US 20240373040A1

a2y Patent Application Publication o) Pub. No.: US 2024/0373040 A1

a9y United States

Rosewarne et al. 43) Pub. Date: Nov. 7, 2024
(54) METHOD, APPARATUS AND SYSTEM FOR HO4N 19/169 (2006.01)
ENCODING AND DECODING A BLOCK OF HO4N 19/176 (2006.01)
VIDEO SAMPLES HO4N 19/18 (2006.01)
HO4N 19/46 (2006.01)
(71) Applicant: Canon Kabushiki Kaisha, Tokyo (JP) HO4N 19/61 (2006.01)
(52) US. CL
(72) Inventors: Christopher James Rosewarne, CPC ... HO4N 19/186 (2014.11); HO4N 19/122
Concord (AU); IFTEKHAR AHMED, (2014.11); HO4N 19/132 (2014.11); HO4N
Lane Cove North (AU) 19/159 (2014.11); HO4N 19/176 (2014.11);
) HO4N 19/18 (2014.11); HO4N 19/1883
(21) Appl. No.: 18/772,816 (2014.11); HO4N 19/46 (2014.11); HOAN
(22) Filed: Jul 15, 2024 19/61 (2014.11)
Related U.S. Application Data (57 ABSTRACT
(63) Continuation of application No. 17/642,093, filed on A method of decoding a coding unit of a coding tree from a
Mar.. 1Q, 2022, now Pat. No. 12,088,831, filed as coding tree unit of an image frame from a video bitstream,
application No. PCT/AU2020/050798 on Aug. 4, the coding unit having a primary colour channel and at least
2020. one secondary colour channel. The method comprises deter-
. L L. mining a coding unit including the primary colour channel
(30) Foreign Application Priority Data and the at least one secondary colour channel according to
decoded split flags of the coding tree unit; decoding a first
Sep. 17, 2019 (AU) 2019232801 index to select a kernel for the primary colour channel and
A . . a second index to select a kernel for the at least one
Publication Classification ; . .
secondary colour channel; selecting a first kernel according
(51) Int. CL to the first index and a second kernel according to the second
HO4N 19/186 (2006.01) index; and decoding the coding unit by applying the first
HO4N 19/122 (2006.01) kernel to residual coefficients of the primary colour channel
HO4N 19/132 (2006.01) and the second kernel to residual coefficients of the at least
HO4N 19/159 (2006.01) one secondary colour channel.

mode :

Coded residual test

1820

§ Decode fast position

: H
P } e n I_J
: i

Decode LFNST index

transform

transform

{ Perform Inverse secondary

i Perform Inverse primary

18100

Patent Application Publication

Source device
110

Video source
112

113“»i

Video encoder
114

115 —~
y

Storage
122

Transmitter
116

Nov. 7,2024 Sheet 1 of 22

Destination device
130

Display device
136

135 \/T

Video decoder
134

133 ’\/T

_;;_gt{__________________

Receiver
132

US 2024/0373040 A1

Patent Application Publication

Nov. 7,2024 Sheet 2 of 22 US 2024/0373040 A1

/’\"\

7 ~
(Wide-Area) {
) Communications 4
Network 220 _
Printer 215 |[— ~ / ==\
N -, — P /\j\\\
Microphone < 224 \
280 /
— J 221 ~ N p. 9N
4 P \
217 S (Local-Area))
* Communications
J Network 222 ./
]}— MEc)j(t. 223 } _ o
odem , ~
210 \/>/ 200
H = |
L 201
Y 4
Audio-Video ||1/O Interfaces|| Local Net. Appz'-s';rog [S)tor_age
Interface 207 208 Ifface 211 &9 evices
HDD 210 | 292

o

P :

218

INEER
e

Processor l/O Interface Memory Optical Disk
205 213 206 Drive 212
Tt ~
\
J ~
Keyboard 202 |
Scanner 22 Disk Storage
— 203 Medium 225
Camera 227

Fig. 2A

Patent Application Publication Nov. 7,2024 Sheet 3 of 22 US 2024/0373040 A1

234 233
r /\
Instruction (Part 1) 228 — Data 235
Instruction (Part 2) 229 Data 236
231 < ;) £29 ‘————- [232
Instruction 230 Data 237
LY Py
ROM 249
rosT ! [BIOS Bootstrap Operating
250 251 Loader 252 System 253
Input Variables 254 Output Variables 261
295 262
236 263
257 264
Intermediate Variables 258
| 259 || 266 |
| 260 | 267 |

219 ’\% 204
/
1/218

y

205
Interface 242
241S 248
Reg. 244 (Instruction)
Control Unit 239
Reg. 245
I
ALU 240 Reg. 246 (Data)

Fig. 2B

=] .
s — —= SE ¢ ‘b
& > » uonewnsy e
[N sioyy doojup | £ | Jegngeweld |
@ UOHON
< " 04¢€ vie g/¢
_ IS
< 958 08¢ T~
/r »| BUoED ajdwes —>| uojesuadwo) | _u.
90UdJ9joY UOHOW —
8 T~ sce % | v
= Y N XN
T 09¢ bOE | %N 5
2 I~ $GE Joy sjdwies IlNlcl.v uonoipald
= - A
2 soualejey Soe swelj-enu| 9%c |
S A1 +
2 e o
z wiojsues ﬁmﬁmﬁwu N ,
Aewd 9s18AUY \./\mmm
=
.m ?@Vm ove _ e) 4 ¢ H rARS
S — e 0ge —
= 01Z3 (ANI vee
= wosuel) uuojsues 0l¢
= Jesnuenbs 0Le
= B d le— Alepuooss ssianu Alepuoosg 19SRUENO Jsuoniyed
S ¥ !
g weonsy b i o < —
2 1suq ace M Jafonuod 4o |
> 88 zog - — =ed
< Japoouzg Adonug < ag¢ owiel el
£ 1 < oy 10}08]8S SPON
M /8¢

US 2024/0373040 A1

Nov. 7,2024 Sheet 5 of 22

Patent Application Publication

y<l gel]
/ ejep sweld y "B
88Y 96V
Buuoyyy dooj-uj|) layng swel N
A 4174 861
09¥ 252
4| BYoED 9|dwes uonesuadwon) T~
Pa1oNJISU0OSY UOIO m
yov 8EV| ¥8Y%
= M
91y
99y oy ejdwes nﬂv uonoipaid % >
9ouUBIBioY awielj-eju| |
iy 5 08y
0Sv + N _
174
A1
877 vob
%4 575 oty W 0cy wes.nsiq
wiosuen Josnupnba wiojsuel Jopooa(]
Aewnd asianuj AN h a m Aiepuooss asiaau] |02y Adonu3 m

)47 \/H cey
iy

_ n _ el

Patent Application Publication Nov. 7,2024 Sheet 6 of 22 US 2024/0373040 A1

500

e

510 512 514

516 518 520

{ {

Patent Application Publication

600

Nov. 7,2024 Sheet 7 of 22

US 2024/0373040 A1

625

Generate
HBT CTU
nodes

Generate
HTT CTU

nodes

Generate
QT CTU fonged
nodes

Generate
leaf node

y

Generate
VBT CTU
nodes

Generate
VTT CTU
nodes

' O

512

\\3

520

Patent Application Publication

Nov. 7,2024 Sheet 8 of 22

710

{

US 2024/0373040 A1

700

—

Fig. 7A
726 712
QT—»QT——»CU cu 720
cu BT(H)— CU —
716 ~_TT(H) BT(V)
~_QT— | cu Lscu
718 cu
cu
oy 714
cuU
L »CU
TT(V) —» CU
cu cu
cu cu

Fig. 7B

Patent Application Publication Nov. 7,2024 Sheet 9 of 22 US 2024/0373040 A1

'/__/ 800
810 812 814
+2 +2
+1 +1 +2 +1 +2
+2 +2
Fig. 8A
r_/ 840
82% 824 8212 821% 82(%
QG s.;’(.L
Subdiv=20 +2 +1 +2
Parent node Ternary spilit

Fig. 8B

Patent Application Publication Nov. 7,2024 Sheet 10 of 22 US 2024/0373040 A1

860

—

862 874
868 | Ccu
864 No coefs
877
876 Ccu?2
Skip
Ccuo
Coefs /
866
Cu3 Cu4
Skip Coefs
(‘ —
870 878
872

Fig. 8C

Patent Application Publication Nov. 7,2024 Sheet 11 of 22 US 2024/0373040 A1l

A~_ 900

\\ 910

Fig. 9A

920

926

Patent Application Publication Nov. 7,2024 Sheet 12 of 22 US 2024/0373040 A1

A~ 940

\ 950

960

968

Fig. 9D

Patent Application Publication Nov. 7,2024 Sheet 13 of 22 US 2024/0373040 A1

1000
1010 1012 8 1016
C
1020 1022 1050 1024 1026
1030 1032 1036
l
1040 1042 1044 10846

Fig. 10

Patent Application Publication Nov. 7,2024 Sheet 14 of 22 US 2024/0373040 A1

1101 1100
1110 1112 1114 ’/—'/
< < <
[[_sPs PPS | AccessUnit0
1108
1116
(Siice 0 Slice 1 Siice 2
1118 1120 '
2 < .
| SliceHeader | SliceData [
cTu0 | ctut | Cctu2 | CTus
Coding units
v v @
sps_max_mtt_hierarchy_depth_ MaxMttDepthY . |SubDivievel
inter_slice (SH)
sps_max_mtt_hierarchy_depth_ 2
intra_slice_luma 2
8 1134 1136
1130

Fig. 11

Patent Application Publication

Nov. 7,2024 Sheet 15 of 22

US 2024/0373040 A1

1200

1120
<
| SliceData |
’ 1210 e
S T
CTU | CTU CTU
1214
l
| CU | CuU
! 1216b
1216a | ,
P2
Ur——=—
/1218 1220
[TU |LFNSTIdxY | LFNSTIdxC|

F1222 1224 1226, 1221

fo o 0
,lY

b | Cr |

/1228 1230 1232 -

o2
LEN_S_T_lgx1 ResidualCosfs

Fig. 12

Patent Application Publication Nov. 7,2024 Sheet 16 of 22 US 2024/0373040 A1

)

Encode SPS/PPS
l 1320

_

Divide frame into slices

1330

v

Encode slice header

‘ 1340

Divide slice into CTUs

] 1350

i

Determine coding tree

. /23@0
Determine coding unit
1370
v
Encode coding unit
+ 1380

Last coding unit test

l YES 1390

Last CTU test

0

NO

¢'YES 13100

e Fig. 13

YES
End

Patent Application Publi

cation

___£52<

Partition constraint

Nov. 7,2024 Sheet 17 of 22

US 2024/0373040 A1

1400

/////’mssm

a——
N
—
(]

override enabled test >/_J

iYES

Determine partition
constraints

'

Encode partition
constraint override flag

=

Partition constraint
override test

‘YES

Encode slice partition
constraints

'

Encode QP subdivision
level

l

Encode chroma QP
subdivision level

.i

Encode other
parameters

End

Fig. 14

Patent Application Publication Nov. 7,2024 Sheet 18 of 22
1510 1500
Encode prediction / (1 310)
mode 1520
" '
Coded residual test
1530 1540
¢ YES /_J
YES /_J
New QG test >——> Encode delta QP
NO
1550
Y -
Perform primary transform 1560
Quantise primary transform
coefficients 1570
Perform secondary
transform 1580
i g
Encode last position 1590
i Encode LFNST index !
L ‘ mmmmmm 15100
Encode sub-blocks
,L 15110
NO
—< Last TB test
15120
y VES
Encode luma LFNST index 15130
Encode chroma LFNST index Fig 1 5

End

US 2024/0373040 A1

Patent Application Publication

Nov. 7,2024 Sheet 19 of 22 US 2024/0373040 A1

1600

Decode SPS/PPS

l 1620
Determine slice
boundaries
1630
Y

Decode slice header

v

Divide slice into CTUs

]

Y

Decode coding tree

Y

Decode coding unit

v

Last coding unit test

,L YES

5| sl

NO

Last CTU test

i'YES

|

NO

Last slice test

YES
End

1690

16100

Il

Fig. 16

Patent Application Publication

NO

override enabled test

*YES

Decode partition
constraint override flag

Partition constraint >
17

=

Partition constraint
override test

‘YES

Nov. 7,2024 Sheet 20 of 22

US 2024/0373040 A1

1700

//////’msmn

Decode slice partition
constraints

'

Decode QP subdivision
3eyel

l

Decode chroma QP
subdivision level

~

1770

Decode other
parameters

8

End

Fig. 17

Patent Application Publication Nov. 7,2024 Sheet 21 of 22 US 2024/0373040 A1
1800
181
810 ,—— (1670)
Decode prediction f“J
mode 1 820
" v
Coded residual test
1830 1840
YES /.J
YES ~
New QG test >——> Decode delta QP
NO
1850
\ —
Decode last position 1860
_— M
L Decode LFNSTindex | 1870
Decode sub-blocks
¥ 1880
NO
Last TB test 1890
¥ YES F_)
Decode luma LFNST index 1895
i
Decode chroma LFNST /-J
index 18100
Perform Inverse secondary
transform 18110
inverse quantise primary
transform coefficients 18120
Perform inverse primary
fransform

Patent Application Publication Nov. 7,2024 Sheet 22 of 22 US 2024/0373040 A1

Chroma
Last Last | ’{//////
position position
not OK OK
1910 1911
Last position Signal,
not OK Not;%ST luma only
1901 1921
Luma <
» Signal, Signal,
Last position chroma luma and
OK onl chroma
1902 y
| 1922 1923
Fig. 19A
Chroma Ifnst_idx 1950
1953 /
0 1 2
0
Luma Ifnst_idx 1
1952
2

Fig. 19B

1900

US 2024/0373040 Al

METHOD, APPARATUS AND SYSTEM FOR
ENCODING AND DECODING A BLOCK OF
VIDEO SAMPLES

REFERENCE TO RELATED APPLICATION(S)

[0001] This application is a continuation application of
U.S. patent application Ser. No. 17/642,093, filed Mar. 10,
2022, which is the National Phase application of PCT
Application No. PCT/AU2020/050798 filed on Aug. 4, 2020
and titled “METHOD, APPARATUS AND SYSTEM FOR
ENCODING AND DECODING A BLOCK OF VIDEO
SAMPLES”. This application claims the benefit under 35
U.S.C. § 119 of the filing date of Australian Patent Appli-
cation No. 2019232801, filed Sep. 17, 2019. Each of the
above-cited patent applications is hereby incorporated by
reference in its entirety as if fully set forth herein.

TECHNICAL FIELD

[0002] The present invention relates generally to digital
video signal processing and, in particular, to a method,
apparatus and system for encoding and decoding a block of
video samples. The present invention also relates to a
computer program product including a computer readable
medium having recorded thereon a computer program for
encoding and decoding a block of video samples.

BACKGROUND

[0003] Many applications for video coding currently exist,
including applications for transmission and storage of video
data. Many video coding standards have also been devel-
oped and others are currently in development. Recent devel-
opments in video coding standardisation have led to the
formation of a group called the “Joint Video Experts Team”
(JVET). The Joint Video Experts Team (JVET) includes
members of Study Group 16, Question 6 (SG16/Q6) of the
Telecommunication Standardisation Sector (ITU-T) of the
International Telecommunication Union (ITU), also known
as the “Video Coding Experts Group” (VCEG), and mem-
bers of the International Organisations for Standardisation/
International Electrotechnical Commission Joint Technical
Committee 1/Subcommittee 29/Working Group 11 (ISO/
IEC JTC1/SC29/W@G11), also known as the “Moving Picture
Experts Group” (MPEG).

[0004] The Joint Video Experts Team (JVET) issued a Call
for Proposals (C{P), with responses analysed at its 10th
meeting in San Diego, USA. The submitted responses
demonstrated video compression capability significantly
outperforming that of the current state-of-the-art video com-
pression standard, i.e.: “high efficiency video coding”
(HEVC). On the basis of this outperformance it was decided
to commence a project to develop a new video compression
standard, to be named ‘versatile video coding’ (VVC). VVC
is anticipated to address ongoing demand for ever-higher
compression performance, especially as video formats
increase in capability (e.g., with higher resolution and higher
frame rate) and address increasing market demand for
service delivery over WANSs, where bandwidth costs are
relatively high. Use cases such as immersive video neces-
sitate real-time encoding and decoding of such higher for-
mats, for example cube-map projection (CMP) may use an
8K format even though a final rendered ‘viewport’ utilises a
lower resolution. VVC must be implementable in contem-
porary silicon processes and offer an acceptable trade-off

Nov. 7, 2024

between the achieved performance versus the implementa-
tion cost. The implementation cost can be considered for
example, in terms of one or more of silicon area, CPU
processor load, memory utilisation and bandwidth. Higher
video formats may be processed by dividing the frame area
into sections and processing each section in parallel. A
bitstream constructed from multiple sections of the com-
pressed frame that is still suitable for decoding by a “single-
core” decoder, i.e., frame-level constraints, including bit-
rate, are apportioned to each section according to application
needs.

[0005] Video data includes a sequence of frames of image
data, each frame including one or more colour channels.
Generally, one primary colour channel and two secondary
colour channels are needed. The primary colour channel is
generally referred to as the ‘luma’ channel and the secondary
colour channel(s) are generally referred to as the ‘chroma’
channels. Although video data is typically displayed in an
RGB (red-green-blue) colour space, this colour space has a
high degree of correlation between the three respective
components. The video data representation seen by an
encoder or a decoder is often using a colour space such as
YCbCr. YCbCr concentrates luminance, mapped to ‘luma’
according to a transfer function, in a Y (primary) channel
and chroma in Cb and Cr (secondary) channels. Due to the
use of a decorrelated YCbCr signal, the statistics of the luma
channel differ markedly from those of the chroma channels.
A primary difference is that after quantisation, the chroma
channels contain relatively few significant coefficients for a
given block compared to the coefficients for a corresponding
luma channel block. Moreover, the Cb and Cr channels may
be sampled spatially at a lower rate (subsampled) compared
to the luma channel, for example half horizontally and half
vertically-known as a ‘4:2:0 chroma format’. The 4:2:0
chroma format is commonly used in ‘consumer’ applica-
tions, such as internet video streaming, broadcast television,
and storage on Blu-Ray™ disks. Subsampling the Cb and Cr
channels at half-rate horizontally and not subsampling ver-
tically is known as a ‘4:2:2 chroma format’. The 4:2:2
chroma format is typically used in professional applications,
including capture of footage for cinematic production and
the like. The higher sampling rate of the 4:2:2 chroma format
makes the resulting video more resilient to editing opera-
tions such as colour grading. Prior to distribution to con-
sumers, 4:2:2 chroma format material is often converted to
the 4:2:0 chroma format and then encoded for distribution to
consumers. In addition to chroma format, video is also
characterised by resolution and frame rate. Example reso-
Iutions are ultra-high definition (UHD) with a resolution of
3840%x2160 or ‘8K’ with a resolution of 7680x4320 and
example frame rates are 60 or 120 Hz. Luma sample rates
may range from approximately 500 mega samples per
second to several giga samples per second. For the 4:2:0
chroma format, the sample rate of each chroma channel is
one quarter the luma sample rate and for the 4:2:2 chroma
format, the sample rate of each chroma channel is one half
the luma sample rate.

[0006] The VVC standard is a ‘block based’ codec, in
which frames are firstly divided into a square array of
regions known as ‘coding tree units’ (CTUs). CTUs gener-
ally occupy a relatively large area, such as 128x128 luma
samples. However, CTUs at the right and bottom edge of
each frame may be smaller in area. Associated with each
CTU is a ‘coding tree’ either for both the luma channel and

US 2024/0373040 Al

the chroma channels (a ‘shared tree’) or a separate tree each
for the luma channel and the chroma channels. A coding tree
defines a decomposition of the area of the CTU into a set of
blocks, also referred to as ‘coding blocks’ (CBs). When a
shared tree is in use a single coding tree specifies blocks both
for the luma channel and the chroma channels, in which case
the collections of collocated coding blocks are referred to as
‘coding units’ (CUs), i.e., each CU having a coding block for
each colour channel. The CBs are processed for encoding or
decoding in a particular order. As a consequence of the use
of the 4:2:0 chroma format, a CTU with a luma coding tree
for a 128x128 luma sample area has a corresponding chroma
coding tree for a 64x64 chroma sample area, collocated with
the 128x128 luma sample area. When a single coding tree is
in use for the luma channel and the chroma channels, the
collections of collocated blocks for a given area are gener-
ally referred to as ‘units’, for example the above-mentioned
CUs, as well as ‘prediction units’ (PUs), and ‘transform
units’ (TUs). A single tree with CUs spanning the colour
channels of 4:2:0 chroma format video data result in chroma
blocks half the width and height of the corresponding luma
blocks. When separate coding trees are used for a given area,
the above-mentioned CBs, as well as ‘prediction blocks’
(PBs), and ‘transform blocks’ (TBs) are used.

[0007] Notwithstanding the above distinction between
‘units’ and ‘blocks’, the term ‘block’ may be used as a
general term for areas or regions of a frame for which
operations are applied to all colour channels.

[0008] For each CU a prediction unit (PU) of the contents
(sample values) of the corresponding area of frame data is
generated (a ‘prediction unit’). Further, a representation of
the difference (or ‘spatial domain’ residual) between the
prediction and the contents of the area as seen at input to the
encoder is formed. The difference in each colour channel
may be transformed and coded as a sequence of residual
coeflicients, forming one or more TUs for a given CU. The
applied transform may be a Discrete Cosine Transform
(DCT) or other transform, applied to each block of residual
values. This transform is applied separably, i.e. that is the
two-dimensional transform is performed in two passes. The
block is firstly transformed by applying a one-dimensional
transform to each row of samples in the block. Then, the
partial result is transformed by applying a one-dimensional
transform to each column of the partial result to produce a
final block of transform coefficients that substantially deco-
rrelates the residual samples. Transforms of various sizes are
supported by the VVC standard, including transforms of
rectangular-shaped blocks, with each side dimension being
a power of two. Transform coefficients are quantised for
entropy encoding into a bitstream.

[0009] VVC features an intra-frame prediction and inter-
frame prediction. Intra-frame prediction involves the use of
previously processed samples in a frame being used to
generate a prediction of a current block of samples in the
frame. Inter-frame prediction involves generating a predic-
tion of a current block of samples in a frame using a block
of samples obtained from a previously decoded frame. The
block of samples obtained from a previously decoded frame
is offset from the spatial location of the current block
according to a motion vector, which often has filtering being
applied. Intra-frame prediction blocks can be (i) a uniform
sample value (“DC intra prediction™), (ii) a plane having an
offset and horizontal and vertical gradient (“planar intra
prediction”), (iii) a population of the block with neighbour-

Nov. 7, 2024

ing samples applied in a particular direction (“angular intra
prediction™) or (iv) the result of a matrix multiplication
using neighbouring samples and selected matrix coefficients.
Further discrepancy between a predicted block and the
corresponding input samples may be corrected to an extent
by encoding a ‘residual’ into the bitstream. The residual is
generally transformed from the spatial domain to the fre-
quency domain to form residual coefficients (in a ‘primary
transform domain), which may be further transformed by
application of a ‘secondary transform’ (to produce residual
coeflicients in a ‘secondary transform domain’). Residual
coeflicients are quantised according to a quantisation param-
eter, resulting in a loss of accuracy of the reconstruction of
the samples produced at the decoder but with a reduction in
bitrate in the bitstream. The quantisation parameter may
vary from frame to frame and within each frame. Varying the
quantisation parameter within a frame is typical for ‘rate
controlled’ encoders. Rate controlled encoders attempt to
produce a bitstream with a substantially constant bitrate
regardless of the statistics of the received input samples,
such as noise properties, degree of motion. Since bitstreams
are typically conveyed over networks with limited band-
width, rate control is a widespread technique to ensure
reliable performance over a network regardless of variation
of' the original frames input to an encoder. Where frames are
encoded in parallel sections, flexibility in usage of rate
control is desirable, as different sections may have different
requirements in terms of desired fidelity.

