
Processed by Luminess, 75001 PARIS (FR)

(19)
EP

4
43

9
57

9
A

1
EP004439579A1

(11) EP 4 439 579 A1
(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
02.10.2024 Bulletin 2024/40

(21) Application number: 24166410.1

(22) Date of filing: 26.03.2024

(51) International Patent Classification (IPC):
G16H 30/20 (2018.01) G16H 30/40 (2018.01)

(52) Cooperative Patent Classification (CPC):
G16H 30/20; G16H 30/40

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL
NO PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA
Designated Validation States:
GE KH MA MD TN

(30) Priority: 27.03.2023 US 202363492350 P

(71) Applicant: Tempus AI, Inc.
Chicago, IL 60654 (US)

(72) Inventors:
• LOWE, Madison Ragna

Okotoks, Alberta T1S 1P1 (CA)
• FRANZ, Cole Sawyer

Calgary, Alberta T3H 3R4 (CA)
• HUGHES, Matthew Charles

Calgary, Alberta T3L 3C6 (CA)

(74) Representative: Eisenführ Speiser
Patentanwälte Rechtsanwälte PartGmbB
Johannes-Brahms-Platz 1
20355 Hamburg (DE)

(54) IMAGE VIEWING PIPELINE FOR MEDICAL IMAGE VIEWER

(57) An image viewing pipeline is provided as an in-
dependently releasable component of an image viewing
application. Images are provided for viewing in the ap-
plication using dedicated infrastructure for the image
viewing pipeline that is separate from infrastructure used
to provide other functionality of the image viewing appli-
cation. The image viewing pipeline receives images from

a DICOM image service and provides the images to a
client application. The client application is operative to
request images, process images, and cache images. The
client application is further operative to satisfy individual
image requests and may prefetch stacks of images using
the image viewing pipeline.

EP 4 439 579 A1

2

5

10

15

20

25

30

35

40

45

50

55

Description

BACKGROUND

Technical Field

[0001] The present disclosure relates generally to the
field of medical imaging, and more particularly, to web-
based medical image viewers. More specifically, the
present disclosure is directed to an image viewing pipe-
line and related components for web-based medical im-
age viewers.

Description of the Related Art

[0002] In recent years, the field of medical imaging has
seen tremendous advancements in the development of
high-quality digital imaging technology. With the advent
of web-based platforms, there is an increasing need for
medical professionals to have access to these images
from anywhere at any time. Medical image viewers are
essential tools that enable healthcare professionals to
visualize, analyze, and interpret these images to provide
accurate diagnoses and treatment plans.
[0003] But the development of high-quality imaging
technology has led to a commensurate increase in the
size and complexity of medical images. This presents
significant challenges for web-based medical image
viewers. Large image files require significant processing
power and storage capacity, while the need to transmit
images across networks can result in significant latency
and reduced image quality. Additionally, medical images
may contain sensitive patient data, necessitating the im-
plementation of robust security measures to protect pa-
tient privacy.
[0004] Existing web-based medical image viewers
have attempted to address some of these challenges by
using various image compression techniques; however,
these techniques often result in loss of image quality or
introduction of significant visual artifacts. Furthermore,
existing viewers may not be capable of handling large
volumes of data or allow for efficient image processing
and analysis, which are critical for accurate diagnosis
and treatment.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF
THE DRAWINGS

[0005]

Figure 1 shows a screenshot of an example graph-
ical user interface (GUI) for a web-based medical
image viewer, in accordance with embodiments de-
scribed herein.
Figure 2 shows an example block diagram of an im-
age viewing pipeline in accordance with embodi-
ments described herein.
Figures 3A, 3B, and 3C are block diagrams illustrat-

ing a staged deployment of an image viewing pipe-
line in accordance with embodiments described
herein.
Figure 4 is a flow diagram illustrating a process used
to provide an image viewing pipeline in accordance
with embodiments described herein.
Figure 5 is a flow diagram illustrating image prefetch
for an image viewing pipeline in accordance with em-
bodiments described herein.
Figure 6 is a flow diagram that shows a process for
retrieving pixel data from image data received from
a medical image service in accordance with embod-
iments described herein.
Figure 7 is a flow diagram that shows a rendering
pipeline of the image viewing pipeline in accordance
with embodiments described herein.
Figure 8 shows a screenshot of an example graph-
ical user interface (GUI) for a web-based medical
image viewer in which two co-registered studies are
presented to a user, in accordance with embodi-
ments described herein.
Figure 9 shows a screenshot of an example graph-
ical user interface (GUI) for a web-based medical
image viewer, in which two co-registered studies are
presented to a user in an enlarged portrait mode, in
accordance with embodiments described herein.
Figure 10 is a block diagram illustrating elements of
an example computing device utilized in accordance
with embodiments described herein.

DETAILED DESCRIPTION

[0006] In the following description, certain specific de-
tails are set forth in order to provide a thorough under-
standing of various disclosed implementations. Howev-
er, one skilled in the relevant art will recognize that im-
plementations may be practiced without one or more of
these specific details, or with other methods, compo-
nents, materials, etc. In other instances, well-known
structures associated with computer systems, server
computers, and/or communications networks have not
been shown or described in detail to avoid unnecessarily
obscuring descriptions of the implementations.
[0007] Unless the context requires otherwise, through-
out the specification and claims that follow, the word
"comprising" is synonymous with "including," and is in-
clusive or open-ended (i.e., does not exclude additional,
unrecited elements or method acts).
[0008] Reference throughout this specification to "one
implementation," "an implementation," "some implemen-
tations," or "various implementations" means that a par-
ticular feature, structure, or characteristic described in
connection with the implementation is included in at least
one implementation. Thus, the appearances of the phras-
es "in one implementation," "in an implementation," "in
some implementations," or "in various implementations"
in various places throughout this specification are not
necessarily all referring to the same implementation or

