
Processed by Luminess, 75001 PARIS (FR)

(19)
EP

4
45

9
95

8
A

1
EP004459958A1

(11) EP 4 459 958 A1
(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
06.11.2024 Bulletin 2024/45

(21) Application number: 24174151.1

(22) Date of filing: 03.05.2024

(51) International Patent Classification (IPC):
H04L 67/14 (2022.01) H04L 47/11 (2022.01)

H04L 47/12 (2022.01)

(52) Cooperative Patent Classification (CPC):
H04L 67/14; H04L 47/11; H04L 47/12

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL
NO PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA
Designated Validation States:
GE KH MA MD TN

(30) Priority: 04.05.2023 US 202318312244

(71) Applicant: Mellanox Technologies, Ltd.
2069200 Yokneam (IL)

(72) Inventors:
• HOROWITZ, Adi Merav

2069200 Yokneam (IL)

• KAHALON, Omri
2069200 Yokneam (IL)

• LOULOU, Rabia
2069200 Yokneam (IL)

• SHALOM, Gal
2069200 Yokneam (IL)

• YEHEZKEL, Aviad
2069200 Yokneam (IL)

• MAMAN, Liel Yonatan
2069200 Yokneam (IL)

• LISS, Liran
2069200 Yokneam (IL)

(74) Representative: Kramer, Dani et al
Mathys & Squire
The Shard
32 London Bridge Street
London SE1 9SG (GB)

(54) MULTIPATHING WITH REMOTE DIRECT MEMORY ACCESS CONNECTIONS

(57) Multipathing for session-based remote direct
memory access (SRDMA) may be used for congestion
management. A given SRDMA session group may be
associated with multiple SRDMA sessions, each having
its own unique 5-tuple. A queue pair (QP) associated with
the SRDMA session group may provide a packet for
transmission using the SRDMA session group. The SRD-
MA session group may enable the packet to be transmit-
ted using any of the associated SRDMA sessions. Con-
gestion levels for each of the SRDMA sessions may be
monitored and weighted. Therefore, when a packet is
received, an SRDMA session may be selected based, at
least, on the weight to enable routing of packets to reduce
latency and improve overall system efficiency.

EP 4 459 958 A1

2

5

10

15

20

25

30

35

40

45

50

55

Description

BACKGROUND

[0001] When establishing network connections, a cli-
ent may send a request to a server and wait to receive
a reply regarding whether or not the connection is per-
mitted. Once connections are established, network con-
gestion may degrade performance. For example, certain
connections may be tied to a particular destination port,
and as a result, increased traffic along that connection
may cause latency, even if other connections have suf-
ficient bandwidth to support the traffic. Additionally, when
packets are transmitted, the ability to route the traffic may
be limited due to hardware configurations that may not
have access to certain parts of the packet for directing
traffic. As a result, congestion may increase over time,
thereby decreasing the high performance usually seen
with direct access connections.

SUMMARY

[0002] The invention is defined by the claims. In order
to illustrate the invention, aspects and embodiments
which may or may not fall within the scope of the claims
are described herein.
[0003] Multipathing for session-based remote direct
memory access (SRDMA) may be used for congestion
management. A given SRDMA session group may be
associated with multiple SRDMA sessions, each having
its own unique 5-tuple. A queue pair (QP) associated with
the SRDMA session group may provide a packet for
transmission using the SRDMA session group. The SRD-
MA session group may enable the packet to be transmit-
ted using any of the associated SRDMA sessions. Con-
gestion levels for each of the SRDMA sessions may be
monitored and weighted. Therefore, when a packet is
received, an SRDMA session may be selected based, at
least, on the weight to enable routing of packets to reduce
latency and improve overall system efficiency.
[0004] Any feature of one aspect or embodiment may
be applied to other aspects or embodiments, in any ap-
propriate combination. In particular, any feature of a
method aspect or embodiment may be applied to an ap-
paratus aspect or embodiment, and vice versa.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] Various embodiments in accordance with the
present disclosure will be described with reference to the
drawings, in which:

FIG. 1 illustrates an example computing system in
which a direct memory connection between a client
and a server can be established, in accordance with
various embodiments;

FIG. 2A illustrates example network stack for a re-

mote direct memory access (RDMA) connection, in
accordance with various embodiments;

FIG. 2B illustrates a frame structure for an RDMA
connection, in accordance with various embodi-
ments;

FIG. 3A illustrates an example session-based RDMA
connection including a single RDMA session, in ac-
cordance with various embodiments;

FIG. 3B illustrates an example session-based RDMA
connection including multiple RDMA sessions, in ac-
cordance with various embodiments;

FIG. 4 illustrates an example environment for mon-
itoring and managing session-based RDMA connec-
tions, in accordance with various embodiments;

FIG. 5A illustrates an example process to select a
session for transmission of a packet, in accordance
with various embodiments;

FIG. 5B illustrates an example process to use to se-
lect a session for transmission of a packet, in accord-
ance with various embodiments;

FIG. 5C illustrates an example process to use mon-
itor and control a session-based RDMA connection,
in accordance with various embodiments;

FIG. 5D illustrates an example process to use mon-
itor and control a session-based RDMA connection,
in accordance with various embodiments;

FIG. 6 illustrates an example network-based system
in which aspects of at least one embodiment can be
implemented;

FIG. 7 illustrates an example data center system,
according to at least one embodiment;

FIG. 8 is a block diagram illustrating a computer sys-
tem, according to at least one embodiment;

FIG. 9 is a block diagram illustrating a computer sys-
tem, according to at least one embodiment;

FIG. 10 illustrates a computer system, according to
at least one embodiment;

FIG. 11 illustrates a computer system, according to
at least one embodiment;

FIG. 12A illustrates a computer system, according
to at least one embodiment;

FIG. 12B illustrates a computer system, according

1 2

EP 4 459 958 A1

3

5

10

15

20

25

30

35

40

45

50

55

to at least one embodiment;

FIG. 12C illustrates a computer system, according
to at least one embodiment;

FIG. 13 illustrates exemplary integrated circuits and
associated graphics processors, according to at
least one embodiment;

FIGS. 14A-14B illustrate exemplary integrated cir-
cuits and associated graphics processors, according
to at least one embodiment;

FIGS. 15A-15B illustrate additional exemplary
graphics processor logic according to at least one
embodiment;

FIG. 16 illustrates a computer system, according to
at least one embodiment;

FIG. 17A illustrates a parallel processor, according
to at least one embodiment;

FIG. 17B illustrates a partition unit, according to at
least one embodiment;

FIG. 17C illustrates a processing cluster, according
to at least one embodiment;

FIG. 17D illustrates a graphics multiprocessor, ac-
cording to at least one embodiment;

FIG. 18 illustrates a multi-graphics processing unit
(GPU) system, according to at least one embodi-
ment;

FIG. 19 illustrates a graphics processor, according
to at least one embodiment;

FIG. 20 illustrates at least portions of a graphics proc-
essor, according to one or more embodiments;

FIG. 21 illustrates at least portions of a graphics proc-
essor, according to one or more embodiments.

DETAILED DESCRIPTION

[0006] In the following description, various embodi-
ments will be described. For purposes of explanation,
specific configurations and details are set forth in order
to provide a thorough understanding of the embodiments.
However, it will also be apparent to one skilled in the art
that the embodiments may be practiced without the spe-
cific details. Furthermore, well-known features may be
omitted or simplified in order not to obscure the embod-
iment being described.
[0007] Approaches in accordance with various illustra-
tive embodiments provide for multipathing in session-

based remote direct memory access (SRDMA) sessions
that may be used for congestion management and load
management. Multiple sessions may be established for
a given SRDMA session group and each RDMA session
may be associated with a different 5-tuple. For a queue
pair (QP) that is connected to a session group, the QP
may send packets over each of the 5-tuple sessions that
are associated with one of the sessions in the group. As
a result, packets associated with the session group can
be routed along any of the sessions based on congestion
or other factors, thereby effectively balancing the load
for the session group. Systems and methods may be
used to overcome the problems with traditional adaptive
routing connections in which a Base Transport Header
(BTH) is evaluated for information associated with adap-
tive routing. Because the BTH may not be used with RD-
MA or SRDMA packets, or the switch may not know
whether the BTH exists, including an adaptive routing bit
within the BTH cannot be used to direct adaptive routing
with SRDMA. Systems and methods may provide a con-
gestion control algorithm to choose different packets for
transmission over different sessions. For example, ses-
sions may be weighted based on their congestion so that
a new packet is directed toward the lowest weighted ses-
sion. As another example, sessions may be weighted
based on additional congestion factors, such as queuing
times. In this manner, congestion may be controlled for
SRDMA sessions without the use of traditional adaptive
routing methods.
[0008] In at least one embodiment, a session group
may contain multiple RDMA sessions, where each RD-
MA session is associated with a different User Datagram
Protocol (UDP) tuple (e.g., a 5-tuple that includes a
source Internet protocol (IP) address, a source port, a
destination IP address, a destination port, and a transport
protocol). As such, the 5-tuple may be used to uniquely
identify a UDP and/or Transmission Control Protocol
(TCP) session. In at least one embodiment, SRDMA may
include QPs that serve as endpoints between different
memory locations and individual sessions may include
multiple QPs. Moreover, as noted above, individual ses-
sion groups may include multiple sessions. As a result,
a single session group may include multiple channels
extending between different applications associated with
computing devices. A QP that is connected to a session
group can send packets over each of the 5-tuple UDP
sessions that are associated with one of the sessions in
the group. Traditional routing methods use network
switches to forward a UDP packet by hashing on the UDP
5-tuple to traverse different network paths, even if each
of the paths have a common destination. Systems and
methods of the present disclosure permit load balancing
over SRDMA flows by enabling SRDMA packets that are
sent over a QP to be sent with different 5-tuples to spread
traffic over different network paths. Various embodi-
ments enable multipathing through the use of one or more
congestion control algorithms that select a 5-tuple to be
used for each packet that is sent over the QP. The one

3 4

EP 4 459 958 A1

4

5

10

15

20

25

30

35

40

45

50

55

or more algorithms monitor the congestion state of each
of the relevant network links to determine which of the
links is less congested. Then, a weight (e.g., a number
between 0 and 1) is applied to each session, depending
on its congestion level. Thereafter, when a packet is sent
over the QP, the hardware chooses a particular RDMA
session by a weighted-hash, based on the weights the
algorithm has computed. In this manner, different paths
may be selected to control congestion while still providing
the desired QP routing.
[0009] Systems and methods of the present disclosure
may also be used to provide secure connections between
endpoints and to reduce a likelihood of a bad actor inter-
cepting and/or adding packets to a particular network
connection. For example, when a packet is received,
such as from the QP, hardware may hash over the 5-
tuple of one or more sessions for a particular session
group. The UDP header associated with the packet may
be obscured from an attacker such that the attacker can-
not realize the UDP header. That is, the attacker will not
know each element of the 5-tuple, and as a result, cannot
cause the hardware to direct unauthorized packets over
different sessions of the session group.
[0010] Variations of this and other such functionality
can be used as well within the scope of the various em-
bodiments as would be apparent to one of ordinary skill
in the art in light of the teachings and suggestions con-
tained herein.
[0011] FIG. 1 illustrates an example environment 100
that can be used to transmit messages between different
computing devices, in accordance with at least one em-
bodiment. The illustrated environment includes a client
102 and a server 104. The client 102 and the server 104
may include one or more computing devices that include
processors, memories, input/output (I/O) devices, and
the like. For example, in at least one embodiment, the
client 102 and the server 104 may form a portion of a
compute node, such as a node associated with a data
center. The compute node may be a networked cluster
of one or more computing devices that can send and
receive information across a network, such as the Inter-
net, and may be networked to one or more additional
computing devices. Furthermore, the client 102 and/or
the server 104 may be connected within a common clus-
ter. For example, each of the client 102 and the server
104 may be on a common rack within a data center. How-
ever, in various embodiments, the client 102 and the serv-
er 104 may be on different racks, within different clusters,
associated with different nodes, and/or combinations
thereof. Additional systems may also be included, such
as network switches.
[0012] In at least one embodiment, the client 102 may
submit a request to establish a connection to the server
104. The connection may be a direct access connection,
such as a remote direct memory access (RDMA) con-
nection. RDMA enables two networked computers to ex-
change data in main memory without relying on the proc-
essor, cache, or operating system of either computer.

RDMA may improve throughput and performance by
freeing up resources, resulting in faster data transfer
rates and lower latency between RDMA-enabled sys-
tems. RDMA systems provide a variety of advantages,
including at least kernel bypass, zero-copy operations,
and no central processing unit (CPU) involvement
through the use of one or more RDMA-enabled systems,
such as a network interface card (NIC). Accordingly, RD-
MA helps increase throughput and decrease latency. RD-
MA may be particularly useful for applications that need
either low latency (e.g., high performance computing
(HPC)) or high bandwidth (e.g., cloud computing, HPC,
etc.).
[0013] To establish an RDMA connection, each of the
client device 102 and the server 104 may include a NIC
106, 108 having RDMA properties and/or capabilities.
The NICs 106, 108 may implement respective RDMA
engines to create a channel to application memory of the
associated devices. For example, the NIC 106 may es-
tablish a connection to an application 110 that bypasses
a kernel 112. Similarly, the NIC 108 may establish a con-
nection to an application 114 that bypasses a kernel 116.
Accordingly, latency may be decreased by skipping var-
ious steps through the respective kernels 112, 116, which
may require execution of one or more instructions on
processors, which decreases the available resources for
compute tasks. In at least one embodiment, the hardware
associated with forming these connections is embedded
within the NIC. In this manner, the client 102 may be used
to directly read data from main memory of the server 104
and write that data directly to the main memory of the
client 102. Such applications may be suited for HPC ap-
plications, such as data centers providing processing ca-
pabilities for various applications, such as artificial intel-
ligence, storage, and the like.
[0014] In operation, performing data transfer with RD-
MA includes a process that may be referred to as regis-
tering memory. This process pins memory to inform the
kernel (e.g., the OS) that certain memory is for RDMA
communications with a given application. Pinning the
memory may prevent the OS from swapping the memory.
The NIC may then store the address. Various embodi-
ments may also set permissions for different memory re-
gions and establish different keys. A channel is formed
from the NIC to the application, as shown by the arrows
extending between NIC 106 and application 110, the ar-
rows extending between NIC 108 and the application
114, and the arrows extending between the respective
NICs 106, 108.
[0015] A variety of protocols may be implemented to
support RDMA, such as InfiniBand, RDMA over Convert-
ed Ethernet (RoCE), and Internet Wide Area RDMA Pro-
tocol (iWARP), among others. Each of these protocols
may have different physical and link layers, but still pro-
vide the direct communication between memory loca-
tions (e.g., the applications) using a connection formed
via the NICs 106, 108. However, session-based RDMA
is an RDMA over ethernet protocol whose packet differs

