US 20130182578A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2013/0182578 A1

Eidelman et al.

(43) Pub. Date:

Jul. 18, 2013

(54) SYSTEMS AND METHODS FOR NETWORK Publication Classification
MONITORING AND TESTING USING
SELF-ADAPTIVE TRIGGERS BASED ON KPI (1) Int. CL
VALUES HO4L 12726 (2006.01)
(52) US.CL
(76) Inventors: Sergey Eidelman, Bolton, MA (US); CPC v HO4L 43/0876 (2013.01)
Mark Figura, Methuen, MA (US); USPC oot 370/241
Tibor Ivanyi, Pelham, NH (US);
Anne-Marie Turgeon, Wakefield, MA
Us) 57 ABSTRACT
(21) Appl. No.: 13/554,925 Embodiments are directed to systems and methods for net-
(22) Filed: Jul. 20, 2012 work monitoring and testing using self-adaptive Key Perfor-
mance Indicator to establish thresholds to trigger alarms in
Related U.S. Application Data network monitoring. The present embodiments will be
s i described in the context of calculating KPIs for call detail
60) P 1 application No. 61/510,995, filed on Jul.
(60) 2;0\;811011121 application o o7, fed o records (CDRs) and using the KPIs for network monitoring.
102
KPI CONFIGURATION
104 106
EVENT
DATA DATA
EVENT EVENT PROCESSING KP EVENT KPt EVENT
SYSTEM

100

US 2013/0182578 Al

Jul. 18, 2013 Sheet 1 of 15

Patent Application Publication

INIAT 1N || LN3AT 1oy .AU

r

901

[40)8

T 'SOld

00t

ﬂv

WILSAS
ONISSID0Hd
IN3IAI

IN3A3
viva

IN3A3
vivd

NOILVENDIINOD Id

|

o

01

US 2013/0182578 Al

Jul. 18, 2013 Sheet 2 of 15

Patent Application Publication

¢ 'Ol

T'¢ ALITVND-3DI0A
TTEPSOL+ 337IVO
SeabedT+ LERRL,

00:ST FNIL-ANT
1171 INIL-1HVLS
d4ao at

v ALLIVND-3D10A
12evS9L+ EERNL
L9GPETTH 4371v0

ve 1t FNIL-AN3
10-11 FNIL-LEVIS
4ad at

US 2013/0182578 Al

Jul. 18, 2013 Sheet 3 of 15

Patent Application Publication

€ 'Ol

VINWYO4 3NTVA

al IN3A3 VYLIVQ
INIVA
NOISNINIA
dNVISINLL

ai

VININYO4 NOISNINIA

VINWYEO04 dINVLSIINLL

IN3IAI VIVQ Id)

VININYEO4 ONIHOLVIA

~

4023

€3INTIVA £ 1314
¢ 3INVA 2 134
T3INWWA T A3

IN3IAT ViVQ

SIT1NY INIAI viva Idi

/

7

0¢

~

00€

US 2013/0182578 Al

Jul. 18, 2013 Sheet 4 of 15

Patent Application Publication

b

_—

€€ INIVA
TZEYSOL+ NOISNINIC
eV, veTT dNVISINIL

90v EERILA)

A8 NOILYYNG dAL IN3A3

oY INTVA
TTEYSOL+ NOISNINIQ
vov\/\ YETT dNVLSINIL
3371VI-0L-DA 3dAL LN3AT

ov INVA
L9SYETT+ NOISNINIQ
Y peTT dNVISINIL
cov INOHdJ-AG-DA 3dAL IN3AT

¥ 'Old
oY ALIIVNO-3DI0A
TTEVSOL+ 33ATIVO
L9SVECT+ 4371IV0
veTl INIL-aN3T
10171 JNIL-LEVLS
4ao al

US 2013/0182578 Al

Jul. 18, 2013 Sheet 5 of 15

Patent Application Publication

S "Old

Sa13id INWA
JONVISNI NOISNINIA
aotd3d

dNVISINLL

JANVYN

S1PdNG

0 'OAV XVIN ‘NI

ZS ‘1S ‘0S

2 NOISNINICG

g NOISNIWIQA

vV NOISNINIQ

SINTVA dILVEOIYODY

IN3AT I

1

0s

| sanivA @3Lvyo3yooy |

| sanivA aalvunayooy |

vivda

SAl AN3AT
Qoid3d
JNVN

‘NOILVHNOIINOD

Gl INJA3 ViIvd
INTVA
NOISNIWICA
dINVISINIL

ai

INIAI VIVQ Id)

HOLVYDIUODV IdA

]

(

004

1

4033

Patent Application Publication Jul. 18,2013 Sheet 6 of 15 US 2013/0182578 A1

<kpi-data name="ss7.NumCallAttempsPerRegion" edr="ss7.CallCdr" >
<dimension op="copy" fieldName="region"/>
<value op="const" value="1" />

</kpi-data>

FIG. 6A

<kpi-data name="ss7.NumCallAttempsPerRegion" edr="ss7.*" >
<dimension op="copy" fieldName="region"/>
<value op="const" value="1" />

</kpi-data>

FIG. 6B

<kpi-data name="sip.NumCallAttempsPerRegion" edr="sip.CallCdr" >
<dimension op="copy" fieldName="region"/>
<value op="const" value="1" />

</kpi-data>

FIG. 6C

Patent Application Publication Jul. 18,2013 Sheet 7 of 15

<kpi name="NumCallAttempsPerRegion"

period="120"

valueType="integer"

keepMode="all"

keepSelector="count"

>
<data>sip.NumCallAttempsPerRegion</data>
<data>ss7.NumCallAttempsPerRegion</data>
</kpi>

FIG. 7

<kpi-channel name="KpiOutput"
kpi="NumCallAttempsPerRegion"
>
<parameter name="location" value="/Kpil/" />

US 2013/0182578 Al

<parameter names=
<parameter name=
<parameter name=
<parameter name=
<parameter name=

"finalFilename"
"activeFilename"
"dateFormat”
"outputFields"
"outputHeaders"

value="KPI{DATE}.csv" />
value="ACTIVE_KPlLcsv" />

value="yyyy MM dd HH mm ss" />

value="name timestamp dimension count” />
value="Name, Timestamp,Dimension,Count" />

</kpi-channel>

FIG. 8A

Name, Timestamp,Dimension,Count,
NumdCallSuccessPerRegion,1310750931,2,23670,
NumCallAttempsPerRegion,1310750931,2,23682,
NumdCallAttempsPerRegion,1310751051,2,23678,
NumCallSuccessPerRegion,1310751051,2,23666,
NumCallAttempsPerRegion,1310751171,2,23683,
NumCallSuccessPerRegion,1310751171,2,23671,

FIG. 8B

Patent Application Publication Jul. 18,2013 Sheet 8 of 15 US 2013/0182578 A1

<kpi-data name="sip.NumBadMosPerCustomerAll" edr="sip.CallCdr" >
<dimension ref="kpid.Customer"” />
<value op="and">
<expression op="float:gt" value="0.0" fieldName="mos_score" />
<expression op="float:It" value="S{voip.BadMosThreshold}" fieldName="mos_score" />
</value>
</kpi-data>

FIG. 9A

<expression name="kpid.Customer" op="ar" >
<expression op="if" >
<expression op="integer:le" value="2" >
<expression op="edr:lookup" lookupName="srclpinfo" index="1" />
</expression>
<expression op="edr:lookup” lookupName="srcipInfo" index="3" />
<expression op="null" />
</expression>
<expression op="if" >
<expression op="integer:le" value="2" >
<expression op="edr:lookup" loockupName="dstipinfo" index="1" />
</expression>
<expression op="edr:lookup" lookupName="dstipInfo" index="3" />
<expression op="null" />
</expression>
</expression>

FIG. 9B

US 2013/0182578 Al

Jul. 18, 2013 Sheet 9 of 15

Patent Application Publication

1T 'Ol

1494

92Jn0¢ 1nduyy 824n0s nduy

AR c)

Y011

OTTY

80Tt
uonesyddy

ﬂu

00T1

uonedjjddy &=

0T 'Ol

E T 924n0s 1nduj

US 2013/0182578 Al

Jul. 18, 2013 Sheet 10 of 15

Patent Application Publication

¢l S

234n0os nduy
1UDAB WINISY voﬂ“N
n\\\\\\lllilI//// aA2 3nanbaa| asnoc 1ndu
uonesddy 182uanbas S _ S0ET
nb 123 159nboy 324008 indu
[4015)) S

224n0s 1nhdut asooyd

¢l 'Ol

JuaAB ananba@ juaal ananbag UBAD 3NaNY
¢0cT

1UDAB 158] ananbagg

{jeuondo)
find

ananbaq

WA Inany

JUsA 3nanD JusAl ananp

y0T1

Patent Application Publication Jul. 18,2013 Sheet 11 of 15 US 2013/0182578 A1

1402 Request an event
1404
’_\/1408
No—p Select
input Source
1410
Yes

Real-

ves time?

1412
Current
No time >=top
timestamp?
Yes
R |
1406 —Y Ne
WY Noevent) 4 /\}414
available
Return all events
from top input source |«
with top timestamp
1416

Top input
source is nhow
empty?

1418 1420

Re-insert
input source
in b-heap

Remove input
source from
b-heap

FIG. 14

Patent Application Publication Jul. 18,2013 Sheet 12 of 15 US 2013/0182578 A1

FIG. 15

Patent Application Publication

Key
Performance
indicators

1612

Correlated

Jul. 18,2013 Sheet130f15 US 2013/0182578 Al

Events

Data Staging

N

1608

Network Probes

Network
Packets

CEP platform

FIG. 16

US 2013/0182578 Al

Jul. 18,2013 Sheet 14 of 15

Patent Application Publication

0141

L1 Ol

80L1

3qo.d

3qo.d

Z eleg

T eie@

Wwiiojie|d UoIIRIP3IA
NON.M/\ pleg JaUIY
4 .me‘_ou_ I 18104
YT/IT T e 7'T e1eq
pieoqyseq pieOqYyseq

WNHD”

WLIOfID]d UORRDIPIAI DID AHIUID
Y2UM JUBLIUOHAUS BuUIIsa | 10 Butionuopy

V0.1

9q04d 9qoud
g S
- ot
a Q
! Lo
— —+
o
! 4 3 g
©] = @
» JEN N =
—+ -
o S
3 3
@ 2
[N} [and
A4 ¥y
pieoqyseq pieoqyseq

\/\\\gm busay

9041

10 BULIOHUOW [DUOIIIPDI|

US 2013/0182578 Al

Jul. 18, 2013 Sheet 15 of 15

Patent Application Publication

18T C18T
) HOLVYINID Il |« yTIaNvH I |
918T : 9081 a3
1 mwoﬂ N ua3
STINNVYHD YI1AGNYH . B Y3ION3INDIS
1Nd1No 1ndino [waz | PRHANN G indnt Rua3
5 - ¥a3
0181 403 a3
Yildvav | INoON3 1 32un0s
1NdiN0dad | inaAT dd INIA3l LNdNIdTD
ﬂv NE®) nb d3d 53
8181 08T a8l 081
00381

08T

€081

081

US 2013/0182578 Al

SYSTEMS AND METHODS FOR NETWORK
MONITORING AND TESTING USING
SELF-ADAPTIVE TRIGGERS BASED ON KPI
VALUES

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a non-provisional application of
U.S. Provisional Application No. 61/510,995, filed Jul. 22,
2011, which is incorporated herein by reference in its entirety.