1 2

EP 4 439 579 A1

3

5

10

15

20

25

30

35

40

45

50

55

implementations. Furthermore, the particular features,
structures, or characteristics may be combined in any
suitable manner in one or more implementations.
[0009] As used in this specification and the appended
claims, the singular forms "a," "an," and "the" include plu-
ral referents unless the context clearly dictates otherwise.
It should also be noted that the term "or" is generally
employed in its sense including "and/or" unless the con-
text clearly dictates otherwise.
[0010] Radiologists and other healthcare providers of-
ten analyze medical images to diagnose patients, rec-
ommend treatment plans, etc. To perform certain work-
flows, radiologists need to scroll through images quickly
and reliably. As an example, lung computed tomography
(CT) images will often come as a stack of 500 images of
512x512 pixel size. The radiologist needs to scroll
through the images quickly and smoothly, and the images
need to be viewed in full quality. To provide this function-
ality, in at least some implementations, the images of a
series may be sent from the cloud to a client device. The
images of the series may then be cached on the client
device to provide rapid access to the images. But in at
least some implementations, the download speed is lim-
ited (e.g., to about a max of 70 Mbps download speed),
and much higher performance (e.g., up to 500Mbps or
more) is desirable if the bandwidth of the user’s client
device allows for such speeds.
[0011] Further, viewing images is critical functionality
for radiologists and other healthcare providers. The abil-
ity to view images is often more important than the ability
to make measurements or take screenshots, since radi-
ologists can sometimes make diagnoses solely using im-
ages. Therefore, it is important that changes and im-
provements to a medical image viewer that are released
do not break the image viewing functionality.
[0012] The inventors of the present disclosure have
identified a need for a more efficient and robust image
viewing pipeline (IVP) for web-based medical image
viewers that can handle large volumes of data, provide
high-quality images, and ensure patient data security.
Such IVP significantly improves the accuracy and speed
of medical image analysis, leading to better patient out-
comes.
[0013] In some implementations, first graphical user
interface (GUI) components of a GUI of a web-based
medical viewer application are hosted by a first server.
The first GUI components include images to be present-
ed in a central viewing area of the GUI of the web-based
medical viewer application. Second GUI components of
the GUI are hosted by a second server different from the
first server. The second GUI components include GUI
components of the application other than the first GUI
components. The first server serves the GUI components
to a client device for rendering the GUI to a user of the
client device. The second server serves the second GUI
components to the client device for rendering the GUI to
the user of the client device.
[0014] Because a separate server is used to host im-

ages, other features of the application may be decom-
missioned or updated, such that critical image-viewing
capabilities are maintained even if some GUI compo-
nents are unavailable. Images may be viewed independ-
ently of other GUI components because delivery is han-
dled by dedicated central image viewing infrastructure
instead of general application infrastructure.
[0015] In some implementations, the image viewing
functionality is further isolated into its own repository, and
its own reusable client package. This allows for imaging
viewing pipeline updates to be pushed separately and in
a lower-risk way than the rest of the application. Other
application features may be tested in a more targeted
way, such that general application infrastructure failures
are unlikely to impact the image viewing pipeline.
[0016] In some implementations, relevant medical im-
ages are preemptively requested when a user loads a
study, and the relevant medical images are retrieved in
the background and cached in the client browser. In var-
ious medical workflows, such as reviewing images of
lungs, users need to be able to scroll through an entire
stack of hundreds of full-quality chest CT images. The
CT images should be rendered quickly and smoothly, to
allow the user to compare various images in the set. In
some implementations, various parallel processing tech-
niques such as multithreading, graphics processing unit
(GPU) rendering, etc., may be used to improve perform-
ance of image caching, rendering, or both.
[0017] In some implementations, separating image
viewing pipeline components from other application com-
ponents may be facilitated by using parameters that in-
dicate various URLs of services used by the application
to enable communication between the services. For ex-
ample, the image viewing pipeline may retrieve images
from a medical image service. The parameters are stored
using a parameter storage service and may be created
or updated at any time, to change stack dependencies.
[0018] In some implementations, staged deployments
of application updates are used to minimize the chances
of the image viewing pipeline becoming inoperable.
Changes to the image viewing functionality may be re-
leased to users without breaking or interrupting function-
ality of the image viewing pipeline. Two or more versions
of the image viewing pipeline may be deployed side-by-
side. A portion of traffic is then routed to a new version,
and a portion of traffic is routed to an old version. Per-
formance of the new version is monitored for issues be-
fore all traffic is increasingly routed to the new version.
[0019] In some implementations, source-controlled
and code-reviewed tooling for deploying and managing
the central image viewer infrastructure is used to improve
its stability. IVP tooling is written as bash scripts which
are executed from an established tooling system. The
bash scripts provide manual pages and tab completion
to ensure the IVP tooling complies with established code-
review processes.
[0020] In some implementations, a comprehensive
versioning interface is provided by which a user may view

3 4

EP 4 439 579 A1

4

5

10

15

20

25

30

35

40

45

50

55

a version of each service used by the application.
[0021] Figure 1 shows a screenshot of an example
graphical user interface (GUI) 100 for a web-based med-
ical image viewer (i.e., the "application"), according to
one non-limiting illustrated implementation. As discussed
in detail below, the GUI includes a central image viewer
104 that is a distinct GUI component. Central image view-
er 104 is displayed using assets sourced from one or
more servers that are separate from the servers used to
source assets for GUI components 102 shown in GUI
100. The central image viewer 104 may therefore func-
tion regardless of a status of the GUI components 102.
Although the central image viewer 104 is referred to as
a "central" image viewer, the central image viewer 104
may be located anywhere in the GUI.
[0022] Figure 2 shows an example block diagram of
an environment 200 in which an image viewing pipeline
operates according to one non-limiting illustrated imple-
mentation. GUI components 102 are served using gen-
eral application infrastructure 202, which includes a load
balancer 204 to distribute load incurred via the GUI com-
ponents 102 to servers 206a, 206b, and 206c. In various
implementations, the load balancer 204 may distribute
the load incurred by the GUI components 102 to any
number of servers.
[0023] Central image viewer 104 is served using cen-
tral image viewing infrastructure 212, which includes load
balancer 214 to distribute load incurred via the central
image viewer 104 to server 216a, server 216b, and server
216d. In various implementations, the load balancer 214
may distribute the load incurred by the central image
viewer 104 to any number of servers.
[0024] As discussed herein, displaying series of med-
ical images via central image viewer 104 may require
significant bandwidth. In conventional image viewing
pipelines, a server that serves medical images via central
image viewer 104 also servers other GUI components
102.
[0025] In implementations described herein, perform-
ance at scale is improved because the central image
viewer is served using separate servers from the rest of
the application. The image viewing pipeline maintains
reliable performance from central image viewing infra-
structure 212 even if the general application infrastruc-
ture 202 experiences excess load or degraded perform-
ance. To support this functionality, general application
infrastructure 202 may be used to both discover and pro-
vide a URL and an authentication token by which the
application may access the central image viewing infra-
structure 212.
[0026] During application startup, the application que-
ries general application infrastructure 202 for configura-
tion information regarding the central image viewing in-
frastructure 212. The configuration information may in-
clude an endpoint or port of the central image viewing
infrastructure 212, or any other client-specific configura-
tion relevant to procuring medical images from the central
image viewing infrastructure 212 such as a number of