SUMMARY

[0010] It is an object of the present invention to substan-
tially overcome, or at least ameliorate, one or more disad-
vantages of existing arrangements.

[0011] One aspect of the present disclosure provides a
method of decoding a coding unit of a coding tree from a
coding tree unit of an image frame from a video bitstream,
the coding unit having a primary colour channel and at least
one secondary colour channel, the method comprising:
determining a coding unit including the primary colour
channel and the at least one secondary colour channel
according to decoded split flags of the coding tree unit;
decoding a first index to select a kernel for the primary
colour channel and a second index to select a kernel for the
at least one secondary colour channel; selecting a first kernel
according to the first index and a second kernel according to
the second index; and decoding the coding unit by applying
the first kernel to residual coefficients of the primary colour
channel and the second kernel to residual coeflicients of the
at least one secondary colour channel.

[0012] According to another aspect, the first or second
index is decoded immediately after decoding a position of a
last significant residual coefficient of the coding unit.
[0013] According to another aspect, the single residual
coeflicient is decoded for a plurality of secondary colour
channels.

[0014] According to another aspect, the single residual
coeflicient is decoded for a single secondary colour chan-
nels.

[0015] According to another aspect, the first index and the
second index are independent of one another.

[0016] According to another aspect, the first and second
kernels depend on intra prediction modes for the primary
and the at least one secondary colour channel, respectively.

US 2024/0373040 Al

[0017] According to another aspect, the first and second
kernels relate to a block size of the primary channel and a
block size of the at least one secondary colour channel,
respectively.

[0018] According to another aspect, the second kernel
relates to a chroma subsampling ratio of the encoded bit-
stream.

[0019] According to another aspect, each of the kernels
implements a non-separable secondary transform.

[0020] According to another aspect, the coding unit com-
prises two secondary colour channels and a separate index is
decoded for each of the secondary colour channels.

[0021] Another aspect of the present disclosure provides a
method of decoding a coding unit of a coding tree from a
coding tree unit of an image frame from a video bitstream,
the coding unit having a primary colour channel and at least
one secondary colour channel, the method comprising:
determining a coding unit including the primary colour
channel and the at least one secondary colour channel
according to decoded splits flags of the coding tree unit;
selecting a non-separable transform kernel according to a
decoded index for the primary colour channel; applying the
selected non-separable transform kernel to a decoded
residual of the primary colour channel to produce secondary
transform coefficients; and decoding the coding unit by
applying a separable transform kernel to the secondary
transform coefficients and a separable transform kernel to a
decoded residual of the at least one secondary colour chan-
nel.

[0022] Another aspect of the present disclosure provides a
non-transitory computer-readable medium having a com-
puter program stored thereon to implement a method of
decoding a coding unit of a coding tree from a coding tree
unit of an image frame from a video bitstream, the coding
unit having a primary colour channel and at least one
secondary colour channel, the method comprising: deter-
mining a coding unit including the primary colour channel
and the at least one secondary colour channel according to
decoded split flags of the coding tree unit; decoding a first
index to select a kernel for the primary colour channel and
a second index to select a kernel for the at least one
secondary colour channel; selecting a first kernel according
to the first index and a second kernel according to the second
index; and decoding the coding unit by applying the first
kernel to residual coefficients of the primary colour channel
and the second kernel to residual coefficients of the at least
one secondary colour channel.

[0023] Another aspect of the present disclosure provides a
video decoder configured to implement a method of decod-
ing a coding unit of a coding tree from a coding tree unit of
an image frame from a video bitstream, the coding unit
having a primary colour channel and at least one secondary
colour channel, the method comprising: determining a cod-
ing unit including the primary colour channel and the at least
one secondary colour channel according to decoded split
flags of the coding tree unit; decoding a first index to select
a kernel for the primary colour channel and a second index
to select a kernel for the at least one secondary colour
channel; selecting a first kernel according to the first index
and a second kernel according to the second index; and
decoding the coding unit by applying the first kernel to
residual coefficients of the primary colour channel and the
second kernel to residual coefficients of the at least one
secondary colour channel.

Nov. 7, 2024

[0024] Another aspect of the present disclosure provides a
system, comprising: a memory; and a processor, wherein the
processor is configured to execute code stored on the
memory for implementing a method of decoding a coding
unit of a coding tree from a coding tree unit of an image
frame from a video bitstream, the coding unit having a
primary colour channel and at least one secondary colour
channel, the method comprising: determining a coding unit
including the primary colour channel and the at least one
secondary colour channel according to decoded split flags of
the coding tree unit; decoding a first index to select a kernel
for the primary colour channel and a second index to select
a kernel for the at least one secondary colour channel;
selecting a first kernel according to the first index and a
second kernel according to the second index; and decoding
the coding unit by applying the first kernel to residual
coeflicients of the primary colour channel and the second
kernel to residual coefficients of the at least one secondary
colour channel.

[0025] Another aspect of the present disclosure provides a
method of decoding a plurality of coding units from a
bitstream to produce an image frame, the coding units being
the result of decompositions of coding tree units, the plu-
rality of coding units forming one or more contiguous
portions of the bitstream, the method comprising: determin-
ing a subdivision level for each of the one or more contigu-
ous portions of the bitstream, each subdivision level being
applicable to the coding units of the respective contiguous
portion of the bitstream; decoding a quantisation parameter
delta for each of a number of areas, each area based on from
decomposition of coding tree units into coding units of each
contiguous portion of the bitstream and the corresponding
determined subdivision level; determining a quantisation
parameter for each area according to the decoded delta
quantisation parameter for the area and the quantisation
parameter of an earlier coding unit of the image frame;
decoding the plurality of coding units using the determined
quantisation parameter of each area to produce the image
frame.

[0026] According to another aspect, each area is based on
a comparison of a subdivision level associated with the
coding units to the determined subdivision level for the
corresponding contiguous portion.

[0027] According to another aspect, a quantisation param-
eter delta is determined for each area is a corresponding
coding tree has a subdivision level less than or equal to the
determined subdivision level for the corresponding contigu-
ous portion.

[0028] According to another aspect, a new area is set for
any node in the coding tree unit with a subdivision level less
than or equal to the corresponding determined subdivision
level.

[0029] According to another aspect, the subdivision level
determined for each contiguous portion comprises a first
subdivision level for luma coding units and a second sub-
division level for chroma coding units of the contiguous
portion.

[0030] According to another aspect, the first and second
subdivision levels are different.

[0031] According to another aspect, the method further
comprises decoding a flag indicating that partition con-
straints of a sequence parameter set associated with the
bitstream can be overwritten.

US 2024/0373040 Al

[0032] According to another aspect, the determined sub-
division level for each of the one or more contiguous
portions includes a maximum luma coding unit depth for the
area.

[0033] According to another aspect, the determined sub-
division level for each of the one or more contiguous
portions includes a maximum chroma coding unit depth for
the corresponding area.

[0034] According to another aspect, the determined sub-
division level for one of the contiguous portions is adjusted
to maintain an offset relative to a deepest allowed subdivi-
sion level decoded for the partition constraints of the bit-
stream.

[0035] Another aspect of the present disclosure provides a
non-transitory computer-readable medium having a com-
puter program stored thereon to implement a method of
decoding a plurality of coding units from a bitstream to
produce an image frame, the coding units being the result of
decompositions of coding tree units, the plurality of coding
units forming one or more contiguous portions of the
bitstream, the method comprising: determining a subdivi-
sion level for each of the one or more contiguous portions of
the bitstream, each subdivision level being applicable to the
coding units of the respective contiguous portion of the
bitstream; decoding a quantisation parameter delta for each
of' a number of areas, each area based on from decomposi-
tion of coding tree units into coding units of each contiguous
portion of the bitstream and the corresponding determined
subdivision level; determining a quantisation parameter for
each area according to the decoded delta quantisation
parameter for the area and the quantisation parameter of an
earlier coding unit of the image frame; and decoding the
plurality of coding units using the determined quantisation
parameter of each area to produce the image frame.

[0036] Another aspect of the present disclosure provides a
video decoder configured to implement a method of decod-
ing a plurality of coding units from a bitstream to produce
an image frame, the coding units being the result of decom-
positions of coding tree units, the plurality of coding units
forming one or more contiguous portions of the bitstream,
the method comprising: determining a subdivision level for
each of the one or more contiguous portions of the bitstream,
each subdivision level being applicable to the coding units
of the respective contiguous portion of the bitstream; decod-
ing a quantisation parameter delta for each of a number of
areas, each area based on from decomposition of coding tree
units into coding units of each contiguous portion of the
bitstream and the corresponding determined subdivision
level; determining a quantisation parameter for each area
according to the decoded delta quantisation parameter for
the area and the quantisation parameter of an earlier coding
unit of the image frame; and decoding the plurality of coding
units using the determined quantisation parameter of each
area to produce the image frame.

[0037] Another aspect of the present disclosure provides a
system, comprising: a memory; and a processor, wherein the
processor is configured to execute code stored on the
memory for implementing a method of decoding a plurality
of coding units from a bitstream to produce an image frame,
the coding units being the result of decompositions of
coding tree units, the plurality of coding units forming one
or more contiguous portions of the bitstream, the method
comprising: determining a subdivision level for each of the
one or more contiguous portions of the bitstream, each

Nov. 7, 2024

subdivision level being applicable to the coding units of the
respective contiguous portion of the bitstream; decoding a
quantisation parameter delta for each of a number of areas,
each area based on from decomposition of coding tree units
into coding units of each contiguous portion of the bitstream
and the corresponding determined subdivision level; deter-
mining a quantisation parameter for each area according to
the decoded delta quantisation parameter for the area and the
quantisation parameter of an earlier coding unit of the image
frame; and decoding the plurality of coding units using the
determined quantisation parameter of each area to produce
the image frame.

[0038] Other aspects are also disclosed.

BRIEF DESCRIPTION OF THE DRAWINGS

[0039] At least one embodiment of the present invention
will now be described with reference to the following
drawings and and appendices, in which:

[0040] FIG. 1 is a schematic block diagram showing a
video encoding and decoding system;

[0041] FIGS. 2A and 2B form a schematic block diagram
of a general purpose computer system upon which one or
both of the video encoding and decoding system of FIG. 1
may be practiced;

[0042] FIG. 3 is a schematic block diagram showing
functional modules of a video encoder;

[0043] FIG. 4 is a schematic block diagram showing
functional modules of a video decoder;

[0044] FIG. 5 is a schematic block diagram showing the
available divisions of a block into one or more blocks in the
tree structure of versatile video coding;

[0045] FIG. 6 is a schematic illustration of a dataflow to
achieve permitted divisions of a block into one or more
blocks in a tree structure of versatile video coding;

[0046] FIGS. 7A and 7B show an example division of a
coding tree unit (CTU) into a number of coding units (CUS);
[0047] FIGS. 8A, 8B, and 8C show subdivision levels
resulting from splits in a coding tree and their effect on a
division of a coding tree unit into quantisation groups;
[0048] FIGS. 9A and 9B show a 4x4 transform block scan
pattern and associated primary and secondary transform
coefficients;

[0049] FIGS. 9C and 9D show an 8x8 transform block
scan pattern and associated primary and secondary trans-
form coeflicients;

[0050] FIG. 10 shows regions of application of the sec-
ondary transform for transform blocks of various sizes;
[0051] FIG. 11 shows a syntax structure for a bitstream
with multiple slices, each of which includes multiple coding
units;

[0052] FIG. 12 shows a syntax structure for a bitstream
with a shared tree for luma and chroma coding blocks of a
coding tree unit;

[0053] FIG. 13 shows a method for encoding a frame into
a bitstream including one or more slices as sequences of
coding units;

[0054] FIG. 14 shows a method for encoding a slice
header into a bitstream;

[0055] FIG. 15 shows a method for encoding a coding unit
into a bitstream;

[0056] FIG. 16 shows a method for decoding a frame from
a bitstream as sequences of coding units arranged into slices;
[0057] FIG. 17 shows a method for decoding a slice
header from a bitstream;

US 2024/0373040 Al

[0058] FIG. 18 shows a method for decoding a coding unit
from a bitstream, and

[0059] FIGS. 19A and 19B show rules for application or
bypassing of the secondary transform to luma and chroma
channels.

DETAILED DESCRIPTION INCLUDING BEST
MODE

[0060] Where reference is made in any one or more of the
accompanying drawings to steps and/or features, which have
the same reference numerals, those steps and/or features
have for the purposes of this description the same function
(s) or operation(s), unless the contrary intention appears.
[0061] Rate-controlled video encoders require flexibility
to adjust the quantisation parameter at a granularity suitable
for the block partitioning constraints. Block partitioning
constraints may differ from one portion of a frame to
another, for example, where multiple video encoders operate
in parallel to compress each frame. The granularity of the
area for which quantisation parameter adjustment is required
varies accordingly. Moreover, control of the applied trans-
form selection, including potential application of a second-
ary transform, is applied within the scope of the prediction
signal from which the residual being transformed was gen-
erated. In particular, for intra prediction, separate modes are
available for luma blocks and chroma blocks, as they may
use different intra prediction modes.

[0062] Some sections of a video make a greater contribu-
tion to the fidelity of a rendered viewport than others and can
be allocated greater bitrate and greater flexibility in block
structure and variance of quantisation parameter. Sections
making little contribution to the fidelity of a rendered
viewport, such as those at the side or behind of the rendered
view, may be compressed with a simpler block structure for
reduced encoding effort and with less flexibility in control of
the quantisation parameter. Generally, a larger value is
chosen to more coarsely quantise transform coefficients for
lower bitrate. Additionally, application of transform selec-
tion may be independent between the luma channel and the
chroma channels, in order to further simplify the encoding
process by avoiding the need to jointly consider luma and
chroma for transform selection. In particular, the need to
jointly consider luma and chroma for secondary transform
selection is avoided after separately considering intra pre-
diction mode for luma and chroma.

[0063] FIG. 1 is a schematic block diagram showing
functional modules of a video encoding and decoding sys-
tem 100. The system 100 can vary the area for which
quantisation parameters are adjusted in different portions of
the frame to accommodate different block partitioning con-
straints that may be in effect in the respective portions of the
frame.

[0064] The system 100 includes a source device 110 and
a destination device 130. A communication channel 120 is
used to communicate encoded video information from the
source device 110 to the destination device 130. In some
arrangements, the source device 110 and destination device
130 may either or both comprise respective mobile tele-
phone handsets or “smartphones”, in which case the com-
munication channel 120 is a wireless channel. In other
arrangements, the source device 110 and destination device
130 may comprise video conferencing equipment, in which
case the communication channel 120 is typically a wired
channel, such as an internet connection. Moreover, the

Nov. 7, 2024

source device 110 and the destination device 130 may
comprise any of a wide range of devices, including devices
supporting over-the-air television broadcasts, cable televi-
sion applications, internet video applications (including
streaming) and applications where encoded video data is
captured on some computer-readable storage medium, such
as hard disk drives in a file server.

[0065] As shown in FIG. 1, the source device 110 includes
a video source 112, a video encoder 114 and a transmitter
116. The video source 112 typically comprises a source of
captured video frame data (shown as 113), such as an image
capture sensor, a previously captured video sequence stored
on a non-transitory recording medium, or a video feed from
a remote image capture sensor. The video source 112 may
also be an output of a computer graphics card, for example
displaying the video output of an operating system and
various applications executing upon a computing device, for
example a tablet computer. Examples of source devices 110
that may include an image capture sensor as the video source
112 include smart-phones, video camcorders, professional
video cameras, and network video cameras.

[0066] The video encoder 114 converts (or ‘encodes’) the
captured frame data (indicated by an arrow 113) from the
video source 112 into a bitstream (indicated by an arrow
115) as described further with reference to FIG. 3. The
bitstream 115 is transmitted by the transmitter 116 over the
communication channel 120 as encoded video data (or
“encoded video information™). It is also possible for the
bitstream 115 to be stored in a non-transitory storage device
122, such as a “Flash” memory or a hard disk drive, until
later being transmitted over the communication channel 120,
or in-lieu of transmission over the communication channel
120. For example, encoded video data may be served upon
demand to customers over a wide area network (WAN) for
a video streaming application.

[0067] The destination device 130 includes a receiver 132,
a video decoder 134 and a display device 136. The receiver
132 receives encoded video data from the communication
channel 120 and passes received video data to the video
decoder 134 as a bitstream (indicated by an arrow 133). The
video decoder 134 then outputs decoded frame data (indi-
cated by an arrow 135) to the display device 136. The
decoded frame data 135 has the same chroma format as the
frame data 113. Examples of the display device 136 include
a cathode ray tube, a liquid crystal display, such as in
smart-phones, tablet computers, computer monitors or in
stand-alone television sets. It is also possible for the func-
tionality of each of the source device 110 and the destination
device 130 to be embodied in a single device, examples of
which include mobile telephone handsets and tablet com-
puters. Decoded frame data may be further transformed
before presentation to a user. For example, a ‘viewport’
having a particular latitude and longitude may be rendered
from decoded frame data using a projection format to
represent a 360° view of a scene.

[0068] Notwithstanding the example devices mentioned
above, each of the source device 110 and destination device
130 may be configured within a general purpose computing
system, typically through a combination of hardware and
software components. FIG. 2A illustrates such a computer
system 200, which includes: a computer module 201; input
devices such as a keyboard 202, a mouse pointer device 203,
a scanner 226, a camera 227, which may be configured as the
video source 112, and a microphone 280; and output devices

US 2024/0373040 Al

including a printer 215, a display device 214, which may be
configured as the display device 136, and loudspeakers 217.
An external Modulator-Demodulator (Modem) transceiver
device 216 may be used by the computer module 201 for
communicating to and from a communications network 220
via a connection 221. The communications network 220,
which may represent the communication channel 120, may
be a (WAN), such as the Internet, a cellular telecommuni-
cations network, or a private WAN. Where the connection
221 is a telephone line, the modem 216 may be a traditional
“dial-up” modem. Alternatively, where the connection 221 is
a high capacity (e.g., cable or optical) connection, the
modem 216 may be a broadband modem. A wireless modem
may also be used for wireless connection to the communi-
cations network 220. The transceiver device 216 may pro-
vide the functionality of the transmitter 116 and the receiver
132 and the communication channel 120 may be embodied
in the connection 221.

[0069] The computer module 201 typically includes at
least one processor unit 205, and a memory unit 206. For
example, the memory unit 206 may have semiconductor
random access memory (RAM) and semiconductor read
only memory (ROM). The computer module 201 also
includes a number of input/output (I/O) interfaces including:
an audio-video interface 207 that couples to the video
display 214, loudspeakers 217 and microphone 280; an /O
interface 213 that couples to the keyboard 202, mouse 203,
scanner 226, camera 227 and optionally a joystick or other
human interface device (not illustrated); and an interface
208 for the external modem 216 and printer 215. The signal
from the audio-video interface 207 to the computer monitor
214 is generally the output of a computer graphics card. In
some implementations, the modem 216 may be incorporated
within the computer module 201, for example within the
interface 208. The computer module 201 also has a local
network interface 211, which permits coupling of the com-
puter system 200 via a connection 223 to a local-area
communications network 222, known as a Local Area Net-
work (LAN). As illustrated in FIG. 2A, the local commu-
nications network 222 may also couple to the wide network
220 via a connection 224, which would typically include a
so-called “firewall” device or device of similar functionality.
The local network interface 211 may comprise an Ether-
net™ circuit card, a Bluetooth™ wireless arrangement or an
IEEE 802.11 wireless arrangement; however, numerous
other types of interfaces may be practiced for the interface
211. The local network interface 211 may also provide the
functionality of the transmitter 116 and the receiver 132 and
communication channel 120 may also be embodied in the
local communications network 222.

[0070] The I/O interfaces 208 and 213 may afford either or
both of serial and parallel connectivity, the former typically
being implemented according to the Universal Serial Bus
(USB) standards and having corresponding USB connectors
(not illustrated). Storage devices 209 are provided and
typically include a hard disk drive (HDD) 210. Other storage
devices such as a floppy disk drive and a magnetic tape drive
(not illustrated) may also be used. An optical disk drive 212
is typically provided to act as a non-volatile source of data.
Portable memory devices, such optical disks (e.g. CD-ROM,
DVD, Blu ray Disc™), USB-RAM, portable, external hard
drives, and floppy disks, for example, may be used as
appropriate sources of data to the computer system 200.
Typically, any of the HDD 210, optical drive 212, networks

Nov. 7, 2024

220 and 222 may also be configured to operate as the video
source 112, or as a destination for decoded video data to be
stored for reproduction via the display 214. The source
device 110 and the destination device 130 of the system 100
may be embodied in the computer system 200.

[0071] The components 205 to 213 of the computer mod-
ule 201 typically communicate via an interconnected bus
204 and in a manner that results in a conventional mode of
operation of the computer system 200 known to those in the
relevant art. For example, the processor 205 is coupled to the
system bus 204 using a connection 218. Likewise, the
memory 206 and optical disk drive 212 are coupled to the
system bus 204 by connections 219. Examples of computers
on which the described arrangements can be practised
include IBM-PC’s and compatibles, Sun SPARCstations,
Apple Mac™ or alike computer systems.

[0072] Where appropriate or desired, the video encoder
114 and the video decoder 134, as well as methods described
below, may be implemented using the computer system 200.
In particular, the video encoder 114, the video decoder 134
and methods to be described, may be implemented as one or
more software application programs 233 executable within
the computer system 200. In particular, the video encoder
114, the video decoder 134 and the steps of the described
methods are effected by instructions 231 (see FIG. 2B) in the
software 233 that are carried out within the computer system
200. The software instructions 231 may be formed as one or
more code modules, each for performing one or more
particular tasks. The software may also be divided into two
separate parts, in which a first part and the corresponding
code modules performs the described methods and a second
part and the corresponding code modules manage a user
interface between the first part and the user.

[0073] The software may be stored in a computer readable
medium, including the storage devices described below, for
example. The software is loaded into the computer system
200 from the computer readable medium, and then executed
by the computer system 200. A computer readable medium
having such software or computer program recorded on the
computer readable medium is a computer program product.
The use of the computer program product in the computer
system 200 preferably effects an advantageous apparatus for
implementing the video encoder 114, the video decoder 134
and the described methods.

[0074] The software 233 is typically stored in the HDD
210 or the memory 206. The software is loaded into the
computer system 200 from a computer readable medium,
and executed by the computer system 200. Thus, for
example, the software 233 may be stored on an optically
readable disk storage medium (e.g., CD-ROM) 225 that is
read by the optical disk drive 212.

