4. После трансфекции клетки инфицировали вирусом-помощником AdLC8cluc. Последующую крупномасштабную амплификацию и получение проводили, как описано ранее (Philip Ng., Robin J. Parks and Frank L. Graham. Preparation of helper-dependent adenoviral vectors. Methods in Molecular Medicine, Vol. 69, Gene Therapy Protocols, 2nd. Ed. 69, 371-88, 2002; H. Zhou, L. Pastore, A.L. Beaudet. Helper-dependent adenoviral vectors. Methods in Enzymology, Vol. 346, 177-198, 2002; Hillgenberg

М., et al. System for efficient helper-dependent minimal adenovirus constructions and rescue. Нит. Gene Ther., 12, 643-657, 2001). Все векторные препараты дважды очищали центрифугированием в градиенте CsCl. Очищенные ДНК-векторы анализировали расщеплением рестриктазами, и не было обнаружено реаранжировки последовательностей. Титрование загрязнения аденовируса «с усеченным геномом» и вируса-помощника оценивали с использованием количественной ПЦР. Соотношение вирусных частиц к инфекционным единицам (iu) составляло 20:1. Загрязнение частицами вируса-помощника равнялось примерно 0,5-1%.

Количественная ПЦР

10

Для определения степени загрязнения вирусом-помощника конструировали зонд и праймеры для постановки количественной ПЦР области Ad5 E4 с использованием программы TaqMan (TaqMan Probe #2) и синтезировали в Sigma-Genosys Ltd. (праймер) и Applied Biosystems (зонд). Для определения титра аденовирусов «с усеченным геномом» конструировали зонды и праймеры для количественной ПЦР последовательностей LacZ и mIL-12 от мышей с использованием программы TaqMan (TaqMan Probe #2) и синтезировали в Sigma-Genosys Ltd. (праймер) и Applied Biosystems (зонд). Для определения загрязнения диким типом Ad конструировали зонды и праймеры для постановки количественной ПЦР области Ad5 E1 с использованием программы TaqMan (TaqMan Probe #2) и синтезировали в Sigma-Genosys Ltd. (праймер) и Applied Biosystems (зонд).

Опыты в условиях in vitro

Трансгенная экспрессия в клетках, инфицированных аденовирусными векторами «с усеченным геномом»

Клеточные линии, производные HCC (Hep3B, Huh-7, HepG2 и PLC/PRF/5) и клеточные линии, не относящиеся к HCC (A549, HeLa, MHC1 и Clone 9), или клеточные линии, производные HCC, но не экспрессирующие AFP (SK-Hep-1), заражали каждым из четырех аденовирусных векторов «с усеченным геномом» (AFP-LacZ, AFP-SFV-LacZ, AFP-mIL-12 или AFP-SFV-mIL-12) при значении «moi», соответственно равном 1000, 100 или 10 (частиц/клетку). Три первых поколения аденовирусов (Ad/CMV-mIL-12, Ad/CMV-LacZ, Ad/AFP-LacZ) использовали в качестве контроля. Собирали супернатанты из клеток, инфицированных векторами mIL-12, и лизаты из клеток, инфицированных векторами LacZ, в двойных параллелях из лунок для определения концентрации соответственно mIL-12 и βгалактозидазы (β-gal). Клетки, инфицированные векторами LacZ, также окрашивали X-gal. Концентрацию mIL-12 (р70) определяли с помощью набора для постановки ELISA (Pharmingen, San Diego, CF). Уровень β-gal определяли с использованием набора для ELISA (Roche, Швейцария). Продолжительность экспрессии mIL-12 определяли на клетках HCC (Hep3B, Huh-7) после их инфицирования AFP-mIL-12, AFP-SFV-mIL-12 или контрольным вектором Ad/CMVmIL-12 при значении «moi», равном 1000. Ежедневно собирали супернатанты до 5 суток после заражения.

Анализ специфичности трансгенной экспрессии с использованием гибридных векторв Ad-SFV в условиях in vitro

Для оценки специфичности трансгенной экспрессии с использованием ранее описанных рекомбинантных векторов, четыре человеческие клеточные линии HCC (Hep3B, HepG2, Huh-7 и PLC/PRF/5) и две человеческие клеточные линии, не относящиеся к HCC (HeLa и A549), или которые являются производными HCC, но не экспрессируют AFP (SK-Hep-1), инфицировали AFP-mIL-12, AFP-SFV-mIL-12 или Ad-

CMV-mIL-12 в качестве положительного контроля при различных значениях «moi» (10, 100 или 1000). Через 2 суток после заражения собирали супернатанты и определяли содержание в них mIL-12. Результаты приведены на фиг. 3 (A) и (B). Не было отмечено экспрессии mIL-12 в человеческих клетках HCC после инфицирования AFP-mIL-12 при значениях «moi», равных 10 или 100, и только при «moi», равном 1000, обнаруживали небольшую концентрацию mIL-12 в некоторых клеточных линиях (фиг. 3A). В противоположность инфицирование данных клеток AFP-SFV-mIL-12 при «тоі», равном 10, 100 или 1000, приводило к экспрессии mIL-12 в зависимости от дозы (фиг. 3A). Уровень экспрессии mIL-12 в клетках, инфицированных AFP-SFV-mIL-12, при значении «moi», равном 10, был сравним с уровнем, полученным в клетках, зараженных AFP-mIL-12, при «moi», равном 1000. Кроме того, концентрация mIL-12 в клетках HCC, инфицированных AFP-SFV-mIL-12 при различных значениях «moi», была сравнима с таковой, полученной с контрольным вектором Ad-CMV-mIL-12. Однако заражение клеток AFP-mIL-12 или AFP-SFV-mIL-12, которые не экспрессируют AFP, не приводило к детектируемым уровням mIL-12 даже при использовании наиболее высокого значения «moi» (1000) (фиг. 3B). В данных клетках только контрольный вектор Ad-CMV-mIL-12 был способен приводить к экспрессии mIL-12 на высоком уровне.

С другой стороны, четыре клеточные линии HCC (Hep3B, Huh-7, HepG2 и PLC/PRF/5) инфицировали гибридными векторами LacZ-AFP-lacZ или AFP-SFV-lacZ при различных значениях «moi» (10, 100 или 1000) и обнаруживали специфическую экспрессию β-gal. В данном случае были получены аналогичные данные, и эти результаты приведены на фиг. 4.

На фиг. 5 представлены микрофотографии клеток HCC, инфицированных аденовирусными векторами «с усеченным геномом» AFP-lacZ и AFP-SFV-lacZ, с последующим окрашиванием X-gal. Заражение клеток HCC AFP-lacZ приводило к низкой экспрессии в инфицированных клетках, которые окрашивались очень слабо. В противоположность, заражение клеток HCC AFP-SFV-lacZ давало экспрессию β-gal на высоком уровне, о чем судили по интенсивному окрашиванию с помощью X-gal. Эти данные указывают на то, что гибридный вектор Ad-SFV, содержащий репликон SFV под контролем промотора AFP, может привести к высокому уровню интенсивной трансгенной экспрессии в опухолевых клетках, экспрессирующих AFP.

Продолжительность экспрессии mIL-12 в клетках HCC в условиях in vitro Для оценки продукции mIL-12 в различные периоды времени после инфицирования гибридными векторами Ad-SFV две клеточные линии HCC (Hep3B и Huh-7) инфицировали AFP-mIL-12 или AFP-SFV-mIL-12, и ежедневно собирали супернатанты до 5 суток после заражения. На фиг. 6 приведены результаты оценки трансгенной экспрессии, полученные после заражения указанных клеток. Указанные результаты свидетельствуют о постоянном увеличении экспрессии mIL-12 с 1 по 4 сутки после инфицирования в клетках, зараженных AFP-SFV-mIL-12 (фиг. 6). Однако на 5 сутки после заражения концентрация mIL-12 несколько снижалась. В клетках, инфицированных AFP-mIL-12, уровень экспрессии был очень низким, и только незначительное повышение продукции mIL-12 отмечали с течением времени.

Тестирование цитотоксичности - оценка пролиферации клеток по включению МТТ Клеточные линии (Hep3B, Huh-7, MCH-RH7777, Hep1-6) инфицировали AFP-LacZ, AFP-SFV-LacZ, AFP-mIL-12, AFP-SFV-mIL-12 или Ad-CMV-mIL-12 при значении «moi», равном 1000. Через 5 суток после заражения определяли выживаемость

клеток с помощью теста МТТ (3-(4,5-диметилтиазолил)-2,5-дифенилтетразолий бромид) Mosmann, Т. (1983) J. Immunol. Meth. 65, 55-63; Tada, H. et al. (1986) J. Immunol. Meth. 93, 157-65. Кратко, клетки промывали один раз PBS и в лунку вносили 200 мкл свежеприготовленного раствора краски МТТ (в 48-луночных планшетах). Затем клетки культивировали в течение 3-4 ч с последующим добавлением 500 мкл буфера для солюбилизации. Отбирали 100 мкл каждой пробы для определения поглощения на спектрофотометре при длине волны 570 нм.

Индукция гибели клеток после инфицирования клеток HCC гибридными векторами Ad-SFV в условиях in vitro

Как уже указывалось, репликация векторов SFV индуцирует гибель клеток, опосредованную апоптозом, в большинстве клеток позвоночных. Для оценки того, насколько это также имеет место в случае клеток HCC, инфицированных гибридными векторами Ad-SFV, клетки Hep3B и Huh-7 заражали данными векторами и определяли выживаемость клеток на 5 сутки после заражения. Как следует из данных фиг. 7, выживаемость на данной временной точке после заражения составляла менее 20% для клеток, инфицированных AFP-SFV-mIL-12 или AFP-SFV-lacZ. Однако инфицирование этих же клеток AFP-mIL-12 или AFP-lacZ или контрольным вектором Ad-CMV-mIL-12 не оказывало влияния на выживаемость клеток. Данные результаты указывают на то, что SFV реплицируется в клетках, инфицированных векторами AFP-SFV.

Детектирование Rep SFV иммунофлуоресценцией

Клетки НСС (Нер3В, Huh-7, МСН-RH7777) высевали на стеклянные покровные стекла в 6-луночных планшетах (1×10⁵ клеток/лунку) и инфицировали AFP-mIL-12, AFP-SFV-mIL-12 или Ad-CMV-mIL-12 при значении «moi», равном 1000. Через 2 суток после заражения покровные стекла дважды промывали PBS и клетки фиксировали в метаноле при -20°С в течение 6 мин. Планшеты вновь промывали три раза PBS и инкубировали при комнатной температуре (RT) в течение 30 мин с PBS, содержащим 0,5% желатина и 0,25% BSA, для блокирования неспецифического связывания. Затем блокирующий буфер заменяли на первичные антитела (антирепликазные MAb) в разведении 1:10 в блокирующем буфере и инкубировали при комнатной температуре в течение 30 мин. Клетки вновь промывали три раза PBS-0,25% BSA и инкубировали в течение 30 мин при комнатной температуре со вторичными антителами (антимышиная кроличья сыворотка, конъюгированная с FITC, Sigma) в разведении 1:250 в блокирующем буфере. Наконец, клетки промывали три раза PBS-0,25% BSA, один раз водой и помещали на предметные стекла с использованием щитка Vecta с D_{арі} для окрашивания клеточных ядер.

Экспрессия Rep SFV в клетках HCC, инфицированных гибридными векторами Ad-SFV в условиях in vitro

Экспрессию Rep SFV оценивали в клетках HCC, инфицированных гибридными векторами Ad-SFV, иммунофлуоресценцией с использованием специфических моноклональных антител к данному белку. На фиг. 8 показано, что цитоплазма клеток HCC, инфицированных AFP-SFV-mIL-12 или AFP-SFV-lacZ, была положительной на Rep. В противоположность, клетки, инфицированные AFP-mIL-12 или AFP-lacZ, не были окрашены.

Опыты в условиях in vivo

Индукция ксенотрансплантатов НСС и исследование в условиях in vivo эффективности и специфичности переноса гена

Клетки Huh-7 собирали и дважды промывали не содержащей сыворотку средой.

2×10⁶ клеток ресуспендировали в 100 мкл физиологического раствора и вводили подкожно (п/к) в правый бок голых мышей BALB/с. Через 4 недели после перевивки клеток и когда размер опухолевых узелков достигал 6-8 мм в диаметре, 1×10¹⁰ вирусных частиц AFP-LacZ (n=4) или AFP-SFV-LacZ (n=4), разведенные в 80 мкл физиологического раствора, вводили в опухоль. Контрольным животным (n=3) вводили в опухоль 80 мкл физиологического раствора. Мышей умерщвляли на 3 или 6 сутки после заражения. В это время у каждого животного извлекали опухоли и печень, заливали в О.С.Т. (Sakura, Голландия) и замораживали при -80°С. Делали срезы замороженных тканей и помещали на предметные стекла для окрашивания X-gal или анализа с помощью TUNEL. Для исследования специфичности инфицирования гибридным вектором в условиях in vivo нормальным мышам BALB/с вводили внутривенно AFP-LacZ (n=4), AFP-SFV-LacZ (n=4) или Ad/CMV-LacZ в дозе 10¹⁰ вирусных частиц/мышь. Животных умерщвляли на 3 сутки после заражения и отбирали основные органы для анализа экспрессии LacZ с помощью окрашивания X-gal.

Эффективность переноса гена гибридных векторов Ad-SFV в человеческие ксенотрансплантаты HCC у голых мышей с иммунодефицитом

Для оценки эффективности трансдукции гибридных векторов «с усеченным геномом» в условиях in vivo использовали человеческую модель НСС на основе клеток Huh-7, способных экспрессировать AFP. Клетки Huh-7 вводили подкожно голым мышам BALB/с иммунодефицитом и после получения опухолевых узелков через 30 суток животным вводили в опухоли 1×10^{10} вирусных частиц AFP-SFV-LacZ или AFP-LacZ в качестве контроля. Мышей умерщвляли на 3 или 6 сутки после введения вируса, извлекали опухоли и печень и исследовали окрашиванием X-gal. Как следует из данных, представленных на фиг. 9А, имела место слабая трансгенная экспрессия в срезах опухолей у животных, которым вводили AFP-LacZ. В противоположность, имела место интенсивная экспрессия LacZ в срезах опухолей у животных, которые получали AFP-SFV-LacZ (фиг. 9В). Трансгенная экспрессия отсутствовала в срезах печени животных, которым вводили AFP-LacZ или AFP-SFV-LacZ, данный факт указывает на то, что расположение векторов, вероятно, было ограничено местом введения (данные не представлены). С целью исследования того, насколько гибридные векторы Ad-SFV индуцируют апоптоз в инфицированных опухолевых клетках, срезы обработанных опухолевых клеток анализировали методом TUNEL. В пробах от мышей, которых заражали AFP-LacZ, апоптоз не наблюдали (фиг. 9С). Однако большое количество подвергшихся апоптозу клеток отмечали в опухолях мышей, которым вводили AFP-SFV-LacZ (фиг. 9D). Эти данные указывают на то, что гибридные векторы Ad-SFV не только индуцируют экспрессию гена избирательно в опухолях, но также они избирательно индуцируют гибель клеток в результате апоптоза в этих же клетках.

Специфичность гибридных векторов Ad-SFV в условиях in vivo

Для демонстрации специфичности гибридных векторов 10¹⁰ вирусных частиц AFP-LacZ, AFP-SFV-LacZ или контрольного вектора Ad/CMV-LacZ вводили внутривенно мышам BALB/с. Через 3 суток после введения векторов анализировали экспрессию β-галактозидазы в печени. Как представлено на фиг. 9 (E-F) ни AFP-LacZ, ни AFP-SFV-LacZ не были способны индущировать детектируемую экспрессию трансгена в печени. Однако большое количество положительных на β-галактозидазу клеток в срезах ткани печени обнаруживали у тех животных, которым вводили Ad/CMV-LacZ (фиг. 9G). Данные факты подтверждают то, что экспрессия, опосредуемая

гибридными векторами, является специфической для опухолевых клеток. Индукция ортотопических НСС и генная терапия в условиях in vivo

5×10⁵ клеток McA-RH7777 вводили в левую долю печени крыс Буффало. Через 10 суток после перевивки опухолевых клеток у каждого животного отмечали появление одного опухолевого узелка размером 7-10 мм в диаметре. Опухоли обрабатывали 10¹¹ или 2×10¹¹ вирусных частиц AFP-mIL-12, AFP-SFV-mIL-12 или физиологическим раствором в качестве контроля. Через 2 и 4 недели после обработки животных подвергали анестезии и проводили лапаротомию для оценки роста опухоли. Также анализировали выживаемость животных. Размер опухолей оценивали по определению длины и ширины каждого узелка и данные обрабатывали по формуле: объем опухоли=(длина в мм)×(ширина в мм)×0,5236 (Janic et al., 1975).

Эффективность обработки ортотопических НСС у крыс Буффало

Для оценки противоопухолевой эффективности гибридных векторов Ad-SFV, содержащих IL-12, ортотопические опухоли HCC получали у крыс имплантацией крысиных клеток McA-RH7777 в печень. Данную модель выбрали ввиду того, что на ней была показана экспрессия AFP клетками McA-RH7777. В первом опыте животных обрабатывали одной инъекцией в опухоль 1×10¹¹ вирусных частиц AFPmIL-12, AFP-SFV-mIL-12 или физиологическим раствором в качестве контроля (фиг. 10A-C). У животных, получивших AFP-mIL-12, наблюдали уменьшенные размеры опухолей по сравнению с контрольными животными, у которых имело место постоянное увеличение размера опухолей в течение опыта (фиг. 10А-В). Однако обработка AFP-SFV-mIL-12 приводила к полной регрессии опухоли у 1 из 4 крыс, подвергшихся обработке, стабилизации заболевания у 2 крыс и отсутствию ответной реакции у 1 животного (фиг. 10С). Для исследования того, насколько более высокие дозы гибридного вектора могли повысить противоопухолевый эффект, проводили второй опыт, в котором животных обрабатывали инъекцией в опухоль 2×10^{11} вирусных частиц AFP-mIL-12, AFP-SFV-mIL-12 или физиологического раствора в качестве контроля (фиг. 10D-G). Как и в предыдущем опыте, у животных, которые получали вектор AFP/IL-12, наблюдали только слабую противоопухолевую ответную реакцию, которая выражалась только в одной полной ремиссии, у 4 животных рост опухолей замедлялся по сравнению с контролем и у 7 животных ответная реакция отсутствовала в целом из 12 обработанных животных (фиг. 10Е). Однако обработка вектором AFP-SFV-IL-12 имела более высокий эффект, приводя к полной регрессии опухолей у 4 животных (33%), частичной регрессии у 6 животных (50%), замедленному росту опухолей у 2 животных (16%), и ответная реакция отсутствовала у 2 животных (16%) в целом из 12, подвергшихся обработке животных (фиг. 10F).В данном втором опыте вектор AFP-SFV-IL-12 позволил достичь выживаемости 50% обработанных животных против 0% выживаемости у животных, обработанных AFP-IL-12 или физиологическим раствором (фиг. 10G).

Опыт по определению токсичности в условиях in vivo: определение уровней сывороточных трансаминаз и IL-12, и гистологическое исследование печени

Отбирали пробы крови у крыс, обработанных инъекцией в опухоль аденовирусными векторами AFP-SFV-IL-12 или AFP-IL-12 в дозе 2×10^{11} частиц или физиологическим раствором, через 4 и 8 суток после заражения. В данном опыте также участвовали крысы, которым вводили 10^8 частиц альфавируса SFV-IL-12. Сыворотку отделяли от крови центрифугированием при 2000 об/мин в течение 15 мин. Уровень трансаминаз определяли на автоматическом анализаторе Hitachi 911

(Boehringer Mannheim, Германия). Концентрацию IL-12 определяли с помощью ELISA. Гистологическое исследование проводили при извлечении печени у зараженных животных через 3 суток после обработки. Орган фиксировали в формалине, заливали в парафин и на микротоме делали срезы с толщиной 6 микрон. Затем данные срезы окрашивали гематоксилин/эозином.

Определение токсичности гибридных векторов Ad-SFV у крыс

Для оценки токсичности, связанной с введением гибридного вектора AFP-SFV-IL-12 определяли уровень трансаминаз (GOT, GPT и GGTL) в сыворотке крови крыс, которым вводили в опухоль 2×10^{11} вирусных частиц различных векторов (см. предыдущий раздел). Данное исследование также включало группу крыс, которым в опухоль вводили 10^8 вирусных частиц альфавирусного вектора SFV-IL-12 (фиг. 11A). У крыс, получивших аденовирусные векторы AFP-SFV-IL-12 или AFP-IL-12. определяли очень низкие уровни трансаминаз, значения которой были очень близки уровням у контрольных животных, которым вводили физиологический раствор. Однако уровни трансаминаз у животных, обработанных частицами SFV-IL-12, была достоверно выше по сравнению с другими группами (p<0,05). В данном опыте также проводили определение уровня IL-12 в сыворотке крови животных в те же временные точки. IL-12 не определяли в сыворотке крови животных, которым вводили Ad векторы AFP-SFV-IL-12 или AFP-IL-12 или физиологический раствор (фиг. 11В), указывая на то, что экспрессия трансгена в данных векторах ограничена опухолями, на основании чего можно предположить, что токсичность гибридных векторов Ad-SFV является очень низкой. Однако обработка вирусными частицами SFV-IL-12 повышала уровни IL-12 в сыворотке крови после короткого периода времени создавалась ситуация, которая могла вызвать токсичность для печени. Наконец, опыт по токсичности завершали гистологическим исследованием срезов печени, окрашенных гематоксилин/эозином, от крыс, обработанных введением в опухоль тех же векторов и в тех же дозах, которые уже описаны (фиг. 12). В данном исследовании не было выявлено гистологических различий у крыс, получивших физиологический раствор и аденовирусные векторы AFP-SFV-IL-12 или AFP-IL-12. Однако в срезах печени от крыс, обработанных вирусными частицами SFV-IL-12, наблюдали зоны с эозинофильными гепатоцитами, а также слияние данных гепатоцитов, что указывает на некоторую степень токсичности (черные стрелки, фиг. 12D).

40

45

Список последовательностей

5	<110> Proye	ecto de Bior	medicina CII	MA S.L.			
		овирусный/ал экспрессии т		-	-	ффективного етках	
	<160> 15						
10	<170> Pater	ntIn version	n 3.3				
15	<210> 1 <211> 438 <212> ДНК <213> Адено	овирус					
15	<400> 1						
		aataatatac	cttattttgg	attgaagcca	atatgataat	gagggggtgg	60
	agtttgtgac	gtggcgcggg	gcgtgggaac	ggggcgggtg	acgtagtagt	gtggcggaag	120
20	tgtgatgttg	caagtgtggc	ggaacacatg	taagcgacgg	atgtggcaaa	agtgacgttt	180
	ttggtgtgcg	ccggtgtaca	caggaagtga	caattttcgc	gcggttttag	gcggatgttg	240
	tagtaaattt	gggcgtaacc	gagtaagatt	tggccatttt	cgcgggaaaa	ctgaataaga	300
25	ggaagtgaaa	tctgaataat	tttgtgttac	tcatagcgcg	taatatttgt	ctagggccgc	360
	ggggactttg	accgtttacg	tggagactcg	cccaggtgtt	tttctcaggt	gttttccgcg	420
	ttccgggtca	aagttggc					438
30	<210> 2 <211> 161 <212> ДНК <213> Адено	эвирус					
35	<400> 2 caagcttatc	gataccgtcg	agacctcgag	ggggggcatc	actccgccct	aaaacctacg	60
	tcacccgccc	cgttcccacg	ccccgcgcca	cgtcacaaac	tccaccccct	cattatcata	120
40	ttggcttcaa	tccaaaataa	ggtatattat	tgatgatgtt	t		161
	<210> 3 <211> 7412 <212> ДНК <213> Вирус	леса Семлики	ı (SFV)				
45	<400> 3						
		gtgtgacata					60
		agattaacca					120
50		catcaagtct					180
	aggtcacacc	aaatgaccat	gcaaatgcca	gagcattttc	gcacctggct	accaaattga	240

	tcgagcagga	gactgacaaa	gacacactca	tcttggatat	cggcagtgcg	ccttccagga	300
	gaatgatgtc	tacgcacaaa	taccactgcg	tatgccctat	gcgcagcgca	gaagaccccg	360
5	aaaggctcga	tagctacgca	aagaaactgg	cagcggcctc	cgggaaggtg	ctggatagag	420
	agatcgcagg	aaaaatcacc	gacctgcaga	ccgtcatggc	tacgccagac	gctgaatctc	480
	ctaccttttg	cctgcataca	gacgtcacgt	gtcgtacggc	agccgaagtg	gccgtatacc	540
10	aggacgtgta	tgctgtacat	gcaccaacat	cgctgtacca	tcaggcgatg	aaaggtgtca	600
	gaacggcgta	ttggattggg	tttgacacca	ccccgtttat	gtttgacgcg	ctagcaggcg	660
	cgtatccaac	ctacgccaca	aactgggccg	acgagcaggt	gttacaggcc	aggaacatag	720
15	gactgtgtgc	agcatccttg	actgagggaa	gactcggcaa	actgtccatt	ctccgcaaga	780
	agcaattgaa	accttgcgac	acagtcatgt	teteggtagg	atctacattg	tacactgaga	840
	gcagaaagct	actgaggagc	tggcacttac	cctccgtatt	ccacctgaaa	ggtaaacaat	900
20	cctttacctg	taggtgcgat	accatcgtat	catgtgaagg	gtacgtagtt	aagaaaatca	960
	ctatgtgccc	cggcctgtac	ggtaaaacgg	tagggtacgc	cgtgacgtat	cacgcggagg	1020
	gattcctagt	gtgcaagacc	acagacactg	tcaaaggaga	aagagtctca	ttccctgtat	1080
25	gcacctacgt	cccctcaacc	atctgtgatc	aaatgactgg	catactagcg	accgacgtca	1140
	caccggagga	cgcacagaag	ttgttagtgg	gattgaatca	gaggatagtt	gtgaacggaa	1200
	gaacacagcg	aaacactaac	acgatgaaga	actatctgct	tccgattgtg	gccgtcgcat	1260
30	ttagcaagtg	ggcgagggaa	tacaaggcag	accttgatga	tgaaaaacct	ctgggtgtcc	1320
	gagagaggtc	acttacttgc	tgctgcttgt	gggcatttaa	aacgaggaag	atgcacacca	1380
	tgtacaagaa	accagacacc	cagacaatag	tgaaggtgcc	ttcagagttt	aactcgttcg	1440
35	tcatcccgag	cctatggtct	acaggcctcg	caatcccagt	cagatcacgc	attaagatgc	1500
	ttttggccaa	gaagaccaag	cgagagttaa	tacctgttct	cgacgcgtcg	tcagccaggg	1560
	atgctgaaca	agaggagaag	gagaggttgg	aggccgagct	gactagagaa	gccttaccac	1620
40	ccctcgtccc	catcgcgccg	gcggagacgg	gagtcgtcga	cgtcgacgtt	gaagaactag	1680
	agtatcacgc	aggtgcaggg	gtcgtggaaa	cacctcgcag	cgcgttgaaa	gtcaccgcac	1740
	agccgaacga	cgtactacta	ggaaattacg	tagttctgtc	cccgcagacc	gtgctcaaga	1800
45	gctccaagtt	ggcccccgtg	caccctctag	cagagcaggt	gaaaataata	acacataacg	1860
	ggagggccgg	ccgttaccag	gtcgacggat	atgacggcag	ggtcctacta	ccatgtggat	1920
	cggccattcc	ggtccctgag	tttcaagctt	tgagcgagag	cgccactatg	gtgtacaacg	1980
50	aaagggagtt	cgtcaacagg	aaactatacc	atattgccgt	tcacggaccg	tcgctgaaca	2040

	ccgacgagga	gaactacgag	aaagtcagag	ctgaaagaac	tgacgccgag	tacgtgttcg	2100
	acgtagataa	aaaatgctgc	gtcaagagag	aggaagcgtc	gggtttggtg	ttggtgggag	2160
5	agctaaccaa	cccccgttc	catgaattcg	cctacgaagg	gctgaagatc	aggccgtcgg	2220
	caccatataa	gactacagta	gtaggagtct	ttggggttcc	gggatcaggc	aagtctgcta	2280
	ttattaagag	cctcgtgacc	aaacacgatc	tggtcaccag	cggcaagaag	gagaactgcc	2340
10	aggaaatagt	taacgacgtg	aagaagcacc	gcgggaaggg	gacaagtagg	gaaaacagtg	2400
	actccatcct	gctaaacggg	tgtcgtcgtg	ccgtggacat	cctatatgtg	gacgaggctt	2460
	tcgcttgcca	ttccggtact	ctgctggccc	taattgctct	tgttaaacct	cggagcaaag	2520
15	tggtgttatg	cggagacccc	aagcaatgcg	gattcttcaa	tatgatgcag	cttaaggtga	2580
	acttcaacca	caacatctgc	actgaagtat	gtcataaaag	tatatccaga	cgttgcacgc	2640
	gtccagtcac	ggccatcgtg	tctacgttgc	actacggagg	caagatgcgc	acgaccaacc	2700
20	cgtgcaacaa	acccataatc	atagacacca	caggacagac	caagcccaag	ccaggagaca	2760
	tcgtgttaac	atgcttccga	ggctgggcaa	agcagctgca	gttggactac	cgtggacacg	2820
	aagtcatgac	agcagcagca	tctcagggcc	tcacccgcaa	aggggtatac	gccgtaaggc	2880
25	agaaggtgaa	tgaaaatccc	ttgtatgccc	ctgcgtcgga	gcacgtgaat	gtactgctga	2940
	cgcgcactga	ggataggctg	gtgtggaaaa	cgctggccgg	cgatccctgg	attaaggtcc	3000
	tatcaaacat	tccacagggt	aactttacgg	ccacattgga	agaatggcaa	gaagaacacg	3060
30	acaaaataat	gaaggtgatt	gaaggaccgg	ctgcgcctgt	ggacgcgttc	cagaacaaag	3120
30	cgaacgtgtg	ttgggcgaaa	agcctggtgc	ctgtcctgga	cactgccgga	atcagattga	3180
	cagcagagga	gtggagcacc	ataattacag	catttaagga	ggacagagct	tactctccag	3240
35	tggtggcctt	gaatgaaatt	tgcaccaagt	actatggagt	tgacctggac	agtggcctgt	3300
55	tttctgcccc	gaaggtgtcc	ctgtattacg	agaacaacca	ctgggataac	agacctggtg	3360
	gaaggatgta	tggattcaat	gccgcaacag	ctgccaggct	ggaagctaga	catacettee	3420
40	tgaaggggca	gtggcatacg	ggcaagcagg	cagttatcgc	agaaagaaaa	atccaaccgc	3480
40	tttctgtgct	ggacaatgta	attcctatca	accgcaggct	gccgcacgcc	ctggtggctg	3540
	agtacaagac	ggttaaaggc	agtagggttg	agtggctggt	caataaagta	agagggtacc	3600
15	acgtcctgct	ggtgagtgag	tacaacctgg	ctttgcctcg	acgcagggtc	acttggttgt	3660
45	caccgctgaa	tgtcacaggc	gccgataggt	gctacgacct	aagtttagga	ctgccggctg	3720
	acgccggcag	gttcgacttg	gtctttgtga	acattcacac	ggaattcaga	atccaccact	3780
50	accagcagtg	tgtcgaccac	gccatgaagc	tgcagatgct	tgggggagat	gcgctacgac	3840

	tgctaaaacc	cggcggcagc	ctcttgatga	gagcttacgg	atacgccgat	aaaatcagcg	3900
	aagccgttgt	ttcctcctta	agcagaaagt	tctcgtctgc	aagagtgttg	cgcccggatt	3960
5	gtgtcaccag	caatacagaa	gtgttcttgc	tgttctccaa	ctttgacaac	ggaaagagac	4020
	cctctacgct	acaccagatg	aataccaagc	tgagtgccgt	gtatgccgga	gaagccatgc	4080
	acacggccgg	gtgtgcacca	tcctacagag	ttaagagagc	agacatagcc	acgtgcacag	4140
10	aagcggctgt	ggttaacgca	gctaacgccc	gtggaactgt	aggggatggc	gtatgcaggg	4200
	ccgtggcgaa	gaaatggccg	tcagccttta	agggagaagc	aacaccagtg	ggcacaatta	4260
	aaacagtcat	gtgcggctcg	taccccgtca	tccacgctgt	agcgcctaat	ttctctgcca	4320
15	cgactgaagc	ggaaggggac	cgcgaattgg	ccgctgtcta	ccgggcagtg	gccgccgaag	4380
15	taaacagact	gtcactgagc	agcgtagcca	tcccgctgct	gtccacagga	gtgttcagcg	4440
	gcggaagaga	taggctgcag	caatccctca	accatctatt	cacagcaatg	gacgccacgg	4500
20	acgctgacgt	gaccatctac	tgcagagaca	aaagttggga	gaagaaaatc	caggaagcca	4560
20	tagacatgag	gacggctgtg	gagttgctca	atgatgacgt	ggagctgacc	acagacttgg	4620
	tgagagtgca	cccggacagc	agcctggtgg	gtcgtaaggg	ctacagtacc	actgacgggt	4680
25	cgctgtactc	gtactttgaa	ggtacgaaat	tcaaccaggc	tgctattgat	atggcagaga	4740
23	tactgacgtt	gtggcccaga	ctgcaagagg	caaacgaaca	gatatgccta	tacgcgctgg	4800
	gcgaaacaat	ggacaacatc	agatccaaat	gtccggtgaa	cgattccgat	tcatcaacac	4860
30	ctcccaggac	agtgccctgc	ctgtgccgct	acgcaatgac	agcagaacgg	atcgcccgcc	4920
50	ttaggtcaca	ccaagttaaa	agcatggtgg	tttgctcatc	ttttcccctc	ccgaaatacc	4980
	atgtagatgg	ggtgcagaag	gtaaagtgcg	agaaggttct	cctgttcgac	ccgacggtac	5040
35	cttcagtggt	tagtccgcgg	aagtatgccg	catctacgac	ggaccactca	gatcggtcgt	5100
33	tacgagggtt	tgacttggac	tggaccaccg	actcgtcttc	cactgccagc	gataccatgt	5160
	cgctacccag	tttgcagtcg	tgtgacatcg	actcgatcta	cgagccaatg	gctcccatag	5220
40	tagtgacggc	tgacgtacac	cctgaacccg	caggcatcgc	ggacctggcg	gcagatgtgc	5280
40	accctgaacc	cgcagaccat	gtggacctcg	agaacccgat	tcctccaccg	cgcccgaaga	5340
	gagctgcata	ccttgcctcc	cgcgcggcgg	agcgaccggt	gccggcgccg	agaaagccga	5400
45	cgcctgcccc	aaggactgcg	tttaggaaca	agctgccttt	gacgttcggc	gactttgacg	5460
45	agcacgaggt	cgatgcgttg	gcctccggga	ttactttcgg	agacttcgac	gacgtcctgc	5520
	gactaggccg	cgcgggtgca	tatattttct	cctcggacac	tggcagcgga	catttacaac	5580
5 0	aaaaatccgt	taggcagcac	aatctccagt	gcgcacaact	ggatgcggtc	caggaggaga	5640
50							

	aaatgtaccc	gccaaaattg	gatactgaga	gggagaagct	gttgctgctg	aaaatgcaga	5700
	tgcacccatc	ggaggctaat	aagagtcgat	accagtctcg	caaagtggag	aacatgaaag	5760
5	ccacggtggt	ggacaggctc	acatcggggg	ccagattgta	cacgggagcg	gacgtaggcc	5820
	gcataccaac	atacgcggtt	cggtaccccc	gccccgtgta	ctcccctacc	gtgatcgaaa	5880
	gattctcaag	ccccgatgta	gcaatcgcag	cgtgcaacga	atacctatcc	agaaattacc	5940
10	caacagtggc	gtcgtaccag	ataacagatg	aatacgacgc	atacttggac	atggttgacg	6000
	ggtcggatag	ttgcttggac	agagcgacat	tctgcccggc	gaagctccgg	tgctacccga	6060
	aacatcatgc	gtaccaccag	ccgactgtac	gcagtgccgt	cccgtcaccc	tttcagaaca	6120
15	cactacagaa	cgtgctagcg	gccgccacca	agagaaactg	caacgtcacg	caaatgcgag	6180
	aactacccac	catggactcg	gcagtgttca	acgtggagtg	cttcaagcgc	tatgcctgct	6240
	ccggagaata	ttgggaagaa	tatgctaaac	aacctatccg	gataaccact	gagaacatca	6300
20	ctacctatgt	gaccaaattg	aaaggcccga	aagctgctgc	cttgttcgct	aagacccaca	6360
	acttggttcc	gctgcaggag	gttcccatgg	acagattcac	ggtcgacatg	aaacgagatg	6420
	tcaaagtcac	tccagggacg	aaacacacag	aggaaagacc	caaagtccag	gtaattcaag	6480
25	cagcggagcc	attggcgacc	gcttacctgt	gcggcatcca	cagggaatta	gtaaggagac	6540
	taaatgctgt	gttacgccct	aacgtgcaca	cattgtttga	tatgtcggcc	gaagactttg	6600
	acgcgatcat	cgcctctcac	ttccacccag	gagacccggt	tctagagacg	gacattgcat	6660
30	cattcgacaa	aagccaggac	gactccttgg	ctcttacagg	tttaatgatc	ctcgaagatc	6720
10	taggggtgga	tcagtacctg	ctggacttga	tcgaggcagc	ctttggggaa	atatccagct	6780
	gtcacctacc	aactggcacg	cgcttcaagt	tcggagctat	gatgaaatcg	ggcatgtttc	6840
35	tgactttgtt	tattaacact	gttttgaaca	tcaccatagc	aagcagggta	ctggagcaga	6900
202530354045	gactcactga	ctccgcctgt	gcggccttca	tcggcgacga	caacatcgtt	cacggagtga	6960
	tctccgacaa	gctgatggcg	gagaggtgcg	cgtcgtgggt	caacatggag	gtgaagatca	7020
40	ttgacgctgt	catgggcgaa	aaacccccat	atttttgtgg	gggattcata	gtttttgaca	7080
40	gcgtcacaca	gaccgcctgc	cgtgtttcag	acccacttaa	gcgcctgttc	aagttgggta	7140
	agccgctaac	agctgaagac	aagcaggacg	aagacaggcg	acgagcactg	agtgacgagg	7200
15	ttagcaagtg	gttccggaca	ggcttggggg	ccgaactgga	ggtggcacta	acatctaggt	7260
40	atgaggtaga	gggctgcaaa	agtatcctca	tagccatggc	caccttggcg	agggacatta	7320
	aggcgtttaa	gaaattgaga	ggacctgtta	tacacctcta	cggcggtcct	agattggtgc	7380
	gttaatacac	agaattctga	ttggatcccg	aa			7412

Стр.: 28

<210> 4
<211> 7521
<212> ДНК
<213> Вирус леса Семлики (SFV)