5 6

EP 4 459 958 A1

5

5

10

15

20

25

30

35

40

45

50

55

from RoCE packets, such as an RoCE version 2 packet.
For example, as noted herein, the RoCE version 2 packet
includes a UDP destination port field that may remain
constant, but with SRDMA, the UDP port number can be
any valid number within a UDP port range. In SRDMA,
an RDMA session is associated with a UDP 5-tuple,
which as noted herein includes a source IP address, a
source UDP port, a destination IP address, a destination
UDP port, and the transport protocol (UDP in this case).
RDMA QPs can be attached to a session group that in-
cludes one or more of the RDMA sessions. When being
attached to a session group, the packets that are sent
over the QP will be directed over one of the sessions of
the session group in accordance with the UDP 5-tuple
that is associated with one of the RDMA sessions in the
group. Because the packets can be routed over any of
the valid sessions within the session group, traditional
adaptive routing methods are not supported with SRD-
MA. For example, with an InfiniBand connection, packets
of the same flow may be routed along different paths in
a fabric based on information stored within the BTH. How-
ever, a switch cannot distinguish the SRDMA packet from
a non-SRDMA packet because the switch is unaware of
whether or not the packet contains a BTH. That is, the
switch is not aware of the set of 5-tuples that is used by
an active SRDMA connection at a given time. Moreover,
even if the switch had access to and/or was aware of the
BTH, various embodiments include secured-SRDMA
sessions, and as a result, the BTH would be encrypted
and inaccessible to the switch.
[0016] Various embodiments may be used with SRD-
MA connections to achieve higher performance with I/O
operations. These connections may be used to reduce
power consumption, which may directly affect cooling re-
quirements, while also permitting faster access to remote
data due to bypassing of the kernel (e.g., the operating
system). Furthermore, SRDMA may be scaled. For ex-
ample, embodiments of the present disclosure may per-
mit multiple QPs to be implemented along a single ses-
sion and also permit multiple sessions to be associated
with a single session group. Accordingly, systems and
methods may be used to further improve and leverage
the low latency, reduced CPU overhead, improved net-
work utilization, and efficiency of data transfer associated
with RDMA connections.
[0017] The connection between the client 102 and the
server 104 may be formed over one or more networks,
which may also be referred to as a communication fabric
or an Ethernet fabric. The transmission media to create
the communication link may include both physical com-
ponents (e.g., cables, switches, NICs, etc.) and/or virtual
components (e.g., firmware, adapters, etc.).
[0018] RDMA connections may be established be-
tween endpoints, which may be referred to as a QP. For
example, a first endpoint may be associated with the cli-
ent 102, and a second endpoint may be associated with
the server 104 at the end of a channel between the client
102 and the server 104. Each QP includes a sent queue

and a receive queue and posts operations to these
queues using one or more APIs, which may be referred
to as a verb or verbs API. Additionally, embodiments may
also include a completion queue (CQ) and/or a work
queue (WQ) to track completed requests and/or prepare
future instructions. For example, the WQ may schedule
work to be done via the send and receive queues. Various
embodiments and communications may be used with
RDMA that do not incorporate each of the queues for
each communication. For example, some requests may
not receive a response. Additionally, some operations
may be completed without generating an entity for the
CQ. In at least one embodiment, an application may issue
a job using a work request, which may include a pointer
to a buffer. For example, the pointer may be for a mes-
sage to be sent in the send queue and may show where
an incoming message should be placed in the receive
queue.
[0019] Moreover, RDMA transports may also be cate-
gorized as being reliable, unreliable, connected, or un-
connected. A reliable transport refers to the use of ac-
knowledgements to guarantee in-order delivery of mes-
sages, while an unreliable transport does not provide
such a guarantee. A connected transport is one that has
a one-to-one connection between QPs, but an uncon-
nected transport refers to a QP that can communicate
with multiple QPs. Systems and methods of the present
disclosure may be used with one or more of these con-
nection types.
[0020] FIG. 2A illustrates a stack 200 for RDMA con-
nections, which in this example uses version 2 of the
RoCE protocol. As noted herein, SRDMA may be direct-
ed toward an RDMA over Ethernet protocol that shares
certain similarities with version 2 of the RoCE protocol.
However, SRDMA may differ from RoCE version 2 at
least due to the UDP destination port field. In this exam-
ple, the stack may also be referred to as a protocol or
network stack and is used to implement a computer net-
working protocol suite. The application 110 may be one
or more applications or operations executing on a proc-
essor, such as a processor of a computing device, and
may further be associated with one or more memory lo-
cations. The application 110 is used to post work re-
quests, which may be in the form of a message, to a
queue (e.g., the send queue). The application 110 may
be associated with the NIC 106, which may include hard-
ware implementations of different layers, among other
options. For example, one or more adapters, drivers, or
software implementations may be used to maintain dif-
ferent queues, manage overhead, and/or the like.
[0021] There may also be one or more software layers
(not pictured). The software layers may be used to define
the methods and mechanisms that an application needs
to use the RDMA message transport service. For exam-
ple, the software layer may describe methods that appli-
cations use to establish a channel between them, and
may include various APIs, libraries, and the like.
[0022] In this example, one or more network protocols

7 8

EP 4 459 958 A1

6

5

10

15

20

25

30

35

40

45

50

55

are supported by the stack 200, including a transport lay-
er 202, a UDP layer 204, an IP layer 206, and an ethernet
layer 208. The transport layer 202 may also be referred
to as an InfiniBand transport protocol. Further included
is the UDP layer 204, which may be used to send mes-
sages (such as packets) over IP. The UDP layer 204 may
enable rapid communications with limited overhead due
to the reduction of error checking and correction associ-
ated with the protocol. The ethernet link layer 208 may
be a protocol layer for delivery of information across a
physical layer of a connection, such as wires or the like.
The different layers may be used to packetize different
messages, implement RDMA protocol, and assure reli-
able delivery. In at least one embodiment, each of these
layers is used as a hardware implementation within the
NIC 106, and as a result certain operations may be re-
moved from the processor of the computing device itself,
thereby reducing overhead and providing more process-
ing capabilities to complete the tasks directed to the com-
puting device. The illustrated embodiment also includes
a verbs interface 210, which may be used to allow the
application 110 to send and/or receive requests.
[0023] As noted, different RDMA connections may in-
clude different protocols or specification details. For ex-
ample, the RoCE standard replaces a Transmission Con-
trol Protocol/Internet Protocol (TCP/IP) network layer
with the InfiniBand network layer over the Ethernet link
layer. In RoCE, the link layer protocol header of the In-
finiBand is removed. As noted, RoCE also depends on
lossless Ethernet transmission, which may impose costs
and management overhead. With RoCE connections,
using a version 2 specification may extend RoCE func-
tionality, such as by using layer 3 routing via the UDP
headers. Accordingly, packets using version 2 may be
routed and use the IP, as opposed to an ethernet layer
for previous versions of RoCE.
[0024] FIG. 2B illustrates an example frame structure
220. As noted, this structure may be associated with ver-
sion 2 of the RoCE protocol and is provided by way of
example only. Additionally, one or more differences with
the frame structure 220 may exist when comparing SRD-
MA and RDMA using RoCE version 2. The frame includes
an ethernet header 222 containing destination and
source information, such as MAC addresses. Further
shown is an EtherType 224 to indicate that the packet
(e.g., the next header) is an IP header 226 with a protocol
number 228. The IP header 226 and the protocol number
228 may provide information such as routing and payload
information, along with an identifier for determining the
layout of the data following the header.
[0025] Further shown is a UDP header 230 and UDP
port number 232. The UDP header 230 includes infor-
mation such as a source port, destination port, length,
and checksum and, enables use of the UDP communi-
cation protocol that permits the establishment of commu-
nication channels without prior communications. In
RoCE version 2, the UDP port number 232, which may
be associated with a destination port, is fixed or constant.

However, in SRDMA applications of the present disclo-
sure, the UDP port number 232 and/or the destination
port may be any valid UDP port number taken from a
UDP port range.
[0026] A BTH 234 may include information such as in-
structions for the packet. Furthermore, the BTH 234 may
include version IDs, opcodes, destination QP informa-
tion, package sequences, partition keys, and/or other in-
formation. A payload 236 may then include the message.
A cycle redundancy check 238 and frame check se-
quence 240 may also be included. Accordingly, the pack-
et may be transmitted from a first computing device to a
second computing device to route the information to the
appropriate end location and provide the desired mes-
sage.
[0027] As noted herein, RDMA may use a number of
different protocols. For example, InfiniBand (both gener-
ation 1 and generation 2) are centrally-managed net-
works where addressing and forwarding schemes are
set by an InfiniBand Subnet-Manager. With InfiniBand
generation 2, a packet format may include the ETH head
224, the IP head 226, the UDP head 230, and the BTH
234, along with the payload 236 and the like. In operation,
InfiniBand may use a feature called adaptive routing to
dynamically load balance network utilization. For exam-
ple, the load balancing mechanism may select the routing
based on an immediate network state (e.g., switch queue
lengths, port utilization, etc.). However, as noted above,
these features are incompatible with SRDMA at least be-
cause the different packet format in which the UDP des-
tination port is not a constant with SRDMA. As a result,
the traditional methods are insufficient to address adap-
tive routing challenges with SRDMA.
[0028] InfiniBand may support various types of trans-
ports, such as SRDMA, RoCE, UDP, TCP, and others.
Currently, adaptive routing is implemented by using a
"free_AR" bit located within the BTH. As noted, non-RD-
MA packets do not have a BTH, and as a result, adaptive
routing cannot be incorporated using these traditional
methods. Another drawback to traditional systems it that
even if the RDMA packet includes the BTH, the switch
may not be able to determine whether the BTH exists.
By way of example, if the packet is an SRDMA packet,
the packet may "look" like a regular UDP packet (without
a unique UDP destination port), and as a result, the switch
cannot know whether to look for the "BTH.free AR" bit or
not. While multipathing may overcome some of these
challenges, such as by allowing packets of a similar flow
to have different 5-tuples and then having switches pick
paths based on hashes performed on the 5-tuples, ad-
ditional complexity may be added to the system, such as
new APIs, new objects, hardware support, and the like.
Accordingly, systems and methods of the present disclo-
sure may address these problems by adding a new traffic
class in the IP TOS header specifying that the switch
should route a given packet using Adaptive Routing.
[0029] In operation, a subnet manager may configure
different routes in a cycle-free fashion. Thereafter, a

9 10

EP 4 459 958 A1

7

5

10

15

20

25

30

35

40

45

50

55

switch will look at the IP header of each packet to deter-
mine whether the packet includes a "free_AR" bit. If the
bit has a given value (e.g., 1), then a location decision
can be made, based at least on congestions of queues,
to pick one port to send the packet to. In this manner,
adaptive routing is enabled for SRDMA packets, as well
as other transports that may not include a BTH.
[0030] FIG. 3A illustrates a representation 300 of a
connection diagram for a client-server SRDMA connec-
tion. The illustrated example includes a single connection
(e.g., single RDMA session) within a session group be-
tween the client and the server. For example, the QPs
302A, 302B are established at the client 102 and the
server 104. As noted, QPs may refer to endpoints for a
particular connection. In this example, the QPs 302A,
302B are referred to as RC QPs, otherwise known as
"reliable connection" QPs. Such a connection is provided
by way of nonlimiting example and other connection
types may also be used within the scope of the present
disclosure. A session group 304A, 304B is established
at the client 102 and the server 104 and associated with
the QPs 302A, 302B. Thereafter, individual RDMA ses-
sions 306A, 306B are established for the given session
group 304A, 304B in order to from the RDMA connection
between the client 102 and the server 104.
[0031] As shown by the respective arrows, information
can flow through individual portions of the connection,
such as a message for the QP 302A that is directed
through the session group 304A and transmitted to the
server 104 along the RDMA session 306A. Similarly, the
associated RDMA session 306B may then route the mes-
sage through the session group 304B to the destination
QP 302B.
[0032] In this example, there is only a single RDMA
session 306A, 306B between the client 102 and the serv-
er 104, and as a result, all traffic for the QP 302A, 302B
is transmitted using the RDMA session 306A, 306B.
However, if the messages (e.g., packets) become large
or are transmitted rapidly, then latency may be present
within the system, reducing the efficiency of the data
transfer. Systems and methods are directed toward re-
ducing these problems by introducing adaptive routing
with respect to RDMA sessions associated with a com-
mon session group. As messages are transmitted from
QPs, a hardware component of the NIC may evaluate
information of the message and/or the packet, evaluate
the sessions for a session group, apply a congestion al-
gorithm to weight the sessions, and then select a session
for routing the message from the session group. In this
manner, messages may be more efficiently routed and
transmitted to desired QPs by selecting less congested
sessions.
[0033] FIG. 3B illustrates a representation 320 of a
connection diagram for a client-server SRDMA connec-
tion. The illustrated examples include multiple sessions
associated with a session group between the client and
the server. In various embodiments, the session group
304A, 304B is a hardware object associated with one or

more NICs that permit RDMA communications. While the
illustrated embodiment shows a single session group for
each of the client 102 and the server 104, various other
embodiments may also include multiple session groups.
In operation, the session groups 304A, 304B may receive
messages associated with respective QPs 302A, 302B
and may be used to route transmission across particular
sessions 306, for example, based on congestion of the
sessions.
[0034] In this example, the QPs 302A, 302B are asso-
ciated with their respective session groups 304A, 304B,
similar to the configuration shown in FIG. 3A. However,
rather than having a single session to transmit the pack-
ets/messages from the QPs 302A, 302B, the embodi-
ment of FIG. 3B illustrates multiple sessions (e.g., ses-
sion 306A, 306B and session 306C, 306D) associated
with their respective common session groups 304A,
304B. As a result, the QPs 302A, 302B may be routed
on either session (e.g., session 306A, 306B or session
306C, 306D) based on network congestion. Additionally,
in various embodiments, additional sessions may be add-
ed and/or removed to provide additional routing of mes-
sages between various QPs, which may also be associ-
ated with the session groups 304A, 304B. In this manner,
routing may be extended to SRDMA connections.
[0035] As noted herein, traditional adaptive routing
schemes may use switch-level evaluations of the BTH in
order to select different connections within a fabric for
packet transmission. While this may work with traditional
connections, such as InfiniBand, the methods fail with
SRDMA connections because the switch does not have
access to and/or does not know the BTH exists. As a
result, systems and methods provide for adaptive routing
techniques that do not require evaluation or access to
the BTH. Not only does this permit use with different con-
nection types, such as SRDMA, but it also permits routing
when various portions of the packet are encrypted be-
cause the switch is unlikely to have sufficient information
to decrypt the packet. Systems and methods leverage
the properties of SRDMA to create multiple sessions for
a QP (or multiple QPs) associated with one or more ses-
sion groups and then use 5-tuples to route packages
along different paths.
[0036] Systems and methods may use one or more
hardware devices, such as the NIC, to deploy one or
more session groups for SRDMA communications. Par-
ticular session groups may then be associated with one
or more QP(s) and also with one or more RDMA sessions.
As a packet is transmitted from the QP, a congestion
control algorithm may evaluate information for different
sessions to determine which of the sessions is the least
congested and/or a level of congestion for each session.
The sessions may then be weighted based on the level
of congestion. In at least one embodiment, the weighting
system may be a software application. In at least one
embodiment, the weighting system may be a hardware
application. As an example, the hardware may receive
information associated with the weight of the sessions

11 12

EP 4 459 958 A1

8

5

10

15

20

25

30

35

40

45

50

55

and then select a session based on the weight, such as
routing an incoming packet along the least congested
link. In various embodiments, the system may be config-
ured to adapt to different network events, such as closing
of session due to encryption key timeouts, and may add
or remove sessions based on information associated with
different network links. These decisions and implemen-
tations may be hardware based and, as a result, may be
independent from the application associated with the
QPs. In other words, balancing network communications
may be performed without feedback or input from the
application.
[0037] Embodiments of the present disclosure may im-
plement one or more congestion control algorithms,
which may be managed by an RDMA connection man-
ager. As noted, congestion control may be managed and
adjusted using software and/or hardware solutions. For
example, the RDMA connection manager may be used
to monitor congestion of different sessions, assign and
adjust weights over time, determine whether keys or cer-
tificates are needed to maintain certain sessions, and/or
add/remove sessions. In at least one embodiment, the
RDMA connection manager may receive an instruction
to establish a new RDMA session and/or a new RDMA
group with one or more associated sessions, among oth-
er options. A connection may be established through the
use of a handshake between the client and server. There-
after, each of the sever and the client may create a ses-
sion group tied to the QP. Before and/or during transmis-
sion, the RDMA connection manager may monitor one
or more session between the session groups and then
add or remove sessions to route traffic when one or more
sessions become congested.
[0038] FIG. 4 illustrates an environment 400 that may
be deployed to support one or more multipathing func-
tions with SRDMA communications. In this example, an
RDMA connection manager 402 may be used to monitor
and/or control one or more aspects of the SRDMA com-
munication. For example, the RDMA connection manag-
er 402 may monitor congestion along different sessions,
add and delete sessions and/or session groups, and ap-
ply one or more different congestion control algorithms
to facilitate routing of different packets along different
sessions for a given session group. In this example, the
application 110 may submit a request to the RDMA con-
nection manager 402 to establish one or more session
groups and/or sessions. For example, a new communi-
cation link may be established with one or more servers.
[0039] In at least one embodiment, a session generator
404 may be used to create, delete, and/or add one or
more session groups and/or sessions. For example, up-
on receiving the request from the application 110, the
session generator 404 may establish a new session
group for the QP associated with the request and then
determine how many sessions to create for the given QP.
Furthermore, the session generator 404 may be used to
populate or otherwise assign different information to the
sessions, such as providing unique 5-tuples for each ses-

sion. As noted herein, while there may be multiple ses-
sions in various embodiment with different 5-tuples, their
destination QPs, via the session group, may be the same,
and as a result, packets from the QPs may be transmitted
over any of the sessions for a given session group.
[0040] The illustrated embodiment further includes a
session monitor 406. The session monitor 406 may ac-
quire information from one or more sessions 408 asso-
ciated with a given session group and/or QP. For exam-
ple, the session monitor 406 may be used to track con-
gestion along the sessions 408, monitor latency, monitor
a connection status, and the like. As another example,
the session monitor 406 may monitor a status of various
certificates or credentials for different sessions 408 and
then, if necessary, either remove expired sessions and/or
provide updated credentials, such as after a given period
of time. As noted, a session group may have any number
of associated sessions, but as the number of sessions
increase, there may be an associated cost, such as com-
puting costs, resources costs, and the like. Accordingly,
the session monitor 406 may provide information to the
RDMA connection manager 402, and/or components
thereof, in order to adjust session operation to improve
efficiencies with the network links.
[0041] A weighting system 410 may use one or more
congestion control algorithms 412 in order to apply
weights or otherwise determine a congestion level for the
sessions 408. For example, different weights may be pro-
vided to sessions based on a flow of traffic over the net-
work link, a time period between traffic flow, a percentage
of time the link is active, and/or the like. In at least one
embodiment, the weight may be a percentage of availa-
ble bandwidth compared to a theoretical bandwidth quan-
tity. For example, if a link has speed rating of 100 GB/s,
but is currently only executing at 60 GB/s, it may be as-
signed a weight of 0.6 to illustrate the capabilities are
only at 60% of the expected capabilities. Another exam-
ple may be to apply a weight based on observed latency,
where a maximum latency may be assigned a value of
1 and a minimum latency may be assigned a value of 0.
Furthermore, one or more tests may be conducted to
determine weights, such as assigning random or pseudo-
random weights to different sessions, sending packs ac-
cording to those weights, observing the results, and then
adjusting the weights accordingly. Information from the
weighting system 410 may then be provided to a distrib-
utor 414 that facilitates routing of different packets from
the application 110 along different sessions 408 based,
at least in part, on the weights. In this manner, QPs for
a given session group can be routed along any associ-
ated session based on a weighted congestion value for
the session.
[0042] FIG. 5A illustrates an example process 500 for
routing SRDMA packets over multiple sessions of a ses-
sion group. It should be understood that for this and other
processes presented herein that there may be additional,
fewer, or alternative steps performed or similar or alter-
native orders, or at least partially in parallel, within the