BRIEF DESCRIPTION

[0002] Anembodiment is directed to a generic data media-
tion platform for use in network monitoring, testing, and
analytics. Many network monitoring and testing systems are
composed of probes which gather information and dash-
boards which report that information. Embodiments of the
mediation platform described herein integrate with disparate
data sources and data consumers, rather than having fixed
inputs and fixed outputs. Data from previously independent
data sources can be combined and analyzed together, provid-
ing additional value to the data consumers. The integrated
data can also be output to different types of data consumers,
each of which might expect to receive different sets of data in
different formats. Embodiments are also directed to a method
for automatically calculating key performance indicator
(KPI) thresholds in a monitoring product by using self-learn-
ing triggers based on KPI values considered to be normal
(values observed during normal conditions), and adaptively
triggering alarms to indicate deviance from normal condi-
tions. The alarms are generated without needing a user to
configure, or have knowledge of, the conditions required to
generate those alarms.

TECHNICAL FIELD

[0003] The present application relates to network monitor-
ing, testing and analysis. In particular, the present application
relates to real time monitoring of networks.

BACKGROUND

[0004] KPIs have been calculated in the past to evaluate
networks. Self-adaptive triggers based on KPI values have not
been used as triggers for alarms in network monitoring in user
or data independent manners.

SUMMARY

[0005] Embodiments are directed to systems and methods
for network monitoring and testing using self-adaptive trig-
gers based on KPI value to establish thresholds to alarms in
network monitoring.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] FIG. 1 is a high level block diagram of an embodi-
ment of a flexible KPI description methodology in accor-
dance with an embodiment.

[0007] FIG. 2 illustrates embodiments for two data events
generated in a computer telephony system in accordance with
an embodiment.

[0008] FIG. 3 illustrates the use of a set of rules to create
KPI data events from input data events in accordance with an
embodiment.

Jul. 18,2013

[0009] FIG. 4 illustrates a single data event resulting in
three KPI data events in accordance with an embodiment.
[0010] FIG. 5 illustrates mapping between a KPI data event
and an aggregated KPI event via KPI aggregators in accor-
dance with an embodiment.

[0011] FIGS. 6A, 6B and 6C illustrate a set of rules used to
map data events to KPI data events in accordance with an
embodiment.

[0012] FIG. 7 illustrates a rule used to define a KPI aggre-
gator in accordance with an embodiment.

[0013] FIGS. 8A-8B illustrate a configuration and actual
output, in accordance with an embodiment, for a KPI output
for the KPI aggregator illustrated in FIG. 7.

[0014] FIG. 9A illustrates a rule that processes SIP event
data records in accordance with an embodiment.

[0015] FIG. 9B illustrates the use of lookup tables for cal-
culations in accordance with an embodiment.

[0016] FIG. 10 illustrates two input sources containing
locally ordered events to be communicated to an application
in accordance with an embodiment.

[0017] FIG. 11 illustrates an application receiving related
events from different input sources through network clouds in
accordance with an embodiment.

[0018] FIG. 12 illustrates a state diagram of an input source
in accordance with an embodiment.

[0019] FIG. 13 is a block diagram illustrating details asso-
ciated with an application requesting an event from a
sequencer in accordance with an embodiment.

[0020] FIG. 14 is a flowchart illustrating details associated
with an application requesting an event from a sequencer in
accordance with an embodiment.

[0021] FIG. 15 is an illustration of a binary max-heap in
accordance with an embodiment.

[0022] FIG. 16 illustrates the use of a CEP platform to
analyze network events in accordance with an embodiment.
[0023] FIG. 17 illustrates how a data mediation platform
can be incorporated into an existing network monitoring or
testing environment in accordance with an embodiment.
[0024] FIG. 18 illustrates a system architecture for a
generic data mediation platform in accordance with an
embodiment.

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

[0025] Embodiments are directed to a method of configur-
ing how dimension-value based key performance indicators
(KPIs) are calculated from a stream of homogenous or heter-
ogenous data events. The present embodiments will be
described in the context of calculating KPIs for call detail
records (CDRs) for computer telephony events, such as mini-
mum voice quality score per user, average call duration per
network node, number of calls per region, average number of
calls per customer with a low MOS, etc.

[0026] Presentembodiments are particularly useful for net-
work monitoring, including VOIP networks, voice quality
monitoring, and quality of user experience in networks.
[0027] Anembodiment creates an intermediate timestamp-
dimension-value triplet KPI data event from a data event (also
referred to as an event detail record). The KPI data event is
subsequently processed by a KPI engine that combines, or
aggregates, one or more KPI data events in various ways, and
which outputs computed KPIs to files or to a dashboard. A set
ofrules or formulas are used to calculate the components of a
KPI data event from a data event. Multi-dimensional KPIs

US 2013/0182578 Al

can be implemented by concatenating two or more single
dimension KPI values. Finally, a set of rules or formulas can
also be used to generate a set of aggregated metrics per value
of dimension.

[0028] A dataeventis created from raw data generated by a
system, such as network probe. For example, in VOIP net-
works, a network probe many monitor media quality infor-
mation such as MOS, packet jitter, packet loss, among other
metrics. The data generated by the network probe may be
saved to a file on a regular basis. Alternatively, the network
probe may generate events that are communicated the KPI
engine described herein. The KPI configuration described
herein first enables auser to define how to convert the raw data
into a KPI data event.

[0029] A KPI data event is not limited to a timestamp-
dimension-value triplet, but may also include additional
name-value pairs. The timestamp denotes the date and/or
time when a certain event occurs. The dimension refers to the
construct being measured. The value represents the actual
numeric data, character data, or some other data associated
with the dimension.

[0030] Embodiments of the dynamic KPI configuration
described here are particularly useful in systems where it is
desirable to measure a large number of KPIs. Coding the
calculations and routines associated with different KPIs, in
addition to the required testing of the coded routines, requires
a large amount of time. In addition, after these routines have
been coded, the end-user has no control over the coded KPIs
(other than the control provided through the system’s inter-
face, and even then changes allowed are minimal and highly
constrained). Therefore, if a system allows a user to measure
KPIs named A, B, and C, then the user would be limited to
only KPIs A, B, and C. If an additional KPI was needed, the
user would be required to request a change in the code of the
system to make such a change. Finally, if a user paid for a
system that computes KPIs A-Z, and the user needed only
combinations of KPIs A-D, then there is both development
time wasted, and the end-user effectively ends up paying for
KPIs and features that are not used.

[0031] Typically engineers that develop systems that
include calculations of KPIs write the corresponding calcu-
lations and routines in the programming language(s) being
used to develop the system. This has the advantage of being
the most efficient implementation. However, this approach
lacks user configurability, flexibility, and results in a larger
program code that is more expensive to maintain over the
lifetime of the system.

[0032] Embodiments described herein provide a flexible
KPI description methodology that can be used to implement
KPIs, allowing users to modify existing KPIs and to imple-
ment additional KPIs when needed. By using a set of rules
and formulas to define KPIs and the calculations associated
with KPIs, a user can simply modify a configuration file,
rather than actually change the source code of the system.
[0033] FIG. 1 illustrates a high level view of an embodi-
ment of the flexible KPI description methodology described
herein. An event processing system 100 uses the KPI configu-
ration 102 to process data events 104 generated by a system
into a plurality of KPI data events 106. The KPI configuration
102 is also used for aggregating one or more KPI data events
and to produce actual KPI values.

[0034] In the context of a computer telephony system, a
data event may comprise of a call detail record associated
with a call. However, other events may be generated in

Jul. 18,2013

response to network packets meeting one or more conditions.
FIG. 2 illustrates examples of two data events generated in a
computer telephony system. Data events can have different
formatting, with the actual formatting and the actual data
depending on the system generating the data events. Typi-
cally, data events consist of a set of name-value pairs. In the
call detail records from FIG. 2, the set of names are listed in
the left column and the corresponding set of values are listed
in the right column. These call detail records include an
identification (ID), a start-time, an end-time, a caller, a callee,
and a voice-quality score. However, it is to be understood that
the name-value pairs for a call detail record may be com-
pletely different from the name-value pairs generated in asso-
ciation with a completely different system or generated in
association with a different event. For instance, the data event
record associated with an email may include an ID, the send-
ing-time, the sender, the receiver, and the content-type.

[0035] In accordance to one embodiment, the KPI event
generation configuration is comprised of the following steps:
using a set of rules for creating intermediate KPI data events
from input data events, using a set of rules for configuring the
KPI aggregators, and mapping between the KPI aggregators
and the KPI output event streams.

[0036] FIG. 3 illustrates the step of using a set of rules to
create KPI data events from input data events. The data events
300, consisting of a set of field-value pairs, are processed by
KPI data event rules 302. KPI data event rules 302 include the
use of four types of rules to generate KPI data events 304:
matching formula, timestamp formula, dimension formula,
and value formula. The matching formula is used for filtering
events and for matching events to particular routines that
convert the event to a KPI data event. The matching formula
can either match the name of a particular event or the type of
the event. For instance, a VOIP system may generate an event
named “SIPCALLCDR” whenever a SIP call is made, and a
matching formula that matches the string “SIPCALLCDR”
would detect this event. As will be explained further in detail
below, matching can also be done by using regular expres-
sions, lookup tables, and global variables, multiple different
types of data events 300 may be matched to a single KPI data
event 304 type, and a single data event 300 may be trans-
formed into multiple KPI data event types 304

[0037] The timestamp formula is used to perform a calcu-
lation or matching on the timestamp of the data event. Since
KPI events are emitted at periodic intervals, the timestamp of
the data event and the KPI data event may be important.
Matching of a timestamp may comprise determining whether
an event occurred during a specific time interval. For
example, if the timestamp for a particular data event indicates
that the particular data event occurred in the last two minutes,
then a KPI event would be generated from the particular data
event. Timestamp matching can also be used to filter events
based on the time of day, the day of the week, etc. The
dimension formula can be used to match a particular dimen-
sion value to a particular computation or operation. The
dimension formula can also be used to copy the dimension
field from the data event to the dimension field of the KPI data
event, to look up the dimension field in a lookup table or a
global variable, etc. The value formula is used to compute the
value of the KPI data event based on one or more fields of the
data event, based on lookup tables, based on global variables,
or a combination of these. The formula notation used for the
KPI configuration can make use of global system variables,
lookup tables, named fields from data events, named fields

US 2013/0182578 Al

from KPI data events, named fields from KPI events, user
defined variables, and user defined operations.

[0038] The data event ID formula can be used to drilldown
to other information. For example, with certain KPI events,
such as those that show an undesired value (i.e., MOS too low
for a customer or something similar), the user may want to
find all the contributing data events that were aggregated into
a particular KPI value because the data events naturally con-
tain much more information and diagnosis of a problem may
be easier to perform based on the broader data set from such
data events. In an embodiment, a unique ID (the data event
ID) is assigned to each data event, which is then stored with
each KPI data event. For a certain KPI event, the type (name)
of'the KPI will be known, the time period that got aggregated
will be known, and even the dimension instance will be
known. Using this information, all the KPI data events that
“built” this KPI event can be drilled down to, i.e., found, in the
storage. Since these KPI data events all have the ID of the
original data events, the exact set of them that contributed to
this particular KPI event can be found in the storage.

