US 20130179791A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2013/0179791 Al

POLSKI et al. 43) Pub. Date: Jul. 11, 2013
(54) SYSTEM AND METHOD FOR REAL-TIME (52) US.CL
DATA IN A GRAPHICAL USER INTERFACE CPC .ot HO4L 67/26 (2013.01)
USPC ottt 715/733
(71) Applicant: Webotics Inc., Waterloo (CA)
(72) Inventors: Anten POLSKI, Thornhill (CA); (57 ABSTRACT
Alexan KULBASHIAN, Waterloo (CA)
A system and method for real-time push delivery of updates/
(73) Assignee: WEBOTICS INC., Waterloo (CA) changes of database records displayed in user interfaces with-
out the clients requesting such data. The data is provided to
(21) Appl. No.: 13/716,624 the graphical user interface such that when changes occur to
the source database origin of the displayed data the client user
(22) Filed: Dec. 17, 2012 interfaces that contain the records are updated in real-time by
L receiving an update signal over the computer network which
Related U.S. Application Data updates the graphical user interface on the client device to
(60) Provisional application No. 61/576,644, filed on Dec. reflect the changes that have occurred to the contained data. In
16, 2011. order to achieve real-time connectivity, a channel is created
between each of the client computing devices and the com-
Publication Classification munications server and subsequently a session with the appli-
cation server. Data changes recorded from the application
(51) Int.ClL server are pushed to each of the client computers simulta-
HO4L 29/08 (2006.01) neously via the communication server.
s Chient 3 |
S

Static Datag Request 1

Static Datg

Client N
gy
. S :
/ i
Wb CQ?%?;&%’% '
N iatic-Datd Request n
ii Berver ? 4

Get Static Data for Transpor! to Cligrts e Aoplication Server :-w-mmm*'? Cacking Madule

s e

B

Massage Transport
: Servar .

| \
. ’ S

P 5,

Select/Update/insert/Delete Dala

. Database
Server

Patent Application Publication Jul. 11,2013 Sheet 1 of 14 US 2013/0179791 A1

i Chient 1
i
oy s
J—

Static DalaRequest 2 Chiont 2

i i
.

Static Data Request 1 :
% Clent M
:
DU, J— §
/ Web Co ! ;
© nm;“g s
! tatic-Datsf Requestn
% Server L :
¥ T

. k
HE ? S

i
!

Get Static Data for Transport to Ciientswwwmwmwi Application Server WWWW Caghing Module E
0 4

e

Select/Update/insertDelate Data

e

..

4, Databasg |
Server

FIG. 1

Patent Application Publication Jul. 11,2013 Sheet 2 of 14 US 2013/0179791 A1

H i i

§ Communication Module

Client Application i

Raceive user
actions and
requests

Send Data
Update

H

Message Transport Module

Data Assembly

Moduls Module

i
éﬁ"g Y
Databass

sy

Application Server

FIG. 2

Patent Application Publication

Jul. 11, 2013 Sheet 3 of 14

Iy

{ Cliopt Staels 2

%

(iigten for

Cannention with the
fessage Transport Module

i
whiannal

e Hﬂl

S

Arkive?

oy

1

Updste liser
tribeta

spulaing

US 2013/0179791 A1l

Yes
:
{ {
T h. AR
p LiEIET mszme
Htions
No

s Action
Dieipsisd?

stver Contachn,
Axtiva® il
.

FIG. 3

Trmrmest
A

Patent Application Publication Jul. 11,2013 Sheet 4 of 14 US 2013/0179791 A1

ives @ renord retrigval request

© Server rece

Hovord Exsts inCacke. e

e
4

v

Hetriave Record From
Dadahase

L. . Relrieve a sl of all model

| aroups associaled with tis

fecsrd from e RTH
; el

Slore Beoord in the Caohing
Mgl

...