concurrent images to request at a time, as detailed below.
The general application infrastructure 202 may gather
the configuration information from a parameter manager
such as Amazon Web Services ParameterStore®, Hash-
iCorp Vault®, etc., and returns the configuration informa-
tion to the client device, as well as a method to retrieve
authentication information for the client device to connect
and authenticate to the central image viewing infrastruc-
ture 212. In at least some implementations, the authen-
tication information is passed from the general applica-
tion infrastructure 202 to a component of the application
that is associated with the GUI components 102, then to
a component of the application that is associated with
the central image viewer 104, and then to the central
image viewing infrastructure 212. In some implementa-
tions, the component of the application that is associated
with the central image viewer 104 may store authentica-
tion information such that authentication may be per-
formed without receiving the authentication information
via the general application infrastructure 202 or the com-
ponent of the application that is associated with GUI com-
ponents 102. For example, the authentication informa-
tion may be passed directly from the general application
infrastructure 202 to the central image viewing infrastruc-
ture 212. In at least some implementations, the same
URL and configuration to access the central image view-
ing infrastructure 212 are used for the duration of the
user’s session, but the authentication token only lasts for
a particular duration (e.g., 30 minutes) before it is re-
freshed.
[0027] Availability of the requested medical images is
improved because the central image viewing infrastruc-
ture 212 is substantially isolated from general application
infrastructure 202 and is not likely to be affected when
various other aspects of the application such as other
GUI components 102 are changed. As a result, develop-
ers of the medical image viewer may develop and test
the image viewing pipeline separately from the rest of
the system. For example, the developers may modify and
potentially break a pipeline for delivering GUI compo-
nents besides the images without jeopardizing the image
viewing pipeline.
[0028] Additionally, the image viewing pipeline itself
may experience failures or service errors. Several con-
ditions may generate a service error in the image viewing
pipeline. For example, the image viewing pipeline may
fail to fetch a raw image from the medical image service
within a maximum number of allowed attempts. Logging
a web socket associated with the image viewing pipeline
longer than a configured time limit may also produce a
service error in the image viewing pipeline. In general,
various non-recoverable errors may arise in operation of
the general application infrastructure 202 or the central
image viewing infrastructure 212. Functionality of the im-
age viewing pipeline may be maintained using one or
more redundant image viewing pipelines within or side-
by-side central image viewing infrastructure 212, or using
a shared pipeline within general application infrastructure

5 6

EP 4 439 579 A1

5

5

10

15

20

25

30

35

40

45

50

55

202.
[0029] An example implementation of an Image View-
ing Pipeline (IVP) is discussed below. It should be ap-
preciated that variations may be made to embodiments
disclosed herein without departing from the scope of the
present disclosure.
[0030] The Image Viewing Pipeline is an independent-
ly releasable service designed to optimize image delivery
and processing. The IVP may include server-side and
client-side components. Referring to Figure 2, the term
"IVP" may refer to functionality performed by a client de-
vice, the central image viewing infrastructure 212, etc.,
or a combination thereof used to provide medical images.
[0031] The central image viewing infrastructure 212 is
in communication with a Digital Imaging and Communi-
cations in Medicine (DICOM) image service from which
medical images are sourced. In some implementations,
communication between the central image viewer infra-
structure 104 and the client device is accomplished using
web sockets. The central image viewing infrastructure
212 receives image requests from the client device. The
central image viewing infrastructure 212 then fulfills the
image requests by acquiring image data from the DICOM
image service and sending the image data to the client
device, which may process the image data, cache it, or
both.
[0032] Figures 3A-3C are block diagrams of an exam-
ple infrastructure for deploying zero-downtime updates
to an image viewing pipeline in accordance with embod-
iments described herein. New versions of the IVP may
be released with zero downtime, further enabling unin-
terrupted performance of the central image viewer. This
may be achieved by providing multiple concurrent ver-
sions of the IVP.
[0033] Figure 3A depicts a first version of the IVP in
typical operation before a zero-downtime release. Load
balancer 304 facilitates communication between the cli-
ent device 302 and first IVP infrastructure 306, which
comprises resources such as the central image viewing
infrastructure and the general application infrastructure
that are used to support the first version of the IVP.
[0034] Figure 3B depicts a zero-downtime release of
a second version of the IVP, whereby traffic is gradually
routed away from first IVP infrastructure 306 and to sec-
ond IVP infrastructure 308. In some implementations,
when a change to the IVP is to be made, the second IVP
infrastructure 308 reflecting the change is brought into
operation while the first IVP infrastructure 306 remains
operable and continues to service IVP traffic, such as
communications with client device 302. Load balancer
304 reroutes a portion of IVP traffic to the second IVP
infrastructure 308. Typically, the portion of rerouted traffic
is small, such as 1%, 5%, or 10%, of total IVP traffic such
that service is not significantly degraded if the second
IVP infrastructure 308 experiences failures or other ad-
verse issues.
[0035] If the second IVP infrastructure 308 meets per-
formance standards, load balancer 304 may incremen-

tally increase the portion of IVP traffic that it directs to
the second IVP infrastructure. For example, the portion
of traffic routed to the second IVP infrastructure 308 may
be increased by 1%, 5%, or 10% of total IVP traffic. If
performance standards continue to be met as load on
the second IVP infrastructure 308 is increased, load bal-
ancer 304 may continue to incrementally increase the
portion of IVP traffic that it routes to the second IVP in-
frastructure 308 until all IVP traffic is routed to second
IVP infrastructure. The portion of IVP traffic that is routed
to a given IVP infrastructure may be controlled via listener
rules on the load balancer 304. Availability of the medical
images is improved because, if the medical images can-
not be provided to client device 302 using the second
IVP infrastructure 308, the medical images may be pro-
vided using the first IVP infrastructure 306.
[0036] Figure 3C depicts the second version of the IVP
in typical operation after the zero-downtime release is
completed. Load balancer 304 facilitates communication
between client device 302 and the second IVP infrastruc-
ture 308. In Figure 3C, the load balancer 304 routes no
IVP traffic to the first IVP infrastructure 306. In some im-
plementations, the first IVP infrastructure 306 may re-
main operational such that load balancer 304 may re-
route a portion of IVP traffic to the first IVP infrastructure
306 on demand. If, for example, performance of second
IVP infrastructure 308 degrades, traffic may be routed to
first IVP infrastructure 306 with little or no interruption of
service. The first IVP infrastructure 306 may be taken out
of operation when the second IVP infrastructure 308
meets performance requirements that may include a
threshold uptime, error count, response time, etc. In
some implementations, a configuration of first IVP infra-
structure 306 is stored such that the first IVP infrastruc-
ture 306 may be made operational when desired.
[0037] An IVP infrastructure is typically portable and
may be deployed using various techniques. In some im-
plementations, the IVP infrastructure such as the first IVP
infrastructure 306 comprises a distributed application.
For example, the IVP infrastructure may be implemented
using a container image and operated as an autoscaling
group of a compute service such as Amazon EC2®.
[0038] In some implementations, infrastructure for load
balancer 304 is implemented using a stack that is sepa-
rate from that of other IVP infrastructure.
[0039] In some implementations, the IVP infrastructure
is deployed using a cloud deployment manager such as
Amazon AWS Cloud Development Kit® (CDK) or Google
Cloud Platform® (GCP) deployment manager.
[0040] As discussed herein, the IVP infrastructure typ-
ically includes various services that may be implemented
using various servers. For example, central image view-
ing infrastructure 212 communicates with a DICOM med-
ical image service to procure medical images. In some
implementations, parameters for locating and accessing
the various services comprising the IVP are stored using
a parameter storage service such as Amazon Web Serv-
ers ParameterStore®, HashiCorp Vault®, etc. By storing