5 <400> gatggcggat gtgtgacata cacgacgcca aaagattttg ttccaqctcc tqccacctcc 60 gctacgcgag agattaacca cccacgatgg ccqccaaagt gcatgttgat attgaggctg 120 acageceatt cateaagtet tigeagaagg catticegte gitegaggig gagicatiqe 180 10 aggtcacacc aaatgaccat gcaaatgcca gagcattttc gcacctggct accaaattqa 240 togagoagga gactgacaaa gacacactca tottggatat oggoagtgog cottocagga 300 gaatgatgtc tacgcacaaa taccactgcq tatqccctat qcqcaqcqca qaaqaccccq 360 15 aaaggctcga tagctacgca aagaaactqq caqcqqcctc cqqqaaqqtq ctqqataqaq 420 agategeagg aaaaateace gacetgeaga eegteatgge taegeeagae getgaatete 480 ctaccttttg cctgcataca gacgtcacgt gtcgtacggc agccgaagtg gccgtatacc 540 20 600 aggacgtgta tgctgtacat gcaccaacat cgctgtacca tcaggcgatg aaaggtgtca 660 gaacggcgta ttggattggg tttgacacca ccccgtttat gtttgacgcg ctagcaggcg 720 cgtatccaac ctacgccaca aactgggccg acgagcaggt gttacaggcc aggaacatag 25 780 gactgtgtgc agcatccttg actgagggaa gactcggcaa actgtccatt ctccgcaaga agcaattgaa accttgcgac acagtcatgt tctcggtagg atctacattg tacactgaga 840 gcagaaagct actgaggagc tggcacttac cctccgtatt ccacctgaaa ggtaaacaat 900 30 cctttacctg taggtgcgat accatcgtat catgtgaagg gtacgtagtt aagaaaatca 960 ctatgtgccc cggcctgtac ggtaaaacgg tagggtacgc cgtgacgtat cacgcggagg 1020 qattcctaqt qtqcaaqacc acaqacactq tcaaaqgaqa aagagtctca ttccctgtat 1080 35 gcacctacgt cccctcaacc atctgtgatc aaatgactgg catactagcg accgacgtca 1140 caccggagga cgcacagaag ttgttagtgg gattgaatca gaggatagtt gtgaacggaa 1200 gaacacagcg aaacactaac acgatgaaga actatctgct tccgattgtg gccgtcgcat 1260 40 1320 ttagcaagtg ggcgagggaa tacaaggcag accttgatga tgaaaaacct ctgggtgtcc gagagaggtc acttacttgc tgctgcttgt gggcatttaa aacgaggaag atgcacacca 1380 tgtacaagaa accagacacc cagacaatag tgaaggtgcc ttcagagttt aactcgttcg 1440 45 tcatcccgag cctatggtct acaggcctcg caatcccagt cagatcacgc attaagatgc 1500 ttttggccaa gaagaccaag cgagagttaa tacctgttct cgacgcgtcg tcagccaggg 1560

	atgctgaaca	agaggagaag	gagaggttgg	aggccgagct	gactagagaa	gccttaccac	1620
	ccctcgtccc	catcgcgccg	gcggagacgg	gagtcgtcga	cgtcgacgtt	gaagaactag	1680
5	agtatcacgc	aggtgcaggg	gtcgtggaaa	cacctcgcag	cgcgttgaaa	gtcaccgcac	1740
	agccgaacga	cgtactacta	ggaaattacg	tagttctgtc	cccgcagacc	gtgctcaaga	1800
	gctccaagtt	ggcccccgtg	caccctctag	cagagcaggt	gaaaataata	acacataacg	1860
10	ggagggccgg	cggttaccag	gtcgacggat	atgacggcag	ggtcctacta	ccatgtggat	1920
	cggccattcc	ggtccctgag	tttcaagctt	tgagcgagag	cgccactatg	gtgtacaacg	1980
	aaagggagtt	cgtcaacagg	aaactatacc	atattgccgt	tcacggaccg	tcgctgaaca	2040
15	ccgacgagga	gaactacgag	aaagtcagag	ctgaaagaac	tgacgccgag	tacgtgttcg	2100
	acgtagataa	aaaatgctgc	gtcaagagag	aggaagcgtc	gggtttggtg	ttggtgggag	2160
	agctaaccaa	cccccgttc	catgaattcg	cctacgaagg	gctgaagatc	aggccgtcgg	2220
20	caccatataa	gactacagta	gtaggagtct	ttggggttcc	gggatcaggc	aagtctgcta	2280
	ttattaagag	cctcgtgacc	aaacacgatc	tggtcaccag	cggcaagaag	gagaactgcc	2340
	aggaaatagt	taacgacgtg	aagaagcacc	gcgggaaggg	gacaagtagg	gaaaacagtg	2400
25	actccatcct	gctaaacggg	tgtcgtcgtg	ccgtggacat	cctatatgtg	gacgaggctt	2460
	tegettgeca	ttccggtact	ctgctggccc	taattgctct	tgttaaacct	cggagcaaag	2520
	tggtgttatg	cggagacccc	aagcaatgcg	gattcttcaa	tatgatgcag	cttaaggtga	2580
30	acttcaacca	caacatctgc	actgaagtat	gtcataaaag	tatatccaga	cgttgcacgc	2640
	gtccagtcac	ggccatcgtg	tctacgttgc	actacggagg	caagatgcgc	acgaccaacc	2700
	cgtgcaacaa	acccataatc	atagacacca	caggacagac	caagcccaag	ccaggagaca	2760
35	tcgtgttaac	atgcttccga	ggctgggcaa	agcagctgca	gttggactac	cgtggacacg	2820
	aagtcatgac	agcagcagca	tctcagggcc	tcacccgcaa	aggggtatac	gccgtaaggc	2880
	agaaggtgaa	tgaaaatccc	ttgtatgccc	ctgcgtcgga	gcacgtgaat	gtactgctga	2940
40	cgcgcactga	ggataggctg	gtgtggaaaa	cgctggccgg	cgatccctgg	attaaggtcc	3000
	tatcaaacat	tccacagggt	aactttacgg	ccacattgga	agaatggcaa	gaagaacacg	3060
	acaaaataat	gaaggtgatt	gaaggaccgg	ctgcgcctgt	ggacgcgttc	cagaacaaag	3120
45	cgaacgtgtg	ttgggcgaaa	agcctggtgc	ctgtcctgga	cactgccgga	atcagattga	3180
	cagcagagga	gtggagcacc	ataattacag	catttaagga	ggacagagct	tactctccag	3240
	tggtggcctt	gaatgaaatt	tgcaccaagt	actatggagt	tgacctggac	agtggcctgt	3300
50	tttctgcccc	gaaggtgtcc	ctgtattacg	agaacaacca	ctgggataac	agacctggtg	3360

	gaaggatgta	tggattcaat	gccgcaacag	ctgccaggct	ggaagctaga	cataccttcc	3420
	tgaaggggca	gtggcatacg	ggcaagcagg	cagttatcgc	agaaagaaaa	atccaaccgc	3480
5	tttctgtgct	ggacaatgta	attcctatca	accgcaggct	gccgcacgcc	ctggtggctg	3540
	agtacaagac	ggttaaaggc	agtagggttg	agtggctggt	caataaagta	agagggtacc	3600
	acgtcctgct	ggtgagtgag	tacaacctgg	ctttgcctcg	acgcagggtc	acttggttgt	3660
10	caccgctgaa	tgtcacaggc	gccgataggt	gctacgacct	aagtttagga	ctgccggctg	3720
	acgccggcag	gttcgacttg	gtctttgtga	acattcacac	ggaattcaga	atccaccact	3780
	accagcagtg	tgtcgaccac	gccatgaagc	tgcagatgct	tgggggagat	gcgctacgac	3840
15	tgctaaaacc	cggcggcatc	ttgatgagag	cttacggata	cgccgataaa	atcagcgaag	3900
	ccgttgtttc	ctccttaagc	agaaagttct	cgtctgcaag	agtgttgcgc	ccggattgtg	3960
	tcaccagcaa	tacagaagtg	ttcttgctgt	tctccaactt	tgacaacgga	aagagaccct	4020
20	ctacgctaca	ccagatgaat	accaagctga	gtgccgtgta	tgccggagaa	gccatgcaca	4080
	cggccgggtg	tgcaccatcc	tacagagtta	agagagcaga	catagecacg	tgcacagaag	4140
	cggctgtggt	taacgcagct	aacgcccgtg	gaactgtagg	ggatggcgta	tgcagggccg	4200
25	tggcgaagaa	atggccgtca	gcctttaagg	gagcagcaac	accagtgggc	acaattaaaa	4260
	cagtcatgtg	cggctcgtac	cccgtcatcc	acgctgtagc	gcctaatttc	tctgccacga	4320
	ctgaagcgga	aggggaccgc	gaattggccg	ctgtctaccg	ggcagtggcc	gccgaagtaa	4380
30	acagactgtc	actgagcagc	gtagccatcc	cgctgctgtc	cacaggagtg	ttcagcggcg	4440
20	gaagagatag	gctgcagcaa	tccctcaacc	atctattcac	agcaatggac	gccacggacg	4500
	ctgacgtgac	catctactgc	agagacaaaa	gttgggagaa	gaaaatccag	gaagccattg	4560
35	acatgaggac	ggctgtggag	ttgctcaatg	atgacgtgga	gctgaccaca	gacttggtga	4620
55	gagtgcaccc	ggacagcagc	ctggtgggtc	gtaagggcta	cagtaccact	gacgggtcgc	4680
	tgtactcgta	ctttgaaggt	acgaaattca	accaggctgc	tattgatatg	gcagagatac	4740
40	tgacgttgtg	gcccagactg	caagaggcaa	acgaacagat	atgcctatac	gcgctgggcg	4800
40	aaacaatgga	caacatcaga	tccaaatgtc	cggtgaacga	ttccgattca	tcaacacctc	4860
	ccaggacagt	gccctgcctg	tgccgctacg	caatgacagc	agaacggatc	gcccgcctta	4920
45	ggtcacacca	agttaaaagc	atggtggttt	gctcatcttt	tcccctcccg	aaataccatg	4980
70	tagatggggt	gcagaaggta	aagtgcgaga	aggttctcct	gttcgacccg	acggtacctt	5040
	cagtggttag	tccgcggaag	tatgccgcat	ctacgacgga	ccactcagat	cggtcgttac	5100
50	gagggtttga	cttggactgg	accaccgact	cgtcttccac	tgccagcgat	accatgtcgc	5160

	tacccagttt	gcagtcgtgt	gacatcgact	cgatctacga	gccaatggct	cccatagtag	5220
	tgacggctga	cgtacaccct	gaacccgcag	gcatcgcgga	cctggcggca	gatgtgcacc	5280
5	ctgaacccgc	agaccatgtg	gacctcgaga	acccgattcc	tccaccgcgc	ccgaagagag	5340
	ctgcatacct	tgcctcccgc	gcggcggagc	gaccggtgcc	ggcgccgaga	aagccgacgc	5400
	ctgccccaag	gactgcgttt	aggaacaagc	tgcctttgac	gttcggcgac	tttgacgagc	5460
10	acgaggtcga	tgcgttggcc	tccgggatta	ctttcggaga	cttcgacgac	gtcctgcgac	5520
	taggccgcgc	gggtgcatat	attttctcct	cggacactgg	cagcggacat	ttacaacaaa	5580
	aatccgttag	gcagcacaat	ctccagtgcg	cacaactgga	tgcggtccag	gaggagaaaa	5640
15	tgtacccgcc	aaaattggat	actgagaggg	agaagctgtt	gctgctgaaa	atgcagatgc	5700
	acccatcgga	ggctaataag	agtcgatacc	agtctcgcaa	agtggagaac	atgaaagcca	5760
	cggtggtgga	caggctcaca	tcgggggcca	gattgtacac	gggagcggac	gtaggccgca	5820
20	taccaacata	cgcggttcgg	tacccccgcc	ccgtgtactc	ccctaccgtg	atcgaaagat	5880
	tctcaagccc	cgatgtagca	atcgcagcgt	gcaacgaata	cctatccaga	aattacccaa	5940
	cagtggcgtc	gtaccagata	acagatgaat	acgacgcata	cttggacatg	gttgacgggt	6000
25	cggatagttg	cttggacaga	gcgacattct	gcccggcgaa	gctccggtgc	tacccgaaac	6060
	atcatgcgta	ccaccagccg	actgtacgca	gtgccgtccc	gtcacccttt	cagaacacac	6120
	tacagaacgt	gctagcggcc	gccaccaaga	gaaactgcaa	cgtcacgcaa	atgcgagaac	6180
30	tacccaccat	ggactcggca	gtgttcaacg	tggagtgctt	caagcgctat	gcctgctccg	6240
	gagaatattg	ggaagaatat	gctaaacaac	ctatccggat	aaccactgag	aacatcacta	6300
	cctatgtgac	caaattgaaa	ggcccgaaag	ctgctgcctt	gttcgctaag	acccacaact	6360
35	tggttccgct	gcaggaggtt	cccatggaca	gattcacggt	cgacatgaaa	cgagatgtca	6420
55	aagtcactcc	agggacgaaa	cacacagagg	aaagacccaa	agtccaggta	attcaagcag	6480
	cggagccatt	ggcgaccgct	tacctgtgcg	gcatccacag	ggaattagta	aggagactaa	6540
40	atgctgtgtt	acgccctaac	gtgcacacat	tgtttgatat	gtcggccgaa	gactttgacg	6600
40	cgatcatcgc	ctctcacttc	cacccaggag	acccggttct	agagacggac	attgcatcat	6660
	tcgacaaaag	ccaggacgac	tccttggctc	ttacaggttt	aatgatcctc	gaagatctag	6720
15	gggtggatca	gtacctgctg	gacttgatcg	aggcagcctt	tggggaaata	tccagctgtc	6780
45	acctaccaac	tggcacgcgc	ttcaagttcg	gagctatgat	gaaatcgggc	atgtttctga	6840
	ctttgtttat	taacactgtt	ttgaacatca	ccatagcaag	cagggtactg	gagcagagac	6900
	tcactgactc	cgcctgtgcg	gccttcatcg	gcgacgacaa	catcgttcac	ggagtgatct	6960

Стр.: 32

	ccgacaagct	gatggcggag	aggtgcgcgt	cgtgggtcaa	catggaggtg	aagatcattg	7020
	acgctgtcat	gggcgaaaaa	ccccatatt	tttgtggggg	attcatagtt	tttgacagcg	7080
5	tcacacagac	cgcctgccgt	gtttcagacc	cacttaagcg	cctgttcaag	ttgggtaagc	7140
	cgctaacagc	tgaagacaag	caggacgaag	acaggcgacg	agcactgagt	gacgaggtta	7200
	gcaagtggtt	ccggacaggc	ttgggggccg	aactggaggt	ggcactaaca	tctaggtatg	7260
10	aggtagaggg	ctgcaaaagt	atcctcatag	ccatggccac	cttggcgagg	gacattaagg	7320
	cgtttaagaa	attgagagga	cctgttatac	acctctacgg	cggtcctaga	ttggtgcgtt	7380
	aatacacaga	attctgatta	tagcgcacta	ttatagcacc	atgaattaca	tccctacgca	7440
15	aacgttttac	ggccgccggt	ggcgcccgcg	cccggcggcc	cgtccttggc	cgttgcaggc	7500
	cactccggtg	gctcccgtcg	t				7521
20		с леса Семлик	zu (SFV)				
	<400> 5 attacatccc	tacgcaaacg	ttttacggcc	gccggtggcg	cccgcgcccg	gcggcccgtc	60
25	cttggccgtt	gcaggccact	ccggtggctc	ccgtcgtccc	cgacttccag	gcccagcaga	120
	tgcagcaact	catcagcgcc	gtaaatgcgc	tgacaatgag	acagaacgca	attgctcctg	180
	ctaggcctcc	caaaccaaag	aagaagaaga	caaccaaacc	aaagccgaaa	acgcagccca	240
30	agaagatcaa	cggaaaaacg	cagcagcaaa	agaagaaaga	caagcaagcc	gacaagaaga	300
	agaagaaacc	cggaaaaaga	gaaagaatgt	gcatgaagat	tgaaaatgac	tgtatcttcg	360
	tatgcggcta	gccacagtaa	cgtagtgttt	ccagacatgt	cgggcaccgc	actatcatgg	420
35	gtgcagaaaa	tctcgggtgg	tctgggggcc	ttcgcaatcg	gcgctatcct	ggtgctggtt	480
	gtggtcactt	gcattgggct	ccgcagataa	gttagggtag	gcaatggcat	tgatatagca	540
	agaaaattga	aaacagaaaa	agttagggta	agcaatggca	tataaccata	actgtataac	600
40	ttgtaacaaa	gcgcaacaag	acctgcgcaa	ttggccccgt	ggtccgcctc	acggaaactc	660
	ggggcaactc	atattgacac	attaattggc	aataattgga	agcttacata	agcttaattc	720
	gacgaataat	tggattttta	ttttattttg	caattggttt	ttaatatttc	caaaaaaaa	780
45	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	840
	a						841

<210> 6 50 <211> 260

<212>ДНК <213> Вирус SV40 <400> б agagtegggg eggeeggeeg ettegageag acatgataag atacattgat gagtttggae 60 5 aaaccacaac tagaatgcag tgaaaaaaat gctttatttg tgaaatttgt gatgctattg 120 ctttatttgt aaccattata agctgcaata aacaagttaa caacaacaat tgcattcatt 180 ttatgtttca ggttcagggg gaggtgtggg aggtttttta aagcaagtaa aacctctaca 240 10 aatgtggtaa aatcgataag 260 <210> <211> 940 <212> ДНК 15 <213> Человек <400> 7 aattcgcctg tcatacagct aataattgac cataagacaa ttagatttaa attagttttg 60 20 aatctttcta ataccaaagt tcagtttact gttccatgtt gcttctgagt ggcttcacag 120 acttatgaaa aagtaaacgg aatcagaatt acatcaatgc aaaagcattg ctgtgaactc 180 tgtacttagg actaaacttt gagcaataac acacatagat tgaggattgt ttgctgttag 240 25 catacaaact ctggttcaaa gctcctcttt attgcttgtc ttggaaaatt tgctgttctt 300 catggtttct cttttcactg ctatctattt ttctcaacca ctcacatggc tacaataact 360 gtctgcaagc ttatgattcc caaatatcta tctctagcct caatcttgtt ccagaagata 420 30 aaaagtagta ttcaaatgca catcaacgtc tccacttgga gggcttaaaag acgtttcaac 480 atacaaaccg gggagttttg cctggaatgt ttcctaaaat gtgtcctgta gcacataggg 540 tectettgtt cettaaaate taattaettt tageeeagtg eteateeeac etatggggag 600

atgagagtga aaagggagcc tgattaataa ttacactaag tcaataggca tagagccagg

actgtttggg taaactggtc actttatctt aaactaaata tatccaaaac tgaacatgta

cttagttact aagtetttga ctttatetea tteataceae teagetttat eeaggeeaet

tatttgacag tetagetage cectagattt tetgececaa agagetetgt gteettgaac

ataaaataca aataaccgct atgctgttaa ttattggcaa atgtcccatt ttcaacctaa

ggaaatacca taaagtaaca gatataccaa caaaaggtta

660

720

780

840

900

940

45

40

35

<210> 8 <211> 28892 <212> ДНК <213> Химерная

```
<220>
      <221>
              5' ITR
      <222>
              (1)..(438)
      <223> Последовательность первого инвертированного концевого повтора и сигнальная
       последовательность для упаковки
5
      <220>
      <221> «лишняя»
      <222>
              (439)..(10990)
      <223> Первая некодирующая «лишняя» последовательность
10
      <220>
      <221> AFP(p+e)
      <222>
             (10991)..(11930)
      <223> Промотор альфа-фетопротеина (AFP). Включает проморную область
       (р) и энхансерную область (е)
15
      <220>
      <221> SFV
      <222>
             (12257)..(19366)
      <223> Участок последовательности репликона SFV
      <220>
20
      <221> mIL-12
      <222>
              (19389)..(21722)
      <223> Последовательность гена мышиного интерлейкина-12 (IL-12) экзогенный ген,
      <220>
      <221>
              Поли-А
25
      <222>
              (22621)..(22880)
      <223>
              Последовательность полиаденилирования, полученная из SV40
      <220>
              «квишил»
      <221>
              (22881) .. (28731)
      <222>
30
      <223>
              Вторая некодирующая «лишняя» последовательность
      <220>
      <221>
             3' ITR
      <222>
             (28732)..(28892)
      <223> Последовательность второго инвертированного концевого повтора
35
      <400>
      aaacatcatc aataatatac cttattttgg attgaagcca atatgataat gagggggtgg
                                                                                    60
      agtttgtgac gtggcgcggg gcgtggggaac ggggcgggtg acgtagtagt gtggcggaag
                                                                                   120
      tgtgatgttg caagtgtggc ggaacacatg taagcgacgg atgtggcaaa agtgacgttt
                                                                                  180
40
      ttggtgtgcg ccggtgtaca caggaagtga caattttcgc gcggttttag gcggatgttg
                                                                                  240
      tagtaaattt gggcgtaacc gagtaagatt tggccatttt cgcgggaaaa ctgaataaga
                                                                                  300
      ggaagtgaaa totgaataat tttgtgttac toatagogog taatatttgt otagggoogo
                                                                                  360
45
      ggggactttg accepttace tggagactce cccaggtgtt tttctcaggt gttttccegcg
                                                                                  420
      ttccgggtca aagttggcgt tttgatatca agcttatcga taccgtcaaa caagtcttta
                                                                                  480
      attcaagcaa gactttaaca agttaaaagg agcttatggg taggaagtag tgttatgatg
                                                                                  540
50
```

	tatgggcata	aagggtttta	atgggatagt	gaaaatgtct	ataataatac	ttaaatggct	600
	gcccaatcac	ctacaggatt	gatgtaaaca	tggaaaaggt	caaaaacttg	ggtcactaaa	660
5	atagatgatt	aatggagagg	atgaggttga	tagttaaatg	tagataagtg	gtcttattct	720
	caataaaaat	gtgaacataa	ggcgagtttc	tacaaagatg	gacaggactc	attcatgaaa	780
	cagcaaaaac	tggacatttg	ttctaatctt	tgaagagtat	gaaaaattcc	tattttaaag	840
10	gtaaaacagt	aactcacagg	aaataccaac	ccaacataaa	atcagaaaca	atagtctaaa	900
	gtaataaaaa	tcaaacgttt	gcacgatcaa	attatgaatg	aaattcacta	ctaaaattca	960
	cactgatttt	gtttcatcca	cagtgtcaat	gttgtgatgc	atttcaattg	tgtgacacag	1020
15	gcagactgtg	gatcaaaagt	ggtttctggt	gcgacttact	ctcttgagta	tacctgcagt	1080
	cccctttctt	aagtgtgtta	aaaaaaaagg	gggatttctt	caattcgcca	atactctagc	1140
	tctccatgtg	ctttctagga	aacaagtgtt	aacccacctt	atttgtcaaa	cctagctcca	1200
20	aaggactttt	gactccccac	aaaccgatgt	agctcaagag	agggtatctg	tcaccagtat	1260
20	gtatagtgaa	aaaagtatcc	caagtcccaa	cagcaattcc	taaaaggagt	ttatttaaaa	1320
	aaccacacac	acctgtaaaa	taagtatata	tcctccaagg	tgactagttt	taaaaaaaca	1380
25	gtattggctt	tgatgtaaag	tactagtgaa	tatgttagaa	aaatctcact	gtaaccaagt	1440
20	gaaatgaaag	caagtatggt	ttgcagagat	tcaaagaaaa	tataagaaaa	cctactgttg	1500
	ccactaaaaa	gaatcatata	ttaaatatac	tcacacaata	gctcttcagt	ctgataaaat	1560
30	ctacagtcat	aggaatggat	ctatcactat	ttctattcag	tgctttgatg	taatccagca	1620
50	ggtcagcaaa	gaatttatag	cccccttga	gcacacagag	ggctacaatg	tgatggcctc	1680
	ccatctcctt	catcacatct	cgagcaagac	gttcagtcct	acagaaataa	aatcaggaat	1740
25	ttaatagaaa	gtttcataca	ttaaacttta	taacaaacac	ctcttagtca	ttaaacttcc	1800
35	acaccaacct	gggcaatata	gtgagacccc	atgcctgcaa	aaaaaaaaa	attagccagg	1860
	catggtagca	tgtacctgta	gtcccagcta	cttgagaggt	gaggtgggaa	aatcacttta	1920
10	gtgcaggatg	ttgaggctgg	agtgaactgt	gattgtgcca	ctgcactcca	gcctggacaa	1980
40	tagagcaaga	ccttgtctca	aaaaaatgca	ttaaaaattt	tttttaaatc	ttccacgtat	2040
	cacatccttt	gccctcatgt	ttcataaggt	aaaaaatttg	ataccttcaa	aaaaaccaag	2100
	cataccacta	tcataatttt	ttttaaatgc	aaataaaaac	aagataccat	tttcacctat	2160
45	cagactggca	ggttctgatt	aaatgaaatt	ttctggataa	tatacaatat	taagagagac	2220
	tgtagaaact	gggccagtgg	ctcatgcctg	taatcccagc	actttgggag	gctgggtaac	2280
	atggcgaacc	ctgtttctac	aaaataaaaa	tattagctgg	gagtggtggc	gcacacctat	2340

Стр.: 36

	agtcccagct	actcaggagg	ctgaggtgga	aggatcgctt	gaacccagga	ggttgagact	2400
	gcagtgaact	gtgatcattc	tgctgcactg	caccccagcc	tgggcaacag	agaccttgtc	2460
5	tcaaaaaaaa	aaaaaaaaga	gacaaattgt	gaagagaaag	gtactctcat	ataacatcag	2520
	gagtataaaa	tgattcaact	tcttagagga	aaatttggca	ataccaaaat	attcaataaa	2580
	ctctttcccc	ttgacccaga	aattccactt	gaataaagct	gaacaagtac	caaacatgta	2640
10	aaagaatgtt	tcttctagta	cagtcggtaa	gaacaaaata	gtgtctatca	atagtggact	2700
	ggttaaatca	gttatggtat	ctccataaga	cagaatgcta	tgcaaccttt	aaaatatatt	2760
	agatagctct	agacacacta	atattaaaag	tgtccaataa	catttaaaac	tatactcata	2820
15	cgttaaaata	taaatgtata	tatgtacttt	tgcatatagt	atacatgcat	aggccagtgc	2880
	ttgagaagaa	atgtgtacag	aaggctgaaa	ggagagaact	ttagtcttct	tgtttatggc	2940
	ctccatagtt	agaatatttt	ataacacaaa	tattttgata	ttataatttt	aaaataaaaa	3000
20	cacagaatag	ccagacatac	aatgcaagca	ttcaatacca	ggtaaggttt	ttcactgtaa	3060
	ttgacttaac	agaaaatttt	caagctagat	gtgcataata	ataaaaatct	gaccttgcct	3120
	tcatgtgatt	cagccccagt	ccattaccct	gtttaggact	gagaaatgca	agactctggc	3180
25	tagagttcct	tcttccatct	cccttcaatg	tttactttgt	tctggtccct	acagagtccc	3240
	actataccac	aactgatact	aagtaattag	taaggccctc	ctcttttatt	tttaataaag	3300
	aagattttag	aaagcatcag	ttatttaata	agttggccta	gtttatgttc	aaatagcaag	3360
30	tactcagaac	agctgctgat	gtttgaaatt	aacacaagaa	aaagtaaaaa	acctcatttt	3420
	aagatettae	ttacctgtcc	ataattagtc	catgaggaat	aaacaccctt	tccaaatcct	3480
	cagcataatg	attaggtatg	caaaataaat	caaggtcata	acctggttca	tcatcactaa	3540
35	tctgaaaaag	aaatatagct	gtttcaatga	gagcattaca	ggatacaaac	atttgattgg	3600
	attaagatgt	taaaaaataa	ccttagtcta	tcagagaaat	ttaggtgtaa	gatgatatta	3660
	gtaactgtta	actttgtagg	tatgataatg	aattatgtaa	gaaaacaaca	ggccgggcgg	3720
40	gttggttcac	acgtgtaatc	ccagcacttt	gggaggctga	ggcaggcaga	ctgcctgagc	3780
	tcaggagttc	gagaccagcc	tgggcaacac	ggtgaaatcc	cgtctctact	aaaaatacaa	3840
	aaaaattagc	cgggtgtggt	gacacatgcc	tgtagtccca	gctacttggg	aggctgaggc	3900
45	aggagaatca	cttgaacctg	ggaggtgaag	gttgcagtga	gccaagatgg	caccacttca	3960
	ctccagcctg	ggaaacagag	caagactctg	tctctgagct	gagatggcac	cacttcactc	4020
	cagcctggga	aacagagcaa	gactctgtct	caaaaaaaac	aaaacacaca	aacaaaaaa	4080
50	caggctgggc	gcggtggctc	acgcctgtaa	tcccagcact	ttgggaggcc	gaggcgggtg	4140

	gatcacctga	ggtcaggagt	tccagaccag	ccttgtcaac	atggtgaaac	ctccccccgc	4200
	cgtctctact	aaaaatacaa	aaattagcca	ggcgtggtgg	caggagcctg	taatcccagc	4260
5	tacttgggag	gctgaggcag	gagaatcgct	tgtacccaga	aggcagaggt	tgcactgagc	4320
	tgagatggca	ccattgcact	ccagcctggg	ggacaagagc	gagatttcgt	ctttaaaaaa	4380
	caaaaacaaa	acaaaaaacc	atgtaactat	atgtcttagt	catcttagtc	aagaatgtag	4440
10	aagtaaagtg	ataagatatg	gaatttcctt	taggtcacaa	agagaaaaag	aaaaatttta	4500
	aagagctaag	acaaacgcag	caaaatcttt	atatttaata	atattctaaa	catgggtgat	4560
	gaacatacgg	gtattcatta	tactattctc	tccacttttg	agtatgtttg	aaaatttagt	4620
15	aaaacaagtt	ttaacacact	gtagtctaac	aagataaaat	atcacactga	acaggaaaaa	4680
	ctggcatggt	gtggtggctc	acacttgtaa	tcccagtgct	ttgggaggct	gagacaggag	4740
	agttgcttga	ggccaggagt	tcaagaccga	catggggaat	gtagcaagac	cccgtcccta	4800
20	caaaaaactt	tgtaaaaatt	tgccaggtat	ggtggtgcat	acctgtagtc	ccagctactc	4860
20	gggaggcgga	ggcagaagga	atcacttgag	cccaggagtt	tgaggctgca	gtgagctacg	4920
	atcataccac	agcactccag	cgtggacaac	agagtaagac	cctatctcaa	aaacaaaaca	4980
25	aaacaaaaca	aacaaaaaa	accacaagaa	aaactgctgg	ctgatgcagc	ggctcatgcc	5040
23	tgtaatccca	gtattttggg	aggcccaggt	gggcgtatca	cctgaggtca	ggagttagag	5100
	accagcctgg	ccaacatggt	gaaaccccat	ctctactaaa	aatacaaaat	tagccaggca	5160
30	tgtggcacgc	gcctgtagtc	ccagttactg	ggaggctgaa	gcaggaggat	cacctgagcc	5220
30	cgggaggtgg	aggttgcagt	gagccgagat	cacaccactg	cactccagcc	tgggtgacac	5280
	agcaataccc	tacctcaaaa	taaaaaagaa	aaagaaaaga	aaagttgctg	tccccgctac	5340
25	cccaatccca	aatccaaaca	gcctctctca	tctcacagta	agggggaaaa	atcacccaaa	5400
35	aaagctaagt	gatcttttga	aaacccaaac	tcttagaagt	ctaagattat	tatagtcaac	5460
	tcatgaagtg	tcatcataaa	agatactcta	atattattta	agtagaacca	catattggtt	5520
40	gtcttggtat	gtctagcccc	tggcatacaa	aatatttaat	aacactgata	tggtacctgt	5580
40	gatgtgaaaa	tgtactatga	gtacagcttt	ataaatacta	tatatgtacc	tatatacaga	5640
	aaaaaataca	acaaaatcat	aaaagcactt	atctttgaaa	gaggagttac	agcaatttta	5700
45	tttagttctt	tattgctttg	ctatatattc	taaattttt	tcaatgaata	tatatcactt	5760
45	ttaaaaaaat	tcaatggtct	ttcttataaa	ttatctttgg	cagcatgcgt	ttttatatat	5820
	acatataaaa	tgtatgggaa	atttttaaag	gatacattaa	attaaagcaa	aatatacaaa	5880
50	caaaaaatca	gaatacaaaa	agataaaaag	attgggaagg	gagggaggga	gtaaggagga	5940
E(1)							

Стр.: 38

	agggtgggtg	ggtatagaga	aatataccaa	ataatggtaa	gaagtggggt	cttgacactt	6000
	tctacacttt	ttttaaataa	aaaaaatttt	tttctctctc	tttttttt	ttagagacga	6060
5	agtctcgcta	tgttgcccag	gctggtcttg	aactcctggg	atcaagagat	cctcctgcct	6120
	cagcctccca	aggtgcttgg	attacaggtg	tgagccacca	cgcctggtca	ctttctacac	6180
	tttaatatat	atatttttc	attttcaatg	tcatttttat	tagttaattt	ataataccca	6240
10	ttcaccatta	tattcaaagt	ctatttgaag	aaataaacca	gaaagaatga	aatactctag	6300
	ctcacatgct	attcaatact	aaattacctt	tcaaatcaca	ttcaagaagc	tgatgattta	6360
	agctttggcg	gtttccaata	aatattggtc	aaaccataat	taaatctcaa	tatatcagtt	6420
15	agtacctatt	gagcatctcc	ttttacaacc	taagcattgt	attaggtgct	taaatacaag	6480
	cagcttgact	tttaatacat	ttaaaaatac	atatttaaga	cttaaaatct	tatttatgga	6540
	attcagttat	attttgaggt	ttccagtgct	gagaaatttg	aggtttgtgc	tgtctttcag	6600
20	tccccaaagc	tcagttctga	gttctcagac	tttggtggaa	cttcatgtat	tgtcaggttg	6660
	gcccgtaata	cctgtgggac	aacttcagcc	cctgtgcaca	tggccaggag	gctggttgca	6720
	aacattttca	ggtaggtgga	ccaggacatg	cccctggtca	tggccaggtg	gaggcatagt	6780
25	gctatacagc	aggcagaagt	caatattgat	ttgtttttaa	agaaacatgt	actactttca	6840
	taagcagaaa	aaatttctat	tcttggggga	aaagattatg	ccagatcctc	taggattaaa	6900
	tgctgatgca	tctgctaaac	cttcacatat	cagaacatat	ttactataga	aagaatgaaa	6960
30	atgggacatt	tgtgtgtcac	ctatgtgaac	attccaaaaa	tattttacaa	caactaagta	7020
	ttttataaat	tttatgaact	gaaatttagt	tcaagttcta	ggaaaataca	aaccttgcta	7080
	gatattataa	aaatgataca	atatatattc	atttcaggct	catcagaata	tatctgttat	7140
35	cacttgacaa	gaatgaaaat	gcaccatttt	gtagtgcttt	aaaatcagga	agatccagag	7200
	tactaaaaat	gacttcttcc	ttgaagctta	ctcaccaact	tcctcccagt	tactcactgc	7260
	ttctgccaca	agcataaact	aggacccagc	cagaactccc	ttgaaatata	cacttgcaac	7320
40	gattactgca	tctatcaaaa	tggttcagtg	cctggctaca	ggttctgcag	atcgactaag	7380
	aatttgaaaa	gtcttgttta	tttcaaagga	agcccatgtg	aattctgccc	agagttcatc	7440
	ccagatatgc	agtctaagaa	tacagacaga	tcagcagaga	tgtattctaa	aacaggaatt	7500
45	ctggcaatat	aacaaattga	tttccaatca	aaacagattt	acataccata	cttatgtcaa	7560
	gaagttgttt	tgttttattg	catcctagat	tttattttt	tgatttatgg	tttactttaa	7620
	gcataaaaaa	tttgtcaata	caactcttcc	caaaaggcat	aaacaaaaat	tcataaaact	7680
50	tgcatcactt	gagatacttc	aggtatgaat	tcacaacttt	gttacaactt	actatatata	7740