kS —

Add Client Addross to

corresponding group in fie
Message Trensport Modol
I

5 hese dats modet
o, groups? i il
", W

? No

=Y

(Package and Seng

e T = (R GRUTR R
detivery to the it
T mm——

Yes

Patent Application Publication Jul. 11,2013 Sheet 5 of 14 US 2013/0179791 A1

CornestioWessage
L Transpar Moduls
L oyt G

. WaitFor Date
i From Glisnls

| WeltBorlisnt
o %
Gopneetions

No

4

Frooass inflst
Clignt Ot -
Request 1

|
i | Register Dhent for
|
]
|
]
|
i
i

|
o Bamt Data iothe E
Ot for Slorage o

et A3TOMD, Dintar
i Updatk

i
:
X

L | Package Data For
——— Cent Delivery

swgilentaubser
e
i

S

7 Transmit Dsta To

Patent Application Publication Jul. 11,2013 Sheet 6 of 14 US 2013/0179791 A1

™
[ORM Signats that a change In L
; data has ovourmed

£ e s date kay demaet
and store the ohsnpsd | N0 PR e

i@mai& avow sache key
! dete

A

Craple 2 now Uga
Modetard clant droup
| usingdbe pewamodeliD

L o, Updale fhe Model intie
| Database | §;

S

Select sl model ids
et have babnl
Hifpotad bythe
chafpa in g

“Broadeast Changs to &l ™,
shents belonging o groups ﬁ%

ftmtifted with affected

maods! iy qf’.

FIG. 6

Patent Application Publication

Firat e L Eements bound
e hellsor thachanges
Sabs gndohane el
St Wt row ety

Jul. 11, 2013 Sheet 7 of 14

Vs Ty
{ Gl Recsives and updals
e e Brvss

"R ‘W‘jﬂﬂ”{w“%‘«"&% gﬁﬁmﬁi

i The Undate Processing
Module Unpacks the A
L Updeies and pa

T

Lierintariabe Updade Modide
Cxmtmermives Thetypes of U
sanpes el are required

e date oolisotiondhatis
v tohe Sy ofiding il
e boirtyy insirled s beling
addR nes iy Lo rehdeydikidelein ¢

s Fid the conesponding data
| wollsction that s bound o
fiats plamant
fad Bod the entry .

US 2013/0179791 A1l

13

I

i
|
H
¥

iontion Sereer”
v the the U updals was
succeasivt

/ Signal the App

-
gy

FIG. 7

Patent Application Publication Jul. 11,2013 Sheet 8 of 14 US 2013/0179791 A1

Update Triggering Process

l J

2 1 RESTiul Interface

DB Actions Passthrough to |-
Memcached Object

=

ORM DB Wrapper

Memcache Diff

Logic

Update

)

Memcache Subscription

l J Logic Fetch. XMPP Handling

(Resource Delivery)
Figure 11

Database

Figum/

Model

data://notify/ ’

]

FIG. 8

Patent Application Publication Jul. 11,2013 Sheet 9 of 14 US 2013/0179791 A1

Model Subscription Process

User

e
B

o

Patent Application Publication Jul. 11,2013 Sheet 10 of 14 US 2013/0179791 A1

1
. Memcache Diff Logic
Post DB Action Execution Resuit Sets]
(Insert ((Update ((Delete (
~— ~— ~—
1a 10 1c
Y |
|
Iterate Add Row ID Hasl the Delete Row i
to table value ID from)
Table cache ghanged? table cache !
|
|
|
__ !
Yes
___ |
I' l
)
lterate AddRow D Remove Row petorow |
ID from i
Column Columnivalue Columnivalue i
cache column cache cache :
H
t
___ !
|
|
lte rate Add ful Update ful Delete row !
data to row data in row |
cache |
cache cache |
1
Il
i

- Dispatch
Outbound
XMPP Data
(Fig. 11)

Create JSON-encoded
Array of changes made

1o the DB tables

FIG. 10

Patent Application Publication Jul. 11,2013 Sheet 11 of 14 US 2013/0179791 A1

Memcache Subscription Fetch .

Patent Application Publication Jul. 11,2013 Sheet 12 of 14 US 2013/0179791 A1

Inbound Requests Connectivity

Initial Reg
Static Content
Or Seach Bots

form submissions

FIG. 12

Patent Application Publication Jul. 11,2013 Sheet 13 of 14 US 2013/0179791 A1

Client Side XMPP Update Process

Patent Application Publication Jul. 11,2013 Sheet 14 of 14 US 2013/0179791 A1

Framework Overview
BROWSER -

NETWORK

FIG. 14

US 2013/0179791 Al

SYSTEM AND METHOD FOR REAL-TIME
DATA IN A GRAPHICAL USER INTERFACE

FIELD

[0001] The present disclosure is in the field of Internet
communication and more particularly related to push delivery
of changes of data that is rendered inside a graphical user
interface of a software application. The changes in data are
provided via messaging, and presence notification.