7 8

EP 4 439 579 A1

6

5

10

15

20

25

30

35

40

45

50

55

information to discover various services in the IVP infra-
structure in a parameter storage service, computing re-
sources may be added to the IVP infrastructure with little
configuration.
[0041] In some implementations, a version number for
the application is created based on a version number of
the IVP and version numbers of the various services with
which the IVP interacts, such as the DICOM image serv-
ice. The latest version may be stored in the parameter
storage service and retrieved at runtime to be displayed
to the user. Thus, several versions of the application may
be deployed at the same time, and a version number of
the version of the application currently being used is dis-
played to the user.
[0042] In some implementations, the user logging into
the application prompts a versioning reporting process
whereby a version number of each service used by the
application is obtained from each service. The version
numbers are then displayed to the user. In some imple-
mentations, the version numbers are verified against
published version numbers of the services to ensure the
version numbers are supported. Reliable versioning is
often critical. For example, regulatory approval from
agencies such as the U.S. Food and Drug Administration
may involve compliance with a schema for versioning of
approved data products, and display of versioning infor-
mation to the user.
[0043] Figure 4 is a flow diagram illustrating a process
400 used to provide an image viewing pipeline in accord-
ance with embodiments described herein.
[0044] Process 400 begins, after a start block, at block
402, where a first server hosts first graphical user inter-
face (GUI) components of a GUI of a web-based medical
viewer application. As discussed herein, the first GUI
components typically include images to be displayed in
a central image viewer of the GUI. For example, the first
GUI components may include images from one or more
co-registered medical studies. After block 402, process
400 continues to block 404.
[0045] At block 404, a second server hosts second GUI
components of the GUI of the web-based medical viewer
application. The second GUI components may include
various measuring tools, navigation interfaces, options,
menus, etc. In some implementations, the second GUI
components include all GUI components that are not the
first GUI components. After block 404, process 400 con-
tinues to block 406.
[0046] At block 406, the first server serves the first GUI
components to a client device to render the GUI. In some
implementations, images constituting the first GUI com-
ponents are sent to the client device in response to de-
tecting that the client device has loaded a medical study
associated with the images. After block 406, process 400
continues to block 408.
[0047] At block 408, the second server serves the sec-
ond GUI components to the client device to render the
GUI. In some implementations, the first GUI components
and the second GUI components are rendered concur-

rently. After block 408, process 400 ends at an end block.
[0048] In various implementations, at least one of the
first server and the second server are implemented using
a container. For example, the first server may be run in
a Docker® container.
[0049] Figure 5 illustrates a flow diagram of a method
for prefetching an image stack in the IVP, according to
one non-limiting illustrated implementation. As discussed
herein, prefetching images from a medical image service
when a medical study that includes the images is opened
may reduce latency when a user views the images.
[0050] Process 500 begins, after a start block, at block
502, where an image request stack is received. In some
implementations, image requests in the image request
stack may be used to request images in order from the
top of the image request stack. In general, it is desirable
for the image requests in the image request stack to be
fulfilled quickly rather than introducing the complexity and
resulting inefficiency of prioritizing some image requests
over others. In some implementations, however, one or
more images in the image stack are prioritized over the
other images in the stack. For example, an image request
for an image that is currently being displayed to a user
may be prioritized over other images in the stack. After
block 502, process 500 continues to block 504.
[0051] At block 504, image requests in the image re-
quest stack are added to a queue. In general, the queue
stores image requests to be fulfilled. In some embodi-
ments, the queue is the image request stack. The queue
may be any data structure and is not limited to a queue
data structure. After block 504, process 500 continues
to block 506.
[0052] At block 506, a determination is made whether
there is an image request in the queue. If there is not an
image request in the queue, process 500 ends at an end
block. If there is an image request in the queue, process
500 continues to block 508.
[0053] At block 508, the image request is dequeued.
After block 508, process 500 continues to block 510.
[0054] At block 510, image data is requested from a
server using the image request. In some implementa-
tions, when an error is received from the medical image
service, the image data is requested again after a select-
ed time elapses. For example, if a 500-level error is re-
ceived from the medical image service in response to the
request for image data, the request for image data may
be repeated after 1, 2, or 5 seconds, for example. The
request for image data may be resent a configurable
number of times, such as 3 or 5 times, when consecutive
errors are received. The selected amount of time to wait
before requesting the data again may increase after each
subsequent retry. An additional random amount of time
(i.e., "jitter") may be added to the selected amount of time
before retrying, so that retries do not create load spikes
on the medical image service. After block 510, process
500 continues to block 512.
[0055] At block 512, the image data is received and
cached at the client device. After block 512, process 500

9 10

EP 4 439 579 A1

7

5

10

15

20

25

30

35

40

45

50

55

continues to block 506, where it is determined whether
there is an image request remaining in the queue. If there
is an image request remaining in the queue, blocks 508,
510, and 512 are repeated for the image request remain-
ing in the queue.
[0056] In some implementations, a configurable
number of worker threads are used to request images
from the medical image service using the image requests
in the queue. The worker threads are typically created
on the client device, such that the worker threads may
request images to be displayed on the client device. This
may enable multithreaded parallel processing of the im-
age request stack, improving performance. For example,
several worker threads may request image requests from
the queue and use the image requests to request image
data from the medical image service.
[0057] Image data received from the medical image
service may be compressed using one of several image
compression schemes. Thus, pixel data is extracted from
the images received from the medical image service to
ensure the images are displayed consistently, as dis-
cussed with respect to Figure 6.
[0058] Figure 6 is a flow diagram that shows a process
600 for retrieving pixel data from images received from
a medical image service in accordance with embodi-
ments described herein. In some implementations, the
images are DICOM images. The pixel data that is re-
turned from each image source includes varying levels
of processing and compression. In some implementa-
tions, a Multipurpose Internet Mail Extension (MIME) type
of the image may indicate a relevant compression algo-
rithm for the image.
[0059] Process 600 begins, after a start block, at block
602, where a determination is made whether a first com-
pression algorithm encoding is disabled for an image. In
some implementations, an attribute of the image such as
the image’s MIME type may be used to determine wheth-
er the first compression algorithm encoding is enabled,
and other information regarding compression of the im-
age. In some implementations, a combination of revers-
ible and irreversible compression is used depending on
a state of feature flags, a modality of the image, a pixel
type of the uncompressed image, or a combination there-
of.
[0060] The first compression algorithm may be JPEG
2000 reversible compression, JPEG 2000 irreversible
compression, etc. JPEG 2000 is an image compression
algorithm designed to be a successor to the well-known
JPEG compression algorithm. The JPEG 2000 algorithm
may have several benefits over JPEG which make it more
suitable for compression of medical images. For exam-
ple, JPEG 2000 outputs data with 32 bits per channel,
while JPEG only supports 8 bits per channel. JPEG 2000
does not produce blocking artifacts that are commonly
found in images compressed using JPEG. JPEG 2000
enables reversible (i.e., "lossless") compression, while
JPEG only offers irreversible (i.e., "lossy") compression.
[0061] The MIME type of the image may indicate when