Стр.: 39

	tgcacacata	tatatatatt	tgggtatatt	gggggggttc	taatttaaga	aatgcataat	7800
	tggctataga	cagacagttg	tcagaacttg	gcaatgggta	cgtgcaggtt	cattatacca	7860
5	agtctacttg	tagttgttca	aaatgtatca	taatacaagg	ccgggcgagg	tcgtcacgcc	7920
	tgtaatccca	gcattttggg	aggctaaggc	aggaggattg	cttgaggtca	ggagtttgtg	7980
	accagectgg	gcaacagagc	aagaccctgt	ctccaaaaag	aaaaaaaata	attttttaca	8040
10	aaataaaaac	aaaatgtatc	atcagacgaa	attaaataag	aggcaattca	tttaaatgac	8100
	aacttttccc	agcttgacat	ttaacaaaaa	gtctaagtcc	tcttaattca	tatttaatga	8160
	tcaaatatca	aatactaatt	ttttttttt	tttttttt	gagacggagt	ctcgctctgt	8220
15	cgcccaggct	ggagtgcagt	ggcgcgatcc	tggctcactg	caagctccgc	ctcccgggtt	8280
	cacgccattc	tcctgcctca	gcctcccgag	tagctgggat	tacagacatg	cgccaccacg	8340
	cccggctaat	tttgtatttt	tagtagagat	ggggtttctc	catgttggtc	aggctggtct	8400
20	tgaatttccc	acctcaggtg	atctgcctgc	ctcagcctca	caaagcagta	gctgggacta	8460
	caggcaccca	ccaccacact	tggttaattc	ttttgtattt	tttttgtaaa	gacgggattt	8520
	caccatgtta	gccaggatgg	tctcgatctc	ctgatctcat	gatccgcccg	cctcagcctc	8580
25	ccaaagtgct	gggattacag	gcgtgagcca	ccccgcccgg	ccatcaaata	ctaattctta	8640
23	aatggtaagg	acccactatt	cagaacctgt	atccttatca	ctaatatgca	aatatttatt	8700
	gaatacttac	tatgtcatgc	atactagaga	gagttagata	aatttgatac	agctaccctc	8760
30	acagaactta	cagtgtaata	gatggcatga	catgtacatg	agtaactgtg	aacagtgtta	8820
30	aattgctatt	taaaaaaaaa	gacggctggg	cgctgtggct	catgcctgta	atcccagcac	8880
	tttgggaggc	caaggcaagt	tgatcgctcg	aggtcaagag	ttcgagacca	gcctggccaa	8940
35	cgtggtaaaa	ccccgtctct	actaaaaata	caaaaaaaaa	attagccagg	catggtggca	9000
33	caggcctgta	atcccagcta	ctagggaggc	tgagacatgg	agaactgctt	gaatccagga	9060
	ggcagaggtt	acagtgagcc	gagatcatac	cactacactc	cagcctgagt	gacagagcga	9120
40	gactcctgtc	taaaaaaaaa	aaaaaaaaa	aagatacagg	ttaagtgtta	tggtagttga	9180
40	agagagaact	caaactctgt	ctcagaagcc	tcacttgcat	gtggaccact	gatatgaaat	9240
	aatataaata	ggtataattc	aataaatagg	aacttcagtt	ttaatcatcc	caaacaccaa	9300
	aacttcctat	caaacaggtc	caataaactc	aatctctata	agagctagac	agaaatctac	9360
45	ttggtggcct	ataatcttat	tagcccttac	ttgtcccatc	tgatattaat	taaccccatc	9420
	taatatggat	tagttaacaa	tccagtggct	gctttgacag	gaacagttgg	agagagttgg	9480
	ggattgcaac	atattcaatt	atacaaaaat	gcattcagca	tctaccttga	ttaaggcagt	9540
50							

	gtgcaacaga	atttgcagga	gagtaaaaga	atgattataa	atttacaacc	cttaaagagc	9600
	tatagctggg	cgtggtggct	catgcctgta	aatcccagca	ctttgggagg	ctgaggcggg	9660
5	tggatcacct	gaggccagaa	gttcaagacc	agcctagcca	acatggcgaa	accctgtctc	9720
	tacaaaaaat	acaaaaatta	gccgggtgtg	gtggcacgtg	cctgtagtcc	cagttacttg	9780
	ggaggccgag	gcaggagaat	cgcttgaacc	taggaggtgg	aggctgcagt	gagccgagat	9840
10	tgtgccactg	cactccactt	cagcctgggc	gacaagagca	agactccgtc	acaaaaaaaa	9900
	aaaaaaaaaa	aaagcttaaa	atctagtggg	aaaggcatat	atacatacaa	ctaactgtat	9960
	agcataataa	agctcataat	ctgtaacaaa	atctaattcg	acaagcccag	aaacttgtga	10020
15	tttaccaaaa	acagttatat	atacacaaaa	agtaaaccta	gaacccaaag	ttacccagca	10080
	ccaatgattc	tctccctaag	cagtatcaag	tttaaagcag	tgattacatt	ctactgccta	10140
	gattgtaaac	tgagtaaagg	agaccagcac	ctttctgcta	ctgaactagc	acagccgtgt	10200
20	aaaccaacaa	ggcaatggca	gtgcccaact	ttctgtatga	atataagtta	catctgtttt	10260
	attatttgtg	acttggtgtt	gcatgtggtt	attatcaaca	ccttctgaaa	gaacaactac	10320
	ctgctcaggc	tgccataaca	aaataccaca	gactgagtga	cttaacagaa	acttatttct	10380
25	cacagttttg	gaggctggga	agtccaaaat	taaggtacct	gcaaggtagg	tttcaatctc	10440
	aggcctcttc	tttggcttga	aggtcttcta	actgtgtgct	cacatgacct	cttctaacaa	10500
	gctctctggt	gtctcttttt	tttttttt	cttttttgag	acagagtctc	actctgtcac	10560
30	ccaggctgga	gtacagtggc	acaatctggg	ctcactgcaa	cctccaactc	ccgggttcaa	10620
	gtgattctca	tgcctcaccc	tcccgagtag	cttggatgac	aggagcccgc	taccacaccc	10680
	agctaatttt	tgtattttta	gtagagatgg	tgtttcacta	cattggccag	gctggtctca	10740
35	aactcctgac	ctcgtgatcc	acccaccttg	gcctcccaaa	gtgctgggat	tacaggtgtg	10800
	agccactgcg	cccgtcctgg	tgtcttttca	tataagggca	ctaatccaat	cagacctggg	10860
	cccggcgcgc	aattaaccct	cactaaaggg	aacaaaagct	ggagctccac	cgcggtggcg	10920
40	gccgctctag	aactagtgga	tcgggcccga	gctctcgcga	ccgggctgca	ggaattcgat	10980
40	cgcgtgctag	aattcgcctg	tcatacagct	aataattgac	cataagacaa	ttagatttaa	11040
	attagttttg	aatctttcta	ataccaaagt	tcagtttact	gttccatgtt	gcttctgagt	11100
45	ggcttcacag	acttatgaaa	aagtaaacgg	aatcagaatt	acatcaatgc	aaaagcattg	11160
4.5	ctgtgaactc	tgtacttagg	actaaacttt	gagcaataac	acacatagat	tgaggattgt	11220
	ttgctgttag	catacaaact	ctggttcaaa	gctcctcttt	attgcttgtc	ttggaaaatt	11280
50	tgctgttctt	catggtttct	cttttcactg	ctatctattt	ttctcaacca	ctcacatggc	11340
50							

	tacaataact	gtctgcaagc	ttatgattcc	caaatatcta	tctctagcct	caatcttgtt	11400
	ccagaagata	aaaagtagta	ttcaaatgca	catcaacgtc	tccacttgga	gggcttaaag	11460
5	acgtttcaac	atacaaaccg	gggagttttg	cctggaatgt	ttcctaaaat	gtgtcctgta	11520
5	gcacataggg	tcctcttgtt	ccttaaaatc	taattacttt	tagcccagtg	ctcatcccac	11580
	ctatggggag	atgagagtga	aaagggagcc	tgattaataa	ttacactaag	tcaataggca	11640
10	tagagccagg	actgtttggg	taaactggtc	actttatctt	aaactaaata	tatccaaaac	11700
10	tgaacatgta	cttagttact	aagtctttga	ctttatctca	ttcataccac	tcagctttat	11760
	ccaggccact	tatttgacag	tctagctagc	ccctagattt	tctgccccaa	agagctctgt	11820
15	gtccttgaac	ataaaataca	aataaccgct	atgctgttaa	ttattggcaa	atgtcccatt	11880
13	ttcaacctaa	ggaaatacca	taaagtaaca	gatataccaa	caaaaggtta	ctagttaaca	11940
	ggcattgcct	gaaaagagta	taaaagaatt	tcagcatgat	tttccatggc	ggatgtgtga	12000
20	catacacgac	gccaaaagat	tttgttccag	ctcctgccac	ctccgctacg	cgagagatta	12060
20	accacccacg	atggccgcca	aagtgcatgt	tgatattgag	gctgacagcc	cattcatcaa	12120
	gtctttgcag	aaggcatttc	cgtcgttcga	ggtggagtca	ttgcaggtca	caccaaatga	12180
25	ccatgcaaat	gccagagcat	tttcgcacct	ggctaccaaa	ttgatcgagc	aggagactga	12240
25	caaagacaca	ctcatcttgg	atatcggcag	tgcgccttcc	aggagaatga	tgtctacgca	12300
	caaataccac	tgcgtatgcc	ctatgcgcag	cgcagaagac	cccgaaaggc	tcgtatgcta	12360
20	cgcaaagaaa	ctggcagcgg	cctccgggaa	ggtgctggat	agagagatcg	caggaaaaat	12420
30	caccgacctg	cagaccgtca	tggctacgcc	agacgctgaa	tctcctacct	tttgcctgca	12480
	tacagacgtc	acgtgtcgta	cggcagccga	agtggccgta	taccaggacg	tgtatgctgt	12540
	acatgcacca	acatcgctgt	accatcaggc	gatgaaaggt	gtcagaacgg	cgtattggat	12600
35	tgggtttgac	accaccccgt	ttatgtttga	cgcgctagca	ggcgcgtatc	caacctacgc	12660
	cacaaactgg	gccgacgagc	aggtgttaca	ggccaggaac	ataggactgt	gtgcagcatc	12720
	cttgactgag	ggaagactcg	gcaaactgtc	cattctccgc	aagaagcaat	tgaaaccttg	12780
40	cgacacagtc	atgttctcgg	taggatctac	attgtacact	gagagcagaa	agctactgag	12840
	gagctggcac	ttaccctccg	tattccacct	gaaaggtaaa	caatccttta	cctgtaggtg	12900
	cgataccatc	gtatcatgtg	aagggtacgt	agttaagaaa	atcactatgt	gccccggcct	12960
45	gtacggtaaa	acggtagggt	acgccgtgac	gtatcacgcg	gagggattcc	tagtgtgcaa	13020
	gaccacagac	actgtcaaag	gagaaagagt	ctcattccct	gtatgcacct	acgtcccctc	13080
	aaccatctgt	gatcaaatga	ctggcatact	agcgaccgac	gtcacaccgg	aggacgcaca	13140

Стр.: 42

	gaagttgtta	gtgggattga	atcagaggat	agttgtgaac	ggaagaacac	agcgaaacac	13200
	taacacgatg	aagaactatc	tgcttccgat	tgtggccgtc	gcatttagca	agtgggcgag	13260
5	ggaatacaag	gcagaccttg	atgatgaaaa	acctctgggt	gtccgagaga	ggtcacttac	13320
	ttgctgctgc	ttgtgggcat	ttaaaacgag	gaagatgcac	accatgtaca	agaaaccaga	13380
	cacccagaca	atagtgaagg	tgccttcaga	gtttaactcg	ttcgtcatcc	cgagcctatg	13440
10	gtctacaggc	ctcgcaatcc	cagtcagatc	acgcattaag	atgcttttgg	ccaagaagac	13500
	caagcgagag	ttaatacctg	ttctcgacgc	gtcgtcagcc	agggatgctg	aacaagagga	13560
	gaaggagagg	ttggaggccg	agctgactag	agaagcctta	ccacccctcg	tccccatcgc	13620
15	gccggcggag	acgggagtcg	tcgacgtcga	cgttgaagaa	ctagagtatc	acgcaggtgc	13680
	aggggtcgtg	gaaacacctc	gcagcgcgtt	gaaagtcacc	gcacagccga	acgacgtact	13740
	actaggaaat	tacgtagttc	tgtccccgca	gaccgtgctc	aagagctcca	agttggcccc	13800
20	cgtgcaccct	ctagcagagc	aggtgaaaat	aataacacat	aacgggaggg	ccggcggtta	13860
20	ccaggtcgac	ggatatgacg	gcagggtcct	actaccatgt	ggatcggcca	ttccggtccc	13920
	tgagtttcaa	gctttgagcg	agagcgccac	tatggtgtac	aacgaaaggg	agttcgtcaa	13980
25	caggaaacta	taccatattg	ccgttcacgg	accgtcgctg	aacaccgacg	aggagaacta	14040
-20	cgagaaagtc	agagctgaaa	gaactgacgc	cgagtacgtg	ttcgacgtag	ataaaaaatg	14100
	ctgcgtcaag	agagaggaag	cgtcgggttt	ggtgttggtg	ggagagctaa	ccaacccccc	14160
30	gttccatgaa	ttcgcctacg	aagggctgaa	gatcaggccg	tcggcaccat	ataagactac	14220
20	agtagtagga	gtctttgggg	ttccgggatc	aggcaagtct	gctattatta	agagcctcgt	14280
	gaccaaacac	gatctggtca	ccagcggcaa	gaaggagaac	tgccaggaaa	tagttaacga	14340
35	cgtgaagaag	caccgcggga	aggggacaag	tagggaaaac	agtgactcca	tcctgctaaa	14400
33	cgggtgtcgt	cgtgccgtgg	acatcctata	tgtggacgag	gctttcgctt	gccattccgg	14460
	tactctgctg	gccctaattg	ctcttgttaa	accteggage	aaagtggtgt	tatgcggaga	14520
40	ccccaagcaa	tgcggattct	tcaatatgat	gcagcttaag	gtgaacttca	accacaacat	14580
40	ctgcactgaa	gtatgtcata	aaagtatatc	cagacgttgc	acgcgtccag	tcacggccat	14640
	cgtgtctacg	ttgcactacg	gaggcaagat	gcgcacgacc	aacccgtgca	acaaacccat	14700
45	aatcatagac	accacaggac	agaccaagcc	caagccagga	gacatcgtgt	taacatgctt	14760
43	ccgaggctgg	gcaaagcagc	tgcagttgga	ctaccgtgga	cacgaagtca	tgacagcagc	14820
	agcatctcag	ggcctcaccc	gcaaaggggt	atacgccgta	aggcagaagg	tgaatgaaaa	14880
50	tcccttgtat	gcccctgcgt	cggagcacgt	gaatgtactg	ctgacgcgca	ctgaggatag	14940
50							

	gctggtgtgg	aaaacgctgg	ccggcgatcc	ctggattaag	gtcctatcaa	acattccaca	15000
	gggtaacttt	acggccacat	tggaagaatg	gcaagaagaa	cacgacaaaa	taatgaaggt	15060
5	gattgaagga	ccggctgcgc	ctgtggacgc	gttccagaac	aaagcgaacg	tgtgttgggc	15120
	gaaaagcctg	gtgcctgtcc	tggacactgc	cggaatcaga	ttgacagcag	aggagtggag	15180
	caccataatt	acagcattta	aggaggacag	agcttactct	ccagtggtgg	ccttgaatga	15240
10	aatttgcacc	aagtactatg	gagttgacct	ggacagtggc	ctgttttctg	ccccgaaggt	15300
	gtccctgtat	tacgagaaca	accactggga	taacagacct	ggtggaagga	tgtatggatt	15360
	caatgeegea	acagctgcca	ggctggaagc	tagacatacc	ttcctgaagg	ggcagtggca	15420
15	tacgggcaag	caggcagtta	tcgcagaaag	aaaaatccaa	ccgctttctg	tgctggacaa	15480
	tgtaattcct	atcaaccgca	ggctgccgca	cgccctggtg	gctgagtaca	agacggttaa	15540
	aggcagtagg	gttgagtggc	tggtcaataa	agtaagaggg	taccacgtcc	tgctggtgag	15600
20	tgagtacaac	ctggctttgc	ctcgacgcag	ggtcacttgg	ttgtcaccgc	tgaatgtcac	15660
	aggcgccgat	aggtgctacg	acctaagttt	aggactgccg	gctgacgccg	gcaggttcga	15720
	cttggtcttt	gtgaacattc	acacggaatt	cagaatccac	cactaccagc	agtgtgtcga	15780
25	ccacgccatg	aagctgcaga	tgcttggggg	agatgcgcta	cgactgctaa	aacccggcgg	15840
	catcttgatg	agagcttacg	gatacgccga	taaaatcagc	gaagccgttg	tttcctcctt	15900
	aagcagaaag	ttctcgtctg	caagagtgtt	gegeeeggat	tgtgtcacca	gcaatacaga	15960
30	agtgttcttg	ctgttctcca	actttgacaa	cggaaagaga	ccctctacgc	tacaccagat	16020
	gaataccaag	ctgagtgccg	tgtatgccgg	agaagccatg	cacacggccg	ggtgtgcacc	16080
	atcctacaga	gttaagagag	cagacatagc	cacgtgcaca	gaagcggctg	tggttaacgc	16140
35	agctaacgcc	cgtggaactg	taggggatgg	cgtatgcagg	gccgtggcga	agaaatggcc	16200
	gtcagccttt	aagggagcag	caacaccagt	gggcacaatt	aaaacagtca	tgtgcggctc	16260
	gtaccccgtc	atccacgctg	tagcgcctaa	tttctctgcc	acgactgaag	cggaagggga	16320
40	ccgcgaattg	gccgctgtct	accgggcagt	ggccgccgaa	gtaaacagac	tgtcactgag	16380
70	cagcgtagcc	atcccgctgc	tgtccacagg	agtgttcagc	ggcggaagag	ataggctgca	16440
	gcaatccctc	aaccatctat	tcacagcaat	ggacgccacg	gacgctgacg	tgaccatcta	16500
45	ctgcagagac	aaaagttggg	agaagaaaat	ccaggaagcc	attgacatga	ggacggctgt	16560
,,,	ggagttgctc	aatgatgacg	tggagctgac	cacagacttg	gtgagagtgc	acccggacag	16620
	cagcctggtg	ggtcgtaagg	gctacagtac	cactgacggg	tcgctgtact	cgtactttga	16680
50	aggtacgaaa	ttcaaccagg	ctgctattga	tatggcagag	atactgacgt	tgtggcccag	16740

	actgcaagag	gcaaacgaac	agatatgcct	atacgcgctg	ggcgaaacaa	tggacaacat	16800
	cagatccaaa	tgtccggtga	acgattccga	ttcatcaaca	cctcccagga	cagtgccctg	16860
5	cctgtgccgc	tacgcaatga	cagcagaacg	gatcgcccgc	cttaggtcac	accaagttaa	16920
	aagcatggtg	gtttgctcat	cttttcccct	cccgaaatac	catgtagatg	gggtgcagaa	16980
	ggtaaagtgc	gagaaggttc	tcctgttcga	cccgacggta	ccttcagtgg	ttagtccgcg	17040
10	gaagtatgcc	gcatctacga	cggaccactc	agatcggtcg	ttacgagggt	ttgacttgga	17100
	ctggaccacc	gactcgtctt	ccactgccag	cgataccatg	tcgctaccca	gtttgcagtc	17160
	gtgtgacatc	gactcgatct	acgagccaat	ggctcccata	gtagtgacgg	ctgacgtaca	17220
15	ccctgaaccc	gcaggcatcg	cggacctggc	ggcagatgtg	caccctgaac	ccgcagacca	17280
	tgtggacctc	gagaacccga	ttcctccacc	gcgcccgaag	agagctgcat	accttgcctc	17340
	ccgcgcggcg	gagcgaccgg	tgccggcgcc	gagaaagccg	acgcctgccc	caaggactgc	17400
20	gtttaggaac	aagctgcctt	tgacgttcgg	cgactttgac	gagcacgagg	tcgatgcgtt	17460
	ggcctccggg	attactttcg	gagacttcga	cgacgtcctg	cgactaggcc	gcgcgggtgc	17520
	atatatttc	tecteggaca	ctggcagcgg	acatttacaa	caaaaatccg	ttaggcagca	17580
25	caatctccag	tgcgcacaac	tggatgcggt	ccaggaggag	aaaatgtacc	cgccaaaatt	17640
	ggatactgag	agggagaagc	tgttgctgct	gaaaatgcag	atgcacccat	cggaggctaa	17700
	taagagtcga	taccagtctc	gcaaagtgga	gaacatgaaa	gccacggtgg	tggacaggct	17760
30	cacatcgggg	gccagattgt	acacgggagc	ggacgtaggc	cgcataccaa	catacgcggt	17820
	tcggtacccc	cgccccgtgt	actcccctac	cgtgatcgaa	agattctcaa	gccccgatgt	17880
	agcaatcgca	gcgtgcaacg	aatacctatc	cagaaattac	ccaacagtgg	cgtcgtacca	17940
35	gataacagat	gaatacgacg	catacttgga	catggttgac	gggtcggata	gttgcttgga	18000
	cagagcgaca	ttctgcccgg	cgaagctccg	gtgctacccg	aaacatcatg	cgtaccacca	18060
	gccgactgta	cgcagtgccg	tcccgtcacc	ctttcagaac	acactacaga	acgtgctagc	18120
40	ggccgccacc	aagagaaact	gcaacgtcac	gcaaatgcga	gaactaccca	ccatggactc	18180
	ggcagtgttc	aacgtggagt	gcttcaagcg	ctatgcctgc	tccggagaat	attgggaaga	18240
	atatgctaaa	caacctatcc	ggataaccac	tgagaacatc	actacctatg	tgaccaaatt	18300
45	gaaaggcccg	aaagctgctg	ccttgttcgc	taagacccac	aacttggttc	cgctgcagga	18360
	ggttcccatg	gacagattca	cggtcgacat	gaaacgagat	gtcaaagtca	ctccagggac	18420
	gaaacacaca	gaggaaagac	ccaaagtcca	ggtaattcaa	gcagcggagc	cattggcgac	18480
50	cgcttacctg	tgcggcatcc	acagggaatt	agtaaggaga	ctaaatgctg	tgttacgccc	18540

	taacgtgcac	acattgtttg	atatgtcggc	cgaagacttt	gacgcgatca	tcgcctctca	18600
	cttccaccca	ggagacccgg	ttctagagac	ggacattgca	tcattcgaca	aaagccagga	18660
5	cgactccttg	gctcttacag	gtttaatgat	cctcgaagat	ctaggggtgg	atcagtacct	18720
	gctggacttg	atcgaggcag	cctttgggga	aatatccagc	tgtcacctac	caactggcac	18780
	gcgcttcaag	ttcggagcta	tgatgaaatc	gggcatgttt	ctgactttgt	ttattaacac	18840
10	tgttttgaac	atcaccatag	caagcagggt	actggagcag	agactcactg	actccgcctg	18900
10	tgcggccttc	atcggcgacg	acaacatcgt	tcacggagtg	atctccgaca	agctgatggc	18960
	ggagaggtgc	gcgtcgtggg	tcaacatgga	ggtgaagatc	attgacgctg	tcatgggcga	19020
15	aaaaccccca	tatttttgtg	ggggattcat	agtttttgac	agcgtcacac	agaccgcctg	19080
13	ccgtgtttca	gacccactta	agcgcctgtt	caagttgggt	aagccgctaa	cagctgaaga	19140
	caagcaggac	gaagacaggc	gacgagcact	gagtgacgag	gttagcaagt	ggttccggac	19200
20	aggcttgggg	gccgaactgg	aggtggcact	aacatctagg	tatgaggtag	agggctgcaa	19260
20	aagtatcctc	atagccatgg	ccaccttggc	gagggacatt	aaggcgttta	agaaattgag	19320
	aggacctgtt	atacacctct	acggcggtcc	tagattggtg	cgttaataca	cagaattctg	19380
25	attggatctc	gaggtcgacg	gtatcgataa	gcttgggctg	caggtcgatc	gactctagag	19440
23	gatcgatccc	caccatgggt	caatcacgct	acctcctctt	tttggccacc	cttgccctcc	19500
	taaaccacct	cagtttggcc	agggtcattc	cagtctctgg	acctgccagg	tgtcttagcc	19560
30	agtcccgaaa	cctgctgaag	accacagatg	acatggtgaa	gacggccaga	gaaaaactga	19620
30	aacattattc	ctgcactgct	gaagacatcg	atcatgaaga	catcacacgg	gaccaaacca	19680
	gcacattgaa	gacctgttta	ccactggaac	tacacaagaa	cgagagttgc	ctggctacta	19740
35	gagagacttc	ttccacaaca	agagggagct	gcctgccccc	acagaagacg	tctttgatga	19800
33	tgaccctgtg	ccttggtagc	atctatgagg	acttgaagat	gtaccagaca	gagttccagg	19860
	ccatcaacgc	agcacttcag	aatcacaacc	atcagcagat	cattetagae	aagggcatgc	19920
40	tggtggccat	cgatgagctg	atgcagtctc	tgaatcataa	tggcgagact	ctgcgccaga	19980
40	aacctcctgt	gggagaagca	gacccttaca	gagtgaaaat	gaagetetge	atcctgcttc	20040
	acgccttcag	cacccgcgtc	gtgaccatca	acagggtgat	gggctatctg	agctccgcct	20100
	gagaattccg	cccctctccc	tccccccc	ctaacgttac	tggccgaagc	cgcttggaat	20160
45	aaggccggtg	tgcgtttgtc	tatatgttat	tttccaccat	attgccgtct	tttggcaatg	20220
	tgagggcccg	gaaacctggc	cctgtcttct	tgacgagcat	tcctaggggt	ctttcccctc	20280
	tcgccaaagg	aatgcaaggt	ctgttgaatg	tcgtgaagga	agcagttcct	ctggaagctt	20340

Стр.: 46

	cttgaagaca	aacaacgtct	gtagcgaccc	tttgcaggca	gcggaacccc	ccacctggcg	20400
	acaggtgcct	ctgcggccaa	aagccacgtg	tataagatac	acctgcaaag	gcggcacaac	20460
5	cccagtgcca	cgttgtgagt	tggatagttg	tggaaagagt	caaatggctc	tcctcaagcg	20520
	tattcaacaa	ggggctgaag	gatgcccaga	aggtacccca	ttgtatggga	tctgatctgg	20580
	ggcctcggtg	cacatgcttt	acatgtgttt	agtcgaggtt	aaaaaacgtc	taggcccccc	20640
10	gaaccacggg	gacgtggttt	tcctttgaaa	aacacgatga	taatatggcc	acaaccatgg	20700
	gtcctcagaa	gctaaccatc	tcctggtttg	ccatcgtttt	gctggtgtct	ccactcatgg	20760
	ccatgtggga	gctggagaaa	gacgtttatg	ttgtagaggt	ggactggact	cccgatgccc	20820
15	ctggagaaac	agtgaacctc	acctgtgaca	cgcctgaaga	agatgacatc	acctggacct	20880
	cagaccagag	acatggagtc	ataggctctg	gaaagaccct	gaccatcact	gtcaaagagt	20940
	ttctagatgc	tggccagtac	acctgccaca	aaggaggcga	gactctgagc	cactcacatc	21000
20	tgctgctcca	caagaaggaa	aatggaattt	ggtccactga	aattttaaaa	aatttcaaaa	21060
20	acaagacttt	cctgaagtgt	gaagcaccaa	attactccgg	acggttcacg	tgctcatggc	21120
	tggtgcaaag	aaacatggac	ttgaagttca	acatcaagag	cagtagcagt	tcccctgact	21180
25	ctcgggcagt	gacatgtgga	atggcgtctc	tgtctgcaga	gaaggtcaca	ctggaccaaa	21240
	gggactatga	gaagtattca	gtgtcctgcc	aggaggatgt	cacctgccca	actgccgagg	21300
	agaccctgcc	cattgaactg	gcgttggaag	cacggcagca	gaataaatat	gagaactaca	21360
30	gcaccagctt	cttcatcagg	gacatcatca	aaccagaccc	gcccaagaac	ttgcagatga	21420
20	agcctttgaa	gaactcacag	gtggaggtca	gctgggagta	ccctgactcc	tggagcactc	21480
	cccattccta	cttctccctc	aagttctttg	ttcgaatcca	gcgcaagaaa	gaaaagatga	21540
35	aggagacaga	ggaggggtgt	aaccagaaag	gtgcgttcct	cgtagagaag	acatctaccg	21600
33	aagtccaatg	caaaggcggg	aatgtctgcg	tgcaagctca	ggatcgctat	tacaattcct	21660
	catgcagcaa	gtgggcatgt	gttccctgca	gggtccgatc	ctagaattca	ttgatccact	21720
40	aggatcccgg	gtaattaatt	gaattacatc	cctacgcaaa	cgttttacgg	ccgccggtgg	21780
70	cgcccgcgcc	cggcggcccg	tccttggccg	ttgcaggcca	ctccggtggc	tcccgtcgtc	21840
	cccgacttcc	aggcccagca	gatgcagcaa	ctcatcagcg	ccgtaaatgc	gctgacaatg	21900
45	agacagaacg	caattgctcc	tgctaggcct	cccaaaccaa	agaagaagaa	gacaaccaaa	21960
7.0	ccaaagccga	aaacgcagcc	caagaagatc	aacggaaaaa	cgcagcagca	aaagaagaaa	22020
	gacaagcaag	ccgacaagaa	gaagaagaaa	cccggaaaaa	gagaaagaat	gtgcatgaag	22080
50	attgaaaatg	actgtatctt	cgtatgcggc	tagccacagt	aacgtagtgt	ttccagacat	22140
50							

	gtcgggcacc	gcactatcat	gggtgcagaa	aatctcgggt	ggtctggggg	ccttcgcaat	22200
	cggcgctatc	ctggtgctgg	ttgtggtcac	ttgcattggg	ctccgcagat	aagttagggt	22260
5	aggcaatggc	attgatatag	caagaaaatt	gaaaacagaa	aaagttaggg	taagcaatgg	22320
	catataacca	taactgtata	acttgtaaca	aagcgcaaca	agacctgcgc	aattggcccc	22380
	gtggtccgcc	tcacggaaac	tcggggcaac	tcatattgac	acattaattg	gcaataattg	22440
10	gaagcttaca	taagcttaat	tcgacgaata	attggatttt	tattttattt	tgcaattggt	22500
	ttttaatatt	tccaaaaaaa	aaaaaaaaa	aaaaaaaaaa	aaaaaaaaa	aaaaaaaaa	22560
	aaaaaaaaa	aaaaaaaaa	aaactagatc	ctcgaatcaa	gcttatcgat	accgtcgact	22620
15	agagtcgggg	cggccggccg	cttcgagcag	acatgataag	atacattgat	gagtttggac	22680
	aaaccacaac	tagaatgcag	tgaaaaaaat	gctttatttg	tgaaatttgt	gatgctattg	22740
	ctttatttgt	aaccattata	agctgcaata	aacaagttaa	caacaacaat	tgcattcatt	22800
20	ttatgtttca	ggttcagggg	gaggtgtggg	aggttttta	aagcaagtaa	aacctctaca	22860
	aatgtggtaa	aatcgataag	gatctcgacc	tcgagggggg	gcccggtacc	caattcgccc	22920
	tatagtgagt	cgtattacgc	gegeeeetge	agggggccct	gtaccgggct	ctgcctgagg	22980
25	ctctggctgc	ccagcaggct	gaagctgggg	ttgttggcca	ggggcacttg	tgttcccatc	23040
	gcagcgggca	cttgtgcctc	ccaatcagat	ggcctctgaa	ggcaggcctg	gccagaaggt	23100
	gagtgctgct	gaacgctatt	atccacttgg	ctgaggggtg	ttttccccga	aactgctgtg	23160
30	gtcacagctg	ctgccgctgt	gacccatgca	gcattgttga	acgcagtggg	cattcttggc	23220
50	acactaggcc	gtctgagctg	gtggggactc	aaggactggg	tgcccaggga	gctgggacag	23280
	aacccaggca	ggggcacttc	tggtggggtg	gccttggggc	tctgcatatg	ctggcagaca	23340
35	gagtcaagtc	tgcccagggg	agtctggcct	gagtgtgaga	ggatgggaca	ctgggggctg	23400
33	gaggtgaaaa	ttccttgccg	cttccccaga	gttggtgaga	tcactcccat	gccctcgcag	23460
	ctctggtgcc	tggtgagtgg	gatcattcct	ggactcagat	tgttctgaag	aagcccagtt	23520
40	ctgggtggca	tcaagtgctt	gctagatggg	gggcttgcct	tgatccggct	acacttggag	23580
40	gtgacttgtt	cttggacggc	tacatacaga	aagagagaag	tggggatgag	ttccaaaggc	23640
	atcctcgact	tcggctgtgg	ccaccggagg	gtagctcctg	gcccaacacg	gacttctcac	23700
45	ctcccgccct	tggctctcta	ctgagctccc	ccctgctccc	caattcctcg	ccattcccct	23760
43	catttctctg	ccctcagcct	ggactgcagt	tcttctggga	agctgcccca	actccctagg	23820
	tctgtgctca	ccaagagcag	atcacactgg	actgaaatgc	cagctgattt	gtctcttcaa	23880
50	gaaaattgga	agctcctgga	ggtcagggtc	catgtctgct	tttacactca	gtgctctgta	23940
50							

	tgcaggcctg	gcactgccca	ccctttgaca	ggtggtgcat	attttgtaga	aggaaggaag	24000
	gggccaggtg	gggtgggctg	ggctggtggc	gggagctagc	tcagcctctt	agattctcta	24060
5	cccgatggat	gtgacctggg	acagcaagtg	agtgtggtga	gtgagtgcag	acggtgcttt	24120
	gttcccctct	tgtctcatag	cctagatggc	ctctgagccc	agatctgggg	ctcagacaac	24180
	atttgttcaa	ctgaacggta	atgggtttcc	tttctgaagg	ctgaaatctg	ggagctgaca	24240
10	ttctggactc	cctgagttct	gaagagcctg	gggatggaga	gacacggagc	agaagatgga	24300
	aggtagagtc	ccaggtgcct	aagatgggga	atacatctcc	cctcattgtc	atgagagtcc	24360
	actctagctg	atatctactg	tggccaatat	ctaccggtac	ttttttgggg	tggacactga	24420
15	gtcatgcagc	agtcttatgg	tttacccaag	gtcaggtagg	ggagacagtg	cagtcagagc	24480
	acaagcccag	tgtgtctgac	ccacccaaga	atccatgctc	gtatctacaa	aaatgatttt	24540
	ttctcttgta	atggtgccta	ggttctttta	ttatcatggc	atgtgtatgt	ttttcaacta	24600
20	ggttacaatc	tggccttata	aggttaacct	cctggaggcc	accagccttc	ctgaaacttg	24660
	tctgtgctgt	ccctgcaact	ggagtgtgcc	tgatgtggca	ctccagcctg	gacaagtggg	24720
	acacagactc	cgctgttatc	aggcccaaag	atgtcttcca	taagaccaga	agagcaatgg	24780
25	tgtagaggtg	tcatgggcta	caataaagat	gctgacctcc	tgtctgaggg	caagcagcct	24840
	cttctggccc	tcagacaaat	gctgagtgtt	cccaagacta	ccctcggcct	ggtccaatct	24900
	catcccactg	gtgcgtaagg	gttgctgaac	tcatgacttc	ttggctagcc	tgcaacctcc	24960
30	acggagtggg	aactacatca	ggcattttgc	taactgctgt	atcctaggcc	aataaatgtt	25020
	gatcacattt	atagctgcca	tggtagggtg	gggacccctg	ctatctatct	gtggaggctc	25080
	tgggagcccc	tgacacaaac	tttctgaagc	agagcctccc	caaccccttt	tccattccct	25140
35	atacctgaca	gatggcccag	gaacccatta	gaaatggaag	gtcactgcag	cagtatgtga	25200
55	atgtgcgtgt	gggagaaggg	caggatcaga	gccctggggg	tgtggcagcc	cccaagtgat	25260
	tctaatccag	atcctagggt	tgtttccctg	tcccattgaa	atagctgctt	taaggggcct	25320
40	gactcaggga	aatcagtctc	ttgaattaag	tggtgatttt	ggagtcattt	agaccaggcc	25380
40	ttcaattggg	atcctgctct	tagagttgga	tgaattattt	aactgatttt	cagatctcct	25440
	ctttctcaat	gctttcagaa	gcacagtaac	tgcttactct	gaaatgaatt	ctcaccccac	25500
15	ttccacatat	gcaccccttg	cccacccctt	tgggaacact	ggccttaact	gcttaccttc	25560
45	aaatggactc	atctgttggg	agatatatgc	attctgccgt	tcaggggtca	ttgccataag	25620
	acctgatctc	tgttcctctt	gctaaacaga	agatgaaaaa	gacaaattag	attacagcta	25680
50	ccaattaata	attagcctta	ggatcgctgc	gtggggacct	aggacttggc	tttggtgcag	25740

	cagaaagcat	gaataaacac	accagcatac	actcgcatgc	atgccccacc	ctctcgagca	25800
	aaattccaca	ggtataaata	aagtaagatt	ctgcacctgg	gttaaaaaca	caactgcaac	25860
5	agcatagaat	ggggcaggag	agacagaact	taatagcaag	agcacacaga	aaaaagtttt	25920
	aggcattttg	gatgtccatc	tgctcaggat	gggtcagcag	tgagatgcgg	tcaccaaaag	25980
	aacaaatgta	acattaggct	gcattaatag	aagcagagta	tgtagaagga	gggaggtgac	26040
10	agtcctatgc	taactctgcc	ttggccagac	tatacccaca	ggagtctggg	catgccagtc	26100
	tcagggagac	ccagacagac	tggctgcatt	cagaggatgg	taagtaatga	gagtggggat	26160
	tggacttcaa	actacccaga	caaagaatgg	ctgagcaagc	caaggatgct	gtggctgggg	26220
15	cagagcagac	tgtgggctat	gtagtggtgg	atacctagcc	tetgeaggge	tgtcataggg	26280
	aaaggacatt	gagaagagga	ctgaggcttg	ttcctggtgg	tcctggcatg	aacggccaga	26340
	tgatcacatg	gtcaggtgga	cacagtetee	aacactggga	gtagccaaac	acttactgcc	26400
20	aacctcccgc	ccttctcctg	actagttgca	gcataggcaa	ttgggaggag	cttcctgtct	26460
	ccatctgaaa	gctggctggg	tgggcagggg	gaggagcgag	ccaagtttca	aggccgcagt	26520
	ttcagcactc	agtctgggat	cggctcaagg	agcaaagggg	aagaacatag	ccaggaggga	26580
25	ataacatgaa	ggcccccaga	cccagaaaag	gcatgacttg	ctctgagacc	ctcagccggt	26640
	tggtgtcagg	ttgtgactcg	gatccaggtc	tgactcccag	tccagtgctt	gaagcctcac	26700
	cccacacagt	gaggggagcc	cggccatctc	tgctcaactg	ctgccatctc	tctccccttc	26760
30	tcaaccacca	aggcagctct	gtctgggagc	acaagctcca	agtccacttt	ctggtctgtg	26820
	tcccccccaa	gatgccagag	gacttgcctc	tacaacacgg	gctgcccgtg	cagtgcctgc	26880
	ttttccagca	aagggcttct	gggaaccctt	ctctgcactc	agtggggctg	gtgggagtgg	26940
35	ggcggggtag	cgacccagtg	cttgggactg	tgcccagetc	tcaggcctgg	cagcagttcc	27000
	tggccttggt	tcctgccaag	gcagagagga	caaacacatg	gcaccgggaa	gactacacca	27060
	gaagcgattc	caccagactg	gggtttgctt	ttctatcccg	cccttagcct	gcttcctgtc	27120
40	ctggtccctg	cctcccctc	cactggagct	gccgtgtggg	cagtgagggg	ctgtttctca	27180
	gctgccctat	ggagctgccc	tctccctgcc	aaagcattgg	caaggcggca	aggggtgggg	27240
	gtggggatgg	ggggtgggat	ctgccttctc	aagctctcat	tatactgagc	acgtctcacc	27300
45	cattatttta	tgtcatctag	caacacccca	tgtggacact	gaggagcatg	ggggtcacat	27360
	gaccactgcc	caaggccaca	ccatccggat	ctgcctgaga	tggtcagggt	tggcagccat	27420
	ttctgaaggc	agtcctttcg	ctttggctct	tcttgtacca	gtctcaggac	atcagggcag	27480
50	aagatctaca	gtccccagct	tactgatgtg	acagcagagg	ctcagagagg	ttaaatgact	27540

```
tgcccaaggt gacacggcta agaagtacag tatctcctaa ctgcagacca ggtgcttctg 27600
      ctgcttctgg ggacagattc ctgcgtggct ggctaggtct aaacggtcct taactccatc
                                                                         27660
      cccaccggtt gctgcattag tttcatcaaa taacacagtt gtacaqagqt aqqqqttcaq
                                                                         27720
5
      gggcaggggc agatggaggc tggagagtgt gactaaggaa acagcagggg aagtgcggta
                                                                         27780
      aagtccgaag ggagggacgg aaagagaaag ccaagcccag gggcgtgcca gacaaaagga
                                                                         27840
      aaggccacgc cggggcaggg caggcttcag cgggtgctgg ggcgtcttca tcccgggaag
                                                                         27900
10
      cacacattcc agaggacccc ggagtctaat ggaaaagctg gccaqcctat cactatggaa
                                                                         27960
      actgccaagg ccacacagcg ctgctgacac ccagcctggg tgccggtggc cagctctgca
                                                                         28020
      ggatetteaa gtetggggtg ecaceageaa gegaeggtee teeatggget etteaeetta
                                                                         28080
15
      cggcagtgtc cagaggcacc gccagtcctc tgctcctatg ctggtcctgc tgtccctggc
                                                                         28140
      aaaaggagcc agagcattct ctccaggcct cccgaggagg ctgcttcctt tgttttgcag
                                                                         28200
      atggaggete ceateetttg ttetgaatea atgtgeteea aagataagee eeaagaaaae
                                                                         28260
20
      agttgttgcc ttttgacact gacaattaga atcgttggaa aatggagaaa acaggaaatg
                                                                         28320
      gcaaatqqtt tcaqtqacca ggaggaaacc gtgcctgaaa gttgctgctt agtgactggg
                                                                         28380
      acactegett tetgetetet tatgaaggae ageetaggee gtgtggeett ttataaacaa
                                                                         28440
25
      agctatgaag gggtcgtcaa attttctagg gctgcaactg tggcactacg tcctgttgtg
                                                                         28500
      ccaggtgaca ctgacaagca gcactgagtt ctatgcaagc ccaggtgtgc ttctctcatg
                                                                         28560
      qtqaccccca qagaactaag gcccagctct tcctctgtca cacccctccc agccccact
                                                                         28620
30
      gtcagacaag ggaccacatt cacagacagt ctcagccaag atggcaacct tggaagtcct
                                                                         28680
      ggggatgcct ttctagaagc tcgcgccct aggggccggc cttaattaaa tcaagcttat
                                                                         28740
      cgataccgtc gagacctcga gggggggcat cactccgccc taaaacctac gtcacccgcc
                                                                         28800
35
      ccgttcccac gccccgcgcc acgtcacaaa ctccaccccc tcattatcat attggcttca
                                                                         28860
      atccaaaata aggtatatta ttgatgatgt tt
                                                                         28892
```

```
40 <210> 9
```

50

<211> 29511

<212> ДНК

<213> Химерная

<220>

<221> 5' ITR

<222> (1)..(438)

