US 20240338181A1

a2y Patent Application Publication (o) Pub. No.: US 2024/0338181 Al

a9y United States

Jackson et al.

43) Pub. Date: Oct. 10, 2024

(54) API ABSTRACTION FOR GRAPHICAL
DEVELOPMENT PLATFORMS
(71) Applicant: Insight Direct USA, Inc., Chandler, AZ
(US)
(72)

Inventors: Matt Jackson, Sudbury, MA (US);

Mark Candelora, Watertown, MA (US)

@
(22)

Appl. No.: 18/626,094

Filed: Apr. 3, 2024

Related U.S. Application Data

Provisional application No. 63/457,886, filed on Apr.
7, 2023.

(60)

Publication Classification

Int. CL.
GO6F 8/20

(51)
(2006.01)

User-Accessible Device 100

Processor Ul
102 108

I Memory 104 [

Network Scanning
Module 170

Development Platform

]

A
v

Connector Generation\ | | .
Module 180 /. .

(52) US.CL
[SR GOGF 8/20 (2013.01)

(57) ABSTRACT

A method includes resolving a plurality of network
addresses for a plurality of systems connected to a network,
discovering a plurality of application programming inter-
faces operated by the plurality of systems, inspecting the
plurality of application programming interfaces to determine
a plurality of invokable elements of the plurality of appli-
cation programming interfaces, and creating a plurality of
connectors executable by a development platform to invoke
the plurality of invokable elements. Each network address of
the plurality of network addresses corresponds to a system
of the plurality of systems, the development platform
includes one or more graphically-represented programming
functions, and the plurality of connectors is configured to
allow the one or more graphically-represented programming
functions of the development platform to invoke one or
more of the plurality of invokable elements.

200\

Development Environment

Abstraction Layer
220

l Network interface 108 |

API Documentation

Database 150 Network

H Connector 4 Connector Connector
240A 240B [*** 240N

130

ﬁ

Application Module
126A

Data Source
128A

Application Module
1268

Data Source
1288

épphcatlon Modu)

Data Source
128C

System Processor System Processor System Processor System Processor
120A 122A 120B 122B 120C 122C 120N 122N
| Memory124a |||I{| Memory1248 |||I|| Memory124c Memow124N

Applxcation Module
a Sou
128N

140A

140B v?

140C ~_,—<f

140N »——?
N N

7N

N

US 2024/0338181 Al

Oct. 10, 2024 Sheet 1 of 3

Patent Application Publication

L 'Old N
\/
hS 4 w 4
mv\l NO¥ ! 2071 gor} Vol
| 1
m N8zt v m o143 v m g8er v ﬁ ezt v
20In0S BlB(8003 BlRQ 80IN0S Ble(204N08 BleQ
NOZ 1 09Z1 g9zl Yozl
a|npo uoneo)ddy 2|npoy uoneoyddy a|npo uoneayddy a|npoj uoneoyddy
NPZT Aowsiy 9T Mowsp aperl Mowspy VP21 Mows|y
N[44} NOZ| J2¢l 00¢C1 deel g0c¢l Vel Y02l
105599014 wolshs 10SS0004d | Wolshs 108s9001d | Walshsg 108$950.1d Wwo)shg
A A
- 0l —
YIomaN 0G| soseqgeleq
uoneuswnood |dy
y Y v 80T 90BUAU| YIOM)ON
NOVZ |.s.]| ©OVC vove —
M1 10)98UU0D Jojpsuuon FH Jopauuon F m 00¢ u
wione|d watdojars(

Jake uonoensqy

v

(¥4

JUBLUUOJIAUT JuaLudolana(] e

/oom

¢

08T aInpol
UOI}RI3USS) J0}03UL0N

0ZT aInpoly
Buiuueos yomaN

F0T Aowspy

901 Z0T
In 108599014

0T 991Aa(Q] 9|qISS99Y-19SN

Patent Application Publication Oct. 10, 2024 Sheet 2 of 3 US 2024/0338181 A1
500\‘
Resolve plurality of network 502
addresses

504

Discover plurality of APls
Inspect plurality APIs to 506

determine plurality of
invokable elements
508 \ i
Create plurality of Classify task performed 514

connectors

by invokable element

_/

$

Modify development
platform

$

Create program using “/;
development platform

510

Invoke API using connectors of _/‘/
the plurality of connectors

512

FIG. 2

Patent Application Publication

Oct. 10, 2024 Sheet 3 of 3

700
\

702
Determine API Identity

;

documentation database with

Cross-reference API 704

API Identity

'

Determine invokable elements

706
based on retrieved API
documentation

é

Determine task(s) performed by

708

invokable elements

FIG. 3

US 2024/0338181 Al

US 2024/0338181 Al

API ABSTRACTION FOR GRAPHICAL
DEVELOPMENT PLATFORMS

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application claims priority to U.S. Provisional
Application No. 63/457.886, filed Apr. 7, 2023, and entitled
“API ABSTRACTION FOR GRAPHICAL DEVELOP-
MENT PLATFORMS,” the disclosure of which is hereby
incorporated by reference in its entirety.

BACKGROUND

[0002] The present disclosure relates to application pro-
gramming interfaces (APIs), and more specifically relates to
systems and methods for allowing users lacking program-
ming experience to use API functionality.

[0003] APIs are a software interfaces that facilitate access
to features of systems, services, and applications. More
specifically, APIs define communication standards that
allow different software elements, such as services and
applications, to interact. Users are able to write programs
make requests to APIs in order to access systems, software,
and applications. APIs can also be deployed in a network
environment and users can write programs that request data
and application services from a network-accessible API via
a connection to the appropriate network.

[0004] Often, network systems that expose APIs also
maintain graphical interfaces that allow access to services
and applications through network browsers and other, simi-
lar applications. Typically, API functionality is unavailable
to users lacking sufficient programming expertise to write
programs that make API requests. Conversely, the graphical
interfaces maintained by network systems do not require
programming expertise to use, but can be time-consuming
and cumbersome to operate. Accordingly, users lacking
programming experience often access network system ser-
vices and applications through graphical interfaces rather
than by invoking API functionality.

SUMMARY

[0005] An example of a method includes resolving a
plurality of network addresses for a plurality of systems
connected to a network, discovering a plurality of applica-
tion programming interfaces operated by the plurality of
systems, inspecting the plurality of application program-
ming interfaces to determine a plurality of invokable ele-
ments of the plurality of application programming inter-
faces, and creating a plurality of connectors executable by a
development platform to invoke the plurality of invokable
elements. Each network address of the plurality of network
addresses corresponds to a system of the plurality of sys-
tems, the development platform includes one or more
graphically-represented programming functions, and the
plurality of connectors is configured to allow the one or
more graphically-represented programming functions of the
development platform to invoke one or more of the plurality
of invokable elements.

[0006] An example of a system includes a plurality of
systems connected to a network, the plurality of systems
configured to operate a plurality of application programing
interfaces, and a user-accessible device connected to the
network. The user-accessible device comprises a processor,
a user interface, and a memory comprising a development

Oct. 10, 2024

platform, the development platform including one or more
graphically-represented programming functions that can be
graphically displayed using the user interface, and execut-
able instructions. When executed, the instructions cause the
processor to resolve a plurality of network addresses for the
plurality of systems, discover the plurality of application
programming interfaces operated by the plurality of sys-
tems, inspect the plurality of application programming inter-
faces to determine a plurality of invokable elements of the
plurality of application programming interfaces, and create
a plurality of connectors executable by the development
platform to invoke the plurality of invokable elements. Each
network address of the plurality of network addresses cor-
responding to a system of the plurality of systems and the
plurality of connectors is configured to allow the one or
more graphically-represented programming functions of the
development platform to invoke one or more of the plurality
of invokable elements.