BACKGROUND

[0002] Conventional systems for updating data on a graphi-
cal user interface, such as, for example, a web page or the like,
typically involve a “pull” model in which the client requests
new web page data from a server. This approach also gener-
ally involves the refreshing of an entire web page or of a frame
on a web page. There is a need for improved systems and
methods of providing updated data in a graphical user inter-
face.

SUMMARY

[0003] The present disclosure pertains particularly to a sys-
tem and method for real-time push delivery of updates/
changes of database records displayed in user interfaces with-
out the clients requesting such data. More particularly, the
present disclosure relates to a method and apparatus for dis-
playing database records, and, in particular, updates/changes
in data, within graphical user interfaces running on a plurality
of client devices such as web browsers, installed desktop
applications or mobile software applications.

[0004] The data is provided to the graphical user interface
such that when changes occur to the source database origin of
the displayed data the client user interfaces that contain the
records are updated in real-time by receiving an update signal
over the computer network which updates the graphical user
interface on the client device to reflect the changes that have
occurred to the contained data. The update signal is generated
by a data change event that occurs within the software com-
ponent that implements the database access layer as known in
the art. In a particular implementation, the system involves a
series of client computers or mobile devices interacting with
a web based application server over the Internet network.
[0005] In order to achieve real-time connectivity between
the application server and the plurality of client devices, one
embodiment herein utilizes a communication server employ-
ing extensible Messaging and Presence Protocols (“XMPP”).
Another embodiment utilizes a communication server socket.
io as the transport layer and nowjs as the message brokering
and address grouping system. The client connection library
(for example, Strophe or socket.io) creates a channel between
each of the client computing devices and the communications
server and subsequently a session with the application server
which is initiated by the application server over the local
computer network by way of a message received from the
client device over the established communications channel.
Once the user session is authenticated, data changes recorded
from the application server are pushed from the application
server to each of the client computers simultaneously via the
communication server. This embodiment alleviates the con-
ventional requirement that Client computers do not actively
pull information from the communications server but are
rather receptive to data that is being pushed down the existing
channel.

Jul. 11,2013

[0006] Specifically, one embodiment herein claims a com-
puter-implemented method for generation of user interface
display elements that allows for data updates to be pushed to
the client devices using a computer network and an open
communications channel between said client devices

[0007] This arrangement allows the user to select the com-
ponents that make up a particular application, configure the
layout of their display and specify the logic that governs their
interaction and computations.

[0008] At present, there are known systems that use real-
time push capabilities on the Internet, but with the demand for
quick data availability skyrocketing in the recent years, espe-
cially in web pages there is an evident need for a low latency
solution to effectively tie database changes to real-time
updates on client devices. Presently in order for a web appli-
cation user to see changes in data a web page needs to be
refreshed. This can result in additional bandwidth and creat-
ing the unnecessary need to refresh the page in order to know
if the data has changed. One issue with the classic Web data
access paradigm (known as “pull”) is that it is synchronous: it
has the client (browser or mobile application) request data
from the server in a synchronous manner. Consequently when
a particular client application needs a data update, it has to
make a network request to the server explicitly to find out if
the data has been modified and obtain its new value. In other
words, for every request from a client there is a corresponding
reply from a server. When a Web page is visualized, the data
contained within it is static on the user’s browser and is not
updated until a page refresh is made (manual or automatic).
There are, however, a growing number of applications that
necessitate the visualization of real-time data. Current
examples are stock prices from on-line trading sites, betting
odds from gambling portals, sports results and messages
exchanged through online communities. These are just a few
cases of systems which, in order to offer the maximum in
usability and quality of user experience, require continual
updates of the visualized data in the browser page.

[0009] There are several layers to the systems and methods
in the present disclosure that are intended to enable the
smooth, real-time effect desired.