<223> Последовательность первого инвертированного концевого повтора и сигнальная последовательность для упаковки

```
<220>
      <221>
             «квншип»
      <222>
             (439)..(10905)
      <223> Первая некодирующая «лишняя» последовательность
5
      <220>
      <221> AFP(p+e)
      <222>
             (10906)..(11845)
      <223> Промотор альфа-фетопротеина (AFP). Включает проморную область
      (р) и энхансерную область (е)
10
      <220>
      <221> SFV
      <222>
             (12175)..(19281)
      <223> Участок последовательности репликона SFV
      <220>
15
      <221> LacZ
      <222>
             (19325)..(22397)
      <223> Последовательность гена LacZ E. coli (экзогенный ген в виде гена-репортера)
      <220>
             Поли-А
20
      <221>
      <222>
              (23295)..(23554)
      <223>
             Последовательность полиаденилирования, полученная из SV40
      <220>
      <221> Relleno
25
      <222>
             (23555)..(29350)
      <223> Вторая некодирующая «лишняя» последовательность
      <220>
      <221> 3' ITR
      <222>
             (29351)..(29511)
      <223> Последовательность второго инвертированного концевого повтора
30
      <400> 9
      aaacatcatc aataatatac cttattttgg attgaagcca atatgataat gagggggtgg
                                                                                 60
                                                                                120
      agtttgtgac gtggcgcggg gcgtggggaac ggggcgggtg acgtagtagt gtggcggaag
35
      tgtgatgttg caagtgtggc ggaacacatg taagcgacgg atgtggcaaa agtgacgttt
                                                                                180
      ttggtgtgcg ccggtgtaca caggaagtga caattttcgc gcggttttag gcggatgttg
                                                                                240
      tagtaaattt gggcgtaacc gagtaagatt tggccatttt cgcgggaaaa ctgaataaga
                                                                                300
40
      ggaagtgaaa totgaataat titgtgttac toatagogog taatatitgt otagggoogo
                                                                                360
      ggggactttg accgtttacg tggagactcg cccaggtgtt tttctcaggt gttttccgcg
                                                                                420
      ttccgggtca aagttggcgt tttgatatca aqcttatcga taccqtcaaa caagtcttta
                                                                                480
45
      attcaagcaa gactttaaca agttaaaagg agcttatggg taggaagtag tgttatgatg
                                                                                540
      tatgggcata aagggtttta atgggatagt gaaaatgtct ataataatac ttaaatggct
                                                                                600
      gcccaatcac ctacaggatt gatgtaaaca tggaaaaggt caaaaacttg ggtcactaaa
                                                                                660
```

Стр.: 52

	atagatgatt	aatggagagg	atgaggttga	tagttaaatg	tagataagtg	gtcttattct	720
	caataaaaat	gtgaacataa	ggcgagtttc	tacaaagatg	gacaggactc	attcatgaaa	780
5	cagcaaaaac	tggacatttg	ttctaatctt	tgaagagtat	gaaaaattcc	tattttaaag	840
	gtaaaacagt	aactcacagg	aaataccaac	ccaacataaa	atcagaaaca	atagtctaaa	900
	gtaataaaaa	tcaaacgttt	gcacgatcaa	attatgaatg	aaattcacta	ctaaaattca	960
10	cactgatttt	gtttcatcca	cagtgtcaat	gttgtgatgc	atttcaattg	tgtgacacag	1020
	gcagactgtg	gatcaaaagt	ggtttctggt	gcgacttact	ctcttgagta	tacctgcagt	1080
	cccctttctt	aagtgtgtta	aaaaaaagg	gggatttctt	caattcgcca	atactctagc	1140
15	tctccatgtg	ctttctagga	aacaagtgtt	aacccacctt	atttgtcaaa	cctagctcca	1200
	aaggactttt	gactccccac	aaaccgatgt	agctcaagag	agggtatctg	tcaccagtat	1260
	gtatagtgaa	aaaagtatcc	caagtcccaa	cagcaattcc	taaaaggagt	ttatttaaaa	1320
20	aaccacacac	acctgtaaaa	taagtatata	tcctccaagg	tgactagttt	taaaaaaaca	1380
	gtattggctt	tgatgtaaag	tactagtgaa	tatgttagaa	aaatctcact	gtaaccaagt	1440
	gaaatgaaag	caagtatggt	ttgcagagat	tcaaagaaaa	tataagaaaa	cctactgttg	1500
25	ccactaaaaa	gaatcatata	ttaaatatac	tcacacaata	gctcttcagt	ctgataaaat	1560
	ctacagtcat	aggaatggat	ctatcactat	ttctattcag	tgctttgatg	taatccagca	1620
	ggtcagcaaa	gaatttatag	cccccttga	gcacacagag	ggctacaatg	tgatggcctc	1680
30	ccatctcctt	catcacatct	cgagcaagac	gttcagtcct	acagaaataa	aatcaggaat	1740
	ttaatagaaa	gtttcataca	ttaaacttta	taacaaacac	ctcttagtca	ttaaacttcc	1800
	acaccaacct	gggcaatata	gtgagacccc	atgcctgcaa	aaaaaaaaa	attagccagg	1860
35	catggtagca	tgtacctgta	gtcccagcta	cttgagaggt	gaggtgggaa	aatcacttta	1920
	gtgcaggatg	ttgaggctgg	agtgaactgt	gattgtgcca	ctgcactcca	gcctggacaa	1980
	tagagcaaga	ccttgtctca	aaaaaatgca	ttaaaaattt	ttttaaatc	ttccacgtat	2040
40	cacatccttt	gccctcatgt	ttcataaggt	aaaaaatttg	ataccttcaa	aaaaaccaag	2100
70	cataccacta	tcataatttt	ttttaaatgc	aaataaaaac	aagataccat	tttcacctat	2160
	cagactggca	ggttctgatt	aaatgaaatt	ttctggataa	tatacaatat	taagagagac	2220
45	tgtagaaact	gggccagtgg	ctcatgcctg	taatcccagc	actttgggag	gctgggtaac	2280
45	atggcgaacc	ctgtttctac	aaaataaaaa	tattagctgg	gagtggtggc	gcacacctat	2340
	agtcccagct	actcaggagg	ctgaggtgga	aggatcgctt	gaacccagga	ggttgagact	2400
50	gcagtgaact	gtgatcattc	tgctgcactg	caccccagcc	tgggcaacag	agaccttgtc	2460
50							

	tcaaaaaaaa	aaaaaaaaga	gacaaattgt	gaagagaaag	gtactctcat	ataacatcag	2520
	gagtataaaa	tgattcaact	tcttagagga	aaatttggca	ataccaaaat	attcaataaa	2580
5	ctctttcccc	ttgacccaga	aattccactt	gaataaagct	gaacaagtac	caaacatgta	2640
	aaagaatgtt	tcttctagta	cagtcggtaa	gaacaaaata	gtgtctatca	atagtggact	2700
	ggttaaatca	gttatggtat	ctccataaga	cagaatgcta	tgcaaccttt	aaaatatatt	2760
10	agatagctct	agacacacta	atattaaaag	tgtccaataa	catttaaaac	tatactcata	2820
	cgttaaaata	taaatgtata	tatgtacttt	tgcatatagt	atacatgcat	aggccagtgc	2880
	ttgagaagaa	atgtgtacag	aaggctgaaa	ggagagaact	ttagtcttct	tgtttatggc	2940
15	ctccatagtt	agaatatttt	ataacacaaa	tattttgata	ttataatttt	aaaataaaaa	3000
10	cacagaatag	ccagacatac	aatgcaagca	ttcaatacca	ggtaaggttt	ttcactgtaa	3060
	ttgacttaac	agaaaatttt	caagctagat	gtgcataata	ataaaaatct	gaccttgcct	3120
20	tcatgtgatt	cagccccagt	ccattaccct	gtttaggact	gagaaatgca	agactctggc	3180
20	tagagttcct	tcttccatct	cccttcaatg	tttactttgt	tctggtccct	acagagtccc	3240
	actataccac	aactgatact	aagtaattag	taaggccctc	ctcttttatt	tttaataaag	3300
25	aagattttag	aaagcatcag	ttatttaata	agttggccta	gtttatgttc	aaatagcaag	3360
23	tactcagaac	agctgctgat	gtttgaaatt	aacacaagaa	aaagtaaaaa	acctcatttt	3420
	aagatcttac	ttacctgtcc	ataattagtc	catgaggaat	aaacaccctt	tccaaatcct	3480
20	cagcataatg	attaggtatg	caaaataaat	caaggtcata	acctggttca	tcatcactaa	3540
30	tctgaaaaag	aaatatagct	gtttcaatga	gagcattaca	ggatacaaac	atttgattgg	3600
	attaagatgt	taaaaaataa	ccttagtcta	tcagagaaat	ttaggtgtaa	gatgatatta	3660
25	gtaactgtta	actttgtagg	tatgataatg	aattatgtaa	gaaaacaaca	ggccgggcgg	3720
35	gttggttcac	acgtgtaatc	ccagcacttt	gggaggctga	ggcaggcaga	ctgcctgagc	3780
	tcaggagttc	gagaccagcc	tgggcaacac	ggtgaaatcc	cgtctctact	aaaaatacaa	3840
10	aaaaattagc	cgggtgtggt	gacacatgcc	tgtagtccca	gctacttggg	aggctgaggc	3900
40	aggagaatca	cttgaacctg	ggaggtgaag	gttgcagtga	gccaagatgg	caccacttca	3960
	ctccagcctg	ggaaacagag	caagactctg	tctctgagct	gagatggcac	cacttcactc	4020
45	cagcctggga	aacagagcaa	gactctgtct	caaaaaaaac	aaaacacaca	aacaaaaaa	4080
45	caggctgggc	gcggtggctc	acgcctgtaa	tcccagcact	ttgggaggcc	gaggcgggtg	4140
	gatcacctga	ggtcaggagt	tccagaccag	ccttgtcaac	atggtgaaac	ctcccccgc	4200
50	cgtctctact	aaaaatacaa	aaattagcca	ggcgtggtgg	caggagcctg	taatcccagc	4260

Стр.: 54

	tacttgggag	gctgaggcag	gagaatcgct	tgtacccaga	aggcagaggt	tgcactgagc	4320
	tgagatggca	ccattgcact	ccagcctggg	ggacaagagc	gagatttcgt	ctttaaaaaa	4380
5	caaaaacaaa	acaaaaaacc	atgtaactat	atgtcttagt	catcttagtc	aagaatgtag	4440
	aagtaaagtg	ataagatatg	gaatttcctt	taggtcacaa	agagaaaaag	aaaaatttta	4500
	aagagctaag	acaaacgcag	caaaatcttt	atatttaata	atattctaaa	catgggtgat	4560
10	gaacatacgg	gtattcatta	tactattctc	tccacttttg	agtatgtttg	aaaatttagt	4620
	aaaacaagtt	ttaacacact	gtagtctaac	aagataaaat	atcacactga	acaggaaaaa	4680
	ctggcatggt	gtggtggctc	acacttgtaa	tcccagtgct	ttgggaggct	gagacaggag	4740
15	agttgcttga	ggccaggagt	tcaagaccga	catggggaat	gtagcaagac	cccgtcccta	4800
13	caaaaaactt	tgtaaaaatt	tgccaggtat	ggtggtgcat	acctgtagtc	ccagctactc	4860
	gggaggcgga	ggcagaagga	atcacttgag	cccaggagtt	tgaggctgca	gtgagctacg	4920
20	atcataccac	agcactccag	cgtggacaac	agagtaagac	cctatctcaa	aaacaaaaca	4980
20	aaacaaaaca	aacaaaaaa	accacaagaa	aaactgctgg	ctgatgcagc	ggctcatgcc	5040
	tgtaatccca	gtattttggg	aggcccaggt	gggcgtatca	cctgaggtca	ggagttagag	5100
25	accagcctgg	ccaacatggt	gaaaccccat	ctctactaaa	aatacaaaat	tagccaggca	5160
23	tgtggcacgc	gcctgtagtc	ccagttactg	ggaggctgaa	gcaggaggat	cacctgagcc	5220
	cgggaggtgg	aggttgcagt	gagccgagat	cacaccactg	cactccagcc	tgggtgacac	5280
20	agcaataccc	tacctcaaaa	taaaaaagaa	aaagaaaaga	aaagttgctg	tccccgctac	5340
30	cccaatccca	aatccaaaca	gcctctctca	tctcacagta	agggggaaaa	atcacccaaa	5400
	aaagctaagt	gatcttttga	aaacccaaac	tcttagaagt	ctaagattat	tatagtcaac	5460
25	tcatgaagtg	tcatcataaa	agatactcta	atattattta	agtagaacca	catattggtt	5520
35	gtcttggtat	gtctagcccc	tggcatacaa	aatatttaat	aacactgata	tggtacctgt	5580
	gatgtgaaaa	tgtactatga	gtacagcttt	ataaatacta	tatatgtacc	tatatacaga	5640
40	aaaaaataca	acaaaatcat	aaaagcactt	atctttgaaa	gaggagttac	agcaatttta	5700
40	tttagttctt	tattgctttg	ctatatattc	taaattttt	tcaatgaata	tatatcactt	5760
	ttaaaaaaat	tcaatggtct	ttcttataaa	ttatctttgg	cagcatgcgt	tttatatat	5820
15	acatataaaa	tgtatgggaa	atttttaaag	gatacattaa	attaaagcaa	aatatacaaa	5880
45	caaaaaatca	gaatacaaaa	agataaaaag	attgggaagg	gagggaggga	gtaaggagga	5940
	agggtgggtg	ggtatagaga	aatataccaa	ataatggtaa	gaagtggggt	cttgacactt	6000
	tctacacttt	ttttaaataa	aaaaaatttt	tttctctctc	tttttttt	ttagagacga	6060
50							

	agtctcgcta	tgttgcccag	gctggtcttg	aactcctggg	atcaagagat	cctcctgcct	6120
	cagcctccca	aggtgcttgg	attacaggtg	tgagccacca	cgcctggtca	ctttctacac	6180
5	tttaatatat	atatttttc	attttcaatg	tcatttttat	tagttaattt	ataataccca	6240
	ttcaccatta	tattcaaagt	ctatttgaag	aaataaacca	gaaagaatga	aatactctag	6300
	ctcacatgct	attcaatact	aaattacctt	tcaaatcaca	ttcaagaagc	tgatgattta	6360
10	agctttggcg	gtttccaata	aatattggtc	aaaccataat	taaatctcaa	tatatcagtt	6420
10	agtacctatt	gagcatctcc	ttttacaacc	taagcattgt	attaggtgct	taaatacaag	6480
	cagcttgact	tttaatacat	ttaaaaatac	atatttaaga	cttaaaatct	tatttatgga	6540
15	attcagttat	attttgaggt	ttccagtgct	gagaaatttg	aggtttgtgc	tgtctttcag	6600
15	tccccaaagc	tcagttctga	gttctcagac	tttggtggaa	cttcatgtat	tgtcaggttg	6660
	gcccgtaata	cctgtgggac	aacttcagcc	cctgtgcaca	tggccaggag	gctggttgca	6720
20	aacattttca	ggtaggtgga	ccaggacatg	cccctggtca	tggccaggtg	gaggcatagt	6780
20	gctatacagc	aggcagaagt	caatattgat	ttgtttttaa	agaaacatgt	actactttca	6840
	taagcagaaa	aaatttctat	tcttggggga	aaagattatg	ccagatcctc	taggattaaa	6900
25	tgctgatgca	tctgctaaac	cttcacatat	cagaacatat	ttactataga	aagaatgaaa	6960
25	atgggacatt	tgtgtgtcac	ctatgtgaac	attccaaaaa	tattttacaa	caactaagta	7020
	ttttataaat	tttatgaact	gaaatttagt	tcaagttcta	ggaaaataca	aaccttgcta	7080
20	gatattataa	aaatgataca	atatatattc	atttcaggct	catcagaata	tatctgttat	7140
30	cacttgacaa	gaatgaaaat	gcaccatttt	gtagtgcttt	aaaatcagga	agatccagag	7200
	tactaaaaat	gacttcttcc	ttgaagctta	ctcaccaact	tcctcccagt	tactcactgc	7260
	ttctgccaca	agcataaact	aggacccagc	cagaactccc	ttgaaatata	cacttgcaac	7320
35	gattactgca	tctatcaaaa	tggttcagtg	cctggctaca	ggttctgcag	atcgactaag	7380
	aatttgaaaa	gtcttgttta	tttcaaagga	agcccatgtg	aattctgccc	agagttcatc	7440
	ccagatatgc	agtctaagaa	tacagacaga	tcagcagaga	tgtattctaa	aacaggaatt	7500
40	ctggcaatat	aacaaattga	tttccaatca	aaacagattt	acataccata	cttatgtcaa	7560
	gaagttgttt	tgttttattg	catcctagat	tttattttt	tgatttatgg	tttactttaa	7620
	gcataaaaaa	tttgtcaata	caactcttcc	caaaaggcat	aaacaaaaat	tcataaaact	7680
45	tgcatcactt	gagatacttc	aggtatgaat	tcacaacttt	gttacaactt	actatatata	7740
	tgcacacata	tatatatatt	tgggtatatt	gggggggttc	taatttaaga	aatgcataat	7800
	tggctataga	cagacagttg	tcagaacttg	gcaatgggta	cgtgcaggtt	cattatacca	7860

Стр.: 56

	agtctacttg	tagttgttca	aaatgtatca	taatacaagg	ccgggcgagg	tcgtcacgcc	7920
	tgtaatccca	gcattttggg	aggctaaggc	aggaggattg	cttgaggtca	ggagtttgtg	7980
5	accagcctgg	gcaacagagc	aagaccctgt	ctccaaaaag	aaaaaaaata	attttttaca	8040
	aaataaaaac	aaaatgtatc	atcagacgaa	attaaataag	aggcaattca	tttaaatgac	8100
	aacttttccc	agcttgacat	ttaacaaaaa	gtctaagtcc	tcttaattca	tatttaatga	8160
10	tcaaatatca	aatactaatt	tttttttt	tttttttt	gagacggagt	ctcgctctgt	8220
	cgcccaggct	ggagtgcagt	ggcgcgatcc	tggctcactg	caagctccgc	ctcccgggtt	8280
	cacgccattc	tcctgcctca	gcctcccgag	tagctgggat	tacagacatg	cgccaccacg	8340
15	cccggctaat	tttgtatttt	tagtagagat	ggggtttctc	catgttggtc	aggctggtct	8400
	tgaatttccc	acctcaggtg	atctgcctgc	ctcagcctca	caaagcagta	gctgggacta	8460
	caggcaccca	ccaccacact	tggttaattc	ttttgtattt	tttttgtaaa	gacgggattt	8520
20	caccatgtta	gccaggatgg	tctcgatctc	ctgatctcat	gatccgcccg	cctcagcctc	8580
	ccaaagtgct	gggattacag	gcgtgagcca	ccccgcccgg	ccatcaaata	ctaattctta	8640
	aatggtaagg	acccactatt	cagaacctgt	atccttatca	ctaatatgca	aatatttatt	8700
25	gaatacttac	tatgtcatgc	atactagaga	gagttagata	aatttgatac	agctaccctc	8760
20	acagaactta	cagtgtaata	gatggcatga	catgtacatg	agtaactgtg	aacagtgtta	8820
	aattgctatt	taaaaaaaaa	gacggctggg	cgctgtggct	catgcctgta	atcccagcac	8880
30	tttgggaggc	caaggcaagt	tgatcgctcg	aggtcaagag	ttcgagacca	gcctggccaa	8940
30	cgtggtaaaa	ccccgtctct	actaaaaata	caaaaaaaa	attagccagg	catggtggca	9000
	caggcctgta	atcccagcta	ctagggaggc	tgagacatgg	agaactgctt	gaatccagga	9060
35	ggcagaggtt	acagtgagcc	gagatcatac	cactacactc	cagcctgagt	gacagagcga	9120
33	gactcctgtc	taaaaaaaaa	aaaaaaaaa	aagatacagg	ttaagtgtta	tggtagttga	9180
	agagagaact	caaactctgt	ctcagaagcc	tcacttgcat	gtggaccact	gatatgaaat	9240
40	aatataaata	ggtataattc	aataaatagg	aacttcagtt	ttaatcatcc	caaacaccaa	9300
40	aacttcctat	caaacaggtc	caataaactc	aatctctata	agagctagac	agaaatctac	9360
	ttggtggcct	ataatcttat	tagcccttac	ttgtcccatc	tgatattaat	taaccccatc	9420
45	taatatggat	tagttaacaa	tccagtggct	gctttgacag	gaacagttgg	agagagttgg	9480
45	ggattgcaac	atattcaatt	atacaaaaat	gcattcagca	tctaccttga	ttaaggcagt	9540
	gtgcaacaga	atttgcagga	gagtaaaaga	atgattataa	atttacaacc	cttaaagagc	9600
	tatagctggg	cgtggtggct	catgcctgta	aatcccagca	ctttgggagg	ctgaggcggg	9660

Стр.: 57

	tggatcacct	gaggccagaa	gttcaagacc	agcctagcca	acatggcgaa	accctgtctc	9720
	tacaaaaaat	acaaaaatta	gccgggtgtg	gtggcacgtg	cctgtagtcc	cagttacttg	9780
5	ggaggccgag	gcaggagaat	cgcttgaacc	taggaggtgg	aggctgcagt	gagccgagat	9840
	tgtgccactg	cactccactt	cagcctgggc	gacaagagca	agactccgtc	acaaaaaaaa	9900
	aaaaaaaaaa	aaagcttaaa	atctagtggg	aaaggcatat	atacatacaa	ctaactgtat	9960
10	agcataataa	agctcataat	ctgtaacaaa	atctaattcg	acaagcccag	aaacttgtga	10020
	tttaccaaaa	acagttatat	atacacaaaa	agtaaaccta	gaacccaaag	ttacccagca	10080
	ccaatgattc	tctccctaag	cagtatcaag	tttaaagcag	tgattacatt	ctactgccta	10140
15	gattgtaaac	tgagtaaagg	agaccagcac	ctttctgcta	ctgaactagc	acagccgtgt	10200
15	aaaccaacaa	ggcaatggca	gtgcccaact	ttctgtatga	atataagtta	catctgtttt	10260
	attatttgtg	acttggtgtt	gcatgtggtt	attatcaaca	ccttctgaaa	gaacaactac	10320
20	ctgctcaggc	tgccataaca	aaataccaca	gactgagtga	cttaacagaa	acttatttct	10380
20	cacagttttg	gaggctggga	agtccaaaat	taaggtacct	gcaaggtagg	tttcaatctc	10440
	aggcctcttc	tttggcttga	aggtcttcta	actgtgtgct	cacatgacct	cttctaacaa	10500
25	gctctctggt	gtctcttttt	tttttttt	cttttttgag	acagagtctc	actctgtcac	10560
23	ccaggctgga	gtacagtggc	acaatctggg	ctcactgcaa	cctccaactc	ccgggttcaa	10620
	gtgattctca	tgcctcaccc	tcccgagtag	cttggatgac	aggagcccgc	taccacaccc	10680
30	agctaatttt	tgtatttta	gtagagatgg	tgtttcacta	cattggccag	gctggtctca	10740
50	aactcctgac	ctcgtgatcc	acccaccttg	gcctcccaaa	gtgctgggat	tacaggtgtg	10800
	agccactgcg	cccgtcctgg	tgtcttttca	tataagggca	ctaatccaat	cagacctggg	10860
35	cccgagctct	cgcgaccggg	ctgcaggaat	tcgatcgcgt	gctagaattc	gcctgtcata	10920
33	cagctaataa	ttgaccataa	gacaattaga	tttaaattag	ttttgaatct	ttctaatacc	10980
	aaagttcagt	ttactgttcc	atgttgcttc	tgagtggctt	cacagactta	tgaaaaagta	11040
10	aacggaatca	gaattacatc	aatgcaaaag	cattgctgtg	aactctgtac	ttaggactaa	11100
40	actttgagca	ataacacaca	tagattgagg	attgtttgct	gttagcatac	aaactctggt	11160
	tcaaagctcc	tctttattgc	ttgtcttgga	aaatttgctg	ttcttcatgg	tttctctttt	11220
4.5	cactgctatc	tatttttctc	aaccactcac	atggctacaa	taactgtctg	caagcttatg	11280
45	attcccaaat	atctatctct	agcctcaatc	ttgttccaga	agataaaaag	tagtattcaa	11340
	atgcacatca	acgtctccac	ttggagggct	taaagacgtt	tcaacataca	aaccggggag	11400
50	ttttgcctgg	aatgtttcct	aaaatgtgtc	ctgtagcaca	tagggtcctc	ttgttcctta	11460

	aaatcta	att actttta	gcc cagtgctca	t cccacctatg	gggagatgag	agtgaaaagg	11520
	gagcctg	att aataatt	aca ctaagtcaa	t aggcatagag	ccaggactgt	ttgggtaaac	11580
5	tggtcac	ttt atcttaa	act aaatatato	c aaaactgaac	atgtacttag	ttactaagtc	11640
	tttgact	tta tctcatt	cat accactcag	c tttatccagg	ccacttattt	gacagtctag	11700
	ctagece	cta gattttc	tgc cccaaagag	c tetgtgteet	tgaacataaa	atacaaataa	11760
10	ccgctat	gct gttaatt	att ggcaaatgt	c ccattttcaa	cctaaggaaa	taccataaag	11820
	taacaga	tat accaaca	aaa ggttactag	t taacaggcat	tgcctgaaaa	gagtataaaa	11880
	gaatttc	agc atgattt	tcc atggcggat	g tgtgacatac	acgacgccaa	aagattttgt	11940
15	tccagct	cct gccacct	ccg ctacgcgag	a gattaaccac	ccacgatggc	cgccaaagtg	12000
-	catgttg	ata ttgaggc	tga cagcccatt	c atcaagtctt	tgcagaaggc	atttccgtcg	12060
	ttcgagg	tgg agtcatt	gca ggtcacaco	a aatgaccatg	caaatgccag	agcattttcg	12120
20	cacctgg	cta ccaaatt	gat cgagcagga	ig actgacaaag	acacactcat	cttggatatc	12180
	ggcagtg	cgc cttccag	gag aatgatgto	t acgcacaaat	accactgcgt	atgccctatg	12240
	cgcagcg	cag aagaccc	cga aaggctcgt	a tgctacgcaa	agaaactggc	agcggcctcc	12300
25	gggaagg	tgc tggatag	aga gatcgcagg	ra aaaatcaccg	acctgcagac	cgtcatggct	12360
25	acgccag	acg ctgaatc	tcc taccttttc	c ctgcatacag	acgtcacgtg	tcgtacggca	12420
	gccgaag	tgg ccgtata	cca ggacgtgta	it gctgtacatg	caccaacatc	gctgtaccat	12480
30	caggcga	tga aaggtgt	cag aacggcgta	ıt tggattgggt	ttgacaccac	cccgtttatg	12540
50	tttgacg	cgc tagcagg	cgc gtatccaac	c tacgccacaa	actgggccga	cgagcaggtg	12600
	ttacagg	cca ggaacat	agg actgtgtgc	a gcatccttga	ctgagggaag	actcggcaaa	12660
35	ctgtcca	ttc tccgcaa	gaa gcaattgaa	a ccttgcgaca	cagtcatgtt	ctcggtagga	12720
33	tctacat	tgt acactga	gag cagaaagct	a ctgaggagct	ggcacttacc	ctccgtattc	12780
	cacctga	aag gtaaaca	atc ctttacctg	t aggtgcgata	ccatcgtatc	atgtgaaggg	12840
10	tacgtag	tta agaaaat	cac tatgtgccc	c ggcctgtacg	gtaaaacggt	agggtacgcc	12900
40	gtgacgt	atc acgcgga	ggg attcctagt	g tgcaagacca	cagacactgt	caaaggagaa	12960
	agagtct	cat tecetgt	atg cacctacgt	c ccctcaacca	tctgtgatca	aatgactggc	13020
15	atactag	cga ccgacgt	cac accggagga	c gcacagaagt	tgttagtggg	attgaatcag	13080
45	aggatag	ttg tgaacgg	aag aacacagcg	a aacactaaca	cgatgaagaa	ctatctgctt	13140
	ccgattg	tgg ccgtcgc	att tagcaagtg	g gcgagggaat	acaaggcaga	ccttgatgat	13200
50	gaaaaac	ctc tgggtgt	ccg agagaggtc	a cttacttgct	gctgcttgtg	ggcatttaaa	13260

	acgaggaaga	tgcacaccat	gtacaagaaa	ccagacaccc	agacaatagt	gaaggtgcct	13320
	tcagagttta	actcgttcgt	catcccgagc	ctatggtcta	caggcctcgc	aatcccagtc	13380
5	agatcacgca	ttaagatgct	tttggccaag	aagaccaagc	gagagttaat	acctgttctc	13440
	gacgcgtcgt	cagccaggga	tgctgaacaa	gaggagaagg	agaggttgga	ggccgagctg	13500
	actagagaag	ccttaccacc	cctcgtcccc	atcgcgccgg	cggagacggg	agtcgtcgac	13560
10	gtcgacgttg	aagaactaga	gtatcacgca	ggtgcagggg	tcgtggaaac	acctcgcagc	13620
	gcgttgaaag	tcaccgcaca	gccgaacgac	gtactactag	gaaattacgt	agttctgtcc	13680
	ccgcagaccg	tgctcaagag	ctccaagttg	gccccgtgc	accctctagc	agagcaggtg	13740
15	aaaataataa	cacataacgg	gagggccggc	ggttaccagg	tcgacggata	tgacggcagg	13800
	gtcctactac	catgtggatc	ggccattccg	gtccctgagt	ttcaagcttt	gagcgagagc	13860
	gccactatgg	tgtacaacga	aagggagttc	gtcaacagga	aactatacca	tattgccgtt	13920
20	cacggaccgt	cgctgaacac	cgacgaggag	aactacgaga	aagtcagagc	tgaaagaact	13980
	gacgccgagt	acgtgttcga	cgtagataaa	aaatgctgcg	tcaagagaga	ggaagcgtcg	14040
	ggtttggtgt	tggtgggaga	gctaaccaac	cccccgttcc	atgaattcgc	ctacgaaggg	14100
25	ctgaagatca	ggccgtcggc	accatataag	actacagtag	taggagtctt	tggggttccg	14160
	ggatcaggca	agtctgctat	tattaagagc	ctcgtgacca	aacacgatct	ggtcaccagc	14220
	ggcaagaagg	agaactgcca	ggaaatagtt	aacgacgtga	agaagcaccg	cgggaagggg	14280
30	acaagtaggg	aaaacagtga	ctccatcctg	ctaaacgggt	gtcgtcgtgc	cgtggacatc	14340
	ctatatgtgg	acgaggcttt	cgcttgccat	tccggtactc	tgctggccct	aattgctctt	14400
	gttaaacctc	ggagcaaagt	ggtgttatgc	ggagacccca	agcaatgcgg	attcttcaat	14460
35	atgatgcagc	ttaaggtgaa	cttcaaccac	aacatctgca	ctgaagtatg	tcataaaagt	14520
	atatccagac	gttgcacgcg	tccagtcacg	gccatcgtgt	ctacgttgca	ctacggaggc	14580
	aagatgcgca	cgaccaaccc	gtgcaacaaa	cccataatca	tagacaccac	aggacagacc	14640
40	aagcccaagc	caggagacat	cgtgttaaca	tgcttccgag	gctgggcaaa	gcagctgcag	14700
	ttggactacc	gtggacacga	agtcatgaca	gcagcagcat	ctcagggcct	cacccgcaaa	14760
	ggggtatacg	ccgtaaggca	gaaggtgaat	gaaaatccct	tgtatgcccc	tgcgtcggag	14820
45	cacgtgaatg	tactgctgac	gcgcactgag	gataggctgg	tgtggaaaac	gctggccggc	14880
	gatccctgga	ttaaggtcct	atcaaacatt	ccacagggta	actttacggc	cacattggaa	14940
	gaatggcaag	aagaacacga	caaaataatg	aaggtgattg	aaggaccggc	tgcgcctgtg	15000
50	gacgcgttcc	agaacaaagc	gaacgtgtgt	tgggcgaaaa	gectggtgce	tgtcctggac	15060

	actgccggaa	tcagattgac	agcagaggag	tggagcacca	taattacagc	atttaaggag	15120
	gacagagctt	actctccagt	ggtggccttg	aatgaaattt	gcaccaagta	ctatggagtt	15180
5	gacctggaca	gtggcctgtt	ttctgccccg	aaggtgtccc	tgtattacga	gaacaaccac	15240
	tgggataaca	gacctggtgg	aaggatgtat	ggattcaatg	ccgcaacagc	tgccaggctg	15300
	gaagctagac	ataccttcct	gaaggggcag	tggcatacgg	gcaagcaggc	agttatcgca	15360
10	gaaagaaaaa	tccaaccgct	ttctgtgctg	gacaatgtaa	ttcctatcaa	ccgcaggctg	15420
	ccgcacgccc	tggtggctga	gtacaagacg	gttaaaggca	gtagggttga	gtggctggtc	15480
	aataaagtaa	gagggtacca	cgtcctgctg	gtgagtgagt	acaacctggc	tttgcctcga	15540
15	cgcagggtca	cttggttgtc	accgctgaat	gtcacaggcg	ccgataggtg	ctacgaccta	15600
	agtttaggac	tgccggctga	cgccggcagg	ttcgacttgg	tctttgtgaa	cattcacacg	15660
	gaattcagaa	tccaccacta	ccagcagtgt	gtcgaccacg	ccatgaagct	gcagatgctt	15720
20	gggggagatg	cgctacgact	gctaaaaccc	ggcggcatct	tgatgagagc	ttacggatac	15780
	gccgataaaa	tcagcgaagc	cgttgtttcc	tccttaagca	gaaagttctc	gtctgcaaga	15840
	gtgttgcgcc	cggattgtgt	caccagcaat	acagaagtgt	tcttgctgtt	ctccaacttt	15900
25	gacaacggaa	agagaccctc	tacgctacac	cagatgaata	ccaagctgag	tgccgtgtat	15960
	gccggagaag	ccatgcacac	ggccgggtgt	gcaccatcct	acagagttaa	gagagcagac	16020
	atagccacgt	gcacagaagc	ggctgtggtt	aacgcagcta	acgcccgtgg	aactgtaggg	16080
30	gatggcgtat	gcagggccgt	ggcgaagaaa	tggccgtcag	cctttaaggg	agcagcaaca	16140
	ccagtgggca	caattaaaac	agtcatgtgc	ggctcgtacc	ccgtcatcca	cgctgtagcg	16200
	cctaatttct	ctgccacgac	tgaagcggaa	ggggaccgcg	aattggccgc	tgtctaccgg	16260
35	gcagtggccg	ccgaagtaaa	cagactgtca	ctgagcagcg	tagccatccc	gctgctgtcc	16320
	acaggagtgt	tcagcggcgg	aagagatagg	ctgcagcaat	ccctcaacca	tctattcaca	16380
	gcaatggacg	ccacggacgc	tgacgtgacc	atctactgca	gagacaaaag	ttgggagaag	16440
40	aaaatccagg	aagccattga	catgaggacg	gctgtggagt	tgctcaatga	tgacgtggag	16500
	ctgaccacag	acttggtgag	agtgcacccg	gacagcagcc	tggtgggtcg	taagggctac	16560
	agtaccactg	acgggtcgct	gtactcgtac	tttgaaggta	cgaaattcaa	ccaggctgct	16620
45	attgatatgg	cagagatact	gacgttgtgg	cccagactgc	aagaggcaaa	cgaacagata	16680
,,,	tgcctatacg	cgctgggcga	aacaatggac	aacatcagat	ccaaatgtcc	ggtgaacgat	16740
	tccgattcat	caacacctcc	caggacagtg	ccctgcctgt	gccgctacgc	aatgacagca	16800
50	gaacggatcg	cccgccttag	gtcacaccaa	gttaaaagca	tggtggtttg	ctcatctttt	16860
50							

	cccctcccga	aataccatgt	agatggggtg	cagaaggtaa	agtgcgagaa	ggttctcctg	16920
	ttcgacccga	cggtaccttc	agtggttagt	ccgcggaagt	atgccgcatc	tacgacggac	16980
5	cactcagatc	ggtcgttacg	agggtttgac	ttggactgga	ccaccgactc	gtcttccact	17040
	gccagcgata	ccatgtcgct	acccagtttg	cagtcgtgtg	acatcgactc	gatctacgag	17100
	ccaatggctc	ccatagtagt	gacggctgac	gtacaccctg	aacccgcagg	catcgcggac	17160
10	ctggcggcag	atgtgcaccc	tgaacccgca	gaccatgtgg	acctcgagaa	cccgattcct	17220
	ccaccgcgcc	cgaagagagc	tgcatacctt	gcctcccgcg	cggcggagcg	accggtgccg	17280
	gcgccgagaa	agccgacgcc	tgccccaagg	actgcgttta	ggaacaagct	gcctttgacg	17340
15	ttcggcgact	ttgacgagca	cgaggtcgat	gcgttggcct	ccgggattac	tttcggagac	17400
	ttcgacgacg	tcctgcgact	aggeegegeg	ggtgcatata	ttttctcctc	ggacactggc	17460
	agcggacatt	tacaacaaaa	atccgttagg	cagcacaatc	tccagtgcgc	acaactggat	17520
20	gcggtccagg	aggagaaaat	gtacccgcca	aaattggata	ctgagaggga	gaagctgttg	17580
	ctgctgaaaa	tgcagatgca	cccatcggag	gctaataaga	gtcgatacca	gtctcgcaaa	17640
	gtggagaaca	tgaaagccac	ggtggtggac	aggctcacat	cgggggccag	attgtacacg	17700
25	ggagcggacg	taggccgcat	accaacatac	gcggttcggt	acccccgccc	cgtgtactcc	17760
	cctaccgtga	tcgaaagatt	ctcaagcccc	gatgtagcaa	tcgcagcgtg	caacgaatac	17820
	ctatccagaa	attacccaac	agtggcgtcg	taccagataa	cagatgaata	cgacgcatac	17880
30	ttggacatgg	ttgacgggtc	ggatagttgc	ttggacagag	cgacattctg	cccggcgaag	17940
	ctccggtgct	acccgaaaca	tcatgcgtac	caccagccga	ctgtacgcag	tgccgtcccg	18000
	tcaccctttc	agaacacact	acagaacgtg	ctagcggccg	ccaccaagag	aaactgcaac	18060
35	gtcacgcaaa	tgcgagaact	acccaccatg	gactcggcag	tgttcaacgt	ggagtgcttc	18120
	aagcgctatg	cctgctccgg	agaatattgg	gaagaatatg	ctaaacaacc	tatccggata	18180
	accactgaga	acatcactac	ctatgtgacc	aaattgaaag	gcccgaaagc	tgctgccttg	18240
40	ttcgctaaga	cccacaactt	ggttccgctg	caggaggttc	ccatggacag	attcacggtc	18300
	gacatgaaac	gagatgtcaa	agtcactcca	gggacgaaac	acacagagga	aagacccaaa	18360
	gtccaggtaa	ttcaagcagc	ggagccattg	gcgaccgctt	acctgtgcgg	catccacagg	18420
45	gaattagtaa	ggagactaaa	tgctgtgtta	cgccctaacg	tgcacacatt	gtttgatatg	18480
	tcggccgaag	actttgacgc	gatcatcgcc	tctcacttcc	acccaggaga	cccggttcta	18540
	gagacggaca	ttgcatcatt	cgacaaaagc	caggacgact	ccttggctct	tacaggttta	18600
50	atgatecteg	aagatctagg	ggtggatcag	tacctgctgg	acttgatcga	ggcagccttt	18660