[0007] The present summary is provided only by way of
example, and not limitation. Other aspects of the present
disclosure will be appreciated in view of the entirety of the
present disclosure, including the entire text, claims, and
accompanying figures.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] FIG. 1 is a schematic view of an example of a
network system environment including a development plat-
form.

[0009] FIG. 2 is flow diagram of an example of a method
of creating and using software connectors for the develop-
ment platform of FIG. 1

[0010] FIG. 3 is a flow diagram of an example of a method
of obtaining and using API documentation suitable for use
with the method of FIG. 2.

[0011] While the above-identified figures set forth one or
more embodiments of the present disclosure, other embodi-
ments are also contemplated, as noted in the discussion. In
all cases, this disclosure presents the invention by way of
representation and not limitation. It should be understood
that numerous other modifications and embodiments can be
devised by those skilled in the art, which fall within the
scope and spirit of the principles of the invention. The
figures may not be drawn to scale, and applications and
embodiments of the present invention may include features
and components not specifically shown in the drawings.

DETAILED DESCRIPTION

[0012] The present description relates to systems and
methods that allow graphically-represented programming
functions of a development platform to access and invoke
API functionality. More specifically, the systems and meth-
ods of the present description can create software connectors
as well as specific graphically-represented functions for
invoking APIs accessible via a network. The graphically-
represented functions of the development platforms
described herein allow users lacking significant technical
experience in programming tasks to develop and execute
programs that invoke API functionality. As will be explained
in more detail subsequently, users lacking significant pro-
gramming expertise often use graphical interfaces main-
tained by network systems. These graphical tools are often
cumbersome to use and, accordingly, can act as barriers to

US 2024/0338181 Al

user productivity. In these examples, users can take advan-
tage of API functionality to improve productivity.

[0013] Further, the systems and methods described herein
enable the creation of software to interpret the graphically-
represented functions of the development platform into
commands recognizable by an API, functionally linking or
connecting the graphical tools of the development platforms
to network-accessible APIs. The software layer that links the
graphical development platform to network-accessible APIs
provides further advantages. Particularly, the using separate
software elements to interpret commands from the develop-
ment platform reduces labor required to adapt the develop-
ment platform as API and/or system functionality changes
and/or is updated, and further allows for any suitable devel-
opment tool to be used to invoke API functionality. More-
over, the systems and methods described herein enable
automated inspection of a network to discover network-
accessible APIs as well as invokable elements (e.g., objects,
methods, etc.) of those APIs. As will be explained in more
detail subsequently, this advantageously reduces the labor
required to implement the development platforms and soft-
ware connectors described herein in network system envi-
ronments.

[0014] FIG. 1 is a schematic diagram of network system
environment 10, which is includes network-accessible sys-
tems as well as software configured to enable power users to
create programs that can invoke APIs in order to retrieve
and/or modify data maintained by those network-accessible
systems. Network system environment 10 includes user-
accessible device 100, systems 120A-120N, and network
130. User-accessible device 100 includes processor 102,
memory 104, user interface 106, and network interface 108.
Systems 120A-N include processors 122A-N;, respectively,
and memories 124A-N, respectively. Memories 124A-N
store application modules 126 A-N and data sources 128A-
N. Network 130 connects systems 120A-N to user-acces-
sible device 100 via hardware connections 132. Systems
120A-N expose APIs 140A-N, which enable devices con-
nected to network 130 to access data and/or functions of
systems 120A-N. API documentation database 150 is an
optional component of network system environment 10 and,
when included, is also connected to network 130, such that
the devices connected to network 130 (e.g., user-accessible
device 100 and/or systems 120A-N) can access API docu-
mentation database 150.

[0015] Memory 104 stores network scanning module 170,
connector generation module 180, and development plat-
form 200. Development platform 200 includes development
environment 210 and abstraction layer 220. Abstraction
layer 220 is able to electronically communicate with devel-
opment environment 210 such that abstraction layer 220 can
convert and relay requests from programs executed in devel-
opment environment 210 to systems 120A-N as well as
receive responses from systems 120A-N and return those
responses to the programs executed in development envi-
ronment 210. Abstraction layer 220 includes connectors
240A-N, which are software elements configured to allow
abstraction layer 220 to communicate with APIs 140A-N of
systems 120A-N. As will be explained in more detail sub-
sequently, a user 300 can interact with user interface 106 to
operate development environment 210 to create and execute
programs. The programs created using development envi-
ronment 210 can access functionality of the applications of

Oct. 10, 2024

application modules 126A-N and data of data sources
128A-N and via abstraction layer 220 and connectors 240A-
N

[0016] Advantageously, development environment 210 is
configured to allow power users to create, modify, and
execute programs. As referred to herein, a “power user” is an
individual with an interest or need in using advanced or
sophisticated functions of user-accessible device 100 and/or
systems 210A-N, but who lacks extensive technical knowl-
edge, training, and/or expertise. For example, a power user
may have an interest in writing programs that automatically
retrieve and/or modify data stored to data sources 128A-N,
but may lack the technical knowledge to author a program
using a conventional programming language. Development
environment 210 includes one or more graphical elements
that enable a power user to create, modify, and/or execute
computer programs without requiring the power user to
learn traditional programming skills and/or languages. In
some examples, development environment 210 is a low-
code or no-code environment that requires reduced, low, or
minimal user experience to create programs.

[0017] Each of processors 102, 122A-N can execute soft-
ware, applications, and/or programs stored on memories
104, 124A-N respectively. Examples of processors 102,
122A-N can include one or more of a processor, a micro-
processor, a controller, a digital signal processor (DSP), an
application specific integrated circuit (ASIC), a field-pro-
grammable gate array (FPGA), or other equivalent discrete
or integrated logic circuitry. Each of processors 102,
122 A-N can be entirely or partially mounted on one or more
circuit boards.

[0018] Each of memories 104, 124A-N is configured to
store information and, in some examples, can be described
as a computer-readable storage medium. A memory 104,
124, in some examples, can be described as computer-
readable storage media. In some examples, a computer-
readable storage medium can include a non-transitory
medium. The term “non-transitory” can indicate that the
storage medium is not embodied in a carrier wave or a
propagated signal. In certain examples, a non-transitory
storage medium can store data that can, over time, change
(e.g., in RAM or cache). In some examples, one or more of
memories 104, 124A-N is a temporary memory. As used
herein, a temporary memory refers to a memory having a
primary purpose that is not long-term storage. One or more
of memories 104, 124A-N, in some examples, is described
as volatile memory. As used herein, a volatile memory refers
to a memory that that the memory does not maintain stored
contents when power to the memory 104, 124A-N is turned
off. Examples of volatile memories can include random
access memories (RAM), dynamic random access memories
(DRAM), static random access memories (SRAM), and
other forms of volatile memories. In some examples, the
memory is used to store program instructions for execution
by the processor. The memory, in one example, is used by
software or applications running on user-accessible device
100 and/or one or more of systems 120A-N to temporarily
store information during program execution.