[0039] FIG. 4 illustrates an example of a single data event
400 (shown on the left side of the figure) resulting in three KPI
data events 402, 404, and 406. KPI data events are interme-
diate pseudo-events generated from data events for the pur-
pose of KPI calculation. Each KPI data event may contain the
following fields: an event type, a timestamp, a KPI dimension
value, and a KPI data value. Depending on the type of data
associated with the system generating the data events, the
dimension field may consist of numeric data, character data,
string data, a list, a combination of these types of data, or
some other type of data. Similarly, the value field may consist
of numeric data, character data, string data, a list, a combina-
tion of these types of data, or some other type of data.
[0040] InFIG. 4, the data event 400 (on the left side of the
figure) results in three KPI data events 402, 404, and 406 (on
the right side of the figure) after the KPI data event rules are
applied. The first KPI data event 402 has a type of “vq-by-
phone”, with this event type representing voice-quality by
phone. The timestamp field contains the timestamp for the
end-time of the call. The dimension for the first KPI data event
402 is the phone number of the caller, and the value of the KPI
data event is 4.0. The value of the KPI data event indicates the
voice-quality score associated with the call.

[0041] The second KPI data event 404 contains the voice-
quality for the callee. Both the first KPI data event 402 and the
second KPI data event 404 are generated from the data event
400 by copying the values of the fields from the data event
400. The third KPI data event 406 is generated by performing
a calculation of the duration of the call, rather than copying
the values of fields from the data event 400, which takes the
difference between the start-time and the end-time of the call.
Itis to be understood that any field from the data event 400 can
be used to populate and calculate the values of fields of KPI
data events. For instance, a calculation may first check the
timestamp value, and if both the timestamp value meets a first
set of conditions and if field A meets a second set of condi-
tions, then field B and field C from the data event may be
summed together.

[0042] Depending on the set of rules, some data events may
not produce any KPI data events at all, such as a result of not
meeting some of the matching criteria. This can be useful for
event filtering, such as producing KPI data events for calls
longer than 10 seconds, producing KPI data events for
devices in the network of carrier A, etc. Another example of

Jul. 18,2013

event filtering includes dropping all KPI data events that have
either a dimension or value set to a specific value, or even a
special value such as “null.”

[0043] Data events of different types may also result in
generation of KPI data events of the same type and contribute
to the calculation of a single KPI. KPI data event abstraction
also allows for clear conceptual separation between how KPI
aggregation is performed and how raw KPI data is extracted
from input data events. For example, a KPI data event named
“call-duration-by-phone-number” can be generated from
both SS7 and SIP call detail record data events, contributing
to aunified KPI for “call-duration-by-phone-number.” There-
fore, embodiments of the claimed invention allow for the
generation of uniform KPI data events by aggregating hetero-
geneous data events. That is regardless of how a first data
event may be generated or formatted, and regardless of how a
second data event may be generated or formatted, these two
data events can be processed and aggregated by using the KPI
data event rules. In particular, if the administrator of a net-
work has created rules to process events generated by probes
on the network, the administrator can add a different type of
probe to the network, which generates data events in a differ-
ent format and containing different data than the existing
probes. Using the KPI configuration described herein, the
user can create rules that not only process the data events from
the new probe, but that also aggregate the data from the new
probe with the existing probes using the KPI configuration
and KPI data event rules.

[0044] FIG. 5 illustrates the mapping between KPI data
events 304 and aggregated KPI events 502 via KPI aggrega-
tors 500. KPI data events 304 may consist of a set of name-
value pairs (also referred to as field-value pairs), with the
fields including an identification field for the KPI data event,
a timestamp field, a dimension field, and a value field. The
KPI aggregator 500 uses a set of configuration rules to pro-
cess a plurality of KPI data events 304 that occurred during an
aggregation time period. The configuration of KPI aggrega-
tors can include rules indicating the name of events to be
processed, the time interval for which events are being pro-
cessed and aggregated, the event IDs to be processed, etc.

[0045] The aggregated KPI events 502 generated by aggre-
gators are comprised of a set of name-value pairs including a
name for the KPI event, a timestamp, an aggregation time
period, a dimension instance, and aggregated value fields,
such as minimum, maximum, mean, standard deviation,
buckets, etc. However, alternative embodiments may include
other name-value pairs. In the computer telephony system
example, the KPI event name may be the call duration by
phone number, the aggregation time period may be one day,
the dimension instance may be a phone number of a first user,
and the aggregated value field (representing the call duration
by the user) may be 5 minutes. An aggregated KPI event 502
may also have an identical structure to a KPI data event 304,
with the difference being that the values of the KPI event 502
are populated by performing aggregation of values on data
from a plurality of KPI data events 304. However, because the
aggregated KPI event 502 may have an identical structure to
a KPI, itis to be understood that an aggregated KPI event 502
can subsequently be aggregated with KPI data events 304 and
other aggregated KPI events 502, depending on the configu-
ration and rules specified by the user. For example, the aggre-
gated KPI events could be subject to operations similar to
those described with regard to KPI data event rules 302 of

US 2013/0182578 Al

FIG. 3, with the KPI events being used as the data events and
resulting in new KPI data events.

[0046] The KPI events and KPI data events may have the
same type or different types. A multi-dimensional KPI may
be created by defining a dimension operation, such as
described with respect to the dimension formula of KPI data
event rules 302 of FIG. 3, so that multiple value fields are
selected from the name value set of a particular data event
type. For example, as illustrated in FIG. 4, the dimension
operation can be defined as “Caller+Callee” for “VQ-BY-
PHONE”, which would yield a multi-dimensional KIP data
event of:

[0047] TYPE=VQ-BY-PHONE

[0048] TIMESTAMP=11:34

[0049] DIMENSION=+1234567:47654321
[0050] VALUE=4.0

[0051] A multi-dimension KPI may also be simulated by
concatenating multiple KPI dimension values into a single
KPI dimension value. For the KPI event resulting from the
aggregation of the two KPI data events illustrated in FIG. 4,
the string “+1234567:+7654321” may be used to represent
by-“caller”-by-“callee” dimensions.

[0052] Multi-dimensional KPIs restrict data further when
compared to single dimension KPIs. For example, a first
single dimension KPI may calculate the average quality of
experience by customers. A second single dimension KPI
may calculate the average quality of experience by service
providers. If during monitoring and testing of one or more
networks it was found that a particular customer had a bad
quality of experience (QoE), then a multi-dimension KPI
could be used to determine whether the bad QoE was depen-
dent on the service provider. A multi-dimension KPI could be
used to obtain a KPI for the Average QoE by Customer by
Service Provider. The use of concatenation allows the same
implementation used for single dimensions to be used with
multiple dimensions, since the system would only see a single
string at any one time. Multi-dimensional KPI’s, however,
have higher cardinality in their dimensions. For example, if
there a one million customers and ten service providers, there
may be ten million new dimensions instances for the multi-
dimensional KPI.

[0053] A KPI aggregator is configured to receive KPI data
events with particular IDs or types, sort the KPI data events by
the dimension value, and performs aggregation calculations
based on KPI data values. As indicated above, KPI events are
the result of this aggregation for particular time intervals.
While the timestamp in KPI data events is used to identify a
particular KPI data event within a proper interval, the ID of
KPI data events is used to determine whether a particular
aggregator should aggregate the event with other events.
[0054] During aggregation operations, the KPI aggregator
can process all the events within the same interval in the same
way. Alternatively, a KPI aggregator may process certain
events using a first set of operations and other events using a
second set of operations. A KPI aggregator can also combine
KPIs from different event types. For instance, SS7 and SIP
KPI data events can be aggregated into a generic KPI for calls
(regardless of the communication protocol used). Finally, as
noted above, the behavior and operations performed by the
KPI aggregator can all be configured by the user by specify-
ing the aggregation rules or by modifying these rules to meet
the user’s needs.

[0055] The rules and formulas for computing the aggrega-
tions are defined using the same flexible configuration meth-

Jul. 18,2013

odology used to map data events to KPI data events. Sets of
KPI data events can be aggregated based on KPI calculation
produces using user defined time intervals for the aggregation
periods, such as once a minute, once an hour, etc. The aggre-
gated set contains aggregated information for every KPI
dimension encountered during the specified time period.
[0056] The configuration methodology enables a wide
range of aggregation operations to be used and defined by the
user. For example, a first aggregation operation can count the
number of received KPI data events, a second aggregation can
sum the values for a particular dimension from a plurality of
KPI data events, a third aggregation can sum the squares of
the values for a particular dimension from a plurality of KPI
data events, etc. Other aggregation operations include deter-
mining the minimum value for a dimension from a plurality of
KPI data events, determining the maximum value from the
plurality of KPI data events, determining the largest N values
from the from the plurality of KPI data events, determining
the smallest N values from the plurality of KPI data events,
determining the average of the values from the plurality of
KPI data events, determining the standard deviation, and
determining the value distribution of the values from the
plurality of KPI data events into a predefined number of value
buckets. Other aggregation statistical operations include
determining the median, the mode, quartiles, and outliers.
Selection algorithms can also be used to limit the number of
individual dimension values reported by a KPI aggregator.
For instance, the k smallest values or the k largest values can
be retrieved from the values of a set of KPI data events.

[0057] KPI aggregators are not limited to aggregating val-
ues for a single dimension. In one embodiment, a KPI aggre-
gator can aggregate values from two or more dimensions. In
addition, a KPI aggregator can aggregate values from a single
dimension based on whether the values from a different
dimension meet one or more conditions. As aggregation
operations are flexible and configurable by a user, they are not
limited to statistical operations. For instance, an aggregation
operation may comprise of summing the values ofa particular
dimension whose value is less than a threshold value.
Embodiments can also consist of a single KPI aggregator that
aggregates values from a plurality of KPI data events and for
a plurality of dimensions. Alternatively, two or more aggre-
gators can be configured, with each aggregator aggregating
values from different KPI data events or aggregating values
for different dimensions.

[0058] During the aggregation operations, a KPI aggrega-
tor can store KPI data events as objects in a list, with the
aggregator aggregating the values in the list at the end of the
aggregation time period. The aggregator can also extract the
data from the KPI data event, storing each name-value pair
from the KPI data event into a list, rather than storing each
KPI data event as an object. The aggregator can also extract
specific data from the KPI data event, while discarding the
rest, or saving some identification information associated
with the extracted data in case it was needed at a later calcu-
lation step to determine where a piece of data came from.
[0059] FIG. Sillustrates the aggregator maintaining aggre-
gated values for various dimensions, including dimension A,
dimension B, and dimension C. For each dimension, values
can be aggregated in a plurality of ways as indicated above,
including counting the number of events, the minimum value,
the maximum value, the average value, the standard deviation
of the aggregated values, and the distribution of the values
into a number of predefined buckets.

