a2 United States Patent

Yu et al.

US012135899B2

US 12,135,899 B2
Nov. 5, 2024

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

BUFFER MANAGEMENT IN AN ETHERNET
SWITCH

Applicant: Infineon Technologies AG, Neubiberg
(DE)

Inventors: Longli Yu, Tautkirchen (DE); Manuela
Meier, Munich (DE)

Assignee: Infineon Technologies AG, Neubiberg
(DE)
Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 181 days.

Appl. No.: 17/648,905

Filed: Jan. 25, 2022

Prior Publication Data

US 2023/0236756 Al Jul. 27, 2023

Int. C1.
GO6F 3/06
U.S. CL
CPC GO6F 3/0656 (2013.01); GOGF 3/0604
(2013.01); GO6F 3/0631 (2013.01); GO6F
3/0659 (2013.01); GO6F 3/0673 (2013.01)
Field of Classification Search
CPC GO6F 3/0656; GOGF 3/0604; GOGF 3/0631;
GOGF 3/0659; GOGF 3/0673; HO4L
49/9021; HO4AL 49/901; HO4AL 49/90
See application file for complete search history.

(2006.01)

(56) References Cited

U.S. PATENT DOCUMENTS

6,279,057 B1* 82001 Westby GO6F 11/1004
710/52
6,404,752 B1* 6/2002 Allen, Jr. HO4L 49/351
370/335
6,681,340 B2* 1/2004 Calvignac HO4L 1/0063
714/776
7,130,916 B2* 10/2006 Calvignac HO4L 49/3081
370/429

* cited by examiner

Primary Examiner — Farley Abad
Assistant Examiner — Richard B Franklin
(74) Attorney, Agent, or Firm — Harrity & Harrity, LLP

(57) ABSTRACT

A device may include a buffer memory to buffer frames
received or to be transmitted via a plurality of ports of the
device. The device may include at least one frame processor
to process frames. The device may include a buffer manager
to store a frame in the buffer memory. The buffer manager
may allocate at least one buffer control block (BCB) to the
frame based on storing the frame in the buffer memory. The
buffer manager may allocate a frame control block (FCB) to
the frame. The FCB may include information that identifies
the at least one BCB. The buffer manager may perform one
or more queueing operations in association with processing
of the frame by the at least one frame processor. The one or
more queuing operations may be performed using informa-
tion associated with the FCB.

20 Claims, 5 Drawing Sheets

00—y
Crypto engine Crvpio Crypto frame Crypto engine
322 fypio frame 4 enqueue/ 336
- processor % -
Security pararmeter 218 dequetie Security parameter
320 - 332 324
Crypto frame |
enqueue 316 |
T Y
Lookup parameter »} Scheduler 330
314 Frame processor
Parser microcode 310
312
Header/data RX T 3
extractor 308 = buffer {4 buffer - 5 Frame dequeue
— “{ memory 4 i memory | 328
Frame enqueue :
30600 > 12 12 TX DEMUX 326
RX frame TX frame
processor RX MUX 304 processor
104 f ? 108
RX RXMAC IRXMAC TXMAC| { TXMAC T
102 302 302 324 324 106
i 1 v

¥

US 12,135,899 B2

Sheet 1 of 5

Nov. 5, 2024

U.S. Patent

F YXXY N

Vi "Old

801
Jossasoad

swel) X1

¥OT
Jossaenoud

awel) Xy

US 12,135,899 B2

Sheet 2 of 5

Nov. 5, 2024

U.S. Patent

Wan mmm_ou_w
auwiel

a04

gl 'Old

QW .7 YNIM Pa]erosse D
SWEY | UIM pajeroosse

a0dg
15414

809
1se

804
IXEN

195440
908 b

wbuen

Apinoeg

Alsses

US 12,135,899 B2

Sheet 3 of 5

Nov. 5, 2024

U.S. Patent

¢ Old

00t
youms

4V74

01e
wesuodwiod

WO

80¢
Ndo

902
VNG

¥0¢
Aiowsiy

US 12,135,899 B2

Sheet 4 of 5

Nov. 5, 2024

U.S. Patent

€ "Old
A A
U Y 4 [
o vee 743 Z0¢ Z0e <
OVIN XL QYN XL VN XA | | OVIN XS
801 A J 4 0L
Jossaooud FOE XN XN J0ssa%04d
swedy X | SUIRY X
928 XNW3a XL > 905
ansnbua awei4
m:mncwwmmEmi < TOE J01oRiXe
= eiep/iapesi
e
01 SPO00IOI Josied
J0ss800.d Rl It
0EE wonpayog 1€ 1e1owesed dnyooT
¥ v
I GIt enenbus
1 ewey oydAin
¥ee FA% S 02¢
soppwesed Aunosg onanbap 8it sepoweied Ajunosg
coeeree b < P 10888001d m—
533 fonsnbug awely 0ydlin (443
auibus 0dAiD awey oydhip auibua 01dAiD
¥— 00g

US 12,135,899 B2

Sheet 5 of 5

Nov. 5, 2024

U.S. Patent

¥ "Old

94 8yl Ui paleinosse uonewopul Buisn pawioped ale
suoneiado Bumenb alow 40 U0 8y} UlRIeyM ‘Bulel ayl jo Buissaooid
YIm uoyenosse ul suonesedo Buisnenb aioul 10 BUC Lo

i

905 2UO 1SB9| 18 8y} SellUSp! 1oy} UOHBULIOI Sepnjoul
904 2y ulsym ‘aswel) ayl o} (gD4) Mooig [0U0D Busel) B 81800}y

!

()

Asowsw Jslng oy} ul palols oq 0} suwey; ayy Buisnes
UO paseq swey ay) 01 (g09g) MO0Iq [CHU0D Joyng BUo 18E3] 18 918J0|Y

!

spod jo Ajjesnid ay) jo Hod e BiA papiuusues
8q 0} St 40 spod Jo Aljeinid e o Lod e Bin PBAIDODI SBM JOYO
suiel) 8y} uRIaym ‘Aiowaul JBYNG B Ui PBIOIS 3¢ O] SRl B 8SNED

\ .