[0019] One or more of memories 104, 124 A-N, in some
examples, also includes one or more computer-readable
storage media. Memories 104, 124 A-N can be configured to
store larger amounts of information than volatile memory.
One or more of memories 104, 124A-N can further be
configured for long-term storage of information. In some

US 2024/0338181 Al

examples, one or more of memories 104,124 A-N includes
non-volatile storage elements. Examples of such non-vola-
tile storage elements can include, for example, magnetic
hard discs, optical discs, floppy discs, flash memories, or
forms of electrically programmable memories (EPROM) or
electrically erasable and programmable (EEPROM) memo-
ries.

[0020] User interface 106 is an input and/or output device
and enable an operator (e.g. user 300) to control operation of
user-accessible device 100. User interface 106 can include
one or more of a sound card, a video graphics card, a
speaker, a display device (such as a liquid crystal display
(LCD), a light emitting diode (LED) display, an organic light
emitting diode (OLED) display, etc.), a touchscreen, a
keyboard, a mouse, a joystick, or other type of device for
facilitating input and/or output of information in a form
understandable to users and/or machines.

[0021] Network interface 108 is a hardware component of
user-accessible device 100 that enables user-accessible
device 100 to access and transmit data over network 300.
Network interface 108 can be a wired or wireless interface
and can include one or more of a universal serial bus, an
antenna, an ethernet connection, and/or a fiber optic con-
nection, among other options.

[0022] User-accessible device 100 is a device accessible
and usable by a user, such as user 300. In particular,
user-accessible device 100 is configured to be used by
individuals that are relatively inexperienced with and/or lack
skill in performing programming tasks. User-accessible
device 100 connects to network 300 vis network interface
108 and can to access systems 120A-N and/or API docu-
mentation database 150 via network 130. A user can operate
user-accessible device 100 via user interface 106 to, for
example, execute and/or create one or more programs of
development platform 200. While user-accessible device
100 is shown as a single device in FIG. 1, in other examples
user-accessible device 100 can be formed of multiple
devices and/or the components of user-accessible device 100
can be distributed across multiple devices.

[0023] Each of systems 120A-N include one or more
computer hardware elements, such as one or more servers,
that are configured to perform one or more tasks in an
enterprise organization or another suitable organization.
Generally, each of systems 120A-N are configured to store
and perform operations on data created and maintained by
the organization. Systems 120A-N include processors 122 A-
N, respectively, and memories 124A-N, respectively. Pro-
cessors 122A-N and memories 124A-N are substantially the
same as processor 102 and memory 104, respectively, as
discussed previously.

[0024] Each of application modules 126 A-N include one
or more programs that access and/or perform operations on
data of data sources 128A-N. More specifically, for each
system 120A-N, the applications of each respective appli-
cation module 126A-N are configured to access and/or
perform operations on the data of the respective data source
128A-N maintained by the system 120A-N. Data sources
128A-N maintain data used by systems 120A-N, respec-
tively. Each data source 128A-N can store data in any
suitable format and, in some examples, each data source
128A-N can store data in one or more databases.

[0025] Network 130 is network that connects user-acces-
sible device 100 to systems 120A-N and to API documen-
tation database 150. In some examples, network 130 can

Oct. 10, 2024

also connect systems 120A-N to API documentation data-
base 150. Network 130 can be an enterprise network of any
suitable size (e.g., a local area network, a wide area network,
etc.). In other examples, network 130 can be any suitable
network. In at least some examples, network 130 is the
Internet.

[0026] API documentation database 150 is a database
connected to network 130 and accessible to user-accessible
device 100 via network 130. API documentation database
150 stores and organizes APl documentation for various
APIs. The API documentation stored by API documentation
database 150 describes various invokable elements (e.g.,
methods, objects, etc.) of various APIs, including the func-
tion(s) performed by the invokable elements. API documen-
tation database 150 can store API documentation for any
combination of APIs, including APIs other than APIs 140-N.
In at least some examples, API documentation database 150
includes API documentation for fewer than all of APIs
140A-N. API documentation database 150 is queryable by
user-accessible device 100 and can store API documentation
data in any suitable database structure.

[0027] Systems 120A-N expose and operate APIs 140A-
N, which are software interfaces that allow other devices
connected to network 130 to access the applications of
application modules 126A-N, respectively, and/or the data
of data sources 128A-N, respectively. APIs 140A-N can be
stored by memories 124A-N, respectively. Each of APIs
140A-N can include one or more invokable elements that
can be invoked by a device connected to network 130. The
invokable elements of each of APIs 140A-N can be invoked
to cause the respective system 120A-N to perform one or
more computer operations, such as one or more operations
on the data stored and maintained by data sources 128A-N.
In some examples, invoking APIs can be referred to as
“calling” the API and an invocation of one or more of the
invokable elements of an API 140A-N can be referred to as
a “call” and/or as a “request.”

[0028] In some examples, each of APIs 140A-N can be
substantially different from the others of APIs 140A-N, such
that the invokable elements of each of APIs 140A-N are not
shared or have limited overlap. Additionally and/or alterna-
tively, two or more of APIs 140A-N can be substantially
similar, such that the invokable elements of the two or more
APIs 140A-N are the same, substantially the same, or have
substantial overlap. As will be discussed in more detail
subsequently, in the depicted non-limiting example, APIs
140B and 140C are substantially similar, API 140A is
substantially different than APIs 140B-N, and API 140N is
substantially different than APIs 140A-C.

[0029] APIs 140A-N can each be any suitable type of API.
In at least some examples, one or more of APIs 140A-N can
be a representational state transfer (REST) API. As used
herein, “RESTful API” refers to a REST API or an API
having characteristics of a REST API. In examples where an
API 140A-N is a RESTful API, the invokable elements of
the API 140A-N can be one or more objects or methods
corresponding to methods or objects of the respective sys-
tem 120A-N that operates the API 140A-N. Additionally
and/or alternatively, one or more of APIs can be a web
service.

[0030] Systems 120A-N can include graphical interfaces
that allow users to use a web browser or another suitable
application to access the functions and data of systems
120A-N. In these examples, the user can interact with the

US 2024/0338181 Al

web browser or another suitable software application via
user interface 106 to access applications of application
modules 126A-N and/or data of data sources 128A-N.
Graphical interface-mediated access of systems 120A-N can
be cumbersome and time consuming. In examples where a
user routinely accesses a particular data source or where
different software applications are required to access differ-
ent systems 120A-N and/or different elements of systems
120A-N, graphical interface-mediated access can cause sub-
stantial bottlenecks in user productivity.

[0031] User productivity can be significantly improved by
use of APIs 140A-N rather than graphical interfaces of
systems 120A-N to perform repeated or routine activities.
However, existing techniques require users to create com-
puter programs using programming languages to invoke the
functionality of APIs 140A-N. Authoring programs using a
programming language requires significant technical exper-
tise and, accordingly, the functionality of APIs 140A-N is
generally not accessible to users lacking technical expertise
in writing computer programs.