US 2013/0182578 Al

[0060] FIGS. 6-9 illustrate various examples of an embodi-
ment of a set of rules and formulates used to map data events
to KPI data events, and to map KPI data events to aggregated
KPI events. The examples presented use the Extensive
Markup Language (XML) to define the set of rules for gen-
erating KPI events from data events. Itis to be understood that
any other data serialization format can be used, preferably a
human readable format. For example, rather than using XML,
alternative formats that can be used include comma-separated
values, JSON, S-expressions, and YAML, among others.
[0061] FIGS. 6A-6C illustrate a set of rules used to map
data events to KPI data events. In FIG. 6 A, the rule consists of
a “kpi-data” element, with the kpi-data element having two
child elements: “dimension” and “value”. The kpi-data ele-
ment and the two child elements each have attributes. The
“name” attribute of the kpi-data element indicates the name
for the KPI data event (in FIGS. 3 and 4 above, the name
attribute was referred to as the ID), and the “edr” attribute
indicates the name of data events that are matched. The edr
attribute allows the user to indicate a rule for matching the ID
or the name of an event data record. That is, any event data
record having an ID labeled “ss7.CallCdr” would be pro-
cessed by the rule from FIG. 6A. As noted above, matching
can be performed in various ways. The user can specify an
exact string to be matched, such as “ss7.CallCdr”. Alterna-
tively, the user can use regular expressions to match the IDs of
event data records. For instance, the expression “*.CallCdr”
would match any event data record that ends with the string
“.CallCdr”, which would match strings such as “ss7.
CallCdr”, “sip.CallCdr”, “sccp.CallCdr”, and “hel-
loworld123.CallCdr”.

[0062] The dimension child element, declared inside the
kpi-data element, specifies the value for the dimension field
of the KPI data event. The example from FIG. 6A illustrates
the use of named fields from the data event to calculate the
value of the fields of the KPI data event. Specifically, the
attribute “fieldName” denotes the name of a field from the
data event, and the attribute “op” specifies the operation to be
performed to generate the dimension value of the KPI data
event. The “copy” operator indicates that the value of the field
“region” from the event data record is copied to the dimension
field of the KPI data event. The value of the KPI data event is
a constant set to a value of 1.

[0063] The example from FIG. 6A indicates that the KPI
data event named “ss7 NumCallAttemptsPerRegion” is gen-
erated by matching every event data record with an ID of
$s7.CallCdr. The resulting KPI data event will have a dimen-
sion value equal to the region value from the data event and
will have a value equal to 1. In other words, the rule from FIG.
6A creates a KPI data event with a value of 1 whenever a call
is made within a specific region. The rule from FIG. 6A
creates a plurality of KPI data events every time a call is made,
with each KPI data event recording the region associated with
the call. If it was desired to count the number of calls made per
region, a KPI aggregator would count the KPI data events for
a first region, count the KPI data events for a second region,
and so on.

[0064] FIG. 6C illustrates a rule similar to the rule from
FIG. 6A, generating a KPI data event whenever a SIP call is
made, with the KPI data event having a dimension value equal
to the region where the call was made and having a value
equal to 1.

[0065] FIG. 7 illustrates a rule used to define a KPI aggre-
gator that aggregates KPI data events having an ID equal to

Jul. 18,2013

“sip.NumCallAttempsPerRegion” and “ss7.NumCallAt-
tempsPerRegion”. Inthe KPI aggregator rule, the “data” child
elements (declared inside the “kpi” element) indicate the
name of the KPI data events being aggregated. In the kpi
element, the attribute “name” defines the name of the KPI
aggregator. The attribute “period” defines the aggregation
time period. In this case, the aggregation period is defined in
seconds, with 120 resulting in a two minute aggregation time
period. The “valueType” attribute specifies the type of the
value of the KPI aggregator, in this case being an integer or
other number.

[0066] The “keepMode” attribute defines which values are
aggregated and which values are excluded from the aggrega-
tion. For example, the “keepMode’ attribute may be used to
run Top-N (or Bottom-N) selection algorithms on the stored
(dimension instance—value) pairs. In FIG. 7, for
“keepMode=all”, all dimension instances may be kept during
the aggregation period and all may be emitted at the end. A
user could also specify that only the highest (or lowest) N
values may be kept during the aggregation using the Top-N or
Bottom-N selection algorithm. This may be useful when
tracking “too many” dimension instances. For example, for a
KPI that tracks the quality of experience for subscribers, it
does not make sense to keep track of possibly millions of
subscribers, it is enough to track the ones that are having the
worst experience. The keepMode attribute could also be used
in other ways. For example, for
“keepMode=removeQutliers”, all outliers of the KPI data
events would be removed from the aggregation operation.
Alternatively, the user may have created a keepMode called
“specialDrop 10th”, which drops the 10th KPI data event
from the aggregation operation.

[0067] Finally, the “keepSelector” attribute defines the
aggregation operation, which may be the name of a number of
predefined aggregation operations or it may be the name of'a
user defined operation. In this case, the operation “count”
aggregates the KPI data events by counting the number of KPI
data events. However, the operation may alternatively have
been “max”, “min”, “average”, “top 57, “bottom 37, “stddev”,
etc.

[0068] FIG. 8A illustrates configuration for the KPI output
for the KPI “NumCallAttemptsPerRegion” from FIG. 7. The
configuration allows the user to specify the name of the file
where the output is to be stored, along with specifying the
ordering and formatting of the data as it is outputted. The rules
also enable the user to specify all the results, or portions of the
results, to be written to different files. FIG. 8B shows the
actual output, including headers for the data and followed by
rows of comma-separated values.

[0069] FIG. 9A shows another example of a rule that pro-
cesses SIP event data records. The rule shows an example of
using global system variable, “voip.BadMosThreshold”, for
the calculation of the values of the KPI data event. Placing the
global system variable inside the curly brackets and with the
dollar sign—S${variable_name}—indicates to the parsing
engine that the string inside the curly brackets is a variable,
and it results in the value of the variable replacing the string.
For instance, ifthe value of the variable voip.BadMosThresh-
old was 3.5, then the expression in FIG. 7A would result with
the expression being replaced with “value=3.5". The rule
from FIG. 7A also shows an example of an “and” operation,
where the two elements inside the value element are evalu-
ated, and if both of these expressions are true, the value of the
KPI data event is set to 1, and if at least one of the expressions

US 2013/0182578 Al

is false, then the value is set to 0. The first “expression” child
element performs the operation of checking whether the field
mos_score is greater than 0.0. The second “expression” child
element determines whether the field mos_score is less than
the value stored in the voip.BadMosThreshold global vari-
able. Therefore, the rule processes an event data record for a
call, and if the MOS score of the call is greater than 0 and less
than a bad MOS score threshold, then the value of the KPI
data event is set to 1. A KPI aggregator can then be configured
to count all KPI data events with an ID of sip.NumBadMos-
PerCustomerAll and with a value of 1 to determine the num-
ber of calls by customers that received bad MOS scores.

[0070] FIG.9A also illustrates the use of references to user
defined operations or expressions. That is, if the user found
the need to define a new operation, then the user would be able
to create a new operation, assign a name to the new operation,
and be able to use the operation by simply invoking it by
name. The element “dimension” includes the attribute “ref”
with a value of “kpid.Customer.” The “ref” attribute enables
the user to invoke an operation defined by the user. Specifi-
cally, the “kpid.Customer” operation is defined in FIG. 9B.

[0071] The expression from FIG. 9B illustrates the use of
lookup tables for calculations. The attribute “lookupName”
indicates the table name, and the attribute “index” indicates
the index of the table from which a value is being retrieved. If
the table consists of a plurality of name-value pairs, then a
particular index would correspond to the value of a particular
name-value pair. Similarly, if the table consists of a plurality
of rows and columns, then the two indexes can be specified,
with one index referring to the row and the other index refer-
ring to the column, thus allowing for retrieval of specific
values from the table. The index notation can also enable the
user to specify one index for either the row or column, and
leave other the other index blank, allowing for an entire row or
column to be retrieved. Slicing of tables, and indexing and
retrieval of specific values or sets of values from tables is well
known in the art.

[0072] Yet another embodiment is directed to a method for
automatically calculating KPI thresholds in a monitoring
product by using self-learning triggers based on KPI values
considered to be normal (values observed during normal con-
ditions), and adaptively triggering alarms to indicate devi-
ance from normal conditions. The alarms are generated with-
out needing a user to configure, or have knowledge of, the
conditions required to generate those alarms.

[0073] For instance, in the context of monitoring VOIP
calls, embodiments described herein automatically learn that
a normal Mean Opinion Score (MOS) for calls from carrier A
is X, the normal MOS for carrier B is y, etc. After these values
have been determined, the system may automatically trigger
alarms when calls with MOS values below (or above depend-
ing on the context) those levels are detected. These learned
values can also be time dependent. For example the system
can learn the “normal” values for a tested function, such as
“Busy Hour” and “Off Times” and use the KPI aggregators to
compare against these at the appropriate times.

[0074] In an embodiment, the direction of deviance can
also be learned automatically, as further described below. For
example, MOS is an industry standard metric for measuring
QoF having a scale of 1-5. A standard rating scheme of MOS
is presented in the table below, where 5 denotes an excellent
call quality, while 1 denotes a bad call quality.

Jul. 18,2013

MOS Rating Description
5 Excellent—Imperceptible
4 Good—Perceptible but not annoying
3 Fair—Slightly annoying
2 Poor—Annoying
1 Bad—Very annoying

[0075] Although reference is primarily made herein to
MOS, there are other metrics that may be used for measuring
QokE, such as the R-factor, which has a scale of 1-100. The
R-factor may be included as a field of a data event. R-factor is
one of a number of alternative methods of assessing call
quality. Scaling from 0 to 100, as opposed to the limited MOS
scale of 1 to 5, makes R-factor a more precise tool for mea-
suring voice quality. MOS ratings can be further broken down
by tenths to create a broader scale and compared to the R-fac-
tor on a relative basis, as set forth in the following table.

Description MOS rating R-factor
Very satisfied 4.3-5.0 90-100
Satisfied 4.0-4.3 80-90
Some users satisfied 3.6-4.0 70-90
Many users dissatisfied 3.1-3.6 60-70
Not recommended 1.0-2.6 Less than 50

[0076] Returning to the example of the direction of devi-
ance being learned automatically, take the situation where the
system may generate values between 3 and 4 while the normal
values for MOS are being learned, resulting in an average
between 3 and 4. In reality, a score of 5 is practically impos-
sible on most VoIP networks, so the top score may not be a 5.
For example, a “best” MOS score on a VoIP network may be
4.19 forthe G.711 codec. If a score of 4.19 was received after
normal values of between 3 and 4 had been learned, then a
score 0f 4.19 would be flagged as falling outside the range of
normal values. However, in this case a score 0f4.19 would not
be a cause for concern, because it is a very good MOS score,
so there would be no need for a user to receive an alarm for
receiving an excellent MOS score. Hence, the system could
automatically adapt a trigger so that an alarm was not trig-
gered even though the deviation from normal was outside of
the normal range that had been learned because the deviation
was good, not bad.

[0077] In a particular embodiment, the user can manually
specify whether deviation from the normal values in a par-
ticular direction will or will not trigger an alarm, or alterna-
tively specifying the particular direction in which alarms are
to be triggered. For instance, for MOS, the user can specify
that after a normal value has been determined, that values that
deviate from the normal value and that are less than the
normal value trigger alarms, while values that deviate from
the normal value and that are greater than the normal value do
not trigger alarms.