Yl

ovy

%%

1747

Oiy

US 12,135,899 B2

1
BUFFER MANAGEMENT IN AN ETHERNET
SWITCH

BACKGROUND

Security is an ever-growing challenge for in-vehicle com-
munications. For example, a degree of difficulty for an
attacker to access, disrupt, or otherwise impair a vehicle
function should be as high as possible. As another example,
customer-specific and private data should be protected from
access by an attacker. Ethernet is used as a communication
interface in a variety of applications, such as in-vehicle
communications. Ethernet protocol standards that provide
security for in-vehicle communications are diverse, and
there are different security protocols at different Ethernet
layers, such as medium access control security (MACsec),
Internet protocol security (IPsec), transport layer security
(TLS), and datagram TLS (DTLS).

SUMMARY

In some implementations, a device includes a buffer
memory to buffer frames received via a plurality of ports of
the device or frames to be transmitted via the plurality of
ports of the device; at least one frame processor to process
frames received via the plurality of ports of the device or
frames to be transmitted via the plurality of ports of the
device; and a buffer manager to store a frame in the buffer
memory, the frame being a frame that was received via a port
of the plurality of ports or a frame that is to be transmitted
via a port of the plurality of ports, allocate at least one buffer
control block (BCB) to the frame based on storing the frame
in the buffer memory, allocate a frame control block (FCB)
to the frame, the FCB including information that identifies
the at least one BCB, and perform one or more queueing
operations in association with processing of the frame by the
at least one frame processor, the one or more queuing
operations being performed using information associated
with the FCB.

In some implementations, a buffer manager includes one
or more components to obtain a frame, the frame being a
frame received via one of a port of a plurality of ports of a
device or a frame to be transmitted via a port of the plurality
of ports of the device; cause the frame to be stored in a buffer
memory of the device, allocate at least one BCB to the frame
based on causing the frame to be stored in the buffer
memory; allocate an FCB to the frame, the FCB including
information that identifies the at least one BCB; and enqueue
or dequeue the frame, in association with processing of the
frame by a frame processor of the device, the enqueuing or
dequeuing being performed using information associated
with the FCB.

In some implementations, a method includes causing, by
a buffer manager, a frame to be stored in a buffer memory,
wherein the frame either was received via a port of a
plurality of ports or is to be transmitted via a port of the
plurality of ports; allocating, by the buffer manager, at least
one BCB to the frame based on causing the frame to be
stored in the buffer memory; allocating, by the buffer
manager, an FCB to the frame, wherein the FCB includes
information that identifies the at least one BCB; and per-
forming one or more queueing operations in association with
processing of the frame, wherein the one or more queuing
operations are performed using information associated with
the FCB.

10

15

20

25

30

40

45

50

55

60

65

2
BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A and 1B are diagrams associated with an
example of a switch that provides improved buffer manage-
ment, in accordance with various aspects of the present
disclosure.

FIG. 2 is a diagram of an example system in which the
switch that provides improved buffer management may be
implemented, in accordance with various aspects of the
present disclosure.

FIG. 3 is a diagram of an example implementation of a
switch that provides improved buffer management, in accor-
dance with various aspects of the present disclosure.

FIG. 4 is a flowchart of an example processes relating to
buffer management in a switch, in accordance with various
aspects of the present disclosure.

DETAILED DESCRIPTION

The following detailed description of example implemen-
tations refers to the accompanying drawings. The same
reference numbers in different drawings may identify the
same or similar elements.

As noted above, Ethernet protocol standards that provide
security for in-vehicle communications are diverse, and
there are different security protocols at different Ethernet
layers, such as MACsec, [Psec, TLS, and DTLS. In opera-
tion, secure protocol frame processing, frame classification,
and frame forwarding required for in-vehicle communica-
tions require some degree of data movement and buffering.
A buffer management scheme can be employed in an Eth-
ernet switch (or bridge) to manage data movement and
buffer. Design of the buffer management scheme is an
important factor in terms of managing a physical size of the
Ethernet switch, frame processing latency provided by the
Ethernet switch, and overall system performance. Notably,
as Ethernet speeds increase (e.g., up to 25 gigabits per
second (Gbps)), providing efficient buffer management (e.g.,
at a master control unit (MCU), a master processing unit
(MPU), or the like) becomes increasingly more complex and
challenging. For example, for a 10 Gbps Ethernet interface,
a one millisecond burst may require a megabyte-level buffer
size.

One possible Ethernet switch (or bridge) solution uses a
distributed buffer scheme in which each MAC port of the
device has a dedicated transmit (TX) and receive (RX)
buffer that can be used for buffering transmission frames
(e.g., frames to be transmitted by a port of the Ethernet
switch) or received frames (e.g., frames received at a port of
the Ethernet switch). However, since frame processing takes
some amount of time, a particular buffer size is always
needed to implement such a scheme, meaning that physical
area of the device may be increased (e.g., due to a dedicated
buffer being needed for each port). Further, this Ethernet
switch solution has a frame classification function that
serves to parse frame headers, label frames for categories
(sometimes referred to as a classification queue or stream),
and store or link frames belonging to the same category
together. However, a static buffer allocation per classifica-
tion queue is used under this scheme, meaning a required
buffer size may also be undesirably large. Additionally, as a
number of Ethernet ports of the switch increases, a total
buffer size increases, which increases physical area of the
switch as well as production cost. Notably, frame classifi-
cation, frame forwarding (e.g., forwarding from one Ether-
net port to another), and cryptographic engine processing

US 12,135,899 B2

3

used in such a scheme may require some degree of “smart”
buffer and queue management, which can further increase
complexity.