13 14

EP 4 459 958 A1

9

5

10

15

20

25

30

35

40

45

50

55

scope of the various embodiments unless otherwise spe-
cifically stated. In this example, an instruction is received
to establish an RDMA connection 502, which may be
associated with an SRDMA connection. For example, an
application executing on a computing device may provide
the instruction to an RDMA connection manager, among
other options. A handshake may be executed with a re-
cipient to establish the RDMA connection 504. The hand-
shake may be initialized by a client with a server to es-
tablish the RDMA connection, such as to add sessions,
add QPs, add session groups, and the like.
[0043] In at least one embodiment, a session group
associated with a QP for the RDMA connection is created
506. Additionally, two or more sessions for the session
group may be created 508. In at least one embodiment,
the two or more sessions have unique 5-tuples. However,
they may both be directed to a common end point (e.g.,
QP), and as a result, may be configured to receive pack-
ets from a variety of endpoints associated with the ses-
sion group.
[0044] Weights associated with the two or more ses-
sions may be determined 510. The weights may corre-
spond to a congestion level of the sessions, where a high-
er weight may be a more congested network link and a
lower weight may be a less congested network link. The
weights may be based on a variety of factors, such as
latency, bandwidth, queue status, and the like. Further-
more, the weights may be associated with one or more
congestion control algorithms. A packet from a QP as-
sociated with the session group may be received for
transmission over the RDMA connection 512. The packet
may be checked, in various embodiments, to determine
a destination QP and/or other information. A session of
the two or more sessions may then be selected for trans-
mission of the packet 514. In at least one embodiment,
the weights are used to select the session. For example,
a lowest weight session may be selected. In this manner,
as packets are received at the session group, transmis-
sion may be routed along different sessions having the
lowest weights (or some other criteria) in order to reduce
latency and improve efficiencies of the network.
[0045] FIG. 5B illustrates an example process 520 for
directing a packet over an SRDMA session. In this ex-
ample, an SRDMA session group includes a plurality of
SRDMA sessions with a common destination QP. Re-
spective congestion levels for each of the plurality of
SRDMA sessions may be determined 522. The conges-
tion levels may be based on information obtained by mon-
itoring the sessions and/or by one or more congestion
control algorithms that receive information regarding a
state of the sessions and then determines one or more
values, which may be weights, or may be used to com-
pute the weights. In at least one embodiment, respective
weights are determined based on the congestion levels
524. The respective weights may be used, as noted here-
in, to select a session for transmission of information. A
packet for transmission to the common destination QP
may be received 526, and one of the SRDMA sessions

may be selected based, at least in part, on the weights
528. Thereafter, the packet may be directed to and trans-
mitted using the selected SRDMA session 530.
[0046] FIG. 5C illustrates an example process 540 for
monitoring and adjusting SRDMA sessions. In this ex-
ample, congestion levels for a plurality of SRDMA ses-
sions associated with an SRDMA session group are mon-
itored 542. For example, different factors of the sessions
may be evaluated and used to determine or otherwise
compute the congestion levels. The congestion levels for
each session may then be compared to a session group
threshold 544. The threshold may be on a session-by-
session basis or for the session group as a whole. In at
least one embodiment, it may be determined whether the
congestion levels for the sessions exceed the threshold
546. If not, then monitoring may continue. If so, then a
new SRDMA sessions may be added to the session
group 548. As a result, the connections for the given ses-
sion group can be monitored and adjusted to maintain a
certain performance level.
[0047] FIG. 5D illustrates an example process 560 for
monitoring and adjusting SRDMA sessions. In this ex-
ample, congestion levels for a plurality of SRDMA ses-
sions associated with an SRDMA session group are mon-
itored 562. The congestion levels for each session may
then be compared to a session group threshold 564,
which may be set at a certain level for a given session
or for the whole session group. In at least one embodi-
ment, it may be determined whether the congestion lev-
els for the sessions exceed the threshold 566. If they do,
then a new SRDMA session may be added to the session
group 568, and then monitoring may continue to deter-
mine whether additional sessions are needed.
[0048] If it is determined that the congestion levels do
not exceed the threshold, a cost for the session group
may be determined 570. The cost may be associated
with compute costs or other factors. The cost may be
compared to a cost threshold 572. Thereafter, it may be
determined whether or not the cost exceeds the cost
threshold 574. If it does, then an existing SRDMA ses-
sions may be removed 576. If not, then monitoring may
continue.
[0049] As discussed, aspects of various approaches
presented herein can be lightweight enough to execute
on a device such as a client device, such as a personal
computer or gaming console, in real time. Such process-
ing can be performed on content (e.g., a rendered version
of a unique asset) that is generated on, or received by,
that client device or received from an external source,
such as streaming data or other content received over
at least one network. In some instances, the processing
and/or determination of this content may be performed
by one of these other devices, systems, or entities, then
provided to the client device (or another such recipient)
for presentation or another such use.
[0050] As an example, FIG. 6 illustrates an example
network configuration 600 that can be used to provide,
generate, modify, encode, process, and/or transmit data

15 16

EP 4 459 958 A1

10

5

10

15

20

25

30

35

40

45

50

55

or other such content. In this example, data can be en-
crypted for at least storage or transmission. In at least
one embodiment, a client device 602 can generate or
receive data for a session using components of a control
application 604 on client device 602 and data stored lo-
cally on that client device. In at least one embodiment, a
content application 624 executing on a server 620 (e.g.,
a cloud server or edge server) may initiate a session as-
sociated with at least client device 602, as may utilize a
session manager and user data stored in a user database
634, and can cause data in a database 632 to be deter-
mined by a content manager 626. A content manager
626 may work with a data manager 628 to obtain or proc-
ess (e.g., decrypt) data that is to be provided for presen-
tation, or used in a process to generate content for pres-
entation, via the client device 602. In at least one em-
bodiment, this data manager 628 can work with an en-
cryption manager 630 to manage various aspects of data
encryption, such as to manage which data is to be en-
crypted, and which keys are to be used to encrypt that
data (or at least how those keys are to be generated for
a given type of key). At least a portion of the data or
content may be transmitted to the client device 602 using
an appropriate transmission manager 622 to send by
download, streaming, or another such transmission
channel. An encoder may be used to encode and/or com-
press at least some of this data before transmitting to the
client device 602. In at least one embodiment, the client
device 602 receiving such content can provide this con-
tent to a corresponding control application 604, which
may also or alternatively include a graphical user inter-
face 610 and data manager 612, for use in providing con-
tent for presentation via the client device 602. A decoder
may also be used to decode data received over the net-
work(s) 640 for presentation via client device 602, such
as image or video content through a display 606 and
audio, such as sounds and music, through at least one
audio playback device 608, such as speakers or head-
phones. In at least one embodiment, at least some of this
content may already be stored on, rendered on, or ac-
cessible to client device 602 such that transmission over
network 640 is not required for at least that portion of
content, such as where that content may have been pre-
viously downloaded or stored locally on a hard drive or
optical disk. In at least one embodiment, a transmission
mechanism such as data streaming can be used to trans-
fer this content from server 620, or user database 634,
to client device 602. In at least one embodiment, at least
a portion of this content can be obtained or streamed
from another source, such as a third party service 660
or other client device 650, that may also include a content
application 662 for generating or providing content. In at
least one embodiment, portions of this functionality can
be performed using multiple computing devices, or mul-
tiple processors within one or more computing devices,
such as may include a combination of CPUs and GPUs.
[0051] In this example, these client devices can include
any appropriate computing devices, as may include a

desktop computer, notebook computer, set-top box,
streaming device, gaming console, smartphone, tablet
computer, VR headset, AR goggles, wearable computer,
or a smart television. Each client device can submit a
request across at least one wired or wireless network,
as may include the Internet, an Ethernet, a local area
network (LAN), or a cellular network, among other such
options. In this example, these requests can be submitted
to an address associated with a cloud provider, who may
operate or control one or more electronic resources in a
cloud provider environment, such as may include a data
center or server farm. In at least one embodiment, the
request may be received or processed by at least one
edge server, that sits on a network edge and is outside
at least one security layer associated with the cloud pro-
vider environment. In this way, latency can be reduced
by enabling the client devices to interact with servers that
are in closer proximity, while also improving security of
resources in the cloud provider environment.
[0052] In at least one embodiment, such a system can
be used for performing graphical rendering operations.
In other embodiments, such a system can be used for
other purposes, such as for providing image or video con-
tent to test or validate autonomous machine applications,
or for performing deep learning operations. In at least
one embodiment, such a system can be implemented
using an edge device, or may incorporate one or more
Virtual Machines (VMs). In at least one embodiment,
such a system can be implemented at least partially in a
data center or at least partially using cloud computing
resources.

DATA CENTER

[0053] FIG. 7 illustrates an example data center 700,
in which at least one embodiment may be used. In at
least one embodiment, data center 700 includes a data
center infrastructure layer 710, a framework layer 720, a
software layer 730 and an application layer 740.
[0054] In at least one embodiment, as shown in FIG.
7, data center infrastructure layer 710 may include a re-
source orchestrator 712, grouped computing resources
714, and node computing resources ("node C.R.s")
716(1)-716(N), where "N" represents a positive integer
(which may be a different integer "N" than used in other
figures). In at least one embodiment, node C.R.s 716(1)-
716(N) may include, but are not limited to, any number
of central processing units ("CPUs") or other processors
(including accelerators, field programmable gate arrays
(FPGAs), graphics processors, etc.), memory storage
devices 718(1)-718(N) (e.g., dynamic read-only memory,
solid state storage or disk drives), network input/output
("NW I/O") devices, network switches, virtual machines
("VMs"), power modules, and cooling modules, etc. In at
least one embodiment, one or more node C.R.s from
among node C.R.s 716(1)-716(N) may be a server hav-
ing one or more of above-mentioned computing resourc-
es.

17 18

EP 4 459 958 A1

11

5

10

15

20

25

30

35

40

45

50

55

[0055] In at least one embodiment, grouped computing
resources 714 may include separate groupings of node
C.R.s housed within one or more racks (not shown), or
many racks housed in data centers at various geograph-
ical locations (also not shown). In at least one embodi-
ment, separate groupings of node C.R.s within grouped
computing resources 714 may include grouped compute,
network, memory or storage resources that may be con-
figured or allocated to support one or more workloads.
In at least one embodiment, several node C.R.s including
CPUs or processors may grouped within one or more
racks to provide compute resources to support one or
more workloads. In at least one embodiment, one or more
racks may also include any number of power modules,
cooling modules, and network switches, in any combina-
tion.
[0056] In at least one embodiment, resource orches-
trator 712 may configure or otherwise control one or more
node C.R.s 716(1)-716(N) and/or grouped computing re-
sources 714. In at least one embodiment, resource or-
chestrator 712 may include a software design infrastruc-
ture ("SDI") management entity for data center 700. In
at least one embodiment, resource orchestrator @1@12
may include hardware, software or some combination
thereof.
[0057] In at least one embodiment, as shown in FIG.
7, framework layer 720 includes a job scheduler 722, a
configuration manager 724, a resource manager 726 and
a distributed file system 728. In at least one embodiment,
framework layer 720 may include a framework to support
software 732 of software layer 730 and/or one or more
application(s) 742 of application layer 740. In at least one
embodiment, software 732 or application(s) 742 may re-
spectively include web-based service software or appli-
cations, such as those provided by Amazon Web Serv-
ices, Google Cloud and Microsoft Azure. In at least one
embodiment, framework layer 720 may be, but is not lim-
ited to, a type of free and open-source software web ap-
plication framework such as Apache Spark™ (hereinafter
"Spark") that may utilize distributed file system 728 for
large-scale data processing (e.g., "big data"). In at least
one embodiment, job scheduler 722 may include a Spark
driver to facilitate scheduling of workloads supported by
various layers of data center 700. In at least one embod-
iment, configuration manager 724 may be capable of
configuring different layers such as software layer 730
and framework layer 720 including Spark and distributed
file system 728 for supporting large-scale data process-
ing. In at least one embodiment, resource manager 726
may be capable of managing clustered or grouped com-
puting resources mapped to or allocated for support of
distributed file system 728 and job scheduler 722. In at
least one embodiment, clustered or grouped computing
resources may include grouped computing resources
714 at data center infrastructure layer 710. In at least one
embodiment, resource manager 726 may coordinate
with resource orchestrator 712 to manage these mapped
or allocated computing resources.

[0058] In at least one embodiment, software 732 in-
cluded in software layer 730 may include software used
by at least portions of node C.R.s 716(1)-716(N),
grouped computing resources 714, and/or distributed file
system 728 of framework layer 720. In at least one em-
bodiment, one or more types of software may include,
but are not limited to, Internet web page search software,
e-mail virus scan software, database software, and
streaming video content software.
[0059] In at least one embodiment, application(s) 742
included in application layer 740 may include one or more
types of applications used by at least portions of node
C.R.s 716(1)-716(N), grouped computing resources 714,
and/or distributed file system 728 of framework layer 720.
In at least one embodiment, one or more types of appli-
cations may include, but are not limited to, any number
of a genomics application, a cognitive compute, applica-
tion and a machine learning application, including training
or inferencing software, machine learning framework
software (e.g., PyTorch, TensorFlow, Caffe, etc.) or other
machine learning applications used in conjunction with
one or more embodiments.
[0060] In at least one embodiment, any of configuration
manager 724, resource manager 726, and resource or-
chestrator 712 may implement any number and type of
self-modifying actions based on any amount and type of
data acquired in any technically feasible fashion. In at
least one embodiment, self-modifying actions may re-
lieve a data center operator of data center 700 from mak-
ing possibly bad configuration decisions and possibly
avoiding underutilized and/or poor performing portions
of a data center.
[0061] In at least one embodiment, data center 700
may include tools, services, software or other resources
to train one or more machine learning models or predict
or infer information using one or more machine learning
models according to one or more embodiments de-
scribed herein. For example, in at least one embodiment,
a machine learning model may be trained by calculating
weight parameters according to a neural network archi-
tecture using software and computing resources de-
scribed above with respect to data center 700. In at least
one embodiment, trained machine learning models cor-
responding to one or more neural networks may be used
to infer or predict information using resources described
above with respect to data center 700 by using weight
parameters calculated through one or more training tech-
niques described herein.
[0062] In at least one embodiment, data center may
use CPUs, application-specific integrated circuits
(ASICs), GPUs, FPGAs, or other hardware to perform
training and/or inferencing using above-described re-
sources. Moreover, one or more software and/or hard-
ware resources described above may be configured as
a service to allow users to train or performing inferencing
of information, such as image recognition, speech rec-
ognition, or other artificial intelligence services.
[0063] Inference and/or training logic 115 are used to

19 20

EP 4 459 958 A1

12

5

10

15

20

25

30

35

40

45

50

55

perform inferencing and/or training operations associat-
ed with one or more embodiments. In at least one em-
bodiment, inference and/or training logic 115 may be
used in system FIG. 7 for inferencing or predicting oper-
ations based, at least in part, on weight parameters cal-
culated using neural network training operations, neural
network functions and/or architectures, or neural network
use cases described herein.
Embodiments presented herein can allow for a hardware-
based rekeying process that does not require significant
downtime or software modification.