[0078] Embodiments of the self-adaptive trigger method
simplify the configuration of monitoring products. In many
cases, the user of a monitoring product wishes to be notified
when something abnormal occurs, but the user may not
always have the knowledge needed to specify what the nor-
mal conditions are. In addition, having a system that auto-
matically updates the conditions considered normal reduces

US 2013/0182578 Al

the maintenance burden on the user since it removes the need
for the user to constantly monitor the conditions of the system
and the need for manual reconfiguration of the system as the
normal conditions change. Instead, the system can constantly
monitor the conditions and update what constitutes “normal”
over time, thereby automatically adjusting the triggers for
alarms when there are certain deviations from normal. In
addition, normal conditions under one system do not gener-
ally translate to normal conditions under a different system.
For example, a user may be familiar with normal conditions
with a first carrier, but these conditions may be completely
different from the normal conditions with a second carrier.
[0079] Depending on the type of system and data moni-
tored by a monitoring system, there may be a large number of
different KPIs associated with a single system. Thus, while
users may be interested in tracking a large number of different
KPIs, it is a burden to have to manually configure the thresh-
olds for each KPI. Automatically determining the thresholds
associated with the different KPIs simplifies the system con-
figuration. Embodiments also reduce the possibility of having
alarms raised or missed due to misconfiguration.

[0080] Inanembodiment, when a monitoring system is first
configured, the user is presented with a list of KPIs that can be
tracked by the monitoring system. If the user needed a KPI
that was not included on the list, then the user may use the
configuration methodology described above to define a set of
rules for computing a new KPI. After the user selects the KPIs
to track, she may then specify an initial period of time during
which the system will monitor all the events on the network.
At the end of the time period, the system may generates what
are considered normal values for all the KPIs.

[0081] At any time the user can view the normal values
using the system’s user interface. For instance, the user can
view what is a normal MOS for calls to carrier x through the
system’s user interface. The customer can also define for each
KPI the deviation from the normal value that would trigger an
alarm. The deviation can be specified as a percentage or as a
numeric value, or something else depending on the unit of
measurement of the KPI. The deviation can also be specified
using a set of rules that includes conditional statements. For
instance, if the KPI has deviated from the normal value for
longer than five minutes, then send an alarm. If the KPI has
deviated from the normal value at least five times in the last 24
hours, then send an alarm. The rules can also be used to
specify which user receives the alarm. For instance, if a first
set of conditions are true, then send the alarm to a first user,
and if a second set of conditions are true, then send the alarm
to a second user.

[0082] In one embodiment, the system can have default
deviation values for KPIs that are based on percentage values.
As will be explained below, the system may learn the devia-
tion values for such KPIs. Setting absolute default values for
KPIs based on different units of measurement may not be
appropriate.

[0083] Alerts can further trigger responses associated with
the alerts. The response can trigger one or more actions that
can be used to resolve the issue that triggered the alert, to
inform the user with a corresponding report, or to perform
damage control until the user or administrator has time to
troubleshoot the system. Alerts can include sending a notifi-
cation to a particular user, such as a system administrator, via
text-based or voice messages. In addition, the alert can trigger
the execution of a script or a sequence of steps used to resolve
or mitigate the original issue. For example, if a switch is

Jul. 18,2013

identified to be dropping packets, then the executed script or
sequence of steps can reroute traffic by using a different
switch until the switch flagged as the source of the problem is
fixed. The alarms can be delivered as an email, a text message,
a voice message, an instant message, or a multimedia mes-
sage. The content and the preferred type of delivery can be
specified by the user. In addition, the user can indicate that a
first user receives an alarms associated with a first KPI and a
second user receives alarms associated with a second KPI.
The user can also indicate that deviations within a first range
trigger alarms sent to a first user, while deviations within a
second range trigger alarms sent to a second user.

[0084] The logic of the system may be used to determine
when normal KPI values should be updated and to determine
which events should and should not be used to update the
normal KPI values. For instance, events that fall outside of
what is considered normal KPI values may not be taken into
consideration for updating the normal KPI values. Alterna-
tively, if a KPI value falls outside of the range of normal KPI
values, but if it falls within a number of deviations or within
an extended range from the normal KPI values, then the KPI
value may be used to update the normal KPI values. The logic
can also specify that if the KPI value is an outlier, or within a
number of deviations or outside of range of KPI values that
might require updating, then the KPI value is used to raise an
alarm, but it is not used to update the KPI values. The logic
can also specify that if a number of outlier KPI values are
detected, with the total number of outliers exceeding some
threshold, then the KPI values considered to be normal are to
be updated.

[0085] The timing associated with the system’s evaluation
or learning of data events and the establishment and/or updat-
ing of normal KPI values may be important in terms of devel-
oping normal KPI values that can result in triggers for alarms
and those that do not. In this regard, it may be necessary to be
able to detect periodic data events in the network that affect
KPI values and “permanent” changes in the network that will
affect KPI values. Many of the changes that occur in a net-
work are periodic in nature, such as changes in call volume.
There may be short term changes, such as between day time
call volume and night time call volume. There may be longer
term changes, such as changes from one day of the week to the
next, say a Sunday to a Monday, or one week to the next, and
there may be much longer periods, such as a year, where once
a year there is a significant increase in call volumes due to a
particular holiday.

[0086] In one embodiment, the user can manually specify
the time period to use for learning KPI values that may result
in normal KPI values or updated KPI values. For instance, if
the normal KPI values were determined from an initial one
week learning period, and the normal KPI values were
updated based on the KPI data from the initial one week and
from the data from the following three weeks, then the user
may determine to exclude the KPI data from one week, or one
or more days, from the calculation of the normal KPI values.
That is, KPI values are stored not only to establish the normal
KPI values, but also to enable the normal KPI values to be
updated, and to enable the user to specify time periods from
which normal KPI values can be computed. This can be
especially useful if there was a time period where uncharac-
teristically poor data was gathered. For example, if a KPI
measures dropped packets in a network, and a failed router
caused an uncharacteristically large number of packets to be
dropped during a one week period, then the user may decide

US 2013/0182578 Al

to not use the data from that particular one week period for the
normal KPI value calculation. This selection can be specified
by the user by entering a data range. Alternatively, the KPI
values can be presented visually to the user as a line graph, or
using some other visual representation, with the Y coordinate
representing the KPI score and the X coordinate representing
the time period. The user could then use the mouse to manu-
ally select the periods which should be used to compute the
normal KPI values.

[0087] Clustering can also be used to identify normal KPI
values. Common types of clustering algorithms include hier-
archical algorithms, partitional algorithms, and subspace
clustering methods.

[0088] Inan embodiment the KPI values are automatically
learned and automatically updated without user specified
time periods. As noted above, some periodic time periods that
may be important to learning normal values may also be so
long that it is not practical to calculate normal KPI values
using a set time period. For example, to detect yearly cycles,
it may be necessary to use two to three years of event data to
learn normal KPI values for that yearly cycle. Because learn-
ing over such an extended period of time such as this may be
impractical, other techniques can be used, involving shorter
cycles, to help the system learn normal KPI values for longer
cycles and event data may be used once a training period is
over to self-adjust or update the normal KPI values for longer
cycles.

[0089] Network pattern changes can also impact normal
KPI values and may be more permanent in nature. Some of
these changes may be easier to predict from a logical perspec-
tive. For example, the introduction of a new network router
intended to reduce traffic congestion should be expected to
change some KPI values, such as KPI values based on call
delays. Since such changes can be predicted, the system can
be set up to expect certain changes in KPI values when such
changes are made, to not trigger alarms as a result of such
changes, and to automatically set up a new learning period to
adjust or update the normal KPI values. As these types of
changes are also within the network operator’s control or
view, such changes can also be anticipated and set into motion
by a user at the same time the network changes are made.
[0090] Other types of changes are outside of the network
operator’s control or view. For example, a new television
show may debut that encourages user interaction through the
placement oftelephone calls. A very popular show of'this type
can cause significant changes in call volumes across the coun-
try without warning. If the show is introduced on a Friday
night, then there may be a significant increase in call volumes
on Friday nights. The first time the system saw a significant
spike in call volumes on Friday night, the system may trigger
an alarm because the call volume significantly exceeds nor-
mal KPI values associated with the time of day and day of
week. But by the next week, if the spike happened again, the
system will have already learned something about this time of
day and day of week data event and begin to adjust or update
the normal KPI values accordingly. Perhaps the normal KPI
values are not adjusted enough in just the second week to not
trigger an alarm, but they could be change by some significant
amount such that by the third week of the same call volume
spikes, no alarm is triggered.

[0091] Adjustment or updates in normal KPI values may
also be generated in other ways. For example, a user could
initiate a new learning period on a periodic basis just to cause
the system to reevaluate its current condition and make any

Jul. 18,2013

updates that might be necessary. Likewise, a user could ini-
tiate a new learning period because of some outside event that
would normally be understood to cause a change in KPI
values, so as to make sure that the oly normal KPI values are
updated and replaced with new normal KPI values. Users
could also set up periods during which learning is automati-
cally run to update normal KPI values. In an embodiment, the
system is set up to always be in a learning period such that old
normal KPI values are constantly being replaced with new
KPI values. Weighted algorithms may be employed to deter-
mine when an old normal KPI value is replaced with a new
normal KPI value so that normal KPI values are not changed
as a result of the slightest of changes in the network. While a
constant learning period may be the most computationally
extensive method, it also requires the least interaction by a
user. Normal KPI values can also be updated every KPI
period. The manner in which normal KPI values are recorded
and changes to those normal KPI values are reported can also
vary greatly. In an embodiment, logs of can be generated
when KPI values are updated, on a periodic basis, after certain
types of network events, etc. These logs can be viewed using
the system’s user interface. Additional logs can also be gen-
erated whenever a KPI value falls outside of the normal value
range, whenever a trigger is generated that results in an alarm,
whenever a trigger is generated that does not result in an alarm
because of'a self-adjustment to trigger due to an update in one
or more KPI values, etc.

[0092] Inoneembodiment,an average of KPIvalues within
or after an initial learning period can be used to establish or
update the normal KPI values. These averages may also be
adjusted in various ways such that a modified average is used
in place of any raw average to determine normal KPI value.
For example, outliers in the initial learning process can be
identified and discarded, and subsequently the average of the
remaining KPI values can be used as the normal KPI value.
Discarding outliers may consist of discarding the maximum
KPIvalue, discarding the minimum KPI value, discarding the
top n KPI values, discarded the bottom n KPI values, discard-
ing all values greater than the upper quartile, discarding all
values less than the lower quartile, discarding values based on
other selection methods, or any combination of these meth-
ods.

[0093] When using the average of various KPI values to
define a normal KPI value, the standard deviation from the
normal KPI value can be used to determine whether a KPI
value is considered normal. A multiple of the standard devia-
tion can also be used. Alternatively, a percentage from the
average can be used to determine whether a KPI value falls
under the range of normal KPI values. For instance, the user
can specify that any number that is less than or greater by 5%
than the normal KPI value is not considered a normal KPI
value. The deviation from the normal KPI value can also
specified by indicating a numeric value by which a particular
KPI can deviate from the normal KPI value. For example, if
the normal KPI value is found to be 3.8, then the user may
simply specify that values less than 3.0 are not considered
normal and should raise an alarm.