[0010] In one particular embodiment, the overall effect is
achieved by the interaction of the update-triggering ORM
(Object Relational Mapping) engine, the subscription/deliv-
ery mechanism and the volatile storage management classes.
[0011] Further details of the systems and methods will be
further understood from the Figures and following descrip-
tion.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] FIG.1is the high level System overview of a system
for real-time data representation

[0013] FIG. 2 is an overview of system components on the
server and client side

[0014] FIG. 3 is a logical overview of the client operations
[0015] FIG. 4 is the flow chart of the record retrieval pro-
cess

[0016] FIG. 5 is the Application Server Operations Flow-
chart

[0017] FIG. 6 Describes how the application server handles

the data changes and propagates updates to clients

[0018] FIG. 7 Describes the User Interface Update Process
[0019] FIG. 8 is a high level overview of the update trig-
gering process.

US 2013/0179791 Al

[0020] FIG. 9 is a flowchart outlining an end user request
and how it results in a browser tab being “subscribed” to
receive update notifications

[0021] FIG. 10 is a logical overview of processing stages
that result in a update notification payload being constructed
that will ultimately be pushed to the visitor’s browser
[0022] FIG. 11 is the inverse to FIG. 9 and the continuation
to FIG. 10, describing how the list of subscribers is notified
when data is updated

[0023] FIG. 12 is a visitor-to-service request overview dia-
gram that shows the paths a request takes

[0024] FIG. 13 is an overview of the client side XMPP
update process
[0025] FIG. 14 is a high-level diagram of the framework

used in the systems and methods herein.

DETAILED DESCRIPTION OF THE DRAWINGS

[0026] FIGS. 1 to 7 illustrate a system and method for
displaying a real-time representation of database records
within a graphical user interface running on a plurality of
client devices. The client devices are interacting with a mes-
sage transport module over an open communication channel
established between the client’s communication module and
the message transport module. The open communication
channel is intended to enable real-time delivery of push noti-
fications to the client devices from the Application server
triggered by changes occurring to the data base records in the
source database.

[0027] In further detail, the system includes various com-
ponents:
[0028] The plurality of client computers each include a

Communication Module that maintains a bi-directional com-
munication channel over the computer network to the Mes-
sage Transport Server. In some embodiments an extensible
messaging and presence protocol (XMPP), Advanced Mes-
sage Queuing Protocol (AMQP), or a transport layer such as
socket.io in conjunctions with Node JS and NOW IS server
may be employed as the real-time message brokering and
delivery system to and from client devices. Those skilled in
the art can adapt systems with similar functionality to act as a
message transport and brokering mechanisms for the system
described herein. The group messaging functionality of cer-
tain implementations of these protocols, Openfire and Ejab-
berd respectively is of particular interest as it could be utilized
to manage large groups of update recipients efficiently and
with low latency of message delivery.

[0029] An Update Processor Module is a component used
in the client application that processes the incoming updates
received via Communication module translating them into
instructions to update the user interface elements correspond-
ing to a set of data base records affected by the pushed update
[0030] A User Interface Update module receives instruc-
tions from the Update Processor and executes the update code
specific to the platform on which the client user interface is
implemented. In one embodiment the framework can be Java-
Script running in an Hypertext Markup Language (“HTML”)
browser. In this embodiment the Update Processor Module
may be implemented as a JavaScript object that can access
and modify the Document Object Model asynchronously at
run-time. However, any appropriate type of client framework
can be used.

[0031] A Web Server, which is a module responsible for
delivery of static assets such as HTML, JavaScript, image
files, text files and any other type of data that is not dynamic

Jul. 11,2013

in nature but may be required for rendering non-database-
driven elements of the graphical user interface

[0032] An Application Server that is configured to conduct
data base access and modification via an Object Relational
Mapping Module (ORM) and maintain a registry of data
record models currently active on the connected client
devices in accordance with the data records requested by the
client device. The ORM also handles user actions that result
in data modification or other system events that result in
retrieval of database records for delivery to client devices.
[0033] A Message Transport Module (MTM) that is
responsible for delivery of messages to client devices in real-
time. This module establishes a bi-directional connection
with the Communication Module on a client device and is
used as a message brokering mechanism between a plurality
of client devices and the Application Server. Data from the
application server is pushed to each of the client devices
simultaneously via the MTM. Other functions of the MTM
include e message orientation, queuing, routing (including
point-to-point and publish-and-subscribe), reliability and
security of the message delivery to connected client devices
[0034] A Database server that is communicatively coupled
with the Object Relational Model Module and configured to
centralize data access by the application server and to main-
tain a subscription registry for models that are currently
accessed by the client. When a client first receives a rendering
of the database records, its unique identifier is added to a
group of addresses that subscribes to updates related to said
database records.