Some aspects described herein provide techniques and
apparatuses for improved buffer management in an Ethernet
switch. For example, in some implementations, a device
(e.g., an Ethernet switch or bridge, or the like) may include
a buffer memory, a frame processor, and a buffer manager.
In some implementations, the buffer manager stores a frame
in the buffer memory, the frame being a frame that was
received via a port of the device or a frame that is to be
transmitted via a port of the device. The buffer manager may
allocate at least one buffer control block (BCB) to the frame,
and may allocate a frame control block (FCB) to the frame,
with the FCB including information that identifies the at
least one BCB. The buffer manager performs one or more
queueing operations in association with processing of the
frame by the frame processor, with the one or more queuing
operations being performed using information associated
with the FCB. Additional details are provided below.

In some implementations, the techniques and apparatus
for improved buffer management described herein eliminate
a need for a dedicated (TX/RX) buffer for each MAC port.
Further, no store-and-forward buffer is needed inside a given
MAC port, and no buffer allocation per queue is needed. In
this way, frame moving latency at the Ethernet switch may
be reduced.

Additionally, in some implementations, the techniques
and apparatus for improved buffer management described
herein enable a centralized physical buffer to be shared by
multiple (e.g., all) ports of the device. The sharing of the
centralized physical buffer reduces a need for buffer size
overdesign and, therefore, reduces a physical area needed
for the Ethernet switch.

Further, in some implementations, the techniques and
apparatus for improved buffer management described herein
enable frames to be enqueued or dequeued among queues
during frame processing. As described in further detail
below, a queue may in some implementations be built as a
frame link list. Therefore, enqueue and dequeue operations
require only an update to a link pointer (rather than requiring
frame data to be copied), which minimizes data movement
and improves power consumption efficiency. In some imple-
mentations, a given frame is associated with an FCB that
points to a frame data storage location and to a next frame
belonging to a given queue. In some implementations, data
that enables safety or security checking can be stored in the
FCB.

FIGS. 1A and 1B are diagrams associated with an
example of a switch 100 that provides improved buffer
management, as described herein. The switch 100 may be,
for example, an Ethernet switch or bridge. In some imple-
mentations, the switch 100 may be included in a commu-
nications system, such as an in-vehicle communications
system. As shown in FIG. 1A, the switch 100 may include
an RX component 102 including an RX frame processor
104, a TX component 106 including a TX frame processor
108, and a buffer manager 110 including a buffer memory
112. The components of the switch 100 are described below,
followed by a description of example operation of the switch
100 in association with providing improved buffer manage-
ment.

RX component 102 includes one or more components
associated with receiving frames at switch 100 and process-
ing the frames received at switch 100. In some implemen-
tations, RX component 102 includes one or more ports (e.g.,
one or more MAC ports, not shown in FIG. 1A) via which

10

15

20

25

30

35

40

45

50

55

60

65

4

frames can be received at switch 100. As shown, RX
component 102 includes RX frame processor 104.

RX frame processor 104 includes one or more compo-
nents associated with processing frames received at switch
100. That is, RX frame processor 104 may include one or
more components to process frames received via the ports of
RX component 102. The one or more components of the RX
frame processor 104 may include, for example, an RX
multiplexer (e.g., a time-division RX multiplexer), a frame
enqueue component, a header/data extractor component, a
frame parser, a lookup parameter memory, a parser micro-
code memory, a cryptographic frame enqueue component, a
cryptographic frame processor, a cryptographic engine, a
security parameter memory, or another type of component
associated with processing a frame received at switch 100.

TX component 106 includes one or more components
associated with processing frames to be transmitted by
switch 100 and processing the frames to be transmitted by
switch 100. In some implementations, TX component 106
includes one or more ports (e.g., one or more MAC ports,
not shown in FIG. 1A) via which frames can be transmitted
by switch 100. In some implementations, one or more ports
of switch 100 may be used for reception and for transmis-
sion. For example, a given MAC port of switch 100 may be
a TX/RX port via which frames can be transmitted or
received. As shown, TX component 106 includes TX frame
processor 108.

TX frame processor 108 includes one or more compo-
nents associated with processing frames to be transmitted by
switch 100. That is, TX frame processor 108 may include
one or more components to process frames to be transmitted
via the ports of the TX component 106. The one or more
components of the TX frame processor 108 may include, for
example, a TX demultiplexer (e.g., a time division TX
demultiplexer), a frame dequeue component, a scheduler
component (e.g., a time sensitive networking (TSN)/shaper/
scheduler), a cryptographic frame enqueue/dequeue compo-
nent, a cryptographic engine, a security parameter memory,
or another type of component associated with processing a
frame to be transmitted by switch 100.

Buffer manager 110 includes one or more components to
provide buffer management at switch 100, as described
herein. For example, in some implementations, buffer man-
ager 110 may obtain a frame and may store the frame in
buffer memory 112 or cause the frame to be stored in buffer
memory 112. Here, the frame may be a frame that was
received via a port of switch 100 or may be a frame that is
to be transmitted via a port of switch 100.

In some implementations, buffer manager 110 may per-
form buffer management using a multi-level architecture,
such as a four-level architecture comprising frame storage
memory, buffer control blocks (BCBs), frame control blocks
(FCBs), queue control blocks (QCBs). FIG. 1B is a diagram
illustrating an example of the four-level architecture that can
be utilized by buffer manager 110 in association with per-
forming buffer management. In some implementations, the
four-level architecture enables queue and frame data storage
to be constructed as a linked list, as described herein.

Frame storage memory corresponds to the memory stor-
age of buffer memory 112. In some implementations, the
frame storage memory is partitioned into blocks (e.g., 128
byte blocks, 256 byte blocks, or the like). In some imple-
mentations, such partitioning improves memory utilization
to enable different frame sizes to be supported (e.g., smaller
frames may use only one block for data storage, larger
frames may use multiple blocks for data storage). In some
implementations, data of a given frame may be stored in one

US 12,135,899 B2

5

or more blocks of frame storage memory. For example, data
of a first frame may be stored in three blocks of frame
storage memory (e.g., blocks 1, 2, and 5 as identified in FIG.
1B), while data of a second frame may be stored in two
blocks of frame storage memory (e.g., blocks 3 and 4 as
identified in FIG. 1B).