[0094] In an embodiment, a range of values is used to
specify normal KPI values without computing an average or
a standard deviation. For instance, the user may simply
specify an initial learning period. At the end of the initial
learning period, the maximum and minimum KPI values
found during the initial learning period can be used to define
arange of normal KPI values, with any KPI value between the

US 2013/0182578 Al

maximum and the minimum being considered a normal KPI
value. The maximum and the minimum can also be found
after some data processing has been done, such as removing
of outliers. The upper quartile (or some other upper percen-
tile) can also be selected as the maximum of the normal KPI
value range and the lower quartile (or some other lower per-
centile) can be selected as the minimum of the normal KPI
value range. The user may also manually specify a default
maximum and a default minimum value for the normal KPI
value range which is subsequently updated during the initial
learning period or at the end of the initial learning period. The
system may also have a set of default maximum and mini-
mum values. As indicated above, in embodiments that use a
maximum and a minimum value to define the normal KPI
value range, any KPI value exceeding these thresholds would
triggering an alarm.

[0095] In an embodiment, KPI values can be transformed,
and the determination of normal KPI values can be based on
the transformed data. For instance, each KPI value during the
initial learning period may be transformed using a function,
such as y=f(z), where f'is the transformation function, z is the
current KPI value, and y is the transformed KPI value. After
the KPI values gathered during the initial learning period are
transformed with the function, a normal (transformed) KPI
value can be computed based on the transformed data. The
average of the transformed KPI values, or any other method
used to learn normal KPI values, can then be used to compute
a normal KPI value. During monitoring of KPI values, the
KPI values would be transformed using a transformation
function, and compared to the transformed normal KPI value.
[0096] The ability to transform KPI values may be useful,
for example, when it is desirable to perform a certain type of
threshold comparison based on KPI values, but the KPI val-
ues to be used are not appropriate for that type of threshold
comparison. As a further example, an expected KPI value
distribution may not fit very well when used in a deviation
algorithm based on a standard deviation, percentage calcula-
tion, etc., i.e., it may only make sense to use a standard
deviation when the KPI values are normally distributed val-
ues. By enabling a userto specity atransformation for the KPI
values that transforms the KPI values to something else, such
as derived values with statistical properties that better fit
available thresholding methods, it may be possible for the
user to avoid having to use more sophisticated thresholding
methods.

[0097] Yet another embodiment is directed to an intelligent
sequencing of events in a monitoring product. From herein
the system used to implement the intelligent sequencing of
events will be referred to as “the sequencer.” The sequencer
tracks and sequences events in real time, as they are recorded
on the network, or as fast as possible. The sequencer also
distinguishes between different types of events, including
events where the timestamp of the events is important and
events where the timestamp is of no importance. In one
embodiment, the sequencer can mark important events with a
special timestamp, indicating that these events should be
forwarded as soon as they are detected to the application
consuming the events. The sequencer may choose to continue
sequencing events from the same input source even if that
input source has events that occurred before events in any
other input source. The sequencer may also wait for a slow
input source before moving on to another input source.
[0098] In an embodiment, a monitoring product (from
herein referred to as “the application™) processes data

Jul. 18,2013

records, consisting of events, that it receives from multiple
input sources. Each input source independently and asyn-
chronously produces a stream of events in local order. How-
ever, when the application processes events, it is important
that they are processed in absolute order. In one embodiment,
events which are processed by the application describe real
network events triggered by a network monitoring software.
In this case, each input source receives events from different
parts of the network. Each input source may independently
receive events which are related to events received by another
input source. These events can be time sensitive and the
ordering of events can make a difference to both the correla-
tion of events and to determining causality among related
events.

[0099] FIG. 10 illustrates two input sources containing
locally ordered events, with these events being communi-
cated to an application. Input source 1 contains events in the
order of1, 3 and 6. Input source 2 contains events in the order
of 2, 4, and 5. When these events are received by the appli-
cation, these events are to be ordered in the absolute ordering:
1, 2, 3, 4, 5, and 6. For instance, input source 1 may be
associated with a first VOIP device, with the input source 1
monitoring and tracking events associated with the first VOIP
device. Similarly, input source 2 may be associated with a
second VOIP device, with the input source 2 monitoring and
tracking events associated with the second VOIP device. The
first VOIP device may initiate any type of call, such as a VOIP
call using the Session Initiation Protocol (SIP), by sending an
invite to the second VOIP device. The input source 1 would
detect the SIP invite as an event, adding the SIP invite event to
a first-in-first-out (FIFO) queue. The input source 2 receives
the SIP invite and also adds this event to its local FIFO queue.
The SIP invite is then received by the second VOIP device.
The sending of'the SIP invite by the first VOIP device and the
receiving of the SIP invite by the second VOIP device would
then result in events labeled “1” and “2”. Thus, when the
sequencer receives these events from the input source 1 and
from the input source 2, it is important that the sequencer
order the events such that event 1 is ordered as the first event,
and event 2 is ordered as the second event.

[0100] It is noted that due to network conditions, such as
network latency and other factors, the sequencer may receive
the events from the various input sources in different orders.
For instance, the sequencer may receive all of the events from
the input source 2 before it receives any events from the input
source 1. The sequencer is therefore responsible for deter-
mining the time at which events are processed by the platform
and ensuring that events, even if received asynchronously and
out of order, are eventually ordered into an absolute ordering.

[0101] Events are sequenced using their timestamps. When
the platform is started, the input adapters begin to retrieve
records from input sources and generate data records from the
input sources. After an initial delay, the input sources are
ordered based on their top timestamp, the timestamp of the
first event ready to be processed. In embodiments, the
sequencer then continuously does the following: (1) looks at
the input source with the top timestamp and waits, if needed,
before processing events, (2) processes one tick of data (all
events with the top timestamp) from the input source with the
top timestamp, and (3) re-orders the input sources based on
their top timestamp. The tick may be one second, two sec-
onds, a microsecond, or any other valuable specified by the
user through configuration.

US 2013/0182578 Al

[0102] FIG. 11 illustrates an embodiment where an appli-
cation 1100 receives related events from two different input
sources 1102 and 1104 through network clouds 1106 and
1108. Each input source 1102/1104 receives related events
associated with two different legs of the same call from phone
1110 to phone 1112 through cloud 1114. The application may
also simultaneously be receiving other related or unrelated
events from other input sources distributed across the net-
work. Embodiments of the sequencer described herein
enables these events to be processed in absolute ordering,
consequently enabling the application to properly process the
data associated with these events. The sequencer also
addresses the variable delay in receiving related events from
different input sources located in different parts of the net-
work.

[0103] The sequencer can process events at the same speed
as they are generated, but with a configured delay that may
account for possible delays in retrieving data from input
sources. The sequencer can also control the speed at which
events are processed by the application, including a real-time
speed and a “fast as possible” speed. Real-time refers to the
period of time between events as they are received by the
application being the same as the period of time between
events when they were generated (plus or minus a “tick”
granularity). Even if there are inherent delays in the system
which cause events to be received by input sources or the
sequencer in non-real time, the application receives the events
in real-time. The sequencer thus has the ability to de jitter
events to ensure that real-time playback speed is maintained
(after an adjustable delay).

[0104] In the case of pre-recorded events, the sequencer
may play back events in a multiple of real-time or in an “as
fast as possible” mode, while maintaining absolute event
ordering. Input sources receive feedback on the operation of
the application which affect their operation in the multiple-
of-real-time or “as fast as possible” modes. The sequencer
also has the ability to play back pre-recorded events at a later
time while maintaining absolute ordering and ensuring real-
time playback speed. Thus, rather than retrieving values from
the input sources as events are generated, the sequencer has
the ability to playback events with absolute order and with an
accurate playback speed based off the event data records as
observed by the network monitoring product. Ifitis desired to
play back the same sequence of event data records at
increased rates to evaluate KPI correlation models much
faster, then the sequencer can ensure absolute ordering and
the correct play back speed.

[0105] Embodiments of the intelligent sequencer combine
both reliability and real-time functionality. That is, the
sequencer ensures that EDRs are not only delivered in abso-
lute order, but also that EDRs are delivered with the appro-
priate timing constraints. For example, in an embodiment, if
events are received too late to ensure absolute ordering, the
sequencer can flag these events, send these events to the
application, and let the application decide what to do with
these flagged events. Related events can also be delivered to
the application together. For instance, if the sequencer deter-
mines that two events are related based on their timestamp,
then the sequencer can deliver these related events together to
the application.

[0106] Inoneembodiment, batches of events from the same
tick are delivered together to the application. A tick is the
minimum granularity of time used for absolute ordering of
events. The sequencer also has the ability to process groups of

Jul. 18,2013

events as a unit. The sequencer can also process events or
groups of events within the same tick simultaneously.
[0107] FIG. 12 illustrates a state diagram 1200 for an
embodiment of an input source. The state diagram provides a
description of the behavior of an input source by showing a
series of events that can occur in one or more possible states.
Each input source gathers data from the network in some way
specific to that type of input source and creates events in a
standard format that is known to the sequencer. These events
are queued in a first-in-first-out (FIFO) queue within each
input source. Whenever the input source’s FIFO queue is
empty and it first becomes non-empty, a notification is sent to
the sequencer. This causes the sequencer to start tracking the
input source for any changes. When the input source becomes
empty, the sequencer stops tracking the input source until it is
notified again that the input source is non-empty.

[0108] The first state of the state diagram is the Empty state
1202, with the FIFO queue of the input source being empty. In
response to a queue event, which may consist of data being
inserted into the queue, the state may change from the Empty
state to the Notify state 1204, or alternatively stay in the
Empty state 1202, as further explained below. When the
queue changes from the Empty state to the Not empty state
1206, a notification may be sent to the sequencer, which
causes the sequencer to start tracking the input source. In
response to additional queue events, the queue may remain in
the Not empty state 1206. The queue of the input source can
include an optional Full state 1208, where additional events
are not added to the queue until additional space is cleared in
the queue.

[0109] The queue can also be configured such that the
queue does not change from the Empty state 1202 to the Not
empty state 1206 until at least N events have been added to the
queue. For instance, the queue may not change from the
Empty state 1202 to the Not empty state 1206, i.e., the queue
event loops back to the Empty state 1202 as shown in FIG. 12,
until at least two events have been added to the queue. Like-
wise, the queue may remain in the Full state 1208 even after
removing a few events. Notifications may be sent to the
sequencer if and when a queue event causes a change from
one state to the other. Alternatively, a notification may only be
sent to the sequencer when a state change occurs, even though
data has been added to or removed from the queque. Like-
wise, a notification could be sent even when a queue or
dequeue event occurs, even though there was not state
change. When all the events from the queue have been
dequeued, the queue may return to the empty state. When the
last event is dequeued the sequencer may be notified and the
sequencer may stop tracking the input source. This process
may the repeat when an event is added to the queue of the
input source and the sequencer begins tracking the input
source again.

[0110] The sequencer tracks an input source by adding the
input source to a binary heap. A binary heap is a heap data
structure comprised of a complete binary tree that meets the
heap property. The heap property indicates that each node in
the tree is greater than or equal to each of its children (max-
heap). Alternatively, the heap property can also indicate that
each node in the tree is less than or equal to each of its children
(min-heap). An example of a binary max-heap is shown in
FIG. 15.

[0111] The sort-order for the binary heap is based on the
timestamp of the event at the head of the input source’s FIFO
queue. At any point in time, the oldest available event will be

US 2013/0182578 Al

the one at the head of the queue of the input source, which will
also be the event at the head of the binary heap.

[0112] Embodiments are not limited to using a binary heap
for tracking the plurality of input sources. For example, an
alternative embodiment can use a data structure that imple-
ments a priority queue to track the plurality of input sources.
The priority queue can be implemented using linked lists,
arrays, heaps, trees, etc. The use of a data structure that
implements a priority queue results in the most efficient
implementation.