[0035] A Caching Module responsible for maintaining a set
of key-value pairs representing the current state of active
database records currently rendered on said client devices.
The Caching module is configured to provide fast access to
rendered data without the need of making any additional
queries to the database.

[0036] In some aspects, the system may also involve or
include a plurality of client applications that creates a render-
ing of one or more database records or fields. In a particular
embodiment where the client device is a web browser, the
client makes an HTTP request to the application server to
render a web page that is a rendering of a set of database
records contained inside uniquely identified user interface
containers; the unique attribute allows the update processorto
identify which enclosed fields relate to a particular data
record. In one embodiment an HTML “rel” attribute is used to
identify an HTML element’s relationship with a particular
database record, such that this relationship can be later
invoked to facilitate an update of the data representation of
this record inside all client user interfaces. Such a client could
be a web browser or a compiled application with custom GUI
display mechanism or other appropriate display system.
[0037] In one embodiment, generally shown in FIG. 2,
where the client application is accessed via a browser, the
browser makes the request to the web server and receives the
initial rendering of a page consisting of database records in
their current state as well as executable code for the initial-
ization of all modules residing on the client. The web server
passes the request to the application server which renders the
initial page along with a set of instructions for the client
application to establish a bi-directional communication chan-
nel using the Communication module. Upon initiation by a
client application, a channel is created between the client
computer and the Message Transport Module. Once the chan-
nel is established, a session with the application server is

US 2013/0179791 Al

initiated by the Communication module on behalf of the
client computer. The web client makes the request to the
application server to initiate the data session. The web server
responds with the initial rendering of database records in their
current state.

[0038] On failure to generate a bi-directional connection—
for example in the case of a text-based/outdated browser or a
search spider—the system/method can be configured to fall
back to the traditional method of traversing the site pages
using the Web Server module over HTTP. This hybrid state
allows any static page to be converted to bi-directional access
over the framework with only basic modifications—e.g.
including a javascript file at the top of the page.

[0039] Once the channel is established, each requesting
client device is authenticated and thereafter authorized to
receive pushed updates from the application server via the
Message Transport Module. Authorized client computers
establish channels with the communication server so as to
initiate the ongoing session. The unique identifier of each
client session is stored in the Message Transport Module to
form groups of client identifiers that subscribe to the data
models that the client has rendered during the initial request.
For example if the client renders a particular database query
the client’s identifier would be stored in a group of client
addresses identified by the data query itself. In some embodi-
ments where the query language used is SQL, then the entire
SQL statement can be used as an identifier for a particular
data model. Each time a new client tries to access the same
query, its unique identifier is stored in the Caching module
under the key belonging to the requested data model. If the
model does not yet exist the system creates a new key within
the caching module and stores the requesting client’s identi-
fier in a new group residing on the Message Transport Module
[0040] When data base records are changed via the ORM
module residing on the application server, the Caching Mod-
ule is queried using the key representing the affected database
query. The Caching Module returns list of data models and
their respective filters that have requested data from that
database row or a set of database rows. Once a list of Model
identifiers is compiled, it is checked for duplicate values and
the resulting list of unique model identifiers is stored in an
array. Application Server transfers this clean list of affected
model IDs to the Message Transport Module which delivers
the message to all subscribed client devices.

[0041] When a user takes an action that updates, deletes or
inserts data—either by submitting a form, clicking a button or
interacting with any data-bound user interface element, the
action is first passed to the Communication Module that
transfers the action request to the application server via the
Message Transport Module. All actions within the described
system are made through textual messages that are delivered
to the Application Server, which in turn performs the
requested manipulation of data records and then initiates the
transport of the necessary data updates to the client devices. If
the user session results in a request of new data base records,
the client’s unique identifier is passed on to the Message
Transport Module to be added to the corresponding client
group that represents all the current subscribers to the data
models that the client has requested during this request.
[0042] Once the Application Server has received the
request, it routes it to the appropriate database function in the
ORM module. The ORM also handles some early-stage cache
manipulation logic immediately following committing the
query/transaction to the database. The ORM builds an array

Jul. 11,2013

of the updated information. As an example, this array may
store the contents of the DB row that was just inserted/up-
dated. In the case of a delete, it identifies the row that was
deleted.