A BCB is a block of information that indicates a block of
the frame storage memory in which a block of frame data is
stored. That is, the BCB may include a pointer that maps to
a frame storage memory block storing a portion of frame
data of a given frame. In some implementations, a BCB may
include a pointer that identifies another BCB associated with
the frame. For example, as illustrated in FIG. 1B, a first
BCB, associated with the first frame, may point to a first
frame storage memory block (e.g., block 1) storing a first
portion of frame data, and may further include a pointer to
a second BCB, where the second BCB includes a pointer to
a second frame storage memory block (e.g., block 2) that
stores a second portion of the frame data. Continuing this
example, the second BCB may include a pointer to a third
BCB, where the third BCB includes a pointer to a third
frame storage memory block (e.g., block 5) that stores a
third portion of the frame data. In this way, multiple BCBs
can be linked to point to all frame storage memory blocks
that store data for a given frame. In operation, buffer
manager 110 may allocate at least one BCB to a given frame
received by switch 100 or to be transmitted by switch 100.

In some implementations, the use of BCBs enable differ-
ent frame sizes to be accommodated without a need for static
memory allocation, thereby reducing physical area overhead
(by avoiding a need for a static memory). For example, a
length of an Ethernet frame may in a range from 64 bytes to
1.5 kilobytes. Here, a comparatively smaller frame may use
a smaller number of data blocks (e.g., a single ne data block)
in the frame storage memory, while a comparatively larger
frame may use a larger number of data blocks (e.g., two or
more multiple data blocks) that are linked together in BCB
memory. Thus, when utilizing BCBs, a frame buffer can be
dynamically allocated according to actual frame length.
Additionally, the total frame storage memory can be sized
based on, for example, an average frame length multiplied
by a total number of frames (rather than being sized based
on a maximum frame length multiplied by the total number
of frames). Furthermore, the use of BCBs may facilitate
frame modification operation. For example, if one or more
frame header fields need be added or removed during
processing of the frame), then only the first BCB data block
that stores a frame header need be modified, while the
remainder of the BCB data blocks (data blocks that store a
payload of the frame) need not be modified or otherwise
altered.

An FCB is a block of information that includes informa-
tion that identifies one or more BCBs associated with a
frame. For example, as illustrated in FIG. 1B, an FCB
associated with the first frame may include a pointer indi-
cating the first BCB associated with the first frame. As
further shown, the FCB may further include a pointer
indicating a last BCB associated with the frame (e.g., the
BCB that maps to frame storage memory block 5). In some
implementations, an FCB may include a pointer that iden-
tifies another FCB. For example, as indicated in FIG. 1B, the
first FCB associated with the first frame may point to a
second FCB associated with a second frame. Thus, in some
implementations, an FCB associated with a frame may point
to an FCB associated with another frame (e.g., a next frame
in a queue in which the first and second frames are queued).
In this way, multiple FCBs can be linked to point to all FCBs

10

15

20

25

30

35

40

45

50

55

60

65

6

for a given queue. In operation, buffer manager 110 may
allocate an FCB to a given frame received by switch 100 or
to be transmitted by switch 100.

In some implementations, as indicated in FIG. 1B, an
FCB may include additional information associated with a
frame. In some implementations, the additional information
may include safety data associated with the frame. The
safety data can include, for example, a timestamp, or a frame
cyclic redundancy check (CRC) value, among other
examples. In some implementations, a timestamp may indi-
cate a time at which the frame is received or is to be
transmitted. The timestamp can be used, for example, to
manage later processing (e.g., TSN related time-sensitive
shaping or gating) or preserving an order of frames (e.g.,
when frames from multiple queues converge, timestamps
can be used to determine an order of further forwarding or
processing). In some implementations, a CRC value stored
in the FCB enables a CRC check to be deferred to or
re-performed at a later stage of processing, which provides
improved coverage for data integrity and enables use for
safety argumentation.

Additionally, or alternatively, the additional information
may include security data associated with the frame. The
security data may include, for example, a security protocol
type, a key index, or a flow identifier (e.g., generated by a
frame classifier), among other examples. Additionally, clas-
sification information or a cryptographic result can in some
implementations be stored in the FCB. In some implemen-
tations, the security data can be stored in the FCB for use in
later processing of the frame (e.g., cryptographic process-
ing).

Additionally, or alternatively, the additional information
may include an indication of a first valid byte in a first BCB
data block associated with the frame (identified as “1°* BCB
offset” in FIG. 1B). In some implementations, the indication
the first valid byte in the first BCB data block can be used
to enable frame header modification as described above. For
example, if one or more frame header fields need be modi-
fied or removed, only the first BCB data block needs be
modified, and the “1* BCB offset” in the FCB can be
updated, accordingly.

Additionally, or alternatively, the additional information
may include an indication of a length of the frame (identified
as “Length” in FIG. 1B). In some implementations, the
indication of the length can enable, for example, calculation
of a quantity of valid bytes in a last BCB data block of the
frame.

In some implementations, buffer manager 110 may update
the FCB (e.g., to include safety data and/or security data)
based on a result of processing of the frame. That is, in some
implementations, buffer manager 110 may update an FCB
based on a result of processing of the frame (e.g., as
performed by RX frame processor 104 or TX frame proces-
sor 108) so that the FCB includes safety data and/or security
data generated, obtained, or otherwise determined in asso-
ciation with processing the frame.