COMPUTER SYSTEMS

[0064] FIG. 8 is a block diagram illustrating an exem-
plary computer system, which may be a system with in-
terconnected devices and components, a system-on-a-
chip (SOC) or some combination thereof formed with a
processor that may include execution units to execute
an instruction, according to at least one embodiment. In
at least one embodiment, a computer system 800 may
include, without limitation, a component, such as a proc-
essor 802 to employ execution units including logic to
perform algorithms for process data, in accordance with
present disclosure, such as in embodiment described
herein. In at least one embodiment, computer system
800 may include processors, such as PENTIUM® Proc-
essor family, Xeon™, Itanium®, XScale™ and/or Strong-
ARM™, Intel® Core™, or Intel® Nervana™ microproces-
sors available from Intel Corporation of Santa Clara, Cal-
ifornia, although other systems (including PCs having
other microprocessors, engineering workstations, set-
top boxes and like) may also be used. In at least one
embodiment, computer system 800 may execute a ver-
sion of WINDOWS operating system available from Mi-
crosoft Corporation of Redmond, Wash., although other
operating systems (UNIX and Linux, for example), em-
bedded software, and/or graphical user interfaces, may
also be used.
[0065] Embodiments may be used in other devices
such as handheld devices and embedded applications.
Some examples of handheld devices include cellular
phones, Internet Protocol devices, digital cameras, per-
sonal digital assistants ("PDAs"), and handheld PCs. In
at least one embodiment, embedded applications may
include a microcontroller, a digital signal processor
("DSP"), system on a chip, network computers ("Net-
PCs"), set-top boxes, network hubs, wide area network
("WAN") switches, or any other system that may perform
one or more instructions in accordance with at least one
embodiment.
[0066] In at least one embodiment, computer system
800 may include, without limitation, processor 802 that
may include, without limitation, one or more execution
units 808 to perform machine learning model training
and/or inferencing according to techniques described
herein. In at least one embodiment, computer system
800 is a single processor desktop or server system, but

in another embodiment, computer system 800 may be a
multiprocessor system. In at least one embodiment, proc-
essor 802 may include, without limitation, a complex in-
struction set computer ("CISC") microprocessor, a re-
duced instruction set computing ("RISC") microproces-
sor, a very long instruction word ("VLIW") microproces-
sor, a processor implementing a combination of instruc-
tion sets, or any other processor device, such as a digital
signal processor, for example. In at least one embodi-
ment, processor 802 may be coupled to a processor bus
810 that may transmit data signals between processor
802 and other components in computer system 800.
[0067] In at least one embodiment, processor 802 may
include, without limitation, a Level 1 ("L1") internal cache
memory ("cache") 804. In at least one embodiment, proc-
essor 802 may have a single internal cache or multiple
levels of internal cache. In at least one embodiment,
cache memory may reside external to processor 802.
Other embodiments may also include a combination of
both internal and external caches depending on particu-
lar implementation and needs. In at least one embodi-
ment, a register file 806 may store different types of data
in various registers including, without limitation, integer
registers, floating point registers, status registers, and an
instruction pointer register.
[0068] In at least one embodiment, execution unit 808,
including, without limitation, logic to perform integer and
floating point operations, also resides in processor 802.
In at least one embodiment, processor 802 may also in-
clude a microcode ("ucode") read only memory ("ROM")
that stores microcode for certain macro instructions. In
at least one embodiment, execution unit 808 may include
logic to handle a packed instruction set 809. In at least
one embodiment, by including packed instruction set 809
in an instruction set of a general-purpose processor,
along with associated circuitry to execute instructions,
operations used by many multimedia applications may
be performed using packed data in processor 802. In at
least one embodiment, many multimedia applications
may be accelerated and executed more efficiently by us-
ing a full width of a processor’s data bus for performing
operations on packed data, which may eliminate a need
to transfer smaller units of data across that processor’s
data bus to perform one or more operations one data
element at a time.
[0069] In at least one embodiment, execution unit 808
may also be used in microcontrollers, embedded proc-
essors, graphics devices, DSPs, and other types of logic
circuits. In at least one embodiment, computer system
800 may include, without limitation, a memory 820. In at
least one embodiment, memory 820 may be a Dynamic
Random Access Memory ("DRAM") device, a Static Ran-
dom Access Memory ("SRAM") device, a flash memory
device, or another memory device. In at least one em-
bodiment, memory 820 may store instruction(s) 819
and/or data 821 represented by data signals that may be
executed by processor 802.
[0070] In at least one embodiment, a system logic chip

21 22

EP 4 459 958 A1

13

5

10

15

20

25

30

35

40

45

50

55

may be coupled to processor bus 810 and memory 820.
In at least one embodiment, a system logic chip may
include, without limitation, a memory controller hub
("MCH") 816, and processor 802 may communicate with
MCH 816 via processor bus 810. In at least one embod-
iment, MCH 816 may provide a high bandwidth memory
path 818 to memory 820 for instruction and data storage
and for storage of graphics commands, data and tex-
tures. In at least one embodiment, MCH 816 may direct
data signals between processor 802, memory 820, and
other components in computer system 800 and to bridge
data signals between processor bus 810, memory 820,
and a system I/O interface 822. In at least one embodi-
ment, a system logic chip may provide a graphics port
for coupling to a graphics controller. In at least one em-
bodiment, MCH 816 may be coupled to memory 820
through high bandwidth memory path 818 and a graph-
ics/video card 812 may be coupled to MCH 816 through
an Accelerated Graphics Port ("AGP") interconnect 814.
[0071] In at least one embodiment, computer system
800 may use system I/O interface 822 as a proprietary
hub interface bus to couple MCH 816 to an I/O controller
hub ("ICH") 830. In at least one embodiment, ICH 830
may provide direct connections to some I/O devices via
a local I/O bus. In at least one embodiment, a local I/O
bus may include, without limitation, a high-speed I/O bus
for connecting peripherals to memory 820, a chipset, and
processor 802. Examples may include, without limitation,
an audio controller 829, a firmware hub ("flash BIOS")
828, a wireless transceiver 826, a data storage 824, a
legacy I/O controller 823 containing user input and key-
board interfaces 825, a serial expansion port 827, such
as a Universal Serial Bus ("USB") port, and a network
controller 834. In at least one embodiment, data storage
824 may comprise a hard disk drive, a floppy disk drive,
a CD-ROM device, a flash memory device, or other mass
storage device.
[0072] In at least one embodiment, FIG. 8 illustrates a
system, which includes interconnected hardware devic-
es or "chips", whereas in other embodiments, FIG. 8 may
illustrate an exemplary SoC. In at least one embodiment,
devices illustrated in FIG. 8 may be interconnected with
proprietary interconnects, standardized interconnects
(e.g., PCIe) or some combination thereof. In at least one
embodiment, one or more components of computer sys-
tem 800 are interconnected using compute express link
(CXL) interconnects.
[0073] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associat-
ed with one or more embodiments. In at least one em-
bodiment, inference and/or training logic 115 may be
used in system FIG. 8 for inferencing or predicting oper-
ations based, at least in part, on weight parameters cal-
culated using neural network training operations, neural
network functions and/or architectures, or neural network
use cases described herein.
[0074] Embodiments presented herein can allow for a
hardware-based rekeying process that does not require

significant downtime or software modification.
[0075] FIG. 9 is a block diagram illustrating an elec-
tronic device 900 for utilizing a processor 910, according
to at least one embodiment. In at least one embodiment,
electronic device 900 may be, for example and without
limitation, a notebook, a tower server, a rack server, a
blade server, a laptop, a desktop, a tablet, a mobile de-
vice, a phone, an embedded computer, or any other suit-
able electronic device.
[0076] In at least one embodiment, electronic device
900 may include, without limitation, processor 910 com-
municatively coupled to any suitable number or kind of
components, peripherals, modules, or devices. In at least
one embodiment, processor 910 is coupled using a bus
or interface, such as a I2C bus, a System Management
Bus ("SMBus"), a Low Pin Count (LPC) bus, a Serial
Peripheral Interface ("SPI"), a High Definition Audio
("HDA") bus, a Serial Advance Technology Attachment
("SATA") bus, a Universal Serial Bus ("USB") (versions
1, 2, 3, etc.), or a Universal Asynchronous Receiv-
er/Transmitter ("UART") bus. In at least one embodiment,
FIG. 9 illustrates a system, which includes interconnect-
ed hardware devices or "chips", whereas in other em-
bodiments, FIG. 9 may illustrate an exemplary SoC. In
at least one embodiment, devices illustrated in FIG. 9
may be interconnected with proprietary interconnects,
standardized interconnects (e.g., PCIe) or some combi-
nation thereof. In at least one embodiment, one or more
components of FIG. 9 are interconnected using compute
express link (CXL) interconnects.
[0077] In at least one embodiment, FIG 9 may include
a display 924, a touch screen 925, a touch pad 930, a
Near Field Communications unit ("NFC") 945, a sensor
hub 940, a thermal sensor 946, an Express Chipset
("EC") 935, a Trusted Platform Module ("TPM") 938, BI-
OS/firmware/flash memory ("BIOS, FW Flash") 922, a
DSP 960, a drive 920 such as a Solid State Disk ("SSD")
or a Hard Disk Drive ("HDD"), a wireless local area net-
work unit ("WLAN") 950, a Bluetooth unit 952, a Wireless
Wide Area Network unit ("WWAN") 956, a Global Posi-
tioning System (GPS) unit 955, a camera ("USB 3.0 cam-
era") 954 such as a USB 3.0 camera, and/or a Low Power
Double Data Rate ("LPDDR") memory unit ("LPDDR3")
915 implemented in, for example, an LPDDR3 standard.
These components may each be implemented in any
suitable manner.
[0078] In at least one embodiment, other components
may be communicatively coupled to processor 910
through components described herein. In at least one
embodiment, an accelerometer 941, an ambient light
sensor ("ALS") 942, a compass 943, and a gyroscope
944 may be communicatively coupled to sensor hub 940.
In at least one embodiment, a thermal sensor 939, a fan
937, a keyboard 936, and touch pad 930 may be com-
municatively coupled to EC 935. In at least one embod-
iment, speakers 963, headphones 964, and a micro-
phone ("mic") 965 may be communicatively coupled to
an audio unit ("audio codec and class D amp") 962, which

23 24

EP 4 459 958 A1

14

5

10

15

20

25

30

35

40

45

50

55

may in turn be communicatively coupled to DSP 960. In
at least one embodiment, audio unit 962 may include, for
example and without limitation, an audio coder/decoder
("codec") and a class D amplifier. In at least one embod-
iment, a SIM card ("SIM") 957 may be communicatively
coupled to WWAN unit 956. In at least one embodiment,
components such as WLAN unit 950 and Bluetooth unit
952, as well as WWAN unit 956 may be implemented in
a Next Generation Form Factor ("NGFF").
[0079] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associat-
ed with one or more embodiments. In at least one em-
bodiment, inference and/or training logic 115 may be
used in system FIG. 9 for inferencing or predicting oper-
ations based, at least in part, on weight parameters cal-
culated using neural network training operations, neural
network functions and/or architectures, or neural network
use cases described herein. Embodiments presented
herein can allow for a hardware-based rekeying process
that does not require significant downtime or software
modification.
[0080] FIG. 10 illustrates a computer system 1000, ac-
cording to at least one embodiment. In at least one em-
bodiment, computer system 1000 is configured to imple-
ment various processes and methods described through-
out this disclosure.
[0081] In at least one embodiment, computer system
1000 comprises, without limitation, at least one central
processing unit ("CPU") 1002 that is connected to a com-
munication bus 1010 implemented using any suitable
protocol, such as PCI ("Peripheral Component Intercon-
nect"), peripheral component interconnect express
("PCI-Express"), AGP ("Accelerated Graphics Port"),
HyperTransport, or any other bus or point-to-point com-
munication protocol(s). In at least one embodiment, com-
puter system 1000 includes, without limitation, a main
memory 1004 and control logic (e.g., implemented as
hardware, software, or a combination thereof) and data
are stored in main memory 1004, which may take form
of random access memory ("RAM"). In at least one em-
bodiment, a network interface subsystem ("network in-
terface") 1022 provides an interface to other computing
devices and networks for receiving data from and trans-
mitting data to other systems with computer system 1000.
[0082] In at least one embodiment, computer system
1000, in at least one embodiment, includes, without lim-
itation, input devices 1008, a parallel processing system
1012, and display devices 1006 that can be implemented
using a conventional cathode ray tube ("CRT"), a liquid
crystal display ("LCD"), a light emitting diode ("LED") dis-
play, a plasma display, or other suitable display technol-
ogies. In at least one embodiment, user input is received
from input devices 1008 such as keyboard, mouse,
touchpad, microphone, etc. In at least one embodiment,
each module described herein can be situated on a single
semiconductor platform to form a processing system.
[0083] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associat-

ed with one or more embodiments. In at least one em-
bodiment, inference and/or training logic 115 may be
used in system FIG. 10 for inferencing or predicting op-
erations based, at least in part, on weight parameters
calculated using neural network training operations, neu-
ral network functions and/or architectures, or neural net-
work use cases described herein. Embodiments present-
ed herein can allow for a hardware-based rekeying proc-
ess that does not require significant downtime or software
modification.
[0084] FIG. 11 illustrates a computer system 1100, ac-
cording to at least one embodiment. In at least one em-
bodiment, computer system 1100 includes, without lim-
itation, a computer 1110 and a USB stick 1120. In at least
one embodiment, computer 1110 may include, without
limitation, any number and type of processor(s) (not
shown) and a memory (not shown). In at least one em-
bodiment, computer 1110 includes, without limitation, a
server, a cloud instance, a laptop, and a desktop com-
puter.
[0085] In at least one embodiment, USB stick 1120 in-
cludes, without limitation, a processing unit 1130, a USB
interface 1140, and USB interface logic 1150. In at least
one embodiment, processing unit 1130 may be any in-
struction execution system, apparatus, or device capable
of executing instructions. In at least one embodiment,
processing unit 1130 may include, without limitation, any
number and type of processing cores (not shown). In at
least one embodiment, processing unit 1130 comprises
an application specific integrated circuit ("ASIC") that is
optimized to perform any amount and type of operations
associated with machine learning. For instance, in at
least one embodiment, processing unit 1130 is a tensor
processing unit ("TPC") that is optimized to perform ma-
chine learning inference operations. In at least one em-
bodiment, processing unit 1130 is a vision processing
unit ("VPU") that is optimized to perform machine vision
and machine learning inference operations.
[0086] In at least one embodiment, USB interface 1140
may be any type of USB connector or USB socket. For
instance, in at least one embodiment, USB interface 1140
is a USB 3.0 Type-C socket for data and power. In at
least one embodiment, USB interface 1140 is a USB 3.0
Type-A connector. In at least one embodiment, USB in-
terface logic 1150 may include any amount and type of
logic that enables processing unit 1130 to interface with
devices (e.g., computer 1110) via USB connector 1140.
[0087] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associat-
ed with one or more embodiments. In at least one em-
bodiment, inference and/or training logic 115 may be
used in system FIG. 11 for inferencing or predicting op-
erations based, at least in part, on weight parameters
calculated using neural network training operations, neu-
ral network functions and/or architectures, or neural net-
work use cases described herein. Embodiments present-
ed herein can allow for a hardware-based rekeying proc-
ess that does not require significant downtime or software