[0113] Inoneembodiment, aninputsource can control how
new events are added to its local FIFO queue. For example,
the input source may implement an optional full state, where
new events are not added to the FIFO queue if the queue is
full. In yet another embodiment, the input source may remain
in the empty state until at least N events have been added to
the queue. For instance, the input source may continue to
indicate to the sequencer that the queue of the input source is
empty until at least three events have been added to the queue
of the input source.

[0114] Inone embodiment, the sequencer can be a passive
component that does not perform any actions on its own.
Instead, the sequencer can be configured to be invoked when
the application requests the next available event. In this
embodiment, when the application requests an event, the
sequencer chooses an event from one of the input sources. If
there are no suitable events, the sequencer can return a special
value to the application.

[0115] FIGS. 13 and 14 further illustrate the details associ-
ated with the application requesting an event from the
sequencer. As shown in FIG. 13, when the application 1302
requests an event from the sequencer 1304, the sequencer
1304 checks the input sources 1306 to see if there are any
non-empty input sources available. If all the input sources
1306 are empty, then the application 1302 is notified and no
events are returned. As mentioned above, the input source
1306 can be configured such that they become non-empty
only after the number of events in the queue of an input source
is greater than a threshold. If the sequencer 1304 determines
that one or more input sources 1306 are non-empty, then the
sequencer 1304 can choose an input source from which to
dequeue one or more events to the sequencer, which events
are then returned to the application 1302.

[0116] The processTimestamp is set equal to the timestamp
of'the event at the head of the queue from the input source at
the head of the binary heap. If the sequencer 1304 is not
running in the “as fast as possible” mode, then the sequencer
1304 checks if the current timestamp is greater than or equal
to the process Timestamp. If the current timestamp is less than
the process timestamp, then no events are returned. Otherwise
the sequencer 1304 dequeues events from the current input
source until the timestamp of the head event is greater than the
sum of the processTimestamp and the tick length, or until the
input source is empty.

[0117] The flowchart from FIG. 14 begins with the appli-
cation requesting an event from the sequencer, step 1402. The
sequencer first checks to see if the binary heap is empty, step
1404. If the binary heap is empty, then the application is
notified that there are no events currently available, step 1406.
If the binary heap is not empty, then an input source inserted
in the binary heap is selected as the top input source, step
1408. The sequencer then checks to see if the sequencer is
running in real-time mode, step 1410. Alternatively, the
sequencer may check only once at the beginning of the pro-

Jul. 18,2013

cess to see if it is running in real-time mode, rather than
checking every iteration. If the sequencer is running in real-
time mode, then the sequencer checks whether the current
time is greater than the top timestamp, step 1412. If it is not
then, there are no events available, step 1406. Otherwise, all
of the events from the input source at the head of the binary
heap with a timestamp matching the top timestamp are
returned, step 1414. After these events have been removed
from the input source at the head of the binary heap, the
sequencer checks whether the top input source is now empty,
step 1416. If the top input source is now empty, then the top
input source is removed from the binary heap and the
sequencer stops tracking it, step 1418. If the top input source
is not empty (because it has events with newer timestamps),
then the top input source is reinserted into the binary heap,
step, 1420, which may result in this input source being placed
somewhere other than the head of the binary heap.

[0118] During normal operation, all input sources should
always be in the binary heap since they should never become
empty. If an input source becomes empty, but the sequencers
knows that the input source will have more data in the future,
then the input sequencer will wait a short amount of time for
the input source to become available. If the input source
becomes available within this time period, the input source is
inserted into the heap, otherwise, it is removed from the heap.
The heap is managed in this fashion to try to prevent out-of-
order events. When the sequencer is not running in the “as fast
as possible” mode, the tick length is set to 1 when running at
real-time. Setting the value of the tick length to a multiple of
real-time causes the sequencer to run at a multiple of real-
time. The value of currentTimestamp is incremented in the
background such that for every second of real time that
passes, tickLength seconds of sequencer time pass.

[0119] Yet another embodiment is directed to complex
event processing for network testing and network monitoring.
The embodiment represents abstract and generic events on a
monitored network. For example, VOIP calls, data transfer
sessions, and other actions can be represented as events.
These events are then processed by tracking the events, cor-
relating one or more events, calculating different types of
properties of the events, data enrichment, data normalization,
etc. Embodiments further enable a network monitoring infra-
structure to be mapped to a set of network events that can be
processed and analyzed using complex event processing.

[0120] Complex event processing consists of monitoring a
set of events, and by analyzing and correlating events from the
set of events, determining instances of complex events.
Embodiments are directed to the use of complex event pro-
cessing for real-time monitoring of networks. Network
probes gather information about the events happening on said
networks. The analysis of the network events can be used to
provide data staging—correlation, key performance indicator
(KPI) generation, alarm generation, data enrichment, data
normalization, etc.

[0121] FIG. 16 illustrates the use of a CEP platform to
analyze network events. Network packets 1602 are detected
by network probes 1604. The network probes analyze these
packets and form network event records 1606. These records
are transposed by the data staging component 1608 so that
they can be passed to the CEP platform 1610. The CEP
platform 1610 processes the network event records as events
and generates the configured output, such as KPIs 1612 and
correlated events 1614.

US 2013/0182578 Al

[0122] After the CEP processing is complete, a component
receives the resulting CEP events back from the CEP plat-
form. These events are transposed so that both standard net-
work events in a format that is required and that is also used
for KPI calculation can be completed.

[0123] Yet another alternative embodiment uses complex
event processing to perform call leg correlation in VOIP net-
works. In a VOIP network where calls are monitored by a
monitoring tool, the same physical phone call may typically
be found by multiple network monitoring probes. In order for
the monitoring tool to report one physical call leg, each of
these independently detected call legs need to be correlated
with each other.

[0124] An embodiment feeds events describing call legs to
a CEP platform, and complex event processing is used to find
the correlation between the various call legs, including iden-
tifying one or more calls legs as belonging to the same physi-
cal call. The complex event processing can be done by writing
a set of complex rules or by using an existing CEP platform or
tool.

[0125] When a call is made on a network, the information
that is carried on the network is picked up by network probes.
The network probes can decode that information, such as the
caller and called phone numbers, the time at which the call
was placed, the call duration, possible error codes in each
reported call leg, etc. A system that tries to find call legs that
belong to the same physical call has to take into account all
reported call legs and find relations between them.

[0126] Ingeneral, call legs can be correlated based on infor-
mation such as timestamps and shared values across events.
When call legs are reported with timestamps that are more
than a few seconds apart, however, it is possible that the call
legs may not belong to the same call, even if the phone
numbers, or corresponding identifiers, match. For instance, if
the same probe reports a call leg from A to B and then another
one 3 seconds later, it may be that the first one was busy, or not
connected, and A simply redialed.

[0127] Accordingly, an embodiment analyzes call status
and error codes in addition to the timestamp analysis. If a
probe reports a call from A to B with success while another
one reports a call leg with an error, they may not belong to the
same call because a single call either succeeds or fails.
[0128] Another embodiment is directed to a generic data
mediation platform for use in network monitoring, testing,
and analytics. Many network monitoring and testing systems
are composed of probes which gather information and dash-
boards which report that information. Embodiments of the
mediation platform described herein integrate with disparate
data sources and data consumers, rather than having fixed
inputs and fixed outputs. Data from previously independent
data sources can be combined and analyzed together, provid-
ing additional value to the data consumers. The integrated
data can also be output to different types of data consumers,
each of which might expect to receive different sets of data in
different formats.

[0129] In network testing and monitoring, it is common to
have a number oftools for network monitoring and testing the
network (probes), along with reporting applications (dash-
boards). These tools may have varying levels of integration
with one another, but in general, it can be difficult to combine
the data from different types of probes and view it in different
types of dashboards.

[0130] This problem is accentuated when probes and/or
dashboards created by a first party are integrated into a net-

Jul. 18,2013

work already using third-party data sources or reporting
applications that are desired to continue to be used. Since
each installation may contain a different combination of
probes and dashboards, from various parties, it can be diffi-
cult to integrate this data. In addition, if a particular probe or
dashboard is to be integrated into an existing organization,
where the particular probe or dashboard is to integrate with a
set of third party probes and third party dashboards already in
place, it can be difficult to achieve this. Thus, it is desirable to
have flexibility as to how data in the network is consumed,
augmented, and produced.

[0131] Embodiments ofthe mediation platform canbe inte-
grated into the middle of existing products without making
significant changes to the probes or dashboards.

[0132] An embodiment of the mediation platform accepts
data from independent data sources, produces additional met-
rics, and outputs configurable sets of data to different types of
data consumers. The mediation platform can be plugged into
the middle of an existing infrastructure where it provides
additional value, but does not require significant changes to
the other components. In one embodiment, the mediation
platform can be configured to compute metrics by using the
data enrichment operation described below.

[0133] In an embodiment, individual data records from
multiple data sources are correlated together based on flexible
rules defined by the user. Raw data records from any data
source or even the data records produced through correlation
may then be used to generate KPIs or to perform additional
correlation. The generated data may in turn be fed back
through the system, producing additional correlations or
more complex data. The correlated data records and KPIs are
available to new and existing reporting applications in a con-
figurable format.

[0134] Embodiments ofthe mediation platform canbe inte-
grated into the middle of a monitoring or test environment.
The mediation platform also can behave as a network probe to
interact with existing dashboards and can perform all data
transformations in real-time.

[0135] FIG. 17 shows how a generic data mediation plat-
form 1702 can be incorporated into an existing network moni-
toring or testing environment. The left side of FIG. 17 illus-
trates a traditional monitoring or testing environment. The
example illustrates two probes 1704 in the network generat-
ing data that is displayed via two dashboards 1706. The first
probe generates data 1 in format 1 for the first dashboard and
generates data 1 in format 2 for the second dashboard. Simi-
larly, the second probe generates data 2 in format 1 for the first
dashboard and generates data 2 in format 2 for the second
dashboard.

[0136] The right side of FIG. 17 illustrates an embodiment
of'the data mediation platform used in a monitoring or testing
environment. Rather than data from the probes 1708 and 1710
being directly communicated to the corresponding dash-
boards 1712 and 1714, the data is sent to the generic data
mediation platform 1702. In the embodiment in FIG. 17, the
first probe 1708 sends data 1 and the second probe 1710 sends
data 2 to the mediation platform 1702. The data mediation
platform 1702 converts all data directed to the first dashboard
1712 to format 1, the format associated with the first dash-
board. Similarly, the data mediation platform 1702 converts
all data directed to the second dashboard 1714 to format 2, the
format associated with the second dashboard.

[0137] Inthesimplest case, no changes are made to the data
and the platform 1702 simply acts as the central point in the

US 2013/0182578 Al

network. In this case, the two dashboard applications would
continue to report the exact same information that they would
have reported had they been directly connected. This embodi-
ment does not require changes to either the dashboards 1712/
1714 or the probes 1708/1710.

[0138] In a different embodiment, the platform 1702 may
make modifications to the data it receives based on its view of
the entire system. In some cases, no changes to the probes or
dashboards may be required as the data format may not
change.