[0075] In some instances, the application programs 233
may be supplied to the user encoded on one or more
CD-ROMs 225 and read via the corresponding drive 212, or
alternatively may be read by the user from the networks 220
or 222. Still further, the software can also be loaded into the
computer system 200 from other computer readable media.
Computer readable storage media refers to any non-transi-
tory tangible storage medium that provides recorded instruc-
tions and/or data to the computer system 200 for execution
and/or processing. Examples of such storage media include
floppy disks, magnetic tape, CD-ROM, DVD, Blu-ray
Disc™, a hard disk drive, a ROM or integrated circuit, USB
memory, a magneto-optical disk, or a computer readable

US 2024/0373040 Al

card such as a PCMCIA card and the like, whether or not
such devices are internal or external of the computer module
201. Examples of transitory or non-tangible computer read-
able transmission media that may also participate in the
provision of the software, application programs, instructions
and/or video data or encoded video data to the computer
module 401 include radio or infra-red transmission chan-
nels, as well as a network connection to another computer or
networked device, and the Internet or Intranets including
e-mail transmissions and information recorded on Websites
and the like.

[0076] The second part of the application program 233 and
the corresponding code modules mentioned above may be
executed to implement one or more graphical user interfaces
(GUIs) to be rendered or otherwise represented upon the
display 214. Through manipulation of typically the key-
board 202 and the mouse 203, a user of the computer system
200 and the application may manipulate the interface in a
functionally adaptable manner to provide controlling com-
mands and/or input to the applications associated with the
GUI(s). Other forms of functionally adaptable user inter-
faces may also be implemented, such as an audio interface
utilizing speech prompts output via the loudspeakers 217
and user voice commands input via the microphone 280.

[0077] FIG. 2B is a detailed schematic block diagram of
the processor 205 and a “memory” 234. The memory 234
represents a logical aggregation of all the memory modules
(including the HDD 209 and semiconductor memory 206)
that can be accessed by the computer module 201 in FIG.
2A.

[0078] When the computer module 201 is initially pow-
ered up, a power-on self-test (POST) program 250 executes.
The POST program 250 is typically stored in a ROM 249 of
the semiconductor memory 206 of FIG. 2A. A hardware
device such as the ROM 249 storing software is sometimes
referred to as firmware. The POST program 250 examines
hardware within the computer module 201 to ensure proper
functioning and typically checks the processor 205, the
memory 234 (209, 206), and a basic input-output systems
software (BIOS) module 251, also typically stored in the
ROM 249, for correct operation. Once the POST program
250 has run successfully, the BIOS 251 activates the hard
disk drive 210 of FIG. 2A. Activation of the hard disk drive
210 causes a bootstrap loader program 252 that is resident on
the hard disk drive 210 to execute via the processor 205.
This loads an operating system 253 into the RAM memory
206, upon which the operating system 253 commences
operation. The operating system 253 is a system level
application, executable by the processor 205, to fulfil vari-
ous high level functions, including processor management,
memory management, device management, storage manage-
ment, software application interface, and generic user inter-
face.

[0079] The operating system 253 manages the memory
234 (209, 206) to ensure that each process or application
running on the computer module 201 has sufficient memory
in which to execute without colliding with memory allocated
to another process. Furthermore, the different types of
memory available in the computer system 200 of FIG. 2A
must be used properly so that each process can run effec-
tively. Accordingly, the aggregated memory 234 is not
intended to illustrate how particular segments of memory are
allocated (unless otherwise stated), but rather to provide a

Nov. 7, 2024

general view of the memory accessible by the computer
system 200 and how such is used.

[0080] As shown in FIG. 2B, the processor 205 includes a
number of functional modules including a control unit 239,
an arithmetic logic unit (ALU) 240, and a local or internal
memory 248, sometimes called a cache memory. The cache
memory 248 typically includes a number of storage registers
244-246 in a register section. One or more internal busses
241 functionally interconnect these functional modules. The
processor 205 typically also has one or more interfaces 242
for communicating with external devices via the system bus
204, using a connection 218. The memory 234 is coupled to
the bus 204 using a connection 219.

[0081] The application program 233 includes a sequence
of instructions 231 that may include conditional branch and
loop instructions. The program 233 may also include data
232 which is used in execution of the program 233. The
instructions 231 and the data 232 are stored in memory
locations 228, 229, 230 and 235, 236, 237, respectively.
Depending upon the relative size of the instructions 231 and
the memory locations 228-230, a particular instruction may
be stored in a single memory location as depicted by the
instruction shown in the memory location 230. Alternately,
an instruction may be segmented into a number of parts each
of' which is stored in a separate memory location, as depicted
by the instruction segments shown in the memory locations
228 and 229.

[0082] In general, the processor 205 is given a set of
instructions which are executed therein. The processor 205
waits for a subsequent input, to which the processor 205
reacts to by executing another set of instructions. Each input
may be provided from one or more of a number of sources,
including data generated by one or more of the input devices
202, 203, data received from an external source across one
of the networks 220, 202, data retrieved from one of the
storage devices 206, 209 or data retrieved from a storage
medium 225 inserted into the corresponding reader 212, all
depicted in FIG. 2A. The execution of a set of the instruc-
tions may in some cases result in output of data. Execution
may also involve storing data or variables to the memory
234.

[0083] The video encoder 114, the video decoder 134 and
the described methods may use input variables 254, which
are stored in the memory 234 in corresponding memory
locations 255, 256, 257. The video encoder 114, the video
decoder 134 and the described methods produce output
variables 261, which are stored in the memory 234 in
corresponding memory locations 262, 263, 264. Intermedi-
ate variables 258 may be stored in memory locations 259,
260, 266 and 267.

[0084] Referring to the processor 205 of FIG. 2B, the
registers 244, 245, 246, the arithmetic logic unit (ALU) 240,
and the control unit 239 work together to perform sequences
of micro-operations needed to perform “fetch, decode, and
execute” cycles for every instruction in the instruction set
making up the program 233. Each fetch, decode, and execute
cycle comprises:

[0085] a fetch operation, which fetches or reads an instruc-
tion 231 from a memory location 228, 229, 230;

[0086] a decode operation in which the control unit 239
determines which instruction has been fetched; and

[0087] an execute operation in which the control unit 239
and/or the ALU 240 execute the instruction.

US 2024/0373040 Al

[0088] Thereafter, a further fetch, decode, and execute
cycle for the next instruction may be executed. Similarly, a
store cycle may be performed by which the control unit 239
stores or writes a value to a memory location 232.

[0089] Each step or sub-process in the method of FIGS. 13
to 18, to be described, is associated with one or more
segments of the program 233 and is typically performed by
the register section 244, 245, 247, the ALU 240, and the
control unit 239 in the processor 205 working together to
perform the fetch, decode, and execute cycles for every
instruction in the instruction set for the noted segments of
the program 233.

[0090] FIG. 3 is a schematic block diagram showing
functional modules of the video encoder 114. FIG. 4 is a
schematic block diagram showing functional modules of the
video decoder 134. Generally, data passes between func-
tional modules within the video encoder 114 and the video
decoder 134 in groups of samples or coefficients, such as
divisions of blocks into sub-blocks of a fixed size, or as
arrays. The video encoder 114 and video decoder 134 may
be implemented using a general-purpose computer system
200, as shown in FIGS. 2A and 2B, where the various
functional modules may be implemented by dedicated hard-
ware within the computer system 200, by software execut-
able within the computer system 200 such as one or more
software code modules of the software application program
233 resident on the hard disk drive 205 and being controlled
in its execution by the processor 205. Alternatively, the
video encoder 114 and video decoder 134 may be imple-
mented by a combination of dedicated hardware and soft-
ware executable within the computer system 200. The video
encoder 114, the video decoder 134 and the described
methods may alternatively be implemented in dedicated
hardware, such as one or more integrated circuits performing
the functions or sub functions of the described methods.
Such dedicated hardware may include graphic processing
units (GPUs), digital signal processors (DSPs), application-
specific standard products (ASSPs), application-specific
integrated circuits (ASICs), field programmable gate arrays
(FPGAs) or one or more microprocessors and associated
memories. In particular, the video encoder 114 comprises
modules 310-390 and the video decoder 134 comprises
modules 420-496 which may each be implemented as one or
more software code modules of the software application
program 233.

[0091] Although the video encoder 114 of FIG. 3 is an
example of a versatile video coding (VVC) video encoding
pipeline, other video codecs may also be used to perform the
processing stages described herein. The video encoder 114
receives captured frame data 113, such as a series of frames,
each frame including one or more colour channels. The
frame data 113 may be in any chroma format, for example
4:0:0, 4:2:0, 4:2:2, or 4:4:4 chroma format. A block parti-
tioner 310 firstly divides the frame data 113 into CTUs,
generally square in shape and configured such that a par-
ticular size for the CTUs is used. The size of the CTUs may
be 64x64, 128x128, or 256x256 luma samples for example.
The block partitioner 310 further divides each CTU into one
or more CBs according to a luma coding tree and a chroma
coding trec. The luma channel may also be referred to as a
primary colour channel. Each chroma channel may also be
referred to as a secondary colour channel. The CBs have a
variety of sizes, and may include both square and non-square
aspect ratios. Operation of the block partitioner 310 is

Nov. 7, 2024

further described with reference to FIGS. 13-15. However,
in the VVC standard, CBs, CUs, PUs, and TUs always have
side lengths that are powers of two. Thus, a current CB,
represented as 312, is output from the block partitioner 310,
progressing in accordance with an iteration over the one or
more blocks of the CTU, in accordance with the luma coding
tree and the chroma coding tree of the CTU. Options for
partitioning CTUs into CBs are further described below with
reference to FIGS. 5 and 6. Although operation is generally
described on a CTU-by-CTU basis, the video encoder 114
and the video decoder 134 can operate on a smaller-sized
region to reduce memory consumption. For example, each
CTU can be divided into smaller regions, known as ‘virtual
pipeline data units” (VPDUs) of size 64x64. The VPDUs
form a granularity of data that is more amenable to pipeline
processing in hardware architectures where the reduction in
memory footprint reduces silicon area and hence cost,
compared to operating on full CTUs.

[0092] The CTUs resulting from the first division of the
frame data 113 may be scanned in raster scan order and may
be grouped into one or more ‘slices’. A slice may be an
‘intra’ (or ‘I’) slice. An intra slice (I slice) indicates that
every CU in the slice is intra predicted. Alternatively, a slice
may be uni- or bi-predicted (‘P” or ‘B’ slice, respectively),
indicating additional availability of uni- and bi-prediction in
the slice, respectively.

[0093] In an I slice, the coding tree of each CTU may
diverge below the 64x64 level into two separate coding
trees, one for luma and another for chroma. Use of separate
trees allows different block structure to exist between luma
and chroma within a luma 64x64 area of a CTU. For
example, a large chroma CB may be collocated with numer-
ous smaller luma CBs and vice versa. In a P or B slice, a
single coding tree of a CTU defines a block structure
common to luma and chroma. The resulting blocks of the
single tree may be intra predicted or inter predicted.
[0094] For each CTU, the video encoder 114 operates in
two stages. In the first stage (referred to as a “search’ stage),
the block partitioner 310 tests various potential configura-
tions of a coding tree. Each potential configuration of a
coding tree has associated ‘candidate’ CBs. The first stage
involves testing various candidate CBs to select CBs pro-
viding relatively high compression efficiency with relatively
low distortion. The testing generally involves a Lagrangian
optimisation whereby a candidate CB is evaluated based on
a weighted combination of the rate (coding cost) and the
distortion (error with respect to the input frame data 113).
The ‘best’ candidate CBs (the CBs with the lowest evaluated
rate/distortion) are selected for subsequent encoding into the
bitstream 115. Included in evaluation of candidate CBs is an
option to use a CB for a given area or to further split the area
according to various splitting options and code each of the
smaller resulting areas with further CBs, or split the areas
even further. As a consequence, both the coding tree and the
CBs themselves are selected in the search stage.

[0095] The video encoder 114 produces a prediction block
(PB), indicated by an arrow 320, for each CB, for example
the CB 312. The PB 320 is a prediction of the contents of the
associated CB 312. A subtracter module 322 produces a
difference, indicated as 324 (or ‘residual’, referring to the
difference being in the spatial domain), between the PB 320
and the CB 312. The difference 324 is a block-size difference
between corresponding samples in the PB 320 and the CB
312. The difference 324 is transformed, quantised and rep-

US 2024/0373040 Al

resented as a transform block (TB), indicated by an arrow
336. The PB 320 and associated TB 336 are typically chosen
from one of many possible candidate CBs, for example
based on evaluated cost or distortion.

[0096] A candidate coding block (CB) is a CB resulting
from one of the prediction modes available to the video
encoder 114 for the associated PB and the resulting residual.
When combined with the predicted PB in the video decoder
114, the TB 336 reduces the difference between a decoded
CB and the original CB 312 at the expense of additional
signalling in a bitstream.

[0097] Each candidate coding block (CB), that is predic-
tion block (PB) in combination with a transform block (TB),
thus has an associated coding cost (or ‘rate’) and an asso-
ciated difference (or ‘distortion’). The distortion of the CB
is typically estimated as a difference in sample values, such
as a sum of absolute differences (SAD) or a sum of squared
differences (SSD). The estimate resulting from each candi-
date PB may be determined by a mode selector 386 using the
difference 324 to determine a prediction mode 387. The
prediction mode 387 indicates the decision to use a particu-
lar prediction mode for the current CB, for example intra-
frame prediction or inter-frame prediction. Estimation of the
coding costs associated with each candidate prediction mode
and corresponding residual coding can be performed at
significantly lower cost than entropy coding of the residual.
Accordingly, a number of candidate modes can be evaluated
to determine an optimum mode in a rate-distortion sense
even in a real-time video encoder.

[0098] Determining an optimum mode in terms of rate-
distortion is typically achieved using a variation of Lagran-
gian optimisation.

[0099] Lagrangian or similar optimisation processing can
be employed to both select an optimal partitioning of a CTU
into CBs (by the block partitioner 310) as well as the
selection of a best prediction mode from a plurality of
possibilities. Through application of a Lagrangian optimi-
sation process of the candidate modes in the mode selector
module 386, the intra prediction mode with the lowest cost
measurement is selected as the ‘best’ mode. The lowest cost
mode is the selected secondary transform index 388 and is
also encoded in the bitstream 115 by an entropy encoder
338.

[0100] In the second stage of operation of the video
encoder 114 (referred to as a ‘coding’ stage), an iteration
over the determined coding tree(s) of each CTU is per-
formed in the video encoder 114. For a CTU using separate
trees, for each 64x64 luma region of the CTU, a luma coding
tree is firstly encoded followed by a chroma coding trec.
Within the luma coding tree only luma CBs are encoded and
within the chroma coding tree only chroma CBs are
encoded. For a CTU using a shared tree, a single tree
describes the CUS, i.e., the luma CBs and the chroma CBs
according to the common block structure of the shared trec.
[0101] The entropy encoder 338 supports both variable-
length coding of syntax elements and arithmetic coding of
syntax elements. Portions of the bitstream such as ‘param-
eter sets’, for example sequence parameter set (SPS) and
picture parameter set (PPS) use a combination of fixed-
length codewords and variable-length codewords. Slices
(also referred to as contiguous portions) have a slice header
that uses variable length coding followed by slice data,
which uses arithmetic coding. The slice header defines
parameters specific to the current slice, such as slice-level

Nov. 7, 2024

quantisation parameter offsets. The slice data includes the
syntax elements of each CTU in the slice. Use of variable
length coding and arithmetic coding requires sequential
parsing within each portion of the bitstream. The portions
may be delineated with a start code to form ‘network
abstraction layer units’ or ‘NAL units’. Arithmetic coding is
supported using a context-adaptive binary arithmetic coding
process. Arithmetically coded syntax elements consist of
sequences of one or more ‘bins’. Bins, like bits, have a value
of ‘0’ or *1°. However, bins are not encoded in the bitstream
115 as discrete bits. Bins have an associated predicted (or
‘likely” or ‘most probable’) value and an associated prob-
ability, known as a ‘context’. When the actual bin to be
coded matches the predicted value, a ‘most probable sym-
bol’ (MPS) is coded. Coding a most probable symbol is
relatively inexpensive in terms of consumed bits in the
bitstream 115, including costs that amount to less than one
discrete bit. When the actual bin to be coded mismatches the
likely value, a ‘least probable symbol’ (LPS) is coded.
Coding a least probable symbol has a relatively high cost in
terms of consumed bits. The bin coding techniques enable
efficient coding of bins where the probability of a ‘0” versus
a ‘1’ is skewed. For a syntax element with two possible
values (that is, a ‘flag’), a single bin is adequate. For syntax
elements with many possible values, a sequence of bins is
needed.

[0102] The presence of later bins in the sequence may be
determined based on the value of earlier bins in the
sequence. Additionally, each bin may be associated with
more than one context. The selection of a particular context
can be dependent on earlier bins in the syntax element, the
bin values of neighbouring syntax elements (i.e. those from
neighbouring blocks) and the like. Each time a context-
coded bin is encoded, the context that was selected for that
bin (if any) is updated in a manner reflective of the new bin
value. As such, the binary arithmetic coding scheme is said
to be adaptive.

[0103] Also supported by the video encoder 114 are bins
that lack a context (‘bypass bins’). Bypass bins are coded
assuming an equiprobable distribution between a ‘0’ and a
‘1’. Thus, each bin has a coding cost of one bit in the
bitstream 115. The absence of a context saves memory and
reduces complexity, and thus bypass bins are used where the
distribution of values for the particular bin is not skewed.
One example of an entropy coder employing context and
adaption is known in the art as CABAC (context adaptive
binary arithmetic coder) and many variants of this coder
have been employed in video coding.

[0104] The entropy encoder 338 encodes a quantisation
parameter 392 and, if in use for the current CB, the LFNST
index 388, using a combination of context-coded and
bypass-coded bins. The quantisation parameter 392 is
encoded using a ‘delta QP’. The delta QP is signalled at most
once in each area known as a ‘quantisation group’. The
quantisation parameter 392 is applied to residual coefficients
of the luma CB. An adjusted quantisation parameter is
applied to the residual coefficients of collocated chroma
CBs. The adjusted quantisation parameter may include map-
ping from the luma quantisation parameter 392 according to
a mapping table and a CU-level offset, selected from a list
of offsets. The secondary transform index 388 is signalled
when the residual associated with the transform block
includes significant residual coefficients only in those coef-

US 2024/0373040 Al

ficient positions subject to transforming into primary coef-
ficients by application of a secondary transform.

[0105] A multiplexer module 384 outputs the PB 320 from
an intra-frame prediction module 364 according to the
determined best intra prediction mode, selected from the
tested prediction mode of each candidate CB. The candidate
prediction modes need not include every conceivable pre-
diction mode supported by the video encoder 114. Intra
prediction falls into three types. “DC intra prediction”
involves populating a PB with a single value representing
the average of nearby reconstructed samples. “Planar intra
prediction” involves populating a PB with samples accord-
ing to a plane, with a DC offset and a vertical and horizontal
gradient being derived from the nearby reconstructed neigh-
bouring samples. The nearby reconstructed samples typi-
cally include a row of reconstructed samples above the
current PB, extending to the right of the PB to an extent and
a column of reconstructed samples to the left of the current
PB, extending downwards beyond the PB to an extent.
“Angular intra prediction” involves populating a PB with
reconstructed neighbouring samples filtered and propagated
across the PB in a particular direction (or ‘angle’). In VVC
65 angles are supported, with rectangular blocks able to
utilise additional angles, not available to square blocks, to
produce a total of 87 angles. A fourth type of intra prediction
is available to chroma PBs, whereby the PB is generated
from collocated luma reconstructed samples according to a
‘cross-component linear model” (CCLM) mode. Three dif-
ferent CCLM modes are available, each mode using a
different model derived from the neighbouring luma and
chroma samples. The derived model is used to generate a
block of samples for the chroma PB from the collocated
luma samples.

[0106] Where previously reconstructed samples are
unavailable, for example at the edge of the frame, a default
half-tone value of one half the range of the samples is used.
For example, for 10-bit video a value of 512 is used. As no
previously samples are available for a CB located at the
top-left position of a frame, angular and planar intra-pre-
diction modes produce the same output as the DC prediction
mode, i.e. a flat plane of samples having the half-tone value
as magnitude.

[0107] For inter-frame prediction a prediction block 382 is
produced using samples from one or two frames preceding
the current frame in the coding order frames in the bitstream
by a motion compensation module 380 and output as the PB
320 by the multiplexer module 384. Moreover, for inter-
frame prediction, a single coding tree is typically used for
both the luma channel and the chroma channels. The order
of coding frames in the bitstream may differ from the order
of the frames when captured or displayed. When one frame
is used for prediction, the block is said to be “uni-predicted’
and has one associated motion vector. When two frames are
used for prediction, the block is said to be ‘bi-predicted” and
has two associated motion vectors. For a P slice, each CU
may be intra predicted or uni-predicted. For a B slice, each
CU may be intra predicted, uni-predicted, or bi-predicted.
Frames are typically coded using a ‘group of pictures’
structure, enabling a temporal hierarchy of frames. Frames
may be divided into multiple slices, each of which encodes
a portion of the frame. A temporal hierarchy of frames
allows a frame to reference a preceding and a subsequent
picture in the order of displaying the frames. The images are

Nov. 7, 2024

coded in the order necessary to ensure the dependencies for
decoding each frame are met.

[0108] The samples are selected according to a motion
vector 378 and reference picture index. The motion vector
378 and reference picture index applies to all colour chan-
nels and thus inter prediction is described primarily in terms
of operation upon PUs rather than PBs, i.e. the decomposi-
tion of each CTU into one or more inter-predicted blocks is
described with a single coding tree. Inter prediction methods
may vary in the number of motion parameters and their
precision. Motion parameters typically comprise a reference
frame index, indicating which reference frame(s) from lists
of reference frames are to be used plus a spatial translation
for each of the reference frames, but may include more
frames, special frames, or complex affine parameters such as
scaling and rotation. In addition, a pre-determined motion
refinement process may be applied to generate dense motion
estimates based on referenced sample blocks.