25 26

EP 4 459 958 A1

15

5

10

15

20

25

30

35

40

45

50

55

modification.
[0088] FIG. 12A illustrates an exemplary architecture
in which a plurality of GPUs 1210(1)-1210(N) is commu-
nicatively coupled to a plurality of multi-core processors
1205(1)-1205(M) over high-speed links 1240(1)-1240(N)
(e.g., buses, point-to-point interconnects, etc.). In at least
one embodiment, high-speed links 1240(1)-1240(N) sup-
port a communication throughput of 4 GB/s, 30 GB/s, 80
GB/s or higher. In at least one embodiment, various in-
terconnect protocols may be used including, but not lim-
ited to, PCIe 4.0 or 5.0 and NVLink 2.0. In various figures,
"N" and "M" represent positive integers, values of which
may be different from figure to figure. In at least one em-
bodiment, one or more GPUs in a plurality of GPUs
1210(1)-1210(N) includes one or more graphics cores
(also referred to simply as "cores") 1500 as disclosed in
Figures 15A and 15B. In at least one embodiment, one
or more graphics cores 1500 may be referred to as
streaming multiprocessors ("SMs"), stream processors
("SPs"), stream processing units ("SPUs"), compute
units ("CUs"), execution units ("EUs"), and/or slices,
where a slice in this context can refer to a portion of
processing resources in a processing unit (e.g., 16 cores,
a ray tracing unit, a thread director or scheduler).
[0089] In addition, and in at least one embodiment, two
or more of GPUs 1210 are interconnected over high-
speed links 1229(1)-1229(2), which may be implemented
using similar or different protocols/links than those used
for high-speed links 1240(1)-1240(N). Similarly, two or
more of multi-core processors 1205 may be connected
over a high-speed link 1228 which may be symmetric
multi-processor (SMP) buses operating at 20 GB/s, 30
GB/s, 120 GB/s or higher. Alternatively, all communica-
tion between various system components shown in FIG.
12A may be accomplished using similar protocols/links
(e.g., over a common interconnection fabric).
[0090] In at least one embodiment, each multi-core
processor 1205 is communicatively coupled to a proces-
sor memory 1201(1)-1201(M), via memory interconnects
1226(1)-1226(M), respectively, and each GPU 1210(1)-
1210(N) is communicatively coupled to GPU memory
1220(1)-1220(N) over GPU memory interconnects
1250(1)-1250(N), respectively. In at least one embodi-
ment, memory interconnects 1226 and 1250 may utilize
similar or different memory access technologies. By way
of example, and not limitation, processor memories
1201(1)-1201(M) and GPU memories 1220 may be vol-
atile memories such as dynamic random access memo-
ries (DRAMs) (including stacked DRAMs), Graphics
DDR SDRAM (GDDR) (e.g., GDDR5, GDDR6), or High
Bandwidth Memory (HBM) and/or may be non-volatile
memories such as 3D XPoint or Nano-Ram. In at least
one embodiment, some portion of processor memories
1201 may be volatile memory and another portion may
be non-volatile memory (e.g., using a two-level memory
(2LM) hierarchy).
[0091] As described herein, although various multi-
core processors 1205 and GPUs 1210 may be physically

coupled to a particular memory 1201, 1220, respectively,
and/or a unified memory architecture may be implement-
ed in which a virtual system address space (also referred
to as "effective address" space) is distributed among var-
ious physical memories. For example, processor mem-
ories 1201(1)-1201(M) may each comprise 64 GB of sys-
tem memory address space and GPU memories
1220(1)-1220(N) may each comprise 32 GB of system
memory address space resulting in a total of 256 GB
addressable memory when M=2 and N=4. Other values
for N and M are possible.
[0092] FIG. 12B illustrates additional details for an in-
terconnection between a multi-core processor 1207 and
a graphics acceleration module 1246 in accordance with
one exemplary embodiment. In at least one embodiment,
graphics acceleration module 1246 may include one or
more GPU chips integrated on a line card which is cou-
pled to processor 1207 via high-speed link 1240 (e.g., a
PCIe bus, NVLink, etc.). In at least one embodiment,
graphics acceleration module 1246 may alternatively be
integrated on a package or chip with processor 1207.
[0093] In at least one embodiment, processor 1207 in-
cludes a plurality of cores 1260A-1260D (which may be
referred to as "execution units"), each with a translation
lookaside buffer ("TLB") 1261A-1261D and one or more
caches 1262A-1262D. In at least one embodiment, cores
1260A-1260D may include various other components for
executing instructions and processing data that are not
illustrated. In at least one embodiment, caches 1262A-
1262D may comprise Level 1 (L1) and Level 2 (L2) cach-
es. In addition, one or more shared caches 1256 may be
included in caches 1262A-1262D and shared by sets of
cores 1260A-1260D. For example, one embodiment of
processor 1207 includes 24 cores, each with its own L1
cache, twelve shared L2 caches, and twelve shared L3
caches. In this embodiment, one or more L2 and L3 cach-
es are shared by two adjacent cores. In at least one em-
bodiment, processor 1207 and graphics acceleration
module 1246 connect with system memory 1214, which
may include processor memories 1201(1)-1201(M) of
FIG. 12A.
[0094] In at least one embodiment, coherency is main-
tained for data and instructions stored in various caches
1262A-1262D, 1256 and system memory 1214 via inter-
core communication over a coherence bus 1264. In at
least one embodiment, for example, each cache may
have cache coherency logic/circuitry associated there-
with to communicate to over coherence bus 1264 in re-
sponse to detected reads or writes to particular cache
lines. In at least one embodiment, a cache snooping pro-
tocol is implemented over coherence bus 1264 to snoop
cache accesses.
[0095] In at least one embodiment, a proxy circuit 1225
communicatively couples graphics acceleration module
1246 to coherence bus 1264, allowing graphics acceler-
ation module 1246 to participate in a cache coherence
protocol as a peer of cores 1260A-1260D. In particular,
in at least one embodiment, an interface 1235 provides

27 28

EP 4 459 958 A1

16

5

10

15

20

25

30

35

40

45

50

55

connectivity to proxy circuit 1225 over high-speed link
1240 and an interface 1237 connects graphics acceler-
ation module 1246 to high-speed link 1240.
[0096] In at least one embodiment, an accelerator in-
tegration circuit 1236 provides cache management,
memory access, context management, and interrupt
management services on behalf of a plurality of graphics
processing engines 1231(1)-1231(N) of graphics accel-
eration module 1246. In at least one embodiment, graph-
ics processing engines 1231(1)-1231(N) may each com-
prise a separate graphics processing unit (GPU). In at
least one embodiment, plurality of graphics processing
engines 1231(1)-1231(N) of graphics acceleration mod-
ule 1246 include one or more graphics cores 1500 as
discussed in connection with Figures 15A and 15B. In at
least one embodiment, graphics processing engines
1231(1)-1231(N) alternatively may comprise different
types of graphics processing engines within a GPU, such
as graphics execution units, media processing engines
(e.g., video encoders/decoders), samplers, and blit en-
gines. In at least one embodiment, graphics acceleration
module 1246 may be a GPU with a plurality of graphics
processing engines 1231(1)-1231(N) or graphics
processing engines 1231(1)-1231(N) may be individual
GPUs integrated on a common package, line card, or
chip.
[0097] In at least one embodiment, accelerator inte-
gration circuit 1236 includes a memory management unit
(MMU) 1239 for performing various memory manage-
ment functions such as virtual-to-physical memory trans-
lations (also referred to as effective-to-real memory
translations) and memory access protocols for accessing
system memory 1214. In at least one embodiment, MMU
1239 may also include a translation lookaside buffer
(TLB) (not shown) for caching virtual/effective to physi-
cal/real address translations. In at least one embodiment,
a cache 1238 can store commands and data for efficient
access by graphics processing engines 1231(1)-
1231(N). In at least one embodiment, data stored in
cache 1238 and graphics memories 1233(1)-1233(M) is
kept coherent with core caches 1262A-1262D, 1256 and
system memory 1214, possibly using a fetch unit 1244.
As mentioned, this may be accomplished via proxy circuit
1225 on behalf of cache 1238 and memories 1233(1)-
1233(M) (e.g., sending updates to cache 1238 related to
modifications/accesses of cache lines on processor
caches 1262A-1262D, 1256 and receiving updates from
cache 1238).
[0098] In at least one embodiment, a set of registers
1245 store context data for threads executed by graphics
processing engines 1231(1)-1231(N) and a context man-
agement circuit 1248 manages thread contexts. For ex-
ample, context management circuit 1248 may perform
save and restore operations to save and restore contexts
of various threads during contexts switches (e.g., where
a first thread is saved and a second thread is stored so
that a second thread can be execute by a graphics
processing engine). For example, on a context switch,

context management circuit 1248 may store current reg-
ister values to a designated region in memory (e.g., iden-
tified by a context pointer). It may then restore register
values when returning to a context. In at least one em-
bodiment, an interrupt management circuit 1247 receives
and processes interrupts received from system devices.
[0099] In at least one embodiment, virtual/effective ad-
dresses from a graphics processing engine 1231 are
translated to real/physical addresses in system memory
1214 by MMU 1239. In at least one embodiment, accel-
erator integration circuit 1236 supports multiple (e.g., 4,
8, 16) graphics accelerator modules 1246 and/or other
accelerator devices. In at least one embodiment, graph-
ics accelerator module 1246 may be dedicated to a single
application executed on processor 1207 or may be
shared between multiple applications. In at least one em-
bodiment, a virtualized graphics execution environment
is presented in which resources of graphics processing
engines 1231(1)-1231(N) are shared with multiple appli-
cations or virtual machines (VMs). In at least one em-
bodiment, resources may be subdivided into "slices"
which are allocated to different VMs and/or applications
based on processing requirements and priorities associ-
ated with VMs and/or applications.
[0100] In at least one embodiment, accelerator inte-
gration circuit 1236 performs as a bridge to a system for
graphics acceleration module 1246 and provides ad-
dress translation and system memory cache services. In
addition, in at least one embodiment, accelerator inte-
gration circuit 1236 may provide virtualization facilities
for a host processor to manage virtualization of graphics
processing engines 1231(1)-1231(N), interrupts, and
memory management.
[0101] In at least one embodiment, because hardware
resources of graphics processing engines 1231(1)-
1231(N) are mapped explicitly to a real address space
seen by host processor 1207, any host processor can
address these resources directly using an effective ad-
dress value. In at least one embodiment, one function of
accelerator integration circuit 1236 is physical separation
of graphics processing engines 1231(1)-1231(N) so that
they appear to a system as independent units.
[0102] In at least one embodiment, one or more graph-
ics memories 1233(1)-1233(M) are coupled to each of
graphics processing engines 1231(1)-1231(N), respec-
tively and N=M. In at least one embodiment, graphics
memories 1233(1)-1233(M) store instructions and data
being processed by each of graphics processing engines
1231(1)-1231(N). In at least one embodiment, graphics
memories 1233(1)-1233(M) may be volatile memories
such as DRAMs (including stacked DRAMs), GDDR
memory (e.g., GDDR5, GDDR6), or HBM, and/or may
be non-volatile memories such as 3D XPoint or Nano-
Ram.
[0103] In at least one embodiment, to reduce data traf-
fic over high-speed link 1240, biasing techniques can be
used to ensure that data stored in graphics memories
1233(1)-1233(M) is data that will be used most frequently

29 30

EP 4 459 958 A1

17

5

10

15

20

25

30

35

40

45

50

55

by graphics processing engines 1231(1)-1231(N) and
preferably not used by cores 1260A-1260D (at least not
frequently). Similarly, in at least one embodiment, a bi-
asing mechanism attempts to keep data needed by cores
(and preferably not graphics processing engines
1231(1)-1231(N)) within caches 1262A-1262D, 1256
and system memory 1214.
[0104] FIG. 12C illustrates another exemplary embod-
iment in which accelerator integration circuit 1236 is in-
tegrated within processor 1207. In this embodiment,
graphics processing engines 1231(1)-1231(N) commu-
nicate directly over high-speed link 1240 to accelerator
integration circuit 1236 via interface 1237 and interface
1235 (which, again, may be any form of bus or interface
protocol). In at least one embodiment, accelerator inte-
gration circuit 1236 may perform similar operations as
those described with respect to FIG. 12B, but potentially
at a higher throughput given its close proximity to coher-
ence bus 1264 and caches 1262A-1262D, 1256. In at
least one embodiment, an accelerator integration circuit
supports different programming models including a ded-
icated-process programming model (no graphics accel-
eration module virtualization) and shared programming
models (with virtualization), which may include program-
ming models which are controlled by accelerator integra-
tion circuit 1236 and programming models which are con-
trolled by graphics acceleration module 1246.
[0105] In at least one embodiment, graphics process-
ing engines 1231(1)-1231(N) are dedicated to a single
application or process under a single operating system.
In at least one embodiment, a single application can fun-
nel other application requests to graphics processing en-
gines 1231(1)-1231(N), providing virtualization within a
VM/partition.
[0106] In at least one embodiment, graphics process-
ing engines 1231(1)-1231(N), may be shared by multiple
VM/application partitions. In at least one embodiment,
shared models may use a system hypervisor to virtualize
graphics processing engines 1231(1)-1231(N) to allow
access by each operating system. In at least one em-
bodiment, for single-partition systems without a hypervi-
sor, graphics processing engines 1231(1)-1231(N) are
owned by an operating system. In at least one embodi-
ment, an operating system can virtualize graphics
processing engines 1231(1)-1231(N) to provide access
to each process or application.
[0107] In at least one embodiment, graphics acceler-
ation module 1246 or an individual graphics processing
engine 1231(1)-1231(N) selects a process element using
a process handle. In at least one embodiment, process
elements are stored in system memory 1214 and are
addressable using an effective address to real address
translation technique described herein. In at least one
embodiment, a process handle may be an implementa-
tion-specific value provided to a host process when reg-
istering its context with graphics processing engine
1231(1)-1231(N) (that is, calling system software to add
a process element to a process element linked list). In at

least one embodiment, a lower 16-bits of a process han-
dle may be an offset of a process element within a proc-
ess element linked list.
[0108] FIG. 13 illustrates exemplary integrated circuits
and associated graphics processors that may be fabri-
cated using one or more IP cores, according to various
embodiments described herein. In addition to what is il-
lustrated, other logic and circuits may be included in at
least one embodiment, including additional graphics
processors/cores, peripheral interface controllers, or
general-purpose processor cores.
[0109] FIG. 13 is a block diagram illustrating an exem-
plary system on a chip integrated circuit 1300 that may
be fabricated using one or more IP cores, according to
at least one embodiment. In at least one embodiment,
integrated circuit 1300 includes one or more application
processor(s) 1305 (e.g., CPUs), at least one graphics
processor 1310, and may additionally include an image
processor 1315 and/or a video processor 1320, any of
which may be a modular IP core. In at least one embod-
iment, integrated circuit 1300 includes peripheral or bus
logic including a USB controller 1325, a UART controller
1330, an SPI/SDIO controller 1335, and an I22S/I22C
controller 1340. In at least one embodiment, integrated
circuit 1300 can include a display device 1345 coupled
to one or more of a high-definition multimedia interface
(HDMI) controller 1350 and a mobile industry processor
interface (MIPI) display interface 1355. In at least one
embodiment, storage may be provided by a flash memory
subsystem 1360 including flash memory and a flash
memory controller. In at least one embodiment, a mem-
ory interface may be provided via a memory controller
1365 for access to SDRAM or SRAM memory devices.
In at least one embodiment, some integrated circuits ad-
ditionally include an embedded security engine 1370.
[0110] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associat-
ed with one or more embodiments. In at least one em-
bodiment, inference and/or training logic 115 may be
used in integrated circuit 1300 for inferencing or predict-
ing operations based, at least in part, on weight param-
eters calculated using neural network training opera-
tions, neural network functions and/or architectures, or
neural network use cases described herein.
Embodiments presented herein can allow for a hardware-
based rekeying process that does not require significant
downtime or software modification.
[0111] FIGS. 14A-14B illustrate exemplary integrated
circuits and associated graphics processors that may be
fabricated using one or more IP cores, according to var-
ious embodiments described herein. In addition to what
is illustrated, other logic and circuits may be included in
at least one embodiment, including additional graphics
processors/cores, peripheral interface controllers, or
general-purpose processor cores.
[0112] FIGS. 14A-14B are block diagrams illustrating
exemplary graphics processors for use within an SoC,
according to embodiments described herein. FIG. 14A

31 32

EP 4 459 958 A1

18

5

10

15

20

25

30

35

40

45

50

55

illustrates an exemplary graphics processor 1410 of a
system on a chip integrated circuit that may be fabricated
using one or more IP cores, according to at least one
embodiment. FIG. 14B illustrates an additional exempla-
ry graphics processor 1440 of a system on a chip inte-
grated circuit that may be fabricated using one or more
IP cores, according to at least one embodiment. In at
least one embodiment, graphics processor 1410 of FIG.
14A is a low power graphics processor core. In at least
one embodiment, graphics processor 1440 of FIG. 14B
is a higher performance graphics processor core. In at
least one embodiment, each of graphics processors
1410, 1440 can be variants of graphics processor 1310
of FIG. 13.
[0113] In at least one embodiment, graphics processor
1410 includes a vertex processor 1405 and one or more
fragment processor(s) 1415A-1415N (e.g., 1415A,
1415B, 1415C, 1415D, through 1415N-1, and 1415N).
In at least one embodiment, graphics processor 1410
can execute different shader programs via separate log-
ic, such that vertex processor 1405 is optimized to exe-
cute operations for vertex shader programs, while one
or more fragment processor(s) 1415A-1415N execute
fragment (e.g., pixel) shading operations for fragment or
pixel shader programs. In at least one embodiment, ver-
tex processor 1405 performs a vertex processing stage
of a 3D graphics pipeline and generates primitives and
vertex data. In at least one embodiment, fragment proc-
essor(s) 1415A-1415N use primitive and vertex data gen-
erated by vertex processor 1405 to produce a framebuff-
er that is displayed on a display device. In at least one
embodiment, fragment processor(s) 1415A-1415N are
optimized to execute fragment shader programs as pro-
vided for in an OpenGL API, which may be used to per-
form similar operations as a pixel shader program as pro-
vided for in a Direct 3D API.
[0114] In at least one embodiment, graphics processor
1410 additionally includes one or more memory manage-
ment units (MMUs) 1420A-1420B, cache(s) 1425A-
1425B, and circuit interconnect(s) 1430A-1430B. In at
least one embodiment, one or more MMU(s) 1420A-
1420B provide for virtual to physical address mapping
for graphics processor 1410, including for vertex proces-
sor 1405 and/or fragment processor(s) 1415A-1415N,
which may reference vertex or image/texture data stored
in memory, in addition to vertex or image/texture data
stored in one or more cache(s) 1425A-1425B. In at least
one embodiment, one or more MMU(s) 1420A-1420B
may be synchronized with other MMUs within a system,
including one or more MMUs associated with one or more
application processor(s) 1305, image processors 1315,
and/or video processors 1320 of FIG. 13, such that each
processor 1305-1320 can participate in a shared or uni-
fied virtual memory system. In at least one embodiment,
one or more circuit interconnect(s) 1430A-1430B enable
graphics processor 1410 to interface with other IP cores
within SoC, either via an internal bus of SoC or via a
direct connection.

