(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
11 February 2021 (11.02.2021)

(10) International Publication Number

WO 2021/025758 Al

WIPO I PCT

(51) International Patent Classification:
GO6F 11/07 (2006.01) GO6F 11/10 (2006.01)

(21) International Application Number:
PCT/US2020/036545

(22) International Filing Date:
08 June 2020 (08.06.2020)

Microsoft Way, Redmond, WA 98052-6399 (US). LIU,
Tao; MICROSOFT TECHNOLOGY LICENSING, LLC,
One Microsoft Way, Redmond, WA 98052-6399 (US).
CHAKRABORTY, Subhasish; MICROSOFT TECH-
NOLOGY LICENSING, LLC, One Microsoft Way, Red-
mond, WA 98052-6399 (US).

(74) Agent: SWAIN, Cassandra T. et al.; Microsoft Technol-
(25) Filing Language: English ogy Licensing, Llc, One Microsoft Way, Redmond, WA
L , 98052-6399 (US).
(26) Publication Language: English
(81) Designated States (unless otherwise indicated, for every

(30) Priority Data:
16/530,844 02 August 2019 (02.08.2019) UsS

(71) Applicant: MICROSOFT TECHNOLOGY LI-
CENSING, LLC [US/US], One Microsoft Way, Redmond,
WA 98052-6399 (US).

(72) Inventors: SHUEY, Jeffrey Matthew; MICROSOFT
TECHNOLOGY LICENSING, LLC, One Microsoft Way,
Redmond, WA 98052-6399 (US). LADKANI, Neeraj;
MICROSOFT TECHNOLOGY LICENSING, LLC, One

kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ,DE, DJ, DK, DM, DO,
Dz, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR, KW KZ,LA,LC,LK,LR,LS,LU,LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,

(54) Title: SYSTEMS AND METHODS FOR MONITORING AND RESPONDING TO BUS BIT ERROR RATIO EVENTS

100 ~
Baseband Management Controller 116
Condition 120
Threshold
Bus System Software 106 Value 122
Interface 102 Bit Error Metric
Emor Correcting Calculator 114 $
Component 110 Bit Error Metrc 112 o e
Error Register 104 Error Count 134 j \ Notification
Error Flag 108 > Message 130
: Interrupt Service Logging Notification 2
Routine 111 Component 126 Component 128 >
Time Interval 138 ¢
Log 124

wo 2021/025758 A1 |0 0000 KA 0 000 0 0 0

(57) Abstract: A computer system includes a bus interface having error correction capability. The bus interface includes an error
register that is configured to provide error information related to correctable errors. System software within the computer system is
configured to obtain the error information from the error register and calculate a bit error metric based on the error information. A
baseboard management controller within the computer system is configured to take an action in response to obtaining the bit error
metric from the system software and determining that a condition related to the bit error metric has been satisfied.

[Continued on next page]

WO 20217025758 A | [I 100000 00O 0 0O

SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

— as to applicant's entitlement to apply for and be granted a
patent (Rule 4.17(ii))

— as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:
— with international search report (Art. 21(3))

10

15

20

25

30

WO 2021/025758 PCT/US2020/036545

SYSTEMS AND METHODS FOR MONITORING AND RESPONDING TO BUS
BIT ERROR RATIO EVENTS

BACKGROUND
[0001] The present disclosure is generally related to bus interfaces in a computer
system. The term “bus interface” refers to any entity or combination of entities that
facilitates data transfer between components inside a computer, or between computers. In
the context of the techniques disclosed herein, a bus interface may alternatively be referred
to as an interconnect. The present disclosure is specifically related to bus interfaces that
have the ability to detect error(s) in connection with the transfer of data and correct or retry
the transaction(s) that produced the error(s). Some examples of such bus interfaces include
Peripheral Component Interconnect Express (PCle), Ultra Path Interconnect (UPI), Quick
Path Interconnect (QPI), XGMI, XGMI2, Ethernet, Serial AT Attachment (SATA), Serial
Attached Small Computer System Interface (SAS), and any computer bus that operates
using a double data rate (DDR) technique. Of course, the above list of bus interfaces is
provided for purposes of example only, and should not be interpreted as limiting the scope
of the present disclosure. The techniques disclosed herein may be used in connection with
other bus interfaces that are not included in the above list.
[0002] Errors may sometimes occur as data is transmitted across bus interfaces. In
general terms, errors may be categorized as correctable or uncorrectable. As the name
suggests, correctable errors may be corrected. Such errors are typically corrected by
hardware and no software intervention is required. Although correctable errors may have an
impact on performance (e.g., latency, bandwidth), no data/information is lost and the
communication link remains reliable. Uncorrectable errors are the errors that are not able to
be corrected, so that data/information is lost.
[0003] Some bus interfaces have error detection and correction capabilities. For
example, some bus interfaces have error correcting code (ECC), which is a mechanism that
enables correction of single-bit errors on the fly. Depending on the architecture, sometimes
multi-bit errors can be corrected as well. Generally speaking, however, the higher number
of errors, the less likely it is that the errors are correctable. Error correction in a bus interface
may involve the retransmission of data. If a receiving device detects an error in data that it
has received, the receiving device typically notifies the sending device about the error, and
the sending device then resends the data.

[0004] Correctable error handling has previously been addressed in several ways. One

10

15

20

25

30

WO 2021/025758 PCT/US2020/036545

approach simply involves masking and ignoring the errors. This is not an effective approach,
however, because high levels of correctable errors can reduce performance and eventually
lead to uncorrectable errors and system crashes.

[0005] Another approach involves asynchronous, interrupt-based error handling that
logs and clears the errors. In one implementation of this approach, when an error happens a
system management interface (SMI) interrupt is generated to the basic input/output system
(BIOS). An SMI handler then scans input/output (I/O) registers for error status. For any
errors that are found, the SMI handler tells the baseboard management controller (BMC) to
log the error occurrence in an event log. However, the error handler can miss errors that are
happening faster than the time it takes to run the handler code. In addition, sometimes the
logging capacity is limited, in which case a high error rate can fill or overflow the event log.
This can prevent the ability to see other useful log information. To prevent this, sometimes
logging limits are implemented. In those cases, once the logging limit is reached, then
additional errors are simply ignored (which is not a desirable approach, as discussed above).
Evenif all errors are logged, it is difficult to use the log data from this approach to implement
meaningful warnings and to take preemptive actions.

[0006] Some systems utilize a periodic interrupt or polling approach that logs and clears
the errors. In addition to suffering from many of the same disadvantages discussed
previously, this approach generally has a higher latency responding to errors. If this
approach is used to handle all error types, then uncorrectable errors may not be handled in
time.

[0007] Some systems utilize a “leaky bucket” approach in combination with one of the
above error handling techniques. With such an approach, errors are logged once they reach
a certain quantity. For example, in one implementation, the operating system logs each error
and notifies the BIOS when N errors have been seen (where N may be a fairly large number,
such as 500). The BIOS then logs one error event to the BMC event log for each N errors
seen by the operating system (OS). Although the leaky bucket approach alleviates the
problem of filling the BMC event log and helps to provide more actionable events, it suffers
from the disadvantage of making it appear as though there are fewer errors than there really
have been (because N errors are logged as a single event). Even if one is aware that a single
event corresponds to N errors and that no events does not necessarily mean that no errors
have occurred, this method still loses granularity in terms of what can be determined from
the BMC event log, thereby making it necessary to refer to the OS event log. If the OS for

some reason is not able to respond to the errors (as this would be an OS-first approach),

10

15

20

25

30

WO 2021/025758 PCT/US2020/036545

there may be no indication that there is an error at all. Also, because the leaky bucket
approach is used in combination with one of the above error handling techniques, this
approach suffers from the same disadvantages discussed previously.
[0008] In view of the foregoing, benefits may be realized by improved techniques for
correctable error handling in connection with bus interfaces.