[0109] Having determined and selected the PB 320, and
subtracted the PB 320 from the original sample block at the
subtractor 322, a residual with lowest coding cost, repre-
sented as 324, is obtained and subjected to lossy compres-
sion. The lossy compression process comprises the steps of
transformation, quantisation and entropy coding. A forward
primary transform module 326 applies a forward transform
to the difference 324, converting the difference 324 from the
spatial domain to the frequency domain, and producing
primary transform coefficients represented by an arrow 328.
The largest primary transform size in one dimension is either
a 32-point DCT-2 or a 64-point DCT-2 transform. If the CB
being encoded is larger than the largest supported primary
transform size expressed as a block size, i.e. 64x64 or
32x32, the primary transform 326 is applied in a tiled
manner to transform all samples of the difference 324.
Application of the transform 326 results in multiple TBs for
the CB. Where each application of the transform operates on
a TB of the difference 324 larger than 32x32, e.g. 64x64, all
resulting primary transform coefficients 328 outside of the
upper-left 32x32 area of the TB are set to zero, i.e. dis-
carded. The remaining primary transform coefficients 328
are passed to a quantiser module 334. The primary transform
coeflicients 328 are quantised according to a quantisation
parameter 392 associated with the CB to produce primary
transform coefficients 332. The quantisation parameter 392
may differ for a luma CB versus each chroma CB. The
primary transform coefficients 332 are passed to a forward
secondary transform module 330 to produce transform coef-
ficients represented by an arrow 336 by performing a either
a non-separable secondary transform (NSST) operation or
bypassing the secondary transform. The forward primary
transform is typically separable, transforming a set of rows
and then a set of columns of each TB. The forward primary
transform module 326 uses either a type-II discrete cosine
transform (DCT-2) in the horizontal and vertical directions,
or bypass of the transform horizontally and vertically, or
combinations of a type-VII discrete sine transform (DST-7)
and a type-VIII discrete cosine transform (DCT-8) in either
horizontal or vertical directions for luma TBs not exceeding
16 samples in width and height. Use of combinations of a
DST-7 and DCT-8 is referred to as ‘multi transform selection
set’ (MTS) in the VVC standard.

[0110] The forward secondary transform of the module
330 is generally a non-separable transform, which is only
applied for the residual of intra-predicted CUs and may

US 2024/0373040 Al

nonetheless also be bypassed. The forward secondary trans-
form operates either on 16 samples (arranged as the upper-
left 4x4 sub-block of the primary transform coefficients 328)
or 48 samples (arranged as three 4x4 sub-blocks in the
upper-left 8x8 coeflicients of the primary transform coeffi-
cients 328) to produce a set of secondary transform coeffi-
cients. The set of secondary transform coefficients may be
fewer in number than the set of primary transform coeffi-
cients from which they are derived. Due to application of the
secondary transform to only a set of coefficients adjacent to
each other and including the DC coefficient, the secondary
transform is referred to as a ‘low frequency non-separable
secondary transform’ (LFNST). Moreover, when the LENST
is applied, all remaining coefficients in the TB must be zero,
both in the primary transform domain and the secondary
transform domain.

[0111] The quantisation parameter 392 is constant for a
given TB and thus results in a uniform scaling for the
production of residual coefficients in the primary transform
domain for a TB. The quantisation parameter 392 may vary
periodically with a signalled ‘delta quantisation parameter’.
The delta quantisation parameter (delta QP) is signalled
once for CUs contained within a given area, referred to as a
‘quantisation group’. If a CU is larger than the quantisation
group size, delta QP is signalled once with one of the TBs
of the CU. That is, the delta QP is signalled by the entropy
encoder 338 once for the first quantisation group of the CU
and not signalled for any subsequent quantisation groups of
the CU. A non-uniform scaling is also possible by applica-
tion of a ‘quantisation matrix’, whereby the scaling factor
applied for each residual coefficient is derived from a
combination of the quantisation parameter 392 and the
corresponding entry in a scaling matrix. The scaling matrix
can have a size that is smaller than the size of the TB, and
when applied to the TB a nearest neighbour approach is used
to provide scaling values for each residual coefficient from
a scaling matrix smaller in size than the TB size. The
residual coefficients 336 are supplied to the entropy encoder
338 for encoding in the bitstream 115. Typically, the residual
coeflicients of each TB with at least one significant residual
coeflicient of the TU are scanned to produce an ordered list
of values, according to a scan pattern. The scan pattern
generally scans the TB as a sequence of 4x4 ‘sub-blocks’,
providing a regular scanning operation at the granularity of
4x4 sets of residual coefficients, with the arrangement of
sub-blocks dependent on the size of the TB. The scan within
each sub-block and the progression from one sub-block to
the next typically follow a backward diagonal scan pattern.
Additionally, the quantisation parameter 392 is encoded into
the bitstream 115 using a delta QP syntax element and the
secondary transform index 388 is encoded in the bitstream
115 under conditions to be described with reference to FIGS.
13-15.

[0112] As described above, the video encoder 114 needs
access to a frame representation corresponding to the
decoded frame representation seen in the video decoder 134.
Thus, the residual coefficients 336 are passed through an
inverse secondary transform module 344, operating in
accordance with the secondary transform index 388 to
produce intermediate inverse transform coeflicients, repre-
sented by an arrow 342. The intermediate inverse transform
coeflicients are inverse quantised by a dequantiser module
340 according to the quantisation parameter 392 to produce
inverse transform coeflicients, represented by an arrow 346.

Nov. 7, 2024

The intermediate inverse transform coefficients 346 are
passed to an inverse primary transform module 348 to
produce residual samples, represented by an arrow 350, of
the TU. The types of inverse transform performed by the
inverse secondary transform module 344 correspond with
the types of forward transform performed by the forward
secondary transform module 330. The types of inverse
transform performed by the inverse primary transform mod-
ule 348 correspond with the types of primary transform
performed by the primary transform module 326. A sum-
mation module 352 adds the residual samples 350 and the
PU 320 to produce reconstructed samples (indicated by an
arrow 354) of the CU.

[0113] The reconstructed samples 354 are passed to a
reference sample cache 356 and an in-loop filters module
368. The reference sample cache 356, typically implemented
using static RAM on an ASIC (thus avoiding costly off-chip
memory access) provides minimal sample storage needed to
satisfy the dependencies for generating intra-frame PBs for
subsequent CUs in the frame. The minimal dependencies
typically include a ‘line buffer’ of samples along the bottom
of a row of CTUs, for use by the next row of CTUs and
column buffering the extent of which is set by the height of
the CTU. The reference sample cache 356 supplies reference
samples (represented by an arrow 358) to a reference sample
filter 360. The sample filter 360 applies a smoothing opera-
tion to produce filtered reference samples (indicated by an
arrow 362). The filtered reference samples 362 are used by
an intra-frame prediction module 364 to produce an intra-
predicted block of samples, represented by an arrow 366.
For each candidate intra prediction mode the intra-frame
prediction module 364 produces a block of samples, that is
366. The block of samples 366 is generated by the module
364 using techniques such as DC, planar or angular intra
prediction.

[0114] The in-loop filters module 368 applies several
filtering stages to the reconstructed samples 354. The filter-
ing stages include a ‘deblocking filter’ (DBF) which applies
smoothing aligned to the CU boundaries to reduce artefacts
resulting from discontinuities. Another filtering stage pres-
ent in the in-loop filters module 368 is an ‘adaptive loop
filter’ (ALF), which applies a Wiener-based adaptive filter to
further reduce distortion. A further available filtering stage
in the in-loop filters module 368 is a ‘sample adaptive offset’
(SAO) filter. The SAO filter operates by firstly classifying
reconstructed samples into one or multiple categories and,
according to the allocated category, applying an offset at the
sample level.

[0115] Filtered samples, represented by an arrow 370, are
output from the in-loop filters module 368. The filtered
samples 370 are stored in a frame buffer 372. The frame
buffer 372 typically has the capacity to store several (for
example up to 16) pictures and thus is stored in the memory
206. The frame buffer 372 is not typically stored using
on-chip memory due to the large memory consumption
required. As such, access to the frame buffer 372 is costly in
terms of memory bandwidth. The frame buffer 372 provides
reference frames (represented by an arrow 374) to a motion
estimation module 376 and the motion compensation mod-
ule 380.

[0116] The motion estimation module 376 estimates a
number of ‘motion vectors’ (indicated as 378), each being a
Cartesian spatial offset from the location of the present CB,
referencing a block in one of the reference frames in the

US 2024/0373040 Al

frame buffer 372. A filtered block of reference samples
(represented as 382) is produced for each motion vector. The
filtered reference samples 382 form further candidate modes
available for potential selection by the mode selector 386.
Moreover, for a given CU, the PU 320 may be formed using
one reference block (‘uni-predicted’) or may be formed
using two reference blocks (“bi-predicted’). For the selected
motion vector, the motion compensation module 380 pro-
duces the PB 320 in accordance with a filtering process
supportive of sub-pixel accuracy in the motion vectors. As
such, the motion estimation module 376 (which operates on
many candidate motion vectors) may perform a simplified
filtering process compared to that of the motion compensa-
tion module 380 (which operates on the selected candidate
only) to achieve reduced computational complexity. When
the video encoder 114 selects inter prediction for a CU the
motion vector 378 is encoded into the bitstream 115.

[0117] Although the video encoder 114 of FIG. 3 is
described with reference to versatile video coding (VVC),
other video coding standards or implementations may also
employ the processing stages of modules 310-390. The
frame data 113 (and bitstream 115) may also be read from
(or written to) memory 206, the hard disk drive 210, a
CD-ROM, a Blu-ray Disk™ or other computer readable
storage medium. Additionally, the frame data 113 (and
bitstream 115) may be received from (or transmitted to) an
external source, such as a server connected to the commu-
nications network 220 or a radio-frequency receiver. The
communications network 220 may provide limited band-
width, necessitating the use of rate control in the video
encoder 114 to avoid saturating the network at times when
the frame data 113 is difficult to compress. Moreover, the
bitstream 115 may be constructed from one or more slices,
representing spatial sections (collections of CTUs) of the
frame data 113, produced by one or more instances of the
video encoder 114, operating in a co-ordinated manner
under control of the processor 205. In the context of the
present disclosure, a slice can also be referred to as a
“contiguous portion” of the bitstream. Slices are contiguous
within the bitstream and can be encoded or decoded as
separate portions, for example if parallel processing is being
used.

[0118] The video decoder 134 is shown in FIG. 4.
Although the video decoder 134 of FIG. 4 is an example of
a versatile video coding (VVC) video decoding pipeline,
other video codecs may also be used to perform the pro-
cessing stages described herein. As shown in FIG. 4, the
bitstream 133 is input to the video decoder 134. The
bitstream 133 may be read from memory 206, the hard disk
drive 210, a CD-ROM, a Blu-ray Disk™ or other non-
transitory computer readable storage medium. Alternatively,
the bitstream 133 may be received from an external source
such as a server connected to the communications network
220 or a radio-frequency receiver. The bitstream 133 con-
tains encoded syntax elements representing the captured
frame data to be decoded.

[0119] The bitstream 133 is input to an entropy decoder
module 420. The entropy decoder module 420 extracts
syntax elements from the bitstream 133 by decoding
sequences of ‘bins’ and passes the values of the syntax
elements to other modules in the video decoder 134. The
entropy decoder module 420 uses variable-length and fixed
length decoding to decode SPS, PPS or slice header an
arithmetic decoding engine to decode syntax elements of the

Nov. 7, 2024

slice data as a sequence of one or more bins. Each bin may
use one or more ‘contexts’, with a context describing
probability levels to be used for coding a ‘one’ and a ‘zero’
value for the bin. Where multiple contexts are available for
a given bin, a ‘context modelling’ or ‘context selection’ step
is performed to choose one of the available contexts for
decoding the bin. The process of decoding bins forms a
sequential feedback loop, thus each slice may be decoded in
its’ entirety by a given entropy decoder 420 instance. A
single (or few) high-performing entropy decoder 420
instances may decode all slices for a frame from the bit-
stream 115 multiple lower-performing entropy decoder 420
instances may concurrently decode the slices for a frame
from the bitstream 133.

[0120] The entropy decoder module 420 applies an arith-
metic coding algorithm, for example ‘context adaptive
binary arithmetic coding” (CABAC), to decode syntax ele-
ments from the bitstream 133. The decoded syntax elements
are used to reconstruct parameters within the video decoder
134. Parameters include residual coefficients (represented by
an arrow 424), a quantisation parameter 474, a secondary
transform index 470, and mode selection information such
as an intra prediction mode (represented by an arrow 458).
The mode selection information also includes information
such as motion vectors, and the partitioning of each CTU
into one or more CBs. Parameters are used to generate PBs,
typically in combination with sample data from previously
decoded CBs.

[0121] The residual coefficients 424 are are passed to an
inverse secondary transform module 436 where either a
secondary transform is applied or no operation is performed
(bypass) according to methods described with reference to
FIGS. 16-18. The inverse secondary transform module 436
produces reconstructed transform coeflicients 432, that is
primary transform domain coefficients, from secondary
transform domain coefficients. The reconstructed transform
coeflicients 432 are input to a dequantiser module 428. The
dequantiser module 428 performs inverse quantisation (or
‘scaling’) on the residual coeflicients 432, that is, in the
primary transform coefficient domain, to create recon-
structed intermediate transform coefficients, represented by
an arrow 440, according to the quantisation parameter 474.
Should use of a non-uniform inverse quantisation matrix be
indicated in the bitstream 133, the video decoder 134 reads
a quantisation matrix from the bitstream 133 as a sequence
of scaling factors and arranges the scaling factors into a
matrix. The inverse scaling uses the quantisation matrix in
combination with the quantisation parameter to create the
reconstructed intermediate transform coefficients 440.

[0122] The reconstructed transform coeflicients 440 are
passed to an inverse primary transform module 444. The
module 444 transforms the coefficients 440 from the fre-
quency domain back to the spatial domain. The result of
operation of the module 444 is a block of residual samples,
represented by an arrow 448. The block of residual samples
448 is equal in size to the corresponding CB. The residual
samples 448 are supplied to a summation module 450. At the
summation module 450 the residual samples 448 are added
to a decoded PB (represented as 452) to produce a block of
reconstructed samples, represented by an arrow 456. The
reconstructed samples 456 are supplied to a reconstructed
sample cache 460 and an in-loop filtering module 488. The
in-loop filtering module 488 produces reconstructed blocks

US 2024/0373040 Al

of frame samples, represented as 492. The frame samples
492 are written to a frame buffer 496.

[0123] The reconstructed sample cache 460 operates simi-
larly to the reconstructed sample cache 356 of the video
encoder 114. The reconstructed sample cache 460 provides
storage for reconstructed sample needed to intra predict
subsequent CBs without the memory 206 (for example by
using the data 232 instead, which is typically on-chip
memory). Reference samples, represented by an arrow 464,
are obtained from the reconstructed sample cache 460 and
supplied to a reference sample filter 468 to produce filtered
reference samples indicated by arrow 472. The filtered
reference samples 472 are supplied to an intra-frame pre-
diction module 476. The module 476 produces a block of
intra-predicted samples, represented by an arrow 480, in
accordance with the intra prediction mode parameter 458
signalled in the bitstream 133 and decoded by the entropy
decoder 420. The block of samples 480 is generated using
modes such as DC, planar or angular intra prediction.
[0124] When the prediction mode of a CB is indicated to
use intra prediction in the bitstream 133, the intra-predicted
samples 480 form the decoded PB 452 via a multiplexor
module 484. Intra prediction produces a prediction block
(PB) of samples, that is, a block in one colour component,
derived using ‘neighbouring samples’ in the same colour
component. The neighbouring samples are samples adjacent
to the current block and by virtue of being preceding in the
block decoding order have already been reconstructed.
Where luma and chroma blocks are collocated, the luma and
chroma blocks may use different intra prediction modes.
However, the two chroma CBs share the same intra predic-
tion mode.

[0125] When the prediction mode of the CB is indicated to
be inter prediction in the bitstream 133, a motion compen-
sation module 434 produces a block of inter-predicted
samples, represented as 438, using a motion vector (decoded
from the bitstream 133 by the entropy decoder 420) and
reference frame index to select and filter a block of samples
498 from a frame buffer 496. The block of samples 498 is
obtained from a previously decoded frame stored in the
frame buffer 496. For bi-prediction, two blocks of samples
are produced and blended together to produce samples for
the decoded PB 452. The frame buffer 496 is populated with
filtered block data 492 from an in-loop filtering module 488.
As with the in-loop filtering module 368 of the video
encoder 114, the in-loop filtering module 488 applies any of
the DBF, the ALF and SAO filtering operations. Generally,
the motion vector is applied to both the luma and chroma
channels, although the filtering processes for sub-sample
interpolation in the luma and chroma channel are different.
[0126] FIG. 5 is a schematic block diagram showing a
collection 500 of available divisions or splits of a region into
one or more sub-regions in the tree structure of versatile
video coding. The divisions shown in the collection 500 are
available to the block partitioner 310 of the encoder 114 to
divide each CTU into one or more CUs or CBs according to
a coding tree, as determined by the Lagrangian optimisation,
as described with reference to FIG. 3.

[0127] Although the collection 500 shows only square
regions being divided into other, possibly non-square sub-
regions, it should be understood that the collection 500 is
showing the potential divisions of a parent node in a coding
tree into child nodes in the coding tree and not requiring the
parent node to correspond to a square region. If the con-

Nov. 7, 2024

taining region is non-square, the dimensions of the blocks
resulting from the division are scaled according to the aspect
ratio of the containing block. Once a region is not further
split, that is, at a leaf node of the coding tree, a CU occupies
that region.

[0128] The process of subdividing regions into sub-re-
gions must terminate when the resulting sub-regions reach a
minimum CU size, generally 4x4 luma samples. In addition
to constraining CUs to prohibit block areas smaller than a
predetermined minimum size, for example 16 samples, CUs
are constrained to have a minimum width or height of four.
Other minimums, both in terms of width and height or in
terms of width or height are also possible. The process of
subdivision may also terminate prior to the deepest level of
decomposition, resulting in a CUs larger than the minimum
CU size. It is possible for no splitting to occur, resulting in
a single CU occupying the entirety of the CTU. A single CU
occupying the entirety of the CTU is the largest available
coding unit size. Due to use of subsampled chroma formats,
such as 4:2:0, arrangements of the video encoder 114 and the
video decoder 134 may terminate splitting of regions in the
chroma channels earlier than in the luma channels, including
in the case of a shared coding tree defining the block
structure of the luma and chroma channels. When separate
coding trees are used for luma and chroma, constraints on
available splitting operations ensure a minimum chroma CB
area of 16 samples, even though such CBs are collocated
with a larger luma area, e.g., 64 luma samples.

[0129] At the leaf nodes of the coding tree exist CUs, with
no further subdivision. For example, a leaf node 510 con-
tains one CU. At the non-leaf nodes of the coding tree exist
a split into two or more further nodes, each of which could
be a leaf node that forms one CU, or a non-leaf node
containing further splits into smaller regions. At each leaf
node of the coding tree, one coding block exists for each
colour channel. Splitting terminating at the same depth for
both luma and chroma results in three collocated CBs.
Splitting terminating at a deeper depth for luma than for
chroma results in a plurality of luma CBs being collocated
with the CBs of the chroma channels.

[0130] A quad-tree split 512 divides the containing region
into four equal-size regions as shown in FIG. 5. Compared
to HEVC, versatile video coding (VVC) achieves additional
flexibility with additional splits, including a horizontal
binary split 514 and a vertical binary split 516. Each of the
splits 514 and 516 divides the containing region into two
equal-size regions. The division is either along a horizontal
boundary (514) or a vertical boundary (516) within the
containing block.

[0131] Further flexibility is achieved in versatile video
coding with addition of a ternary horizontal split 518 and a
ternary vertical split 520. The ternary splits 518 and 520
divide the block into three regions, bounded either horizon-
tally (518) or vertically (520) along 4 and % of the
containing region width or height. The combination of the
quad tree, binary tree, and ternary tree is referred to as
‘QTBTTT’. The root of the tree includes zero or more
quadtree splits (the ‘QT” section of the tree). Once the QT
section terminates, zero or more binary or ternary splits may
occur (the ‘multi-tree’ or ‘MT’ section of the tree), finally
ending in CBs or CUs at leaf nodes of the tree. Where the
tree describes all colour channels, the tree leaf nodes are
CUs. Where the tree describes the luma channel or the
chroma channels, the tree leaf nodes are CBs.

US 2024/0373040 Al

[0132] Compared to HEVC, which supports only the quad
tree and thus only supports square blocks, the QTBTTT
results in many more possible CU sizes, particularly con-
sidering possible recursive application of binary tree and/or
ternary tree splits. When only quad-tree splitting is avail-
able, each increase in coding tree depth corresponds to a
reduction in CU size to one quarter the size of the parent
area. In VVC, the availability of binary and ternary splits
means that the coding tree depth no longer corresponds
directly to CU area. The potential for unusual (non-square)
block sizes can be reduced by constraining split options to
eliminate splits that would result in a block width or height
either being less than four samples or in not being a multiple
of four samples. Generally, the constraint would apply in
considering luma samples. However, in the arrangements
described, the constraint can be applied separately to the
blocks for the chroma channels. Application of the con-
straint to split options to chroma channels can result in
differing minimum block sizes for luma versus chroma, for
example when the frame data is in the 4:2:0 chroma format
or the 4:2:2 chroma format. Each split produces sub-regions
with a side dimension either unchanged, halved or quartered,
with respect to the containing region. Then, since the CTU
size is a power of two, the side dimensions of all CUs are
also powers of two.

[0133] FIG. 6 is a schematic flow diagram illustrating a
data flow 600 of a QTBTTT (or ‘coding tree’) structure used
in versatile video coding. The QTBTTT structure is used for
each CTU to define a division of the CTU into one or more
CUs. The QTBTTT structure of each CTU is determined by
the block partitioner 310 in the video encoder 114 and
encoded into the bitstream 115 or decoded from the bit-
stream 133 by the entropy decoder 420 in the video decoder
134. The data flow 600 further characterises the permissible
combinations available to the block partitioner 310 for
dividing a CTU into one or more CUs, according to the
divisions shown in FIG. 5.

[0134] Starting from the top level of the hierarchy, that is
at the CTU, zero or more quad-tree divisions are first
performed. Specifically, a Quad-tree (QT) split decision 610
is made by the block partitioner 310. The decision at 610
returning a ‘1’ symbol indicates a decision to split the
current node into four sub-nodes according to the quad-tree
split 512. The result is the generation of four new nodes,
such as at 620, and for each new node, recursing back to the
QT split decision 610. Each new node is considered in raster
(or Z-scan) order. Alternatively, if the QT split decision 610
indicates that no further split is to be performed (returns a 0’
symbol), quad-tree partitioning ceases and multi-tree (MT)
splits are subsequently considered.

[0135] Firstly, an MT split decision 612 is made by the
block partitioner 310. At 612, a decision to perform an MT
split is indicated. Returning a ‘0’ symbol at decision 612
indicates that no further splitting of the node into sub-nodes
is to be performed. If no further splitting of a node is to be
performed, then the node is a leaf node of the coding tree and
corresponds to a CU. The leaf node is output at 622.
Alternatively, if the MT split 612 indicates a decision to
perform an MT split (returns a ‘1’ symbol), the block
partitioner 310 proceeds to a direction decision 614.
[0136] The direction decision 614 indicates the direction
of the MT split as either horizontal (‘H’ or 0”) or vertical
(‘V’ or ‘1°). The block partitioner 310 proceeds to a decision
616 if the decision 614 returns a ‘0’ indicating a horizontal

Nov. 7, 2024

direction. The block partitioner 310 proceeds to a decision
618 if the decision 614 returns a ‘1’ indicating a vertical
direction.

[0137] At each of the decisions 616 and 618, the number
of partitions for the MT split is indicated as either two
(binary split or ‘BT’ node) or three (ternary split or “TT") at
the BT/TT split. That is, a BT/TT split decision 616 is made
by the block partitioner 310 when the indicated direction
from 614 is horizontal and a BT/TT split decision 618 is
made by the block partitioner 310 when the indicated
direction from 614 is vertical.