[0115] In at least one embodiment, graphics processor
1440 includes one or more shader core(s) 1455A-1455N
(e.g., 1455A, 1455B, 1455C, 1455D, 1455E, 1455F,
through 1455N-1, and 1455N) as shown in FIG. 14B,
which provides for a unified shader core architecture in
which a single core or type or core can execute all types
of programmable shader code, including shader program
code to implement vertex shaders, fragment shaders,
and/or compute shaders. In at least one embodiment, a
number of shader cores can vary. In at least one embod-
iment, graphics processor 1440 includes an inter-core
task manager 1445, which acts as a thread dispatcher
to dispatch execution threads to one or more shader
cores 1455A-1455N and a tiling unit 1458 to accelerate
tiling operations for tile-based rendering, in which ren-
dering operations for a scene are subdivided in image
space, for example to exploit local spatial coherence
within a scene or to optimize use of internal caches.
[0116] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associat-
ed with one or more embodiments. In at least one em-
bodiment, inference and/or training logic 115 may be
used in integrated circuit 14A and/or 14B for inferencing
or predicting operations based, at least in part, on weight
parameters calculated using neural network training op-
erations, neural network functions and/or architectures,
or neural network use cases described herein.
Embodiments presented herein can allow for a hardware-
based rekeying process that does not require significant
downtime or software modification.
[0117] FIGS. 15A-15B illustrate additional exemplary
graphics processor logic according to embodiments de-
scribed herein. FIG. 15A illustrates a graphics core 1500
that may be included within graphics processor 1310 of
FIG. 13, in at least one embodiment, and may be a unified
shader core 1455A-1455N as in FIG. 14B in at least one
embodiment. FIG. 15B illustrates a highly-parallel gen-
eral-purpose graphics processing unit ("GPGPU") 1530
suitable for deployment on a multi-chip module in at least
one embodiment.
[0118] In at least one embodiment, graphics core 1500
includes a shared instruction cache 1502, a texture unit
1518, and a cache/shared memory 1520 (e.g., including
L1, L2, L3, last level cache, or other caches) that are
common to execution resources within graphics core
1500. In at least one embodiment, graphics core 1500
can include multiple slices 1501A-1501N or a partition
for each core, and a graphics processor can include mul-
tiple instances of graphics core 1500. In at least one em-
bodiment, each slice 1501A-1501N refers to graphics
core 1500. In at least one embodiment, slices 1501A-
1501N have sub-slices, which are part of a slice 1501A-
1501N. In at least one embodiment, slices 1501A-1501N
are independent of other slices or dependent on other
slices. In at least one embodiment, slices 1501A-1501N
can include support logic including a local instruction
cache 1504A-1504N, a thread scheduler (sequencer)
1506A-1506N, a thread dispatcher 1508A-1508N, and a

33 34

EP 4 459 958 A1

19

5

10

15

20

25

30

35

40

45

50

55

set of registers 1510A-1510N. In at least one embodi-
ment, slices 1501A-1501N can include a set of additional
function units (AFUs 1512A-1512N), floating-point units
(FPUs 1514A-1514N), integer arithmetic logic units
(ALUs 1516A-1516N), address computational units
(ACUs 1513A-1513N), double-precision floating-point
units (DPFPUs 1515A-1515N), and matrix processing
units (MPUs 1517A-1517N).
[0119] In at least one embodiment, each slice 1501A-
1501N includes one or more engines for floating point
and integer vector operations and one or more engines
to accelerate convolution and matrix operations in AI,
machine learning, or large dataset workloads. In at least
one embodiment, one or more slices 1501A-1501N in-
clude one or more vector engines to compute a vector
(e.g., compute mathematical operations for vectors). In
at least one embodiment, a vector engine can compute
a vector operation in 16-bit floating point (also referred
to as "FP16"), 32-bit floating point (also referred to as
"FP32"), or 64-bit floating point (also referred to as
"FP64"). In at least one embodiment, one or more slices
1501A-1501N includes 16 vector engines that are paired
with 16 matrix math units to compute matrix/tensor op-
erations, where vector engines and math units are ex-
posed via matrix extensions. In at least one embodiment,
a slice a specified portion of processing resources of a
processing unit, e.g., 16 cores and a ray tracing unit or
8 cores, a thread scheduler, a thread dispatcher, and
additional functional units for a processor. In at least one
embodiment, graphics core 1500 includes one or more
matrix engines to compute matrix operations, e.g., when
computing tensor operations.
[0120] In at least one embodiment, one or more slices
1501A-1501N includes one or more ray tracing units to
compute ray tracing operations (e.g., 16 ray tracing units
per slice slices 1501A-1501N). In at least one embodi-
ment, a ray tracing unit computes ray traversal, triangle
intersection, bounding box intersect, or other ray tracing
operations.
[0121] In at least one embodiment, one or more slices
1501A-1501N includes a media slice that encodes, de-
codes, and/or transcodes data; scales and/or format con-
verts data; and/or performs video quality operations on
video data.
[0122] In at least one embodiment, one or more slices
1501A-1501N are linked to L2 cache and memory fabric,
link connectors, high-bandwidth memory (HBM) (e.g.,
HBM2e, HDM3) stacks, and a media engine. In at least
one embodiment, one or more slices 1501A-1501N in-
clude multiple cores (e.g., 16 cores) and multiple ray trac-
ing units (e.g., 16) paired to each core. In at least one
embodiment, one or more slices 1501A-1501N has one
or more L1 caches. In at least one embodiment, one or
more slices 1501A-1501N include one or more vector
engines; one or more instruction caches to store instruc-
tions; one or more L1 caches to cache data; one or more
shared local memories (SLMs) to store data, e.g., corre-
sponding to instructions; one or more samplers to sample

data; one or more ray tracing units to perform ray tracing
operations; one or more geometries to perform opera-
tions in geometry pipelines and/or apply geometric trans-
formations to vertices or polygons; one or more rasteriz-
ers to describe an image in vector graphics format (e.g.,
shape) and convert it into a raster image (e.g., a series
of pixels, dots, or lines, which when displayed together,
create an image that is represented by shapes) ; one or
more a Hierarchical Depth Buffer (Hiz) to buffer data;
and/or one or more pixel backends. In at least one em-
bodiment, a slice 1501A-1501N includes a memory fab-
ric, e.g., an L2 cache.
[0123] In at least one embodiment, FPUs 1514A-
1514N can perform single-precision (32-bit) and half-pre-
cision (16-bit) floating point operations, while DPFPUs
1515A-1515N perform double precision (64-bit) floating
point operations. In at least one embodiment, ALUs
1516A-1516N can perform variable precision integer op-
erations at 8-bit, 16-bit, and 32-bit precision, and can be
configured for mixed precision operations. In at least one
embodiment, MPUs 1517A-1517N can also be config-
ured for mixed precision matrix operations, including half-
precision floating point and 8-bit integer operations. In at
least one embodiment, MPUs 1517-1517N can perform
a variety of matrix operations to accelerate machine
learning application frameworks, including enabling sup-
port for accelerated general matrix to matrix multiplication
(GEMM). In at least one embodiment, AFUs 1512A-
1512N can perform additional logic operations not sup-
ported by floating-point or integer units, including trigo-
nometric operations (e.g., sine, cosiInference and/or
training logic 115 are used to perform inferencing and/or
training operations associated with one or more embod-
iments. In at least one embodiment, inference and/or
training logic 115 may be used in graphics core 1500 for
inferencing or predicting operations based, at least in
part, on weight parameters calculated using neural net-
work training operations, neural network functions and/or
architectures, or neural network use cases described
herein.
[0124] In at least one embodiment, graphics core 1500
includes an interconnect and a link fabric sublayer that
is attached to a switch and a GPU-GPU bridge that en-
ables multiple graphics processors 1500 (e.g., 8) to be
interlinked without glue to each other with load/store units
(LSUs), data transfer units, and sync semantics across
multiple graphics processors 1500. In at least one em-
bodiment, interconnects include standardized intercon-
nects (e.g., PCIe) or some combination thereof.
[0125] In at least one embodiment, graphics core 1500
includes multiple tiles. In at least one embodiment, a tile
is an individual die or one or more dies, where individual
dies can be connected with an interconnect (e.g., em-
bedded multi-die interconnect bridge (EMIB)). In at least
one embodiment, graphics core 1500 includes a compute
tile, a memory tile (e.g., where a memory tile can be ex-
clusively accessed by different tiles or different chipsets
such as a Rambo tile), substrate tile, a base tile, a HMB

35 36

EP 4 459 958 A1

20

5

10

15

20

25

30

35

40

45

50

55

tile, a link tile, and EMIB tile, where all tiles are packaged
together in graphics core 1500 as part of a GPU. In at
least one embodiment, graphics core 1500 can include
multiple tiles in a single package (also referred to as a
"multi tile package"). In at least one embodiment, a com-
pute tile can have 8 graphics cores 1500, an L1 cache;
and a base tile can have a host interface with PCIe 5.0,
HBM2e, MDFI, and EMIB, a link tile with 8 links, 8 ports
with an embedded switch. In at least one embodiment,
tiles are connected with face-to-face (F2F) chip-on-chip
bonding through fine-pitched, 36-micron, microbumps
(e.g., copper pillars). In at least one embodiment, graph-
ics core 1500 includes memory fabric, which includes
memory, and is tile that is accessible by multiple tiles. In
at least one embodiment, graphics core 1500 stores, ac-
cesses, or loads its own hardware contexts in memory,
where a hardware context is a set of data loaded from
registers before a process resumes, and where a hard-
ware context can indicate a state of hardware (e.g., state
of a GPU).
[0126] In at least one embodiment, graphics core 1500
includes serializer/deserializer (SERDES) circuitry that
converts a serial data stream to a parallel data stream,
or converts a parallel data stream to a serial data stream.
[0127] In at least one embodiment, graphics core 1500
includes a high speed coherent unified fabric (GPU to
GPU), load/store units, bulk data transfer and sync se-
mantics, and connected GPUs through an embedded
switch, where a GPU-GPU bridge is controlled by a con-
troller.
[0128] In at least one embodiment, graphics core 1500
performs an API, where said API abstracts hardware of
graphics core 1500 and access libraries with instructions
to perform math operations (e.g., math kernel library),
deep neural network operations (e.g., deep neural net-
work library), vector operations, collective communica-
tions, thread building blocks, video processing, data an-
alytics library, and/or ray tracing operations.
Embodiments presented herein can allow for a hardware-
based rekeying process that does not require significant
downtime or software modification.
[0129] FIG. 15B illustrates a general-purpose process-
ing unit (GPGPU) 1530 that can be configured to enable
highly-parallel compute operations to be performed by
an array of graphics processing units, in at least one em-
bodiment. In at least one embodiment, GPGPU 1530 can
be linked directly to other instances of GPGPU 1530 to
create a multi-GPU cluster to improve training speed for
deep neural networks. In at least one embodiment, GPG-
PU 1530 includes a host interface 1532 to enable a con-
nection with a host processor. In at least one embodi-
ment, host interface 1532 is a PCI Express interface. In
at least one embodiment, host interface 1532 can be a
vendor-specific communications interface or communi-
cations fabric. In at least one embodiment, GPGPU 1530
receives commands from a host processor and uses a
global scheduler 1534 (which may be referred to as a
thread sequencer and/or asynchronous compute engine)

to distribute execution threads associated with those
commands to a set of compute clusters 1536A-1536H.
In at least one embodiment, compute clusters 1536A-
1536H share a cache memory 1538. In at least one em-
bodiment, cache memory 1538 can serve as a higher-
level cache for cache memories within compute clusters
1536A-1536H.
[0130] In at least one embodiment, GPGPU 1530 in-
cludes memory 1544A-1544B coupled with compute
clusters 1536A-1536H via a set of memory controllers
1542A-1542B (e.g., one or more controllers for HBM2e).
In at least one embodiment, memory 1544A-1544B can
include various types of memory devices including dy-
namic random access memory (DRAM) or graphics ran-
dom access memory, such as synchronous graphics ran-
dom access memory (SGRAM), including graphics dou-
ble data rate (GDDR) memory.
[0131] In at least one embodiment, compute clusters
1536A-1536H each include a set of graphics cores, such
as graphics core 1500 of FIG. 15A, which can include
multiple types of integer and floating point logic units that
can perform computational operations at a range of pre-
cisions including suited for machine learning computa-
tions. For example, in at least one embodiment, at least
a subset of floating point units in each of compute clusters
1536A-1536H can be configured to perform 16-bit or 32-
bit floating point operations, while a different subset of
floating point units can be configured to perform 64-bit
floating point operations.
[0132] In at least one embodiment, multiple instances
of GPGPU 1530 can be configured to operate as a com-
pute cluster. In at least one embodiment, communication
used by compute clusters 1536A-1536H for synchroni-
zation and data exchange varies across embodiments.
In at least one embodiment, multiple instances of GPG-
PU 1530 communicate over host interface 1532. In at
least one embodiment, GPGPU 1530 includes an I/O hub
1539 that couples GPGPU 1530 with a GPU link 1540
that enables a direct connection to other instances of
GPGPU 1530. In at least one embodiment, GPU link
1540 is coupled to a dedicated GPU-to-GPU bridge that
enables communication and synchronization between
multiple instances of GPGPU 1530. In at least one em-
bodiment, GPU link 1540 couples with a high-speed in-
terconnect to transmit and receive data to other GPGPUs
or parallel processors. In at least one embodiment, mul-
tiple instances of GPGPU 1530 are located in separate
data processing systems and communicate via a network
device that is accessible via host interface 1532. In at
least one embodiment GPU link 1540 can be configured
to enable a connection to a host processor in addition to
or as an alternative to host interface 1532.
[0133] In at least one embodiment, GPGPU 1530 can
be configured to train neural networks. In at least one
embodiment, GPGPU 1530 can be used within an infer-
encing platform. In at least one embodiment, in which
GPGPU 1530 is used for inferencing, GPGPU 1530 may
include fewer compute clusters 1536A-1536H relative to

37 38

EP 4 459 958 A1

21

5

10

15

20

25

30

35

40

45

50

55

when GPGPU 1530 is used for training a neural network.
In at least one embodiment, memory technology associ-
ated with memory 1544A-1544B may differ between in-
ferencing and training configurations, with higher band-
width memory technologies devoted to training configu-
rations. In at least one embodiment, an inferencing con-
figuration of GPGPU 1530 can support inferencing spe-
cific instructions. For example, in at least one embodi-
ment, an inferencing configuration can provide support
for one or more 8-bit integer dot product instructions,
which may be used during inferencing operations for de-
ployed neural networks.
[0134] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associat-
ed with one or more embodiments. In at least one em-
bodiment, inference and/or training logic 115 may be
used in GPGPU 1530 for inferencing or predicting oper-
ations based, at least in part, on weight parameters cal-
culated using neural network training operations, neural
network functions and/or architectures, or neural network
use cases described herein.
Embodiments presented herein can allow for a hardware-
based rekeying process that does not require significant
downtime or software modification.
[0135] FIG. 16 is a block diagram illustrating a com-
puting system 1600 according to at least one embodi-
ment. In at least one embodiment, computing system
1600 includes a processing subsystem 1601 having one
or more processor(s) 1602 and a system memory 1604
communicating via an interconnection path that may in-
clude a memory hub 1605. In at least one embodiment,
memory hub 1605 may be a separate component within
a chipset component or may be integrated within one or
more processor(s) 1602. In at least one embodiment,
memory hub 1605 couples with an I/O subsystem 1611
via a communication link 1606. In at least one embodi-
ment, I/O subsystem 1611 includes an I/O hub 1607 that
can enable computing system 1600 to receive input from
one or more input device(s) 1608. In at least one embod-
iment, I/O hub 1607 can enable a display controller, which
may be included in one or more processor(s) 1602, to
provide outputs to one or more display device(s) 1610A.
In at least one embodiment, one or more display de-
vice(s) 1610A coupled with I/O hub 1607 can include a
local, internal, or embedded display device.
[0136] In at least one embodiment, processing subsys-
tem 1601 includes one or more parallel processor(s)
1612 coupled to memory hub 1605 via a bus or other
communication link 1613. In at least one embodiment,
communication link 1613 may use one of any number of
standards based communication link technologies or
protocols, such as, but not limited to PCI Express, or may
be a vendor-specific communications interface or com-
munications fabric. In at least one embodiment, one or
more parallel processor(s) 1612 form a computationally
focused parallel or vector processing system that can
include a large number of processing cores and/or
processing clusters, such as a many-integrated core