SUMMARY
[0009] In accordance with one aspect of the present disclosure, a computer system is
disclosed that includes a bus interface having error correction capability and an error register
within the bus interface. The error register is configured to provide error information related
to correctable errors. The computer system also includes system software that is configured
to obtain the error information from the error register and a baseboard management
controller (BMC) that is configured to take an action in response to determining that a
condition related to a bit error metric has been satisfied. The bit error metric is calculated
based on the error information.
[0010] The bit error metric may include a ratio of a number of correctable bit errors that
have occurred during a time interval to a total number of bits that have been transferred
across the bus interface during the time interval.
[0011] The error register may be configured to provide an error status of the bus
interface. The system software may be configured to run an interrupt service routine in
response to an interrupt being generated. The interrupt service routine may be configured to
scan the bus interface to determine the error status and increment a counter when the error
status indicates that a correctable error has occurred.
[0012] The error register may be configured to provide an error counter for the bus
interface. The system software may be configured to periodically poll the error register to
determine a current value of the error counter.
[0013] The system software may be selected from the group consisting of a host
operating system of the computer system, a basic input/output system (BIOS), BMC
firmware, agent code running on the host operating system, or firmware or another operating
system located on an add-in card or other subsystem of the computer system.
[0014] The action may include at least one of logging an indication that the condition
related to the bit error metric has been satisfied, notifying an entity that the condition related
to the bit error metric has been satisfied, or directly supplying the bit error metric to the
entity.

[0015] Determining that the condition has been satisfied may include determining that

10

15

20

25

30

WO 2021/025758 PCT/US2020/036545

the bit error metric does not compare favorably to a threshold value.

[0016] A plurality of threshold values may be defined. The BMC may be configured to
take a first action in response to determining that the bit error metric does not compare
favorably to a first threshold value and take a second action in response to determining that
the bit error metric does not compare favorably to a second threshold value. The second
action may be different from the first action.

[0017] Determining that the condition has been satisfied may include detecting that a
statistical parameter related to historical bit error metric values has changed by more than a
threshold amount within a defined time period.

[0018] Calculating the bit error metric may include calculating a ratio of (Fend — Fstart) /
AT, Esat may indicate a first error counter value at a start of a time interval. Fend may
indicate a second error counter value at an end of the time interval. A7 may indicate the total
number of bits that have been transferred across the bus interface during the time interval.
[0019] In accordance with another aspect of the present disclosure, a baseboard
management controller for a computer system is disclosed. The baseboard management
controller includes one or more processors, memory in electronic communication with the
one or more processors, and instructions stored in the memory. The instructions are
executable by the one or more processors to determine that a condition related to a bit error
metric has been satisfied. The bit error metric is related to a bus interface within a computer
system. The bus interface includes error detection and correction capability. The bit error
metric depends on how many correctable bit errors have occurred on the bus interface during
a time interval. The instructions are also executable by the one or more processors to take
an action in response to determining that the condition has been satisfied.

[0020] The bit error metric may include a ratio of a number of correctable bit errors that
have occurred during a time interval to a total number of bits that have been transferred
across the bus interface during the time interval.

[0021] The bit error metric may be obtained from a process that is running within an
operating system (OS) or a basic input/output system (BIOS) or generated by the BMC
based on error data obtained from the OS or the BIOS.

[0022] The action may include recording a current value of the bit error metric in a log
or sending a notification message to another entity.

[0023] Determining that the condition has been satisfied may include determining that
the bit error metric does not compare favorably to a threshold value.

[0024] The baseboard management controller may further include additional

10

15

20

25

30

WO 2021/025758 PCT/US2020/036545

instructions that are executable by the one or more processors to take a first action in
response to determining that the bit error metric does not compare favorably to a first
threshold value and take a second action in response to determining that the bit error metric
does not compare favorably to a second threshold value. The second action may be different
from the first action.
[0025] In accordance with another aspect of the present disclosure, a computer-
implemented method is disclosed that includes receiving a notification related to a bit error
metric for a bus interface within a computer system. The bus interface includes error
correction capability. The bit error metric depends on how many correctable bit errors have
occurred on the bus interface during a time interval. The method also includes determining,
based on the notification, that a condition related to the bit error metric has been satisfied.
The method also includes taking an action in response to determining that the condition has
been satisfied.
[0026] The condition may include a migration condition indicating that the computer
system is likely to experience a system crash. The computer system may include a workload.
The action may include causing the workload to be migrated to a different computer system.
[0027] Determining that the condition has been satisfied may include interpreting the
notification as an indication that the migration condition has been satisfied.
[0028] The notification may include the bit error metric. Determining that the condition
has been satisfied may include determining that the bit error metric does not compare
favorably to a threshold value.
[0029] This Summary is provided to introduce a selection of concepts in a simplified
form that are further described below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the claimed subject matter, nor is it
intended to be used as an aid in determining the scope of the claimed subject matter.
[0030] Additional features and advantages will be set forth in the description that
follows. Features and advantages of the disclosure may be realized and obtained by means
of the systems and methods that are particularly pointed out in the appended claims. Features
of the present disclosure will become more fully apparent from the following description
and appended claims, or may be learned by the practice of the disclosed subject matter as
set forth hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS
[0031] In order to describe the manner in which the above-recited and other features of

the disclosure can be obtained, a more particular description will be rendered by reference

10

15

20

25

30

WO 2021/025758 PCT/US2020/036545

to specific embodiments thereof which are illustrated in the appended drawings. For better
understanding, the like elements have been designated by like reference numbers throughout
the various accompanying figures. Understanding that the drawings depict some example
embodiments, the embodiments will be described and explained with additional specificity
and detail through the use of the accompanying drawings in which:
[0032] Figure 1 illustrates aspects of a computer system that is configured to calculate
and use a bit error metric in accordance with the techniques disclosed herein.
[0033] Figure 1A illustrates aspects of a computer system in which the error information
provided by the error register takes the form of an error counter.
[0034] Figure 2 illustrates an example of a method that may be performed in order to
determine and maintain an error counter for a bus interface.
[0035] Figure 3 illustrates an example of a method that may be performed in order to
determine a bit error metric.
[0036] Figure 4 illustrates aspects of a computer system that has defined multiple
conditions related to a bit error metric.
[0037] Figure 5 illustrates an example of a cloud computing system in which the
techniques disclosed herein may be utilized.
[0038] Figure 6 illustrates aspects of a computer system in which historical information
about the bit error metric is maintained.

DETAILED DESCRIPTION
[0039] The present disclosure proposes the use of a bit error metric in connection with
a bus interface in a computer system. The bit error metric may take the form of a bit error
rate. In some embodiments, the bit error metric may be defined as a ratio of a number of
correctable bit errors that have occurred during a time interval to a total number of bits that
have been transferred across the bus interface during the time interval.
[0040] Existing device-specific registers that indicate error status and/or count may be
used to calculate a bit error metric in accordance with the present disclosure. In this context,
the term “register” may refer to a hardware register that may be used to store one or more
bits of information. An “error register” may refer to a hardware register that is used to store
error information. As an example, a bus interface may include an error register that provides
an error status of the bus interface. When a system interrupt is generated, system software
(e.g., the BIOS or OS) may run an interrupt service routine that scans the bus interface to
determine the error status. A counter may be incremented when the error status indicates

that a correctable error has occurred. Alternatively, the bus interface may include an error

10

15

20

25

30

WO 2021/025758 PCT/US2020/036545

register that provides an error counter (instead of just an error status). System software may
be configured to periodically poll the error register to determine the number of errors that
occur over a particular time interval.

[0041] The bit error metric may be used in a variety of ways. In general, the bit error
metric may be monitored as opposed to monitoring individual correctable error events. This
should make it easier to implement meaningful warnings and to take preventative actions
with respect to a bus interface in a computer system.