[0032] Power users can often benefit from the functional-
ity of APIs 140A-N but frequently lack the technical exper-
tise required to write computer programs using a program-
ming language. Development platform 200 is configured to
allow power users to access the functionality of APIs
140A-N. Development platform 200 includes development
environment 210, which is a graphical development envi-
ronment that enables users to create programs using graphi-
cal tools that do not require significant programming skill.
Development environment 210 includes graphically-repre-
sented functions that can be displayed by user interface 106
as well as additional graphical elements that enable users to
create programs graphically by interacting with user inter-
face 106. The graphical tools of development platform 200
are selected to be allow power users and other users lacking
programming skill to create computer programs. A user can
execute programs created in development environment 210
using development platform 200 or another program of
memory 104. Development platform 200 also includes
abstraction layer 220. Abstraction layer 220 includes con-
nectors 240A-N and is configured to allow programs created
using development environment to invoke the invokable
elements of APIs 140A-N. The combination of development
environment 210 and abstraction layer 220 allows develop-
ment platform 200 to enable users lacking technical skill in
programming to nonetheless create and use programs that
access the functionality of APIs 140A-N.

[0033] In operation, users are able to create programs
using development environment 210 and, in some examples,
can execute those programs using development environment
or another software element of development platform 200.
User-accessible device 100 can display the graphically-
represented functions of development environment to a user
via user interface 106 and a user can interact with user
interface 106 to create and execute programs using the
graphical interface of development environment 210. Pro-
grams made using development environment 210 can be
configured to request functionality of and/or send commands
to abstraction layer 220. Abstraction layer 220 is configured
to receive and those commands and/or requests and to
invoke the appropriate functionality of the appropriate API
140A-N using the appropriate connector 240A-N. While
abstraction layer 220 and development environment 210 are
depicted in FIG. 1 and generally described herein as separate

Oct. 10, 2024

software elements, in some examples, abstraction layer 220
and development environment 210 can be integrated or
substantially integrated to form a single software element
capable of performing the functions of both abstraction layer
220 and development environment 210. While development
platform 200 is shown as a stored to memory 104 of
user-accessible device 100, in some examples, development
platform can be stored to a network-connected device (e.g.,
a server connected to network 130) and accessed by user-
accessible device 100 via a network connection.

[0034] Advantageously, development platform 200
improves user productivity by allowing users to automate
repeated or routine tasks, and further by allowing users to
create custom programs and applications to perform tasks
that are complicated or time-consuming when performed
using the graphical interfaces of systems 120A-N. Notably,
the use of development environment 210 allows develop-
ment platform 200 to facilitate improvements to user pro-
ductivity without requiring users to undergo additional soft-
ware-specific training, which can be expensive and can
further require significant time to perform, potentially dis-
rupting business operations typically performed by users
while the training is performed.

[0035] Further, development platform 200 enables signifi-
cantly more flexibility than existing methods of invoking
API functionality. As systems 120A-N change due to, for
example, changing operational requirements or business
needs, the identity of APIs 140A-N can change, potentially
requiring new commands or, in some examples, different
programming languages to invoke APIs 140A-N. In existing
systems (i.e., those not including development platform
200), these types of changes to APIs 140A-N can require
reconfiguring of all programs that invoke APIs 140A-N and
further can require re-training to learn commands and/or
languages required to invoke the new API or APIs. Con-
versely, systems that include development platform 200 only
require modification of abstraction layer 220 to allow the
existing functions of development environment 210 to
invoke the invokable elements of the new API or APIs.
Advantageously, this can significantly reduce the time and
cost required to update and/or substitute APIs 140A-N as
compared to existing techniques.

[0036] Notably, the use of a separate abstraction layer 220
also allows any suitable development environment to func-
tion as development environment 210. That is, rather than
reconfigure development environment 210, which may be
may pose licensing (e.g., due to proprietary software ele-
ments, etc.) and/or development (e.g., due to challenges in
reconfiguring compiled program code, etc.) challenges,
abstraction layer 220 can instead be configured to accept and
interpret commands from any suitable development envi-
ronment 210. Abstraction layer 220 thereby advantageously
confers implementational flexibility to development plat-
form 200 in that the use of abstraction layer 220 allows any
development environment 210 to benefit from the advan-
tages described herein.

[0037] As described previously, connectors 240A-N
enable abstraction layer 220 invoke functionality of APIs
140A-N. Connectors 240A-N are software elements and are
selected based on the identity and functions of individual
APIs of APIs 140A-N. As will be described in more detail
subsequently, connectors 240A-N can be created using the
programs of network scanning module 170 and connector
generation module 180. Once created, connectors 240A-N

US 2024/0338181 Al

can be stored to memory 104 and executed to allow pro-
grams made using development platform 200 to invoke the
invokable elements of APIs 140A-N. Development platform
200, and more particularly abstraction layer 220, can
execute connectors 240A-N to invoke functions of APIs
140A-N according to commands from programs created
using development platform 200.

[0038] In some examples, one connector 240A-N allows
programs made using development platform 200 to invoke
a single API 140 A-N. In yet further examples, more than one
connector 240A-N can be used to invoke the functions of a
single API 140A-N and/or a single connector 240A-N can be
used to invoke more than one API 140A-N. In the example
depicted in FIG. 1, a single API 240B can be used to invoke
the functions of both API 140B and 140C due to the relative
similarity of API 140B and API 140C. Also in the depicted
example, separate connectors 140A and 140N are used to
invoke the functions of API 140A and API 140N, respec-
tively.

[0039] Network scanning module 170 includes one or
more programs for discovering systems 120A-N. The pro-
gram(s) of network scanning module 170 can APIs 140A-N,
for example, analyzing network traffic received by network
interface 108. More particularly, network scanning module
170 can cause network interface 108 to listen to communi-
cation transmitted via network 130. Network scanning mod-
ule 170 can further be configured to resolve network
addresses for systems 120A-N, such as internet protocol (IP)
addresses, from data received using network interface 108.
[0040] Network scanning module 170 can further include
one or more programs for identifying APIs 140A-N based on
the received network traffic and/or the resolved network
addresses. The received network communications can be
analyzed to determine which of systems 120A-N expose
APIs. Network scanning module 170 can further be config-
ured to cause user-accessible device 100 to send API
requests to systems 120A-N having resolved network
addresses. Received responses from systems 120A-N can be
used to determine which of systems 120A-N operate APIs
and, in some examples, identity or other information that can
be used to classify those APIs. For example, several requests
can be sent iteratively from user-accessible device 100 and
each iterative request can be configured to elicit a response
from a particular type or class of API. Responses from
systems 120A-N can be used accordingly to identify the type
or class of API operated by each system 120A-N. API
classification information can be associated with the net-
work address or addresses for each system 120A-N and
stored to memory 104.

[0041] Connector generation module 180 includes one or
more programs for creating connectors 240A-N. Connector
generation module 180 can be configured to inspect APIs
140A-N to identify the invokable elements of each of APIs
140A-N. Connector generation module 180 can then create
software to allow the functions of programs created using
development platform 200 to invoke those invokable ele-
ments and store that software to memory 104 as connectors
140A-N. Program(s) of connector generation module 180
can, for example, cross-reference the identities of each of
APIs 140A-N determined using network scanning module
170 with API documentation database 150 to determine the
functions and invokable elements of APIs 140A-N. Addi-
tionally and/or alternatively, program(s) of connector gen-
eration module 180 can perform test calls of one or more of

Oct. 10, 2024

APIs 140A-N to determine invokable elements of APIs
140A-N. The content of the responses to the test calls can be
used to determine one or more invokable elements of the
called API, such as one or more invokable methods or
object, among other options. In some examples, connector
generation module 180 can be configured to first cross-
reference APl documentation database 150 and subse-
quently to perform test calls to inspect APIs that do not have
documentation in API documentation database 150.