[0138] The BT/TT split decision 616 indicates whether the
horizontal split is the binary split 514, indicated by returning
a ‘0, or the ternary split 518, indicated by returning a “1°.
When the BT/TT split decision 616 indicates a binary split,
at a generate HBT CTU nodes step 625 two nodes are
generated by the block partitioner 310, according to the
binary horizontal split 514. When the BT/TT split 616
indicates a ternary split, at a generate HI'T CTU nodes step
626 three nodes are generated by the block partitioner 310,
according to the ternary horizontal split 518.

[0139] The BT/TT split decision 618 indicates whether the
vertical split is the binary split 516, indicated by returning a
‘0’, or the ternary split 520, indicated by returning a ‘1°.
When the BT/TT split 618 indicates a binary split, at a
generate VBT CTU nodes step 627 two nodes are generated
by the block partitioner 310, according to the vertical binary
split 516. When the BT/TT split 618 indicates a ternary split,
at a generate VIT CTU nodes step 628 three nodes are
generated by the block partitioner 310, according to the
vertical ternary split 520. For each node resulting from steps
625-628 recursion of the data flow 600 back to the MT split
decision 612 is applied, in a left-to-right or top-to-bottom
order, depending on the direction 614. As a consequence, the
binary tree and ternary tree splits may be applied to generate
CUs having a variety of sizes.

[0140] FIGS. 7A and 7B provide an example division 700
of'a CTU 710 into a number of CUs or CBs. An example CU
712 is shown in FIG. 7A. FIG. 7A shows a spatial arrange-
ment of CUs in the CTU 710. The example division 700 is
also shown as a coding tree 720 in FIG. 7B.

[0141] At each non-leaf node in the CTU 710 of FIG. 7A,
for example nodes 714, 716 and 718, the contained nodes
(which may be further divided or may be CUs) are scanned
or traversed in a ‘Z-order’ to create lists of nodes, repre-
sented as columns in the coding tree 720. For a quad-tree
split, the Z-order scanning results in top left to right fol-
lowed by bottom left to right order. For horizontal and
vertical splits, the Z-order scanning (traversal) simplifies to
a top-to-bottom scan and a left-to-right scan, respectively.
The coding tree 720 of FIG. 7B lists all nodes and CUs
according to the applied scan order. Each split generates a
list of two, three or four new nodes at the next level of the
tree until a leaf node (CU) is reached.

[0142] Having decomposed the image into CTUs and
further into CUs by the block partitioner 310, and using the
CUs to generate each residual block (324) as described with
reference to FIG. 3, residual blocks are subject to forward
transformation and quantisation by the video encoder 114.
The resulting TBs 336 are subsequently scanned to form a
sequential list of residual coefficients, as part of the opera-
tion of the entropy coding module 338. An equivalent
process is performed in the video decoder 134 to obtain TBs
from the bitstream 133.

US 2024/0373040 Al

[0143] FIGS. 8A, 8B, and 8C show subdivision levels
resulting from splits in a coding trec and the corresponding
effect on a division of a coding tree unit into quantisation
groups. Delta QP (392) is signalled with the residual of a TB
at most once per quantisation group. In HEVC, the definition
of quantisation group corresponds with coding tree depth, as
the definition results in areas of a fixed size. In VVC, the
additional splits mean that coding tree depth is no longer a
suitable proxy for CTU area. In VVC a ‘subdivision level’
is defined, with each increment corresponding to a halving
of the contained area.

[0144] FIG. 8A shows a collection 800 of splits in a coding
tree and the corresponding subdivision levels. At the root
node of the coding tree the subdivision level is initialised to
zero. When a coding tree includes a quadtree split, e.g. 810,
the subdivision level is incremented by two for any CUs
contained therein. When a coding tree includes a binary
split, e.g. 812, the subdivision level is incremented by one
for any CUs contained therein. When a coding tree includes
a ternary split, e.g. 814, the subdivision level is incremented
by two for the outer two CUs and by one for the inner CU
resulting from the ternary split. As the coding tree of each
CTU is traversed, as described with reference to FIG. 6, a
subdivision level of each resulting CU is determined accord-
ing to the collection 800.

[0145] FIG. 8B shows an example set 840 of CU nodes
and illustrates the effect of splits. An example parent node
820 of the set 840 with subdivision level of zero corresponds
to a CTU, of size 64x64 in the example of FIG. 8B. The
parent node 820 is ternary split to produce three child nodes,
821, 822 and 823 of sizes 16x64, 32x64, and 16x64 respec-
tively, the child nodes 821, 822 and 823 have subdivision
levels of 2, 1 and 2, respectively.

[0146] In the example of FIG. 8B the quantisation group
threshold is set to 1, corresponding to a halving of the 64x64
area, i.e. to an area of 2048 samples. A flag tracks the starting
of new QGs. The flag tracking new QGs is reset for any node
with a subdivision level less than or equal to the quantisation
group threshold. The flag is set when traversing the parent
node 820 having a subdivision level of zero. Although the
centre CU 822 of size 32x64 has an area of 2048 samples,
the two sibling CUs 821 and 823 have subdivision levels of
two, i.e. areas of 1024 and so the flag is not reset when
traversing the centre CU and the quantisation group does not
start at the centre CU. Instead, the flag begins at the parent
node, shown at 824, as per the initial flag reset. Effectively,
the QP may change only on boundaries aligned to multiples
of the quantisation group area. Delta QP is signalled along
with the residual of a TB associated with a CB. If no
significant coefficients are present then there is no opportu-
nity to code a delta QP.

[0147] FIG. 8C shows an example 860 of division of a
CTU 862 into multiple CUs and QGs to illustrate the
relationship between subdivision level, QG, and signalling
of delta QP. A vertical binary split divides the CTU 862 into
two halves, a left half 870 containing one CU CU0 and a
right half 872 containing several CUs (CU1-CU4). The
quantisation group threshold is set to two in the example of
FIG. 8C, resulting in quantisation groups normally having
an area equal to one quarter the area of the CTU. As the
parent node, i.e., the root node of the coding tree, has a
subdivision level of zero, the QG flag is reset and a new QG
will begin with the next coded CU, i.e. the CU at arrow 868.
CUO0 (870) has coded coefficients and so a delta QP 864 is

Nov. 7, 2024

coded along with the residual of CUQ. The right half 872 is
subject to a horizontal binary split and further splitting in the
upper and lower sections of the right half 872, resulting in
CU1-CU4. The coding tree nodes corresponding to the
upper (877 including CU1 and CU2) and lower (878 includ-
ing CU3 and CU4) sections of the right half 872 have a
subdivision level of two. The subdivision level of 2 is equal
to the quantisation group threshold of two and so new QGs
commence at each section, marked as 874 and 876 respec-
tively. CU1 has no coded coefficients (no residual) and CU2
is a ‘skipped” CU, which also has no coded coefficients.
Therefore no delta QP is coded for the upper section. CU3
is a skipped CU and CU4 has a coded residual, and so a delta
QP 866 is coded with the residual of CU4 for the QG
including CU3 and CU4.

[0148] FIGS. 9A and 9B show a 4x4 transform block scan
pattern and associated primary and secondary transform
coeflicients. Operation of the secondary transform module
330 upon primary residual coefficients is described in terms
of the video encoder 114. A 4x4 TB 900 is scanned accord-
ing to a backward diagonal scan pattern 910. The scan
pattern 910 proceeds from a ‘last significant coefficient’
position back towards the DC (top-left) coefficient position.
All coefficients positions that are not scanned, for example
when considering scanning in a forward direction, residual
coeflicients located after the last significant coefficient posi-
tion, are implicitly non-significant. When a secondary trans-
form is used all remaining coefficients are non-significant.
That is, all secondary domain residual coefficients not sub-
ject to secondary transformation are non-significant and all
primary domain residual coefficients not populated by appli-
cation of the secondary transform are required to be non-
significant. Moreover, after application of the forward sec-
ondary transform by the module 330, there may be fewer
secondary-transformed coefficients than the number of pri-
mary-transformed coefficients that were processed by the
secondary transform module 330. For example, FIG. 9B
shows a set 920 of blocks. In FIG. 9B, sixteen (16) primary
coeflicients are arranged as one 4x4 sub-block, being 924 of
the 4x4 TB 920. The primary residual coefficients may be
subject to secondary transformation to produce a secondary
transformed block 926 in the example of FIG. 9B. The
secondary transformed block 926 contains eight secondary
transformed coefficients 928. The eight secondary trans-
formed coeflicients 928 are stored in the TB according to the
scan pattern 910, packed from the DC coefficient position
onwards. The remaining coeflicient positions of the 4x4
sub-block, shown as an area 930, contain quantised residual
coeflicients from the primary transform and are required to
all be non-significant for the secondary transform to be
applied. Thus, a last significant coeflicient position of a 4x4
TB specifying a coefficient that is one of the first eight scan
positions of the TB 920 indicates either (i) application of a
secondary transform, or (ii) the output of the primary
transform, after quantisation, having no significant coeffi-
cients beyond the eighth scan position of the TB 920.

[0149] When it is possible to perform a secondary trans-
form on a TB, a secondary transform index, i.e. 388, is
encoded to indicate the possible application of the secondary
transform. The secondary transform index can also indicate,
where multiple transform kernels are available, which kernel
is to be applied as the secondary transform at the module
330. Correspondingly, the video decoder 134 decodes the
secondary transform index 470 when the last significant

US 2024/0373040 Al

coeflicient position is located in any one of the scan posi-
tions reserved for holding secondary transformed coeffi-
cients, e.g. 928.

[0150] Although a secondary transform kernel mapping
16 primary coeflicients to eight secondary coeflicients has
been described, different kernels are possible, including
kernels mapping to a different number of secondary trans-
formed coefficients. The number of secondary transformed
coefficients may be the same as the number of primary
transformed coefficients, for example 16. For TBs of width
four and height greater than four, the behaviour described
with respect to the 4x4 TB case applies to the top sub-block
of the TB. Other sub-blocks of the TB have zero-valued
residual coefficients when the secondary transform is
applied. For TBs of width greater than four and height equal
to four the behaviour described with respect to the 4x4 TB
case applies to the leftmost sub-block of the TB, and other
sub-blocks of the TB have zero-valued residual coeflicients,
allowing the last significant coefficient position to be used to
determine whether the secondary transform index needs to
be decoded or not.

[0151] FIGS. 9C and 9D show an 8x8 transform block
scan pattern and example associated primary and secondary
transform coefficients. FIG. 9C shows a 4x4 sub-block-
based backward diagonal scan pattern 950 for an 8x8 TB
940. The 8x8 TB 940 is scanned in the 4x4 sub-block-based
backward diagonal scan pattern 950. FIG. 9D shows a set
960 showing effect of operation of the secondary transform.
The scan 950 proceeds from a last significant coeflicient
position back to the DC (top-left) coefficient position. Appli-
cation of a forward secondary transform kernel to 48 pri-
mary coefficients, shown as an area 962 of 940, is possible
when the remaining 16 primary coefficients, shown as 964,
are zero-valued. The application of the secondary transform
to the area 962 results in 16 secondary transformed coeffi-
cients shown as 966. The other coefficient positions of the
TB are zero valued, marked as 968. If the last significant
position of the 8x8 TB 940 indicates a secondary trans-
formed coefficient is within 966, the secondary transform
index, 388, is encoded to indicate the application of a
particular transform kernel (or bypassing the kernel) by the
module 330. The video decoder 134 uses the last significant
position of a TB to determine whether or not to decode a
secondary transform index, that is the index 470. For trans-
form blocks with width or height exceeding eight samples,
the approach of FIGS. 9C and 9D is applied in the upper-left
8x8 region, that is to the upper left 2x2 sub-blocks of the TB.

[0152] As described in FIGS. 9A-9D, two sizes of sec-
ondary transform kernels are available. One size of second-
ary transform kernel is for transform blocks with width or
height of four and the other size secondary transform is for
transform blocks with width and height greater than four.
Within each size of kernel, multiple sets (e.g. four) of
secondary transform kernel are available. One set is selected
based on the intra prediction mode for the block, which may
differ between a luma block and a chroma block. Within the
selected set, either one or two kernels are available. The use
of one kernel within a selected set or the bypassing of the
secondary transform is signalled via the secondary transform
index, independently for luma blocks and chroma blocks in
a coding unit belonging to a shared tree of a coding tree unit.
In other words, the index used for the luma channel and the
index used for the chroma channel(s) are independent of one
another.

Nov. 7, 2024

[0153] FIG. 10 shows a set 1000 of transform blocks
available in the versatile video coding (VVC) standard. FIG.
10 also shows the application of the secondary transform to
a subset of residual coefficients from transform blocks of the
set 1000. FIG. 10 shows TBs with widths and heights
ranging from four to 32. However TBs of width and/or
height 64 are possible but are not shown for ease of
reference.

[0154] A 16-point secondary transform 1052 (shown with
darker shading) is applied to a 4x4 set of coefficients. The
16-point secondary transform 1052 is applied to TBs with a
width or a height of four, e.g., a 4x4 TB 1010, an 8x4 TB
1012, a 16x4 TB 1014, a 32x4 TB 1016, a 4x8 TB 1020, a
4x16 TB 1030, and a 4x32 TB 1040. If a 64-point primary
transform is available, the 16-point secondary transform
1052 is applied to TBs of size 4x64 and a 64x4 (not shown
in FIG. 10). For TBs with a width or height of four but with
more than 16 primary coefficients, the 16-point secondary
transform is applied only to the upper-left 4x4 sub-block of
the TB and other sub-blocks are required to have zero-
valued coefficients in order for the secondary transform to be
applied. Generally application of a 16-point secondary trans-
form results in 16 secondary transform coefficients, which
are packed into the TB for encoding into the sub-block from
which the original 16 primary transform coefficients were
obtained. A secondary transform kernel may result in the
creation of fewer secondary transform coefficients than the
number of primary transform coefficients upon which the
secondary transform was applied, for example as described
with reference to FIG. 9B.

[0155] For transform sizes with a width and height greater
than four, a 48-point secondary transform 1050 (shown with
lighter shading) is available for application to three 4x4
sub-blocks of residual coefficients in the upper-left 8x8
region of the transform block, as shown in FIG. 10. The
48-point secondary transform 1050 is applied to an 8x8
transform block 1022, a 16x8 transform block 1024, a 32x8
transform block 1026, an 8x16 transform block 1032, a
16x16 transform block 1034, a 32x16 transform block 1036,
an 8x32 transform block 1042, a 16x32 transform block
1044, and a 32x32 transform block 1046, in each case in the
region shown with light shading and a dashed outline. If a
64-point primary transform is available, the 48-point sec-
ondary transform 1050 is also applicable to TBs of size
8x64, 16x64, 32x64, 64x64, 64x32, 64x16 and 64x8 (not
shown). Application of a 48-point secondary transform
kernel generally results in the production of fewer than 48
secondary transform coefficients. For example, 8 or 16
secondary transform coefficients may be produced. The
secondary transform coefficients are stored in the transform
block in the upper-left region, for example, eight secondary
transform coefficients are shown in FIG. 9D. Primary trans-
form coefficients not subject to the secondary transform
(‘primary-only coeflicients”), for example coefficients 1066
(similarly to 964 of FIG. 9D) of the TB 1034, are required
to be zero-valued in order for the secondary transform to be
applied. After application of the 48-point secondary trans-
form 1050 in a forward direction, the region which may
contain significant coefficients is reduced from 48 coeffi-
cients to 16 coefficients, further reducing the number of
coeflicient positions which may contain significant coeffi-
cients. For example, 968 will contain only non-significant
coeflicients. For the inverse secondary transform, decoded
significant coefficients present, e.g. only in 966 of a TB, are

US 2024/0373040 Al

transformed to produce coefficients any of which may be
significant in a region, e.g. 962, which are then subject to the
primary inverse transform. Only the upper-left 4x4 sub-
block may contain significant coefficients when a secondary
transform reduces one or more sub-blocks to a set of 16
secondary transform coefficients. A last significant coeffi-
cient position located at any coefficient position for which
secondary transform coefficients may be stored indicates
either application of a secondary transform or only a primary
transform was applied. However, after quantisation, the
resulting significant coefficients are in the same region as if
a secondary transform kernel had been applied.

[0156] When the last significant coefficient position indi-
cates a secondary transform coefficient position in a TB (e.g.
922 or 962), a signalled secondary transform index is needed
to distinguish between applying a secondary transform ker-
nel or bypassing the secondary transform. Although appli-
cation of secondary transforms to TBs of various sizes in
FIG. 10 has been described from the perspective of the video
encoder 114, a corresponding inverse process is performed
in the video decoder 134. The video decoder 134 firstly
decodes a last significant coefficient position. If the decoded
last significant coeflicient position indicates potential appli-
cation of a secondary transform, that is the position is within
928 or 966 for secondary transform kernels that produce 8
or 16 secondary transform coefficients respectively, a sec-
ondary transform index is decoded to determine whether to
apply or bypass the inverse secondary transform.

[0157] FIG. 11 shows a syntax structure 1100 for a bit-
stream 1101 with multiple slices. Each of the slices includes
multiple coding units. The bitstream 1101 may be produced
by the video encoder 114, e.g. as the bitstream 115, or may
be parsed by the video decoder 134, e.g. as the bitstream
133. The bitstream 1101 is divided into portions, for
example network abstraction layer (NAL) units, with delin-
eation achieved by preceding each NAL unit with a NAL
unit header such as 1108. A sequence parameter set (SPS)
1110 defines sequence-level parameters, such as a profile
(set of tools) used for encoding and decoding the bitstream,
chroma format, sample bit depth, and frame resolution.
Parameters are also included in the set 1110 that constrain
the application of different types of split in the coding tree
of each CTU. Coding of parameters that constrain the type
of split may be optimised for more compact representation,
for example, using log 2 basis for block size constraints and
expressing the parameters relative to other parameters such
as minimum CTU size. Several parameters that are coded in
the SPS 1110 are as follows:

[0158] log 2_ctu_size minus5: specifies the CTU size,
with coded values 0, 1, and 2 specifying a CTU size of
32x32, 64x64, and 128x128, respectively.

[0159] partition_constraints_override_enabled_flag:
enables the ability to apply a slice-level override of
several parameters, collectively known as partition
constraint parameters 1130.

[0160] log 2 _min_luma_coding block_size_minus2:
specifies the minimum coding block size (in luma
samples), with values 0, 1, 2, . . . specifying minimum
luma CB sizes of 4x4, 8x8, 16x16, The maximum
coded value is constrained by the specified CTU size,
i.e. such that log 2_min_luma_coding_block_size_mi-
nus2= log 2_ctu_size_minus5+3. Available chroma
block dimensions correspond to available luma block

Nov. 7, 2024

dimensions, scaled according to chroma channel sub-
sampling of the chroma format in use.

[0161] sps_max_mtt_hierarchy_depth_inter_slice:
specifies the maximum hierarchy depth of coding units
in the coding tree for multi-tree type splitting (i.e.
binary and ternary splitting) relative to a quadtree node
in the coding tree (i.e. once quadtree splitting ceases in
the coding tree) for inter (P or B) slices and is one of
the parameters 1130.

[0162] sps_max_mtt_hierarchy_depth_intra_slice_
luma: specifies the maximum hierarchy depth of coding
units in the coding tree for multi-tree type splitting (i.e.
binary and ternary) relative to a quadtree node in the
coding tree (i.e. once quadtree splitting ceases in the
coding tree) for intra (I) slices and is one of the
parameters 1130.

[0163] partition_constraints_override_flag: the param-
eter is signalled in the slice header when partition_
constraints_override_enabled_flag in the SPS is equal
to one and indicates that the partition constraints as
signalled in the SPS are to be overridden for the
corresponding slice.

[0164] A picture parameter set (PPS) 1112 defines sets of
parameters applicable to zero or more frames. Parameters
included in the PPS 1112 include parameters dividing frames
into one or more “tiles” and/or “bricks”. Parameters of the
PPS 1112 may also include a list of CU chroma QP offsets,
one of which may be applied at the CU level to derive a
quantisation parameter for use by chroma blocks from the
quantisation parameter of a collocated luma CB.

[0165] A sequence of slices forming one picture is known
as an access unit (AU), such as AU 0 1114. The AU 0 1114
includes three slices, such as slices 0 to 2. Slice 1 is marked
as 1116. As with other slices, slice 1 (1116) includes a slice
header 1118 and slice data 1120.

[0166] The slice header includes parameters grouped as
1134. The group 1134 includes:

[0167] slice_max_mtt_hierarchy_depth_luma: sig-
nalled in the slice header 1118 when partition_con-
straints_override_flag in the slice header is equal to one
and overrides the value derived from the SPS. For an [
slice, instead of using sps_max_mtt_hierarchy_depth_
intra_slice_luma to set a MaxMttDepth at 1134, slice_
max_mtt_hierarchy_depth_luma is used. For a P or B
slice, instead of using sps_max_mtt_hierarchy_depth_
inter_slice, slice_max_mtt_hierarchy_depth_luma is
used.

[0168] A variable MinQtlLog2SizelntraY (not shown) is
derived from a syntax element sps_log 2_diff_min_qt_min_
cb_intra_slice_luma, decoded from the SPS 1110, specifies
the minimum coding block size resulting from zero or more
quadtree splits (i.e. with no further MTT splits occurring in
the coding tree) for I slicesss. A variable
MinQtLog2SizelnterY (not shown) is derived from a syntax
element sps_log 2_diff_min_qt_min_cb_inter_slice,
decoded from the SPS 1110. The variable
MinQtLog2SizelnterY specifies the minimum coding block
size resulting from zero or more quadtree splits (i.e. with no
futher MTT splits occurring in the coding tree) for P and B
slices. As CUs resulting from quadtree splits are square, the
variables MinQtLog2Sizelntra Y and MinQtLog2SizelnterY
each specify both the width and the height (as a log 2 of the
CU width/height).

US 2024/0373040 Al

[0169] A parameter cu_qgp_delta_subdiv can be optionally
signalled in the slice header 1118 and indicates the maxi-
mum subdivision level at which delta QP is signalled in a
coding tree for shared trees or luma branches in a separate
tree slice. For I slices, the range of cu_qp_delta_subdiv is 0
to 2*(log 2_ctu_size_minus5+5-MinQtLog2SizelntraY +
MaxMttDepth Y 1134. For P or B slices, the range of
cu_qp_delta_subdiv is 0 to 2*(log 2_ctu_size_minus5+5-
MinQtLog2SizelnterY +MaxMttDepthY 1134. As the range
of cu_qp_delta_subdiv is dependent on the value MaxMtt-
DepthY 1134 derived from partition constraints either
obtained from the SPS 1110 or the slice header 1118, there
is no parsing issue.

[0170] A parameter cu_chroma_qp_offset_subdiv can be
optionally signalled in the slice header 1118 and indicates
the maximum subdivision level at which chroma CU QP
offsets are signalled, either in a shared tree or in chroma
branches in a separate tree slice. The range constraints on
cu_chroma_qp_offset_subdiv for I or P/B slices is the same
as the corresponding range constraints on cu_gp_delta_
subdiv.