[0042] In some embodiments, system software (e.g., the BIOS or OS) may deliver the
bit error metric to the BMC or make it available in a location that the BMC can access.
Alternatively, instead of obtaining the bit error metric from the system software, the BMC
may calculate the bit error metric based on error data that the BMC receives from the system
software. For example, the system software may only be designed or capable of indicating
one error at a time to the BMC, and the BMC may be configured to keep a count of these
reported errors as well as the time interval and the data rate to calculate the bit error metric.
[0043] The BMC may be configured to take one or more actions in response to
determining that a condition related to the bit error metric has been satisfied. In this context,
the term “condition” may refer to one or more defined events, such as the bit error metric
exceeding a defined threshold. In this context, a condition is satisfied when the defined
event(s) associated with the condition have occurred. The term “action” may refer broadly
to any type of activity or operation that is performed. Some specific examples of actions
that may be taken in response to determining that a condition related to the bit error metric
has been satisfied will be described below, such as notifying one or more other entities that
the condition has been satisfied.

[0044] Determining that a condition related to the bit error metric has been satisfied may
involve, for example, determining that the bit error metric does not compare favorably to a
threshold value (e.g., determining that the bit error metric exceeds a threshold value).
Actions that may be taken by the BMC include logging an indication that the condition
related to the bit error metric has been satisfied, notifying one or more other entities that the
condition related to the bit error metric has been satisfied, and directly supplying the bit
error metric to one or more other entities. Thus, the BMC may treat the bit error metric like
other management sensors and implement thresholds for action.

[0045] In some embodiments, conditions may be defined that involve historical
information about the bit error metric. For example, a condition may be defined specifying

that one or more actions should be taken if a statistical parameter (e.g., mean, standard

10

15

20

25

30

WO 2021/025758 PCT/US2020/036545

deviation) related to historical bit error metric values has changed by more than a threshold
amount within a defined time period.

[0046] Using the bit error metric in the manner described enables preventative actions
to be taken with respect to a bus interface in a computer system. For example, trends in bit
error metric values may indicate that failure of a particular bus interface is likely to occur
fairly soon. In this case, preventative actions may be taken such as moving any workloads
that are running on the computer system to another computer system.

[0047] In addition to facilitating preventative measures, the techniques disclosed herein
may also make analysis of past failures more meaningful. For example, when a computer
system crashes due to the failure of a bus interface, logs created in accordance with the
techniques disclosed herein may indicate trends in bit error metric values that can be used
to predict future failures.

[0048] Figure 1 illustrates aspects of a computer system 100 in accordance with the
present disclosure. The computer system 100 includes a bus interface 102. The bus interface
102 includes an error correcting component 110. The error correcting component 110
includes an error register 104 that provides information about correctable errors.

[0049] Error information may refer to any information or data related to correctable
errors. In the depicted example, the error information takes the form of an error flag 108
that is binary in nature. In other words, the error flag 108 has two possible values: a first
value indicating that an error has occurred (an “error value”), and a second value indicating
that an error has not occurred (a “non-error value”). When the bus interface 102 is initially
placed into operation, the error flag 108 may be initialized to the non-error value. Whenever
an error occurs, the error flag 108 may be changed to the error value. At some point
thereafter (e.g., after the error has been appropriately handled), the error flag 108 may be
changed back to the non-error value. As another example, as will be described in greater
detail below, the error information may take the form of an error counter.

[0050] The computer system 100 includes system software 106. The system software
106 may be any software component (or group of software components) that performs the
functions that are described herein in relation to the system software 106. For example, the
system software 106 may be an operating system of the computer system 100, a basic
input/output system (BIOS) of the computer system 100, firmware within the baseband
management controller (BMC) 116, agent code running on the operating system of the
computer system 100, or firmware or another operating system located on an add-in card or

other subsystem of the computer system 100.

10

15

20

25

30

WO 2021/025758 PCT/US2020/036545

[0051] The system software 106 includes a component that uses the error flag 108
provided by the error register 104 to provide an error counter 134 for the bus interface 102,
and that calculates a bit error metric 112 based on the error counter 134. This component
may be referred to herein as a bit error metric calculator 114.

[0052] To provide the error counter 134, an interrupt service routine 111 may be
utilized. The system software 106 may be configured to run the interrupt service routine 111
in response to a system interrupt being generated. The system interrupt may be generated
when an error is detected. The system interrupt may be generated by the device that detects
the error (e.g., the bus interface 102). In response to the system interrupt being generated,
the interrupt service routine 111 may be configured to scan the bus interface 102 to
determine the error status based on the error flag 108 in the error register 104. When the
error flag 108 has the error value (indicating that an error has been detected), the interrupt
service routine 111 may increment the error counter 134. Thus, the value of the error flag
108 may be captured asynchronously in order to update the error counter 134.

[0053] In some embodiments, the bit error metric 112 is a ratio of the number of bit
errors that have occurred to the total number of bits that have been transferred. In
implementations where the bit error metric 112 is defined in this manner, the bit error metric
112 may be determined with respect to a particular time interval 138. For example,
determining the bit error metric 112 may involve determining both the number of bit errors
that have occurred during a particular time interval 138, and also determining the total
number of bits that have been transferred across the bus interface 102 during that time
interval 138.

[0054] The time interval 138 over which the bit error metric 112 is determined may be
a defined parameter within the computer system 100. In some embodiments, the time
interval 138 may indicate how frequently the bit error metric 112 is determined. For
example, if the time interval 138 is x seconds, the bit error metric 112 may be determined
every x seconds. In such an embodiment, if the bit error metric 112 is determined at time 7,
then the bit error metric 112 may next be determined at time 7 + x. The bit error metric 112
at time 7 + x may be determined as a ratio of (i) the number of bit errors that have occurred
between time 7 and time 7 + X, to (ii) the total number of bits that have been transferred across
the bus interface 102 between time 7 and time 7 + x.

[0055] Certain information may be used in connection with determining the bit error
metric 112. For example, the bit error metric calculator 114 may determine the total number

of bits that have been transferred across the bus interface 102 during a particular time

10

15

20

25

30

WO 2021/025758 PCT/US2020/036545

interval 138. This information may be obtained from the bus interface 102 itself. The total
number of bits that have been transferred across the bus interface 102 during a particular
time interval 138 may be calculated as the time interval (which is x in the example discussed
above) multiplied by the data rate of the bus interface 102 (i.e., the maximum data rate at
which the bus interface 102 is capable of transmitting data). This approach presumes that
the bus interface 102 is not going into a low power state (where no data is transmitted)
during any measured interval, and for many server systems this is a good assumption. Even
if bus low power states are enabled, however, the risk is that the bit error metric 112 may
err on the low side since the number of bits used in the calculation would always be greater
or equal than the actual number of bits transmitted. Therefore, this approach is unlikely to
register a false positive on exceeding a threshold. Although with this approach it is possible
to miss logging or reacting to a real threshold violation, for various reasons the risk of this
happening should be low.

[0056] Certain variables may also be used in connection with determining the bit error
metric 112, including Fstart (the value of the error counter 134 at the start of a time interval
138) and Fend (the value of the error counter 134 at the end of a time interval 138). These
variables will be discussed in greater detail below in connection with the method 300 shown
in Figure 3.

[0057] The bit error metric 112 may be defined in other ways in accordance with the
techniques disclosed herein. For example, in some embodiments, the bit error metric 112
may be defined as a ratio of the total number of bits that have been transferred to the number
of bit errors that have occurred (i.e., the inverse of the definition provided above).

[0058] Alternatively, in some embodiments, the bit error metric 112 may be defined as
the number of bit errors per unit time. In implementations where the bit error metric 112 is
defined in this manner, determining the bit error metric 112 may simply involve determining
the number of bit errors that have occurred during a particular time interval.

[0059] A baseboard management controller (BMC) 116 may be configured to obtain the
bit error metric 112 from the system software 106. Alternatively, instead of obtaining the
bit error metric 112 from the system software 106, the BMC 116 may calculate the bit error
metric 112. For example, the system software 106 (e.g., the BIOS) may only be designed or
capable of indicating one error at a time to the BMC 116, and the BMC 116 may be
configured to keep a count of these reported errors as well as the time interval and the data
rate to calculate the bit error metric 112. Although the system software 106 and the BMC

116 are separately in Figure 1, in some cases the portion of the system software 106 that

10

10

15

20

25

30

WO 2021/025758 PCT/US2020/036545

calculates the bit error metric 112 resides in the BMC 116, while the portion of the system
software 106 that reports the data to calculate the bit error metric 112 resides elsewhere,
such as in BIOS.