A QCB is a block of information that includes information
that identifies one or more FCBs associated with frames in
a given queue. For example, as illustrated in FIG. 1B, a QCB
associated with a queue may include a pointer indicating the
first FCB associated with the first frame. As further shown,
the FCB may further include a pointer indicating a last FCB
associated with the frame (e.g., the FCB associated with the
second frame in the example shown in FIG. 1B). In this way,
a QCB can be utilized to construct a queue as a linked list
of FCBs. In some implementations, frames belonging to the
same category (e.g., the same Internet protocol (IP) connec-

US 12,135,899 B2

7

tion, the same transmission control protocol (TCP) connec-
tion, or the like) can be queued in the same queue.

In some implementations, the buffer manager 110 may
perform one or more queueing operations in association with
processing of the frame by a frame processor of switch 100
(e.g., RX frame processor 104, TX frame processor 108).
The one or more queuing operations may include enqueuing
(e.g., assigning a frame to a queue) and/or dequeuing (e.g.,
removing a frame from a queue) in association with pro-
cessing the frame. In some implementations, buffer manager
110 performs the one or more queuing operations using
information associated with the FCB. For example, in some
implementations, buffer manager 110 may enqueue a frame
by updating a QCB corresponding to a queue, associated
with processing the frame, to include information that iden-
tifies the FCB. As another example, in some implementa-
tions, buffer manager 110 may dequeue a frame from a
queue by removing information that identifies the FCB from
a QCB corresponding to the queue. Notably, the one or more
queuing operations can be performed by buffer manager 110
without copying the frame, meaning that data movement and
copying is minimized, thereby reducing power consumption
and reducing processing latency.

In some implementations, buffer manager 110 may main-
tain a list of available FCBs and BCBs. Upon receiving a
frame or determining that a frame is to be transmitted, buffer
manager 110 may allocate an FCB and one or more BCBs
from these lists and may remove the one or more BCBs and
the FCB from the list. Further, when a lifecycle of a frame
ends (e.g., when processing of a received frame is com-
pleted, when a frame to be transmitted has been transmitted),
buffer manager 110 can reclaim the associated BCB and
FCB resources and add the one or more BCBs and the FCB
back to the list of available BCBs and FCBs. In some
implementations, a pair of head and tail pointers of the list
can be maintained, and available FCB or BCB entries are
linked together (e.g., similar to the manner in which BCBs
belonging to one frame are linked or FCBs belonging to one
queue are linked). In some implementations, buffer manager
110 can perform allocation of BCB and FCB resources by
reading and updating header pointers. In some implemen-
tations, buffer manager 110 can perform reclamation of BCB
and FCB resources by updating tail pointers.

In operation of switch 100, buffer manager 110 may
enqueue a frame received at switch 100 to a queue. For
example, the buffer manager 110 may allocate one or more
BCBs to the frame and may allocate an FCB to the frame
(with the FCB including information indicating the one or
more BCBs). Buffer manager 110 can then dequeue the
frame (e.g., remove from a queue) for classification of the
frame. In some implementations, buffering the frame before
performing classification allows performance of a frame
classifier to be set to a point that is less than a worst case
(e.g., long burst of small frames coming in at line speed) in
order to reduce area and cost. In some implementations,
after classification is complete, buffer manager 110 can link
frames belonging to one classification category to a particu-
lar queue using QCBs. In some implementations, when
classification results include additional information associ-
ated with the frame, (e.g., security data, safety data, or the
like) the additional information can be included in (e.g.,
assigning to) the FCB. In some implementations, security
relevant frames can be linked into dedicated security queues
for passing to cryptographic engines of switch 100 for
further processing.

In some implementations, security queues and frames are
separated from non-security frames, and only security mas-

5

10

15

20

25

30

35

40

45

50

55

60

65

8

ters can access security frames. In some implementations,
such separation can be realized by putting security queue
access entry points into a continuous address range that is
under access control by giving access rights to only security
masters, and disabling software direct access to frame stor-
age memory in normal operation mode. In some implemen-
tations, frame enqueue and dequeue operations are managed
by hardware (e.g., Ethernet hardware). One alternative is to
use a partition between security and non-security memo-
ries—frame storage memory, frame control block memory
(e.g., memory used for FCBs), and queue control memory
(e.g., memory used for QCBs).

Returning to FIG. 1A, buffer manager 110 may include (or
be communicatively coupled to) buffer memory 112. Buffer
memory 112 includes one or more memory components to
buffer frames received via ports of switch 100 or frames to
be transmitted via ports of switch 100. In some implemen-
tations, buffering provided by buffer memory 112 is man-
aged or controlled by buffer manager 110, as described
herein. In some implementations, buffer memory 112 is
configured to be used for buffering frames for multiple ports
of the switch 100. For example, in some implementations,
buffer memory 112 is configured to be used for buffering
frames for every port of switch 100. In some implementa-
tions, the sharing of buffer memory 112 among multiple
(e.g., all) ports of switch 100 reduces a need for buffer size
overdesign and, therefore, reduces a physical area of switch
100.

In this way, buffer manager 110 can provide a centralized
and efficient buffer management scheme that enables: (1) a
reduced frame buffer size that is centralized and shared
among ports; (2) reduced data movement and copying as
needed by functions of security acceleration, classification,
and internal port forwarding (3) reduced data movement and
copying that reduces processing latency; (4) selection of a
performance target of a frame classification or a crypto-
graphic engine setting to a desired point without additional
buffering; (5) access to frames by other components (e.g., a
CPU, system software, or the like) without additional data
movement; (6) passing of security data among different
processing stages with separation of security frames and
non-security frames; and (7) passing of CRC value and
timestamp storage to enable deferred safety checks and
improve safety protection coverage. More generally, the
buffer manager 110 can provide a buffer management
scheme that provides frame safety and security while mini-
mizing area cost.

As indicated above, FIGS. 1A and 1B are provided as
examples. Other examples may differ from what is described
with regard to FIGS. 1A and 1B. Further, the number and
arrangement of components shown in FIG. 1A are provided
as an example. In practice, there may be additional compo-
nents, fewer components, different components, or differ-
ently arranged components than those shown in FIG. 1A.
Furthermore, two or more components shown in FIG. 1A
may be implemented within a single component, or a single
component shown in FIG. 1A may be implemented as
multiple, distributed components. Additionally, or alterna-
tively, a set of components (e.g., one or more components)
of switch 100 may perform one or more functions described
as being performed by another set of components of switch
100.