[0042] In some examples, connector generation module
180 can be configured to flag APIs 140A-N and/or systems
120A-N for which invokable element information cannot be
determined using the programs of connector generation
module 180. Information describing those APIs 140A-N
and/or systems 120 (e.g., IP address information) can be
stored to memory 104 and, after the programs of connector
generation module 140 have inspected or attempted to
inspect all APIs 140A-N, user-accessible device 100 can
create an output (e.g., a report) that can be communicated to
a user (e.g., user 300) via user interface 106. The user can
use the output to identify which of APIs 140A-N still require
connectors and manually construct the connectors for those
APIs.

[0043] Connector generation module 180 can further
include programs that modify development platform 200 to
use the generated connectors. Connector generation module
180 can, for example, create new functions or modify
existing functions of development platform 200 to enable
users to create programs to invoke the discovered invokable
elements of APIs 140A-N. The text or graphical information
that represents the function in development platform 200 can
be selected based on, for example, a function performed by
the corresponding invokable element of the relevant API.
For example, where the invokable object is a method, the
text or graphical information can be selected to describe or
represent the what the method does and/or the object on
which the method is performed. Connector generation mod-
ule 180 can include a library of pre-determined text or
graphics from which the text or graphical information for
representing the invokable element can be selected. The text
or graphics for representing the invokable element can be
selected according to, for example, the function of the
invokable element determined by the other program(s) of
connector generation module 180.

[0044] Connector generation module 180 or another suit-
able module of memory 104 can also include one or more
programs configured to modify development platform 200 to
include the connectors created by connector generation
module 180. More specifically, abstraction layer 220 of
development platform 200 can be modified to include con-
nectors 240A-N. In some examples, connectors 240A-N can
be stored to another module or location of memory 104, and
abstraction layer 220 can be configured to retrieve connec-
tors 240A-N during execution programs of development
environment 210 that include functions or commands for
invoking one or more invokable elements of APIs 140A-N.
[0045] Network scanning module 170 and/or connector
generation module 180 can be configured to perform the
functions described herein automatically. For example, net-
work scanning module 170 can be configured to automati-
cally and, in some examples, periodically scan network 130
(e.g., by listening to network communications with network
interface 108) to discover and identify APIs 140A-N. Con-
nector generation module 180 can similarly be configured to

US 2024/0338181 Al

automatically identify the invokable elements of APIs 140A-
N, generate connectors 240A-N. for those invokable ele-
ments, and/or modify development platform 200 to use the
generated connectors 240A-N.

[0046] Advantageously, network system environment 10
and, in particular, network scanning module 170 and con-
nector generation module 180 allow for the construction of
connectors 240A-N to link development platform 200 to
APIs 140A-N based on information accessible via network
130. More specifically, network scanning module 170 and
connector generation module 180 allow for APIs 140A-N to
be discovered and inspected and further allow for the
creation of connectors for each discovered API using net-
work communication data received over network 130. Con-
nector generation module 180 further allows for develop-
ment platform 200 to be automatically modified to include
functions that invoke the invokable elements of APIs
140A-N using the generated connectors. Accordingly, the
combination of network scanning module 170 and connector
generation module 180 allow the advantages of development
platform 200 to be used in any suitable network system
environment.

[0047] Existing methods of creating software to allow
interoperability with one or more APIs require each software
connector to be manually constructed, and as a result are
time- and labor-intensive. The automated functions per-
formed by the programs of network scanning module 170
and connector generation module 180 significantly reduce
the time required for development platform 200 to be
deployed in a new environment and/or for development
platform 200 to be modified to access new functionality of
modified, updated, or newly-added APIs as compared to
existing methods. Further, the functions performed by net-
work scanning module 170 and connector generation mod-
ule 180 allow any suitable development environment to be
used as development environment 210. Advantageously,
reduces and/or eliminates labor required to create custom
development environments that include connectors 240A-N
to access and invoke API functionality.

[0048] FIG. 2 is a flow diagram of method 500, which is
a method of creating and using software connectors for a
development platform. Method 500 can be used to create
connectors 240A-N for development platform 200. Method
500 includes steps 502-516 of resolving a plurality of
network addresses (step 502), discovering a plurality of
APIs (step 504), inspecting the plurality of APIs to deter-
mine a plurality of invokable elements (step 506), creating
a plurality of connectors (step 508), classitying tasks per-
formed by invokable elements (step 510), modifying the
development platform (step 512), creating a program using
a development platform (step 514), and invoking APIs of the
plurality of APIs using connectors of the plurality of con-
nectors (step 516). Method 500 is performable by user-
accessible device 100 of network system environment 10
and, more particularly, can be performed using the programs
of network scanning module 170, connector generation
module 180, and development platform 200. Method 500 is
described herein generally with reference to components of
network system environment 10, but it is understood that
method 500 can be performed by any suitable system for
creating software connectors and using those software con-
nectors with a software development platform.

[0049] In step 502, a plurality of network addresses is
resolved. The plurality of network addresses are network

Oct. 10, 2024

addresses that belong a plurality of systems. More specifi-
cally, the plurality of network addresses are network
addresses for systems 120A-N. The plurality of network
addresses can be resolved by first listening on network
interface 108 to receive a plurality of network communica-
tions from network 130. In particular, network interface 108
can be configured listen to communications sent on network
130 such that network interface 108 passively receives
communications set on network 130. User-accessible device
100 can then resolve network addresses for systems 120A-N
based on the received network communications.

[0050] In step 504, a plurality of APIs is discovered.
User-accessible device 100 can analyze the received net-
work communications (i.e., the plurality of network com-
munications received in step 502) to discover APIs opera-
tively connected to and accessible via the network. The APIs
can be, for example, APIs 140A-N. As described previously,
APIs 140A-N are exposed such that APIs 140A-N can be
accessed by devices connected to network 130. Network
traffic on network 130 can be analyzed to determine which
of systems 120A-N operate one or more APIs. More spe-
cifically, user-accessible device 100 can analyze the content
of data and requests sent via network 130 to determine
which requests are designated for an API, and then store the
network address for the exposed API to memory 104 for
further use with method 500. Additionally and/or alterna-
tively, user-accessible device 100 can perform test calls to
network addresses resolved in step 502 to determine which
of those network addresses are addresses for exposed APIs
and store those network addresses to memory 104 for further
use with method 500. The test calls can be selected to elicit
a response from an API having a particular architecture,
protocol, and/or format, such that only APIs having the
targeted architecture, protocol, and/or format will perform a
particular action in response to the test call. The action can
be, for example, retrieving particular information or return-
ing a particular message (e.g., a status update), among other
options.