[0171] A subdivision level 1136 is derived for the CTUs in
the slice 1120, designated cu_qp_delta_subdiv for luma CBs
and cu_chroma_qp_offset_subdiv for chroma CBs. The sub-
division level is used to establish at which points in the CTU
delta QP syntax elements are coded, as described with
reference to FIGS. 8A-C. For chroma CBs, a chroma CU
level offset enable (and index, if enabled) are signalled, also
using the approach of FIGS. 8A-C.

[0172] FIG. 12 shows a syntax structure 1200 for the slice
data 1120 of the bitstream 1101 (e.g. 115 or 133) with a
shared tree for luma and chroma coding blocks of a coding
tree unit, such as a CTU 1210. The CTU 1210 includes one
or more CUs, an example shown as a CU 1214. The CU
1214 includes a signalled prediction mode 12164 followed
by a transform trec 12165. When the size of the CU 1214
does not exceed the maximum transform size (either 32x32
or 64x64) then the transform tree 12164 includes one
transform unit, shown as a TU 1218.

[0173] If the prediction mode 1216¢ indicates usage of
intra prediction for the CU 1214, a luma intra prediction
mode and a chroma intra prediction mode are specified. For
the luma CB of the CU 1214, the primary transform type is
also signalled as either (i) DCT-2 horizontally and vertically,
(i1) transform skip horizontally and vertically, or (iii) com-
binations of DST-7 and DCT-8 horizontally and vertically. If
the signalled luma transform type is DCT-2 horizontally and
vertically (option (1)), an additional luma secondary trans-
form type 1220, also known as a ‘low frequency non-
separable transform’ (LFNST) index, is signalled in the
bitstream, under conditions as described with reference to
FIGS. 9A-D. A chroma secondary transform type 1221 is
also signalled. The chroma secondary transform type 1221 is
signalled independently of whether the luma primary trans-
form type is DCT-2 or not.

[0174] Use of a shared coding tree results in the TU 1218
including TBs for each colour channel, shown as a luma TB
Y 1222, a first chroma TB Cb 1224, and a second chroma TB
Cr 1226. A coding mode in which a single chroma TB is sent
to specify the chroma residual both for Cb and Cr channels
is available, known as a ‘joint CbCr’ coding mode. When the
joint CbCr coding mode is enabled, a single chroma TB is
encoded.

Nov. 7, 2024

[0175] Irrespective of colour channel, each TB includes a
last position 1228. The last position 1228 indicates the last
significant residual coefficient position in the TB when
considering coeflicients in the diagonal scan pattern, used to
serialise the array of coefficients of a TB, in a forward
direction (i.e. from the DC coefficient onwards). If the last
position 1228 of a TB indicates that only coefficients in the
secondary transform domain are significant, that is all
remaining coeflicients that would only be subject to primary
tramsformation, the secondary transform index is signalled
to specify whether or not to apply a secondary transform.

[0176] If a secondary transform is to be applied and if
more than one secondary transform kernel is available, the
secondary transform index indicates which kernel is
selected. Generally, either one kernel is available or two
kernels are available in a ‘candidate set’. The candidate set
is determined from the intra prediction mode of the block.
Generally, there are four candidate sets, although there may
be fewer candidate sets. As described above, use of a
secondary transform for luma and chroma and accordingly
the kernels selected depend on intra prediction modes for the
luma and chroma channels respectively. The kernels can also
depend on the block size of the corresponding luma and
chroma TBs. the kernel selected for chroma also depends on
the chroma subsampling ration of the bitstream. If only one
kernel is available signalling is limited to apply or not apply
the secondary transform (index range O to 1). If two kernels
are available, the index values are O (not apply), 1 (apply
first kernel), or 2 (apply second kernel). For chroma, the
same secondary transform kernel is applied to each chroma
channel and thus the residuals of the Cb block 1224 and the
Cr block 1226 need to only include significant coefficients in
positions subject to secondary transformation, as described
with reference to FIGS. 9A-D. If joint CbCr coding is used,
the requirement to only include significant coefficients in
positions subject to secondary transformation is applicable
only to the single coded chroma TB, as the resulting Cb and
Cr residuals only contain significant coeflicients in positions
corresponding to significant coefficients in the joint coded
TB. If the applicable colour channel(s) of a given secondary
index are described by a single TB (single last position, e.g.
1228), i.e. luma always needs only one TB and chroma
needs one TB when joint CbCr coding is in use, the
secondary transform index may be coded immediately after
coding the last position instead of after the TU, i.e. as index
1230 instead of 1220 (or 1221). Signalling the secondary
transform earlier in the bitstream allows the video decoder
134 to commence application of the secondary transform as
each residual coefficient of residual coefficients 1232 is
decoded, reducing latency in the system 100.

[0177] Inan arrangement of the video encoder 114 and the
video decoder 134 a separate secondary transform index is
signalled for each chroma TB, i.e. 1224 and 1226 when joint
CbCr coding is not used, resulting in independent control of
secondary transform for each colour channel. If each TB is
independently controlled, the secondary transform index for
each TB may be signalled immediately after the last position
of'the corresponding TB for luma and for chroma (regardless
of application of joint CbCr mode or not).

[0178] FIG. 13 shows a method 1300 for encoding the
frame data 113 into the bitstream 115, the bitstream 115
including one or more slices as sequences of coding tree
units. The method 1300 may be embodied by apparatus such
as a configured FPGA, an ASIC, or an ASSP. Additionally,

US 2024/0373040 Al

the method 1300 may be performed by the video encoder
114 under execution of the processor 205. Due to the
workload of encoding a frame, steps of the method 1300
may be performed in different processors to share the
workload, for example using contemporary multi-core pro-
cessors, such that different slices are encoded by different
processors. Moreover, the partitioning constraints and quan-
tisation group definitions may vary from one slice to another
as deemed beneficial for rate-control purposes in encoding
each portion (slice) of the bitstream 115. For additional
flexibility in encoding the residual of each coding unit, not
only may the quantisation group subdivision level vary from
one slice to another, application of the secondary transform
is independently controllable for luma and chroma. As such,
the method 1300 may be stored on computer-readable stor-
age medium and/or in the memory 206.

[0179] The method 1300 begins at an encode SPS/PPS
step 1310. At step 1310 the video encoder 114 encodes the
SPS 1110 and the PPS 1112 into the bitstream 115 as
sequences of fixed and variable length encoded parameters.
A partition_constraints_override_enabled_flag is encoded as
part of the SPS 1110, indicative that partition constraints are
able to be overridden in the slice header (1118) of respective
slices (such as 1116). Default partition constraints are also
encoded as part of the SPS 1110 by the video encoder 114.
[0180] The method 1300 continues from step 1310 to a
divide frame into slices step 1320. In execution of step 1320
the processor 205 divides the frame data 113 into one or
more slices or contiguous portions. Where parallelism is
desired, separate instances of the video encoder 114 encode
each slice somewhat independently. A single video encoder
114 may process each slice sequentially, or some interme-
diate degree of parallelism may be implemented. Generally,
the division of a frame into slices (contiguous portions) is
aligned to boundaries of divisions of the frame into regions
known as ‘sub-pictures’ or tiles or the like.

[0181] The method 1300 continues from step 1320 to an
encode slice header step 1330. At step 1330 the entropy
encoder 338 encodes the slice header 1118 into the bitstream
115. An example implementation of step 1330 is provided
hereafter with reference to FIG. 14.

[0182] The method 1300 continues from step 1330 to a
divide slice into CTUs step 1340. In execution of step 1340
the video encoder 114 divides the slice 1116 into a sequence
of CTUs. Slice boundaries are aligned to CTU boundaries
and CTUs in a slice are ordered according to a CTU scan
order, generally a raster scan order. The division of a slice
into CTUs establishes which portion of the frame data 113
is to be processed by the video encoder 113 in encoding the
current slice.

[0183] The method 1300 continues from step 1340 to a
determine coding tree step 1350. At step 1350 the video
encoder 114 determines a coding tree for a current selected
CTU in the slice. The method 1300 starts from the first CTU
in the slice 1116 on the first invocation of the step 1350 and
progresses to subsequent CTUs in the slice 1116 on subse-
quent invocations. In determining the coding tree of a CTU,
a variety of combinations of quadtree, binary, and ternary
splits are generated by the block partitioner 310 and tested.
[0184] The method 1300 continues from step 1350 to a
determine coding unit step 1360. At step 1360 the video
encoder 114 executes to determine ‘optimal” encodings for
the CUS resulting from various coding trees under evalua-
tion using known methods. Determining optimal encodings

Nov. 7, 2024

involves determining a prediction mode (e.g. intra prediction
with specific mode or inter prediction with motion vector),
a transform selection (primary transform type and optional
secondary transform type). If the primary transform type for
the luma TB is determined to be DCT-2 or any quantised
primary transform coefficient that is not subject to forward
secondary transformation is significant, the secondary trans-
form index for the luma TB may indicate application of the
secondary transform. Otherwise the secondary transform
index for luma indicates bypassing of the secondary trans-
form. For the luma channel, the primary transform type is
determined to be DCT-2, transform skip, or one of the MTS
options for the chroma channels, DCT-2 is the available
transform type. Determination of the secondary transform
type is further described with reference to FIGS. 19A and
19B. Determining the encoding can also include determin-
ing a quantisation parameter where it is possible to change
the QP, that is at a quantisation group boundary. In deter-
mining individual coding units the optimal coding tree is
also determined, in a joint manner. When a coding unit is to
be coded using intra prediction, a luma intra prediction mode
and a chroma intra prediction are determined.

[0185] The determine coding unit step 1360 may inhibit
testing application of the secondary transform when there
are no ‘AC’ (coefficients in locations other than the top-left
position of the transform block) residual coefficients present
in the primary domain residual resulting from application of
the DCT-2 primary transform. If secondary transform appli-
cation is tested on transform blocks which only include a DC
coeflicient (last position indicates only the top-left coeffi-
cient of the transform block is significant) coding gain is
seen. The inhibition of testing secondary transform when
only a DC primary coefficient exists spans the blocks for
which the secondary transform index applies, that is, Y, Cb
and Cr for shared tree (with Y channel only when the Cb and
Cr blocks are width or height of two samples) when a single
index is coded. Even though a residual with a DC coefficient
only is low in coding cost compared to a residual with at
least one AC coefficient, application of a secondary trans-
form even to a residual with only a significant DC coeflicient
results in a further reduction in the magnitude of the final
coded DC coefficient. Even after further quantisation and/or
rounding operations prior to coding, other (AC) coeflicients
have insufficient magnitude after secondary transformation
to result in significant coded residual coeflicient(s) in the
bitstream. In a shared or separate tree coding tree, provided
at least one significant primary coefficient exists, even if
only DC coeflicient(s) of the respective transform blocks,
within the scope of application of the secondary transform
index, the video encoder 114 tests for selection of non-zero
secondary transform index values (that is, for application of
the secondary transform).

[0186] The method 1300 continues from step 1360 to an
encode coding unit step 1370. At step 1370 the video
encoder 114 encodes the determined coding unit of the step
1360 into the bitstream 115. An example of how the coding
unit is encoded is described in more detail with reference to
FIG. 15.

[0187] The method 1300 continues from step 1370 to a
last coding unit test step 1380. At step 1380 the processor
205 tests if the current coding unit is the last coding unit in
the CTU. If not (“NO” at step 1380), control in the processor
205 progresses to the determine coding unit step 1360.

US 2024/0373040 Al

Otherwise, if the current coding unit is the last coding unit
(“YES” at step 1380) control in the processor 205 progresses
to a last CTU test step 1390.

[0188] At the last CTU test step 1390 the processor 205
tests if the current CTU is the last CTU in the slice 1116. If
not the last CTU in the slice 1116, control in the processor
205 returns to the determine coding tree step 1350. Other-
wise, if the current CTU is the last (“YES” at step 1390),
control in the processor progresses to a last slice test step
13100.

[0189] At the last slice test step 13100 the processor 205
tests if the current slice being encoded is the last slice in the
frame. If not the last slice (“NO” at step 13100), control in
the processor 205 progresses to the encode slice header step
1330. Otherwise, if the current slice is the last and all slices
(contiguous portions) have been encoded (“YES” at step
13100) the method 1300 terminates.

[0190] FIG. 14 shows a method 1400 for encoding the
slice header 1118 into the bitstream 115, as implemented at
step 1330. The method 1400 may be embodied by apparatus
such as a configured FPGA, an ASIC, or an ASSP. Addi-
tionally, the method 1400 may be performed by the video
encoder 114 under execution of the processor 205. As such,
the method 1400 may be stored on computer-readable stor-
age medium and/or in the memory 206.

[0191] The method 1400 starts at a partition constraints
override enabled test step 1410. At step 1410 the processor
205 tests if the partition constraints override enabled flag, as
encoded in the SPS 1110, indicates that partition constraints
may be overridden at the slice level. If partition constraints
may be overridden at the slice level (“YES” at step 1410),
control in the processor 205 progresses to a determine
partition constraints step 1420. Otherwise, if partition con-
strains may not be overwritten at slice level (“NO” at step
1410), control in the processor 205 progresses to an encode
other parameters step 1480.

[0192] At the determine partition constraints step 1420 the
processor 205 determines partition constraints (e.g. maxi-
mum MTT split depth) suitable for the current slice 1116. In
one example, the frame data 310 contains a projection of 360
degree view of a scene mapped into the 2D frame and
divided into several sub-pictures. Depending on the selected
viewport, certain slices may require higher fidelity and other
slices may require lower fidelity. The partition constraints
for a given slice may be set based on the fidelity requirement
of the portion of the frame data 310 encoded by the slice
(e.g. as per the step 1340). Where lower fidelity is deemed
acceptable, a shallower coding tree with larger CUs is
acceptable and so the maximum MTT depth may be set to
a lower value. The subdivision level 1136, signalled with a
flag cu_qp_delta_subdiv, is determined accordingly, at least
in the range resulting from the determined maximum MTT
depth 1134. A corresponding chroma subdivision level is
also determined and signalled.

[0193] The method 1400 continues from step 1420 to an
encode partition constraint override flag step 1430. At step
1430 the entropy encoder 338 encodes a flag into the
bitstream 115 indicating whether the partition constraints as
signalled in the SPS 1110 are to be overridden for the slice
1116. If partition constraints specific to the current slice were
derived at the step 1420, the flag value would indicate usage
of the partition constraint override functionality. If the
constraints determined at the step 1420 match those already
encoded in the SPS 1110 there is no need to override the

Nov. 7, 2024

partition constraints since there is no change to be signalled
and the flag values are encoded accordingly.

[0194] The method 1400 continues from step 1430 to a
partition constraint override test step 1440. At step 1440 the
processor 205 tests the flag value encoded at the step 1430.
If the flag indicates partition constraints are to be overridden
(“YES” at step 1440) control in the processor 205 progresses
to an encode slice partition constraints step 1450. Otherwise
if partition constraints are not to be overridden (“NO” at step
1440), control in the processor 205 progresses to the encode
other parameters step 1480.

[0195] The method 1400 continues from step 1440 to an
encode slice partition constraints step 1450. In execution of
step 1450 the entropy encoder 338 encodes the determined
partition constraints for the slice into the bitstream 115. The
partition constraints for the slice include ‘slice_max_mtt_
hierarchy_depth_luma’, from which MaxMttDepth Y 1134
is derived.

[0196] The method 1400 continues from step 1450 to an
encode QP subdivision level step 1460. At step 1460 the
entropy encoder 338 encodes a subdivision level for luma
CBs using a ‘cu_qp_delta_subdiv’ syntax element, as
described with reference to FIG. 11.

[0197] The method 1400 continues from step 1460 to an
encode chroma QP subdivision level step 1470. At step 1470
the entropy encoder 338 encodes a subdivision level for
signalling of CU chroma QP offsets using a ‘cu_chroma_
qp_offset_subdiv’ syntax element, as described with refer-
ence to FIG. 11.

[0198] Steps 1460 and 1470 operate to encode an overall
QP subdivisional level for a slice (contiguous portion) of a
frame. The overall subdivisional level comprises both the
subdivision level for luma coding units and the subdivision
level for chroma coding units of the slice. The chroma and
luma subdivision levels can be different, for example due to
use of separate coding trees for luma and chroma in an I
slice.

[0199] The method 1400 continues from step 1470 to the
encode other parameters step 1480. At step 1480 the entropy
encoder 338 encodes other parameters into the slice header
1118, such as those necessary for control of specific tools
like deblocking, adaptive loop filter, optional selection of a
scaling list (for non-uniform application of a quantisation
parameter to a transform block) from one previously sig-
nalled. The method 1400 terminates upon execution of step
1480.

[0200] FIG. 15 shows a method 1500 for encoding a
coding unit into the bitstream 115, corresponding to the step
1370 of FIG. 13. The method 1500 may be embodied by
apparatus such as a configured FPGA, an ASIC, or an ASSP.
Additionally, the method 1500 may be performed by the
video encoder 114 under execution of the processor 205. As
such, the method 1500 may be stored on computer-readable
storage medium and/or in the memory 206.

[0201] The method 1500 starts at an encode prediction
mode step 1510. At step 1510 the entropy encoder 338
encodes the prediction mode for the coding unit, as deter-
mined at the step 1360, into the bitstream 115. A ‘pred_
mode’ syntax element is encoded to distinguish between use
of intra prediction, inter prediction, or other prediction
modes for the coding unit. If intra prediction is used for the
coding unit then a luma intra prediction mode is encoded and
a chroma intra prediction mode is encoded. If inter predic-
tion is used for the coding unit then a ‘merge index’ may be

US 2024/0373040 Al

encoded to select a motion vector from an adjacent coding
unit for use by this coding unit, a motion vector delta may
be encoded to introduce an offset to a motion vector derived
from a spatially neighbouring block. A primary transform
type is encoded to select between use of DCT-2 horizontally
and vertically, transform skip horizontally and vertically, or
combinations of DCT-8 and DST-7 horizontally and verti-
cally for the luma TB of the coding unit.

[0202] The method 1500 continues from step 1510 to a
coded residual test step 1520. At step 1520 the processor 205
determines if a residual needs to be coded for the coding
unit. If there are any significant residual coefficients to be
coded for the coding unit (“YES” at step 1520) control in the
processor 205 progresses to a new QG test step 1530.
Otherwise if there are no significant residual coefficients for
coding (“NO” at step 1520) the method 1500 terminates, as
all information needed to decode the coding unit is present
in the bitstream 115.

[0203] At the new QG test step 1530 the processor 205
determines if the coding unit corresponds to a new quanti-
sation group. If the coding unit corresponds to a new
quantisation group (“YES” at step 1530) control in the
processor 205 progresses to an encode delta QP step 1540.
Otherwise if the coding unit does not relate to a new
quantisation group (“NO” at step 1530) control in the
processor 205 progresses to a perform primary transform
step 1550. In encoding each coding unit, nodes of the coding
tree of the CTU are traversed at step 1530. When any of the
child nodes of a current node have a subdivision level less
than or equal to the subdivision level 1136 for the current
slice, as determined from “cu_gp_delta_subdiv”’, a new
quantisation group begins in the area of the CTU corre-
sponding to the node and step 1530 returns “YES”. The first
CU in the quantisation group to include a coded residual will
also include a coded delta QP, signalling any change to the
quantisation parameter applicable to residual coefficients in
this quantisation group.

[0204] At the encode delta QP step 1540 the entropy
encoder 338 encodes a delta QP into the bitstream 115. The
delta QP encodes a difference between a predicted QP and
the intended QP for use in the current quantisation group.
The predicted QP is derived by averaging the QPs of
neighbouring earlier (above and left) quantisation groups.
When the subdivision level is lower, the quantisation groups
are larger and delta QP is coded less frequently. Less
frequent coding of delta QP results in lower overhead for
signalling changes in QP but also less flexibility in rate
control. Selection of the quantisation parameter for each
quantisation group is performed by a QP controller module
390 which typically implements a rate control algorithm to
target a specific bitrate for the bitstream 115, somewhat
independently of changes in the statistics of the underlying
frame data 113. The method 1500 continues from step 1540
to the perform primary transform step 1550.

[0205] At the perform primary transform step 1550 the
forward primary transform module 326 performs a primary
transform according to the primary transform type of the
coding unit, resulting in primary transform coefficients 328.
The primary transform is performed on each colour channel,
firstly on the luma channel (Y) and then upon Cb, and Cr
TBs upon subsequent invocations of the step 1550 for the
current TU. For the luma channel, the primary transform
type (DCT-2, transform skip, MTS options) is performed
and for the chroma channels, DCT-2 is performed.

Nov. 7, 2024

[0206] The method 1500 continues from step 1550 to a
quantise primary transform coeflicients step 1560. At step
1560 the quantiser module 334 quantises the primary trans-
form coeflicients 328 according to the quantisation param-
eter 392 to produce quantised primary transform coefficients
332. The delta QP is used when present to encode the
transform coefficients 328.

[0207] The method 1500 continues from step 1560 to a
perform secondary transform step 1570. At step 1570 the
secondary transform module 330 performs a secondary
transform according to the secondary transform index 388
for the current transform block on the quantised primary
transform coeflicients 332 to produce secondary transform
coeflicients 336. Although the secondary transform is per-
formed after quantisation, the primary transform coefficients
328 may retain a higher degree of precision compared to the
final intended quantiser step size of the quantisation param-
eter 392, for example magnitudes may be 16x larger than
those that would result directly from application of the
quantisation parameter 392, i.e. four additional bits of pre-
cision would be retained. Retaining additional bits of pre-
cision in the quantised primary transform coefficients 332
allows the secondary transform module 330 to operate with
greater accuracy on coefficients in the primary coeflicient
domain. After application of the secondary transform, a final
scaling (e.g. right-shift by four bits) at step 1560 results in
quantisation to the intended quantiser step size of the
quantisation parameter 392. Application of a ‘scaling list’ is
performed on the primary transform coefficients, which
correspond to well-known transform basis functions (DCT-
2, DCT-8, DST-7) rather than operating on secondary trans-
form coefficients, which result from the trained secondary
transform kernels. When the secondary transform index 388
for the transform block indicates no application of a sec-
ondary transform (index value equal to zero) the secondary
transform is bypassed. That is, the primary transform coef-
ficients 332 are propagated through the secondary transform
module 330 unchanged to become the secondary transform
coeflicients 336. A luma secondary transform index is used,
in conjunction with a luma intra prediction mode, to select
a secondary transform kernel for application to the luma TB.
A chroma secondary transform index is used, in conjunction
with a chroma intra prediction mode, to select a secondary
transform kernel for application to the chroma TBs.

[0208] The method 1500 continues from step 1570 to an
encode last position step 1580. At step 1580 the entropy
encoder 338 encodes the position of the last significant
coeflicient in the secondary transform coefficients 336 for a
current transform block into the bitstream 115. Upon the first
invocation of the step 1580, the luma TB is considered and
subsequent invocations consider Cb and then Cr TBs.