FIG. 2 is a diagram of an example system 200 in which
a switch 100 may be implemented. In some implementa-
tions, system 200 may be a system on a chip (SoC). As
shown in FIG. 2, system 200 may include switch 100, as
well as a bus 202, a memory 204, a direct memory access

US 12,135,899 B2

9

(DMA) 206, a central processing unit (CPU) 208, and a
communication component 210.

Switch 100 is component to perform operations associ-
ated with improved buffer management, as described herein.
Further details regarding the switch 100 are provided else-
where herein, such as above with respect to FIGS. 1A and
1B.

Bus 202 is a component that enables communication
among the components of system 200. For example, bus 202
may enable switch 100 to receive data from memory 204
and/or DMA 206. As another example, bus 202 may enable
switch 100 to transmit data to communication component
210.

Memory 204 is a component to store and/or provide data
process or to be processed by switch 100. In some imple-
mentations, memory 204 may be include a random access
memory (RAM), a read only memory (ROM), and/or
another type of memory (e.g., a flash memory, a magnetic
memory, and/or an optical memory).

DMA 206 is a component to provide data stored by
memory 204 to switch 100. In some implementations, DMA
206 provides data stored by memory 204 to switch 100
independent of CPU 208 (i.e., DMA 206 provides direct
memory access).

CPU 208 includes a central processing unit, a graphics
processing unit, a microprocessor, a controller, a microcon-
troller, a digital signal processor, a field-programmable gate
array, an application-specific integrated circuit, and/or
another type of processing component. In some implemen-
tations, CPU 208 is implemented in hardware, firmware, or
a combination of hardware and software. In some imple-
mentations, CPU 208 includes one or more processors
capable of being programmed to perform a function.

Communication component 210 includes enables system
200 to communicate with other devices, such as via a wired
connection and/or a wireless connection. For example, com-
munication component 210 may include a receiver, a trans-
mitter, a transceiver, a modem, a network interface card, an
antenna, and/or the like.

The number and arrangement of components shown in
FIG. 2 are provided as an example. In practice, there may be
additional components, fewer components, different com-
ponents, or differently arranged components than those
shown in FIG. 2. Furthermore, two or more components
shown in FIG. 2 may be implemented within a single
component, or a single component shown in FIG. 2 may be
implemented as multiple, distributed components. Addition-
ally, or alternatively, a set of components (e.g., one or more
components) of system 200 may perform one or more
functions described as being performed by another set of
components of system 200.

FIG. 3 is a diagram of an example implementation 300 of
switch 100 that provides improved buffer management, in
accordance with various aspects of the present disclosure.

As shown in FIG. 3, in example implementation 300 of
switch 100, RX component 102 includes a group of RX
MAC ports 302, and RX frame processor 104 includes an
RX multiplexer 304, a frame enqueue component 306, a
header/data extractor component 308, a frame parser 310, a
parser microcode memory 312, a lookup parameter memory
314, a cryptographic frame enqueue component 316, a
cryptographic frame processor 318, a security parameter
memory 320, and a cryptographic engine 322.

As further shown, TX component 106 includes a group of
TX MAC ports 324, and TX frame processor 108 includes
a TX demultiplexer 326, a frame dequeue component 328,
a scheduler component 330, a cryptographic frame enqueue/

20

25

35

40

45

55

10

dequeue component 332, a security parameter memory 334,
and a cryptographic engine 336. Notably, the components of
example implementation 300 are provided for illustrative
purposes, and TX/RX implementation in a given switch 100
may differ than that shown in FIG. 3 to account for different
requirements or design targets.

As further shown, in example implementation 300, buffer
manager 110 may include a component that provides buffer
management for frames received by switch 100 (identified
as RX buffer manager 110), and a component that provides
buffer management for frames to be transmitted by switch
100 (identified as TX buffer manager 110). As further
shown, buffer memory 112 may include a buffer memory for
frames received by switch 100 (identified as RX buffer
memory 112), and a buffer memory for frames to be trans-
mitted by switch 100 (identified as TX buffer memory 112).

As indicated above, FIG. 3 is provided as an example.
Other examples may differ from what is described with
regard to FIG. 3. Further, the number and arrangement of
components shown in FIG. 3 are provided as an example. In
practice, there may be additional components, fewer com-
ponents, different components, or differently arranged com-
ponents than those shown in FIG. 3. Furthermore, two or
more components shown in FIG. 3 may be implemented
within a single component, or a single component shown in
FIG. 3 may be implemented as multiple, distributed com-
ponents. Additionally, or alternatively, a set of components
(e.g., one or more components) of system 100 may perform
one or more functions described as being performed by
another set of components of system 100.

FIG. 4 is a flowchart of an example process 400 associ-
ated with buffer management in an ethernet switch. In some
implementations, one or more process blocks of FIG. 4 are
performed by one or more components of a system 200. For
example, one or more process blocks of FIG. 4 may be
performed by one or more components of a switch 100, such
as RX component 102 (e.g., RX frame processor 104), TX
component 106 (e.g., TX frame processor 108), and/or
buffer manager 110 (e.g., using buffer memory 112). Addi-
tionally, or alternatively, one or more process blocks may be
performed by another component or a group of components
separate from or including the switch 100, such as a memory
204, a DMA 206, a CPU 208, and/or a communication
component 210.

As shown in FIG. 4, process 400 may include causing a
frame to be stored in a buffer memory, wherein the frame
either was received via a port of a plurality of ports or is to
be transmitted via a port of the plurality of ports (block 410).
For example, the switch 100 (e.g., buffer manager 110) may
cause a frame to be stored in a buffer memory (e.g., buffer
memory 112), wherein the frame either was received via a
port of a plurality of ports or is to be transmitted via a port
of the plurality of ports, as described above.