		ggggaaatat	ccagctgtca	cctaccaact	ggcacgcgct	tcaagttcgg	agctatgatg	18720
atcgttcacg gagtgatetc cgacaagctg atggcggaga ggtgcgcgtc gtgggtcaac lason atggaggtga agatcattga cgctgtcatg ggcgaaaaac ccccatatt ttgtgggggag lason ttcatagttt ttgacagcg cacacagac gcctgccgtg tttcagaccc acttaagcg loog ctgttcaagt tgggtaagcc gctaacagct gaagacaagc aggacgaaga caggcgacga loog gcactgagtg acgaggttag cagatggtc cggacaggct tgggggccga actggaggtg loog ctgttcaagt tgggtaagc gcaagtggtc cggacaggct tgggggccga actggagggg loog gcactgagtg acgaggttag cagatggggc tgcaaaagta tcctcatagc catggagggg loog ttggcgaggg acattaaggc gtttaagaaa ttgagaggac ctgttataca cctctacggc loog ggtcctagat tggtgcgtta atacacagaa ttctgattat agcgcactat tatatagcac loog ggtcctagat tggtgcgtta atacacagaa ttctgattat agcgcactat tatatagcac loog ggtcctgaa tggtgcgtta atacacagaa ttctgattat agcgcactat tatatagcac loog ggtccttgc gcacatcccc ctttcgccag ctggggaaaac cctggcgtta cccaacttaa loog tcgccttcc caacagttgc gcagctgaa tggcgaatag cgcgttgctg ggtttccgg loog accagaagcg gtgccggaaa gctggctgaa tggcgaatgg cgctttgct ggtttccgg loog cgtccctca aactggcaga tgcacggta cgagggagaag ccggaagaag accgcaccac loog cgtccctca aactggcaga tgcacggta cgagggccag accgagggt gttactcgc loog cgtcacctca gcgttttac cacggaggat cgagggccag accgagggt gttactcgc loog cgttaactcg gcgtttcatc tgtggtgaa cggggagaaa ccgagggtt gttactcgc loog cgttaactcg gcgtttcatc tgtgggtgaa cgggaggagaa accgagggtt gttactcgc loog cgttagctg gcgttgga gtgacggaa cgggggggggg		aaatcgggca	tgtttctgac	tttgtttatt	aacactgttt	tgaacatcac	catagcaagc	18780
	5	agggtactgg	agcagagact	cactgactcc	gcctgtgcgg	ccttcatcgg	cgacgacaac	18840
		atcgttcacg	gagtgatctc	cgacaagctg	atggcggaga	ggtgcgcgtc	gtgggtcaac	18900
ctgttcaagt tgggtaagcc gctaacagct gaagacaagc aggacgaaga caggcgacga 19080 gcactgagtg acgaggttag caagtggttc cggacaggct tgggggccga actggaggtg 19140 gcactaacat ctaggtatga ggtagagggc tgcaaaagta tcctcatagc catggcgacc 19200 ttggcgaggg acattaaggc gtttaagaaa ttgagaggac ctgttataca cctctacggc 19260 ggtcctagat tggtgcgtta atacacagaa ttctgattat agcgcactat tatatagcac 19380 tcgccttgca gcacatcccc ctttcgccag ctggggaaaac cctggcgtta cccaacttaa 19380 tcgccttgca gcacatcccc ctttcgccag ctggcgtaat agcgaagagg cccgcaccga 19440 tcgcccttcc caacagttgc gcagcctgaa tggcgaatgg cgctttgcct ggtttccgcc 19500 accagaagcg gtgccggaaa gctggctgaa tggcgaatg ccgaaggcg atactgccg 19560 cgtcccctca aactggcaga tgcacggtta ccaacggagat ccgaaggcg atactgcc 19560 cgtcccctca aactggcaga tgcacggtta cgatgcgcc atctacacca acgtaaccta 19620 tcccattacg gtcaatccgc cgtttgttcc cacggagaat ccgacgggtt gttactcgct 19580 cacatttaat gttgatgaaa gctggctaca ggaaggccag acgcgaatta tttttgatgg 19740 cgttaactcg gcgtttcatc tgtggtgcaa cggggaggcag acgcgaatta tttttgatgg 19740 cgttaactcg gcgtttcatc tgtggtgcaa cggggcggg gtcggttacg gccaggacag 19800 tcgtttgccg tctgaatttg acctgagcg atttttacgg gccggagaaa accgcctcgc 19860 ggtgatggtg ctgcgttgag gtgacggcag ttatctgga gctagaggat 19920 gagcggcatt ttccgtgacg tctcgttgct gcataaaccg actacacaaa tcagcgattt 19980 ccatgttgcc actcgttta atgatgattt cagccgcgct gtactggag ctgaagttca 20040 gcaggtcgc agcggcaccg cgcctttcgg cggtaaacagtt tctttatgga agggtgaaac 20100 gcaggtcgc agcggcaccg cgcctttcgg cggtaaacagtt tctttatgga gggcggaaac 20100 gcaggtcgc gtcacactac gtctgaacgt cgaaaacccg aaactgtgga gcgccgaaa 20220 cccgaatctc tatcggtggg tggttgaact gcacaccgcc gacggcacg tgattgaagc 20220 agaaggcctgc gtcacactac gtctgaacgt cgaaaacccg aaactgtgga gcgccgaaa 20220 agaagacctg gtatgcggt tggttgaact gcacaccgcc gacggcacg tgattgaagc 20220 agaagacctg gattgcggt tcccggaagg cggaggattgaa aatggcctgc tgattgaagc 20220 agaagacctg gattgcggt tcccggaagg cgaaacccgc gacggcacg tgattgaac 20220		atggaggtga	agatcattga	cgctgtcatg	ggcgaaaaac	ccccatattt	ttgtggggga	18960
gcactgagtg acgaggttag caagtggttc cggacaggct tgggggccga actggaggtg 19140	10	ttcatagttt	ttgacagcgt	cacacagacc	gcctgccgtg	tttcagaccc	acttaagcgc	19020
		ctgttcaagt	tgggtaagcc	gctaacagct	gaagacaagc	aggacgaaga	caggcgacga	19080
ttggcgaggg acattaaggc gtttaagaaa ttgagaggac ctgttataca cctctacggc 19260 ggtcctagat tggtgcgtta atacacagaa ttctgattat agcgcactat tatatagcac 19320 catggatccc gtcgttttac aacgtcgtga ctgggaaaac cctggcgtta cccaacttaa 19380 tcgccttgca gcacatcccc ctttcgccag ctggcgtaat agcgaagagg cccgcaccga 19440 tcgcccttcc caacagttgc gcagcctgaa tggcgaatgg cgctttgcct ggtttccggc 19500 accagaagcg gtgccggaaa gctggctgaa tggcgatctt cctgaggccg atactgtcgt 19560 cgtcccctca aactggcaga tgcacggtta cgatgcgccc atctacacca acgtaaccta 19620 tcccattacg gtcaatccgc cgtttgttcc cacggagaat ccgacgggtt gttactcgct 19680 cgttaactcg gcgtttcatc tgtggtgcaa cggaggccag acgcgaatta tttttgatgg 19740 cgttaactcg gcgtttcatc tgtggtgcaa cggaggccag gtcgggataa accgcctcgc 19860 tcgtttgccg tctgaatttg acctgagcgc attttacgc gccggagaaa accgcctcgc 19800 tcgtttgccg tctgaatttg acctgagcgc attttacgc gccggagaaa accgcctcgc 19860 ggtgatggtg ctgcgttgga gtgacggcag ttatctggaa gatcaggata tgtggcggat 19920 gagcggcatt ttccgtgacg tctcgttgct gcataaaccg actacacaaa tcagcgattt 19980 ccatgttgcc actcgcttta atgatgatt cagccgcgct gtactggagg ctgaagttca 20040 gcaggtcgcc agcggcaccg cgcctttcgg cggtaaacagt tctttatggc agggtgaaac 20100 gcaggtcgcc agcggcaccg cgcctttcgg cggtaaacagt tctttatggc agggtgaaac 20100 gcaggtcgcc agcggcaccg cgcctttcgg cggtaaacccg aaactgtgga gcgcgaaat 20220 cccgaatctc tatcgtgcgg tggttgaact gcacaccgc gacggcacgc tgattgaagc 20280 agaagcctgc gatgtcggt tccgcgaggt gcgagttga aatacgctc gcacacacac 20220 agaagcctgc gatgtcggt tcccgcaggt gcggattga aatggtcgt tcccgcagagc 20280 agaagcctgc gatgtcggt tcccgcagggt gcgagttgaa aatggtcgg tggttgaacc 20280		gcactgagtg	acgaggttag	caagtggttc	cggacaggct	tgggggccga	actggaggtg	19140
ggtcctagat tggtgcgtta atacacagaa ttctgattat agcgcactat tatatagcac 19320 catggatccc gtcgttttac aacgtcgtga ctgggaaaac cctggcgtta cccaacttaa 19380 tcgccttgca gcacatcccc ctttcgccag ctggcgtaat agcgaagagg cccgcaccga 19440 tcgcccttcc caacagttgc gcagcctgaa tggcgaatgg cgctttgcct ggtttccggc 19500 accagaageg gtgccggaaa gctggctgga gtgcgatctt cctgaggccg atactgtcgt 19560 cgtcccctca aactggcaga tgcacggtta cgatgcgcc atctacacca acgtaaccta 19620 tcccattacg gtcaatccgc cgtttgttcc cacggagaat ccgacggtt gttactcgc 19680 cgttaactcg gcgtttcatc tgtggtgcaa cgggcgcag acgggaatta tttttgatgg 19740 cgttaactcg gcgtttcatc tgtggtgcaa cgggcgctgg gtcggttacg gccaggacag 19800 tcgtttgccg tctgaatttg acctgagcgc atttttacgc gccggagaaa accgcctcgc 19860 ggtgatggtg ctgcgttgga gtgacggcag ttatctggaa gatcaggata tgtggggat 19920 gagcggcatt ttccgtgacg tctcgttgt gcataaaccg actacacaaa tcagcgattt 19980 ccatgttgcc actcgcttta atgatgattt cagccgcgt gtactggagg ctgaagttca 20040 gcaggtcgc agcggcaccg cgcctttcgg cggtgaaatt atcgatgag gtgggtgaaa 20100 gcaggtcgc agcggcaccg cgccttcgg cggtgaaatt atcgatgag gtggtggta 20160 tgccgatcgc gtcacactac gtctgaacgt cgaaaacccg aaactgtgga gcgccgaaat 20220 cccgaatctc tatcgtgcgg tggttgaact gcacaccgc gacggcacgc tgattgaag 20280 agaagcctgc gatgtcggt tccgcaggt gcgaatcacacaccg tgattgaagc 20280 agaagcctgc gatgtcggt tccgcaggt gcgaacaccgc gacggcacgc tgattgaagc 20280	15	gcactaacat	ctaggtatga	ggtagagggc	tgcaaaagta	tcctcatage	catggccacc	19200
20 catggatece gtegttttae aaegtegtga etgggaaaae eetggegtta eecaacttaa 19380 tegeettgea geacatecee etttegecag etggegtaat agegaagagg eecgeacega 19440 tegeeettee eaacagttge geageetgaa tggegaatgg egetttgeet ggttteegg 19500 25 accagaageg gtgeeggaaa getggetgg gtgegatett eetgaggeeg ataetgteg 19500 cgteeectea aaetggeaga tgeacggtta egatgeece atetacacea aegtaaceta 19620 teceattaaeg gteaateege egtttgttee eaeggagaat eegaaggetg gttaetgeg 19680 30 cacatttaat gttgatgaaa getggetaea eggaeggeegg gteggttaeg geeaggaaag 19800 cgttaacteg gegttteate tgtggtgeaa egggegetgg gteggttaeg geeaggaaag 19800 cgtttgeeg tetgaatttg acetgageg attatetgga gtegggtag gtegggaaa acegeetegg 19800 35 ggtgatggtg etgegttgaa gtgacggaag ttatetggaa gateaggaa acegegatt 19920 gageggeatt tteegtgaeg tetegttge geataaaceg actacacaaa teagegatt 19980 40 gatgtgege gagttgeg acteegttta atgatgtt eagegeget gtaacaggt etgaagtea 20100 geaggtegee ageggeaceg egeetttegg eggtgaaat eageggaaat eegggaaaceg etgaggaaceg 20100 geaggtegee ageggeaceg egeetttegg eggtgaaaceg eggeaaateggg etggtgaaceg 20160 gecegatege gagteggg acegg gegetttegg eggaaaceg eggaaaceg eggeaaceg eggeegaaceg 20280 45		ttggcgaggg	acattaaggc	gtttaagaaa	ttgagaggac	ctgttataca	cctctacggc	19260
tegeettgea geacatecee etttegeeag etggegtaat agegaagag ecegeacega 19440 tegeeettee eaacagttge geageetgaa tggegaatgg egetttgeet ggttteegge 19500 accagaageg gtgeeggaaa getggetgga gtgegatett eetgaggeeg ataetgeegt 19560 egteeetea aactggeaga tgeacggtta egatgegee ateetacacea aegtaaceta 19620 teecattacg gteaateege egtttgttee eaeggagaat eegaegggtt gttaeteege 19680 egttaacteg gegttteate tgtggtgeaa eggegeetgg gteggttaeg gecaggacag 19800 tegtttgeeg tetgaatttg acctgagege attitacege geeggagaaa accgeetege 19860 ggtgatggtg etgegttgga gtgacggeag ttatetegga geeggagaaa accgeetege 19860 ggageggeatt tteegtgaeg gtgacggeag ttatetggaa gateaggata tgtggeggat 19920 gageggeatt tteegtgaeg tetegtget geataaaceg actacacaaa teagegatt 19980 ecatgttgee actegetta atgatgatt eageeggeet gtaetggagg etgaagttea 20040 geaggtegee ageggeaceg egeetttegg eggtaacagtt tetttatgge agggtgaaac 20100 geaggtegee ageggeaceg egeetttegg eggtaacagtt tetttatgge agggtgataa 20160 tgeegatege gteacactae gtetgaacgt egaaaceeg aaactgtgga gegeegaaat 20220 ecegaatete tategtgegg tggttgaact geacaceege gaeggeacge tgattgaage 20280 agaageetge gatgteggtt teegegagt gegaattgaa aatggtetge tgetgetgaa 20340		ggtcctagat	tggtgcgtta	atacacagaa	ttctgattat	agcgcactat	tatatagcac	19320
tcgcccttcc caacagttgc gcagcctgaa tggcgaatgg cgctttgcct ggtttccggc 19500 accagaagcg gtgccggaaa gctggctgga gtgcgatctt cctgaggccg atactgtcgt 19560 cgtcccctca aactggcaga tgcacggtta cgatgcgcc atctacacca acgtaaccta 19620 tcccattacg gtcaatccgc cgtttgttcc cacggagaat ccgacgggtt gttactcgct 19680 cacatttaat gttgatgaaa gctggctaca ggaaggccag acgcgaatta tttttgatgg 19740 cgttaactcg gcgtttcatc tgtggtgcaa cgggcgtgg gtcggttacg gccaggacag 19800 tcgtttgccg tctgaatttg acctgagcgc atttttacgc gccggagaaa accgcctcgc 19860 ggtgatggtg ctgcgttga gtgacggcag ttatctggaa gatcaggata tgtggcgat 19920 gagcggcatt ttccgtgacg tctcgttgct gcataaaccg actacacaaa tcagcgattt 19980 ccatgttgcc actcgcttta atgatgatt cagccgcgct gtactgagg ctgaagttca 20040 gatgtgcgc gagttgcgtg actacctacg ggtaacagtt tctttatggc agggtgaac 20100 gcaggtcgc agcggcaccg cgcctttcgg cggtgaaatt atcgatgag gcgccgaaat 20120 tgccgatcgc gtcacactac gtctgaacgt cgaaaacccg aaactgtgga gcgccgaaat 20220 agaagcctgc gatgtcggt tccgcgaggt gcggattgaa aatggtctgc tgctgctgaa 20340	20	catggatccc	gtcgttttac	aacgtcgtga	ctgggaaaac	cctggcgtta	cccaacttaa	19380
accagaageg gtgccggaaa gctggctgga gtgcggtctt cctgaggccg atactgtcgt 19560 cgtccctca aactggcaga tgcacggtta cgatgcgccc atctacacca acgtaaccta 19620 tcccattacg gtcaatccgc cgtttgttcc cacggagaat ccgacgggtt gttactcgct 19680 cacatttaat gttgatgaaa gctggctaca ggaaggccag acgcgaatta tttttgatgg 19740 cgttaactcg gcgtttcatc tgtgggtgaa cgggcgctgg gtcggttacg gccaggacag 19800 tcgtttgccg tctgaatttg acctgagcgc atttttacgc gccggagaaa accgcctcgc 19860 ggtgatggtg ctgcgttgga gtgacggcag ttatctggaa gatcaggata tgtggcggat 19920 gagcggcatt ttccgtgacg tctcgttgct gcataaaccg actacacaaa tcagcgatt 19980 ccatgttgcc actcgcttta atgatgatt cagccgcgct gtactggagg ctgaagttca 20040 gatgtgcggc gagttgcgtg actacctacg ggtaacagtt tctttatggc agggtgaacc 20100 gcaggtcgcc agcggcaccg cgcctttcgg cggtgaaatt atcgatgag gtggtggta 20160 tgccgatcgc gtcacactac gtctgaacgt cgaaaacccg aaactgtgga gcgccgaaat 20220 agaagcctgc gatgtcggtt tccgcgaggt gcgattgaa aatggtctgc tgctgctgaa 20340		tcgccttgca	gcacatcccc	ctttcgccag	ctggcgtaat	agcgaagagg	cccgcaccga	19440
cgtcccctca aactggcaga tgcacggtta cgatgcgccc atctacacca acgtaaccta 19620 tcccattacg gtcaatccgc cgtttgttcc cacggagaat ccgacgggtt gttactcgct 19680 cacatttaat gttgatgaaa gctggctaca ggaaggccag acgcgaatta tttttgatgg 19740 cgttaactcg gcgttcatc tgtggtgcaa cgggcgctgg gtcggttacg gccaggacag 19800 tcgtttgccg tctgaatttg acctgagcgc atttttacgc gccggagaaa accgcctcgc 19860 ggtgatggtg ctgcgttgga gtgacggcag ttatctggaa gatcaggata tgtggcggat 19920 gagcggcatt ttccgtgacg tctcgttgct gcataaaccg actacacaaa tcagcgatt 19980 ccatgttgcc actcgcttta atgatgatt cagccgcgct gtactggagg ctgaagttca 20040 gatgtgcgc gagttgcgtg actacctacg ggtaacagt tctttatggc agggtgaaac 20100 gcaggtcgcc agcggcaccg cgcctttcgg cggtgaaatt atcgatgag gtggtggta 20160 tgccgatcgc gtcacactac gtctgaacgt cgaaaacccg aaactgtgga gcgccgaaat 20220 cccgaatctc tatcgtgcgg tggttgaact gcacaccgc gacggcacgc tgattgaagc 20280 agaagcctgc gatgtcggt tccgcgaggt gcggattgaa aatggtctgc tgctgctgaa 20340		tcgcccttcc	caacagttgc	gcagcctgaa	tggcgaatgg	cgctttgcct	ggtttccggc	19500
teccattacg greatecase egitegites caeggagaat eegacgggtt gitacteege 19680 cacatttaat gitgatgaaa getggetaca ggaaggeeag aegegaatta tititgatgg 19740 egitaacteg gegitteate titgggigeaa eggegetig giteggitacg geeaggacag 19800 tegittigeeg tetgaatitig acetgagege attittacge geeggagaaa acegeetege 19860 ggtgatggtg etgegitigga gitgacggeag titatetiggaa gateaggata tigiggeggat 19920 gageggeatt titeegigaeg tetegitiget geataaaceg actacacaaa teagegatit 19980 ceatgitigee actegetita atgatgatit eageeggeet gitactiggagg etgaagitea 20040 gatgitgeege gagitigegig actacetacg gitaacagtit tettitatigge agggigaace 20100 geaggitegee ageggeaceg egeetitegg eggigaaatt ategatgage gitggigita 20160 tigeegatege gitaacactac gitetgaacgi egaaaaceeg aaactgigga gegeegaaat 20220 eccegaatete tategigegg tiggitgaact geacaceege gaeggeacge tigattgaage 20280 agaageetige gatgiteggit teegegaggi geggattgaa aatggitetge tigetgetgaa 20340	25	accagaagcg	gtgccggaaa	gctggctgga	gtgcgatctt	cctgaggccg	atactgtcgt	19560
cacatttaat gttgatgaaa gctggctaca ggaaggccag acgcgaatta tttttgatgg 19740 cgttaactcg gcgtttcatc tgtggtgcaa cgggcgctgg gtcggttacg gccaggacag 19800 tcgtttgccg tctgaatttg acctgagcgc atttttacgc gccggagaaa accgcctcgc 19860 ggtgatggtg ctgcgttgga gtgacggcag ttatctggaa gatcaggata tgtggcggat 19920 gagcggcatt ttccgtgacg tctcgttgct gcataaaccg actacacaaa tcagcgattt 19980 ccatgttgcc actcgcttta atgatgatt cagccgcgct gtactggagg ctgaagttca 20040 gatgtgcggc gagttgcgtg actacctacg ggtaacagtt tctttatggc agggtgaaac 20100 gcaggtcgcc agcggcaccg cgcctttcgg cggtgaaatt atcgatgag gtggtggtta 20160 tgccgatcgc gtcacactac gtctgaacgt cgaaaacccg aaactgtgga gcgccgaaat 20220 cccgaatctc tatcgtgcgg tggttgaact gcacaccgcc gacggcacgc tgattgaagc 20280 agaagcctgc gatgtcggtt tccgcgaggt gcggattgaa aatggtctgc tgctgctgaa 20340		cgtcccctca	aactggcaga	tgcacggtta	cgatgcgccc	atctacacca	acgtaaccta	19620
cgttaactcg gcgtttcatc tgtggtgcaa cgggcgctgg gtcggttacg gccaggacag 19800 tcgtttgccg tctgaatttg acctgagcgc atttttacgc gccggagaaa accgcctcgc 19860 ggtgatggtg ctgcgttgga gtgacggcag ttatctggaa gatcaggata tgtggcggat 19920 gagcggcatt ttccgtgacg tctcgttgct gcataaaccg actacacaaa tcagcgattt 19980 ccatgttgcc actcgcttta atgatgattt cagccgcgct gtactggagg ctgaagttca 20040 gatgtgcggc gagttgcgtg actacctacg ggtaacagtt tctttatggc agggtgaaac 20100 gcaggtcgcc agcggcaccg cgcctttcgg cggtgaaatt atcgatgagc gtggtggta 20160 tgccgatcgc gtcacactac gtctgaacgt cgaaaacccg aaactgtgga gcgccgaaat 20220 cccgaatctc tatcgtgcgg tggttgaact gcacaccgcc gacggcacgc tgattgaagc 20340 agaagcctgc gatgtcggtt tccgcgaggt gcggattgaa aatggtctgc tgctgctgaa 20340		tcccattacg	gtcaatccgc	cgtttgttcc	cacggagaat	ccgacgggtt	gttactcgct	19680
tegtttgccg tetgaatttg acetgagege atttttaege geeggagaaa acegeetege 19860 ggtgatggtg etgegttgga gtgaeggeag ttatetggaa gateaggata tgtggeggat 19920 gageggeatt tteegttgaeg tetegttget geataaaceg actacacaaa teagegattt 19980 ecatgttgce actegettta atgatgattt eageegget gtaetggagg etgaagttea 20040 gatgtgegge gagttgegtg actacetaeg ggtaacagtt tetttatgge agggtgaaac 20100 geaggtegee ageggeaceg egeetttegg eggtgaaatt ategatgage gtggtggtta 20160 tgeegatege gteacactae gtetgaaegt egaaaaceeg aaactgtgga gegeegaaat 20220 ecegaatete tategtgegg tggttgaact geacacegee gaeggeaege tgattgaage 20280 agaageetge gatgteggtt teegegaggt geggattgaa aatggtetge tgetgetgaa 20340	30	cacatttaat	gttgatgaaa	gctggctaca	ggaaggccag	acgcgaatta	tttttgatgg	19740
ggtgatggtg ctgcgttgga gtgacggcag ttatctggaa gatcaggata tgtggcggat 19920 gagcggcatt ttccgtgacg tctcgttgct gcataaaccg actacacaaa tcagcgattt 19980 ccatgttgcc actcgcttta atgatgattt cagccgcgct gtactggagg ctgaagttca 20040 gatgtgcggc gagttgcgtg actacctacg ggtaacagtt tctttatggc agggtgaaac 20100 gcaggtcgcc agcggcaccg cgcctttcgg cggtgaaatt atcgatgagc gtggtggtta 20160 tgccgatcgc gtcacactac gtctgaacgt cgaaaacccg aaactgtgga gcgccgaaat 20220 cccgaatctc tatcgtgcgg tggttgaact gcacaccgcc gacggcacgc tgattgaagc 20280 agaagcctgc gatgtcggtt tccgcgaggt gcggattgaa aatggtctgc tgctgctgaa 20340		cgttaactcg	gcgtttcatc	tgtggtgcaa	cgggcgctgg	gtcggttacg	gccaggacag	19800
gagcggcatt ttccgtgacg tctcgttgct gcataaaccg actacacaaa tcagcgattt 19980 ccatgttgcc actcgcttta atgatgattt cagccgcgct gtactggagg ctgaagttca 20040 gatgtgcggc gagttgcgtg actacctacg ggtaacagtt tctttatggc agggtgaaac 20100 gcaggtcgcc agcggcaccg cgcctttcgg cggtgaaatt atcgatgagc gtggtggtta 20160 tgccgatcgc gtcacactac gtctgaacgt cgaaaacccg aaactgtgga gcgccgaaat 20220 cccgaatctc tatcgtgcgg tggttgaact gcacaccgcc gacggcacgc tgattgaagc 20280 agaagcctgc gatgtcggtt tccgcgaggt gcggattgaa aatggtctgc tgctgctgaa 20340		tcgtttgccg	tctgaatttg	acctgagcgc	atttttacgc	gccggagaaa	accgcctcgc	19860
ccatgttgcc actcgcttta atgatgattt cagccgcgct gtactggagg ctgaagttca 20040 gatgtgcggc gagttgcgtg actacctacg ggtaacagtt tctttatggc agggtgaaac 20100 gcaggtcgcc agcggcaccg cgcctttcgg cggtgaaatt atcgatgagc gtggtggtta 20160 tgccgatcgc gtcacactac gtctgaacgt cgaaaacccg aaactgtgga gcgccgaaat 20220 cccgaatctc tatcgtgcgg tggttgaact gcacaccgcc gacggcacgc tgattgaagc 20280 agaagcctgc gatgtcggtt tccgcgaggt gcggattgaa aatggtctgc tgctgctgaa 20340	35	ggtgatggtg	ctgcgttgga	gtgacggcag	ttatctggaa	gatcaggata	tgtggcggat	19920
gatgtgcgc gagttgcgtg actacctacg ggtaacagtt tctttatggc agggtgaaac 20100 gcaggtcgcc agcggcaccg cgcctttcgg cggtgaaatt atcgatgagc gtggtggtta 20160 tgccgatcgc gtcacactac gtctgaacgt cgaaaacccg aaactgtgga gcgccgaaat 20220 cccgaatctc tatcgtgcgg tggttgaact gcacaccgcc gacggcacgc tgattgaagc 20280 agaagcctgc gatgtcggtt tccgcgaggt gcggattgaa aatggtctgc tgctgctgaa 20340		gagcggcatt	ttccgtgacg	tctcgttgct	gcataaaccg	actacacaaa	tcagcgattt	19980
geaggtegee ageggeaceg egeetttegg eggtgaaatt ategatgage gtggtggtta 20160 tgeegatege gteacactae gtetgaacgt egaaaaceeg aaactgtgga gegeegaaat 20220 ecegaatete tategtgegg tggttgaact geacacegee gaeggeacge tgattgaage 20280 agaageetge gatgteggtt teegegaggt geggattgaa aatggtetge tgetgetgaa 20340		ccatgttgcc	actcgcttta	atgatgattt	cagccgcgct	gtactggagg	ctgaagttca	20040
tgccgatcgc gtcacactac gtctgaacgt cgaaaacccg aaactgtgga gcgccgaaat 20220 cccgaatctc tatcgtgcgg tggttgaact gcacaccgcc gacggcacgc tgattgaagc 20280 agaagcctgc gatgtcggtt tccgcgaggt gcggattgaa aatggtctgc tgctgctgaa 20340	40	gatgtgcggc	gagttgcgtg	actacctacg	ggtaacagtt	tctttatggc	agggtgaaac	20100
cccgaatctc tatcgtgcgg tggttgaact gcacaccgcc gacggcacgc tgattgaagc 20280 45 agaagcctgc gatgtcggtt tccgcgaggt gcggattgaa aatggtctgc tgctgctgaa 20340		gcaggtcgcc	agcggcaccg	cgcctttcgg	cggtgaaatt	atcgatgagc	gtggtggtta	20160
agaagcctgc gatgtcggtt tccgcgaggt gcggattgaa aatggtctgc tgctgctgaa 20340		tgccgatcgc	gtcacactac	gtctgaacgt	cgaaaacccg	aaactgtgga	gcgccgaaat	20220
agaagcctgc gatgtcggtt tccgcgaggt gcggattgaa aatggtctgc tgctgctgaa 20340	45	cccgaatctc	tatcgtgcgg	tggttgaact	gcacaccgcc	gacggcacgc	tgattgaagc	20280
cggcaagccg ttgctgattc gaggcgttaa ccgtcacgag catcatcctc tgcatggtca 20400		agaagcctgc	gatgtcggtt	tccgcgaggt	gcggattgaa	aatggtctgc	tgctgctgaa	20340
		cggcaagccg	ttgctgattc	gaggcgttaa	ccgtcacgag	catcatcctc	tgcatggtca	20400
ggtcatggat gagcagacga tggtgcagga tatcctgctg atgaagcaga acaactttaa 20460	50	ggtcatggat	gagcagacga	tggtgcagga	tatcctgctg	atgaagcaga	acaactttaa	20460

	caccatacac	tgttcgcatt	atcccaacca	tecaetataa	tacacactat	acaaccacta	20520
							20580
		gtggtggatg					
5	tctgaccgat	gateegeget	ggctaccggc	gatgagcgaa	cgcgtaacgc	gaatggtgca	20640
	gcgcgatcgt	aatcacccga	gtgtgatcat	ctggtcgctg	gggaatgaat	caggccacgg	20700
	cgctaatcac	gacgcgctgt	atcgctggat	caaatctgtc	gatccttccc	gcccggtgca	20760
10	gtatgaaggc	ggcggagccg	acaccacggc	caccgatatt	atttgcccga	tgtacgcgcg	20820
	cgtggatgaa	gaccagccct	tcccggctgt	gccgaaatgg	tccatcaaaa	aatggctttc	20880
	gctacctgga	gagacgcgcc	cgctgatcct	ttgcgaatac	gcccacgcga	tgggtaacag	20940
15	tcttggcggt	ttcgctaaat	actggcaggc	gtttcgtcag	tatccccgtt	tacagggcgg	21000
	cttcgtctgg	gactgggtgg	atcagtcgct	gattaaatat	gatgaaaacg	gcaacccgtg	21060
	gtcggcttac	ggcggtgatt	ttggcgatac	gccgaacgat	cgccagttct	gtatgaacgg	21120
20	tctggtcttt	gccgaccgca	cgccgcatcc	agcgctgacg	gaagcaaaac	accagcagca	21180
	gtttttccag	ttccgtttat	ccgggcaaac	catcgaagtg	accagcgaat	acctgttccg	21240
	tcatagcgat	aacgagctcc	tgcactggat	ggtggcgctg	gatggtaagc	cgctggcaag	21300
25	cggtgaagtg	cctctggatg	tcgctccaca	aggtaaacag	ttgattgaac	tgcctgaact	21360
	accgcagccg	gagagcgccg	ggcaactctg	gctcacagta	cgcgtagtgc	aaccgaacgc	21420
	gaccgcatgg	tcagaagccg	ggcacatcag	cgcctggcag	cagtggcgtc	tggcggaaaa	21480
30	cctcagtgtg	acgctccccg	ccgcgtccca	cgccatcccg	catctgacca	ccagcgaaat	21540
	ggatttttgc	atcgagctgg	gtaataagcg	ttggcaattt	aaccgccagt	caggctttct	21600
	ttcacagatg	tggattggcg	ataaaaaaca	actgctgacg	ccgctgcgcg	atcagttcac	21660
35	ccgtgcaccg	ctggataacg	acattggcgt	aagtgaagcg	acccgcattg	accctaacgc	21720
	ctgggtcgaa	cgctggaagg	cggcgggcca	ttaccaggcc	gaagcagcgt	tgttgcagtg	21780
	cacggcagat	acacttgctg	atgcggtgct	gattacgacc	gctcacgcgt	ggcagcatca	21840
40	ggggaaaacc	ttatttatca	gccggaaaac	ctaccggatt	gatggtagtg	gtcaaatggc	21900
40	gattaccgtt	gatgttgaag	tggcgagcga	tacaccgcat	ccggcgcgga	ttggcctgaa	21960
	ctgccagctg	gcgcaggtag	cagagcgggt	aaactggctc	ggattagggc	cgcaagaaaa	22020
45	ctatcccgac	cgccttactg	ccgcctgttt	tgaccgctgg	gatctgccat	tgtcagacat	22080
4.5	gtataccccg	tacgtcttcc	cgagcgaaaa	cggtctgcgc	tgcgggacgc	gcgaattgaa	22140
	ttatggccca	caccagtggc	gcggcgactt	ccagttcaac	atcagccgct	acagtcaaca	22200
	gcaactgatg	gaaaccagcc	atcgccatct	gctgcacgcg	gaagaaggca	catggctgaa	22260
50							

	tatcgacggt	ttccatatgg	ggattggtgg	cgacgactcc	tggagcccgt	cagtatcggc	22320
	ggaattccag	ctgagcgccg	gtcgctacca	ttaccagttg	gtctggtgtc	aaaaataata	22380
5	ataaccgggc	aggggggatc	ccgggtaatt	aattgaatta	catccctacg	caaacgtttt	22440
	acggccgccg	gtggcgcccg	cgcccggcgg	cccgtccttg	gccgttgcag	gccactccgg	22500
	tggctcccgt	cgtccccgac	ttccaggccc	agcagatgca	gcaactcatc	agcgccgtaa	22560
10	atgcgctgac	aatgagacag	aacgcaattg	ctcctgctag	gcctcccaaa	ccaaagaaga	22620
	agaagacaac	caaaccaaag	ccgaaaacgc	agcccaagaa	gatcaacgga	aaaacgcagc	22680
	agcaaaagaa	gaaagacaag	caagccgaca	agaagaagaa	gaaacccgga	aaaagagaaa	22740
15	gaatgtgcat	gaagattgaa	aatgactgta	tcttcgtatg	cggctagcca	cagtaacgta	22800
	gtgtttccag	acatgtcggg	caccgcacta	tcatgggtgc	agaaaatctc	gggtggtctg	22860
	ggggccttcg	caatcggcgc	tatcctggtg	ctggttgtgg	tcacttgcat	tgggctccgc	22920
20	agataagtta	gggtaggcaa	tggcattgat	atagcaagaa	aattgaaaac	agaaaaagtt	22980
	agggtaagca	atggcatata	accataactg	tataacttgt	aacaaagcgc	aacaagacct	23040
	gcgcaattgg	ccccgtggtc	cgcctcacgg	aaactcgggg	caactcatat	tgacacatta	23100
25	attggcaata	attggaagct	tacataagct	taattcgacg	aataattgga	tttttatttt	23160
	attttgcaat	tggtttttaa	tatttccaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	23220
	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaacta	gatcctcgaa	tcaagcttat	23280
30	cgataccgtc	gactagagtc	ggggcggccg	gccgcttcga	gcagacatga	taagatacat	23340
	tgatgagttt	ggacaaacca	caactagaat	gcagtgaaaa	aaatgcttta	tttgtgaaat	23400
	ttgtgatgct	attgctttat	ttgtaaccat	tataagctgc	aataaacaag	ttaacaacaa	23460
35	caattgcatt	cattttatgt	ttcaggttca	gggggaggtg	tgggaggttt	tttaaagcaa	23520
33	gtaaaacctc	tacaaatgtg	gtaaaatcga	taaggatctc	gacctcgagg	gggggccctg	23580
	taccgggctc	tgcctgaggc	tctggctgcc	cagcaggctg	aagctggggt	tgttggccag	23640
40	gggcacttgt	gttcccatcg	cagcgggcac	ttgtgcctcc	caatcagatg	gcctctgaag	23700
40	gcaggcctgg	ccagaaggtg	agtgctgctg	aacgctatta	tccacttggc	tgaggggtgt	23760
	tttccccgaa	actgctgtgg	tcacagctgc	tgccgctgtg	acccatgcag	cattgttgaa	23820
45	cgcagtgggc	attcttggca	cactaggccg	tctgagctgg	tggggactca	aggactgggt	23880
7.5	gcccagggag	ctgggacaga	acccaggcag	gggcacttct	ggtggggtgg	ccttggggct	23940
	ctgcatatgc	tggcagacag	agtcaagtct	gcccagggga	gtctggcctg	agtgtgagag	24000
50	gatgggacac	tgggggctgg	aggtgaaaat	tccttgccgc	ttccccagag	ttggtgagat	24060
50							

	cactcccatg	ccctcgcagc	tctggtgcct	ggtgagtggg	atcattcctg	gactcagatt	24120
	gttctgaaga	agcccagttc	tgggtggcat	caagtgcttg	ctagatgggg	ggcttgcctt	24180
5	gatccggcta	cacttggagg	tgacttgttc	ttggacggct	acatacagaa	agagagaagt	24240
	ggggatgagt	tccaaaggca	tcctcgactt	cggctgtggc	caccggaggg	tagctcctgg	24300
	cccaacacgg	acttctcacc	tcccgccctt	ggctctctac	tgagctcccc	cctgctcccc	24360
10	aattcctcgc	cattcccctc	atttctctgc	cctcagcctg	gactgcagtt	cttctgggaa	24420
	gctgccccaa	ctccctaggt	ctgtgctcac	caagagcaga	tcacactgga	ctgaaatgcc	24480
	agctgatttg	tctcttcaag	aaaattggaa	gctcctggag	gtcagggtcc	atgtctgctt	24540
15	ttacactcag	tgctctgtat	gcaggcctgg	cactgcccac	cctttgacag	gtggtgcata	24600
	ttttgtagaa	ggaaggaagg	ggccaggtgg	ggtgggctgg	gctggtggcg	ggagctagct	24660
	cagcctctta	gattctctac	ccgatggatg	tgacctggga	cagcaagtga	gtgtggtgag	24720
20	tgagtgcaga	cggtgctttg	ttcccctctt	gtctcatagc	ctagatggcc	tctgagccca	24780
	gatctggggc	tcagacaaca	tttgttcaac	tgaacggtaa	tgggtttcct	ttctgaaggc	24840
	tgaaatctgg	gagctgacat	tctggactcc	ctgagttctg	aagagcctgg	ggatggagag	24900
25	acacggagca	gaagatggaa	ggtagagtcc	caggtgccta	agatggggaa	tacatctccc	24960
	ctcattgtca	tgagagtcca	ctctagctga	tatctactgt	ggccaatatc	taccggtact	25020
	tttttggggt	ggacactgag	tcatgcagca	gtcttatggt	ttacccaagg	tcaggtaggg	25080
30	gagacagtgc	agtcagagca	caagcccagt	gtgtctgacc	cacccaagaa	tccatgctcg	25140
	tatctacaaa	aatgattttt	tctcttgtaa	tggtgcctag	gttcttttat	tatcatggca	25200
	tgtgtatgtt	tttcaactag	gttacaatct	ggccttataa	ggttaacctc	ctggaggcca	25260
35	ccagccttcc	tgaaacttgt	ctgtgctgtc	cctgcaactg	gagtgtgcct	gatgtggcac	25320
55	tccagcctgg	acaagtggga	cacagactcc	gctgttatca	ggcccaaaga	tgtcttccat	25380
	aagaccagaa	gagcaatggt	gtagaggtgt	catgggctac	aataaagatg	ctgacctcct	25440
40	gtctgagggc	aagcagcctc	ttctggccct	cagacaaatg	ctgagtgttc	ccaagactac	25500
40	cctcggcctg	gtccaatctc	atcccactgg	tgcgtaaggg	ttgctgaact	catgacttct	25560
	tggctagcct	gcaacctcca	cggagtggga	actacatcag	gcattttgct	aactgctgta	25620
15	tcctaggcca	ataaatgttg	atcacattta	tagctgccat	ggtagggtgg	ggacccctgc	25680
45	tatctatctg	tggaggctct	gggagcccct	gacacaaact	ttctgaagca	gagcctcccc	25740
	aacccctttt	ccattcccta	tacctgacag	atggcccagg	aacccattag	aaatggaagg	25800
50	tcactgcagc	agtatgtgaa	tgtgcgtgtg	ggagaagggc	aggatcagag	ccctgggggt	25860