[0209] In arrangements where the secondary transform
index 388 is encoded immediately after the last position, the
method 1500 continues to an encode LFNST index step
1590. At step 1590 the entropy encoder 338 encodes the
secondary transform index 338 into the bitstream 115 as an
‘Ifnst_index’, using a truncated unary codeword, if the
secondary transform index was not inferred to be zero based
upon the last position encoded at step 1580. Each CU has
one luma TB, allowing the step 1590 to be performed for
luma blocks and when a ‘joint’ coding mode is used for
chroma a single chroma TB is coded and so the step 1590
may be performed for chroma. Knowledge of the secondary
transform index prior to decoding each residual coefficient

US 2024/0373040 Al

enables the secondary transform to be applied on a coeffi-
cient-by-coefficient basis, e.g. using multiply-and-accumu-
late logic, as coefficients are decoded. The method 1500
continues from step 1590 to an encode sub-blocks step
15100.

[0210] If the secondary transform index 388 is not
encoded immediately after the last position, the method
1500 continues from step 1580 to the encode sub-blocks step
15100. At the encode sub-blocks step 15100 the residual
coefficients of the current transform block (336), are
encoded into the bitstream 115 as a series of sub-blocks. The
residual coefficients are encoded progressing from the sub-
block containing the last significant coefficient position back
to the sub-block containing the DC residual coefficient.
[0211] The method 1500 continues from step 15100 to a
last TB test step 15110. At step the processor 205 tests if the
current transform block is the last one in a progression over
the colour channels, i.e. Y, Cb, and Cr. If the just-encoded
transform block is for a Cr TB (“YES” at step 15110) control
in the processor 205 progresses to an encode luma LFNST
index step 15120. Otherwise, if the current TB is not the last
(“YES” at 15110) control in the processor 205 returns to the
perform primary transform step 1550 and the next TB (Cb
or Cr is selected).

[0212] The steps 1550 to 15110 are described in relation to
an example of a shared coding tree structure where the
prediction mode is intra prediction and uses DCT-2. Opera-
tion of steps such as performing the primary transform
(1550), quantising primary transform coefficients (1560) and
encoding the last position (1590) can be implemented for
inter prediction modes or for intra prediction modes other
than for a shared coding tree structure using known methods.
Steps 1510 to 1540 can be implemented regardless of the
prediction mode or coding tree structure.

[0213] The method 1500 continues from step 15110 to the
encode luma LFNST index step 15120. At step 15120 the
secondary transform index applied to the luma TB is
encoded into the bitstream 115 by the entropy encoder 338,
if not inferred to be zero (secondary transform not applied).
The luma secondary transform index is inferred to be zero if
the last significant position for the luma TB indicates a
significant primary-only residual coefficient or if a primary
transform other than DCT-2 is performed. Additionally, the
secondary transform index applied to the luma TB is
encoded into the bitstream only for coding units using intra
prediction and a shared coding tree structure. The secondary
transform index applied to the luma TB is encoded using the
flag 1220 (or the flag 1230 for joint CbCr mode).

[0214] The method 1500 continues from step 15120 to an
encode chroma LFNST index step 15130. At step 1530 the
secondary transform index applied to the chroma TBs is
encoded into the bitstream 115 by the entropy encoder 338,
if the chroma secondary transform index is not inferred to be
zero (secondary transform not applied). The chroma sec-
ondary transform index is inferred to be zero if the last
significant position for either chroma TB indicates a signifi-
cant primary-only residual coefficient. The method 1500
terminates upon execution of step 15130, with control in the
processor 205 returning to the method 1300. The secondary
transform index applied to the chroma TBs is encoded into
the bitstream only for coding units using intra prediction and
a shared coding tree structure. The secondary transform
index applied to the chroma TBs is encoded using the flag
1221 (or the flag 1230 for joint CbCr mode).

Nov. 7, 2024

[0215] FIG. 16 shows a method 1600 for decoding a frame
from a bitstream as sequences of coding units arranged into
slices. The method 1600 may be embodied by apparatus
such as a configured FPGA, an ASIC, or an ASSP. Addi-
tionally, the method 1600 may be performed by the video
decoder 134 under execution of the processor 205. As such,
the method 1600 may be stored on computer-readable stor-
age medium and/or in the memory 206.

[0216] The method 1600 decodes a bitstream as encoded
using the method 1300 in which the partitioning constraints
and quantisation group definitions may vary from one slice
to another as deemed beneficial for rate-control purposes in
encoding each portion (slice) of the bitstream 115. Not only
may the quantisation group subdivision level vary from one
slice to another, application of the secondary transform is
independently controllable for luma and chroma.

[0217] The method 1600 begins at a decode SPS/PPS step
1610. In execution of step 1610 the video decoder 134
decodes the SPS 1110 and the PPS 1112 from the bitstream
133 as sequences of fixed and variable length parameters. A
partition_constraints_override_enabled_flag is decoded as
part of the SPS 1110, indicative of whether partition con-
straints are able to be overridden in the slice header (e.g.
1118) of respective slices (e.g. 1116). The default (that is, as
signalled in the SPS 1110 and used in a slice in the absence
of subsequent overriding) partition constraint parameters
1130 are also decoded as part of the SPS 1110 by the video
decoder 134.

[0218] The method 1600 continues from step 1610 to a
determine slice boundaries step 1620. In execution of step
1620 the processor 205 determines the location of slices in
the current access unit in the bitstream 133. Generally, slices
are identified by determining NAL unit boundaries (by
detecting ‘start codes’) and, for each NAL unit, reading a
NAL unit header that includes a ‘NAL unit type’. Specific
NAL unit types identify slice types, such as ‘I slices’, ‘P
slices’, and ‘B slices’. Having identified slice boundaries,
the application 233 may distribute performance of subse-
quent steps of the method 1600 on different processors, e.g.
in a multi-processor architecture, for parallel decoding.
Different slices may be decoded by each processor in the
multi-processor system for higher decoding throughput.
[0219] The method 1600 continues from step 1610 to a
decode slice header step 1630. At step 1630 the entropy
decoder 420 decodes the slice header 1118 from the bit-
stream 133. An example method of decoding the slice header
1118 from the bitstream 133, as implemented at step 1630 is
described hereafter with reference to FIG. 17.

[0220] The method 1600 continues from step 1630 to a
divide slice into CTUs step 1640. At step 1640 the video
decoder 134 divides the slice 1116 into a sequence of CTUs.
Slice boundaries are aligned to CTU boundaries and CTUs
in a slice are ordered according to a CTU scan order. The
CTU scan order is generally a raster scan order. The division
of a slice into CTUs establishes which portion of the frame
data 113 is to be processed by the video decoder 134 in
decoding the current slice.

[0221] The method 1600 continues from step 1640 to a
decode coding tree step 1650. In execution of step 1650 the
video decoder 133 decodes a coding tree for a current CTU
in the slice from the bitstream 133, starting from the first
CTU in the slice 1116 on the first invocation of the step
1650. The coding tree of a CTU is decoded by decoding split
flags in accordance with FIG. 6. In subsequent iterations of

US 2024/0373040 Al

the step 1650 for a CTU the decoding is performed for
subsequent CTUs in the slice 1116. If the coding tree was
encoded using intra prediction mode and a shared coding
tree structure, the coding unit has a primary colour channel
(luma or Y) and at least one secondary colour channel
(chroma, Cb and Cr or CbCr). In this event decoding the
coding tree relates to decoding a coding unit including the
primary colour channel and at least one secondary colour
channel according to split flags of the coding tree unit.

[0222] The method 1600 continues from step 1660 to a
decode coding unit step 1670. At step 1670 the video
decoder 134 decodes a coding unit from the bitstream 133.
An example method of decoding a coding unit, as imple-
mented at step 1670 is described hereafter with reference to
FIG. 18.

[0223] The method 1600 continues from step 1610 to a
last coding unit test step 1680. At step 1680 the processor
205 tests if the current coding unit is the last coding unit in
the CTU. If not the last coding unit (“NO” at step 1680),
control in the processor 205 returns to to the decode coding
unit step 1670 to decode a next coding unit of the coding tree
unit. If the current coding unit is the last coding unit (“YES”
at step 1680) control in the processor 205 progresses to a last
CTU test step 1690.

[0224] At the last CTU test step 1690 the processor 205
tests if the current CTU is the last CTU in the slice 1116. If
not, the last CTU in the slice (“NO” at step 1690), control
in the processor 205 returns to the decode coding tree step
1650 to decode the next coding tree unit of the slice 1116.
If the current CTU is the last CTU for the slice 1116 (“YES”
at step 1690) control in the processor 205 progresses to a last
slice test step 16100.

[0225] At the last slice test step 16100 the processor 205
tests if the current slice being decoded is the last slice in the
frame. If not the last slice in the frame (“NO” at step 16100),
control in the processor 205 returns to the decode slice
header step 1630 and the step 1630 operates to decode the
slice header for the next slice (for example “Slice 2” of FIG.
11) in the frame. If the current slice is the last slice in the
frame (“YES” at step 1600) the method 1600 terminates.

[0226] Operation of the method 1600 for a plurality of the
coding units operates to produce an image frame, as
described in relation to the device 130 at FIG. 1.

[0227] FIG. 17 shows a method 1700 for decoding a slice
header into a bitstream, as implemented at step 1630. The
method 1700 may be embodied by apparatus such as a
configured FPGA, an ASIC, or an ASSP. Additionally, the
method 1700 may be performed by the video decoder 134
under execution of the processor 205. As such, the method
1700 may be stored on computer-readable storage medium
and/or in the memory 206.

[0228] Similarly to the method 1500, the method 1700 in
executed for a current slice or contiguous portion (1116) in
the frame, for example the frame 1101. The method 1700
begins at a partition constraints override enabled test step
1710. At step 1710 the processor 205 tests if the partition
constraints override enabled flag, as decoded from the SPS
1110, indicates that partition constraints may be overridden
at the slice level. If partition constraints may be overridden
at the slice level (“YES” at step 1710) control in the
processor 205 progresses to a decode partition constraints
override flag step 1720. Otherwise, if the partition con-
straints override enabled flag indicates that constraints may

Nov. 7, 2024

not be overridden at the slice level (“NO” at step 1710)
control in the processor 205 progresses to a decode other
parameters step 1770.

[0229] At a decode partition constraint override flag step
1720 the entropy decoder 420 decodes a partition constraint
override flag from the bitstream 133. The decoded flag
indicates whether the partition constraints as signalled in the
SPS 1110 are to be overridden for the current slice 1116.
[0230] The method 1700 continues from step 1720 to a
partition constraint override test step 1730. In execution of
step 1730 the processor 205 tests the flag value decoded at
the step 1720. If the decoded flag indicates partition con-
straints are to be overridden (“YES” at step 1730) control in
the processor 205 progresses to a decode slice partition
constraints step 1740. Otherwise if the decoded flag indi-
cates that partition constraints are not to be overridden
(“NO” at step 1730) control in the processor 205 progresses
to the decode other parameters step 1770.

[0231] At the decode slice partition constraints step 1740
the entropy decoder 420 decodes the determined partition
constraints for the slice from the bitstream 133. The partition
constraints for the slice include ‘slice_max_mtt_hierarchy_
depth_luma’, from which MaxMttDepthY 1134 is derived.
[0232] The method 1700 continues from step 1740 to a
decode QP subdivision level step 1750. At step 1720 the
entropy decoder 420 decodes a subdivision level for luma
CBs using a ‘cu_qp_delta_subdiv’ syntax element, as
described with reference to FIG. 11.

[0233] The method 1700 continues from step 1750 to a
decode chroma QP subdivision level step 1760. At step 1760
the entropy decoder 420 decodes a subdivision level for
signalling of CU chroma QP offsets using a ‘cu_chroma_
qp_offset_subdiv’ syntax element, as described with refer-
ence to FIG. 11.

[0234] Steps 1750 and 1760 operate to determine a sub-
division level for a particular contiguous portion (slice) of
the bitstream. Repeated iterations between steps 1630 and
16100 operate to determine a subdivision level for each
contiguous portion (slice) in the bitstream. As described
hereafter, each subdivisional level is applicable to the coding
units of the corresponding slice (contiguous portion).
[0235] The method 1700 continues from step 1760 to the
decode other parameters step 1770. At step 1770 the entropy
decoder 420 decodes other parameters from the slice header
1118, such as the parameters necessary for control of specific
tools like deblocking, adaptive loop filter, optional selection
of a scaling list (for non-uniform application of a quantisa-
tion parameter to a transform block) from one previously
signalled. The method 1700 terminates upon execution of
step 1770.

[0236] FIG. 18 shows a method 1800 for decoding a
coding unit from a bitstream. The method 1800 may be
embodied by apparatus such as a configured FPGA, an
ASIC, or an ASSP. Additionally, the method 1800 may be
performed by the video decoder 134 under execution of the
processor 205. As such, the method 1800 may be stored on
computer-readable storage medium and/or in the memory
206.

[0237] The method 1800 is implemented for a current
coding unit of a current CTU (for example CTUO of the
slice 1116). The method 1800 starts at a decode prediction
mode step 1810. At step 1800 the entropy decoder 420
decodes the prediction mode of the coding unit, as deter-
mined at the step 1360 of FIG. 13, from the bitstream 133.

US 2024/0373040 Al

A ‘pred_mode’ syntax element is decoded at step 1810 to
distinguish between use of intra prediction, inter prediction,
or other prediction modes for the coding unit.

[0238] Ifintra prediction is used for the coding unit a luma
intra prediction mode and a chroma intra prediction mode
are also decoded at step 1810. If inter prediction is used for
the coding unit a ‘merge index’ may also be decoded at step
1810 to determine a motion vector from an adjacent coding
unit for use by this coding unit, a motion vector delta may
be decoded to introduce an offset to a motion vector derived
from a spatially neighbouring block. A primary transform
type is also decoded at step 1810 to select between use of
DCT-2 horizontally and vertically, transform skip horizon-
tally and vertically, or combinations of DCT-8 and DST-7
horizontally and vertically for the luma TB of the coding
unit.

[0239] The method 1800 continues from step 1810 to a
coded residual test step 1820. In execution of step 1820 the
processor 205 determines if a residual needs to be decoded
for the coding unit by using the entropy decoder 420 to
decode a ‘root coded block flag’ for the coding unit. If there
are any significant residual coefficients to be decoded for the
coding unit (“YES” at step 1820) control in the processor
205 progresses to a new QG test step 1830. Otherwise if
there are no residual coefficients to be decoded (“NO” at step
1820) the method 1800 terminates, as all information needed
to decode the coding unit has been obtained in the bitstream
115. Upon termination of the method 1800, subsequent steps
such as PB generation, application of in-loop filtering is
performed, producing decoded samples, as described with
reference to FIG. 4.

[0240] At the new QG test step 1830 the processor 205
determines if the coding unit corresponds to a new quanti-
sation group. If the coding unit corresponds to a new
quantisation group (“YES” at step 1830) control in the
processor 205 progresses to a decode delta QP step 1840.
Otherwise if the coding unit does not correspond to a new
quantisation group (“NO” at step 1830) control in the
processor 205 progresses to a decode last position step 1850.
A new quantisation group relates to the subdivision level of
the current mode or coding unit. In decoding each coding
unit, nodes of the coding tree of the CTU are traversed.
When any of the child nodes of a current node have a
subdivision level less than or equal to the subdivision level
1136 for the current slice, i.e. as determined from “cu_qp_
delta_subdiv”, a new quantisation group begins in the area
of the CTU corresponding to the node. The first CU in the
quantisation group to include a coded residual coeflicient
will also include a coded delta QP, signalling any change to
the quantisation parameter applicable to residual coefficients
in this quantisation group. Effectively a single (at most one)
quantisation parameter delta is decoded for each area (quan-
tisation group). As described in relation to FIGS. 8A to 8C,
each area (quantisation group) is based on decomposition of
coding tree units of each slice and he corresponding subdi-
vision level (for example as encoded at steps 1460 and
1470). In other words, each area or quantisation group is
based on a comparison of a subdivision level associated with
the coding units to the determined subdivision level for the
corresponding contiguous portion.

[0241] At the decode delta QP step 1840 the entropy
decoder 420 decodes a delta QP from the bitstream 133. The
delta QP encodes a difference between a predicted QP and
the intended QP for use in the current quantisation group.

Nov. 7, 2024

The predicted QP is derived by averaging the QPs of
neighbouring (above and left) quantisation groups.

[0242] The method 1800 continues from step 1840 to the
decode last position step 1850. In execution of step 1850 the
entropy decoder 420 decodes the position of the last sig-
nificant coefficient in the secondary transform coefficients
424 for the current transform block from the bitstream 133.
Upon the first invocation of the step 1850, the step is
executed for the luma TB. In subsequent invocations of step
1850 for the current CU the step is executed for the Cb TB.
If the last position indicates a significant coefficient outside
the secondary transform coefficient set (i.e. outside of 928 or
966) for a luma block or a chroma block, the secondary
transform index for the luma or chroma channel, respec-
tively, is inferred to be zero. The step is implemented for the
Cr TB in the iteration after that for Cb.

[0243] As described in relation to step 1590 of FIG. 15, in
some arrangements the secondary transform index is
encoded immediately after the last significant coeflicient
position of the coding unit. In decoding the same coding
unit, the secondary transform index 470 is decoded imme-
diately after decoding the position of the last significant
residual coefficient of the coding unit if the secondary
transform index 470 was not inferred to be zero based upon
the location of the last position for the TB decoded at the
step 1840. In arrangements where the secondary transform
index 470 is decoded immediately after the last significant
coeflicient position of the coding unit, at the method 1800
continues from step 1850 to a decode LFNST index step
1860. In execution of step 1860 the entropy decoder 420
decodes the secondary transform index 470 from the bit-
stream 133 as an ‘Ifnst_index’, using a truncated unary
codeword when all significant coefficients are subject to
secondary inverse transformation (e.g. within 928 or 966).
The secondary transform index 470 can be decoded for a
luma TB or for chroma when a joint coding of the chroma
TBs using a single transform block is performed. The
method 1800 continues from step 1860 to a decode sub-
blocks step 1870.

[0244] If the secondary transform index 470 is not
decoded immediately after the last significant position of the
coding unit, the method 1800 continues from step 1850 to
the decode sub-blocks step 1870. At step 1870 the residual
coeflicients of the current transform block, i.e. 424, are
decoded from the bitstream 133 as a series of sub-blocks,
progressing from the sub-block containing the last signifi-
cant coeflicient position back to the sub-block containing the
DC residual coefficient.

[0245] The method 1800 continues from step 1870 to a
last TB test step 1880. In execution of step 1880 the
processor 205 tests if the current transform block is the last
transform block in a progression over the colour channels,
ie. Y, Cb, and Cr. If the just-decoded (current) transform
block is for a Cr TB then control in the processor 205 all TBs
have been decoded (“YES” at step 1880) the method 1800
progresses to a decode luma LFNST index step 1890.
Otherwise, if TBs have not been decoded (“NO” at step
1880) control in the processor 205 returns to the decode last
position step 1850. The next TB (following the order of Y,
Cb, Cr) is selected for decoding at the iteration of step 1850.
[0246] The method 1800 continues from step 1880 to a
decode luma LFNST index step 1890. In execution of step
1890 the secondary transform index 470 to be applied to the
luma TB is decoded from the bitstream 133 by the entropy

US 2024/0373040 Al

decoder 420 if the last position of the luma TB is within the
set of coeflicients subject to secondary inverse transforma-
tion (e.g. 928 or 966) and the luma TB is using DCT-2
horizontally and vertically as the primary transform. If the
last significant position of the luma TB indicates the pres-
ence of a significant primary coefficient outside the set of
coeflicients subject to secondary inverse transformation (e.g.
outside of 928 or 966) the luma secondary transform index
is inferred to be zero (secondary transform not applied). The
secondary transform index decoded at step 1890 is indicated
as 1220 in FIG. 12 (or 1230 in joint CbCr mode).

[0247] The method 1800 continues from step 1890 to a
decode chroma LFNST index step 1895. At step 1895 the
secondary transform index 470 to be applied to the chroma
TBs is decoded from the bitstream 133 by the entropy
decoder 420 if the last positions for each chroma TB are
within the set of coefficients subject to secondary inverse
transformation (e.g. 928 or 966). If the last significant
position of the either chroma TB indicates the presence of a
significant primary coefficient outside the set of coefficients
subject to secondary inverse transformation (e.g. outside of
928 or 966) then the chroma secondary transform index is
inferred to be zero (secondary transform not applied). The
secondary transform index decoded at step 1895 is indicated
as 1221 in FIG. 12 (or 1230 in joint CbCr mode). In
decoding a separate index for luma and chroma, either
separate arithmetic contexts for each truncated unary code-
word may be used or the contexts may be shared such that
the nth bin of each of the luma and chroma truncated unary
codewords share the same context.

[0248] Effectively, the steps 1890 and 1895 relate to
decoding a first index (such as 1220) to select a kernel for
a luma (primary colour) channel and a second index (such as
1221) to select a kernel for at least one chroma (secondary
colour channel) respectively.

[0249] The method 1800 continues from step 1895 to a
perform inverse secondary transform step 18100. At step the
inverse secondary transform module 436 performs an
inverse secondary transform according to the secondary
transform index 470 for the current transform block on the
decoded residual transform coeflicients 424 to produce
secondary transform coefflicients 432. The secondary trans-
form index decoded at the step 1890 is applied to the luma
TB and the secondary transform index decoded at the step
1895 is applied to the chroma TBs. Kernel selection for luma
and chroma also depends on the luma intra prediction mode
and the chroma intra prediction mode, respectively (each of
which was decoded at the step 1810). Step 18100 selects a
kernel according to the LFNST index for luma and a kernel
according to the LFNST index for chroma.

[0250] The method 1800 continues from step 18100 to an
inverse quantise primary transform coefficients step 18110.
At step 18110 the inverse quantiser module 428 inverse
quantises the secondary transform coefficients 432 accord-
ing to the quantisation parameter 474 to produce the inverse
quantised primary transform coefficients 440. If a delta QP
was decoded at step 1840, the entropy decoder 420 deter-
mines the quantisation parameter according to the delta QP
for the quantisation group (area) and the quantisation param-
eter of earlier coding units of the image frame. As described
hereinbefore, the earlier coding units typically relate to
neighbouring, above-left coding units.

[0251] The method 1800 continues from step 1870 to a
perform primary transform step 18120. At step 1820 the

Nov. 7, 2024

inverse primary transform module 444 performs an inverse
primary transform according to the primary transform type
of'the coding unit, resulting in the transform coeflicients 440
being converted to residual samples 448 of the spatial
domain. The inverse primary transform is performed on each
colour channel, firstly on the luma channel (Y) and then
upon Cb, and Cr TBs upon subsequent invocations of the
step 1650 for the current TU. Steps 18100 to 18120 effec-
tively operate to decode the current coding unit by applying
the kernel selected according to the LFNST index for luma
at step 1890 to the decoded residual coefficients of the luma
channel and applying the kernel selected according to the
LFNST index for chroma at step 1890 to the decoded
residual coeflicients for at least one chroma channel.
[0252] The method 1800 terminates upon execution of
step 18120, with control in the processor 205 returning to the
method 1600.

[0253] The steps 1850 to 18120 are described in relation
to an example of a shared coding tree structure where the
prediction mode is intra prediction and the transform is
DCT-2. For example, secondary transform index applied to
the luma TB is decoded from the bitstream (1890) only for
coding units using intra prediction and a shared coding tree
structure. Similarly, the secondary transform index applied
to the chroma TBs is decoded from the bitstream (1895) only
for coding units using intra prediction and a shared coding
tree structure. Operation of steps such as decoding the
sub-blocks (1870), inverse quantising the primary transform
coeflicients (18110) and performing the primary transform
can be implemented for inter prediction modes or for intra
prediction modes other than for a shared coding tree struc-
ture using known methods. Steps 1810 to 1840 are per-
formed in the manner described regardless of prediction
mode or structure.