(MIC) processor. In at least one embodiment, some or
all of parallel processor(s) 1612 form a graphics process-
ing subsystem that can output pixels to one of one or
more display device(s) 1610A coupled via I/O Hub 1607.
In at least one embodiment, parallel processor(s) 1612
can also include a display controller and display interface
(not shown) to enable a direct connection to one or more
display device(s) 1610B. In at least one embodiment,
parallel processor(s) 1612 include one or more cores,
such as graphics cores 1500 discussed herein.
[0137] In at least one embodiment, a system storage
unit 1614 can connect to I/O hub 1607 to provide a stor-
age mechanism for computing system 1600. In at least
one embodiment, an I/O switch 1616 can be used to pro-
vide an interface mechanism to enable connections be-
tween I/O hub 1607 and other components, such as a
network adapter 1618 and/or a wireless network adapter
1619 that may be integrated into platform, and various
other devices that can be added via one or more add-in
device(s) 1620. In at least one embodiment, network
adapter 1618 can be an Ethernet adapter or another
wired network adapter. In at least one embodiment, wire-
less network adapter 1619 can include one or more of a
Wi-Fi, Bluetooth, near field communication (NFC), or oth-
er network device that includes one or more wireless ra-
dios.
[0138] In at least one embodiment, computing system
1600 can include other components not explicitly shown,
including USB or other port connections, optical storage
drives, video capture devices, and like, may also be con-
nected to I/O hub 1607. In at least one embodiment, com-
munication paths interconnecting various components in
FIG. 16 may be implemented using any suitable proto-
cols, such as PCI (Peripheral Component Interconnect)
based protocols (e.g., PCI-Express), or other bus or
point-to-point communication interfaces and/or proto-
col(s), such as NV-Link high-speed interconnect, or in-
terconnect protocols.
[0139] In at least one embodiment, parallel proces-
sor(s) 1612 incorporate circuitry optimized for graphics
and video processing, including, for example, video out-
put circuitry, and constitutes a graphics processing unit
(GPU), e.g., parallel processor(s) 1612 includes graphics
core 1500. In at least one embodiment, parallel proces-
sor(s) 1612 incorporate circuitry optimized for general
purpose processing. In at least embodiment, compo-
nents of computing system 1600 may be integrated with
one or more other system elements on a single integrated
circuit. For example, in at least one embodiment, parallel
processor(s) 1612, memory hub 1605, processor(s)
1602, and I/O hub 1607 can be integrated into a system
on chip (SoC) integrated circuit. In at least one embodi-
ment, components of computing system 1600 can be in-
tegrated into a single package to form a system in pack-
age (SIP) configuration. In at least one embodiment, at
least a portion of components of computing system 1600
can be integrated into a multi-chip module (MCM), which
can be interconnected with other multi-chip modules into

39 40

EP 4 459 958 A1

22

5

10

15

20

25

30

35

40

45

50

55

a modular computing system.
[0140] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associat-
ed with one or more embodiments. In at least one em-
bodiment, inference and/or training logic 115 may be
used in system FIG. 16 for inferencing or predicting op-
erations based, at least in part, on weight parameters
calculated using neural network training operations, neu-
ral network functions and/or architectures, or neural net-
work use cases described herein.
Embodiments presented herein can allow for a hardware-
based rekeying process that does not require significant
downtime or software modification.

PROCESSORS

[0141] FIG. 17A illustrates a parallel processor 1700
according to at least one embodiment. In at least one
embodiment, various components of parallel processor
1700 may be implemented using one or more integrated
circuit devices, such as programmable processors, ap-
plication specific integrated circuits (ASICs), or field pro-
grammable gate arrays (FPGA). In at least one embod-
iment, illustrated parallel processor 1700 is a variant of
one or more parallel processor(s) 1612 shown in FIG. 16
according to an exemplary embodiment. In at least one
embodiment, a parallel processor 1700 includes one or
more graphics cores 1500.
[0142] In at least one embodiment, parallel processor
1700 includes a parallel processing unit 1702. In at least
one embodiment, parallel processing unit 1702 includes
an I/O unit 1704 that enables communication with other
devices, including other instances of parallel processing
unit 1702. In at least one embodiment, I/O unit 1704 may
be directly connected to other devices. In at least one
embodiment, I/O unit 1704 connects with other devices
via use of a hub or switch interface, such as a memory
hub 1705. In at least one embodiment, connections be-
tween memory hub 1705 and I/O unit 1704 form a com-
munication link 1713. In at least one embodiment, I/O
unit 1704 connects with a host interface 1706 and a mem-
ory crossbar 1716, where host interface 1706 receives
commands directed to performing processing operations
and memory crossbar 1716 receives commands directed
to performing memory operations.
[0143] In at least one embodiment, when host interface
1706 receives a command buffer via I/O unit 1704, host
interface 1706 can direct work operations to perform
those commands to a front end 1708. In at least one
embodiment, front end 1708 couples with a scheduler
1710 (which may be referred to as a sequencer), which
is configured to distribute commands or other work items
to a processing cluster array 1712. In at least one em-
bodiment, scheduler 1710 ensures that processing clus-
ter array 1712 is properly configured and in a valid state
before tasks are distributed to a cluster of processing
cluster array 1712. In at least one embodiment, scheduler
1710 is implemented via firmware logic executing on a

microcontroller. In at least one embodiment, microcon-
troller implemented scheduler 1710 is configurable to
perform complex scheduling and work distribution oper-
ations at coarse and fine granularity, enabling rapid
preemption and context switching of threads executing
on processing array 1712. In at least one embodiment,
host software can prove workloads for scheduling on
processing cluster array 1712 via one of multiple graphics
processing paths. In at least one embodiment, workloads
can then be automatically distributed across processing
array cluster 1712 by scheduler 1710 logic within a mi-
crocontroller including scheduler 1710.
[0144] In at least one embodiment, processing cluster
array 1712 can include up to "N" processing clusters
(e.g., cluster 1714A, cluster 1714B, through cluster
1714N), where "N" represents a positive integer (which
may be a different integer "N" than used in other figures).
In at least one embodiment, each cluster 1714A-1714N
of processing cluster array 1712 can execute a large
number of concurrent threads. In at least one embodi-
ment, scheduler 1710 can allocate work to clusters
1714A-1714N of processing cluster array 1712 using var-
ious scheduling and/or work distribution algorithms,
which may vary depending on workload arising for each
type of program or computation. In at least one embod-
iment, scheduling can be handled dynamically by sched-
uler 1710, or can be assisted in part by compiler logic
during compilation of program logic configured for exe-
cution by processing cluster array 1712. In at least one
embodiment, different clusters 1714A-1714N of process-
ing cluster array 1712 can be allocated for processing
different types of programs or for performing different
types of computations.
[0145] In at least one embodiment, processing cluster
array 1712 can be configured to perform various types
of parallel processing operations. In at least one embod-
iment, processing cluster array 1712 is configured to per-
form general-purpose parallel compute operations. For
example, in at least one embodiment, processing cluster
array 1712 can include logic to execute processing tasks
including filtering of video and/or audio data, performing
modeling operations, including physics operations, and
performing data transformations.
[0146] In at least one embodiment, processing cluster
array 1712 is configured to perform parallel graphics
processing operations. In at least one embodiment,
processing cluster array 1712 can include additional logic
to support execution of such graphics processing oper-
ations, including but not limited to, texture sampling logic
to perform texture operations, as well as tessellation logic
and other vertex processing logic. In at least one embod-
iment, processing cluster array 1712 can be configured
to execute graphics processing related shader programs
such as, but not limited to, vertex shaders, tessellation
shaders, geometry shaders, and pixel shaders. In at least
one embodiment, parallel processing unit 1702 can
transfer data from system memory via I/O unit 1704 for
processing. In at least one embodiment, during process-

41 42

EP 4 459 958 A1

23

5

10

15

20

25

30

35

40

45

50

55

ing, transferred data can be stored to on-chip memory
(e.g., parallel processor memory 1722) during process-
ing, then written back to system memory.
[0147] In at least one embodiment, when parallel
processing unit 1702 is used to perform graphics
processing, scheduler 1710 can be configured to divide
a processing workload into approximately equal sized
tasks, to better enable distribution of graphics processing
operations to multiple clusters 1714A-1714N of process-
ing cluster array 1712. In at least one embodiment, por-
tions of processing cluster array 1712 can be configured
to perform different types of processing. For example, in
at least one embodiment, a first portion may be config-
ured to perform vertex shading and topology generation,
a second portion may be configured to perform tessella-
tion and geometry shading, and a third portion may be
configured to perform pixel shading or other screen
space operations, to produce a rendered image for dis-
play. In at least one embodiment, intermediate data pro-
duced by one or more of clusters 1714A-1714N may be
stored in buffers to allow intermediate data to be trans-
mitted between clusters 1714A-1714N for further
processing.
[0148] In at least one embodiment, processing cluster
array 1712 can receive processing tasks to be executed
via scheduler 1710, which receives commands defining
processing tasks from front end 1708. In at least one
embodiment, processing tasks can include indices of da-
ta to be processed, e.g., surface (patch) data, primitive
data, vertex data, and/or pixel data, as well as state pa-
rameters and commands defining how data is to be proc-
essed (e.g., what program is to be executed). In at least
one embodiment, scheduler 1710 may be configured to
fetch indices corresponding to tasks or may receive in-
dices from front end 1708. In at least one embodiment,
front end 1708 can be configured to ensure processing
cluster array 1712 is configured to a valid state before a
workload specified by incoming command buffers (e.g.,
batch-buffers, push buffers, etc.) is initiated.
[0149] In at least one embodiment, each of one or more
instances of parallel processing unit 1702 can couple with
a parallel processor memory 1722. In at least one em-
bodiment, parallel processor memory 1722 can be ac-
cessed via memory crossbar 1716, which can receive
memory requests from processing cluster array 1712 as
well as I/O unit 1704. In at least one embodiment, mem-
ory crossbar 1716 can access parallel processor memory
1722 via a memory interface 1718. In at least one em-
bodiment, memory interface 1718 can include multiple
partition units (e.g., partition unit 1720A, partition unit
1720B, through partition unit 1720N) that can each cou-
ple to a portion (e.g., memory unit) of parallel processor
memory 1722. In at least one embodiment, a number of
partition units 1720A-1720N is configured to be equal to
a number of memory units, such that a first partition unit
1720A has a corresponding first memory unit 1724A, a
second partition unit 1720B has a corresponding memory
unit 1724B, and an N-th partition unit 1720N has a cor-

responding N-th memory unit 1724N. In at least one em-
bodiment, a number of partition units 1720A-1720N may
not be equal to a number of memory units.
[0150] In at least one embodiment, memory units
1724A-1724N can include various types of memory de-
vices, including dynamic random access memory
(DRAM) or graphics random access memory, such as
synchronous graphics random access memory
(SGRAM), including graphics double data rate (GDDR)
memory. In at least one embodiment, memory units
1724A-1724N may also include 3D stacked memory, in-
cluding but not limited to high bandwidth memory (HBM),
HBM2e, or HDM3. In at least one embodiment, render
targets, such as frame buffers or texture maps may be
stored across memory units 1724A-1724N, allowing par-
tition units 1720A-1720N to write portions of each render
target in parallel to efficiently use available bandwidth of
parallel processor memory 1722. In at least one embod-
iment, a local instance of parallel processor memory
1722 may be excluded in favor of a unified memory de-
sign that utilizes system memory in conjunction with local
cache memory.
[0151] In at least one embodiment, any one of clusters
1714A-1714N of processing cluster array 1712 can proc-
ess data that will be written to any of memory units 1724A-
1724N within parallel processor memory 1722. In at least
one embodiment, memory crossbar 1716 can be config-
ured to transfer an output of each cluster 1714A-1714N
to any partition unit 1720A-1720N or to another cluster
1714A-1714N, which can perform additional processing
operations on an output. In at least one embodiment,
each cluster 1714A-1714N can communicate with mem-
ory interface 1718 through memory crossbar 1716 to
read from or write to various external memory devices.
In at least one embodiment, memory crossbar 1716 has
a connection to memory interface 1718 to communicate
with I/O unit 1704, as well as a connection to a local
instance of parallel processor memory 1722, enabling
processing units within different processing clusters
1714A-1714N to communicate with system memory or
other memory that is not local to parallel processing unit
1702. In at least one embodiment, memory crossbar
1716 can use virtual channels to separate traffic streams
between clusters 1714A-1714N and partition units
1720A-1720N.
[0152] In at least one embodiment, multiple instances
of parallel processing unit 1702 can be provided on a
single add-in card, or multiple add-in cards can be inter-
connected. In at least one embodiment, different instanc-
es of parallel processing unit 1702 can be configured to
interoperate even if different instances have different
numbers of processing cores, different amounts of local
parallel processor memory, and/or other configuration
differences. For example, in at least one embodiment,
some instances of parallel processing unit 1702 can in-
clude higher precision floating point units relative to other
instances. In at least one embodiment, systems incorpo-
rating one or more instances of parallel processing unit

43 44

EP 4 459 958 A1

24

5

10

15

20

25

30

35

40

45

50

55

1702 or parallel processor 1700 can be implemented in
a variety of configurations and form factors, including but
not limited to desktop, laptop, or handheld personal com-
puters, servers, workstations, game consoles, and/or
embedded systems.
[0153] FIG. 17B is a block diagram of a partition unit
1720 according to at least one embodiment. In at least
one embodiment, partition unit 1720 is an instance of one
of partition units 1720A-1720N of FIG. 17A. In at least
one embodiment, partition unit 1720 includes an L2
cache 1721, a frame buffer interface 1725, and a ROP
1726 (raster operations unit). In at least one embodiment,
L2 cache 1721 is a read/write cache that is configured
to perform load and store operations received from mem-
ory crossbar 1716 and ROP 1726. In at least one em-
bodiment, read misses and urgent write-back requests
are output by L2 cache 1721 to frame buffer interface
1725 for processing. In at least one embodiment, updates
can also be sent to a frame buffer via frame buffer inter-
face 1725 for processing. In at least one embodiment,
frame buffer interface 1725 interfaces with one of mem-
ory units in parallel processor memory, such as memory
units 1724A-1724N of FIG. 17A (e.g., within parallel proc-
essor memory 1722).
[0154] In at least one embodiment, ROP 1726 is a
processing unit that performs raster operations such as
stencil, z test, blending, etc. In at least one embodiment,
ROP 1726 then outputs processed graphics data that is
stored in graphics memory. In at least one embodiment,
ROP 1726 includes compression logic to compress depth
or color data that is written to memory and decompress
depth or color data that is read from memory. In at least
one embodiment, compression logic can be lossless
compression logic that makes use of one or more of mul-
tiple compression algorithms. In at least one embodi-
ment, a type of compression that is performed by ROP
1726 can vary based on statistical characteristics of data
to be compressed. For example, in at least one embod-
iment, delta color compression is performed on depth
and color data on a per-tile basis.
[0155] In at least one embodiment, ROP 1726 is in-
cluded within each processing cluster (e.g., cluster
1714A-1714N of FIG. 17A) instead of within partition unit
1720. In at least one embodiment, read and write re-
quests for pixel data are transmitted over memory cross-
bar 1716 instead of pixel fragment data. In at least one
embodiment, processed graphics data may be displayed
on a display device, such as one of one or more display
device(s) 1610 of FIG. 16, routed for further processing
by processor(s) 1602, or routed for further processing by
one of processing entities within parallel processor 1700
of FIG. 17A.
[0156] FIG. 17C is a block diagram of a processing
cluster 1714 within a parallel processing unit according
to at least one embodiment. In at least one embodiment,
a processing cluster is an instance of one of processing
clusters 1714A-1714N of FIG. 17A. In at least one em-
bodiment, processing cluster 1714 can be configured to

execute many threads in parallel, where "thread" refers
to an instance of a particular program executing on a
particular set of input data. In at least one embodiment,
single-instruction, multiple-data (SIMD) instruction issue
techniques are used to support parallel execution of a
large number of threads without providing multiple inde-
pendent instruction units. In at least one embodiment,
single-instruction, multiple-thread (SIMT) techniques are
used to support parallel execution of a large number of
generally synchronized threads, using a common in-
struction unit configured to issue instructions to a set of
processing engines within each one of processing clus-
ters.
[0157] In at least one embodiment, operation of
processing cluster 1714 can be controlled via a pipeline
manager 1732 that distributes processing tasks to SIMT
parallel processors. In at least one embodiment, pipeline
manager 1732 receives instructions from scheduler 1710
of FIG. 17A and manages execution of those instructions
via a graphics multiprocessor 1734 and/or a texture unit
1736. In at least one embodiment, graphics multiproces-
sor 1734 is an exemplary instance of a SIMT parallel
processor. However, in at least one embodiment, various
types of SIMT parallel processors of differing architec-
tures may be included within processing cluster 1714. In
at least one embodiment, one or more instances of graph-
ics multiprocessor 1734 can be included within a
processing cluster 1714. In at least one embodiment,
graphics multiprocessor 1734 can process data and a
data crossbar 1740 can be used to distribute processed
data to one of multiple possible destinations, including
other shader units. In at least one embodiment, pipeline
manager 1732 can facilitate distribution of processed da-
ta by specifying destinations for processed data to be
distributed via data crossbar 1740.
[0158] In at least one embodiment, each graphics mul-
tiprocessor 1734 within processing cluster 1714 can in-
clude an identical set of functional execution logic (e.g.,
arithmetic logic units, load-store units, etc.). In at least
one embodiment, functional execution logic can be con-
figured in a pipelined manner in which new instructions
can be issued before previous instructions are complete.
In at least one embodiment, functional execution logic
supports a variety of operations including integer and
floating point arithmetic, comparison operations,
Boolean operations, bit-shifting, and computation of var-
ious algebraic functions. In at least one embodiment,
same functional-unit hardware can be leveraged to per-
form different operations and any combination of func-
tional units may be present.
[0159] In at least one embodiment, instructions trans-
mitted to processing cluster 1714 constitute a thread. In
at least one embodiment, a set of threads executing
across a set of parallel processing engines is a thread
group. In at least one embodiment, a thread group exe-
cutes a common program on different input data. In at
least one embodiment, each thread within a thread group
can be assigned to a different processing engine within