the first compression is disabled. When the first compres-
sion algorithm encoding is disabled, decompression is
not required. Thus, when the first compression algorithm
encoding is disabled, process 600 continues from block
602 to block 604, where the pixel data of the image is
retrieved using little endian explicit transfer syntax. After
block 604, process 600 ends at an end block.
[0062] If the first compression algorithm encoding is
enabled, decompression is performed. Process 600
therefore continues to block 606, where a determination
is made whether lossy compression is enabled. For ex-
ample, lossy compression may be enabled when JPEG
irreversible compression is being used with respect to
the image. If lossy compression is not enabled, process
600 continues to block 612, where the pixel data is re-
trieved using the first compression algorithm. In at least
some implementations, a codec such as OpenJPEG is
used to decode JPEG 2000 images in a browser of the
client device. As browsers may be unable to decode
JPEG 2000 images natively, a Web Assembly (WASM)
that exports a function to decode JPEG 2000 images in
the browser may be produced. In some implementations,
threading of the decoding is managed by running the
function from multiple web workers (e.g., 4 web workers),
increasing performance of the decoding without impact-
ing performance for the rest of the application. After block
612, process 600 ends at an end block.
[0063] If lossy compression is enabled, process 600
continues from block 606 to block 608, where a determi-
nation is made whether pixel data in the image is encoded
in a lossy format. If the pixel data in the image is not
encoded in a lossy format, process 600 continues to block
612, where the pixel data is retrieved using the first com-
pression algorithm as described herein. After block 612,
process 600 ends at an end block.
[0064] If the pixel data is encoded in a lossy format,
process 600 continues from block 608 to block 610,
where the pixel data is retrieved using a selected com-
pression ratio. In at least some embodiments, the com-
pression ratios used are based on the values presented
in the following paper: "Standards for Irreversible Com-
pression in Digital Diagnostic Imaging within Radiology,"
The Canadian Association of Radiologists (2011), which
is hereby incorporated by reference in its entirety. After
block 610, process 600 ends at an end block.
[0065] Figure 7 is a flow diagram that shows a process
700 for rendering images in the image viewing pipeline
(IVP) according to one non-limiting illustrated implemen-
tation. In some implementations, when the image data
has been received and decompressed, such as by proc-
ess 500 and process 600, respectively, the image data
may be further processed before being displayed as a
GUI component.
[0066] At block 702, image data is received. In some
implementations, the image data is received using em-
bodiments of process 500 of Figure 5, process 600 of
Figure 6, or a combination thereof. After block 702, proc-
ess 700 continues to block 704.

11 12

EP 4 439 579 A1

8

5

10

15

20

25

30

35

40

45

50

55

[0067] At block 704, a determination is made whether
the image is encoded using a first compression algorithm.
If the image is encoded using the first compression al-
gorithm, process 700 continues from block 704 to block
706. If the image is not encoded using the first compres-
sion algorithm, process 700 continues to block 708.
[0068] At block 706, the image is decoded using the
first compression algorithm. In some embodiments, the
image is decoded using a WebAssembly module. In
some implementations, embodiments of process 600 are
employed to decode the image. After block 706, process
700 continues to block 708.
[0069] At block 708, a multi-resolution image is ob-
tained. After block 708, process 700 continues to block
710.
[0070] At block 710, a determination is made whether
there are processing flags associated with the image. In
various implementations, processing flags may indicate
that any pixel transform specified by the DICOM standard
or any other known image processing technique. Exam-
ples of pixel transforms that may be specified by process-
ing flags include linear modality transforms specified by
DICOM attributes such as RescaleSlope and Rescalel-
ntercept, Image cropping using DICOM attributes such
as PercentPhaseFieldOfView and InPlanePhaseEn-
codingDirection, Look Up Table (LUT), etc. If one or more
processing flags are present, process 700 continues to
block 712. If no processing flags are present, process
700 continues to block 714.
[0071] At block 712, pixel data processing is per-
formed. In various implementations, any transform spec-
ified by a processing flag may be performed. In some
implementations, the pixel data processing includes win-
dow leveling. Window leveling is a grayscale mapping
process used to highlight selected features of a medical
image. Window leveling is typically controlled using one
or more parameters such as a window width and a win-
dow level.
[0072] In the case of a CT scan, each pixel in a raw
CT scan image corresponds to a certain Hounsfield Unit
(HU) value. For example, fat typically has an HU value
of around -100, soft tissue typically has an HU value of
around 50, bone typically has an HU value of around 400,
etc. In general, similar anatomical features have similar
HU values. Thus, various soft tissues will typically have
HU values in a relatively narrow range such as 50-100
HU and may therefore appear as very similar shades of
gray in a raw CT scan image. This is because typically
grayscale images only have 256 possible values for each
pixel, with black often being 0 and white often being 255.
For example, if a raw CT image includes values from
-1000 HU to 1000 HU, the range 50-100 HU, which may
include various soft tissues, may be represented by a
single shade of gray, making the various soft tissues ap-
pear the same in the raw CT image. Referring to Figure
8, this can be seen in the first study image 804a that is
currently displaying a cross-sectional image of lungs. Air
in the lungs appears in dark gray in the images, while the