[0060] The BMC 116 may include a component that is configured to determine whether
any action should be taken in response to the bit error metric 112. This component may be
referred to herein as a bit error metric evaluator 118. In particular, the bit error metric
evaluator 118 may be configured to determine whether a condition 120 that is related to the
bit error metric 112 has been satisfied. In the depicted example, the condition 120 includes
a threshold value 122, and the bit error metric evaluator 118 compares the bit error metric
112 to the threshold value 122. If the bit error metric 112 does not compare favorably to the
threshold value 122, this means that some action should be taken.

[0061] The bit error metric 112 may compare favorably to the threshold value 122 by
being above or below the threshold value 122, depending on the characteristics of the bit
error metric 112. As indicated above, in some embodiments the bit error metric 112 may
depend on both the number of bit errors that have occurred and the total number of bits that
have been transferred. In embodiments where the value of the bit error metric 112 increases
as the percentage of bit errors relative to the total number of transferred bits increases (e.g.,
if the bit error metric 112 is a ratio of the number of bit errors that have occurred to the total
number of bits that have been transferred), then the bit error metric 112 compares favorably
to the threshold value 122 by being below the threshold. However, in embodiments where
the value of the bit error metric 112 decreases as the percentage of bit errors relative to the
total number of transferred bits increases (e.g., if the bit error metric 112 is a ratio of the
total number of bits that have been transferred to the number of bit errors that have
occurred), then the bit error metric 112 compares favorably to the threshold value 122 by
being above the threshold value 122.

[0062] If a condition 120 related to the bit error metric 112 is satisfied, then the BMC
116 may take one or more actions. There are many different types of actions that may be
taken in accordance with the present disclosure. For example, the BMC 116 may include a
logging component 126, and the bit error metric evaluator 118 may cause the logging
component 126 to record an indication that the condition 120 has been satisfied. Other
information, such as a timestamp (indicating the current date and time) may also be recorded
in the log 124 along with the indication.

[0063] As another example, the BMC 116 may include a notification component 128.

When a condition 120 related to the bit error metric 112 has been satisfied, the bit error

11

10

15

20

25

30

WO 2021/025758 PCT/US2020/036545

metric evaluator 118 may cause the notification component 128 to send a notification
message 130 to one or more other entities, which may be located within the computer system
100 or outside of the computer system 100. The notification message 130 may include the
value of the bit error metric 112. Sending the notification message 130 to another entity
allows that entity to track, analyze, and make decisions on appropriate actions.

[0064] Figure 1A illustrates aspects of another computer system 100A in accordance
with the present disclosure. The computer system 100A shown in Figure 1A is similar in
many respects to the computer system 100 shown in Figure 1. However, in the computer
system 100A shown in Figure 1A, the error information provided by the error register 104
takes the form of an error counter 108A. The system software 106 may be configured to
periodically poll the error register 104 to determine the current value of the error counter
108A.

[0065] In the embodiment shown in Figure 1A, Fsan refers to the value of the error
counter 108A at the start of a time interval 138, and Fend refers to the value of the error
counter 108A at the end of the time interval 138.

[0066] Figure 2 illustrates an example of a method 200 that may be performed in order
to provide the error counter 134 for the bus interface 102. The method 200 may be performed
in connection with the embodiment shown in Figure 1, in which the error information
provided by the error register 104 takes the form of an error flag 108. The method 200 may
be performed by the system software 106.

[0067] The method 200 begins when a system interrupt is detected 202. As indicated
above, the system interrupt may be generated when an error is detected, and the system
interrupt may be generated by the device that detects the error (e.g., the bus interface 102).
In response to detecting 202 the system interrupt, the interrupt service routine 111 scans 204
the bus interface 102 to determine the error status based on the error flag 108 in the error
register 104.

[0068] A determination is made 206 regarding whether the error flag 108 has the error
value or the non-error value. If the error flag 108 has the non-error value, the method 200
ends. If, however, the error flag 108 has the error value, the error counter 134 is incremented
208, and the error flag may be cleared 210 in order to be ready for another error event. The
method 200 then ends.

[0069] Figure 3 illustrates an example of a method 300 that may be performed (e.g., by
the bit error metric calculator 114) in order to determine the bit error metric 112. The method

300 may be performed in connection with the embodiment shown in Figure 1 (in which the

12

10

15

20

25

30

WO 2021/025758 PCT/US2020/036545

error information provided by the error register 104 takes the form of an error flag 108) or
the embodiment shown in Figure 1A (in which the error information provided by the error
register 104 takes the form of an error counter 108A). In both embodiments, the value of an
error counter is determined at different points in time. In the embodiment shown in Figure
1, the error counter takes the form of the error counter 134 that is maintained by the system
software 106 (and which may be determined and maintained in the manner described above
in connection with Figure 2). In the embodiment shown in Figure 1A, the error counter takes
the form of the error counter 108A that is part of the error register 104.

[0070] The method 300 includes determining 302, at the start of a time interval 138
during which the bit error metric 112 is determined, the current value of the error counter.
This value may be referred to herein as Estar. If the method 300 is performed in connection
with the embodiment shown in Figure 1, determining 302 Fstart includes determining the
current value of the error counter 134 that is maintained by the system software 106. If the
method 300 is performed in connection with the embodiment shown in Figure 1A,
determining 302 FEstart includes polling the error register 104 to determine the current value
of the error counter 108A.

[0071] The action of determining 302 Fsart may include initializing the error counter
(e.g., the error counter 134 that is maintained by the system software 106 in the embodiment
shown in Figure 1, or the error counter 108A that is part of the error register 104 in the
embodiment shown in Figure 1A) to a known value, such as zero.

[0072] After waiting 304 until the end of the time interval 138, the method 300 then
includes determining 306 the current value of the error counter at the end of the time interval
138. This value may be referred to herein as Fend. If the method 300 is performed in
connection with the embodiment shown in Figure 1, determining 306 Fend includes
determining the current value of the error counter 134 that is maintained by the system
software 106 at the end of the time interval 138. If the method 300 is performed in
connection with the embodiment shown in Figure 1A, determining 306 Fend includes polling
the error register 104 to determine the current value of the error counter 108A at the end of
the time interval 138.

[0073] The method 300 also includes determining 308 the number of bits that have been
transferred across the bus interface 102 during the time interval 138. This value may be
referred to as A7 The bit error metric 112 for that time interval 138 may then be calculated

314 according to equation (1) below:

13

10

15

20

25

30

WO 2021/025758 PCT/US2020/036545

(Fiend — Estart) / AT (D
[0074] In the embodiment shown in Figure 1A, where the error counter 108A is part of
the error register 104, the error counter 108 A may be configured so that whenever an error
occurs, the error counter 108A is incremented by a single value. When the error counter
108A reaches its maximum value, the error counter 108 A can “roll over,” meaning that the
value of the error counter 108A can return to zero. For example, if the error counter 108A
includes N bits, the maximum value of the error counter 108 A may be represented as 2" —
1. If the value of the error counter 108A is 2 — 1 and another error occurs, the value of the
error counter 108A can “roll over” to zero (i.e., change from 2" — 1 to zero). When taking
the difference between Fend and FEstan, the possibility of roll over should be taken into
consideration.
[0075] In the example shown in Figure 1, the bit error metric 112 is compared to a single
threshold value 122, and an action is taken if the bit error metric 112 exceeds the threshold
value 122. Alternatively, in some implementations, multiple threshold values may be
defined, and different actions may be taken depending on which threshold value has been
crossed.
[0076] Figure 4 illustrates aspects of a computer system 400 that has defined multiple
conditions 420 related to a bit error metric 412. The conditions 420 involve multiple
threshold values 422a-b. In the depicted example, two threshold values 422a—b are defined:
an upper non-critical threshold value 422a and an upper critical threshold value 422b. These
threshold values 422a—b may be defined so that the upper critical threshold value 422b is
higher than the upper non-critical threshold value 422a. Of course, the specific number of
threshold values 422a-b in the depicted computer system 400 is provided for purposes of
example only and should not be interpreted as limiting the scope of the present disclosure.
[0077] In addition to defining multiple threshold values 422a-b, the conditions 420 may
also define one or more actions that should be taken when the bit error metric 412 does not
compare favorably with one or more of the threshold values 422a—b. For example, a logging
action 440 may be defined in connection with each of the threshold values 422a—b. This
means that when the bit error metric 412 does not compare favorably with any of the
threshold values 422a-b (e.g., when the bit error metric 412 exceeds any of the threshold
values 422a-b), a logging component 426 may create an entry in a log 424.
[0078] Figure 4 shows an example of a log 424 that may be created for a bus interface
(such as the bus interface 102 shown in Figure 1). The log 424 includes a plurality of entries

446a—c. Each of the entries 446a—c may correspond to a particular point in time when the

14

10

15

20

25

30

WO 2021/025758 PCT/US2020/036545

bit error metric evaluator 418 receives a bit error metric 412 and compares the bit error
metric 412 to the threshold values 422a-b that have been defined.