[0043] The data array is then passed to the Caching Module
and is stored there for later retrieval by the Application Server.
The Application server performs a comparison of the new
record against its previous state and notifies the ORM mod-
ule. The ORM module then calls the relevant Caching Mod-
ule functions to determine which clients require the delivery
of' new data. The ORM passes the list of models to the Appli-
cation Server which packages the data for transport and
instructs the Transport Module to deliver the packaged data
updates to all groups of client devices identified by the models
provided by the ORM.

[0044] The message is received by client-side Communi-
cation Module that is monitoring the bi-directional commu-
nication channel. The CM passes the contents of the message
to the Update Processing Module which interprets the various
payload instructions and passes them on to user interface
manipulation module. The User Interface update module
invokes the corresponding manipulation commands are
invoked to update page sections with the new information as
follows:

[0045] Ifthe command is an insert or a delete, a row update
instruction is invoked. Ifthe command is an update, then a cell
update instruction is invoked.

[0046] The User Interface update module identifies the tar-
gets of updates based on unique parameters that tie the pre-
sentation layer elements and containers to active data models
data from the ORM. Specifically data that would be PUSH-
updated to users when they are changed.

[0047] The following section and FIGS. 8-13 describe a
particular example implementation of a system and method
for updating data as described herein.

Update Triggering Process (FIG. 8)

[0048] When a user takes an action that updates, deletes or
inserts data[1]—either by submitting a form, clicking a but-
ton or interacting with any data-bound front-end element, it
first hits the RESTful interface[2]. All actions within the
framework as made through proprietary REST1 calls. As the
framework calls all independent resources using uniform
resource identifiers (URIs), there is an externally accessible
“internal” calling structure to provide ease of segmentation,
access control and recall.

[0049] Once the REST processor has parsed the request, it
routes it to the proper database function in the ORM2 wrapper
[3]. In this example framework, the ORM also handles some
early-stage cache manipulation logic immediately following
committing the query/transaction to the DB. The ORM
quickly builds an array of the updated information[4]. This
array stores the full contents of the DB row that was just
inserted/updated. In the case of a delete, it identifies the row
that was deleted.

[0050] The data array is then passed to the Memcached3
interface and handling class[5 & FIG. 10] which does a fast
in-depth analysis/comparison of the new record against its
previous state and notifies the Model[6] class through it’s
REST protocol (data://). The Model then calls the relevant
Memcache functions to determine which visitors need to be
shown the updated data|7 & FIG. 11].

US 2013/0179791 Al

[0051] Model Subscription Process (FIG. 9)

[0052] In order for the Data Handling System to “know”
which user to push an update to, it has to build a subscription
relationship between the visitor’s session and the model that
requested its data. The visitor will have n browser tabs open
towards the framework[1]. Fach tab is logged into the
XMPP4 server with a unique resource5 name to allow target-
ing of the push notification.

[0053] When atab makes a request to a page using a URL6
scheme as a browser request or through a Javascript XMPP
client[2 & FIG. 12] or a native HTMLS5 socket client such as
socket.io, the controller routing the logic eventually reaches
the “Page Assembly” mechanism’s view processor[3] which
is responsible for displaying the data in a properly formatted
manner. The View processor makes a request for the data
through the Model[4]. The Model is a class that is responsible
for the accounting and logic behind data requests[5] made to
the framework’s various data sources.

[0054] In order to speed up requests to physical data
sources, previously fetched data is stored in volatile memory
using the memcached service[6]. When a Model makes a
request for data, it first checks to see if the data is available in
memcached before diverting the request to the physical stor-
age (DB).

[0055] When a request is completed, the model subscribes
the requesting user to the XMPP Group Storage[7] or an
alternative group storage mechanism implemented as a layer
on top of socket.io for example Now.js. This storage mecha-
nism is a modification of the OpenFire server’s Group Sub-
scription feature. This extends user-to-group subscriptions to
include unique resources, allowing an update to be pushed
directly to a browser tab.