various body tissues and bones surrounding the lungs
appear in various lighter shades of gray.
[0073] Window width controls how HU values in the
raw CT scan image are mapped to a range of grayscale
values, such that the CT image may be made sensitive
to a selected range of HU values. With a large window
width, a relatively wide range of HU values is mapped to
the range of grayscale values to be displayed. This allows
various anatomical features having different HU values
to be displayed in a same grayscale image but decreases
contrast between anatomical features with similar HU
values. For example, if air and bone are both to be ana-
lyzed in the CT scan image, as seen with respect to Figure
8, a relatively wide window may be used.
[0074] With a small window width, a relatively narrow
range of HU values is mapped to the range of grayscale
values, allowing anatomical features having similar HU
values to be differentiated from each other. For example,
if various soft tissues are to be analyzed in a same gray-
scale image, a relatively narrow HU window may be used
to increase contrast between the various soft tissues.
[0075] Window level controls a midpoint in the range
of HU levels of the window, defining a cutoff between
black pixels and white pixels. Increasing the window level
decreases the overall brightness of the image because
fewer pixels in the image are mapped to white. Decreas-
ing the window level tends to increase the overall bright-
ness of the image because more pixel values are mapped
to white. After block 712, process 700 continues to block
714.
[0076] Window leveling is often one of the final oper-
ations performed on the pixels before the pixels are dis-
played as an image. Window leveling may be implement-
ed behind a queue of 1, wherein only a single window
leveling command is serviced at a time. Servicing a single
command at a time may allow unnecessary memory us-
age to be reduced by checking whether a window-leveled
version of the image is available in the cache. Saving
window-leveled images to the cache decreases comput-
ing resources used to recompute a window-leveled ver-
sion of the image. If a window-leveled version of the im-
age is already available in the cache, it does not need to
be recom-puted.
[0077] At block 714, the processed image is added to
a raw image collection. After block 714, process 700 ends
at an end block.
[0078] Figure 8 shows a screenshot of an example
graphical user interface (GUI) 800 for a web-based med-
ical image viewer, in which GUI components 802 and two
co-registered studies are presented to a user, in accord-
ance with embodiments described herein.
[0079] First study image 804a is presented using a first
central image viewer, while second study image 804b is
presented using a second central image viewer. Typical-
ly, images presented in GUI 800 are obtained using em-
bodiments of process 500, process 600, process 700, or
a combination thereof.
[0080] First study image 804a and second study image

13 14

EP 4 439 579 A1

9

5

10

15

20

25

30

35

40

45

50

55

804b are co-registered, meaning they are images of the
same anatomical feature under different conditions, al-
lowing the anatomical feature to be compared under the
different conditions. This can be seen in the similarities
between the first study image 804a and the second study
image 804b. Commonly, the first study and the second
study include images taken at a first time and a second
time, respectively, allowing changes in the anatomical
feature to be compared over time. For example, growth
of a tumor may be monitored over time by comparing two
or more studies containing images taken at different
times.
[0081] The client device may display multiple view-
ports at the same time. In some implementations, the
displayed images may be compute-rendered JPEG im-
ages. In some implementations, compute JPEG image
requests are packaged together, and the client device
waits for those requests to complete before rendering
the images. However, with the creation of the image view-
ing pipeline, images are rendered individually as they are
available and are not part of the packaged requests.
[0082] Figure 9 shows a screenshot of an example
graphical user interface (GUI) for a web-based medical
image viewer, in which two co-registered studies are pre-
sented to a user in an enlarged portrait mode, according
to one non-limiting illustrated implementation. One or
more sizes of first study image 904a and second study
image 904b may be configurable in the GUI 900, reducing
GUI space used to display other GUI components 902.
For example, in Figure 9, first study image 904a and sec-
ond study image 904b are displayed in enlarged portrait
mode.
[0083] Figure 10 is a block diagram illustrating ele-
ments of an example computing device 1000 utilized in
accordance with some embodiments of the techniques
described herein. Illustratively, the computing device
1000 may correspond to the IVP and related components
discussed herein.
[0084] In some embodiments, one or more general
purpose or special purpose computing systems or devic-
es may be used to implement the computing device 1000.
In addition, in some embodiments, the computing device
1000 may comprise one or more distinct computing sys-
tems or devices, and may span distributed locations. Fur-
thermore, each block shown in Figure 10 may represent
one or more such blocks as appropriate to a specific em-
bodiment or may be combined with other blocks. Also,
an IVP manager 1022 may be implemented in software,
hardware, firmware, or in some combination to achieve
the capabilities described herein.
[0085] As shown, the computing device 1000 compris-
es a computer memory ("memory") 1001, a display 1002
(including, but not limited to a light emitting diode (LED)
panel, cathode ray tube (CRT) display, liquid crystal dis-
play (LCD), touch screen display, projector, etc.), one or
more Central Processing Units (CPU) or other proces-
sors 1003, Input/Output (I/O) devices 1004 (e.g., key-
board, mouse, RF or infrared receiver, universal serial

bus (USB) ports, High-Definition Multimedia Interface
(HDMI) ports, other communication ports, and the like),
other computer-readable media 1005, network connec-
tions 1006, a power source (or interface to a power
source) 1007. The IVP manager 1022 is shown residing
in memory 1001. In other embodiments, some portion of
the contents and some, or all, of the components of the
IVP manager 1022 may be stored on and/or transmitted
over the other computer-readable media 1005. The com-
ponents of the computing device 1000 and IVP manager
1022 can execute on one or more processors 1003 and
implement applicable functions described herein. In
some embodiments, the IVP manager 1022 may operate
as, be part of, or work in conjunction and/or cooperation
with other software applications stored in memory 1001
or on various other computing devices. In some embod-
iments, the IVP manager 1022 also facilitates communi-
cation with peripheral devices via the I/O devices 1004,
or with another device or system via the network connec-
tions 1006.
[0086] The one or more IVP modules 1014 are config-
ured to perform actions related, directly or indirectly, to
the IVP execution as described herein. In some embod-
iments, the IVP module(s) 1014 stores, retrieves, or oth-
erwise accesses at least some IVP-related data on some
portion of the IVP data storage 1016 or other data storage
internal or external to the computing device 1000. In var-
ious embodiments, at least some of the IVP modules
1014 may be implemented in software or hardware.
[0087] Other code or programs 1030 (e.g., further data
processing modules, communication modules, a Web
server, and the like), and potentially other data reposi-
tories, such as data repository 1020 for storing other data,
may also reside in the memory 1001, and can execute
on one or more processors 1003. Of note, one or more
of the components in Figure 10 may or may not be present
in any specific implementation. For example, some em-
bodiments may not provide other computer readable me-
dia 1005 or a display 1002.
[0088] In some embodiments, the computing device
1000 and IVP manager 1022 include API(s) that provides
programmatic access to add, remove, or change one or
more functions of the computing device 1000. In some
embodiments, components/modules of the computing
device 1000 and IVP manager 1022 are implemented
using standard programming techniques. For example,
the IVP manager 1022 may be implemented as an exe-
cutable running on the processor(s) 1003, along with one
or more static or dynamic libraries. In other embodiments,
the computing device 1000 and IVP manager 1022 may
be implemented as instructions processed by a virtual
machine that executes as one of the other programs
1030. In general, a range of programming languages
known in the art may be employed for implementing such
example embodiments, including representative imple-
mentations of various programming language para-
digms, including but not limited to, object-oriented (e.g.,
Java, C++, C#, Visual Basic.NET, Smalltalk, and the