[0079] For purposes of the present example, it will be assumed that the bit error metric
412 does not compare favorably with a particular threshold value if the bit error metric 412
exceeds that threshold value.

[0080] A first entry 446a in the log 424 includes an interface ID 448 corresponding to
the bus interface for which the bit error metric 412 has been calculated. The first entry 446a
also includes an indication of the threshold value that has been crossed, which in this case
is the upper non-critical threshold value 422a. The first entry 446a also includes a timestamp
450a. The timestamp 450a may correspond to the time when the first entry 446a is created,
which should correspond reasonably closely to when the bit error metric 412 was
determined that caused the creation of the first entry 446a. Optionally, each entry may
include the actual value of the bit error metric in addition to the threshold value.

[0081] A second entry 446b in the log 424 also includes the interface ID 448
corresponding to the bus interface and an indication of the threshold value that has been
crossed, which once again is the upper non-critical threshold value 422a. The second entry
446b also includes a timestamp 450b corresponding to the time when the second entry 446b
is created.

[0082] A third entry 446c in the log 424 also includes the interface ID 448
corresponding to the bus interface and an indication of the threshold value that has been
crossed, which in this case is the upper critical threshold value 422b. The third entry 446¢
also includes a timestamp 450c corresponding to the time when the third entry 446¢ is
created. Log entries may be created both when a threshold is crossed indicating that the bit
error metric compares unfavorably with the threshold, and again when the bit error metric
again compares favorably to the metric. This may be indicated in another field of each log
entry called an “assertion”. If the assertion is true, then the threshold has been crossed in
the positive direction indicating an unfavorable condition. If the assertion is false, then it
indicates that the threshold has been crossed in the negative direction, indicating that the
condition is again favorable.

[0083] In addition to the logging action 440, a reporting action may also be defined in
connection with at least some of the threshold values. In the depicted example, no reporting
action is defined in connection with the upper non-critical threshold value 422a. However,
a reporting action 444 is defined in connection with the upper critical threshold value 422b.

As part of the reporting action 444, a notification message 452 may be sent to one or more

15

10

15

20

25

30

WO 2021/025758 PCT/US2020/036545

entities.

[0084] In some embodiments, the techniques disclosed herein may be implemented in
the context of a cloud computing system. Figure 5 illustrates an example of a cloud
computing system 500 in which the techniques disclosed herein may be utilized. The system
500 includes a plurality of data centers 560a—c. The first data center 560a is shown with a
plurality of host machines 562a—c and a data center manager 564. The host machines 562a—
¢ may each be used to run zero or more virtual machines at any given time. In the depicted
example, the first host machine 562a is shown with three virtual machines 566a—c. The first
host machine 562a is also shown with a virtualization layer 568, which may alternatively be
referred to as a hypervisor layer. The virtualization layer 568 may be configured to keep the
virtual machines 566a—c isolated from one another on the first host machine 562a.

[0085] For simplicity, only three data centers 560a—c are shown in the system 500, and
only three host machines 562a—c are shown in the first data center 560a. However, those
skilled in the art will appreciate that a cloud computing system in accordance with the
present disclosure may include more than three data centers, and a data center may include
many more than three host machines (e.g., hundreds or thousands of host machines). Also,
for simplicity, only the contents of the first data center 560a are shown in Figure 5. However,
the other data centers S60b—c may be configured similarly to the first data center 560a. In
other words, the other data centers 560b—c may also include a data center manager and a
plurality of host machines running zero or more virtual machines (as well as other
components that are not shown in the simplified diagram of Figure 5). Within the first data
center 560a, only the contents of the first host machine 562a are shown in Figure 5.
However, the other host machines 562b—c may be configured similarly to the first host
machine 562a.

[0086] The system 500 also includes a system controller 570 that is configured to
manage the data centers 560a—c and the host machines 562a—c contained therein. To enable
the system controller 570 to be able to perform various actions related to the host machines
562a—c in the system 500, each of the host machines 562a—c may include one or more agents
that are configured to communicate with and perform various actions on behalf of the system
controller 570. Figure 5 shows an agent 572 on the first host machine 562a, and a similar
agent may be running on the other host machines 562b—c.

[0087] The first host machine 562a includes a bus interface 502 that includes an error
register 504. The error register 504 may be configured similarly to the error register 104 in

the bus interface 102 shown in Figure 1. For example, the error register 504 may provide

16

10

15

20

25

30

WO 2021/025758 PCT/US2020/036545

information about correctable errors that have occurred on the bus interface 502. The error
register 504 may take the form of a binary error flag that provides an error status, or an error
counter.

[0088] The first host machine 562a also includes a bit error metric calculator 514, which
may be implemented in system software 506 such as an operating system (OS) or a basic
input/output system (BIOS) of the first host machine 562a. The bit error metric calculator
514 may be configured similarly to the bit error metric calculator 114 in the computer system
100 shown in Figure 1. For example, the bit error metric calculator 514 may be configured
to use whatever information is provided by the error register 504 (e.g., error status or an
error counter) to calculate a bit error metric 512.

[0089] The first host machine 562a also includes a baseboard management controller
(BMC) 516 that includes a bit error metric evaluator 518. The bit error metric evaluator 518
may be configured similarly to the bit error metric evaluator 118 in the BMC 116 shown in
Figure 1. For example, the bit error metric evaluator 518 may be configured to periodically
obtain the bit error metric 512 from the system software 506 and determine whether one or
more conditions related to the bit error metric 512 have been satisfied. The BMC 516 may
take one or more actions in response to determining that a particular condition has been
satisfied.

[0090] As indicated above, there are many different types of actions that may be taken
in response to determining that a condition related to the bit error metric 512 has been
satisfied, including recording an indication that the condition has been satisfied in a log 524
and/or notifying one or more other entities that the condition has been satisfied. In some
embodiments, the BMC 516 may be configured to notify one or more entities outside of the
first host machine 562a that the condition has been satisfied. For example, the BMC 516
may be configured to notify the data center manager 564 that the condition has been
satisfied.

[0091] In some embodiments, a migration condition 574 related to the bit error metric
512 may be defined. The migration condition 574 may define the circumstances under which
a particular host machine is in danger of a system crash, such that a workload on the host
machine should be migrated to another host machine. In some embodiments, the migration
condition 574 may be that the value of the bit error metric 512 does not compare favorably
to a threshold value 522.