As further shown in FIG. 4, process 400 may include
allocating at least one BCB to the frame based on causing
the frame to be stored in the buffer memory (block 420). For
example, the switch 100 (e.g., the buffer manager 110) may
allocate at least one BCB to the frame based on causing the
frame to be stored in the buffer memory, as described above.

As further shown in FIG. 4, process 400 may include
allocating an FCB to the frame, wherein the FCB includes
information that identifies the at least one BCB (block 430).
For example, the switch 100 (e.g., the buffer manager 110)
may allocate an FCB to the frame, wherein the FCB includes
information that identifies the at least one BCB, as described
above.

US 12,135,899 B2

11

As further shown in FIG. 4, process 400 may include
performing one or more queueing operations in association
with processing of the frame, wherein the one or more
queuing operations are performed using information asso-
ciated with the FCB (block 440). For example, the switch
100 (e.g., the buffer manager 110) may perform one or more
queueing operations in association with processing of the
frame, wherein the one or more queuing operations are
performed using information associated with the FCB, as
described above.

Process 400 may include additional implementations,
such as any single implementation or any combination of
implementations described below and/or in connection with
one or more other processes described elsewhere herein.

In a first implementation, performing the one or more
queuing operations comprises enqueuing the frame for pro-
cessing by updating a QCB to include information that
identifies the FCB, the QCB corresponding to a queue
associated with processing the frame.

In a second implementation, alone or in combination with
the first implementation, performing the one or more queu-
ing operations comprises dequeuing the frame from a queue
by removing information that identifies the FCB from a
QCB corresponding to the queue.

In a third implementation, alone or in combination with
one or more of the first and second implementations, the one
or more queuing operations are performed without copying
the frame.

In a fourth implementation, alone or in combination with
one or more of the first through third implementations, the
buffer memory is configured to be used for buffering frames
for every port of the plurality of ports.

In a fifth implementation, alone or in combination with
one or more of the first through fourth implementations, the
frame is a first frame and the FCB is a first FCB, and the first
FCB comprises a field that identifies a second FCB associ-
ated with a second frame, the second frame being associated
with a same queue as the first frame.

In a sixth implementation, alone or in combination with
one or more of the first through fifth implementations, the
FCB comprises security data associated with the frame.

In a seventh implementation, alone or in combination
with one or more of the first through sixth implementations,
the FCB comprises safety data associated with the frame.

In an eighth implementation, alone or in combination with
one or more of the first through seventh implementations,
the buffer manager is further to update the FCB based on a
result of processing the frame.

Although FIG. 4 shows example blocks of process 400, in
some implementations, process 400 includes additional
blocks, fewer blocks, different blocks, or differently
arranged blocks than those depicted in FIG. 4. Additionally,
or alternatively, two or more of the blocks of process 400
may be performed in parallel.

The foregoing disclosure provides illustration and
description, but is not intended to be exhaustive or to limit
the implementations to the precise forms disclosed. Modi-
fications and variations may be made in light of the above
disclosure or may be acquired from practice of the imple-
mentations.

As used herein, the term “component” is intended to be
broadly construed as hardware, firmware, and/or a combi-
nation of hardware and software. It will be apparent that
systems and/or methods described herein may be imple-
mented in different forms of hardware, firmware, or a
combination of hardware and software. The actual special-
ized control hardware or software code used to implement

10

30

40

45

55

60

65

12

these systems and/or methods is not limiting of the imple-
mentations. Thus, the operation and behavior of the systems
and/or methods are described herein without reference to
specific software code—it being understood that software
and hardware can be designed to implement the systems
and/or methods based on the description herein.

As used herein, satisfying a threshold may, depending on
the context, refer to a value being greater than the threshold,
greater than or equal to the threshold, less than the threshold,
less than or equal to the threshold, equal to the threshold, not
equal to the threshold, or the like.

Even though particular combinations of features are
recited in the claims and/or disclosed in the specification,
these combinations are not intended to limit the disclosure of
various implementations. In fact, many of these features
may be combined in ways not specifically recited in the
claims and/or disclosed in the specification. Although each
dependent claim listed below may directly depend on only
one claim, the disclosure of various implementations
includes each dependent claim in combination with every
other claim in the claim set. As used herein, a phrase
referring to “at least one of” a list of items refers to any
combination of those items, including single members. As
an example, “at least one of: a, b, or ¢” is intended to cover
a, b, ¢, a-b, a-c, b-c, and a-b-c, as well as any combination
with multiple of the same item.

No element, act, or instruction used herein should be
construed as critical or essential unless explicitly described
as such. Also, as used herein, the articles “a” and “an” are
intended to include one or more items, and may be used
interchangeably with “one or more.” Further, as used herein,
the article “the” is intended to include one or more items
referenced in connection with the article “the” and may be
used interchangeably with “the one or more.” Furthermore,
as used herein, the term “set” is intended to include one or
more items (e.g., related items, unrelated items, or a com-
bination of related and unrelated items), and may be used
interchangeably with “one or more.” Where only one item is
intended, the phrase “only one” or similar language is used.
Also, as used herein, the terms “has,” “have,” “having,” or
the like are intended to be open-ended terms. Further, the
phrase “based on” is intended to mean “based, at least in
part, on” unless explicitly stated otherwise. Also, as used
herein, the term “or” is intended to be inclusive when used
in a series and may be used interchangeably with “and/or,”
unless explicitly stated otherwise (e.g., if used in combina-
tion with “either” or “only one of”).