15 16

EP 4 439 579 A1

10

5

10

15

20

25

30

35

40

45

50

55

like), functional (e.g., ML, Lisp, Scheme, and the like),
procedural (e.g., C, Pascal, Ada, Modula, and the like),
scripting (e.g., Perl, Ruby, Python, JavaScript, VBScript,
and the like), or declarative (e.g., SQL, Prolog, and the
like).
[0089] In a software or firmware implementation, in-
structions stored in a memory configure, when executed,
one or more processors of the computing device 1000
to perform the functions of the IVP manager 1022. In
some embodiments, instructions cause the one or more
processors 1003 or some other processor(s), such as an
I/O controller/processor, to perform at least some func-
tions described herein.
[0090] The embodiments described above may also
use well-known or other synchronous or asynchronous
client-server computing techniques. However, the vari-
ous components may be implemented using more mon-
olithic programming techniques as well, for example, as
an executable running on a single CPU computer system,
or alternatively decomposed using a variety of structuring
techniques known in the art, including but not limited to,
multiprogramming, multithreading, client-server, or peer-
to-peer, running on one or more computer systems each
having one or more CPUs or other processors. Some
embodiments may execute concurrently and asynchro-
nously, and communicate using message passing tech-
niques. Equivalent synchronous embodiments are also
supported by a IVP manager 1022 implementation. Also,
other functions could be implemented and/or performed
by each component/module, and in different orders, and
by different components/modules, yet still achieve the
functions of the computing device 1000 and IVP manager
1022.
[0091] In addition, programming interfaces to the data
stored as part of the computing device 1000 and IVP
manager 1022, can be available by standard mecha-
nisms such as through C, C++, C#, and Java APIs; li-
braries for accessing files, databases, or other data re-
positories; scripting languages such as XML; or Web
servers, FTP servers, NFS file servers, or other types of
servers providing access to stored data. The IVP data
storage 1016 and data repository 1020 may be imple-
mented as one or more database systems, file systems,
or any other technique for storing such information, or
any combination of the above, including implementations
using distributed computing techniques.
[0092] Different configurations and locations of pro-
grams and data are contemplated for use with techniques
described herein. A variety of distributed computing tech-
niques are appropriate for implementing the components
of the illustrated embodiments in a distributed manner
including but not limited to TCP/IP sockets, RPC, RMI,
HTTP, and Web Services (XML-RPC, JAX-RPC, SOAP,
and the like). Other variations are possible. Other func-
tionality could also be provided by each component/mod-
ule, or existing functionality could be distributed amongst
the components/modules in different ways, yet still
achieve the functions of the IVP manager 1022.

[0093] Furthermore, in some embodiments, some or
all of the components of the computing device 1000 and
IVP manager 1022 may be implemented or provided in
other manners, such as at least partially in firmware
and/or hardware, including, but not limited to one or more
application-specific integrated circuits ("ASICs"), stand-
ard integrated circuits, controllers (e.g., by executing ap-
propriate instructions, and including microcontrollers
and/or embedded controllers), field-programmable gate
arrays ("FPGAs"), complex programmable logic devices
("CPLDs"), and the like. Some or all of the system com-
ponents and/or data structures may also be stored as
contents (e.g., as executable or other machine-readable
software instructions or structured data) on a computer-
readable medium (e.g., as a hard disk; a memory; a com-
puter network, cellular wireless network or other data
transmission medium; or a portable media article to be
read by an appropriate drive or via an appropriate con-
nection, such as a DVD or flash memory device) so as
to enable or configure the computer-readable medium
and/or one or more associated computing systems or
devices to execute or otherwise use, or provide the con-
tents to perform, at least some of the described tech-
niques.
[0094] The following is a summary of the claims as
originally filed.
[0095] A method may be summarized as including:
hosting, by a first server, first graphical user interface
(GUI) components of a GUI of a web-based medical view-
er application, the first GUI components comprising im-
ages to be presented in the GUI of the web-based med-
ical viewer application; hosting, by a second server, sec-
ond GUI components of the GUI, the second GUI com-
ponents comprising GUI components other than the first
GUI components to be presented in the GUI of the web-
based medical viewer application; serving the second
GUI components from the second server to a client de-
vice for rendering the GUI to a user of the client device;
detecting, by the second server, interaction with a com-
ponent in the second GUI components; authenticating
the client device to receive the first GUI components;
receiving, by the first server and from the client device,
selection of a medical study; and in response to receiving
the selection of the medical study, serving the first GUI
components from the first server to the client device for
rendering the GUI to the user of the client device.
[0096] In some implementations, at least one of the
first server and the second server may be implemented
using a container.
[0097] In some implementations, serving the first GUI
components from the first server to the client device for
rendering the GUI to the user of the client device includes:
serving compressed image data to the client device.
[0098] In some implementations, the method further
includes: running multiple concurrent versions of the first
server simultaneously; and routing a configurable pro-
portion of traffic to a version of the first server in the mul-
tiple concurrent versions of the first server.

17 18

EP 4 439 579 A1

11

5

10

15

20

25

30

35

40

45

50

55

[0099] In some implementations, the method further
includes: running multiple concurrent versions of the first
server behind a load balancer; and routing, by the load
balancer, a configurable proportion of traffic to a version
of the first server in the multiple concurrent versions of
the first server.
[0100] In some implementations, serving the first GUI
components from the first server to the client device for
rendering the GUI to the user of the client device includes:
serving, by the first server, an image that the user is cur-
rently attempting to view; and after serving the image that
the user is currently attempting to view, serving, by the
first server, images in order from an image request stack.
[0101] In some implementations, serving the first GUI
components from the first server to the client device for
rendering the GUI to the user of the client device includes:
serving, by the first server, the first GUI components that
include a plurality of co-registered sets of medical images
to be concurrently displayed to the user of the client de-
vice.
[0102] In some implementations, the method further
includes: updating the second server while providing, to
the client device and by the first server, the first GUI com-
ponents.
[0103] In some implementations, the method further
includes: obtaining, by the first server, an image request
stack for the images to be presented in the GUI of the
web-based medical viewer application; selecting, by the
first server, an image request from the image request
stack; requesting, by the first server, image data from a
medical image service using the selected image request;
and receiving and caching, by the first server, the image
data.
[0104] In some implementations, the method further
includes: causing the client device to retrieve pixel data
of an image of the images to be presented in the GUI of
the web-based medical viewer application using a first
compression algorithm and a selected compression ratio
in response to determining that: the image is compressed
using lossy compression.
[0105] In some implementations, the method further
includes: determining that image data of a selected im-
age of the images to be presented in the GUI of the web-
based medical viewer application includes a processing
flag that specifies a transform to be applied to the image
data; and causing the client device to apply the specified
transform to the image data.
[0106] In some implementations, the method further
includes: determining that a window-leveled version of a
selected image in the images to be presented in the GUI
of the web-based medical viewer application is not stored
in a cache available to the client device; and creating the
window-leveled version of the selected image by causing
the client device to perform actions including: obtaining
a window width and a window level to be used in creating
the window-leveled version of the selected image; and
creating the window-leveled version of the selected im-
age by modifying pixels in the selected image using the