[0051] In step 506, the plurality of APIs discovered in step
504 are inspected to determine a plurality of invokable
elements. Each API discovered in step 504 includes one or
more invokable elements that can be invoked to access the
functionality of the system operating the API. Each API of
the plurality of APIs (e.g., each of APIs 140A-N) can be
inspected by, for example, querying API documentation
database 150 with API identity information. As referred to
herein, API “identity information” includes the protocol,
format, architecture, and/or name information for an API, or
any other suitable descriptive information for describing an
API. User-accessible device 100 can determine identity
information for each API based on, for example, the network
data received in step 502 and/or responses to test calls made
during step 504. For example, in embodiments where one or
more of the discovered APIs are RESTful APIs, they can be
identified as using the REST architecture based on the
format and/or contents of requests for the API, and can
similarly be identified based on the format and/or content of
a test call to the API. Further, if the test call is designed such
that only APIs having a particular architecture, protocol, or
format will return a particular response, the receipt of the
correct response can demonstrate API protocol, architecture,
and/or format information. Additionally and/or alternatively,
user-accessible device 100 can determine specific identity
information for each API, such as one or more names or

US 2024/0338181 Al

other identifiers that can be used to distinguish each API
from other APIs using similar or substantially the same
protocols, architectures, formats, etc. For example, one or
more calls can be sent to an API to determine name
information for the API.

[0052] After determining API identity information, user-
accessible device 100 can query API documentation data-
base 150 with the API identity information to obtain API
documentation. As described previously, the API documen-
tation stored in API documentation database 150 describes,
for each API described in API documentation database 150,
one or more functions performed by the API as well as the
commands to invoke those functions. The API documenta-
tion obtained in step 506 can be used to create connectors in
subsequent step 508.

[0053] Additionally and/or alternatively, user-accessible
device 100 can be configured to perform one or more test
calls to an API discovered in step 504 to learn the invokable
elements of the API. More specifically, user-accessible
device 100 can store (i.e., to memory 104) a plurality of test
commands for invoking APIs. The plurality of test com-
mands can be selected based on, for example, common
commands for invoking invokable elements, such that
invokable elements of the API can be mapped according to
the content of the response from the API to each test
commands. Additionally and/or alternatively, if possible for
a given API (e.g., according to the API architecture), user-
accessible device 100 can be configured to request invokable
elements information from the API. For example, user-
accessible device 100 can be configured to request configu-
ration information for the relevant API. As a specific
example, if the API is a RESTful AP, user-accessible device
100 can be configured to discover a list of objects and/or
methods of the API by accessing, for example, administrator
configuration information for the API. In some examples,
user-accessible device 100 can be configured to access
graphical interface tools for the API to obtain a list of
invokable elements for the API.

[0054] In step 508, user-accessible device 100 creates a
plurality of connectors. The plurality of connectors can be,
for example, connectors 240A-N. The connectors created in
step 508 allow programs created by development platform
200 to invoke the invokable elements classified in step 506.
The connectors can, for instance, be used by user-accessible
device 100 and/or the programs of development platform
200 to determine which calls to issue to a particular API
according to commands from a program created and/or
executed through development platform 200. In this manner,
connectors 240A-N function as software intermediaries
between programs created and/or executed in development
platform 200 and the exposed APIs 140A-N of systems
120A-N. In some examples, abstraction layer 220 of devel-
opment platform 200 is configured to interpret commands
from programs created and/or executed in development
environment 210 of development platform 200 and to issue
the appropriate command to the appropriate API.

[0055] Each connector created in step 508 can be config-
ured to invoke one or more invokable elements determined
in step 506 of an API discovered in step 504. As described
previously, in the example depicted in FIG. 1, user-acces-
sible device uses individual connectors 240A and 240N to
invoke APIs 240A and 240N, respectively, and further uses
a single connector 240B to invoke both APIs 240B and
240C. The configuration depicted in FIG. 1 is included for

Oct. 10, 2024

explanatory and illustrative purposes herein and it is under-
stood in other examples that any number of connector
modules can be used to allow development platform 200 to
access functionality of any number of APIs. For example,
two or more connectors can be used to invoke the invokable
elements of any of APIs 140A-N. Additionally and/or alter-
natively, a single connector can be used to invoke the
invokable elements of three or more APIs having sufficient
similarity (i.e., in architecture, format, etc.).

[0056] During step 508, user-accessible device 100 can
modify development platform 200 to include the plurality of
connectors. More specifically, user-accessible device can
modify abstraction layer 220 to include the plurality of
connectors. In other examples, the plurality of connectors
can be stored and maintained separately from development
platform 200 on memory 104, and abstraction layer 220 can
be configured to access the plurality of connectors to allow
programs executed by development platform 200 to invoke
APIs of the plurality of APIs (e.g., APIs of APIs 140A-N).

[0057] In step 510, user-accessible device 100 attempts to
classify one or more tasks or functions performed by each
invokable element for which a connector is created in step
508. Step 510 can be performed substantially simultane-
ously as step 508, can be performed prior to step 508, and/or
can be performed subsequent to step 508. Additionally
and/or alternatively, step 510 can be performed during step
506. User-accessible device 100 can determine the task(s) or
functions performed by an invokable element by, for
example, examining API documentation retrieved from API
documentation database 150. As a further example, user-
accessible device can determine the task(s) or function(s)
performed by an invokable element by inspecting outputs
created by the API in response to one or more test calls.
Additionally and/or alternatively, user-accessible device can
be configured to automatically flag invokable elements for
which the programs of user-accessible device are unable to
classify for follow-up and subsequent classification by a
user. The user can be a user with programming skills and
knowledge of APIs, such that the user is able to inspect the
invokable element and/or the relevant API to classify the
task or function performed by the invokable element.

[0058] In step 512, development platform 200 is modified.
Development platform 200 is modified to include one or
more graphically-represented programming functions that
are configured to invoke one or more of the invokable
elements for which connecters were created in step 508. The
graphically-represented functions include one or more
graphics and/or text that are designed to indicate to a user the
invokable element(s) that will be invoked by the graphi-
cally-represented function when executed. Development
platform 200 can be automatically modified by one or more
programs of user-accessible device 100 to create the graphi-
cally-represented functions. For example, user-accessible
device 100 can store (i.e., to memory 104) one or more
graphical symbols. User-accessible device 100 can be con-
figured to automatically select one graphical symbol or a
combination of graphical symbols to represent the function
(s) or task(s) performed by an invokable element, and to
modify development platform to include the graphical sym-
bol or combination of graphical symbols as a graphically-
represented function to invoke the invokable element. User-
accessible device 100 can also be configured to select one or
more natural language phrases to describe the task or
function performed by an invokable element and to include

US 2024/0338181 Al

the natural language phrase(s) as text in place of or in
combination with the graphical symbol(s). For example,
user-accessible device 100 can create an icon that includes
text overlaid onto one or more graphical elements and
modify development platform 200 to use the icon as the
graphical representation for a graphically-represented func-
tion. User-accessible device 100 can include a library of
natural language words and/or phrases as well as one or
more programs that can be used to select a word, a phrase,
or a combination of words and/or phrases to represent the
function and/or task performed by an invokable element.

[0059] In other examples, a user can manually create an
icon to represent the function and/or task performed by an
invokable element. A user can also manually modify devel-
opment platform 200 to include a graphically-represented
function using a manually-constructed icon and/or an icon
created using programs stored to user-accessible device 100.
In yet further examples, development platform 200 can be
modified to allow an existing graphically-represented func-
tion of development platform 200 to invoke a new connector
created in step 508. For example, if the target of the
graphically-represented function has been updated or
changed such that it requires a new connector to be invoked,
abstraction layer 220 can be modified to invoke the correct
API element when the graphically-represented function is
executed (e.g., when a program including the graphically-
represented function is executed).