[0254] Once the method 1800 terminates, subsequent
steps for decoding a coding unit are performed, including
generating intra-predicted samples 480 by the module 476,
summing the decoded residual samples 448 with the pre-
diction block 452 by the module 450 and application of the
in-loop filter module 488 to produce filtered samples 492,
output as the frame data 135.

[0255] FIGS. 19A and 19B show rules for application or
bypassing of the secondary transform to luma and chroma
channels. FIG. 19A shows a table 1900 exemplifying con-
ditions for application of the secondary transform in the
luma and chroma channels in a CU resulting from a shared
coding tree.

[0256] If a last significant coefficient position of a luma
TB indicates a decoded significant coefficient that did not
result from a forward secondary transform and thus is not
subject to inverse secondary transformation, a condition
1901 exists. If a last significant coefficient position of a luma
TB indicates a decoded significant coefficient that did result
from a forward secondary transform and thus is subject to
inverse secondary transformation a condition, 1902 exists.
Additionally, for the luma channel, the primary transform
type needs to be DCT-2 for the condition 1902 to exist,
otherwise condition 1901 exists.

[0257] Ifa lastsignificant coefficient position of the one or
two chroma TBs indicates a decoded significant coefficient
that did not result from a forward secondary transform and
thus is not subject to inverse secondary transformation, a
condition 1910 exists. If a last significant coefficient position
of'the one or two chroma TBs indicates a decoded significant

US 2024/0373040 Al

coefficient that did result from a forward secondary trans-
form and thus is subject to inverse secondary transforma-
tion, a condition 1911 exists. Additionally, the width and
height of a chroma block need to be at least four samples
(e.g. chroma subsampling when 4:2:0 or 4:2:2 chroma
format is used may result in widths or heights of two
samples), for the condition 1911 to exist.

[0258] If conditions 1901 and 1910 exist, the secondary
transform index is not signalled (either independently or
jointly) and is not applied in luma or chroma, i.e. 1920. If
conditions 1901 and 1911 exist, one secondary transform
index is signalled to indicate application of a selected kernel
or bypassing for the luma channel only, i.e. 1921. If condi-
tions 1902 and 1910 exist, one secondary transform index is
signalled to indicate application of a selected kernel or
bypassing for the chroma channels only, i.e. 1922. If con-
ditions 1911 and 1902 exist, arrangements with independent
signalling signal two secondary transform indices, one for
the luma TB and one for the chroma TBs, ie. 1923.
Arrangements with a single signalled secondary transform
index use one index to control selection for luma and chroma
when conditions 1902 and 1911 exist, although the selected
kernel also depends on the luma and chroma intra prediction
mode, which may differ. The ability to apply the secondary
transform to either luma or chroma (i.e. 1921 and 1922)
results in coding efficiency gain.

[0259] FIG. 19B shows a table 1950 of search options
available to the video encoder 114 at the step 1360. Sec-
ondary transform indices for luma (1952) and chroma
(1953) are shown as 1952 and 1953, respectively. Index
value 0 indicates the secondary transform is bypassed and
index values 1 and 2 indicate which one of two kernels for
the candidate set derived from the luma or chroma intra
prediction mode is used. A resulting search space of nine
combinations exists (“0,0” to “2,2”), which may be con-
strained subject to the constraints described with reference
to FIG. 19A. Compared to searching all allowable combi-
nations, a simplified search of three combinations (1951)
may test just combinations where the luma and chroma
secondary transform indices are the same, subject to zeroing
the index for the channel for which a last significant coef-
ficient position indicates that a primary-only coeflicient
exists. For example, when condition 1921 exists, options
“1,1” and “2,2” become “0,1” and “0,2”, respectively (i.e.
1954). When condition 1922 exists, options “1,1” and “2,2”
become “1,0” and “2,0”, respectively (i.e. 1955). When
condition 1920 exists, there is no need to signal a secondary
transform index and the option “0,0” is used. Effectively,
conditions 1921 and 1922 allow options “0,1”, “0,2”, “1,0”,
and “2,0” in a shared-tree CU, resulting in higher compres-
sion efficiency. If these options were prohibited, then either
of conditions 1901 or 1910 would lead to condition 1920,
that is, options “1,1” and “2,2” would be prohibited, leading
to use of “0,0” (see 1956).

[0260] Signalling of quantisation group subdivision level
in the slice header provides a higher granularity of control
beneath the picture level. The higher granularity of control
is advantageous for applications where the encoding fidelity
requirements vary from one portion of an image to another
and particularly where multiple encoders may need to oper-
ate somewhat independently to provide realtime processing
capacity. Signalling of quantisation group subdivision level

Nov. 7, 2024

in the slice header is also consistent with signalling partition
override settings and scaling list application setting in the
slice header.

[0261] In one arrangement of the video encoder 114 and
the video decoder 134, the secondary transform index for
chroma intra predicted blocks is always set to zero, i.e., the
secondary transform is not applied for chroma intra pre-
dicted blocks. In this event there is no need to signal the
chroma secondary transform index and so the steps 15130
and 1895 may be omitted and the steps 1360, 1570, and
18100 are accordingly simplified.

[0262] If a node in the coding tree in a shared tree has an
area of 64 luma samples, splitting further with a binary or
quadtree split will result in smaller luma CBs, such as 4x4
blocks but will not result in a smaller chroma CB. Instead,
a single chroma CB of a size corresponding to the area of 64
luma samples, such as a 4x4 chroma CB, is present. Simi-
larly, coding tree nodes with an area of 128 luma samples
and subject to a ternary split result in a collection of smaller
luma CBs and one chroma CB. Each luma CB has a
corresponding luma secondary transform index and the
chroma CB has a chroma secondary transform index.
[0263] When a node in the coding tree has an area of 64
and a further split is signalled or an area of 128 luma samples
and a ternary split is signalled, the split is applied in the luma
channel only and the resulting CBs (several luma CBs and
one chroma CB for each chroma channel) are either all intra
predicted or all inter predicted. When the CU has a width or
height of four luma samples and includes one CB for each
of colour channel (Y, CB, and Cr) then the chroma CBs of
the CU have a width or height of two samples. CBs with a
width or height of two samples do not operate with 16-point
or 48-point LFNST kernels and so do not require secondary
transformation. For blocks with a width or height of two
samples, the steps 15130, 1895, 1360, 1570, and 18100 do
not need to be performed.

[0264] In another arrangement of the video encoder 114
and the video decoder 134 a single secondary transform
index is signalled when either or both of luma and chroma
contain only non-significant residual coefficients in the
region of the respective TBs that is subject to primary
transformation only. If the luma TB contains significant
residual coefficients in the non-secondary transformed
region of the decoded residual (e.g. 1066, 968) or is indi-
cated not to use DCT-2 as the primary transform then the
indicated secondary transform kernel (or secondary trans-
form bypass) is applied to the chroma TBs only. If either
chroma TB contains significant residual coefficients in the
non-secondary transformed region of the decoded residual,
the indicated secondary transform kernel (or secondary
transform bypass) is applied to the luma TB only. Applica-
tion of the secondary transform becomes possible for luma
TBs even when not possible for chroma TBs and vice versa,
giving coding efficiency gain compared to requiring that last
positions of all TBs are within the secondary coefficient
domain before any TB of the CU can be subject to secondary
transformation. Additionally, only one secondary transform
index is needed for a CU in a shared coding tree. When the
luma primary transform is DCT-2 the secondary transform
may be inferred as disabled for chroma as well as for luma.
[0265] In another arrangement of the video encoder 114
and the video decoder 134, the secondary transform is
applied (by the modules 330 and 436 respectively) to the
luma TB only of a CU and not to any chroma TBs of the CU.

US 2024/0373040 Al

Absence of secondary transform logic for chroma channels
results in less complexity, for example lower execution time
or reduced silicon area. Absence of secondary transform
logic for chroma channels results in only needing to signal
one secondary transform index, which may be signalled
after the last position of the luma TB. That is, steps 1590 and
1860 are performed for luma TBs instead of steps 15120 and
1890. Steps 15130 and 1895 are omitted in this event.

[0266] In another arrangement of the video encoder 114
and the video decoder 134, the syntax elements defining
quantisation group size (i.e. cu_chroma_qp_offset_subdiv
and cu_qp_delta_subdiv) are signalled in the PPS 1112.
Even if partition constraints are overridden in the slice
header 1118, the range of values for the subdivision level is
defined according to the partition constraints signalled in the
SPS 1110. For example, the range of cu_gp_delta_subdiv
and cu_chroma_qp_offset_subdiv is defined as 0 to 2*(log
2_ctu_size_minus5+5-(MinQtLog2SizelnterY or
MinQtLog2SizelntraY)+MaxMttDepthY_SPS. The value
MaxMttDepth Y is derived from the SPS 1110. That is,
MaxMttDepthY is set equal to sps_max_mtt_hierarchy_
depth_intra_slice_luma when the current slice is an I slice
and is set equal to sps_max_mtt_hierarchy_depth_inter_
slice when the current slice is a P or a B slice. For a slice with
partition constraints overridden to be shallower than the
depth as signalled in the SPS 1110, if the quantisation group
subdivision level as determined from the PPS 1112 is higher
(deeper) than the highest achievable subdivision level under
the shallower coding tree depth as determined from the slice
header, the quantisation group subdivision level for the slice
is clipped to be equal to the highest achievable subdivision
level for the slice. For example, for a particular slice
cu_qp_delta_subdiv and cu_chroma_qp_offset_subdiv are
clipped to be within 0 to 2*(log 2_ctu_size_minus5+5-
(MinQtLog2SizelnterY or MinQtlLog2SizelntraY)+
MaxMttDepth Y_slice_header) and the clipped values are
used for the slice. The value MaxMttDepthY _slice_header
is derived from the slice header 1118, that is, MaxMitt-
DepthY_slice_header is set equal to slice_max_mtt_hierar-
chy_depth_luma.

[0267] In yet another arrangement of the video encoder
114 and the video decoder 134 the subdivision level is
determined from cu_chroma_qp_offset_subdiv and cu_gp_
delta_subdiv decoded from the PPS 1112 to derive a luma
and chroma subdivision level. When partition constraints
decoded from the slice header 1118 result in a different range
of subdivision level for the slice, the subdivision level
applied to the slice is adjusted to maintain the same offset
relative to the deepest allowed subdivision level according
to the partition constraints decoded from the SPS 1110. For
example, if the SPS 1110 indicates a maximum subdivision
level of 4 and the PPS 1112 indicates a subdivision level of
3 and the slice header 1118 reduces the maximum to 3, then
the subdivision level applied within the slice is set as 2
(maintaining an offset of 1 relative to the maximum allowed
subdivision level). Adjusting quantisation group area to
correspond to changes in partition constraints for specific
slices allows signalling subdivision level less frequently (i.e.
at the PPS level) while providing a granularity that is
adaptive to slice-level partitioning constraint changes.
Arrangements where the subdivision level is signalled in the
PPS 1112, using a range defined according to partitioning
constraints decoded from the SPS 1110, with possible later
adjustment based on overridden partition constraints

Nov. 7, 2024

decoded from the slice header 1118, avoid the parsing
dependency issue of having PPS syntax elements depending
on partition constraints finalised in the slice header 1118.

INDUSTRIAL APPLICABILITY

[0268] The arrangements described are applicable to the
computer and data processing industries and particularly for
the digital signal processing for the encoding a decoding of
signals such as video and image signals, achieving high
compression efficiency.

[0269] The arrangements described herein increase flex-
ibility afforded to video encoders in generating highly
compressed bitstreams from incoming video data. The quan-
tisation of different regions or sub-pictures in a frame is able
to be controlled at varying granularity, and differing granu-
larity from one region to another, reducing the amount of
coded residual data. Higher granularity can accordingly be
implemented where required, for example for a 360 degree
image as described above.

[0270] In some arrangements, application of secondary
transform can be controlled independently for luma and
chroma as described in relation to steps 15120 and 15130
(and correspondingly steps 1890 and 1895), achieving fur-
ther reduction in coded residual data. Video decoders are
described with necessary functionality to decode bitstreams
produced by such video encoders.

[0271] The foregoing describes only some embodiments
of the present invention, and modifications and/or changes
can be made thereto without departing from the scope and
spirit of the invention, the embodiments being illustrative
and not restrictive.

1. Amethod of decoding a coding unit in a coding tree unit
of an image from a bitstream, the coding tree unit having a
luma channel and a chroma channel, the method comprising:

determining the coding unit having the luma channel and

the chroma channel according to one or more split flags
for the coding tree unit;

decoding, from the bitstream, an index for selecting a

non-separable transform kernel for the luma channel;
selecting the non-separable transform kernel according to
the index;

decoding, from the bitstream, coefficients of a luma

transform block for the luma channel in the coding unit
and coefficients of a chroma transform block for the
chroma channel in the coding unit;

performing, by applying the selected non-separable trans-

form kernel, a non-separable transform on the coeffi-
cients of the luma transform block to derive non-
separably transformed coefficients of the luma
transform block; and

decoding the coding unit by performing a separable

transform on the non-separably transformed coeffi-
cients of the luma transform block and on the coeffi-
cients of the chroma transform block,

wherein when a coding tree for the luma channel in the

coding tree unit is same as a coding tree for the chroma
channel in the coding tree unit, the non-separable
transform is capable of being performed only on the
coefficients of the luma transform block in the coding
unit, and the non-separable transform is not performed
on the coefficients of the chroma transform block in the
coding unit, both of a width and a height of the chroma
transform block being equal to or greater than 4, and

US 2024/0373040 Al

wherein when the coding tree for the luma channel in the
coding tree unit is separate from the coding tree for the
chroma channel in the coding tree unit, a given area in
the coding tree unit is split into luma coding blocks, and
a chroma coding block corresponding to the given area
is present, (a) the index for selecting the non-separable
transform kernel for the luma channel is capable of
being present separately for each one of the luma
coding blocks and (b) an index for selecting a non-
separable transform kernel for the chroma channel is
capable of being present for the chroma coding block
corresponding to the given area.

2. The method according to claim 1, wherein the non-
separable transform kernels depends on an intra prediction
mode for the luma channel.

3. The method according to claim 1, wherein the non-
separable transform kernels relates to a block size of the
luma channel.

4. The method according to claim 1, wherein when the
coding tree for the luma channel in the coding tree unit is
same as the coding tree for the chroma channel in the coding
tree unit, the index for selecting the non-separable transform
kernel for the luma channel is capable of being decoded for
the coding unit and (b) the index for selecting the non-
separable transform kernel for the chroma channel is not
decoded for the coding unit.

5. The method according to claim 1, wherein the luma
channel is a luma component and the chroma channel is a
chroma component.

6. The method according to claim 1, wherein when the
coding tree for the luma channel in the coding tree unit is
separate from the coding tree for the chroma channel in the
coding tree unit, the given area in the coding tree unit has an
area of 64 luma samples, the given area is split into four
luma coding blocks by a quad split, each of the four luma
coding blocks has a size of 4x4, and the chroma coding
block corresponding to the given area has a size of 4x4, (a)
the index for selecting the non-separable transform kernel
for the luma channel is capable of being present separately
for each one of the four luma coding blocks, and (b) the
index for selecting the non-separable transform kernel for
the chroma channel is capable of being present for the
chroma coding block corresponding to the given area.

7. The method according to claim 1, wherein when the
coding tree for the luma channel in the coding tree unit is
separate from the coding tree for the chroma channel in the
coding tree unit, the given area is split into three luma coding
blocks by a ternary split, and the chroma coding block
corresponding to the given area is present, (a) the index for
selecting the non-separable transform kernel for the luma
channel is capable of being present separately for each one
of the three luma coding blocks, and (b) the index for
selecting the non-separable transform kernel for the chroma
channel is capable of being present for the chroma coding
block corresponding to the given area.

8. A method of encoding a coding unit in a coding tree unit
of an image into a bitstream, the coding tree unit having a
luma channel and a chroma channel, the method comprising:

determining the coding unit having the luma channel and

the chroma channel,;

performing a separable transform (a) on coefficients of a

luma transform block for the luma channel in the
coding unit to derive separably transformed coefficients
of the luma transform block and (b) on coefficients of

28

Nov. 7, 2024

a chroma transform block for the chroma channel in the
coding unit to derive separably transformed coefficients
of the chroma transform block;

selecting a non-separable transform kernel for the luma

channel;

performing a non-separable transform on the separably

transformed coeflicients of the luma transform block by
applying the selected non-separable transform kernel;
and
encoding, into the bitstream, an index for selecting the
non-separable transform kernel for the luma channel,

wherein when a coding tree for the luma channel in the
coding tree unit is same as a coding tree for the chroma
channel in the coding tree unit, the non-separable
transform is capable of being performed only on the
separably transformed coefficients of the luma trans-
form block in the coding unit, and the non-separable
transform is not performed on the separable trans-
formed coeflicients of the chroma transform block in
the coding unit, both of a width and a height of the
chroma transform block being equal to or greater than
4, and

wherein when the coding tree for the luma channel in the
coding tree unit is separate from the coding tree for the
chroma channel in the coding tree unit, a given area in
the coding tree unit is split into luma coding blocks, and
a chroma coding block corresponding to the given area
is present, (a) the index for selecting the non-separable
transform kernel for the luma channel is capable of
being present separately for each one of the luma
coding blocks and (b) an index for selecting a non-
separable transform kernel for the chroma channel is
capable of being present for the chroma coding block
corresponding to the given area.

9. The method according to claim 8, wherein when the
coding tree for the luma channel in the coding tree unit is
same as the coding tree for the chroma channel in the coding
tree unit, the index for selecting the non-separable transform
kernel for the luma channel is capable of being encoded for
the coding unit and (b) the index for selecting the non-
separable transform kernel for the chroma channel is not
encoded for the coding unit.

10. The method according to claim 8, wherein the luma
channel is a luma component and the chroma channel is a
chroma component.

11. The method according to claim 8, wherein when the
coding tree for the luma channel in the coding tree unit is
separate from the coding tree for the chroma channel in the
coding tree unit, the given area in the coding tree unit has an
area of 64 luma samples, the given area is split into four
luma coding blocks by a quad split, each of the four luma
coding blocks has a size of 4x4, and the chroma coding
block corresponding to the given area has a size of 4x4, (a)
the index for selecting the non-separable transform kernel
for the luma channel is capable of being present separately
for each one of the four luma coding blocks, and (b) the
index for selecting the non-separable transform kernel for
the chroma channel is capable of being present for the
chroma coding block corresponding to the given area.

12. The method according to claim 8, wherein when the
coding tree for the luma channel in the coding tree unit is
separate from the coding tree for the chroma channel in the
coding tree unit, the given area is split into three luma coding
blocks by a ternary split, the chroma coding block corre-

US 2024/0373040 Al

sponding to the given area is present, (a) the index for
selecting the non-separable transform kernel for the luma
channel is capable of being present separately for each one
of the three luma coding blocks, and (b) the index for
selecting the non-separable transform kernel for the chroma
channel is capable of being present for the chroma coding
block corresponding to the given area.

13. An apparatus for decoding a coding unit in a coding
tree unit of an image from a bitstream, the coding tree unit
having a luma channel and a chroma channel, the apparatus
comprising:

a determining unit configured to determine the coding unit
having the luma channel and the chroma channel
according to one or more split flags for the coding tree
unit;

a first decoding unit configured to decode, from the
bitstream, an index for selecting a non-separable trans-
form kernel for the luma channel;

a selecting unit configured to select the non-separable
transform kernel according to the index;

a second decoding unit configured to decode, from the
bitstream, coeflicients of a luma transform block for the
luma channel in the coding unit and coefficients of a
chroma transform block for the chroma channel in the
coding unit;

a performing unit configured to perform, by applying the
selected non-separable transform kernel, a non-sepa-
rable transform on the coeflicients of the luma trans-
form block to derive non-separably transformed coef-
ficients of the luma transform block; and

a third decoding unit configured to decode the coding unit
by performing a separable transform on the non-sepa-
rably transformed coefficients of the luma transform
block and on the coefficients of the chroma transform
block,

wherein when a coding tree for the luma channel in the
coding tree unit is same as a coding tree for the chroma
channel in the coding tree unit, the non-separable
transform is capable of being performed only on the
coeflicients of the luma transform block in the coding
unit, and the non-separable transform is not performed
on the coefficients of the chroma transform block in the
coding unit, both of a width and a height of the chroma
transform block being equal to or greater than 4, and

wherein when the coding tree for the luma channel in the
coding tree unit is separate from the coding tree for the
chroma channel in the coding tree unit, a given area in
the coding tree unit is split into luma coding blocks, and
a chroma coding block corresponding to the given area
is present, (a) the index for selecting the non-separable
transform kernel for the luma channel is capable of
being present separately for each one of the luma
coding blocks and (b) an index for selecting a non-
separable transform kernel for the chroma channel is

Nov. 7, 2024

capable of being present for the chroma coding block
corresponding to the given area.

14. An apparatus for encoding a coding unit in a coding
tree unit of an image into a bitstream, the coding tree unit
having a luma channel and a chroma channel, the apparatus
comprising:

a determining unit configured to determine the coding unit

having the luma channel and the chroma channel;

a performing unit configured to perform a separable
transform (a) on coefficients of a luma transform block
for the luma channel in the coding unit to derive
separably transformed coefficients of the luma trans-
form block and (b) on coefficients of a chroma trans-
form block for the chroma channel in the coding unit to
derive separably transformed coefficients of the chroma
transform block;

a selecting unit configure to select a non-separable trans-
form kernel for the luma channel;

a performing unit configured to perform a non-separable
transform on the separably transformed coefficients of
the luma transform block by applying the selected
non-separable transform kernel; and

an encoding unit configured to encode, into the bitstream,
an index for selecting the non-separable transform
kernel for the luma channel,
wherein when a coding tree for the luma channel in the

coding tree unit is same as a coding tree for the
chroma channel in the coding tree unit, the non-
separable transform is capable of being performed
only on the separably transformed coefficients of the
luma transform block in the coding unit, and the
non-separable transform is not performed on the
separable transformed coefficients of the chroma
transform block in the coding unit, both of a width
and a height of the chroma transform block being
equal to or greater than 4, and

wherein when the coding tree for the luma channel in the
coding tree unit is separate from the coding tree for the
chroma channel in the coding tree unit, a given area in
the coding tree unit is split into luma coding blocks, and
a chroma coding block corresponding to the given area
is present, (a) the index for selecting the non-separable
transform kernel for the luma channel is capable of
being present separately for each one of the luma
coding blocks and (b) an index for selecting a non-
separable transform kernel for the chroma channel is
capable of being present for the chroma coding block
corresponding to the given area.

15. A non-transitory computer readable storage medium
containing computer-executable instructions which causes a
computer to perform the method according to claim 1.

16. A non-transitory computer readable storage medium
containing computer-executable instructions which causes a
computer to perform the method according to claim 8.

#* #* #* #* #*