	gtggcagccc	ccaagtgatt	ctaatccaga	tcctagggtt	gtttccctgt	cccattgaaa	25920
	tagctgcttt	aaggggcctg	actcagggaa	atcagtctct	tgaattaagt	ggtgattttg	25980
5	gagtcattta	gaccaggcct	tcaattggga	tcctgctctt	agagttggat	gaattattta	26040
	actgattttc	agatctcctc	tttctcaatg	ctttcagaag	cacagtaact	gcttactctg	26100
	aaatgaattc	tcaccccact	tccacatatg	caccccttgc	ccaccccttt	gggaacactg	26160
10	gccttaactg	cttaccttca	aatggactca	tctgttggga	gatatatgca	ttctgccgtt	26220
	caggggtcat	tgccataaga	cctgatctct	gttcctcttg	ctaaacagaa	gatgaaaaag	26280
	acaaattaga	ttacagctac	caattaataa	ttagccttag	gatcgctgcg	tggggaccta	26340
15	ggacttggct	ttggtgcagc	agaaagcatg	aataaacaca	ccagcataca	ctcgcatgca	26400
	tgccccaccc	tctcgagcaa	aattccacag	gtataaataa	agtaagattc	tgcacctggg	26460
	ttaaaaacac	aactgcaaca	gcatagaatg	gggcaggaga	gacagaactt	aatagcaaga	26520
20	gcacacagaa	aaaagtttta	ggcattttgg	atgtccatct	gctcaggatg	ggtcagcagt	26580
	gagatgcggt	caccaaaaga	acaaatgtaa	cattaggctg	cattaataga	agcagagtat	26640
	gtagaaggag	ggaggtgaca	gtcctatgct	aactctgcct	tggccagact	atacccacag	26700
25	gagtctgggc	atgccagtct	cagggagacc	cagacagact	ggctgcattc	agaggatggt	26760
	aagtaatgag	agtggggatt	ggacttcaaa	ctacccagac	aaagaatggc	tgagcaagcc	26820
	aaggatgctg	tggctggggc	agagcagact	gtgggctatg	tagtggtgga	tacctagcct	26880
30	ctgcagggct	gtcataggga	aaggacattg	agaagaggac	tgaggcttgt	tcctggtggt	26940
	cctggcatga	acggccagat	gatcacatgg	tcaggtggac	acagtctcca	acactgggag	27000
	tagccaaaca	cttactgcca	acctcccgcc	cttctcctga	ctagttgcag	cataggcaat	27060
35	tgggaggagc	ttcctgtctc	catctgaaag	ctggctgggt	gggcaggggg	aggagcgagc	27120
	caagtttcaa	ggccgcagtt	tcagcactca	gtctgggatc	ggctcaagga	gcaaagggga	27180
	agaacatagc	caggagggaa	taacatgaag	gcccccagac	ccagaaaagg	catgacttgc	27240
40	tctgagaccc	tcagccggtt	ggtgtcaggt	tgtgactcgg	atccaggtct	gactcccagt	27300
	ccagtgcttg	aagcctcacc	ccacacagtg	aggggagccc	ggccatctct	gctcaactgc	27360
	tgccatctct	ctccccttct	caaccaccaa	ggcagctctg	tctgggagca	caagctccaa	27420
45	gtccactttc	tggtctgtgt	ccccccaag	atgccagagg	acttgcctct	acaacacggg	27480
	ctgcccgtgc	agtgcctgct	tttccagcaa	agggcttctg	ggaacccttc	tctgcactca	27540
	gtggggctgg	tgggagtggg	gcggggtagc	gacccagtgc	ttgggactgt	gcccagctct	27600
50	caggcctggc	agcagttcct	ggccttggtt	cctgccaagg	cagagaggac	aaacacatgg	27660

	caccgggaag	actacaccag	aagcgattcc	accagactgg	ggtttgcttt	tctatcccgc	27720
	ccttagcctg	cttcctgtcc	tggtccctgc	ctcccctcc	actggagctg	ccgtgtgggc	27780
5	agtgaggggc	tgtttctcag	ctgccctatg	gagctgccct	ctccctgcca	aagcattggc	27840
	aaggcggcaa	ggggtggggg	tggggatggg	gggtgggatc	tgccttctca	agctctcatt	27900
	atactgagca	cgtctcaccc	attattttat	gtcatctagc	aacaccccat	gtggacactg	27960
10	aggagcatgg	gggtcacatg	accactgccc	aaggccacac	catccggatc	tgcctgagat	28020
	ggtcagggtt	ggcagccatt	tctgaaggca	gtcctttcgc	tttggctctt	cttgtaccag	28080
	tctcaggaca	tcagggcaga	agatctacag	tccccagctt	actgatgtga	cagcagaggc	28140
15	tcagagaggt	taaatgactt	gcccaaggtg	acacggctaa	gaagtacagt	atctcctaac	28200
10	tgcagaccag	gtgcttctgc	tgcttctggg	gacagattcc	tgcgtggctg	gctaggtcta	28260
	aacggtcctt	aactccatcc	ccaccggttg	ctgcattagt	ttcatcaaat	aacacagttg	28320
20	tacagaggta	ggggttcagg	ggcaggggca	gatggaggct	ggagagtgtg	actaaggaaa	28380
20	cagcagggga	agtgcggtaa	agtccgaagg	gagggacgga	aagagaaagc	caagcccagg	28440
	ggcgtgccag	acaaaaggaa	aggccacgcc	ggggcagggc	aggcttcagc	gggtgctggg	28500
25	gcgtcttcat	cccgggaagc	acacattcca	gaggaccccg	gagtctaatg	gaaaagctgg	28560
25	ccagcctatc	actatggaaa	ctgccaaggc	cacacagcgc	tgctgacacc	cagcctgggt	28620
	gccggtggcc	agctctgcag	gatetteaag	tctggggtgc	caccagcaag	cgacggtcct	28680
30	ccatgggctc	ttcaccttac	ggcagtgtcc	agaggcaccg	ccagtcctct	gctcctatgc	28740
30	tggtcctgct	gtccctggca	aaaggagcca	gagcattctc	tccaggcctc	ccgaggaggc	28800
	tgcttccttt	gttttgcaga	tggaggctcc	catcctttgt	tctgaatcaa	tgtgctccaa	28860
35	agataagccc	caagaaaaca	gttgttgcct	tttgacactg	acaattagaa	tcgttggaaa	28920
33	atggagaaaa	caggaaatgg	caaatggttt	cagtgaccag	gaggaaaccg	tgcctgaaag	28980
	ttgctgctta	gtgactggga	cactcgcttt	ctgctctctt	atgaaggaca	gcctaggccg	29040
40	tgtggccttt	tataaacaaa	gctatgaagg	ggtcgtcaaa	ttttctaggg	ctgcaactgt	29100
40	ggcactacgt	cctgttgtgc	caggtgacac	tgacaagcag	cactgagttc	tatgcaagcc	29160
	caggtgtgct	tctctcatgg	tgacccccag	agaactaagg	cccagctctt	cctctgtcac	29220
45	acccctccca	gccccactg	tcagacaagg	gaccacattc	acagacagtc	tcagccaaga	29280
45	tggcaacctt	ggaagtcctg	gggatgcctt	tctagaagct	cgcgccccta	ggggccggcc	29340
	ttaattaaat	caagcttatc	gataccgtcg	agacctcgag	ggggggcatc	actccgccct	29400
50	aaaacctacg	tcacccgccc	cgttcccacg	ccccgcgcca	cgtcacaaac	tccaccccct	29460
E(1)							

Стр.: 68

	cattatcata ttggcttcaa tccaaaataa ggtatattat tgatgatgtt t	29511
5	<210> 10 <211> 28191 <212> ДНК	
	<213> Химерная	
	<220>	
10	<221> 5' ITR	
	<222> (1)(438) <223> Последовательность первого инвертированного концевого повтора и сигнальная	
	последовательность для упаковки	
	<220>	
15	<221> «лишняя»	
15	<222> (439)(10990)	
	<223> Первая некодирующая «лишняя» последовательность	
	<220>	
	<221> TERT	
20	<222> (10991)(11285)	
20	<223> Промотор теломеразы (TERT)	
	<220>	
	<221> SFV	
	<222> (11556)(18665)	
25	<223> Участок последовательности репликона SFV	
	<220>	
	<221> mIL-12	
	<222> (18688)(21021)	
	<223> Последовательность гена мышиного интерлейкина-12 (IL-12) (экзогенный ген)	
30	<220>	
	<221> Поли-А	
	<222> (21920)(22179)	
	<223> Последовательность полиаденилирования, полученная из SV40	
25	<220>	
35	<221> «лишняя» <222> (22180)(28030)	
	<223> Вторая некодирующая «лишняя» последовательность	
	<220>	
	<221> 3' ITR	
40	<222> (28031)(28191)	
	<223> Последовательность первого инвертированного концевого повтора	
	<400> 10	
	aaacatcatc aataatatac cttattttgg attgaagcca atatgataat gagggggtgg	60
45	agtttgtgac gtggcgcggg gcgtgggaac ggggcgggtg acgtagtagt gtggcggaag	120
	tgtgatgttg caagtgtggc ggaacacatg taagcgacgg atgtggcaaa agtgacgttt	180
	ttggtgtgcg ccggtgtaca caggaagtga caattttcgc gcggttttag gcggatgttg	240
50	tagtaaattt gggcgtaacc gagtaagatt tggccatttt cgcgggaaaa ctgaataaga	300

	ggaagtgaaa	tctgaataat	tttgtgttac	tcatagcgcg	taatatttgt	ctagggccgc	360
	ggggactttg	accgtttacg	tggagactcg	cccaggtgtt	tttctcaggt	gttttccgcg	420
5	ttccgggtca	aagttggcgt	tttgatatca	agcttatcga	taccgtcaaa	caagtcttta	480
	attcaagcaa	gactttaaca	agttaaaagg	agcttatggg	taggaagtag	tgttatgatg	540
	tatgggcata	aagggtttta	atgggatagt	gaaaatgtct	ataataatac	ttaaatggct	600
10	gcccaatcac	ctacaggatt	gatgtaaaca	tggaaaaggt	caaaaacttg	ggtcactaaa	660
	atagatgatt	aatggagagg	atgaggttga	tagttaaatg	tagataagtg	gtcttattct	720
	caataaaaat	gtgaacataa	ggcgagtttc	tacaaagatg	gacaggactc	attcatgaaa	780
15	cagcaaaaac	tggacatttg	ttctaatctt	tgaagagtat	gaaaaattcc	tattttaaag	840
	gtaaaacagt	aactcacagg	aaataccaac	ccaacataaa	atcagaaaca	atagtctaaa	900
	gtaataaaaa	tcaaacgttt	gcacgatcaa	attatgaatg	aaattcacta	ctaaaattca	960
20	cactgatttt	gtttcatcca	cagtgtcaat	gttgtgatgc	atttcaattg	tgtgacacag	1020
	gcagactgtg	gatcaaaagt	ggtttctggt	gcgacttact	ctcttgagta	tacctgcagt	1080
	cccctttctt	aagtgtgtta	aaaaaaagg	gggatttctt	caattcgcca	atactctagc	1140
25	tctccatgtg	ctttctagga	aacaagtgtt	aacccacctt	atttgtcaaa	cctagctcca	1200
	aaggactttt	gactccccac	aaaccgatgt	agctcaagag	agggtatctg	tcaccagtat	1260
	gtatagtgaa	aaaagtatcc	caagtcccaa	cagcaattcc	taaaaggagt	ttatttaaaa	1320
30	aaccacacac	acctgtaaaa	taagtatata	tcctccaagg	tgactagttt	taaaaaaaca	1380
	gtattggctt	tgatgtaaag	tactagtgaa	tatgttagaa	aaatctcact	gtaaccaagt	1440
	gaaatgaaag	caagtatggt	ttgcagagat	tcaaagaaaa	tataagaaaa	cctactgttg	1500
35	ccactaaaaa	gaatcatata	ttaaatatac	tcacacaata	gctcttcagt	ctgataaaat	1560
	ctacagtcat	aggaatggat	ctatcactat	ttctattcag	tgctttgatg	taatccagca	1620
	ggtcagcaaa	gaatttatag	cccccttga	gcacacagag	ggctacaatg	tgatggcctc	1680
40	ccatctcctt	catcacatct	cgagcaagac	gttcagtcct	acagaaataa	aatcaggaat	1740
	ttaatagaaa	gtttcataca	ttaaacttta	taacaaacac	ctcttagtca	ttaaacttcc	1800
	acaccaacct	gggcaatata	gtgagacccc	atgcctgcaa	aaaaaaaaa	attagccagg	1860
45	catggtagca	tgtacctgta	gtcccagcta	cttgagaggt	gaggtgggaa	aatcacttta	1920
	gtgcaggatg	ttgaggctgg	agtgaactgt	gattgtgcca	ctgcactcca	gcctggacaa	1980
	tagagcaaga	ccttgtctca	aaaaaatgca	ttaaaaattt	tttttaaatc	ttccacgtat	2040
50	cacatccttt	gccctcatgt	ttcataaggt	aaaaaatttg	ataccttcaa	aaaaaccaag	2100

Стр.: 70

	cata	accacta	tcataatttt	ttttaaatgc	aaataaaaac	aagataccat	tttcacctat	2160
	caga	actggca	ggttctgatt	aaatgaaatt	ttctggataa	tatacaatat	taagagagac	2220
5	tgta	agaaact	gggccagtgg	ctcatgcctg	taatcccagc	actttgggag	gctgggtaac	2280
	atg	gcgaacc	ctgtttctac	aaaataaaaa	tattagctgg	gagtggtggc	gcacacctat	2340
	agto	ccagct	actcaggagg	ctgaggtgga	aggatcgctt	gaacccagga	ggttgagact	2400
10	gcaç	gtgaact	gtgatcattc	tgctgcactg	caccccagcc	tgggcaacag	agaccttgtc	2460
	tcaa	aaaaaa	aaaaaaaaga	gacaaattgt	gaagagaaag	gtactctcat	ataacatcag	2520
	gagt	ataaaa	tgattcaact	tcttagagga	aaatttggca	ataccaaaat	attcaataaa	2580
15	ctct	tteccc	ttgacccaga	aattccactt	gaataaagct	gaacaagtac	caaacatgta	2640
	aaag	gaatgtt	tcttctagta	cagtcggtaa	gaacaaaata	gtgtctatca	atagtggact	2700
	ggtt	aaatca	gttatggtat	ctccataaga	cagaatgcta	tgcaaccttt	aaaatatatt	2760
20	agat	agctct	agacacacta	atattaaaag	tgtccaataa	catttaaaac	tatactcata	2820
	cgtt	aaaata	taaatgtata	tatgtacttt	tgcatatagt	atacatgcat	aggccagtgc	2880
	ttga	ıgaagaa	atgtgtacag	aaggctgaaa	ggagagaact	ttagtcttct	tgtttatggc	2940
25	ctco	atagtt	agaatatttt	ataacacaaa	tattttgata	ttataatttt	aaaataaaaa	3000
	caca	ıgaatag	ccagacatac	aatgcaagca	ttcaatacca	ggtaaggttt	ttcactgtaa	3060
	ttga	ıcttaac	agaaaatttt	caagctagat	gtgcataata	ataaaaatct	gaccttgcct	3120
30	tcat	gtgatt	cagccccagt	ccattaccct	gtttaggact	gagaaatgca	agactctggc	3180
	taga	gttcct	tcttccatct	cccttcaatg	tttactttgt	tctggtccct	acagagtccc	3240
	acta	ıtaccac	aactgatact	aagtaattag	taaggccctc	ctcttttatt	tttaataaag	3300
35	aaga	ıttttag	aaagcatcag	ttatttaata	agttggccta	gtttatgttc	aaatagcaag	3360
	tact	cagaac	agctgctgat	gtttgaaatt	aacacaagaa	aaagtaaaaa	acctcatttt	3420
	aaga	ıtcttac	ttacctgtcc	ataattagtc	catgaggaat	aaacaccctt	tccaaatcct	3480
40	cago	ataatg	attaggtatg	caaaataaat	caaggtcata	acctggttca	tcatcactaa	3540
	tctg	gaaaaag	aaatatagct	gtttcaatga	gagcattaca	ggatacaaac	atttgattgg	3600
	atta	agatgt	taaaaaataa	ccttagtcta	tcagagaaat	ttaggtgtaa	gatgatatta	3660
45	gtaa	ctgtta	actttgtagg	tatgataatg	aattatgtaa	gaaaacaaca	ggccgggcgg	3720
	gttg	gttcac	acgtgtaatc	ccagcacttt	gggaggctga	ggcaggcaga	ctgcctgagc	3780
	tcag	gagttc	gagaccagcc	tgggcaacac	ggtgaaatcc	cgtctctact	aaaaatacaa	3840
50	aaaa	attagc	cgggtgtggt	gacacatgcc	tgtagtccca	gctacttggg	aggctgaggc	3900

Стр.: 71

	aggagaatca	cttgaacctg	ggaggtgaag	gttgcagtga	gccaagatgg	caccacttca	3960
	ctccagcctg	ggaaacagag	caagactctg	tctctgagct	gagatggcac	cacttcactc	4020
5	cagcctggga	aacagagcaa	gactctgtct	caaaaaaaac	aaaacacaca	aacaaaaaaa	4080
	caggctgggc	gcggtggctc	acgcctgtaa	teccageact	ttgggaggcc	gaggcgggtg	4140
	gatcacctga	ggtcaggagt	tccagaccag	ccttgtcaac	atggtgaaac	ctcccccgc	4200
10	cgtctctact	aaaaatacaa	aaattagcca	ggcgtggtgg	caggagcctg	taatcccagc	4260
	tacttgggag	gctgaggcag	gagaatcgct	tgtacccaga	aggcagaggt	tgcactgagc	4320
	tgagatggca	ccattgcact	ccagcctggg	ggacaagagc	gagatttcgt	ctttaaaaaa	4380
15	caaaaacaaa	acaaaaaacc	atgtaactat	atgtcttagt	catcttagtc	aagaatgtag	4440
	aagtaaagtg	ataagatatg	gaatttcctt	taggtcacaa	agagaaaaag	aaaaatttta	4500
	aagagctaag	acaaacgcag	caaaatcttt	atatttaata	atattctaaa	catgggtgat	4560
20	gaacatacgg	gtattcatta	tactattctc	tccacttttg	agtatgtttg	aaaatttagt	4620
	aaaacaagtt	ttaacacact	gtagtctaac	aagataaaat	atcacactga	acaggaaaaa	4680
	ctggcatggt	gtggtggctc	acacttgtaa	tcccagtgct	ttgggaggct	gagacaggag	4740
25	agttgcttga	ggccaggagt	tcaagaccga	catggggaat	gtagcaagac	cccgtcccta	4800
	caaaaaactt	tgtaaaaatt	tgccaggtat	ggtggtgcat	acctgtagtc	ccagctactc	4860
	gggaggcgga	ggcagaagga	atcacttgag	cccaggagtt	tgaggctgca	gtgagctacg	4920
30	atcataccac	agcactccag	cgtggacaac	agagtaagac	cctatctcaa	aaacaaaaca	4980
	aaacaaaaca	aacaaaaaa	accacaagaa	aaactgctgg	ctgatgcagc	ggctcatgcc	5040
	tgtaatccca	gtattttggg	aggcccaggt	gggcgtatca	cctgaggtca	ggagttagag	5100
35	accagcctgg	ccaacatggt	gaaaccccat	ctctactaaa	aatacaaaat	tagccaggca	5160
	tgtggcacgc	gcctgtagtc	ccagttactg	ggaggctgaa	gcaggaggat	cacctgagcc	5220
	cgggaggtgg	aggttgcagt	gagccgagat	cacaccactg	cactccagcc	tgggtgacac	5280
40	agcaataccc	tacctcaaaa	taaaaaagaa	aaagaaaaga	aaagttgctg	tccccgctac	5340
	cccaatccca	aatccaaaca	gcctctctca	tctcacagta	agggggaaaa	atcacccaaa	5400
	aaagctaagt	gatcttttga	aaacccaaac	tcttagaagt	ctaagattat	tatagtcaac	5460
45	tcatgaagtg	tcatcataaa	agatactcta	atattattta	agtagaacca	catattggtt	5520
	gtcttggtat	gtctagcccc	tggcatacaa	aatatttaat	aacactgata	tggtacctgt	5580
	gatgtgaaaa	tgtactatga	gtacagcttt	ataaatacta	tatatgtacc	tatatacaga	5640
50	aaaaaataca	acaaaatcat	aaaagcactt	atctttgaaa	gaggagttac	agcaatttta	5700
50							

	***	+ > + + ~ = + + + ~	atatatata	++	tasstassts	tatatgagtt	5760
	_	tattgctttg					
	ttaaaaaaat	tcaatggtct	ttcttataaa	ttatctttgg	cagcatgcgt	ttttatatat	5820
5	acatataaaa	tgtatgggaa	atttttaaag	gatacattaa	attaaagcaa	aatatacaaa	5880
	caaaaaatca	gaatacaaaa	agataaaaag	attgggaagg	gagggaggga	gtaaggagga	5940
	agggtgggtg	ggtatagaga	aatataccaa	ataatggtaa	gaagtggggt	cttgacactt	6000
10	tctacacttt	ttttaaataa	aaaaaatttt	tttctctctc	tttttttt	ttagagacga	6060
	agtctcgcta	tgttgcccag	gctggtcttg	aactcctggg	atcaagagat	cctcctgcct	6120
	cagcctccca	aggtgcttgg	attacaggtg	tgagccacca	cgcctggtca	ctttctacac	6180
15	tttaatatat	atatttttc	attttcaatg	tcatttttat	tagttaattt	ataataccca	6240
	ttcaccatta	tattcaaagt	ctatttgaag	aaataaacca	gaaagaatga	aatactctag	6300
	ctcacatgct	attcaatact	aaattacctt	tcaaatcaca	ttcaagaagc	tgatgattta	6360
20	agctttggcg	gtttccaata	aatattggtc	aaaccataat	taaatctcaa	tatatcagtt	6420
	agtacctatt	gagcatctcc	ttttacaacc	taagcattgt	attaggtgct	taaatacaag	6480
	cagcttgact	tttaatacat	ttaaaaatac	atatttaaga	cttaaaatct	tatttatgga	6540
25	attcagttat	attttgaggt	ttccagtgct	gagaaatttg	aggtttgtgc	tgtctttcag	6600
	tccccaaagc	tcagttctga	gttctcagac	tttggtggaa	cttcatgtat	tgtcaggttg	6660
	gcccgtaata	cctgtgggac	aacttcagcc	cctgtgcaca	tggccaggag	gctggttgca	6720
30	aacattttca	ggtaggtgga	ccaggacatg	cccctggtca	tggccaggtg	gaggcatagt	6780
50	gctatacagc	aggcagaagt	caatattgat	ttgtttttaa	agaaacatgt	actactttca	6840
	taagcagaaa	aaatttctat	tcttggggga	aaagattatg	ccagatcctc	taggattaaa	6900
35	tgctgatgca	tctgctaaac	cttcacatat	cagaacatat	ttactataga	aagaatgaaa	6960
33	atgggacatt	tgtgtgtcac	ctatgtgaac	attccaaaaa	tattttacaa	caactaagta	7020
	ttttataaat	tttatgaact	gaaatttagt	tcaagttcta	ggaaaataca	aaccttgcta	7080
40	gatattataa	aaatgataca	atatatattc	atttcaggct	catcagaata	tatctgttat	7140
40	cacttgacaa	gaatgaaaat	gcaccatttt	gtagtgcttt	aaaatcagga	agatccagag	7200
	tactaaaaat	gacttcttcc	ttgaagctta	ctcaccaact	tcctcccagt	tactcactgc	7260
45	ttctgccaca	agcataaact	aggacccagc	cagaactccc	ttgaaatata	cacttgcaac	7320
45	gattactgca	tctatcaaaa	tggttcagtg	cctggctaca	ggttctgcag	atcgactaag	7380
	aatttgaaaa	gtcttgttta	tttcaaagga	agcccatgtg	aattctgccc	agagttcatc	7440
	ccagatatgc	agtctaagaa	tacagacaga	tcagcagaga	tgtattctaa	aacaggaatt	7500
50							

	ctggcaatat	aacaaattga	tttccaatca	aaacagattt	acataccata	cttatgtcaa	7560
	gaagttgttt	tgttttattg	catcctagat	tttattttt	tgatttatgg	tttactttaa	7620
5	gcataaaaaa	tttgtcaata	caactcttcc	caaaaggcat	aaacaaaaat	tcataaaact	7680
	tgcatcactt	gagatacttc	aggtatgaat	tcacaacttt	gttacaactt	actatatata	7740
	tgcacacata	tatatatatt	tgggtatatt	gggggggttc	taatttaaga	aatgcataat	7800
10	tggctataga	cagacagttg	tcagaacttg	gcaatgggta	cgtgcaggtt	cattatacca	7860
	agtctacttg	tagttgttca	aaatgtatca	taatacaagg	ccgggcgagg	tcgtcacgcc	7920
	tgtaatccca	gcattttggg	aggctaaggc	aggaggattg	cttgaggtca	ggagtttgtg	7980
15	accagcctgg	gcaacagagc	aagaccctgt	ctccaaaaag	aaaaaaaata	attttttaca	8040
	aaataaaaac	aaaatgtatc	atcagacgaa	attaaataag	aggcaattca	tttaaatgac	8100
	aacttttccc	agcttgacat	ttaacaaaaa	gtctaagtcc	tcttaattca	tatttaatga	8160
20	tcaaatatca	aatactaatt	tttttttt	tttttttt	gagacggagt	ctcgctctgt	8220
	cgcccaggct	ggagtgcagt	ggcgcgatcc	tggctcactg	caagctccgc	ctcccgggtt	8280
	cacgccattc	tcctgcctca	gcctcccgag	tagctgggat	tacagacatg	cgccaccacg	8340
25	cccggctaat	tttgtatttt	tagtagagat	ggggtttctc	catgttggtc	aggctggtct	8400
	tgaatttccc	acctcaggtg	atctgcctgc	ctcagcctca	caaagcagta	gctgggacta	8460
	caggcaccca	ccaccacact	tggttaattc	ttttgtattt	tttttgtaaa	gacgggattt	8520
30	caccatgtta	gccaggatgg	tctcgatctc	ctgatctcat	gatccgcccg	cctcagcctc	8580
	ccaaagtgct	gggattacag	gcgtgagcca	ccccgcccgg	ccatcaaata	ctaattctta	8640
	aatggtaagg	acccactatt	cagaacctgt	atccttatca	ctaatatgca	aatatttatt	8700
35	gaatacttac	tatgtcatgc	atactagaga	gagttagata	aatttgatac	agctaccctc	8760
	acagaactta	cagtgtaata	gatggcatga	catgtacatg	agtaactgtg	aacagtgtta	8820
	aattgctatt	taaaaaaaaa	gacggctggg	cgctgtggct	catgcctgta	atcccagcac	8880
40	tttgggaggc	caaggcaagt	tgatcgctcg	aggtcaagag	ttcgagacca	gcctggccaa	8940
	cgtggtaaaa	ccccgtctct	actaaaaata	caaaaaaaaa	attagccagg	catggtggca	9000
	caggcctgta	atcccagcta	ctagggaggc	tgagacatgg	agaactgctt	gaatccagga	9060
45	ggcagaggtt	acagtgagcc	gagatcatac	cactacactc	cagcctgagt	gacagagcga	9120
	gactcctgtc	taaaaaaaaa	aaaaaaaaa	aagatacagg	ttaagtgtta	tggtagttga	9180
	agagagaact	caaactctgt	ctcagaagcc	tcacttgcat	gtggaccact	gatatgaaat	9240
50	aatataaata	ggtataattc	aataaatagg	aacttcagtt	ttaatcatcc	caaacaccaa	9300

	aacttcctat	caaacaggtc	caataaactc	aatctctata	agagctagac	agaaatctac	9360
	ttggtggcct	ataatcttat	tagcccttac	ttgtcccatc	tgatattaat	taaccccatc	9420
5	taatatggat	tagttaacaa	tccagtggct	gctttgacag	gaacagttgg	agagagttgg	9480
	ggattgcaac	atattcaatt	atacaaaaat	gcattcagca	tctaccttga	ttaaggcagt	9540
	gtgcaacaga	atttgcagga	gagtaaaaga	atgattataa	atttacaacc	cttaaagagc	9600
10	tatagctggg	cgtggtggct	catgcctgta	aatcccagca	ctttgggagg	ctgaggcggg	9660
	tggatcacct	gaggccagaa	gttcaagacc	agcctagcca	acatggcgaa	accctgtctc	9720
	tacaaaaaat	acaaaaatta	gccgggtgtg	gtggcacgtg	cctgtagtcc	cagttacttg	9780
15	ggaggccgag	gcaggagaat	cgcttgaacc	taggaggtgg	aggctgcagt	gagccgagat	9840
	tgtgccactg	cactccactt	cageetggge	gacaagagca	agactccgtc	acaaaaaaa	9900
	aaaaaaaaaa	aaagcttaaa	atctagtggg	aaaggcatat	atacatacaa	ctaactgtat	9960
20	agcataataa	agctcataat	ctgtaacaaa	atctaattcg	acaagcccag	aaacttgtga	10020
	tttaccaaaa	acagttatat	atacacaaaa	agtaaaccta	gaacccaaag	ttacccagca	10080
	ccaatgattc	tctccctaag	cagtatcaag	tttaaagcag	tgattacatt	ctactgccta	10140
25	gattgtaaac	tgagtaaagg	agaccagcac	ctttctgcta	ctgaactagc	acagccgtgt	10200
	aaaccaacaa	ggcaatggca	gtgcccaact	ttctgtatga	atataagtta	catctgtttt	10260
	attatttgtg	acttggtgtt	gcatgtggtt	attatcaaca	ccttctgaaa	gaacaactac	10320
30	ctgctcaggc	tgccataaca	aaataccaca	gactgagtga	cttaacagaa	acttatttct	10380
	cacagttttg	gaggctggga	agtccaaaat	taaggtacct	gcaaggtagg	tttcaatctc	10440
	aggcctcttc	tttggcttga	aggtcttcta	actgtgtgct	cacatgacct	cttctaacaa	10500
35	gctctctggt	gtctctttt	tttttttt	cttttttgag	acagagtctc	actctgtcac	10560
	ccaggctgga	gtacagtggc	acaatctggg	ctcactgcaa	cctccaactc	ccgggttcaa	10620
	gtgattctca	tgcctcaccc	tcccgagtag	cttggatgac	aggagcccgc	taccacaccc	10680
40	agctaatttt	tgtatttta	gtagagatgg	tgtttcacta	cattggccag	gctggtctca	10740
	aactcctgac	ctcgtgatcc	acccaccttg	gcctcccaaa	gtgctgggat	tacaggtgtg	10800
	agccactgcg	cccgtcctgg	tgtcttttca	tataagggca	ctaatccaat	cagacctggg	10860
45	cccggcgcgc	aattaaccct	cactaaaggg	aacaaaagct	ggagctccac	cgcggtggcg	10920
	gccgctctag	aactagtgga	tcgggcccga	gctctcgcga	ccgggctgca	ggaattcgat	10980
	cgcgtgctag	ctgcgctgtc	ggggccaggc	cgggctccca	gtggattcgc	gggcacagac	11040
50	gcccaggacc	gcgcttccca	cgtggcggag	ggactgggga	cccgggcacc	cgtcctgccc	11100

	cttcaccttc	cagctccgcc	tecteegege	ggaccccgcc	ccgtcccgac	ccctcccggg	11160
	tccccggccc	agccccctcc	gggccctccc	agcccctccc	cttcctttcc	gcggccccgc	11220
5	cctctcctcg	cggcgcgagt	ttcaggcagc	gctgcgtcct	gctgcgcacg	tgggaagccc	11280
	tggcctggcg	gatgtgtgac	atacacgacg	ccaaaagatt	ttgttccagc	tcctgccacc	11340
	tccgctacgc	gagagattaa	ccacccacga	tggccgccaa	agtgcatgtt	gatattgagg	11400
10	ctgacagccc	attcatcaag	tctttgcaga	aggcatttcc	gtcgttcgag	gtggagtcat	11460
	tgcaggtcac	accaaatgac	catgcaaatg	ccagagcatt	ttcgcacctg	gctaccaaat	11520
	tgatcgagca	ggagactgac	aaagacacac	tcatcttgga	tatcggcagt	gcgccttcca	11580
15	ggagaatgat	gtctacgcac	aaataccact	gcgtatgccc	tatgcgcagc	gcagaagacc	11640
	ccgaaaggct	cgtatgctac	gcaaagaaac	tggcagcggc	ctccgggaag	gtgctggata	11700
	gagagatcgc	aggaaaaatc	accgacctgc	agaccgtcat	ggctacgcca	gacgctgaat	11760
20	ctcctacctt	ttgcctgcat	acagacgtca	cgtgtcgtac	ggcagccgaa	gtggccgtat	11820
	accaggacgt	gtatgctgta	catgcaccaa	catcgctgta	ccatcaggcg	atgaaaggtg	11880
	tcagaacggc	gtattggatt	gggtttgaca	ccaccccgtt	tatgtttgac	gcgctagcag	11940
25	gcgcgtatcc	aacctacgcc	acaaactggg	ccgacgagca	ggtgttacag	gccaggaaca	12000
	taggactgtg	tgcagcatcc	ttgactgagg	gaagactcgg	caaactgtcc	attctccgca	12060
	agaagcaatt	gaaaccttgc	gacacagtca	tgttctcggt	aggatctaca	ttgtacactg	12120
30	agagcagaaa	gctactgagg	agctggcact	taccctccgt	attccacctg	aaaggtaaac	12180
	aatcctttac	ctgtaggtgc	gataccatcg	tatcatgtga	agggtacgta	gttaagaaaa	12240
	tcactatgtg	ccccggcctg	tacggtaaaa	cggtagggta	cgccgtgacg	tatcacgcgg	12300
35	agggattcct	agtgtgcaag	accacagaca	ctgtcaaagg	agaaagagtc	tcattccctg	12360
	tatgcaccta	cgtcccctca	accatctgtg	atcaaatgac	tggcatacta	gcgaccgacg	12420
	tcacaccgga	ggacgcacag	aagttgttag	tgggattgaa	tcagaggata	gttgtgaacg	12480
40	gaagaacaca	gcgaaacact	aacacgatga	agaactatct	gcttccgatt	gtggccgtcg	12540
	catttagcaa	gtgggcgagg	gaatacaagg	cagaccttga	tgatgaaaaa	cctctgggtg	12600
	tccgagagag	gtcacttact	tgctgctgct	tgtgggcatt	taaaacgagg	aagatgcaca	12660
45	ccatgtacaa	gaaaccagac	acccagacaa	tagtgaaggt	gccttcagag	tttaactcgt	12720
	tcgtcatccc	gagcctatgg	tctacaggcc	tcgcaatccc	agtcagatca	cgcattaaga	12780
	tgcttttggc	caagaagacc	aagcgagagt	taatacctgt	tctcgacgcg	tcgtcagcca	12840
50	gggatgctga	acaagaggag	aaggagaggt	tggaggccga	gctgactaga	gaagcettae	12900

	cacccctcgt	ccccatcgcg	ccggcggaga	cgggagtcgt	cgacgtcgac	gttgaagaac	12960
	tagagtatca	cgcaggtgca	ggggtcgtgg	aaacacctcg	cagcgcgttg	aaagtcaccg	13020
5	cacagccgaa	cgacgtacta	ctaggaaatt	acgtagttct	gtccccgcag	accgtgctca	13080
	agagctccaa	gttggccccc	gtgcaccctc	tagcagagca	ggtgaaaata	ataacacata	13140
	acgggagggc	cggcggttac	caggtcgacg	gatatgacgg	cagggtccta	ctaccatgtg	13200
10	gatcggccat	teeggteect	gagtttcaag	ctttgagcga	gagegeeaet	atggtgtaca	13260
10	acgaaaggga	gttcgtcaac	aggaaactat	accatattgc	cgttcacgga	ccgtcgctga	13320
	acaccgacga	ggagaactac	gagaaagtca	gagctgaaag	aactgacgcc	gagtacgtgt	13380
15	tcgacgtaga	taaaaaatgc	tgcgtcaaga	gagaggaagc	gtcgggtttg	gtgttggtgg	13440
15	gagagctaac	caaccccccg	ttccatgaat	tcgcctacga	agggctgaag	atcaggccgt	13500
	cggcaccata	taagactaca	gtagtaggag	tctttggggt	tccgggatca	ggcaagtctg	13560
20	ctattattaa	gagcctcgtg	accaaacacg	atctggtcac	cagcggcaag	aaggagaact	13620
20	gccaggaaat	agttaacgac	gtgaagaagc	accgcgggaa	ggggacaagt	agggaaaaca	13680
	gtgactccat	cctgctaaac	gggtgtcgtc	gtgccgtgga	catcctatat	gtggacgagg	13740
25	ctttcgcttg	ccattccggt	actctgctgg	ccctaattgc	tcttgttaaa	cctcggagca	13800
23	aagtggtgtt	atgcggagac	cccaagcaat	gcggattctt	caatatgatg	cagcttaagg	13860
	tgaacttcaa	ccacaacatc	tgcactgaag	tatgtcataa	aagtatatcc	agacgttgca	13920
20	cgcgtccagt	cacggccatc	gtgtctacgt	tgcactacgg	aggcaagatg	cgcacgacca	13980
30	acccgtgcaa	caaacccata	atcatagaca	ccacaggaca	gaccaagccc	aagccaggag	14040
	acatcgtgtt	aacatgcttc	cgaggctggg	caaagcagct	gcagttggac	taccgtggac	14100
25	acgaagtcat	gacagcagca	gcatctcagg	gcctcacccg	caaaggggta	tacgccgtaa	14160
35	ggcagaaggt	gaatgaaaat	cccttgtatg	cccctgcgtc	ggagcacgtg	aatgtactgc	14220
	tgacgcgcac	tgaggatagg	ctggtgtgga	aaacgctggc	cggcgatccc	tggattaagg	14280
	tcctatcaaa	cattccacag	ggtaacttta	cggccacatt	ggaagaatgg	caagaagaac	14340
40	acgacaaaat	aatgaaggtg	attgaaggac	cggctgcgcc	tgtggacgcg	ttccagaaca	14400
	aagcgaacgt	gtgttgggcg	aaaagcctgg	tgcctgtcct	ggacactgcc	ggaatcagat	14460
	tgacagcaga	ggagtggagc	accataatta	cagcatttaa	ggaggacaga	gcttactctc	14520
45	cagtggtggc	cttgaatgaa	atttgcacca	agtactatgg	agttgacctg	gacagtggcc	14580
	tgttttctgc	cccgaaggtg	tccctgtatt	acgagaacaa	ccactgggat	aacagacctg	14640
	gtggaaggat	gtatggattc	aatgccgcaa	cagctgccag	gctggaagct	agacatacct	14700