[0056] Memcached Differencing Logic (FIG. 10)

[0057] After the ORM has finished writing the requested
changes to the database, it forwards an updated array of the
changed record values [1] to the memcached handler class’
differencing logic engine. This is a short list of rule sets that
are applied against the cached and updated versions of the
database row records. There are 3 root transactions that the
ORM can run against the affected database tables.

[0058] [1la] When an insert payload is encountered, the
engine automatically adds the row id of the payload to the
“table” cache[2]. This is the cache that keeps a list of all
unique row identifiers held within a table. It acts as a volatile
central lookup lost for each table that the ORM is aware of.
[0059] The engine then iterates through the columns of the
table row data and generates a name-to-value relationship for
each. These are the filter results. If a SELECT query has a
“WHERE?” clause modifier[3], the result set would have IDs
registered in this list. If there is a related filter for any of the
columns in this row, the current ID will be added to it.
[0060] Finally, a cache gets created for the row data so
subsequent requests aren’t made to the DB and can be
requested from the quicker, volatile cache instead[4]. A
record is saved of the new row to transmit to the user VIA
XMPP [5].

[0061] [15] When an update payload is encountered, the
engine compares the difference between the old data array
and the new data array. It then iterates through the changed
columns of the new (added) row data and old (removed) row
data and generates a name-to-value relationship for each. If
there is a related filter for any of the columns in this row, the
current ID will be added/removed from it depending on which
differenced array the data resides in[3].

Jul. 11,2013

[0062] Finally, a cache gets update for the row data so
subsequent requests aren’t made to the DB[4].

[0063] Itmerges the old (removed) and new (added) difter-
enced results into a configuration array that can be sent to the
visitor VIA XMPP [5].

[0064] [1c] When a delete payload is encountered, the
engine automatically deletes the row id of the payload from
the “table” cache|2].

[0065] The engine then iterates through the columns of the
table row data and generates a name-to-value relationship for
each. If there is a related filter for any of the columns in this
row, the current ID will be deleted from it[3].

[0066] Finally, the row cache gets destroyed/invalidated
[4]. A small array is created with the table name and unique
row 1D to be sent to the user to indicate the record has been
deleted[5].

[0067] [6] As afinal step, the JSON-encoded arrays created
in step[5] are forwarded to the XMPP processor via the Model
to dispatch the update to the visitor [FIG. 11].

[0068] Model Subscription Fetch (FIG. 11)

[0069] Once the framework has compiled an array that
describes exactly what has changed in the data-bound table
[1], it sends the information over to the model for visitor
notification via the data://notify/ RESTful URI[2]. This URI
triggers the Model class’ subscription fetching engine which
iterates through various Model ID-to-Record relationship
engine[3].

[0070] [3a] First off, the engine checks to see if there are
any models bound to the specific table the modification took
place in. If this initial check fails, the Subscription fetching
engine returns without taking any further action.

[0071] [35] At the next stage, the engine does column-to-
value lookups as it did in FI1G. 3. This time, evaluating against
a cache of model IDs and their relationships to queries.
[0072] [3c] Lastly, a reverse lookup is made against the
unique row 1D of the updated model to determine of there are
any models specifically targeting the contents of a record
from the table.

[0073] Once a list of all Model IDs is compiled, it is
checked for duplicate values and the resulting clean list is
stored in an array[4]. This clean list of affected model IDs is
transferred to the XMPP processing object via the (xmpp://
group_put) URIL. This list is sent to the OpenfireServer using
the group_id@delivery.<domain>.com URI. The subdomain
triggers the proprietary OpenFire Group Broadcast plugin.
This plugin is based on the OpenFire Broadcast plugin with
modifications made to support sending data targeting an
XMPP /resource instead of just a user. This ensures that the
specific browser tab that requires an update gets the push
notification.

[0074] Inbound Requests Connectivity (FIG. 12)

[0075] When avisitor accesses an AppOnFire-enabled site,
requests are split into two categories; HI'TP Requests[1] and
XMPP Requests|2].