What is claimed is:

1. A device, comprising:

a buffer memory to buffer frames received via a plurality
of ports of the device or frames to be transmitted via the
plurality of ports of the device;

at least one frame processor to generate security data
based on processing process frames received via the
plurality of ports of the device or frames to be trans-
mitted via the plurality of ports of the device,
wherein the security data indicates one or more of a

security protocol type, a key index, or a flow iden-
tifier; and

a buffer manager to:
store a frame in the buffer memory, the frame being a

frame that was received via a port of the plurality of
ports or a frame that is to be transmitted via a port of
the plurality of ports,

US 12,135,899 B2

13
allocate a first buffer control block (BCB) to a first
portion of the frame and a second BCB to a second
portion of the frame based on storing the frame in the
buffer memory,
wherein the first BCB includes information that
indicates a first block of the buffer memory in
which the first portion of the frame is stored and
information that identifies the second BCB, and
wherein the second BCB includes information that
indicates a second block of the buffer memory in
which the second portion of the frame is stored,
allocate a frame control block (FCB) to the frame, the
FCB including the security data and information that
identifies at least one of the first BCB or the second
BCB, and
perform one or more queueing operations in association
with processing of the frame by the at least one frame
processor, the one or more queuing operations being
performed using information associated with the
FCB.

2. The device of claim 1, wherein the buffer memory is
configured to be used for buffering frames for every port of
the plurality of ports.

3. The device of claim 1, wherein the buffer manager,
when performing the one or more queuing operations, is to
enqueue the frame by updating a queue control block (QCB)
corresponding to a queue, associated with processing the
frame, to include information that identifies the FCB.

4. The device of claim 1, wherein the buffer manager,
when performing the one or more queuing operations, is to
dequeue the frame from a queue by removing information
that identifies the FCB from a queue control block (QCB)
corresponding to the queue.

5. The device of claim 1, wherein the one or more queuing
operations are performed without copying the frame.

6. The device of claim 1, wherein the frame is a first frame
and the FCB is a first FCB, and the first FCB comprises a
field that identifies a second FCB associated with a second
frame, the second frame being associated with a same queue
as the first frame.

7. The device of claim 1, wherein the FCB further
comprises safety data associated with the frame, wherein the
safety data is different from the security data.

8. The device of claim 1, wherein the buffer manager is
further to update the FCB based on a result of processing the
frame.

9. A buffer manager comprising:

one or more components, the one or more components

including at least one hardware component, the one or
more components being configured to:
obtain a frame, the frame being a frame received via
one of a port of a plurality of ports of a device or a
frame to be transmitted via a port of the plurality of
ports of the device;
cause the frame to be stored in a buffer memory of the
device,
allocate a first buffer control block (BCB) to a first
portion of the frame and a second BCB to a second
portion of the frame based on causing the frame to be
stored in the buffer memory,
wherein the first BCB includes information that
indicates a first block of the buffer memory in
which the first portion of the frame is stored and
information that identifies the second BCB, and
wherein the second BCB includes information that
indicates a second block of the buffer memory in
which the second portion of the frame is stored;

15

20

25

30

35

40

45

50

55

14

allocate a frame control block (FCB) to the frame, the
FCB including security data and information that
identifies at least one of the first BCB or the second
BCB,
wherein the security data indicates one or more of a
security protocol type, a key index, or a flow
identifier; and
enqueue or dequeue the frame, in association with
processing of the frame by a frame processor of the
device, the enqueuing or dequeuing being performed
using information associated with the FCB.

10. The buffer manager of claim 9, wherein the one or
more components, when enqueuing the frame, are to update
a queue control block (QCB) associated with a queue to
include information that identifies the FCB.

11. The buffer manager of claim 9, wherein the one or
more components, when dequeuing the frame, are to remove
information that identifies the FCB from a queue control
block (QCB) corresponding to a queue.

12. The buffer manager of claim 9, wherein the enqueuing
or dequeuing of the frame are performed without copying
the frame.

13. The buffer manager of claim 9, wherein the frame is
a first frame and the FCB is a first FCB, and the first FCB
comprises a field that identifies a second FCB associated
with a second frame, the second frame being associated with
a same queue as the first frame.

14. The buffer manager of claim 9, wherein the FCB
further comprises safety data associated with the frame,
wherein the safety data is different from the security data.

15. The buffer manager of claim 9, wherein the one or
more components are further to update the FCB based on a
result of processing of the frame performed by the frame
processor.

16. A method, comprising:

causing, by a buffer manager, a frame to be stored in a

buffer memory,

wherein the frame either was received via a port of a
plurality of ports or is to be transmitted via a port of
the plurality of ports;

allocating, by the buffer manager, a first buffer control

block (BCB) to a first portion of the frame and a second
BCB to a second portion of the frame based on causing
the frame to be stored in the buffer memory,
wherein the first BCB includes information that indi-
cates a first block of the buffer memory in which the
first portion of the frame is stored and information
that identifies the second BCB, and
wherein the second BCB includes information that
indicates a second block of the buffer memory in
which the second portion of the frame is stored;
allocating, by the buffer manager, a frame control block
(FCB) to the frame, wherein the FCB includes secu-
rity data and information that identifies at least one
of the first BCB or the second BCB,
wherein the security data indicates one or more of a
security protocol type, a key index, or a flow
identifier; and
performing one or more queueing operations in associa-
tion with processing of the frame,
wherein the one or more queuing operations are per-
formed using information associated with the FCB.

17. The method of claim 16, wherein performing the one
or more queuing operations comprises enqueuing the frame
for processing by updating a queue control block (QCB) to
include information that identifies the FCB, the QCB cor-
responding to a queue associated with processing the frame.

US 12,135,899 B2

15

18. The method of claim 16, wherein performing the one
or more queuing operations comprises dequeuing the frame
from a queue by removing information that identifies the
FCB from a queue control block (QCB) corresponding to the
queue.

19. The method of claim 16, wherein the one or more
queuing operations are performed without copying the
frame.

20. The method of claim 16, wherein the frame is a first
frame and the FCB is a first FCB, and the first FCB
comprises a field that identifies a second FCB associated
with a second frame, the second frame being associated with
a same queue as the first frame.

#* #* #* #* #*

10

16