[0139] The generic data mediation platform 1702 performs
data correlation in addition to data mediation. The platform
correlates information from a plurality of sources (such as a
plurality of probes and from third party probes) to provide
end-to-end visibility to the user. It also acts as a universal data
collector, capable of enriching that data with dimensions and
metrics from external sources, such as CRM (customer rela-
tionship management) systems, OSS (operations support sys-
tems) and order entry solutions.

[0140] The platform 1702 performs the following opera-
tions on the data: data filtering, data normalization, data
enrichment, data correlation, data aggregation and KPIs, and
data thresholding and alerts. Most importantly, the platform
1702 allows the user to define the behavior of each of these
processing engines using the various configurations
described above. That is, an end-user of the platform 1702, as
opposed to the programmer of the platform 1702, specifies
how to perform data filtering, data normalization, data enrich-
ment, data correlation, data aggregation, KPIs, data thresh-
olding and alerts. As such, the platform 1702 enables an
end-user to configure every aspect of the platform 1702.
[0141] Data filtering allows a specified subset of incoming
data to be processed. Data normalization transforms data
from different sources to a standardized format. For example,
data from a first probe and data from a second probe can both
be converted to a uniform format.

[0142] Data enrichment adds additional data to the output
data that is derived from the input data, but is not directly
contained in the input data. For instance, the CDR for a call
may include numeric fields, but the CDR itself would not
indicate that a call was originated by a party from Bedford,
and the call was received by another party in Reno, and that
the call was routed through a particular carrier. Data enrich-
ment could then be used to add meaningful data to the data
mediated by the platform. Enrichment is used to enhance
input data. Formulas can be used to describe how the enrich-
ment data is used. For example, enrichment data can be used
to only generate KPIs for a specific set of customers.

[0143] Enrichment enables a userto establish and configure
relationships between external information and the data pro-
cessed by the platform, including data events, KPIs, and other
output events. For example for a data event containing IP
addresses for networks and networking gear, enrichment
could be used to match these IP addresses to a geographic
location. The external data could include the location name,
type of the address, etc. Using an enrichment scheme like this
could monitor the network based off of geographic location.
[0144] Data correlation finds related data events from the
same or different sources and generates new events based on
the combined information from correlated events. For
example, if the platform is processing VOIP feeds, each side
of a VOIP call results in one call record and many media
records. As a result, the corresponding input source produces
one call event data record (EDR) and many media EDRs.

Jul. 18,2013

Using the correlation engine, these call and media EDRs may
be associated with one another. If there are multiple probes
that detect the same call, then the associated EDRs from each
probe may be correlated to produce a single picture of the call.
[0145] The correlator correlates or associates events of one
or several types, producing new events. For example, a corr-
elator could be defined to associate media events with their
call event. Another correlator could be defined to correlate
multiple call legs belonging to the same call. The logic for
correlation is scriptable. In particular, the correlator performs
association and correlation. Association is when multiple
events are bound together based on a common attribute, like
acall ID. The result of association may be a root data event to
which the remaining, unchanged data events are associated.
Correlation is when the values of multiple events are com-
bined. For example, two data events showing voice quality for
the same call over different call legs might choose to keep the
lowest of the voice quality scores. The result of correlation is
a single data event that contains values made up from the
correlated data events.

[0146] The correlator keeps a list of active output events
and tries to match input events to active output events. If there
is a match, the input event either gets correlated or associated
with the output event. Otherwise, a new output event is cre-
ated based on the input event. An output event is normally
output by the correlator after a configured amount of time.
The correlator can also be configured to output events as soon
as an input event gets correlated or associated with the output
event, or when an input event with a certain criteria is
received. For example, the correlator can be configured to
wait for five seconds for events to be correlated, but to output
an event right away if correlation is disabled for that event.
[0147] The platform 1702 can process data records from
multiple input sources, with each input source independently
and asynchronously producing a stream of events in local
order (based on event timestamps). In an embodiment, the
platform 1702 uses the intelligent sequencer as described
above, to order events between all input sources before fur-
ther processing (i.e. correlation, KPI generation, output,
alerts, etc.) is performed on those events. In particular, the
sequencer is needed by the data mediation platform 1702
because events are time sensitive and the ordering of events
can make a difference when correlating events and generating
KPIs from events from multiple sources.

[0148] For events to always be ordered between sources,
the platform 1702 must process events far enough in the past
to allow all of the events with the same timestamp to be
retrieved from all of the input sources. As noted above, the
sequencer manages this by running with a configured delay,
which is also configurable by the user. For example, if the
delay is two minutes, this means that events are processed two
minutes after they were generated. This delay needs to take
into account delays in retrieving data from the input sources.
It the input sources produce sixty seconds of data per file, and
if the file transfer takes up to thirty seconds, the time delay
must be configured to at least ninety seconds since an event
could be received by the platform up to ninety seconds after
the record was generated by the input source.

[0149] Inanembodiment, as soon as data is generated by a
probe or an application, it is immediately transmitted to the
input source. In yet another embodiment, data may be deliv-
ered in batches, with the batches determined by a file size, or
by a time constraint. For instance, data for a period of time
may be saved and transmitted in one transaction to the input

US 2013/0182578 Al

source of the platform. For example, if a probe produces sixty
seconds of data per file, meaning that all of the data gathered
during a sixty second period is written to a file, and after the
sixty seconds the file is transmitted to the platform.

[0150] Ifthe configured delay is too small, events between
sources can be processed out of order. This can happen if by
the time an event with timestamp X is retrieved from an input
source, events with timestamp X+Y have already been pro-
cessed from other input sources. When this happens, event
correlation can be incorrect, and some events might not take
part of KPI calculation if the KPI period for timestamp X was
already generated. Events received with a delay longer than
the configured delay can be processed as fast as possible by
the sequencer as long as they are not too old. The maximum
age for processing an event is configurable.

[0151] FIG.18illustrates a system architecture 1800 for the
generic data mediation platform 1702 in accordance with an
embodiment. The platform 1702 receives input data from the
input sources 1802, with each input source independently and
asynchronously producing a stream of events in local order.
Each input source 1802 tracks events with a queue 1804. The
events from the input sources are sequenced in absolute order
based on the timestamps of the events by input sequencer
1806. The input feeder 1808 consumes the events from the
input sequencer 1806 (after they have been sequenced). The
input feeder 1808 receives EDR events with associated KPI
data events attached to them from the input sequencer 1806.
The input feeder 1808 will then send EDR events to the output
handler 1810 and will send the extracted KPI data events to
the KPI handler 1812. The KPI handler 1812 sends KPI data
events to the correct KPI generator(s) 1814, which produce
output events which are sent to the output handler 1810. Once
at the output handler 1810, an event may be output by any
output channels 1816 which are configured to output that type
of event (whether it’s an EDR, KPI, or alert). An output
channel 1816 uses a specific output plugin based on its con-
figuration. The output plugin outputs the data in some man-
ner, such as to a CSV file.

[0152] The output handler 1810 can also output data to an
output adapter, which converts the data to a specific format.
For instance, if a first dashboard expects data in a particular
format, then a first output adapter may output the data in the
needed format. An example of an output adapter is CEP
output adapter 1818, which converts the data generated by the
platform to a format that can be processed by the CEP engine
1820, as discussed above. The output from the CEP engine
1820 can then be processed by a CEP input source 1822,
which converts the output from the CEP engine 1820 into a
format which can be input into the input sequencer 1806,
creating a feedback loop in the platform.

[0153] A number of computing systems have been
described throughout this disclosure. The descriptions of
these systems are not intended to limit the teachings or appli-
cability of this disclosure. Further, the processing of the vari-
ous components of the illustrated systems may be distributed
across multiple machines, networks, and other computing
resources. For example, various components may be imple-
mented as separate devices or on separate computing sys-
tems, or alternatively as one device or one computing system.
In addition, two or more components of a system may be
combined into fewer components. Further, various compo-
nents of the illustrated systems may be implemented in one or
more virtual machines, rather than in dedicated computer
hardware systems. Likewise, the data repositories shown may

Jul. 18,2013

represent physical and/or logical data storage, including, for
example, storage area networks or other distributed storage
systems. Moreover, in some embodiments the connections
between the components shown represent possible paths of
data flow, rather than actual connections between hardware.
While some examples of possible connections are shown, any
of the subset of the components shown may communicate
with any other subset of components in various implementa-
tions.

[0154] Depending on the embodiment, certain acts, events,
or functions of any of the algorithms described herein may be
performed in a different sequence, may be added, merged, or
left out altogether (e.g., not all described acts or events are
necessary for the practice of the algorithms). Moreover, in
certain embodiments, acts or events may be performed con-
currently, e.g., through multi-threaded processing, interrupt
processing, or multiple processors or processor cores or on
other parallel architectures, rather than sequentially.

[0155] Each of the various illustrated systems may be
implemented as a computing system that is programmed or
configured to perform the various functions described herein.
The computing system may include multiple distinct com-
puters or computing devices (e.g., physical servers, worksta-
tions, storage arrays, etc.) that communicate and interoperate
over a network to perform the described functions. Each such
computing device typically includes a processor (or multiple
processors) that executes program instructions or modules
stored in a memory or other non-transitory computer-read-
able storage medium. The various functions disclosed herein
may be embodied in such program instructions, although
some or all of the disclosed functions may alternatively be
implemented in application-specific circuitry (e.g., ASICs or
FPGAs) of the computer system. Where the computing sys-
tem includes multiple computing devices, these devices may,
but need not, be co-located. The results of the disclosed
methods and tasks may be persistently stored by transforming
physical storage devices, such as solid state memory chips
and/or magnetic disks, into a different state. Each service
described, such as those shown in FIG. 2, may be imple-
mented by one or more computing devices, such as one or
more physical servers programmed with associated server

code.

[0156] Conditional language used herein, such as, among
others, “may,” “might,” “may,” “e.g.,” and the like, unless
specifically stated otherwise, or otherwise understood within
the context as used, is generally intended to convey that
certain embodiments include, while other embodiments do
not include, certain features, elements and/or states. Thus,
such conditional language is not generally intended to imply
that features, elements and/or states are in any way required
for one or more embodiments or that one or more embodi-
ments necessarily include logic for deciding, with or without
author input or prompting, whether these features, elements
and/or states are included or are to be performed in any
particular embodiment.

[0157] While the above detailed description has shown,
described, and pointed out novel features as applied to various
embodiments, it will be understood that various omissions,
substitutions, and changes in the form and details of the
devices or algorithms illustrated may be made without depart-
ing from the spirit of the disclosure. As will berecognized, the
processes described herein may be embodied within a form
that does not provide all of the features and benefits set forth
herein, as some features may be used or practiced separately

US 2013/0182578 Al Jul. 18,2013
15

from others. The scope of protection is defined by the
appended claims rather than by the foregoing description. All
changes which come within the meaning and range of equiva-
lency of the claims are to be embraced within their scope.
What is claimed:
1. A method of determining a normal key performance
indicator (KPI) value, comprising the steps of:
recording an initial plurality of KPI values during a learn-
ing period;
computing a normal KPI value based on the initial plurality
of KPI values at an end of the learning period;
monitoring a plurality of KPI values;
comparing a KPI value from the plurality of KPI values to
the normal KPI value;
if the KPI value is not within a range of the normal KPI
value, sending an alarm to one or more recipients; and
using one or more KPI values from the initial plurality of
KPI values and one or more new KPI values from the
plurality of KPI values to compute a new normal KPI
value.