Стр.: 77

	tcctgaaggg	gcagtggcat	acgggcaagc	aggcagttat	cgcagaaaga	aaaatccaac	14760
	cgctttctgt	gctggacaat	gtaattccta	tcaaccgcag	gctgccgcac	gccctggtgg	14820
5	ctgagtacaa	gacggttaaa	ggcagtaggg	ttgagtggct	ggtcaataaa	gtaagagggt	14880
	accacgtcct	gctggtgagt	gagtacaacc	tggctttgcc	tcgacgcagg	gtcacttggt	14940
	tgtcaccgct	gaatgtcaca	ggcgccgata	ggtgctacga	cctaagttta	ggactgccgg	15000
10	ctgacgccgg	caggttcgac	ttggtctttg	tgaacattca	cacggaattc	agaatccacc	15060
	actaccagca	gtgtgtcgac	cacgccatga	agctgcagat	gcttggggga	gatgcgctac	15120
	gactgctaaa	acccggcggc	atcttgatga	gagcttacgg	atacgccgat	aaaatcagcg	15180
15	aagccgttgt	ttcctcctta	agcagaaagt	tatagtatga	aagagtgttg	cgcccggatt	15240
	gtgtcaccag	caatacagaa	gtgttcttgc	tgttctccaa	ctttgacaac	ggaaagagac	15300
	cctctacgct	acaccagatg	aataccaagc	tgagtgccgt	gtatgccgga	gaagccatgc	15360
20	acacggccgg	gtgtgcacca	tcctacagag	ttaagagagc	agacatagcc	acgtgcacag	15420
	aagcggctgt	ggttaacgca	gctaacgccc	gtggaactgt	aggggatggc	gtatgcaggg	15480
	ccgtggcgaa	gaaatggccg	tcagccttta	agggagcagc	aacaccagtg	ggcacaatta	15540
25	aaacagtcat	gtgcggctcg	taccccgtca	tccacgctgt	agcgcctaat	ttctctgcca	15600
	cgactgaagc	ggaaggggac	cgcgaattgg	ccgctgtcta	ccgggcagtg	gccgccgaag	15660
	taaacagact	gtcactgagc	agcgtagcca	tecegetget	gtccacagga	gtgttcagcg	15720
30	gcggaagaga	taggctgcag	caatccctca	accatctatt	cacagcaatg	gacgccacgg	15780
50	acgctgacgt	gaccatctac	tgcagagaca	aaagttggga	gaagaaaatc	caggaagcca	15840
	ttgacatgag	gacggctgtg	gagttgctca	atgatgacgt	ggagctgacc	acagacttgg	15900
35	tgagagtgca	cccggacagc	agcctggtgg	gtcgtaaggg	ctacagtacc	actgacgggt	15960
33	cgctgtactc	gtactttgaa	ggtacgaaat	tcaaccaggc	tgctattgat	atggcagaga	16020
	tactgacgtt	gtggcccaga	ctgcaagagg	caaacgaaca	gatatgccta	tacgcgctgg	16080
40	gcgaaacaat	ggacaacatc	agatccaaat	gtccggtgaa	cgattccgat	tcatcaacac	16140
40	ctcccaggac	agtgccctgc	ctgtgccgct	acgcaatgac	agcagaacgg	atcgcccgcc	16200
	ttaggtcaca	ccaagttaaa	agcatggtgg	tttgctcatc	ttttcccctc	ccgaaatacc	16260
15	atgtagatgg	ggtgcagaag	gtaaagtgcg	agaaggttct	cctgttcgac	ccgacggtac	16320
45	cttcagtggt	tagtccgcgg	aagtatgccg	catctacgac	ggaccactca	gatcggtcgt	16380
	tacgagggtt	tgacttggac	tggaccaccg	actcgtcttc	cactgccagc	gataccatgt	16440
	cgctacccag	tttgcagtcg	tgtgacatcg	actcgatcta	cgagccaatg	gctcccatag	16500

Стр.: 78

	tagtgacggc	tgacgtacac	cctgaacccg	caggcatcgc	ggacctggcg	gcagatgtgc	16560
	accctgaacc	cgcagaccat	gtggacctcg	agaacccgat	tcctccaccg	cgcccgaaga	16620
5	gagctgcata	ccttgcctcc	cgcgcggcgg	agcgaccggt	gccggcgccg	agaaagccga	16680
	cgcctgcccc	aaggactgcg	tttaggaaca	agctgccttt	gacgttcggc	gactttgacg	16740
	agcacgaggt	cgatgcgttg	gcctccggga	ttactttcgg	agacttcgac	gacgtcctgc	16800
10	gactaggccg	cgcgggtgca	tatattttct	cctcggacac	tggcagcgga	catttacaac	16860
	aaaaatccgt	taggcagcac	aatctccagt	gcgcacaact	ggatgcggtc	caggaggaga	16920
	aaatgtaccc	gccaaaattg	gatactgaga	gggagaagct	gttgctgctg	aaaatgcaga	16980
15	tgcacccatc	ggaggctaat	aagagtcgat	accagtctcg	caaagtggag	aacatgaaag	17040
	ccacggtggt	ggacaggctc	acatcggggg	ccagattgta	cacgggagcg	gacgtaggcc	17100
	gcataccaac	atacgcggtt	cggtaccccc	gccccgtgta	ctcccctacc	gtgatcgaaa	17160
20	gattctcaag	ccccgatgta	gcaatcgcag	cgtgcaacga	atacctatcc	agaaattacc	17220
	caacagtggc	gtcgtaccag	ataacagatg	aatacgacgc	atacttggac	atggttgacg	17280
	ggtcggatag	ttgcttggac	agagcgacat	tctgcccggc	gaagctccgg	tgctacccga	17340
25	aacatcatgc	gtaccaccag	ccgactgtac	gcagtgccgt	cccgtcaccc	tttcagaaca	17400
	cactacagaa	cgtgctagcg	gccgccacca	agagaaactg	caacgtcacg	caaatgcgag	17460
	aactacccac	catggactcg	gcagtgttca	acgtggagtg	cttcaagcgc	tatgcctgct	17520
30	ccggagaata	ttgggaagaa	tatgctaaac	aacctatccg	gataaccact	gagaacatca	17580
	ctacctatgt	gaccaaattg	aaaggcccga	aagctgctgc	cttgttcgct	aagacccaca	17640
	acttggttcc	gctgcaggag	gttcccatgg	acagattcac	ggtcgacatg	aaacgagatg	17700
35	tcaaagtcac	tccagggacg	aaacacacag	aggaaagacc	caaagtccag	gtaattcaag	17760
	cagcggagcc	attggcgacc	gcttacctgt	gcggcatcca	cagggaatta	gtaaggagac	17820
	taaatgctgt	gttacgccct	aacgtgcaca	cattgtttga	tatgtcggcc	gaagactttg	17880
40	acgcgatcat	cgcctctcac	ttccacccag	gagacccggt	tctagagacg	gacattgcat	17940
70	cattcgacaa	aagccaggac	gactccttgg	ctcttacagg	tttaatgatc	ctcgaagatc	18000
	taggggtgga	tcagtacctg	ctggacttga	tcgaggcagc	ctttggggaa	atatccagct	18060
45	gtcacctacc	aactggcacg	cgcttcaagt	tcggagctat	gatgaaatcg	ggcatgtttc	18120
,,	tgactttgtt	tattaacact	gttttgaaca	tcaccatagc	aagcagggta	ctggagcaga	18180
	gactcactga	ctccgcctgt	gcggccttca	tcggcgacga	caacatcgtt	cacggagtga	18240
50	tctccgacaa	gctgatggcg	gagaggtgcg	cgtcgtgggt	caacatggag	gtgaagatca	18300

Стр.: 79

	ttgacgctgt	catgggcgaa	aaacccccat	atttttgtgg	gggattcata	gtttttgaca	18360
	gcgtcacaca	gaccgcctgc	cgtgtttcag	acccacttaa	gcgcctgttc	aagttgggta	18420
5	agccgctaac	agctgaagac	aagcaggacg	aagacaggcg	acgagcactg	agtgacgagg	18480
	ttagcaagtg	gttccggaca	ggcttggggg	ccgaactgga	ggtggcacta	acatctaggt	18540
	atgaggtaga	gggctgcaaa	agtatcctca	tagccatggc	caccttggcg	agggacatta	18600
10	aggcgtttaa	gaaattgaga	ggacctgtta	tacacctcta	cggcggtcct	agattggtgc	18660
	gttaatacac	agaattctga	ttggatctcg	aggtcgacgg	tatcgataag	cttgggctgc	18720
	aggtcgatcg	actctagagg	atcgatcccc	accatgggtc	aatcacgcta	cctcctcttt	18780
15	ttggccaccc	ttgccctcct	aaaccacctc	agtttggcca	gggtcattcc	agtctctgga	18840
	cctgccaggt	gtcttagcca	gtcccgaaac	ctgctgaaga	ccacagatga	catggtgaag	18900
	acggccagag	aaaaactgaa	acattattcc	tgcactgctg	aagacatcga	tcatgaagac	18960
20	atcacacggg	accaaaccag	cacattgaag	acctgtttac	cactggaact	acacaagaac	19020
	gagagttgcc	tggctactag	agagacttct	tccacaacaa	gagggagctg	cctgccccca	19080
	cagaagacgt	ctttgatgat	gaccctgtgc	cttggtagca	tctatgagga	cttgaagatg	19140
25	taccagacag	agttccaggc	catcaacgca	gcacttcaga	atcacaacca	tcagcagatc	19200
	attctagaca	agggcatgct	ggtggccatc	gatgagctga	tgcagtctct	gaatcataat	19260
	ggcgagactc	tgcgccagaa	acctcctgtg	ggagaagcag	acccttacag	agtgaaaatg	19320
30	aagctctgca	tcctgcttca	cgccttcagc	acccgcgtcg	tgaccatcaa	cagggtgatg	19380
	ggctatctga	gctccgcctg	agaattccgc	ccctctccct	cccccccc	taacgttact	19440
	ggccgaagcc	gcttggaata	aggccggtgt	gcgtttgtct	atatgttatt	ttccaccata	19500
35	ttgccgtctt	ttggcaatgt	gagggcccgg	aaacctggcc	ctgtcttctt	gacgagcatt	19560
33	cctaggggtc	tttcccctct	cgccaaagga	atgcaaggtc	tgttgaatgt	cgtgaaggaa	19620
	gcagttcctc	tggaagette	ttgaagacaa	acaacgtctg	tagcgaccct	ttgcaggcag	19680
40	cggaaccccc	cacctggcga	caggtgcctc	tgcggccaaa	agccacgtgt	ataagataca	19740
40	cctgcaaagg	cggcacaacc	ccagtgccac	gttgtgagtt	ggatagttgt	ggaaagagtc	19800
	aaatggctct	cctcaagcgt	attcaacaag	gggctgaagg	atgcccagaa	ggtaccccat	19860
15	tgtatgggat	ctgatctggg	gcctcggtgc	acatgcttta	catgtgttta	gtcgaggtta	19920
45	aaaaacgtct	aggccccccg	aaccacgggg	acgtggtttt	cctttgaaaa	acacgatgat	19980
	aatatggcca	caaccatggg	tcctcagaag	ctaaccatct	cctggtttgc	catcgttttg	20040
50	ctggtgtctc	cactcatggc	catgtgggag	ctggagaaag	acgtttatgt	tgtagaggtg	20100
50							

	gactggactc	ccgatgcccc	tggagaaaca	gtgaacctca	cctgtgacac	gcctgaagaa	20160
	gatgacatca	cctggacctc	agaccagaga	catggagtca	taggctctgg	aaagaccctg	20220
5	accatcactg	tcaaagagtt	tctagatgct	ggccagtaca	cctgccacaa	aggaggcgag	20280
	actctgagcc	actcacatct	gctgctccac	aagaaggaaa	atggaatttg	gtccactgaa	20340
	attttaaaaa	atttcaaaaa	caagactttc	ctgaagtgtg	aagcaccaaa	ttactccgga	20400
10	cggttcacgt	gctcatggct	ggtgcaaaga	aacatggact	tgaagttcaa	catcaagagc	20460
	agtagcagtt	cccctgactc	tcgggcagtg	acatgtggaa	tggcgtctct	gtctgcagag	20520
	aaggtcacac	tggaccaaag	ggactatgag	aagtattcag	tgtcctgcca	ggaggatgtc	20580
15	acctgcccaa	ctgccgagga	gaccctgccc	attgaactgg	cgttggaagc	acggcagcag	20640
	aataaatatg	agaactacag	caccagcttc	ttcatcaggg	acatcatcaa	accagacccg	20700
	cccaagaact	tgcagatgaa	gcctttgaag	aactcacagg	tggaggtcag	ctgggagtac	20760
20	cctgactcct	ggagcactcc	ccattcctac	ttctccctca	agttctttgt	tcgaatccag	20820
	cgcaagaaag	aaaagatgaa	ggagacagag	gaggggtgta	accagaaagg	tgcgttcctc	20880
	gtagagaaga	catctaccga	agtccaatgc	aaaggcggga	atgtctgcgt	gcaagctcag	20940
25	gatcgctatt	acaattcctc	atgcagcaag	tgggcatgtg	ttccctgcag	ggtccgatcc	21000
	tagaattcat	tgatccacta	ggatcccggg	taattaattg	aattacatcc	ctacgcaaac	21060
	gttttacggc	cgccggtggc	gcccgcgccc	ggcggcccgt	ccttggccgt	tgcaggccac	21120
30	tccggtggct	cccgtcgtcc	ccgacttcca	ggcccagcag	atgcagcaac	tcatcagcgc	21180
	cgtaaatgcg	ctgacaatga	gacagaacgc	aattgctcct	gctaggcctc	ccaaaccaaa	21240
	gaagaagaag	acaaccaaac	caaagccgaa	aacgcagccc	aagaagatca	acggaaaaac	21300
35	gcagcagcaa	aagaagaaag	acaagcaagc	cgacaagaag	aagaagaaac	ccggaaaaag	21360
	agaaagaatg	tgcatgaaga	ttgaaaatga	ctgtatcttc	gtatgcggct	agccacagta	21420
	acgtagtgtt	tccagacatg	tcgggcaccg	cactatcatg	ggtgcagaaa	atctcgggtg	21480
40	gtctgggggc	cttcgcaatc	ggcgctatcc	tggtgctggt	tgtggtcact	tgcattgggc	21540
	tccgcagata	agttagggta	ggcaatggca	ttgatatagc	aagaaaattg	aaaacagaaa	21600
	aagttagggt	aagcaatggc	atataaccat	aactgtataa	cttgtaacaa	agcgcaacaa	21660
45	gacctgcgca	attggccccg	tggtccgcct	cacggaaact	cggggcaact	catattgaca	21720
	cattaattgg	caataattgg	aagcttacat	aagcttaatt	cgacgaataa	ttggattttt	21780
	attttatttt	gcaattggtt	tttaatattt	ccaaaaaaaa	aaaaaaaaa	aaaaaaaaa	21840
50	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aactagatcc	tcgaatcaag	21900

	cttatcgata	ccgtcgacta	gagtcggggc	ggccggccgc	ttcgagcaga	catgataaga	21960
	tacattgatg	agtttggaca	aaccacaact	agaatgcagt	gaaaaaaatg	ctttatttgt	22020
5	gaaatttgtg	atgctattgc	tttatttgta	accattataa	gctgcaataa	acaagttaac	22080
	aacaacaatt	gcattcattt	tatgtttcag	gttcaggggg	aggtgtggga	ggttttttaa	22140
	agcaagtaaa	acctctacaa	atgtggtaaa	atcgataagg	atctcgacct	cgagggggg	22200
10	cccggtaccc	aattcgccct	atagtgagtc	gtattacgcg	cgcccctgca	gggggccctg	22260
	taccgggctc	tgcctgaggc	tetggetgee	cagcaggetg	aagctggggt	tgttggccag	22320
	gggcacttgt	gttcccatcg	cagcgggcac	ttgtgcctcc	caatcagatg	gcctctgaag	22380
15	gcaggcctgg	ccagaaggtg	agtgctgctg	aacgctatta	tccacttggc	tgaggggtgt	22440
	tttccccgaa	actgctgtgg	tcacagctgc	tgccgctgtg	acccatgcag	cattgttgaa	22500
	cgcagtgggc	attcttggca	cactaggccg	tctgagctgg	tggggactca	aggactgggt	22560
20	gcccagggag	ctgggacaga	acccaggcag	gggcacttct	ggtggggtgg	ccttggggct	22620
	ctgcatatgc	tggcagacag	agtcaagtct	gcccagggga	gtctggcctg	agtgtgagag	22680
	gatgggacac	tgggggctgg	aggtgaaaat	tccttgccgc	ttccccagag	ttggtgagat	22740
25	cactcccatg	ccctcgcagc	tctggtgcct	ggtgagtggg	atcattcctg	gactcagatt	22800
	gttctgaaga	agcccagttc	tgggtggcat	caagtgcttg	ctagatgggg	ggcttgcctt	22860
	gatccggcta	cacttggagg	tgacttgttc	ttggacggct	acatacagaa	agagagaagt	22920
30	ggggatgagt	tccaaaggca	tcctcgactt	cggctgtggc	caccggaggg	tagctcctgg	22980
	cccaacacgg	acttctcacc	tcccgccctt	ggctctctac	tgageteece	cctgctcccc	23040
	aattcctcgc	cattcccctc	atttctctgc	cctcagcctg	gactgcagtt	cttctgggaa	23100
35	gctgccccaa	ctccctaggt	ctgtgctcac	caagagcaga	tcacactgga	ctgaaatgcc	23160
	agctgatttg	tctcttcaag	aaaattggaa	gctcctggag	gtcagggtcc	atgtctgctt	23220
	ttacactcag	tgctctgtat	gcaggcctgg	cactgcccac	cctttgacag	gtggtgcata	23280
40	ttttgtagaa	ggaaggaagg	ggccaggtgg	ggtgggctgg	gctggtggcg	ggagctagct	23340
	cagcctctta	gattctctac	ccgatggatg	tgacctggga	cagcaagtga	gtgtggtgag	23400
	tgagtgcaga	cggtgctttg	ttcccctctt	gtctcatagc	ctagatggcc	tctgagccca	23460
45	gatctggggc	tcagacaaca	tttgttcaac	tgaacggtaa	tgggtttcct	ttctgaaggc	23520
	tgaaatctgg	gagctgacat	tctggactcc	ctgagttctg	aagagcctgg	ggatggagag	23580
	acacggagca	gaagatggaa	ggtagagtcc	caggtgccta	agatggggaa	tacatctccc	23640
50	ctcattgtca	tgagagtcca	ctctagctga	tatctactgt	ggccaatatc	taccggtact	23700

	tttttggggt	ggacactgag	tcatgcagca	gtcttatggt	ttacccaagg	tcaggtaggg	23760
	gagacagtgc	agtcagagca	caagcccagt	gtgtctgacc	cacccaagaa	tccatgctcg	23820
5	tatctacaaa	aatgatttt	tctcttgtaa	tggtgcctag	gttcttttat	tatcatggca	23880
	tgtgtatgtt	tttcaactag	gttacaatct	ggccttataa	ggttaacctc	ctggaggcca	23940
	ccagccttcc	tgaaacttgt	ctgtgctgtc	cctgcaactg	gagtgtgcct	gatgtggcac	24000
10	tccagcctgg	acaagtggga	cacagactcc	gctgttatca	ggcccaaaga	tgtcttccat	24060
	aagaccagaa	gagcaatggt	gtagaggtgt	catgggctac	aataaagatg	ctgacctcct	24120
	gtctgagggc	aagcagcctc	ttctggccct	cagacaaatg	ctgagtgttc	ccaagactac	24180
15	cctcggcctg	gtccaatctc	atcccactgg	tgcgtaaggg	ttgctgaact	catgacttct	24240
	tggctagcct	gcaacctcca	cggagtggga	actacatcag	gcattttgct	aactgctgta	24300
	tcctaggcca	ataaatgttg	atcacattta	tagctgccat	ggtagggtgg	ggacccctgc	24360
20	tatctatctg	tggaggctct	gggagcccct	gacacaaact	ttctgaagca	gagcctcccc	24420
	aacccctttt	ccattcccta	tacctgacag	atggcccagg	aacccattag	aaatggaagg	24480
	tcactgcagc	agtatgtgaa	tgtgcgtgtg	ggagaagggc	aggatcagag	ccctgggggt	24540
25	gtggcagccc	ccaagtgatt	ctaatccaga	tcctagggtt	gtttccctgt	cccattgaaa	24600
20	tagctgcttt	aaggggcctg	actcagggaa	atcagtctct	tgaattaagt	ggtgattttg	24660
	gagtcattta	gaccaggcct	tcaattggga	tectgetett	agagttggat	gaattattta	24720
30	actgattttc	agatctcctc	tttctcaatg	ctttcagaag	cacagtaact	gcttactctg	24780
	aaatgaattc	tcaccccact	tccacatatg	caccccttgc	ccaccccttt	gggaacactg	24840
	gccttaactg	cttaccttca	aatggactca	tctgttggga	gatatatgca	ttctgccgtt	24900
35	caggggtcat	tgccataaga	cctgatctct	gttcctcttg	ctaaacagaa	gatgaaaaag	24960
33	acaaattaga	ttacagctac	caattaataa	ttagccttag	gatcgctgcg	tggggaccta	25020
	ggacttggct	ttggtgcagc	agaaagcatg	aataaacaca	ccagcataca	ctcgcatgca	25080
40	tgccccaccc	tctcgagcaa	aattccacag	gtataaataa	agtaagattc	tgcacctggg	25140
40	ttaaaaacac	aactgcaaca	gcatagaatg	gggcaggaga	gacagaactt	aatagcaaga	25200
	gcacacagaa	aaaagtttta	ggcattttgg	atgtccatct	gctcaggatg	ggtcagcagt	25260
45	gagatgcggt	caccaaaaga	acaaatgtaa	cattaggctg	cattaataga	agcagagtat	25320
43	gtagaaggag	ggaggtgaca	gtcctatgct	aactctgcct	tggccagact	atacccacag	25380
	gagtctgggc	atgccagtct	cagggagacc	cagacagact	ggctgcattc	agaggatggt	25440
50	aagtaatgag	agtggggatt	ggacttcaaa	ctacccagac	aaagaatggc	tgagcaagcc	25500
50							

	aaggatgctg	tggctggggc	agagcagact	gtgggctatg	tagtggtgga	tacctagcct	25560
	ctgcagggct	gtcataggga	aaggacattg	agaagaggac	tgaggcttgt	tcctggtggt	25620
5	cctggcatga	acggccagat	gatcacatgg	tcaggtggac	acagteteca	acactgggag	25680
	tagccaaaca	cttactgcca	acctcccgcc	cttctcctga	ctagttgcag	cataggcaat	25740
	tgggaggagc	ttcctgtctc	catctgaaag	ctggctgggt	gggcaggggg	aggagcgagc	25800
10	caagtttcaa	ggccgcagtt	tcagcactca	gtctgggatc	ggctcaagga	gcaaagggga	25860
	agaacatagc	caggagggaa	taacatgaag	gcccccagac	ccagaaaagg	catgacttgc	25920
	tctgagaccc	tcagccggtt	ggtgtcaggt	tgtgactcgg	atccaggtct	gactcccagt	25980
15	ccagtgcttg	aagcctcacc	ccacacagtg	aggggagccc	ggccatctct	gctcaactgc	26040
	tgccatctct	ctccccttct	caaccaccaa	ggcagctctg	tctgggagca	caagctccaa	26100
	gtccactttc	tggtctgtgt	ccccccaag	atgccagagg	acttgcctct	acaacacggg	26160
20	ctgcccgtgc	agtgcctgct	tttccagcaa	agggcttctg	ggaacccttc	tctgcactca	26220
	gtggggctgg	tgggagtggg	gcggggtagc	gacccagtgc	ttgggactgt	gcccagctct	26280
	caggcctggc	agcagttcct	ggccttggtt	cctgccaagg	cagagaggac	aaacacatgg	26340
25	caccgggaag	actacaccag	aagcgattcc	accagactgg	ggtttgcttt	tctatcccgc	26400
	ccttagcctg	cttcctgtcc	tggtccctgc	ctcccctcc	actggagctg	ccgtgtgggc	26460
	agtgaggggc	tgtttctcag	ctgccctatg	gagctgccct	ctccctgcca	aagcattggc	26520
30	aaggcggcaa	aaaaraaaaa	tggggatggg	gggtgggatc	tgccttctca	agctctcatt	26580
	atactgagca	cgtctcaccc	attattttat	gtcatctagc	aacaccccat	gtggacactg	26640
	aggagcatgg	gggtcacatg	accactgccc	aaggccacac	catccggatc	tgcctgagat	26700
35	ggtcagggtt	ggcagccatt	tctgaaggca	gtcctttcgc	tttggctctt	cttgtaccag	26760
	tctcaggaca	tcagggcaga	agatctacag	tccccagctt	actgatgtga	cagcagaggc	26820
	tcagagaggt	taaatgactt	gcccaaggtg	acacggctaa	gaagtacagt	atctcctaac	26880
40	tgcagaccag	gtgcttctgc	tgcttctggg	gacagattcc	tgcgtggctg	gctaggtcta	26940
40	aacggtcctt	aactccatcc	ccaccggttg	ctgcattagt	ttcatcaaat	aacacagttg	27000
	tacagaggta	ggggttcagg	ggcaggggca	gatggaggct	ggagagtgtg	actaaggaaa	27060
45	cagcagggga	agtgcggtaa	agtccgaagg	gagggacgga	aagagaaagc	caagcccagg	27120
70	ggcgtgccag	acaaaaggaa	aggccacgcc	ggggcagggc	aggcttcagc	gggtgctggg	27180
	gcgtcttcat	cccgggaagc	acacattcca	gaggaccccg	gagtctaatg	gaaaagctgg	27240
50	ccagcctatc	actatggaaa	ctgccaaggc	cacacagcgc	tgctgacacc	cagcctgggt	27300

```
gccggtggcc agctctgcag gatcttcaag tctggggtgc caccagcaag cgacggtcct 27360
      ccatqqqctc ttcaccttac qqcaqtqtcc agaqqcaccq ccaqtcctct qctcctatqc
                                                                          27420
      tggtcctgct gtccctggca aaaggagcca gagcattctc tccaggcctc ccgaggaggc
5
      tgcttccttt qttttqcaqa tggaqqctcc catcctttqt tctqaatcaa tgtqctccaa
                                                                          27540
      agataagccc caagaaaaca gttgttgcct tttgacactg acaattagaa tcgttggaaa
                                                                          27600
      atggagaaaa caggaaatgg caaatggttt cagtgaccag gaggaaaccg tgcctgaaag
                                                                          27660
10
      ttgctgctta gtgactggga cactcgcttt ctgctctctt atgaaggaca gcctaggccg
                                                                          27720
      tgtggccttt tataaacaaa gctatgaagg ggtcgtcaaa ttttctaggg ctgcaactgt
                                                                          27780
      ggcactacgt cctgttgtgc caggtgacac tgacaagcag cactgagttc tatgcaagcc
                                                                          27840
15
      caggtgtgct tctctcatgg tgacccccag agaactaagg cccagctctt cctctgtcac
                                                                          27900
      acccctccca gcccccactg tcagacaagg gaccacattc acagacagtc tcagccaaga
                                                                          27960
      tggcaacctt ggaagteetg gggatgeett tetagaaget egegeeeeta ggggeeggee
                                                                          28020
20
      ttaattaaat caagcttatc gataccgtcg agacctcgag ggggggcatc actccgccct
                                                                          28080
      aaaacctacg tcacccgccc cgttcccacg ccccgcgcca cgtcacaaac tccacccct
      cattatcata ttggcttcaa tccaaaataa ggtatattat tgatgatgtt t
                                                                          28191
25
      <210> 11
      <211> 5844
      <212> ДНК
      <213> Плазмида
30
      <220>
      <221> MCS
      <222>
            (1)..(25)
      <223> Сайт множественного клонирования
35
      <220>
            Энхансер АРБ
      <221>
      <222>
             (26)..(820)
      <223>
            Энхансер АРБ
40
      <220>
      <221>
            AFP pro
      <222>
             (828)..(1054)
      <223>
            Промотор AFP
      <400>
      ggtaccgagc tcttacgcgt gctagaattc gcctgtcata cagctaataa ttgaccataa
                                                                             60
45
      gacaattaga tttaaattag ttttgaatct ttctaatacc aaagttcagt ttactgttcc
                                                                            120
      atgttgcttc tgagtggctt cacagactta tgaaaaagta aacggaatca gaattacatc
                                                                            180
```

	aatgcaaaag	cattgctgtg	aactctgtac	ttaggactaa	actttgagca	ataacacaca	240
	tagattgagg	attgtttgct	gttagcatac	aaactctggt	tcaaagctcc	tctttattgc	300
5	ttgtcttgga	aaatttgctg	ttcttcatgg	tttctctttt	cactgctatc	tatttttctc	360
	aaccactcac	atggctacaa	taactgtctg	caagcttatg	attcccaaat	atctatctct	420
	agcctcaatc	ttgttccaga	agataaaaag	tagtattcaa	atgcacatca	acgtctccac	480
10	ttggagggct	taaagacgtt	tcaacataca	aaccggggag	ttttgcctgg	aatgtttcct	540
	aaaatgtgtc	ctgtagcaca	tagggtcctc	ttgttcctta	aaatctaatt	acttttagcc	600
	cagtgctcat	cccacctatg	gggagatgag	agtgaaaagg	gagcctgatt	aataattaca	660
15	ctaagtcaat	aggcatagag	ccaggactgt	ttgggtaaac	tggtcacttt	atcttaaact	720
	aaatatatcc	aaaactgaac	atgtacttag	ttactaagtc	tttgacttta	tctcattcat	780
	accactcagc	tttatccagg	ccacttattt	gacagtctag	ctagccccta	gattttctgc	840
20	cccaaagagc	tctgtgtcct	tgaacataaa	atacaaataa	ccgctatgct	gttaattatt	900
20	ggcaaatgtc	ccattttcaa	cctaaggaaa	taccataaag	taacagatat	accaacaaaa	960
	ggttactagt	taacaggcat	tgcctgaaaa	gagtataaaa	gaatttcagc	atgattttcc	1020
25	atattgtgct	tccaccactg	ccaataacag	gatcgggctc	gagatctgcg	atctaagtaa	1080
23	gcttggcatt	ccggtactgt	tggtaaagcc	accatggaag	acgccaaaaa	cataaagaaa	1140
	ggcccggcgc	cattctatcc	gctggaagat	ggaaccgctg	gagagcaact	gcataaggct	1200
20	atgaagagat	acgccctggt	tcctggaaca	attgctttta	cagatgcaca	tatcgaggtg	1260
30	gacatcactt	acgctgagta	cttcgaaatg	tccgttcggt	tggcagaagc	tatgaaacga	1320
	tatgggctga	atacaaatca	cagaatcgtc	gtatgcagtg	aaaactctct	tcaattcttt	1380
	atgccggtgt	tgggcgcgtt	atttatcgga	gttgcagttg	cgcccgcgaa	cgacatttat	1440
35	aatgaacgtg	aattgctcaa	cagtatgggc	atttcgcagc	ctaccgtggt	gttcgtttcc	1500
	aaaaaggggt	tgcaaaaaat	tttgaacgtg	caaaaaaagc	tcccaatcat	ccaaaaaatt	1560
	attatcatgg	attctaaaac	ggattaccag	ggatttcagt	cgatgtacac	gttcgtcaca	1620
40	tctcatctac	ctcccggttt	taatgaatac	gattttgtgc	cagagtcctt	cgatagggac	1680
	aagacaattg	cactgatcat	gaactcctct	ggatctactg	gtctgcctaa	aggtgtcgct	1740
	ctgcctcata	gaactgcctg	cgtgagattc	tcgcatgcca	gagatcctat	ttttggcaat	1800
45	caaatcattc	cggatactgc	gattttaagt	gttgttccat	tccatcacgg	ttttggaatg	1860
	tttactacac	tcggatattt	gatatgtgga	tttcgagtcg	tcttaatgta	tagatttgaa	1920
	gaagagctgt	ttctgaggag	ccttcaggat	tacaagattc	aaagtgcgct	gctggtgcca	1980

Стр.: 86

	accctattct	ccttcttcgc	caaaagcact	ctgattgaca	aatacgattt	atctaattta	2040
	cacgaaattg	cttctggtgg	cgctcccctc	tctaaggaag	tcggggaagc	ggttgccaag	2100
5	aggttccatc	tgccaggtat	caggcaagga	tatgggctca	ctgagactac	atcagctatt	2160
	ctgattacac	ccgaggggga	tgataaaccg	ggcgcggtcg	gtaaagttgt	tccattttt	2220
	gaagcgaagg	ttgtggatct	ggataccggg	aaaacgctgg	gcgttaatca	aagaggcgaa	2280
10	ctgtgtgtga	gaggtcctat	gattatgtcc	ggttatgtaa	acaatccgga	agcgaccaac	2340
	gccttgattg	acaaggatgg	atggctacat	tctggagaca	tagcttactg	ggacgaagac	2400
	gaacacttct	tcatcgttga	ccgcctgaag	tctctgatta	agtacaaagg	ctatcaggtg	2460
15	gctcccgctg	aattggaatc	catcttgctc	caacacccca	acatcttcga	cgcaggtgtc	2520
	gcaggtcttc	ccgacgatga	cgccggtgaa	cttcccgccg	ccgttgttgt	tttggagcac	2580
	ggaaagacga	tgacggaaaa	agagatcgtg	gattacgtcg	ccagtcaagt	aacaaccgcg	2640
20	aaaaagttgc	gcggaggagt	tgtgtttgtg	gacgaagtac	cgaaaggtct	taccggaaaa	2700
	ctcgacgcaa	gaaaaatcag	agagatcctc	ataaaggcca	agaagggcgg	aaagatcgcc	2760
	gtgtaattct	agagtcgggg	cggccggccg	cttcgagcag	acatgataag	atacattgat	2820
25	gagtttggac	aaaccacaac	tagaatgcag	tgaaaaaaat	gctttatttg	tgaaatttgt	2880
	gatgctattg	ctttatttgt	aaccattata	agctgcaata	aacaagttaa	caacaacaat	2940
	tgcattcatt	ttatgtttca	ggttcagggg	gaggtgtggg	aggttttta	aagcaagtaa	3000
30	aacctctaca	aatgtggtaa	aatcgataag	gatccgtcga	ccgatgccct	tgagagcctt	3060
	caacccagtc	agctccttcc	ggtgggcgcg	gggcatgact	atcgtcgccg	cacttatgac	3120
	tgtcttcttt	atcatgcaac	tcgtaggaca	ggtgccggca	gcgctcttcc	gcttcctcgc	3180
35	tcactgactc	gctgcgctcg	gtcgttcggc	tgcggcgagc	ggtatcagct	cactcaaagg	3240
	cggtaatacg	gttatccaca	gaatcagggg	ataacgcagg	aaagaacatg	tgagcaaaag	3300
	gccagcaaaa	ggccaggaac	cgtaaaaagg	ccgcgttgct	ggcgtttttc	cataggctcc	3360
40	gcccccctga	cgagcatcac	aaaaatcgac	gctcaagtca	gaggtggcga	aacccgacag	3420
	gactataaag	ataccaggcg	tttccccctg	gaagctccct	cgtgcgctct	cctgttccga	3480
	ccctgccgct	taccggatac	ctgtccgcct	ttctcccttc	gggaagcgtg	gcgctttctc	3540
45	aatgctcacg	ctgtaggtat	ctcagttcgg	tgtaggtcgt	tcgctccaag	ctgggctgtg	3600
15	tgcacgaacc	ccccgttcag	cccgaccgct	gcgccttatc	cggtaactat	cgtcttgagt	3660
	ccaacccggt	aagacacgac	ttatcgccac	tggcagcagc	cactggtaac	aggattagca	3720
50	gagcgaggta	tgtaggcggt	gctacagagt	tcttgaagtg	gtggcctaac	tacggctaca	3780
50							

	ctagaaggac	agtatttggt	atctgcgctc	tgctgaagcc	agttaccttc	ggaaaaagag	3840
	ttggtagctc	ttgatccggc	aaacaaacca	ccgctggtag	cggtggtttt	tttgtttgca	3900
5	agcagcagat	tacgcgcaga	aaaaaaggat	ctcaagaaga	tcctttgatc	ttttctacgg	3960
	ggtctgacgc	tcagtggaac	gaaaactcac	gttaagggat	tttggtcatg	agattatcaa	4020
	aaaggatctt	cacctagatc	cttttaaatt	aaaaatgaag	ttttaaatca	atctaaagta	4080
10	tatatgagta	aacttggtct	gacagttacc	aatgcttaat	cagtgaggca	cctatctcag	4140
	cgatctgtct	atttcgttca	tccatagttg	cctgactccc	cgtcgtgtag	ataactacga	4200
	tacgggaggg	cttaccatct	ggccccagtg	ctgcaatgat	accgcgagac	ccacgctcac	4260
15	cggctccaga	tttatcagca	ataaaccagc	cagccggaag	ggccgagcgc	agaagtggtc	4320
	ctgcaacttt	atccgcctcc	atccagtcta	ttaattgttg	ccgggaagct	agagtaagta	4380
	gttcgccagt	taatagtttg	cgcaacgttg	ttgccattgc	tacaggcatc	gtggtgtcac	4440
20	gctcgtcgtt	tggtatggct	tcattcagct	ccggttccca	acgatcaagg	cgagttacat	4500
	gatcccccat	gttgtgcaaa	aaagcggtta	gctccttcgg	tcctccgatc	gttgtcagaa	4560
	gtaagttggc	cgcagtgtta	tcactcatgg	ttatggcagc	actgcataat	tctcttactg	4620
25	tcatgccatc	cgtaagatgc	ttttctgtga	ctggtgagta	ctcaaccaag	tcattctgag	4680
	aatagtgtat	gcggcgaccg	agttgctctt	gcccggcgtc	aatacgggat	aataccgcgc	4740
	cacatagcag	aactttaaaa	gtgctcatca	ttggaaaacg	ttcttcgggg	cgaaaactct	4800
30	caaggatctt	accgctgttg	agatccagtt	cgatgtaacc	cactcgtgca	cccaactgat	4860
	cttcagcatc	ttttactttc	accagcgttt	ctgggtgagc	aaaaacagga	aggcaaaatg	4920
	ccgcaaaaaa	gggaataagg	gcgacacgga	aatgttgaat	actcatactc	ttcctttttc	4980
35	aatattattg	aagcatttat	cagggttatt	gtctcatgag	cggatacata	tttgaatgta	5040
	tttagaaaaa	taaacaaata	ggggttccgc	gcacatttcc	ccgaaaagtg	ccacctgacg	5100
	cgccctgtag	cggcgcatta	agcgcggcgg	gtgtggtggt	tacgcgcagc	gtgaccgcta	5160
40	cacttgccag	cgccctagcg	cccgctcctt	tegetttett	cccttccttt	ctcgccacgt	5220
70	tegeeggett	tccccgtcaa	gctctaaatc	gggggctccc	tttagggttc	cgatttagtg	5280
	ctttacggca	cctcgacccc	aaaaaacttg	attagggtga	tggttcacgt	agtgggccat	5340
45	cgccctgata	gacggttttt	cgccctttga	cgttggagtc	cacgttcttt	aatagtggac	5400
7 .√	tcttgttcca	aactggaaca	acactcaacc	ctatctcggt	ctattctttt	gatttataag	5460
	ggattttgcc	gatttcggcc	tattggttaa	aaaatgagct	gatttaacaa	aaatttaacg	5520
50	cgaattttaa	caaaatatta	acgtttacaa	tttcccattc	gccattcagg	ctgcgcaact	5580
50							

	gttgggaagg	gcgatcggtg	cgggcctctt	cgctattacg	ccagcccaag	ctaccatgat	5640
	aagtaagtaa	tattaaggta	cgggaggtac	ttggagcggc	cgcaataaaa	tatctttatt	5700
5	ttcattacat	ctgtgtgttg	gttttttgtg	tgaatcgata	gtactaacat	acgctctcca	5760
	tcaaaacaaa	acgaaacaaa	acaaactagc	aaaataggct	gtccccagtg	caagtgcagg	5820
	tgccagaaca	tttctctatc	gata				5844
10	<210> 12 <211> 2334 <212> ДНК <213> Мив						
15	<400> 12	cggtatcgat	aagettagge	tacaaatcaa	tagaatataa	aggatogato	60
							120
		gtcaatcacg					180
20		ccagggtcat					
20		agaccacaga					240
		ctgaagacat					300
	aagacctgtt	taccactgga	actacacaag	aacgagagtt	gcctggctac	tagagagact	360
25	tcttccacaa	caagagggag	ctgcctgccc	ccacagaaga	cgtctttgat	gatgaccctg	420
	tgccttggta	gcatctatga	ggacttgaag	atgtaccaga	cagagttcca	ggccatcaac	480
	gcagcacttc	agaatcacaa	ccatcagcag	atcattctag	acaagggcat	gctggtggcc	540
30	atcgatgagc	tgatgcagtc	tctgaatcat	aatggcgaga	ctctgcgcca	gaaacctcct	600
	gtgggagaag	cagaccctta	cagagtgaaa	atgaagctct	gcatcctgct	tcacgccttc	660
	agcacccgcg	tcgtgaccat	caacagggtg	atgggctatc	tgagctccgc	ctgagaattc	720
35	cgcccctctc	cctcccccc	ccctaacgtt	actggccgaa	gccgcttgga	ataaggccgg	780
	tgtgcgtttg	tctatatgtt	attttccacc	atattgccgt	cttttggcaa	tgtgagggcc	840
	cggaaacctg	gccctgtctt	cttgacgagc	attcctaggg	gtctttcccc	tctcgccaaa	900
40	ggaatgcaag	gtctgttgaa	tgtcgtgaag	gaagcagttc	ctctggaagc	ttcttgaaga	960
	caaacaacgt	ctgtagcgac	cctttgcagg	cagcggaacc	ccccacctgg	cgacaggtgc	1020
	ctctgcggcc	aaaagccacg	tgtataagat	acacctgcaa	aggcggcaca	accccagtgc	1080
45	cacgttgtga	gttggatagt	tgtggaaaga	gtcaaatggc	tctcctcaag	cgtattcaac	1140
	aaggggctga	aggatgccca	gaaggtaccc	cattgtatgg	gatctgatct	ggggcctcgg	1200
	tgcacatgct	ttacatgtgt	ttagtcgagg	ttaaaaaacg	tctaggcccc	ccgaaccacg	1260
50	gggacgtggt	tttcctttga	aaaacacgat	gataatatgg	ccacaaccat	gggtcctcag	1320