[0092] The BMC 516 may be configured to obtain the bit error metric 512 from the
system software 506 (e.g., the BIOS and/or the OS of the first host machine 562a). In

17

10

15

20

25

30

WO 2021/025758 PCT/US2020/036545

response to obtaining the current value of the bit error metric 512, the bit error metric
evaluator 518 may be configured to evaluate the migration condition 574 based on the
current value of the bit error metric 512. For example, the bit error metric evaluator 518 may
be configured to determine whether or not the current value of the bit error metric 512
compares favorably to the threshold value 522. In response to determining that the migration
condition 574 has been satisfied (e.g., that the current value of the bit error metric 512 does
not compare favorably to the threshold value 522), the BMC 516 may send a notification
message 552 to the data center manager 564. Sending a notification message 552 to the data
center manager 564 may involve sending a notification message 552a to the agent 572
running on the first host machine 562a, which then forwards the notification message 552
to the data center manager 564. The data center manager 564 may interpret the receipt of
the notification message 552 as an indication that the migration condition 574 has been
satisfied. In response, the data center manager 564 may cause one or more workloads on the
first host machine 562a to be migrated to another host machine (e.g., the second host
machine 562b).

[0093] In this context, the term “workload” may refer to any set of instructions that is
running on a computer system. For example, a workload may include one or more processes,
applications, virtual machines, containers, or the like. In the context of the example that is
shown in Figure 5, a workload may include one or more of the virtual machines 566a—c that
are running on the first host machine 562a.

[0094] In an alternative embodiment, the data center manager 564 may evaluate the
migration condition 574 instead of (or possibly in addition to) the BMC 516. For example,
the BMC 516 may send a notification message to the data center manager 564 that includes
the value of the bit error metric 512. In response, the data center manager 564 may determine
whether the migration condition 574 has been satisfied (e.g., by determining whether or not
the current value of the bit error metric 512 compares favorably to the threshold value 522).
If the migration condition 574 has been satisfied, the data center manager 564 may proceed
to cause one or more workloads on the first host machine 562a to be migrated to another
host machine.

[0095] In general, the data center manager 564 may be configured to receive a
notification related to the bit error metric 512 and determine, based on the notification,
whether the migration condition 574 has been satisfied. In some embodiments, the data
center manager 564 may interpret the notification itself as an indication that the migration

condition 574 has been satisfied. Alternatively, the notification may include the bit error

18

10

15

20

25

30

WO 2021/025758 PCT/US2020/036545

metric 512, and the data center manager 564 may evaluate the migration condition 574
(based on the value of the bit error metric 512) to see whether or not the migration condition
574 has been satisfied.

[0096] In some embodiments, the actions described above in connection with the data
center manager 564 may instead be performed by the system controller 570. In such
embodiments, the notification message 552 may be sent to the system controller 570 instead
of (or possibly in addition to) the data center manager 564.

[0097] The data center manager 564 and the system controller 570 shown in Figure 5
are examples of entities that can be notified when a condition related to the bit error metric
512 is satisfied, and that can take one or more actions in response to such a notification. In
accordance with the techniques disclosed herein, other entities besides the data center
manager 564 and the system controller 570 may be notified instead of or in addition to the
data center manager 564 and the system controller 570. For example, in some embodiments,
a rack manager (i.e., an entity that manages a rack of servers within a data center) may be
notified when a condition is satisfied that relates to a bit error metric corresponding to one
of the servers in the rack.

[0098] In the examples described previously, a single value (e.g., the current value) of
the bit error metric has been compared to one or more threshold values to determine whether
one or more conditions have been satisfied. In some embodiments, however, conditions may
be defined that involve historical information about the bit error metric. In other words,
conditions may be defined that involve a determination about the value of the bit error metric
over some period of time. For example, conditions may be defined that involve an analysis
of trends related to the bit error metric.

[0099] Figure 6 illustrates aspects of a computer system 600 in which historical
information 676 about the bit error metric 612 is maintained. In the depicted example, the
computer system 600 includes a component that maintains historical information 676 related
to the bit error metric 612. This component may be referred to herein as a metric analyzer
684.

[00100] The historical information 676 may include previous values of the bit error
metric 612 that have been determined over some period of time (e.g., the previous j
days/weeks/months, where j may be a configurable parameter). These previous values may
be referred to herein as historical bit error metric values 678. The historical information 676
may also include statistical parameters that have been calculated with respect to the

historical bit error metric values 678, such as statistical mean values 680 and standard

19

10

15

20

25

30

WO 2021/025758 PCT/US2020/036545

deviation values 682.

[00101] When a new value of the bit error metric 612 is produced, that value may be
stored with the other historical bit error metric values 678. The metric analyzer 684 may,
from time to time, calculate statistical parameters related to some or all of the historical bit
error metric values 678.

[00102] A bit error metric evaluator 618 may periodically determine whether any
conditions 620 that are related to the bit error metric 612 are satisfied. In some embodiments,
the conditions 620 may depend at least in part on historical information 676 related to the
bit error metric 612, either instead of or in addition to depending on the current value of the
bit error metric 612.

[00103] The metric analyzer 684 may analyze trends in the historical bit error metric
values 678 and/or statistical parameters related to the historical bit error metric values 678,
such as the statistical mean values 680 and standard deviation values 682. The metric
analyzer 684 may provide information about trends in these values to the bit error metric
evaluator 618. Such trend information 686 may be used to determine whether one or more
actions should be performed. For example, if the trend information 686 indicates that failure
of a bus interface is likely to occur fairly soon, one or more other entities may be notified
so that preventative action can be taken.

[00104] In some embodiments, a condition 620a may be defined that is related to a
change in a particular statistical parameter 688 (e.g., the statistical mean, the standard
deviation) related to historical bit error metric values 678. For example, the condition 620a
may specify that one or more actions should be taken if a statistical parameter 688 related
to historical bit error metric values 678 has changed by more than a threshold amount 690
within a defined time period 692 (assuming that the change indicates the presence of more
errors).

[00105] In some embodiments, the components and functionality described above in
connection with Figure 6 may be implemented within a baseboard management controller
(BMC). Alternatively, the components and functionality described above in connection with
Figure 6 may be implemented within another entity, such as a data center manager or system
controller. In general, any entity that determines whether a condition related to the bit error
metric has been satisfied may include the components and functionality described above in
connection with Figure 6.

[00106] For the sake of simplicity and clarity, some aspects of the present disclosure have

been described in relation to a single bus interface. However, the techniques disclosed herein

20

10

15

20

25

30

WO 2021/025758 PCT/US2020/036545

are applicable to a computer system that includes a plurality of bus interfaces. In such a
computer system, a bit error metric may be determined for a plurality of bus interfaces in
the system.

[00107] As noted above, examples of bus interfaces include Peripheral Component
Interconnect Express (PCle), Ultra Path Interconnect (UPI), Quick Path Interconnect (QPI),
XGMI, XGMI2, any computer bus that operates using a double data rate (DDR) technique,
Ethernet, Serial AT Attachment (SATA), and Serial Attached Small Computer System
Interface (SAS).

[00108] PCle is a high-speed serial computer expansion bus standard. It is typically used
as a motherboard interface for various components in a computer system, such as graphics
cards, hard drives, solid-state drives (SSDs), wireless communication interfaces (e.g.,
interfaces that support an IEEE 802.11 standard, also known as Wi-Fi), and wired
communication interfaces (e.g., Ethernet). A PCle system includes a processor and memory,
a switch fabric including one or more switch devices, and a root complex device that
connects the processor and memory to the switch fabric. PCle endpoints (i.e., devices that
are connected to the computer system through the PCle system) may be connected to the
root complex device and/or to the switch fabric.

[00109] UPI and QPI are high-speed, point-to-point interconnects used in certain
processors developed by Intel Corporation. UPI and QPI provide high-speed, point-to-point
links inside and outside of a processor. These links facilitate data transfers by connecting
components within a processor such as distributed shared memory, internal processor cores,
an I/O hub, etc. UPI and QPI links within a processor may also provide connections to other
processors.

[00110] XGMI and XGMI2 are interconnects developed by Advanced Micro Devices,
Inc. XGMI and XGMI2 are typically used for connecting graphics processing units (GPUs).
They enable GPU clustering for increased processing power.

[00111] A computer bus operating with DDR transfers data on both the rising and falling
edges of the clock signal. This technique has been used for various systems with high data
transfer speed requirements, including microprocessor front side buses, processor
interconnects, main memory, and graphics memory.