[0076] When a user accesses the site for the first time or
retrieves static content (e.g. an image, stylesheet, javascript
file, etc), the requests and response are made over the standard
HTTP protocol[1]. In the initial request stage, the web server
component provides the process bootstrapping files[FIG. 13]
which include the XMPP Client (StrophelS)7, the XMPP
Wrapper Class and jQuery8. The bootstrapping files enable
the Real-time interactivity. They also kick-start a parasitic
process that can enable AppOnFire interactivity and push
updates on an arbitrary static page. If a browser doesn’t sup-

US 2013/0179791 Al

portjavascript or a search bot sees the site, all requests will act
as initial requests over classic HTTP.

[0077] Once the static components of a page have loaded
and the parasitic process has enabled the bi-directional com-
munication component (e.g. BOSH9, WebSockets10), any
links that are clicked on are diverted through the XMPP
Client’s bi-directional channel instead|2].

[0078] [3] The inbound request to the framework first hits
the XMPP server|25] which passes the message to the custom
Driverlntegration plugin. This starts a chain of process man-
agement tasks:

[0079] [4] Within the scope of the plugin, and globally
accessible from all threads, there is a linked list array com-
prising a list of all the port numbers of processing daemons.
Each port belongs to a dedicated command processing dae-
mon [also known as the driver]. This keeps a list of all allo-
cated instances as well as their current processing status;
“busy” or “available”.

[0080] [5] The plugin makes a request for the next available
instance for processing, if the number of available processes
are low or zero, the plugin will initiate a command-line call to
initiate a customizable number of processing nodes. It will
then store the new port numbers along with their status on the
global linked-list[4].

[0081] [7] Finally, the plugin will send the request and
payload to the driver daemon with the port and updates the
status to busy.

[0082] [8] This is where the processing of an XMPP request
converges with the processing of HT'TP request. The driver
function/process passes the RESTful URI which can take the
form of a proprietary URI construct or a standard http:// URL
to the RESTful Interface[9]. Along with the URI, it pushes
through any extra parameters, arrays, JSON or browser con-
figuration parameters that came along with it.

[0083] [9] The RESTful Interface is a controller that deter-
mines with class and/or function to activate to fulfill the URI
request.

[0084] [10] Once the RESTful interface determines where
the request should be sent, processing enters the framework
where processing continues[F1G. 8-11]. When the framework
returns after processing, the status of the currently active port
is set to “available” in the linked-list of driver instance ports

[4].

Jul. 11,2013

[0085] Client Side XMPP Update Process (FIG. 13)
[0086] [1] Updates returned from the data handling system
are dispatched to the visitor by the XMPP Server. The mes-
sage is received by client-side Javascript library that is moni-
toring the bi-directional communication channel, which is the
StrophelS client library. This library passes the contents of
the message, which are JSON-encoded payload|3] generated
by the framework [FIG. 10] to the configuration processing
loop[4].
[0087] [5] The various payload instructions are interpreted
individually and jQuery HTML DOM manipulation com-
mands[6] are invoked to update page sections with the new
information as follows:
[0088] [7] If the command is an insert or a delete, a row
update instruction is invoked. If the command is an update,
then a cell update instruction is invoked.
[0089] The difference between a row update and a cell
update, can be seen in the DOM layout of how the data is
written.
[0090] In order to create content IDs [8a,85] that can be
used to identify the targets of updates, the display engine
(presentation layer) assigns the HTML REL parameter to
elements that contain data from the ORM. Specifically data
that would be PUSH-updated to users when they are changed.
See the Structure Definitions section for more information.
[0091] In the preceding description, for purposes of expla-
nation, numerous details are set forth in order to provide a
thorough understanding of the embodiments. However, it will
be apparent to one skilled in the art that these specific details
may not be required. In other instances, well-known struc-
tures are shown in block diagram form in order not to obscure
the understanding.
[0092] The above-described embodiments are intended to
be examples only. Alterations, modifications and variations
can be effected to the particular embodiments by those of skill
in the art without departing from the scope. In particular, it
will be understood that the embodiments may include ele-
ments that are computer program code that can be executed
on a computing device and may be embodied in a physical
computer media that contains instructions for execution by a
computing device.

1. A system and method for updating data as both generally
and specifically described herein.

#* #* #* #* #*