[0060] In step 514, a program is created using develop-
ment platform 200. The program created in step 514
includes one or more graphically-represented functions that
are configured to invoke one or more of the invokable
elements determined in step 506 using the connectors cre-
ated in step 508. The program is created by a user, such as
user 300. In at least some examples, the program is created
by a power user that is relatively inexperienced in program-
ming with a programming language.

[0061] In step 516, the program created in step 514 is
executed to invoke an API using one or more connectors
created in step 508. As user can execute the program by, for
example, interacting with one or more graphical elements of
user-accessible device 100 via user interface 106. In some
examples, a user can execute the program by interacting
with one or more graphical elements of development plat-
form 200 to cause development platform 200 to execute the
program. Once executed, the program executed in step 516
invokes one or more invokable elements of APIs 140A-N
according to the graphical functions of the program selected
in step 514.

[0062] Steps 510-512 are optional and can be performed
where development platform 200 requires modification for a
graphically-represented function to invoke the invokable
elements of an API using connectors generated in step 508.
In at least some examples, connectors 508 created in step
508 can be configured such that pre-existing functions of
development environment 200 are able to access API func-
tionality without requiring modification, reprogramming, or
other reconfiguration of the graphical functions of develop-
ment environment 200. Similarly, steps 514-516 are also
optional and can be performed when it is desirable to create
a new program that invokes the invokable elements for
which connectors were created in step 508. In at least some
examples, connectors created in step 508 can be used to
allow pre-existing programs created using development

Oct. 10, 2024

platform 200 (i.e., programs created before performance of
step 508) to access API functionality.

[0063] Method 500 can be performed in multiple iterations
at pre-determined intervals to update connectors created
using method 500 and, in some examples, to also update the
graphically-represented functions of development platform
200 and/or programs created using development platform
200. Some or all of steps 502-512 can also be performed in
an automated manner, such that a user is only required to
execute one or more pre-configured programs stored to
memory 104 to cause user-accessible device 100 to perform
steps 502-512. Further, user-accessible device can be con-
figured to automatically perform step(s) of method 500 upon
completion of other step(s) of method 500. For example,
step 508 (creating the plurality of connectors) can be per-
formed automatically upon the completion of step 506
(inspecting the plurality of APIs to determine a plurality of
invokable elements) without additional user input. This
example is intended to be non-limiting and in other
examples other steps can be performed automatically upon
completion of any other step of method 500.

[0064] Advantageously, method 500 allows for construc-
tion of connectors to enable development platform 200 to
invoke APIs 140A-N and, in some examples, allows for the
construction of those connectors to be automated. Automat-
ing steps of method 500 reduces the overall labor required
to perform method 500, thereby reducing costs associated
with performing method 500. Further, each step of method
500 can be run in a partially automated and partially
manually-performed manner, such that automated programs
attempt to perform the steps of method 500 and create
prompts or other outputs to indicate to a user that the step
should be completed manually for APIs of APIs 140A-N.
Method 500 can be used to construct both connectors and
graphically-represented functions of development platform
200, allowing method 500 to be performed to confer the
advantages of development platform 200 to network envi-
ronments including systems that operate APIs. Method 500
can be used, for example, to allow for the connectors and
graphically-represented functions of development platform
200 to be created for use in an existing enterprise environ-
ment, thereby enabling power users of the enterprise envi-
ronment to take advantage of API functionality to perform
certain tasks in less time and with higher efficiency than is
often enabled by the graphical tools otherwise available to
operate systems of the enterprise environment.

[0065] Although method 500 has been generally described
herein with respect to network system environment 10, in
other examples method 500 can be adapted to create con-
nectors for any suitable system including network-con-
nected systems operating APIs. Similarly, method 500 can
also be adapted to modify any suitable development plat-
form to include additional or alter existing graphically-
represented functions, and further to create and execute
programs using those graphically-represented functions.
[0066] FIG. 3 is a flow diagram of method 700, which is
a method of obtaining and using API documentation suitable
for use with method 500. Method 700 includes steps of
determining an API identity (step 702), querying an API
documentation database with the API identity (step 704),
determining invokable elements of the API based on the
retrieved API documentation (step 706), and determining
one or more tasks performed by each invokable element
(step 708). Steps 702-706 can be performed during step 506

US 2024/0338181 Al

of method 500 and step 708 can be performed during step
510 of method 500. In examples where step 510 of method
500 is performed during step 506, step 708 can also be
performed during step 506.

[0067] In step 702, user-accessible device 100 determines
an API identity for an API discovered in step 504. Step 702
can be performed according to the methods previously
described in the discussion of API identity determination
during step 506 of method 500 (FIG. 2). In step 704,
user-accessible devices queries API documentation database
150 with the API identity determined in step 702 to retrieve
API documentation for the APIL. In step 706, invokable
elements for the API are determined using the API docu-
mentation retrieved in step 704. User-accessible device 100
can be configured to automatically scan and interpret
retrieved API documentation to discover invokable elements
of the API. Additionally and/or alternatively, a user can
manually inspect the retrieved API documentation to deter-
mine invokable elements for the API. In step 708, the tasks
and/or functions performed by each invokable element dis-
covered in step 706 are determined. For each invokable
element, user-accessible device 100 can be configured to
automatically scan and interpret retrieved API documenta-
tion to determine the task(s) and/or function(s) performed by
that invokable element. Additionally and/or alternatively, a
user can manually inspect the retrieved API documentation
to classify the invokable element. Method 700 can be
performed for some or all APIs discovered in step 504.
[0068] In some examples, the API documentation
retrieved in step 704 may not include thorough or adequate
description of all invokable elements of the API. In these
examples, user-accessible device 100 can be configured to
determine the tasks performed by those invokable elements
by performing one or more test calls of the API during step
708. User-accessible device 100 can be configured to infer
the task(s) or function(s) performed based on the response
returned after one or more test calls of the invokable
element. Additionally and/or alternatively, user-accessible
device can be configured to output a message to the user
indicating that the invokable element cannot be classified.
[0069] In some examples, user-accessible device 100 is
configured to first attempt to classify an invokable element
(i.e., to determine the task(s) and/or function(s) performed
by the invokable element) using API documentation from
API documentation database 150. If user-accessible device
100 is unable to classify the invokable element from the API
documentation, user-accessible device 100 can attempt to
classify the invokable element by performing one or more
test calls. If user-accessible device 100 is still unable to
classify the invokable element from the responses to the test
call(s), user-accessible device 100 can prompt a user to
manually classify the invokable element.

[0070] Similarly, if user-accessible device 100 is unable to
obtain API documentation for an API (e.g., if API documen-
tation database 150 lacks documentation for the API), user-
accessible device 100 can attempt to discover invokable
elements of the API by performing one or more test calls. If
user-accessible device 100 is unable to determine invokable
elements for the API by performing test calls, user-acces-
sible device 100 can also be configured to prompt a user to
manually inspect the API to discover the invokable elements
of the APL

[0071] Advantageously, method 700 allows user-acces-
sible device 100 to automatically attempt to generate API

Oct. 10, 2024

identity information, determine invokable elements of an
API, and further to classify those invokable elements using
API documentation available in an API documentation data-
base, such as API documentation database 150.