	aagctaacca	tctcctggtt	tgccatcgtt	ttgctggtgt	ctccactcat	ggccatgtgg	1380
	gagctggaga	aagacgttta	tgttgtagag	gtggactgga	ctcccgatgc	ccctggagaa	1440
5	acagtgaacc	tcacctgtga	cacgcctgaa	gaagatgaca	tcacctggac	ctcagaccag	1500
	agacatggag	tcataggctc	tggaaagacc	ctgaccatca	ctgtcaaaga	gtttctagat	1560
	gctggccagt	acacctgcca	caaaggaggc	gagactctga	gccactcaca	tctgctgctc	1620
10	cacaagaagg	aaaatggaat	ttggtccact	gaaattttaa	aaaatttcaa	aaacaagact	1680
	ttcctgaagt	gtgaagcacc	aaattactcc	ggacggttca	cgtgctcatg	gctggtgcaa	1740
	agaaacatgg	acttgaagtt	caacatcaag	agcagtagca	gttcccctga	ctctcgggca	1800
15	gtgacatgtg	gaatggcgtc	tctgtctgca	gagaaggtca	cactggacca	aagggactat	1860
	gagaagtatt	cagtgtcctg	ccaggaggat	gtcacctgcc	caactgccga	ggagaccctg	1920
	cccattgaac	tggcgttgga	agcacggcag	cagaataaat	atgagaacta	cagcaccagc	1980
20	ttcttcatca	gggacatcat	caaaccagac	ccgcccaaga	acttgcagat	gaagcctttg	2040
	aagaactcac	aggtggaggt	cagctgggag	taccctgact	cctggagcac	tccccattcc	2100
	tacttctccc	tcaagttctt	tgttcgaatc	cagcgcaaga	aagaaaagat	gaaggagaca	2160
25	gaggagggt	gtaaccagaa	aggtgcgttc	ctcgtagaga	agacatctac	cgaagtccaa	2220
	tgcaaaggcg	ggaatgtctg	cgtgcaagct	caggatcgct	attacaattc	ctcatgcagc	2280
	aagtgggcat	gtgttccctg	cagggtccga	tcctagaatt	cattgatcca	ctag	2334
30	<210> 13 <211> 2336 <212> ДНК <213> Челон						
35	<400> 13 ctgcagacca	tgggtccagc	gcgcagcctc	ctccttgtgg	ctaccctggt	cctcctggac	60
					acccaggaat		120
	cttcaccact	cccaaaacct	gctgagggcc	gtcagcaaca	tgctccagaa	ggccagacaa	180
40					atgaagatat		240
	aaaaccagca	cagtggaggc	ctgtttacca	ttggagttaa	ccaagaatga	gagttgccta	300
	aattccagag	agacctcttt	cataactaat	gggagttgcc	tggcctccag	aaagacctct	360
45	tttatgatgg	ccctgtgcct	tagtagtatt	tatgaagact	tgaagatgta	ccaggtggag	420
	ttcaagacca	tgaatgcaaa	gcttctgatg	gatcctaaga	ggcagatctt	tctagatcaa	480
	aacatgctgg	cagttattga	tgagctgatg	caggccctga	atttcaacag	tgagactgtg	540

	ccacaaaaat	cctcccttga	agaaccggat	ttttataaaa	ctaaaatcaa	gctctgcata	600
	cttcttcatg	ctttcagaat	tcgggcagtg	actattgata	gagtgacgag	ctatctgaat	660
5	gcttcctaac	tgcagaaggg	cgaattccag	cacactggcg	gccgttacta	ggggctgcag	720
	gaattccgcc	ccccctctc	cctcccccc	ccctaacgtt	actggccgaa	gccgcttgga	780
	ataaggccgg	tgtgcgtttg	tctatatgtt	attttccacc	atattgccgt	cttttggcaa	840
10	tgtgagggcc	cggaaacctg	gccctgtctt	cttgacgagc	attcctaggg	gtctttcccc	900
	tctcgccaaa	ggaatgcaag	gtctgttgaa	tgtcgtgaag	gaagcagttc	ctctggaagc	960
	ttcttgaaga	caaacaacgt	ctgtagcgac	cctttgcagg	cagcggaacc	ccccacctgg	1020
15	cgacaggtgc	ctctgcggcc	aaaagccacg	tgtataagat	acacctgcaa	agcggcacaa	1080
	ccccagtgcc	acgttgtgag	ttggatagtt	gtggaaagag	tcaaatggct	ctcctcaagc	1140
	gtattcaaca	aggggctgaa	ggatgcccag	aaggtacccc	attgtatggg	atctgatctg	1200
20	gggcctcggt	gcacatgctt	tacatgtgtt	tagtcgaggt	taaaaaaacg	tctaggcccc	1260
	ccgaaccacg	gggacgtggt	tttcctttga	aaaacacgat	gataatatgg	ccacaaccat	1320
	gggtcaccag	cagttggtca	tctcttggtt	ttccctggtt	tttctggcat	ctcccctcgt	1380
25	ggccatatgg	gaactgaaga	aagatgttta	tgtcgtagaa	ttggattggt	atccggatgc	1440
20	ccctggagaa	atggtggtcc	tcacctgtga	cacccctgaa	gaagatggta	tcacctggac	1500
	cttggaccag	agcagtgagg	tettaggete	tggcaaaacc	ctgaccatcc	aagtcaaaga	1560
30	gtttggagat	gctggccagt	acacctgtca	caaaggaggc	gaggttctaa	gccattcgct	1620
50	cctgctgctt	cacaaaaagg	aagatggaat	ttggtccact	gatattttaa	aggaccagaa	1680
	agaacccaaa	aataagacct	ttctaagatg	cgaggccaag	aattattctg	gacgtttcac	1740
35	ctgctggtgg	ctgacgacaa	tcagtactga	tttgacattc	agtgtcaaaa	gcagcagagg	1800
33	ctcttctgac	ccccaagggg	tgacgtgcgg	agctgctaca	ctctctgcag	agagagtcag	1860
	aggggacaac	aaggagtatg	agtactcagt	ggagtgccag	gaggacagtg	cctgcccagc	1920
40	tgctgaggag	agtctgccca	ttgaggtcat	ggtggatgcc	gttcacaagc	tcaagtatga	1980
40	aaactacacc	agcagcttct	tcatcaggga	catcatcaaa	cctgacccac	ccaagaactt	2040
	gcagctgaag	ccattaaaga	attctcggca	ggtggaggtc	agctgggagt	accctgacac	2100
45	ctggagtact	ccacattcct	acttctccct	gacattctgc	gttcaggtcc	agggcaagag	2160
7.5	caagagagaa	aagaaagata	gagtcttcac	ggacaagacc	tcagccacgg	tcatctgccg	2220
	caaaaatgcc	agcattagcg	tgcgggccca	ggaccgctac	tatagctcat	cttggagcga	2280
50	atgggcatct	gtgccctgca	gttagatatc	aagcttatcg	ataccgtcga	cctcga	2336
50							

<210> 14 <211> 3057 <212> ДНК

50

<213> Escherichia coli

5 <400> atggatcccg tcgttttaca acgtcgtgac tgggaaaacc ctggcgttac ccaacttaat 60 cgccttgcag cacatccccc tttcqccaqc tggcqtaata gcqaaqaqqc ccqcaccqat 120 egecetteee aacagttgeg cageetgaat ggegaatgge getttgeetg gttteeggea 180 10 ccagaagcgg tgccggaaag ctggctggag tgcgatcttc ctgaggccga tactgtcgtc 240 gtcccctcaa actggcagat gcacggttac gatgcgccca tctacaccaa cgtaacctat 300 cccattacgg tcaatccgcc gtttgttccc acggagaatc cgacgggttg ttactcgctc 360 15 acatttaatg ttgatgaaag ctggctacag gaaggccaga cgcgaattat ttttgatggc 420 gttaactcgg cgtttcatct gtggtgcaac gggcgctggg tcggttacgg ccaqqacaqt 480 cgtttgccgt ctgaatttga cctgagcgca tttttacgcg ccggagaaaa ccgcctcgcg 540 20 qtqatqqtqc tqcqttqqaq tqacqqcaqt tatctqqaaq atcaqqatat qtqqcqqatq 600 ageggcattt teegtgacgt etegttgetg cataaacega etacacaaat cagegattte 660 catgttgcca ctcgctttaa tgatgatttc agccgcgctg tactggaggc tgaagttcag 720 25 atgtgcggcg agttgcgtga ctacctacgg gtaacagttt ctttatggca gggtgaaacg 780 caggicgcca geggeacege geettiegge ggigaaatta tegatgageg tiggiggitat 840 900 gccgatcgcg tcacactacg tctgaacgtc gaaaacccga aactgtggag cgccgaaatc 30 ccgaatctct atcgtgcggt ggttgaactg cacaccgccg acggcacgct gattgaagca 960 gaagcctgcg atgtcggttt ccgcgaggtg cggattgaaa atggtctgct gctgctgaac 1020 ggcaagccgt tgctgattcg aggcgttaac cgtcacgagc atcatcctct gcatggtcag 1080 35 gtcatggatg agcagacgat ggtgcaggat atcctgctga tgaagcagaa caactttaac 1140 gccgtgcgct gttcgcatta tccgaaccat ccgctgtggt acacgctgtg cgaccgctac 1200 ggcctgtatg tggtggatga agccaatatt gaaacccacg gcatggtgcc aatgaatcgt 1260 40 ctgaccgatg atccgcgctg gctaccggcg atgagcgaac gcgtaacgcg aatggtgcag 1320 cgcgatcgta atcacccgag tgtgatcatc tggtcgctgg ggaatgaatc aggccacggc 1380 getaateacg aegegetgta tegetggate aaatetgteg ateetteeeg eeeggtgeag 1440 45 tatgaaggcg geggageega caccaeggee acegatatta tttgeeegat gtaegegege 1500 gtggatgaag accagccctt cccggctgtg ccgaaatggt ccatcaaaaa atggctttcg 1560 ctacctggag agacgcgccc gctgatcctt tgcgaatacg cccacgcgat gggtaacagt 1620

Стр.: 92

	cttggcggtt	tcgctaaata	ctggcaggcg	tttcgtcagt	atccccgttt	acagggcggc	1680
	ttcgtctggg	actgggtgga	tcagtcgctg	attaaatatg	atgaaaacgg	caacccgtgg	1740
5	tcggcttacg	gcggtgattt	tggcgatacg	ccgaacgatc	gccagttctg	tatgaacggt	1800
	ctggtctttg	ccgaccgcac	gccgcatcca	gcgctgacgg	aagcaaaaca	ccagcagcag	1860
	tttttccagt	tccgtttatc	cgggcaaacc	atcgaagtga	ccagcgaata	cctgttccgt	1920
10	catagcgata	acgageteet	gcactggatg	gtggcgctgg	atggtaagcc	gctggcaagc	1980
	ggtgaagtgc	ctctggatgt	cgctccacaa	ggtaaacagt	tgattgaact	gcctgaacta	2040
	ccgcagccgg	agagcgccgg	gcaactctgg	ctcacagtac	gcgtagtgca	accgaacgcg	2100
15	accgcatggt	cagaagccgg	gcacatcagc	gcctggcagc	agtggcgtct	ggcggaaaac	2160
	ctcagtgtga	cgctccccgc	cgcgtcccac	gccatcccgc	atctgaccac	cagcgaaatg	2220
	gatttttgca	tcgagctggg	taataagcgt	tggcaattta	accgccagtc	aggctttctt	2280
20	tcacagatgt	ggattggcga	taaaaaacaa	ctgctgacgc	cgctgcgcga	tcagttcacc	2340
	cgtgcaccgc	tggataacga	cattggcgta	agtgaagcga	cccgcattga	ccctaacgcc	2400
	tgggtcgaac	gctggaaggc	ggcgggccat	taccaggccg	aagcagcgtt	gttgcagtgc	2460
25	acggcagata	cacttgctga	tgcggtgctg	attacgaccg	ctcacgcgtg	gcagcatcag	2520
	gggaaaacct	tatttatcag	ccggaaaacc	taccggattg	atggtagtgg	tcaaatggcg	2580
	attaccgttg	atgttgaagt	ggcgagcgat	acaccgcatc	cggcgcggat	tggcctgaac	2640
30	tgccagctgg	cgcaggtagc	agagcgggta	aactggctcg	gattagggcc	gcaagaaaac	2700
	tatcccgacc	gccttactgc	cgcctgtttt	gaccgctggg	atctgccatt	gtcagacatg	2760
	tataccccgt	acgtcttccc	gagcgaaaac	ggtctgcgct	gcgggacgcg	cgaattgaat	2820
35	tatggcccac	accagtggcg	cggcgacttc	cagttcaaca	tcagccgcta	cagtcaacag	2880
	caactgatgg	aaaccagcca	tcgccatctg	ctgcacgcgg	aagaaggcac	atggctgaat	2940
	atcgacggtt	tccatatggg	gattggtggc	gacgactcct	ggagcccgtc	agtatcggcg	3000
40	gaattccagc	tgagcgccgg	tcgctaccat	taccagttgg	tctggtgtca	aaaataa	3057
45	<210> 15 <211> 336 <212> ДНК <213> Челов	ек					
-	<400> 15 ctgcgctgtc	ggggccaggc	cgggctccca	gtggattcgc	gggcacagac	gcccaggacc	60
	gcgcttccca	cgtggcggag	ggactgggga	cccgggcacc	cgtcctgccc	cttcaccttc	120

Стр.: 93

cagctccgcc	tecteegege	ggaccccgcc	ccgtcccgac	ccctcccggg	tccccggccc	180
agccccctcc	gggccctccc	agcccctccc	cttcctttcc	gcggccccgc	cctctcctcg	240
cggcgcgagt	ttcaggcagc	gctgcgtcct	gctgcgcacg	tgggaagccc	tggccgatgg	300
gctcgacgca	cgtgggcgca	cgtgggcgca	cgtggg			336

Формула изобретения

- 1. Аденовирусный гибридный вектор для экспрессии гена, отличающийся тем, что он содержит, по меньшей мере, следующие элементы, ориентированные в направлении от 5' к 3':
- i. первую цепь из аденовируса, содержащую последовательность первого инвертированного концевого повтора (ITR) и сигнальную последовательность для упаковки аденовируса;
 - іі. первую некодирующую последовательность наполнителя;
 - ііі. последовательность, соответствующую тканеспецифическому промотору;
- iv. цепь кДНК, полученную из альфа-вируса, последовательность которой частично комплементарна РНК альфа-вируса, включающую, по меньшей мере, последовательность, кодирующую, по меньшей мере, один интересующий экзогенный ген;
 - v. последовательность полиаденилирования и

5

- vi. последовательность второго аденовирусного инвертированного концевого повтора (ITR).
 - 2. Аденовирусный гибридный вектор для экспрессии гена по п.1, отличающийся тем, что он дополнительно содержит элемент vii, который представляет вторую некодирующую последовательность наполнителя между элементом v и элементом vi.
 - 3. Аденовирусный гибридный вектор для экспрессии гена по п.1, отличающийся тем, что элемент іі представляет человеческую некодирующую последовательность наполнителя.
 - 4. Аденовирусный гибридный вектор для экспрессии гена по п.1 или 3, отличающийся тем, что элемент іі представляет собой область интрона человеческой геномной гипоксантинфосфорибозилтрансферазы, HPRT.
 - 5. Аденовирусный гибридный вектор для экспрессии гена по п.1, отличающийся тем, что элемент і имеет последовательность SEQ ID №1.
 - 6. Аденовирусный гибридный вектор для экспрессии гена по п.1, отличающийся тем, что элемент ііі представляет опухолеспецифический промотор.
 - 7. Аденовирусный гибридный вектор для экспрессии гена по п.6, отличающийся тем, что элемент ііі представляет опухолеспецифический промотор, выбранный из AFP, теломеразы TERT, PAP, E2F и HIF.
- 8. Аденовирусный гибридный вектор для экспрессии гена по п.1, отличающийся тем, что элемент ііі представляет опухолеспецифический промотор, имеющий последовательность, выбранную из SEQ ID №7, соответствующую AFP p+e, и SEQ ID №15, соответствующей теломеразе TERT.
- 9. Аденовирусный гибридный вектор для экспрессии гена по п.1, отличающийся тем, что элемент іv содержит последовательность, полученную из вируса леса Семлики (SFV).
- 10. Аденовирусный гибридный вектор для экспрессии гена по п.1, отличающийся тем, что указанная цепь іv кДНК, полученная из альфа-вируса, последовательность которой частично комплементарна РНК альфа-вируса, содержит, по меньшей мере,

одну последовательность, кодирующую, по меньшей мере, один интересующий экзогенный ген, и которая также содержит:

- а) 5'-последовательность, необходимую для репликации альфа-вируса,
- b) последовательность, кодирующую неструктурные белки, необходимые для репликации РНК альфа-вируса,
 - с) по меньшей мере, один субгеномный промотор альфа-вируса и
 - d) 3'-последовательность, необходимую для репликации альфа-вируса.
- 11. Аденовирусный гибридный вектор для экспрессии гена по п.10, отличающийся тем, что последовательности а)-с) элемента iv в целом имеют последовательность, выбранную из SEQ ID №3 и SEQ ID №4.
- 12. Аденовирусный гибридный вектор для экспрессии гена по п.10, отличающийся тем, что элемент iv d) имеет последовательность SEQ ID №5.
- 13. Аденовирусный гибридный вектор для экспрессии гена по п.1, отличающийся тем, что интересующий экзогенный ген выбран из одного или нескольких терапевтических генов, одного или нескольких генов-репортеров и их комбинаций.
 - 14. Аденовирусный гибридный вектор для экспрессии гена по п.13, отличающийся тем, что интересующий экзогенный ген является терапевтическим геном интерлейкина IL-12 млекопитающих.
 - 15. Аденовирусный гибридный вектор для экспрессии гена по п.13, отличающийся тем, что интересующий экзогенный ген является терапевтическим геном человеческого интерлейкина IL-12.
- 16. Аденовирусный гибридный вектор для экспрессии гена по п.13, отличающийся тем, что интересующий экзогенный ген является терапевтическим геном, выбранным из генов колониестимулирующего фактора (GMCSF), альфа-интерферона, тимидинкиназы вируса герпеса простого (HSV-TK).
- 17. Аденовирусный гибридный вектор для экспрессии гена по п.11, отличающийся тем, что элемент іv содержит одну или несколько последовательно соединенных подгрупп (субгеномный промотор+интересующий экзогенный ген).
- 18. Аденовирусный гибридный вектор для экспрессии гена по п.13, отличающийся тем, что интересующий экзогенный ген является геном-репортером, выбранным из генов LacZ, люциферазы, тимидинкиназы вируса герпеса простого (HSV-TK) и GFP.
- 19. Аденовирусный гибридный вектор для экспрессии гена по пп.9-18, отличающийся тем, что элемент іv образует репликон, функционально контролируемый промотором ііі, и тем, что альфа-вирусный субгеномный промотор, входящий в состав іv с), функционально контролирует экспрессию интересующего экзогенного гена.
- 20. Аденовирусный гибридный вектор для экспрессии гена по п.1, отличающийся тем, что элемент v представляет последовательность полиаденилирования из SV40.
- 21. Аденовирусный гибридный вектор для экспрессии гена по п.1, отличающийся тем, что элемент v имеет последовательность SEQ ID №6.
- 22. Аденовирусный вектор для экспрессии гена по п.2, отличающийся тем, что вторая некодирующая последовательность наполнителя представляет собой С346.
- 23. Аденовирусный вектор для экспрессии гена по п.1, отличающийся тем, что элемент vi имеет последовательность SEQ ID №2.
- 24. Аденовирусный гибридный вектор для экспрессии гена по п.1, отличающийся тем, что он содержит:
 - i. первую цепь из аденовируса, содержащую последовательность первого инвертированного концевого повтора (ITR) и сигнальную последовательность для

упаковки аденовируса;

20

3.5

- іі. первую некодирующую последовательность наполнителя, которая представляет собой область интрона человеческой геномной гипоксантинфосфорибозилтрансферазы(HPRT);
- ііі. последовательность, соответствующую тканеспецифическому промотору, который представляет собой промотор AFP;
- iv. цепь кДНК, полученную из альфа-вируса, последовательность которой частично комплементарна РНК альфа-вируса, полученной из вируса SFV, которая включает последовательность, кодирующую интересующий экзогенный ген, который представляет собой hIL-12;
 - v. последовательность полиаденилирования из SV40;
 - vi. последовательность второго инвертированного концевого повтора (ITR) и
- vii. вторую некодирующую последовательность наполнителя, которая представляет собой человеческую геномную С346, расположенную между элементом v и элементом vi.
- 25. Аденовирусный гибридный вектор для экспрессии гена по п.1, отличающийся тем, что он содержит:
- i. первую цепь из аденовируса, содержащую последовательность первого инвертированного концевого повтора (ITR) и сигнальную последовательность для упаковки аденовируса;
- іі. первую некодирующую последовательность наполнителя, которая представляет собой область интрона человеческой геномной гипоксантинфосфорибозилтрансферазы (HPRT);
- ііі. последовательность, соответствующую тканеспецифическому промотору, который представляет собой промотор AFP;
- iv. цепь кДНК, полученную из альфа-вируса, последовательность которой частично комплементарна РНК альфа-вируса, полученной из вируса SFV, которая включает последовательность, кодирующую интересующий экзогенный ген, выбранный из mIL-12 и LacZ;
 - v. последовательность полиаденилирования из SV40;
- vi. последовательность второго инвертированного концевого повтора (ITR) и vii. вторую некодирующую последовательность наполнителя, которая представляет собой человеческую геномную C346, расположенную между элементом v и элементом vi.
- 26. Аденовирусный гибридный вектор для экспрессии гена по п.1, отличающийся тем, что он имеет длину от 27 до 38 т.п.н.
- 27. Аденовирусный гибридный вектор для экспрессии гена по п.1, отличающийся тем, что он имеет последовательность SEQ ID №8.
- 28. Аденовирусный гибридный вектор для экспрессии гена по п.1, отличающийся тем, что он имеет последовательность SEQ ID №9.
- 29. Аденовирусный гибридный вектор для экспрессии гена по п.1, отличающийся тем, что он имеет последовательность SEQ ID №10.
- 30. Применение аденовирусного гибридного вектора по любому из предшествующих пунктов в способе переноса генетического материала в клетку.
- 31. Применение по п.30, в котором указанная клетка представляет собой опухолевую клетку.
 - 32. Применение по п.31, в котором указанная клетка представляет собой опухолевую клетку, экспрессирующую AFP.

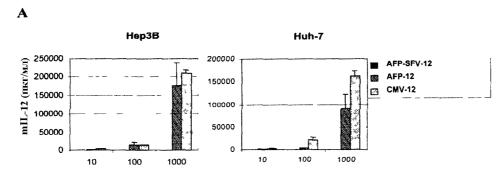
- 33. Применение аденовирусного гибридного вектора, определенного по любому из пп.1-29, для получения эффективного лекарственного препарата при лечении опухолей.
- 34. Применение аденовирусного гибридного вектора, определенного по любому из пп.1-29 для индукции иммунного ответа против чужеродных антигенов.
- 35. Фармацевтическая композиция для лечения опухоли, содержащая, по меньшей мере, аденовирусный гибридный вектор по любому из пп.1-29 и фармацевтически приемлемый носитель.
- 36. Фармацевтическая композиция для лечения опухолей, отличающаяся тем, что она содержит, по меньшей мере, один аденовирусный гибридный вектор, определенный по любому из пп.1-29, где интересующим экзогенным геном является hIL-12, и фармацевтически приемлемый носитель.
- 37. Фармацевтическая композиция для индукции иммунного ответа против чужеродного антигена, содержащая, по меньшей мере, аденовирусный гибридный вектор по любому из пп.1-29 и фармацевтически приемлемый носитель.
- 38. Применение фармацевтической композиции по п.37 в способе индукции иммунного ответа против чужеродных антигенов.

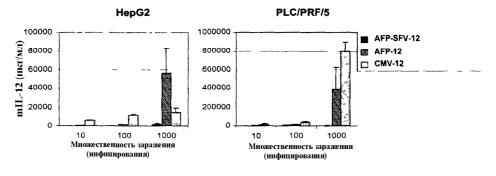
20

10

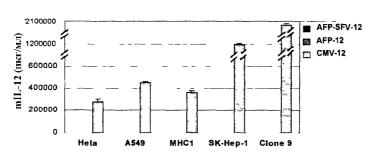

25

30

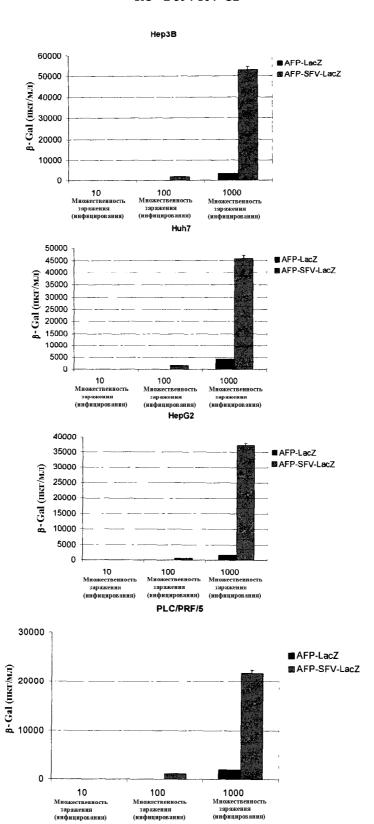

35

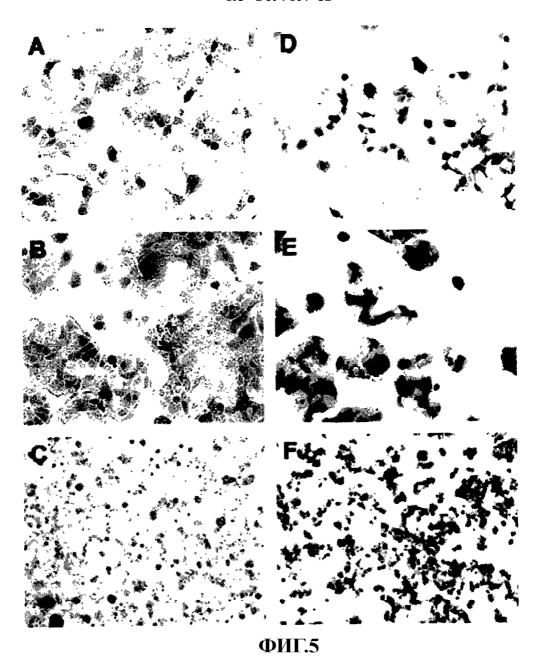

40

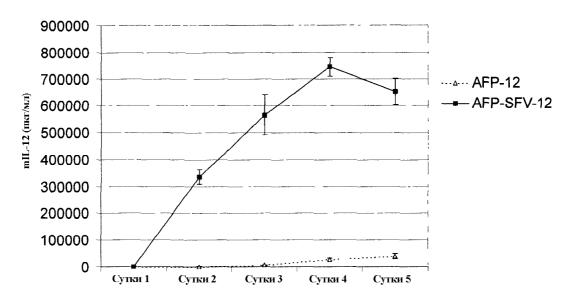
45

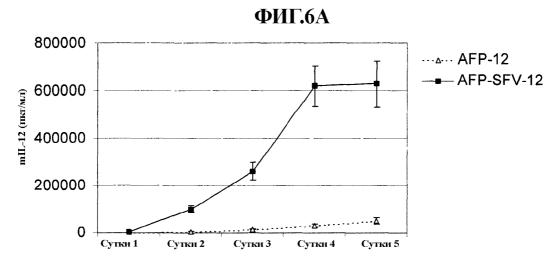


ФИГ.2

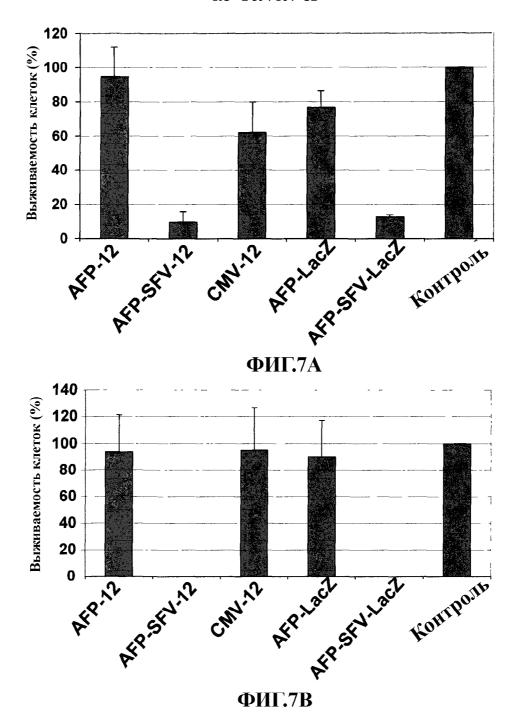


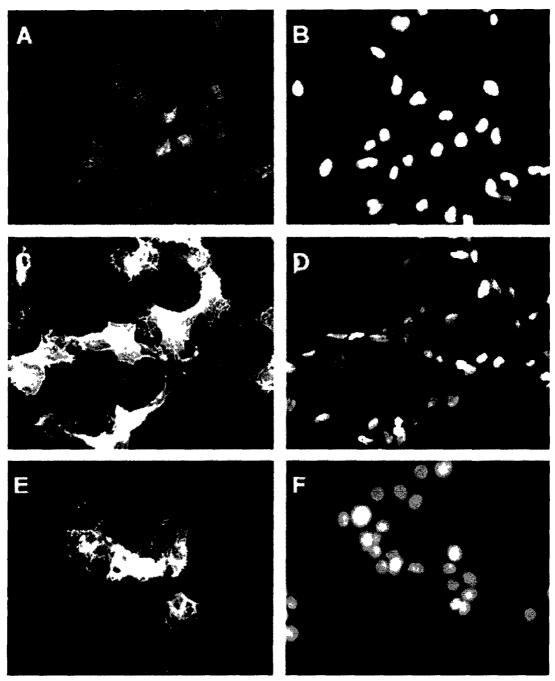

В

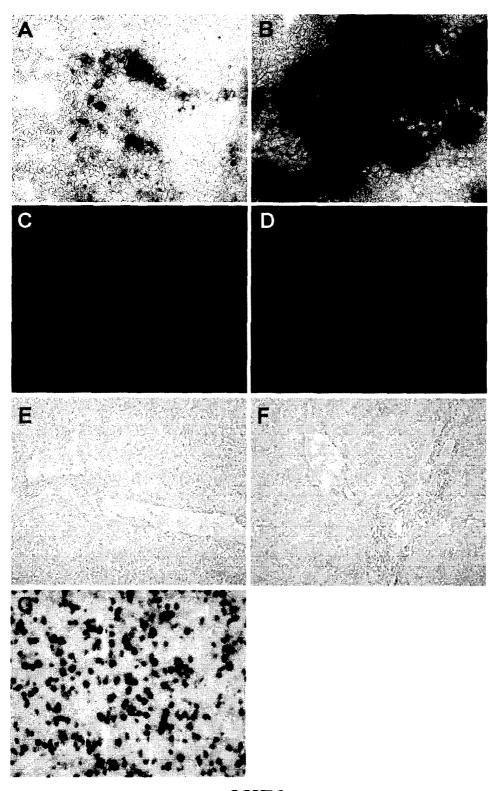

ФИГ.3


ФИГ.4

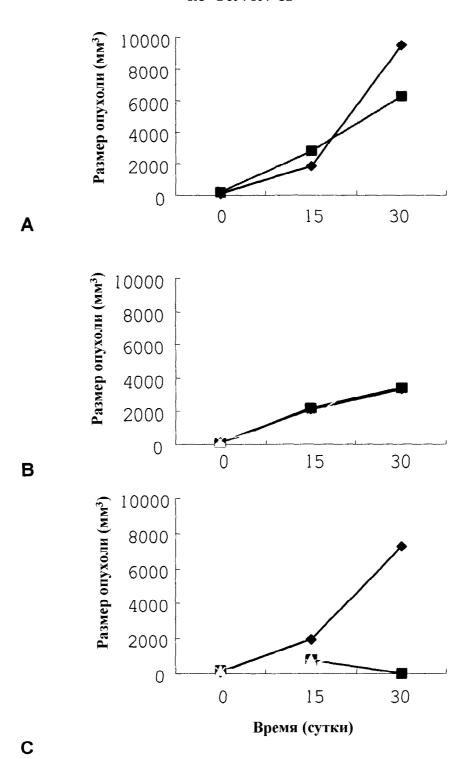
Стр.: 100

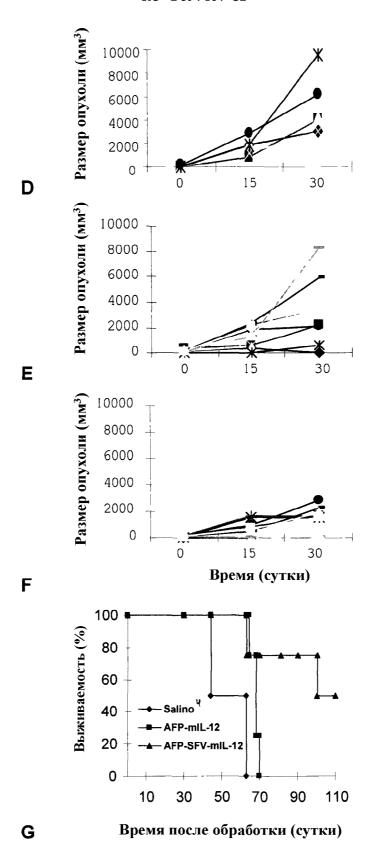



Время после инфицирования (сутки)

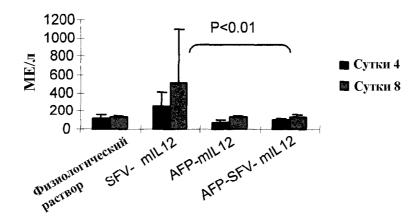

Время после инфицирования (сутки)

ФИГ.6В

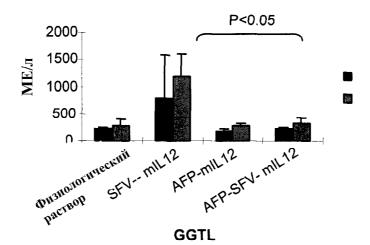


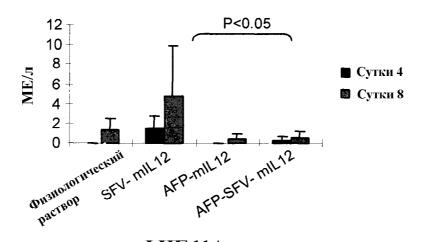

ФИГ.8

ФИГ.9

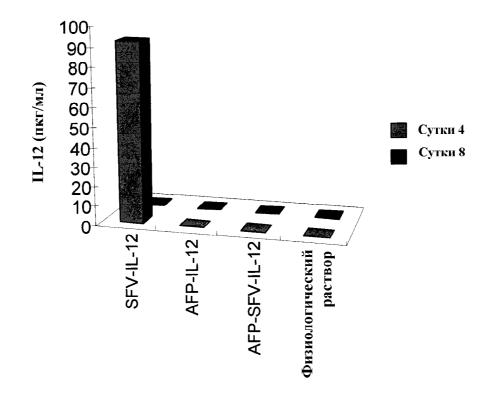


ФИГ. $10:10^{11}$

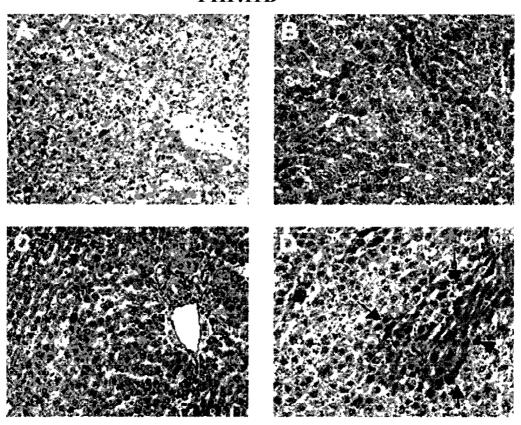


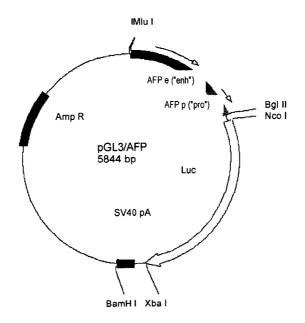

ФИГ.10: 2x10¹¹

GPT

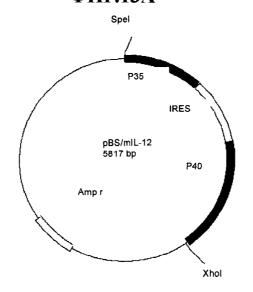


GOT

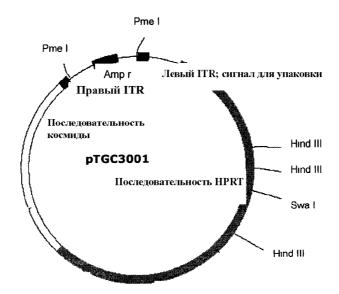



ФИГ.11А

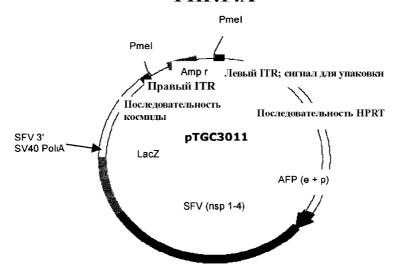
ФИГ.11В



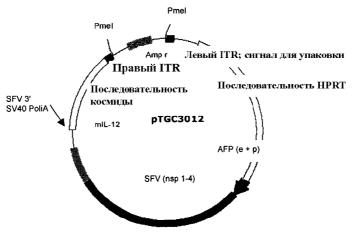
ФИГ.12


pGL3/AFP

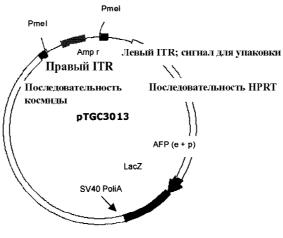
ФИГ.13А


pBS/mIL-12

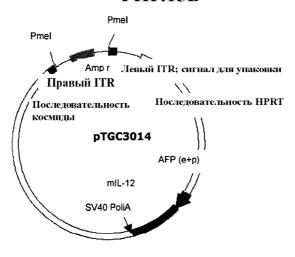
ФИГ.13В


pTGC3001

ФИГ.14А


pTGC3011

ФИГ.14В


pTGC3012

ФИГ.15А

pTGC3013

ФИГ.15В

pTGC3014

ФИГ.16