window width and the window level.
[0107] In some implementations, the method further
includes: detecting, by the client device, an error in re-
ceiving the first GUI components from the first server;
and in response to detecting the error, requesting the
first GUI components from the second server.
[0108] A computing system may be summarized as
including: one or more processors; and one or more non-
transitory computer-readable media collectively storing
instructions that, when collectively executed by the one
or more processors, cause the one or more processors
to perform the method.
[0109] A non-transitory computer-readable medium
may be summarized as being configured to store com-
puter instructions that, when collectively executed by one
or more processors, cause the one or more processors
to perform the method.
[0110] The various embodiments described above can
be combined to provide further embodiments. All of the
U.S. patents, U.S. patent application publications, U.S.
patent applications, foreign patents, foreign patent appli-
cations and non-patent publications referred to in this
specification and/or listed in the Application Data Sheet,
including U.S. Provisional Application No. 63/492,350
filed on March 27, 2023, are incorporated herein by ref-
erence, in their entirety. Aspects of the embodiments can
be modified, if necessary to employ concepts of the var-
ious patents, applications, and publications to provide
yet further embodiments.
[0111] These and other changes can be made to the
embodiments in light of the above-detailed description.
In general, in the following claims, the terms used should
not be construed to limit the claims to the specific em-
bodiments disclosed in the specification and the claims,
but should be construed to include all possible embodi-
ments along with the full scope of equivalents to which
such claims are entitled. Accordingly, the claims are not
limited by the disclosure.

Claims

1. A method, comprising:

hosting, by a first server (212), first graphical
user interface (GUI) components (104) of a GUI
of a web-based medical viewer application, the
first GUI components comprising images to be
presented in the GUI of the web-based medical
viewer application;
hosting, by a second server (202), second GUI
components (102) of the GUI, the second GUI
components comprising GUI components other
than the first GUI components to be presented
in the GUI of the web-based medical viewer ap-
plication;
serving the second GUI components from the
second server to a client device for rendering

19 20

EP 4 439 579 A1

12

5

10

15

20

25

30

35

40

45

50

55

the GUI to a user of the client device;
detecting, by the second server, interaction with
a component in the second GUI components;
authenticating the client device to receive the
first GUI components;
receiving, by the first server and from the client
device, selection of a medical study; and
in response to receiving the selection of the
medical study, serving the first GUI components
from the first server to the client device for ren-
dering the GUI to the user of the client device.

2. The method of claim 1, wherein at least one of the
first server and the second server is implemented
using a container.

3. The method of claim 1 or claim 2, wherein serving
the first GUI components from the first server to the
client device for rendering the GUI to the user of the
client device comprises:
serving compressed image data to the client device.

4. The method of any one of claims 1-3, further com-
prising:

running multiple concurrent versions of the first
server simultaneously; and
routing a configurable proportion of traffic to a
version of the first server in the multiple concur-
rent versions of the first server.

5. The method of any one of claims 1-4, further com-
prising:

running multiple concurrent versions of the first
server behind a load balancer (214); and
routing, by the load balancer, a configurable pro-
portion of traffic to a version of the first server in
the multiple concurrent versions of the first serv-
er.

6. The method of any one of claims 1-5, wherein serving
the first GUI components from the first server to the
client device for rendering the GUI to the user of the
client device comprises:

serving, by the first server, an image that the
user is currently attempting to view; and
after serving the image that the user is currently
attempting to view, serving, by the first server,
images in order from an image request stack.

7. The method of any one of claims 1-6, wherein serving
the first GUI components from the first server to the
client device for rendering the GUI to the user of the
client device comprises:
serving, by the first server, the first GUI components
that include a plurality of co-registered sets of med-

ical images to be concurrently displayed to the user
of the client device.

8. The method of any one of claims 1-7, further com-
prising:
updating the second server while providing, to the
client device and by the first server, the first GUI com-
ponents.

9. The method of any one of claims 1-8, further com-
prising:

obtaining, by the first server, an image request
stack for the images to be presented in the GUI
of the web-based medical viewer application;
selecting, by the first server, an image request
from the image request stack;
requesting, by the first server, image data from
a medical image service using the selected im-
age request; and
receiving and caching, by the first server, the
image data.

10. The method of any one of claims 1-9, further com-
prising:
causing the client device to retrieve pixel data of an
image of the images to be presented in the GUI of
the web-based medical viewer application using a
first compression algorithm and a selected compres-
sion ratio in response to determining that:
the image is compressed using lossy compression.

11. The method of any one of claims 1-10, further com-
prising:

determining that image data of a selected image
of the images to be presented in the GUI of the
web-based medical viewer application includes
a processing flag that specifies a transform to
be applied to the image data; and
causing the client device to apply the specified
transform to the image data.

12. The method of any one of claims 1-11, further com-
prising:

determining that a window-leveled version of a
selected image in the images to be presented
in the GUI of the web-based medical viewer ap-
plication is not stored in a cache available to the
client device; and
creating the window-leveled version of the se-
lected image by causing the client device to per-
form actions comprising:

obtaining a window width and a window lev-
el to be used in creating the window-leveled
version of the selected image; and

21 22

EP 4 439 579 A1

13

5

10

15

20

25

30

35

40

45

50

55

creating the window-leveled version of the
selected image by modifying pixels in the
selected image using the window width and
the window level.

13. The method of any one of claims 1-12, further com-
prising:

detecting, by the client device, an error in receiv-
ing the first GUI components from the first serv-
er; and
in response to detecting the error, requesting
the first GUI components from the second serv-
er.

14. A computing system comprising:

one or more processors; and
one or more non-transitory computer-readable
media collectively storing instructions that, when
collectively executed by the one or more proc-
essors, cause the one or more processors to
perform the method of any one of claims 1 to 13.

15. A non-transitory computer-readable medium that
stores computer instructions that, when collectively
executed by one or more processors, cause the one
or more processors to perform the method of any
one of claims 1 to 13.

23 24

EP 4 439 579 A1

14

EP 4 439 579 A1

15

EP 4 439 579 A1

16

EP 4 439 579 A1

17

EP 4 439 579 A1

18

EP 4 439 579 A1

19

EP 4 439 579 A1

20

EP 4 439 579 A1

21

EP 4 439 579 A1

22

EP 4 439 579 A1

23

EP 4 439 579 A1

24

5

10

15

20

25

30

35

40

45

50

55

EP 4 439 579 A1

25

5

10

15

20

25

30

35

40

45

50

55

EP 4 439 579 A1

26

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 63492350 [0110]

	bibliography
	abstract
	description
	claims
	drawings
	search report
	cited references