[00112] SATA and SAS are computer bus interfaces that are typically used to connect
host bus adapters to mass storage devices such as hard disk drives, SSDs, and optical drives.
[00113] Ethernet is a family of networking technologies commonly used in computer

networks including local area networks (LANs). Unshielded twisted pair (UTP) cables and

21

10

15

20

25

30

WO 2021/025758 PCT/US2020/036545

coaxial cables are commonly used in Ethernet LANs. Current Ethernet networks are capable
of achieving data transfer rates as fast as hundreds of gigabits per second.

[00114] Some aspects of the present disclosure involve a computer system’s Basic
Input/Output System (BIOS) and/or operating system (OS). The BIOS is non-volatile
firmware in computer systems. The BIOS performs hardware initialization during the
process of booting (or starting up) a computer system. In typical operation, the BIOS
initializes and tests the system hardware components, and then loads a boot loader from a
mass memory device, which initializes an operating system. The BIOS may also be referred
to as a Unified Extensible Firmware Interface (UEFI). The operating system (OS) is system
software that manages computer hardware and software resources and provides common
services for computer programs.

[00115] Some aspects of the present disclosure involve a baseboard management
controller (BMC), which is a specialized microcontroller embedded on the motherboard of
a computer system. Different types of sensors built into the computer system report to the
BMC on parameters such as temperature, cooling fan speeds, power status, operating system
(OS) status, etc. The BMC monitors the sensors and can send alerts to another entity (e.g.,
another computer system operated by a system administrator) if any of the parameters do
not stay within pre-set limits. An administrator can also remotely communicate with the
BMC to take some corrective actions, such as resetting or power cycling the system.
[00116] The techniques described herein may be implemented in hardware, software,
firmware, or any combination thereof, unless specifically described as being implemented
in a specific manner. Any features described as modules, components, or the like may also
be implemented together in an integrated logic device or separately as discrete but
interoperable logic devices. If implemented in software, the techniques may be realized at
least in part by a non-transitory computer-readable medium having computer-executable
instructions stored thereon that, when executed by at least one processor, perform some or
all of the steps, operations, actions, or other functionality disclosed herein. The instructions
may be organized into routines, programs, objects, components, data structures, etc., which
may perform particular tasks and/or implement particular data types, and which may be
combined or distributed as desired in various embodiments.

[00117] A processor may be a general purpose single- or multi-chip microprocessor (e.g.,
an Advanced RISC (Reduced Instruction Set Computer) Machine (ARM)), a special
purpose microprocessor (e.g., a digital signal processor (DSP)), a microcontroller, a

programmable gate array, etc. A processor may be referred to as a central processing unit

22

10

15

20

25

30

WO 2021/025758 PCT/US2020/036545

(CPU).

[00118] Memory, as used herein, may be any electronic component capable of storing
electronic information. For example, memory may be embodied as random access memory
(RAM), read-only memory (ROM), magnetic disk storage media, optical storage media,
flash memory devices in RAM, on-board memory included with a processor, erasable
programmable read-only memory (EPROM), electrically erasable programmable read-only
memory (EEPROM) memory, registers, and so forth, including combinations thereof.
[00119] Instructions and data may be stored in memory. The instructions may be
executable by a processor to implement some or all of the methods, steps, operations,
actions, or other functionality that is disclosed herein. Executing the instructions may
involve the use of the data that is stored in the memory. Unless otherwise specified, any of
the various examples of modules and components described herein may be implemented,
partially or wholly, as instructions stored in memory and executed by one or more
processors. Any of the various examples of data described herein may be among the data
that is stored in memory and used during execution of the instructions by the processor.
[00120] The steps, operations, and/or actions of the methods described herein may be
interchanged with one another without departing from the scope of the claims. In other
words, unless a specific order of steps, operations, and/or actions is required for proper
functioning of the method that is being described, the order and/or use of specific steps,
operations, and/or actions may be modified without departing from the scope of the claims.
[00121] In an example, the term “determining” (and grammatical variants thereof)
encompasses a wide variety of actions and, therefore, “determining” can include calculating,
computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a
database or another data structure), ascertaining and the like. Also, “determining” can
include receiving (e.g., receiving information), accessing (e.g., accessing data in a memory)
and the like. Also, “determining” can include resolving, selecting, choosing, establishing
and the like.

[00122] The terms “comprising,” “including,” and “having” are intended to be inclusive
and mean that there may be additional elements other than the listed elements. Additionally,
it should be understood that references to “one embodiment” or “an embodiment” of the
present disclosure are not intended to be interpreted as excluding the existence of additional
embodiments that also incorporate the recited features. For example, any element or feature
described in relation to an embodiment herein may be combinable with any element or

feature of any other embodiment described herein, where compatible.

23

WO 2021/025758 PCT/US2020/036545

[00123] The present disclosure may be embodied in other specific forms without
departing from its spirit or characteristics. The described embodiments are to be considered
as illustrative and not restrictive. The scope of the disclosure is, therefore, indicated by the
appended claims rather than by the foregoing description. Changes that come within the

meaning and range of equivalency of the claims are to be embraced within their scope.

24

WO 2021/025758 PCT/US2020/036545

CLAIMS

1. A computer system, comprising:

a bus interface having error correction capability;

an error register within the bus interface, wherein the error register is configured to
provide error information related to correctable errors;

system software that is configured to obtain the error information from the error
register; and

a baseboard management controller (BMC) that is configured to take an action in
response to determining that a condition related to a bit error metric has been satisfied,
wherein the bit error metric is calculated based on the error information.
2. The computer system of claim 1, wherein the bit error metric comprises a ratio of a
number of correctable bit errors that have occurred during a time interval to a total number
of bits that have been transferred across the bus interface during the time interval.
3. The computer system of claim 1, wherein:

the error register is configured to provide an error status of the bus interface; and

the system software is configured to run an interrupt service routine in response to
an interrupt being generated, the interrupt service routine being configured to scan the bus
interface to determine the error status and increment a counter when the error status
indicates that a correctable error has occurred.
4. The computer system of claim 1, wherein:

the error register is configured to provide an error counter for the bus interface; and

the system software is configured to periodically poll the error register to
determine a current value of the error counter.
5. The computer system of claim 1, wherein the system software is selected from the
group consisting of a host operating system of the computer system, a basic input/output
system (BIOS), BMC firmware, agent code running on the host operating system, or
firmware or another operating system located on an add-in card or other subsystem of the
computer system.
6. The computer system of claim 1, wherein the action comprises at least one of

logging an indication that the condition related to the bit error metric has been
satisfied;

notifying an entity that the condition related to the bit error metric has been
satisfied; or

directly supplying the bit error metric to the entity.

25

WO 2021/025758 PCT/US2020/036545

7. The computer system of claim 1, wherein determining that the condition has been
satisfied comprises determining that the bit error metric does not compare favorably to a
threshold value.
8. The computer system of claim 1, wherein a plurality of threshold values are
defined, and wherein the BMC is configured to:

take a first action in response to determining that the bit error metric does not
compare favorably to a first threshold value; and

take a second action in response to determining that the bit error metric does not
compare favorably to a second threshold value, wherein the second action is different from
the first action.
0. The computer system of claim 1, wherein determining that the condition has been
satisfied comprises detecting that a statistical parameter related to historical bit error
metric values has changed by more than a threshold amount within a defined time period.
10. The computer system of claim 1, wherein:

calculating the bit error metric comprises calculating a ratio of (Fend — Fistart) / AT
Fsart indicates a first error counter value at a start of a time interval;

Fend indicates a second error counter value at an end of the time interval; and

AT indicates the total number of bits that have been transferred across the bus
interface during the time interval.
11. A baseboard management controller for a computer system, comprising:

one or more processors;

memory in electronic communication with the one or more processors; and

instructions stored in the memory, the instructions being executable by the one or
more processors to:

determine that a condition related to a bit error metric has been satisfied,

wherein the bit error metric is related to a bus interface within a computer system,

wherein the bus interface comprises error detection and correction capability, and

wherein the bit error metric depends on how many correctable bit errors have

occurred on the bus interface during a time interval; and

take an action in response to determining that the condition has been

satisfied.
12. The baseboard management controller of claim 11, wherein the bit error metric
comprises a ratio of a number of correctable bit errors that have occurred during a time

interval to a total number of bits that have been transferred across the bus interface during

26

WO 2021/025758 PCT/US2020/036545

the time interval.
13. The baseboard management controller of claim 11, wherein the bit error metric is:
obtained from a process that is running within an operating system (OS) or a basic
input/output system (BIOS); or
generated by the BMC based on error data obtained from the OS or the BIOS.
14. The baseboard management controller of claim 11, wherein the action comprises:
recording a current value of the bit error metric in a log; or
sending a notification message to another entity.
15. The baseboard management controller of claim 11, wherein determining that the
condition has been satisfied comprises determining that the bit error metric does not

compare favorably to a threshold value.