[0072] The methods and systems described herein advan-
tageously enable power users to take advantage of API
functionality to improve user productivity. Through the
combination of development environment 210 and abstrac-
tion layer 220, development platform 200 allows power
users to use graphically-driven tools to create executable
programs that invoke system APIs, significantly improving
user productivity for tasks that can be simplified or stream-
lined through the use of API resources. Further, the methods
and systems described herein enable the creation of the
connectors and graphically-represented functions of devel-
opment platform 200 for any suitable network environment.
In some examples, the methods and systems described
herein enable the connectors and graphically-represented
functions of development platform 200 to be created in a
fully-automated or at least partially-automated manner.
[0073] While the invention has been described with ref-
erence to an exemplary embodiment(s), it will be understood
by those skilled in the art that various changes may be made
and equivalents may be substituted for elements thereof
without departing from the scope of the invention. In addi-
tion, many modifications may be made to adapt a particular
situation or material to the teachings of the invention with-
out departing from the essential scope thereof. Therefore, it
is intended that the invention not be limited to the particular
embodiment(s) disclosed, but that the invention will include
all embodiments falling within the scope of the present
disclosure.

1. A method comprising:

resolving a plurality of network addresses for a plurality
of systems connected to a network, each network
address of the plurality of network addresses corre-
sponding to a system of the plurality of systems;

discovering a plurality of application programming inter-
faces operated by the plurality of systems;

inspecting the plurality of application programming inter-

faces to determine a plurality of invokable elements of
the plurality of application programming interfaces;
and

creating a plurality of connectors executable by a devel-

opment platform to invoke the plurality of invokable

elements, wherein:

the development platform includes one or more graphi-
cally-represented programming functions; and

the plurality of connectors is configured to allow the
one or more graphically-represented programming
functions of the development platform to invoke one
or more of the plurality of invokable elements.

2. The method of claim 1, and further comprising creat-
ing, using the development platform, an executable program
comprising one or more graphically-represented program-
ming functions configured to invoke one or more of the
plurality of invokable elements using connectors of the
plurality of connectors.

3. The method of claim 2, and further comprising causing
the development platform to invoke the one or more of the
plurality of invokable elements by executing the executable
program.

US 2024/0338181 Al

4. The method of claim 1, wherein creating the plurality
of connectors comprises automatically creating the plurality
of connectors upon determining the plurality of invokable
elements.

5. The method of claim 1, wherein:

the development platform comprises a development envi-
ronment and an abstraction layer;

the development environment comprises the one or more
graphically-represented programming functions;

the abstraction layer is configured to interpret commands
from the one or more graphically-represented using the
plurality of connectors; and

creating the plurality of connectors comprises modifying
the abstraction layer to include the plurality of connec-
tors.

6. The method of claim 5, wherein creating the plurality
of connectors comprises modifying the development plat-
form to create the one or more graphically-represented
programming functions that, when executed by the devel-
opment platform, cause the development platform to invoke
one or more of the plurality of invokable elements.

7. The method of claim 6, wherein modifying the devel-
opment platform to create the one or more graphically-
represented programming functions comprises modifying
the development environment to create the one or more
graphically-represented programming functions.

8. The method of claim 1, wherein the development
platform comprises at least one of a low-code development
environment and a no-code development environment.

9. The method of claim 1, wherein resolving the plurality
of network addresses comprises:

listening on a network interface of a network device
connected to a network to receive a plurality of network
communications, the plurality of systems connected to
the network; and

resolving the plurality of network addresses based on the
received plurality of network communications.

10. The method of claim 8, wherein:

the plurality of application programming interfaces com-
prise a plurality of exposed application programming
interfaces exposed by the plurality of systems; and

discovering the plurality of application programming
interfaces comprises analyzing the plurality of network
communications.

11. The method of claim 9, wherein discovering the
plurality of application programming interfaces comprises,
for each application programming interface:

sending a request to the system of the plurality of systems
operating the application programming interface; and

determining that the system operates the application pro-
gramming interface based on data returned by the
system as a result of the request.

12. The method of claim 9, wherein inspecting the plu-
rality of application programming interfaces to determine a
plurality of invokable elements comprises, for each appli-
cation programming interface of the plurality of application
programming interfaces:

Oct. 10, 2024

determining an identity of the application programming
interface;

query, using the identity of the application programming
interface, an application programming interface docu-
mentation database to retrieve application program-
ming documentation for the application programming
interface;

determining at least one invokable element based on the
retrieved application programming documentation; and

for each invokable element, determining a task performed
by the invokable element based on the retrieved appli-
cation programming documentation.

13. The method of claim 11, wherein creating the plurality
of connectors comprises, for each invokable element:

classifying the task performed by the invokable element;
and

modifying the development platform to create a new
graphically-represented programming function to
invoke the invokable element, wherein one or more
graphical elements of the new graphically-represented
programming functions are based on the classification
of the task performed by the invokable element.

14. The method of claim 11, wherein creating the plurality
of connectors comprises, for each invokable element:

classifying the task performed by the invokable element;

selecting an existing graphically-represented function of
the development platform based on the classification of
the task performed by the invokable element; and

modifying the development platform to modify the exist-
ing graphically-represented function to invoke the
invokable element.

15. The method of claim 9, wherein the plurality of
invokable elements comprise at least one of invokable
methods, objects, and functions.

16. The method of claim 14, wherein inspecting the
plurality of application programming interfaces to determine
a plurality of invokable elements comprises, for each appli-
cation programming interface:

determining a plurality of objects of the application
programming interface; and

determining a plurality of methods that operate on the
plurality of objects.

17. The method of claim 15, wherein inspecting the
plurality of application programming interfaces to determine
a plurality of invokable elements comprises, for each appli-
cation programming interface:

determining an identity of the application programming
interface;

cross-referencing the identity of the application program-
ming interface with an application programming inter-
face documentation database to retrieve application
programming documentation for the application pro-
gramming interface;

determining the plurality of objects based on the retrieved
application programming documentation; and

determining the plurality of methods based on the
retrieved application programming documentation.

US 2024/0338181 Al
11

18. A system comprising:

a plurality of systems connected to a network, the plural-
ity of systems configured to operate a plurality of
application programing interfaces; and

a user-accessible device connected to the network, the
user-accessible device comprising:

a processor;

a user interface; and

a memory including a development platform, the devel-
opment platform including one or more graphically-
represented programming functions that can be
graphically displayed using the user interface, the
memory comprising instructions that, when
executed, cause the processor to:

resolve a plurality of network addresses for the plural-
ity of systems, each network address of the plurality
of network addresses corresponding to a system of
the plurality of systems;

discover the plurality of application programming
interfaces operated by the plurality of systems;

inspect the plurality of application programming inter-
faces to determine a plurality of invokable elements
of the plurality of application programming inter-
faces; and

Oct. 10, 2024

create a plurality of connectors executable by the
development platform to invoke the plurality of
invokable elements, wherein the plurality of connec-
tors is configured to allow the one or more graphi-
cally-represented programming functions of the
development platform to invoke one or more of the
plurality of invokable elements.
19. The system of claim 18, wherein:
the development platform comprises a development envi-
ronment and an abstraction layer;
the development environment comprises the one or more
graphically-represented programming functions;
the abstraction layer is configured to interpret commands
from the one or more graphically-represented using the
plurality of connectors; and
the instructions, when executed, cause the processor to
create the plurality of connectors by modifying the
abstraction layer to include the plurality of connectors.
20. The system of claim 19, wherein the instructions,
when executed, cause the processor to modify the develop-
ment environment to create the one or more graphically-
represented programming functions.

#* #* #* #* #*