27

PCT/US2020/036545

WO 2021/025758

1/7

T4

%

7/
0¢ | abessapy
uonedyoN

977 Jusuodwo) 077 wauodwo)
UOREJUNON Buibb6o

\ /

9] lojenjens

A

IE

pusg || veisy

£F lentsju] swi|

oLjo Joui3 Yig

%

) anep
PIoysaIy L

02} uonipuo)

077 J9]100u09) Juswabeue|y pueqaseg

907 21emyos wisyskg

FIT sunnoy
39IAI3G Jdnus|
807 bej4 Jou3
pE€F Junog Jol13 07 Jaisiboy Joug
ZFE ous Jou3 g 011 wsuodwo)
71T J01eNoeD) BunosauI0) Joug
LB\ JouT g Z01 9%eua|

sng

PCT/US2020/036545

WO 2021/025758

2/7

T4

Vi 'Ol

7
0s| abessapy
uonedynoN

977 Jusuodwo)
uonedyloN

077 wauodwo)
Buibbo

pueg || veisy

£7 lensoju) swiL

\ /

9| lojeneng
HET oI =RIe

FFT sunnoy
991M9G Jdnusu|

vao0r

CCk anep
PIoysaIy L

0c} uonipuo)

TT 19]]04u07) swabeue|y pueqaseg

7T oms Joug 1ig

J8)UN0Y Jodig

70} Jaisibay Jolg

PL[loenoen
oUI8|A Jou3 g

017 wauodwo)
BunosauI0) Joug

0] 91emyjos WajsAS

Z0[9oepau|
sng

WO 2021/025758 PCT/US2020/036545

3/7
200 \

Detect a system interrupt ~— 202

Scan bus interface to determine error status —~— 204

Error? @ o @
Yes
Increment the error count —~— 208
Clear error flag ~~— 210

FIG. 2

WO 2021/025758 PCT/US2020/036545

4/7

300 ™~

Determine the current value of the error count at the start of the time
interval (Estar) N-302

'

Wait until the end of the time interval

I

Determine the current value of the error count at the end of the time
interval (Eend) 306

'

Determine the number of bits that have been transferred across the bus
interface during the time interval (A7) - 308

I

Determine the bit error metric for the current time interval as
(Eend - Estart) / AT

304

310

FIG. 3

PCT/US2020/036545

WO 2021/025758

577

76y abessap
uonedlioN

057 qzZy aneA ploysaiyL 772
dwejsawi | [eanud Jaddn | 99U
297 Anug pJg
q05y BZCF ON[eA ploysaiyL 8ry
dweysawi [eanu)-uop Jaddn | 99U
— — q97y Anuz pug
92y Wauodwo) 9Zp wauodwo) >
UoneoLoN Buibbo — — —
47 B¢Cy ONeA ploysalyL 8vy
/ \ dweysawi [eanu)-uoN Joddn | 99U
9l loyeneng B9py A3 s
OUIBN JodI3 Jig u %75 607
¢y QUBIN
Jol33g
PPy uonoy
Bunoday uabin
0%F uonoy buibbo 0p% uonoy Buibbo
qZ2F ONje/\ PIoysaiy L BZZr ON[e/\ PIoysaIy L
[eanu9 Joddn [eopuQ-uoN Jaddn
q0Zy uonipuo) B0Zp uonipuo)
0C7 suonipuo)d

PCT/US2020/036545

WO 2021/025758

6/7

G 'Ol

[%
18jusn

Ejeq pig

q09%
18jusn

Eleq pug

2G5 Onep —
ploysaly| 7Zg boT
/G uonipuod | | 37 Jojenfeng
uonesBIN oulS| S04 g
9IG o
713 O\ EJ__MM%m €255
— — T=R1
2795 7295 Bk —
auIyoe auIyoB | ¥1G 10je|nden 0§
1SOH pIg 1SOH puz OulBI Jou3 g S0esju| sng
905 —
21eM)0S WaISAS 7/G sby]
00C Joke uonezienuip 766
'] % g §
WA PIE | [INAPUZ | | NAISE
70C 1abeue|y
J8U8) eleQ
BZ9G SUIYORN ISOH IS |
096 Jojua) eleqis)

P!

}

009

B 0/CIO0NUOD WRJSAS | — —— — —— — — = = — — e — — —

PCT/US2020/036545

WO 2021/025758

7/7

9Ol

(69 pousd swi|

69 Junowy pjoysaiyl
999 Jojoweled
809 uonipuod
029 SUORPUOD g
87§ Jojenjens
Juje\ Jou3 g
789 sanep > <
uoneIna(plepuels
089 senjep
ueay\ [eansnels 989
uonewlou|
979 sanjeA snolnald pual|
979 -« 789

UONBWLIOJU| [eSLOISIH

——» JozA[euy L8|\ <

¢

ALELEN
jou3 g

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2020/036545

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F11/07 GO6F11/10
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

DEVELOPMENT CO [US])

22 December 2004 (2004-12-22)
Y figures 12, 13

page 30, Tine 29-30

A page 32, line 22-23

page 33, line 11-13

page 32, line 4 - line 7
page 32, line 8 - line 16
page 33, lines 23-24

page 15, lines 2-3

X GB 2 403 039 A (HEWLETT PACKARD

page 31, lines 10-line 12, lines 12-13

page 34, lines 6-9, lines 10-11

1,3-7

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

13 August 2020

Date of mailing of the international search report

21/08/2020

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Leineweber, Harald

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2020/036545

C(Continuation).

DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X

GB 2 403 315 A (HEWLETT PACKARD
DEVELOPMENT CO [US])

29 December 2004 (2004-12-29)

page 31 to page 35, section "AN
INTER-INTEGRATED CIRCUIT ROUTER ERROR
MANAGMENT SYSTEM AND METHOD",;
figures 12,13

US 9 483 340 B1 (JOHNSON JOHN D [US] ET
AL) 1 November 2016 (2016-11-01)
figures 1A, 1B, 4A, 5, 6A

claims 15, 19

column 1, line 35-column 2, line 5
column 3, lines 25-26

column 7, lines 13

US 2006/224808 Al (DEPEW KEVIN G [US] ET
AL) 5 October 2006 (2006-10-05)
figures 1,2

paragraph [0015]

US 7 386 767 B1 (XUE NING [US] ET AL)
10 June 2008 (2008-06-10)

figures 1,4

paragraph [0062]

1,3-7

2,8,
10-15
9

2,10,12

2,10,12

Form PCT/ISA/210 (col

ntinuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2020/036545
Patent document Publication Patent family Publication
cited in search report date member(s) date
GB 2403039 A 22-12-2004 GB 2403039 A 22-12-2004
JP 2005006306 A 06-01-2005
US 2004255193 Al 16-12-2004
GB 2403315 A 29-12-2004 GB 2403315 A 29-12-2004
JP 2005004746 A 06-01-2005
US 2004267999 Al 30-12-2004
US 9483340 Bl 01-11-2016 US 9483340 B1 01-11-2016
US 2017068580 Al 09-03-2017
US 2006224808 Al 05-10-2006 NONE
US 7386767 Bl 10-06-2008 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - wo-search-report
	Page 38 - wo-search-report
	Page 39 - wo-search-report