45 46

EP 4 459 958 A1

25

5

10

15

20

25

30

35

40

45

50

55

a graphics multiprocessor 1734. In at least one embod-
iment, a thread group may include fewer threads than a
number of processing engines within graphics multiproc-
essor 1734. In at least one embodiment, when a thread
group includes fewer threads than a number of process-
ing engines, one or more of processing engines may be
idle during cycles in which that thread group is being proc-
essed. In at least one embodiment, a thread group may
also include more threads than a number of processing
engines within graphics multiprocessor 1734. In at least
one embodiment, when a thread group includes more
threads than number of processing engines within graph-
ics multiprocessor 1734, processing can be performed
over consecutive clock cycles. In at least one embodi-
ment, multiple thread groups can be executed concur-
rently on a graphics multiprocessor 1734.
[0160] In at least one embodiment, graphics multiproc-
essor 1734 includes an internal cache memory to perform
load and store operations. In at least one embodiment,
graphics multiprocessor 1734 can forego an internal
cache and use a cache memory (e.g., L1 cache 1748)
within processing cluster 1714. In at least one embodi-
ment, each graphics multiprocessor 1734 also has ac-
cess to L2 caches within partition units (e.g., partition
units 1720A-1720N of FIG. 17A) that are shared among
all processing clusters 1714 and may be used to transfer
data between threads. In at least one embodiment,
graphics multiprocessor 1734 may also access off-chip
global memory, which can include one or more of local
parallel processor memory and/or system memory. In at
least one embodiment, any memory external to parallel
processing unit 1702 may be used as global memory. In
at least one embodiment, processing cluster 1714 in-
cludes multiple instances of graphics multiprocessor
1734 and can share common instructions and data,
which may be stored in L1 cache 1748.
[0161] In at least one embodiment, each processing
cluster 1714 may include an MMU 1745 (memory man-
agement unit) that is configured to map virtual addresses
into physical addresses. In at least one embodiment, one
or more instances of MMU 1745 may reside within mem-
ory interface 1718 of FIG. 17A. In at least one embodi-
ment, MMU 1745 includes a set of page table entries
(PTEs) used to map a virtual address to a physical ad-
dress of a tile and optionally a cache line index. In at least
one embodiment, MMU 1745 may include address trans-
lation lookaside buffers (TLB) or caches that may reside
within graphics multiprocessor 1734 or L1 1748 cache
or processing cluster 1714. In at least one embodiment,
a physical address is processed to distribute surface data
access locally to allow for efficient request interleaving
among partition units. In at least one embodiment, a
cache line index may be used to determine whether a
request for a cache line is a hit or miss.
[0162] In at least one embodiment, a processing clus-
ter 1714 may be configured such that each graphics mul-
tiprocessor 1734 is coupled to a texture unit 1736 for
performing texture mapping operations, e.g., determin-

ing texture sample positions, reading texture data, and
filtering texture data. In at least one embodiment, texture
data is read from an internal texture L1 cache (not shown)
or from an L1 cache within graphics multiprocessor 1734
and is fetched from an L2 cache, local parallel processor
memory, or system memory, as needed. In at least one
embodiment, each graphics multiprocessor 1734 outputs
processed tasks to data crossbar 1740 to provide proc-
essed task to another processing cluster 1714 for further
processing or to store processed task in an L2 cache,
local parallel processor memory, or system memory via
memory crossbar 1716. In at least one embodiment, a
preROP 1742 (pre-raster operations unit) is configured
to receive data from graphics multiprocessor 1734, and
direct data to ROP units, which may be located with par-
tition units as described herein (e.g., partition units
1720A-1720N of FIG. 17A). In at least one embodiment,
preROP 1742 unit can perform optimizations for color
blending, organizing pixel color data, and performing ad-
dress translations.
[0163] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associat-
ed with one or more embodiments. In at least one em-
bodiment, inference and/or training logic 115 may be
used in graphics processing cluster 1714 for inferencing
or predicting operations based, at least in part, on weight
parameters calculated using neural network training op-
erations, neural network functions and/or architectures,
or neural network use cases described herein.
Embodiments presented herein can allow for a hardware-
based rekeying process that does not require significant
downtime or software modification.
[0164] FIG. 17D shows a graphics multiprocessor
1734 according to at least one embodiment. In at least
one embodiment, graphics multiprocessor 1734 couples
with pipeline manager 1732 of processing cluster 1714.
In at least one embodiment, graphics multiprocessor
1734 has an execution pipeline including but not limited
to an instruction cache 1752, an instruction unit 1754, an
address mapping unit 1756, a register file 1758, one or
more general purpose graphics processing unit (GPG-
PU) cores 1762, and one or more load/store units 1766,
where one or more load/store units 1766 can perform
load/store operations to load/store instructions corre-
sponding to performing an operation. In at least one em-
bodiment, GPGPU cores 1762 and load/store units 1766
are coupled with cache memory 1772 and shared mem-
ory 1770 via a memory and cache interconnect 1768.
[0165] In at least one embodiment, instruction cache
1752 receives a stream of instructions to execute from
pipeline manager 1732. In at least one embodiment, in-
structions are cached in instruction cache 1752 and dis-
patched for execution by an instruction unit 1754. In at
least one embodiment, instruction unit 1754 can dispatch
instructions as thread groups (e.g., warps, wavefronts,
waves), with each thread of thread group assigned to a
different execution unit within GPGPU cores 1762. In at
least one embodiment, an instruction can access any of

47 48

EP 4 459 958 A1

26

5

10

15

20

25

30

35

40

45

50

55

a local, shared, or global address space by specifying an
address within a unified address space. In at least one
embodiment, address mapping unit 1756 can be used to
translate addresses in a unified address space into a
distinct memory address that can be accessed by
load/store units 1766.
[0166] In at least one embodiment, register file 1758
provides a set of registers for functional units of graphics
multiprocessor 1734. In at least one embodiment, regis-
ter file 1758 provides temporary storage for operands
connected to data paths of functional units (e.g., GPGPU
cores 1762, load/store units 1766) of graphics multiproc-
essor 1734. In at least one embodiment, register file 1758
is divided between each of functional units such that each
functional unit is allocated a dedicated portion of register
file 1758. In at least one embodiment, register file 1758
is divided between different warps (which may be re-
ferred to as wavefronts and/or waves) being executed
by graphics multiprocessor 1734.
[0167] In at least one embodiment, GPGPU cores
1762 can each include floating point units (FPUs) and/or
integer arithmetic logic units (ALUs) that are used to ex-
ecute instructions of graphics multiprocessor 1734. In at
least one embodiment, GPGPU cores 1762 can be sim-
ilar in architecture or can differ in architecture. In at least
one embodiment, a first portion of GPGPU cores 1762
include a single precision FPU and an integer ALU while
a second portion of GPGPU cores include a double pre-
cision FPU. In at least one embodiment, FPUs can im-
plement IEEE 754-2008 standard floating point arithme-
tic or enable variable precision floating point arithmetic.
In at least one embodiment, graphics multiprocessor
1734 can additionally include one or more fixed function
or special function units to perform specific functions
such as copy rectangle or pixel blending operations. In
at least one embodiment, one or more of GPGPU cores
1762 can also include fixed or special function logic.
[0168] In at least one embodiment, GPGPU cores
1762 include SIMD logic capable of performing a single
instruction on multiple sets of data. In at least one em-
bodiment, GPGPU cores 1762 can physically execute
SIMD4, SIMD8, and SIMD16 instructions and logically
execute SIMD1, SIMD2, and SIMD32 instructions. In at
least one embodiment, SIMD instructions for GPGPU
cores can be generated at compile time by a shader com-
piler or automatically generated when executing pro-
grams written and compiled for single program multiple
data (SPMD) or SIMT architectures. In at least one em-
bodiment, multiple threads of a program configured for
an SIMT execution model can executed via a single SIMD
instruction. For example, in at least one embodiment,
eight SIMT threads that perform same or similar opera-
tions can be executed in parallel via a single SIMD8 logic
unit.
[0169] In at least one embodiment, memory and cache
interconnect 1768 is an interconnect network that con-
nects each functional unit of graphics multiprocessor
1734 to register file 1758 and to shared memory 1770.

In at least one embodiment, memory and cache inter-
connect 1768 is a crossbar interconnect that allows
load/store unit 1766 to implement load and store opera-
tions between shared memory 1770 and register file
1758. In at least one embodiment, register file 1758 can
operate at a same frequency as GPGPU cores 1762,
thus data transfer between GPGPU cores 1762 and reg-
ister file 1758 can have very low latency. In at least one
embodiment, shared memory 1770 can be used to ena-
ble communication between threads that execute on
functional units within graphics multiprocessor 1734. In
at least one embodiment, cache memory 1772 can be
used as a data cache for example, to cache texture data
communicated between functional units and texture unit
1736. In at least one embodiment, shared memory 1770
can also be used as a program managed cache. In at
least one embodiment, threads executing on GPGPU
cores 1762 can programmatically store data within
shared memory in addition to automatically cached data
that is stored within cache memory 1772.
[0170] In at least one embodiment, a parallel processor
or GPGPU as described herein is communicatively cou-
pled to host/processor cores to accelerate graphics op-
erations, machine-learning operations, pattern analysis
operations, and various general purpose GPU (GPGPU)
functions. In at least one embodiment, a GPU may be
communicatively coupled to host processor/cores over
a bus or other interconnect (e.g., a high-speed intercon-
nect such as PCIe or NVLink). In at least one embodi-
ment, a GPU may be integrated on a package or chip as
cores and communicatively coupled to cores over an in-
ternal processor bus/interconnect internal to a package
or chip. In at least one embodiment, regardless a manner
in which a GPU is connected, processor cores may allo-
cate work to such GPU in a form of sequences of com-
mands/instructions contained in a work descriptor. In at
least one embodiment, that GPU then uses dedicated
circuitry/logic for efficiently processing these com-
mands/instructions.
[0171] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associat-
ed with one or more embodiments. In at least one em-
bodiment, inference and/or training logic 115 may be
used in graphics multiprocessor 1734 for inferencing or
predicting operations based, at least in part, on weight
parameters calculated using neural network training op-
erations, neural network functions and/or architectures,
or neural network use cases described herein.
Embodiments presented herein can allow for a hardware-
based rekeying process that does not require significant
downtime or software modification.
[0172] FIG. 18 illustrates a multi-GPU computing sys-
tem 1800, according to at least one embodiment. In at
least one embodiment, multi-GPU computing system
1800 can include a processor 1802 coupled to multiple
general purpose graphics processing units (GPGPUs)
1806A-D via a host interface switch 1804. In at least one
embodiment, host interface switch 1804 is a PCI express

49 50

EP 4 459 958 A1

27

5

10

15

20

25

30

35

40

45

50

55

switch device that couples processor 1802 to a PCI ex-
press bus over which processor 1802 can communicate
with GPGPUs 1806A-D. In at least one embodiment,
GPGPUs 1806A-D can interconnect via a set of high-
speed point-to-point GPU-to-GPU links 1816. In at least
one embodiment, GPU-to-GPU links 1816 connect to
each of GPGPUs 1806A-D via a dedicated GPU link. In
at least one embodiment, P2P GPU links 1816 enable
direct communication between each of GPGPUs 1806A-
D without requiring communication over host interface
bus 1804 to which processor 1802 is connected. In at
least one embodiment, with GPU-to-GPU traffic directed
to P2P GPU links 1816, host interface bus 1804 remains
available for system memory access or to communicate
with other instances of multi-GPU computing system
1800, for example, via one or more network devices.
While in at least one embodiment GPGPUs 1806A-D
connect to processor 1802 via host interface switch 1804,
in at least one embodiment processor 1802 includes di-
rect support for P2P GPU links 1816 and can connect
directly to GPGPUs 1806A-D.
[0173] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associat-
ed with one or more embodiments. In at least one em-
bodiment, inference and/or training logic 115 may be
used in multi-GPU computing system 1800 for inferenc-
ing or predicting operations based, at least in part, on
weight parameters calculated using neural network train-
ing operations, neural network functions and/or architec-
tures, or neural network use cases described herein. In
at least one embodiment, multi-GPU computing system
1800 includes one or more graphics cores 1500.
Embodiments presented herein can allow for a hardware-
based rekeying process that does not require significant
downtime or software modification.
[0174] FIG. 19 is a block diagram of a graphics proc-
essor 1900, according to at least one embodiment. In at
least one embodiment, graphics processor 1900 in-
cludes a ring interconnect 1902, a pipeline front-end
1904, a media engine 1937, and graphics cores 1980A-
1980N. In at least one embodiment, ring interconnect
1902 couples graphics processor 1900 to other process-
ing units, including other graphics processors or one or
more general-purpose processor cores. In at least one
embodiment, graphics processor 1900 is one of many
processors integrated within a multi-core processing sys-
tem. In at least one embodiment, graphics processor
1900 includes graphics core 1500.
[0175] In at least one embodiment, graphics processor
1900 receives batches of commands via ring intercon-
nect 1902. In at least one embodiment, incoming com-
mands are interpreted by a command streamer 1903 in
pipeline front-end 1904. In at least one embodiment,
graphics processor 1900 includes scalable execution
logic to perform 3D geometry processing and media
processing via graphics core(s) 1980A-1980N. In at least
one embodiment, for 3D geometry processing com-
mands, command streamer 1903 supplies commands to

geometry pipeline 1936. In at least one embodiment, for
at least some media processing commands, command
streamer 1903 supplies commands to a video front end
1934, which couples with media engine 1937. In at least
one embodiment, media engine 1937 includes a Video
Quality Engine (VQE) 1930 for video and image post-
processing and a multi-format encode/decode (MFX)
1933 engine to provide hardware-accelerated media da-
ta encoding and decoding. In at least one embodiment,
geometry pipeline 1936 and media engine 1937 each
generate execution threads for thread execution resourc-
es provided by at least one graphics core 1980.
[0176] In at least one embodiment, graphics processor
1900 includes scalable thread execution resources fea-
turing graphics cores 1980A-1980N (which can be mod-
ular and are sometimes referred to as core slices), each
having multiple sub-cores 1950A-50N, 1960A-1960N
(sometimes referred to as core sub-slices). In at least
one embodiment, graphics processor 1900 can have any
number of graphics cores 1980A. In at least one embod-
iment, graphics processor 1900 includes a graphics core
1980A having at least a first sub-core 1950A and a sec-
ond sub-core 1960A. In at least one embodiment, graph-
ics processor 1900 is a low power processor with a single
sub-core (e.g., 1950A). In at least one embodiment,
graphics processor 1900 includes multiple graphics
cores 1980A-1980N, each including a set of first sub-
cores 1950A-1950N and a set of second sub-cores
1960A-1960N. In at least one embodiment, each sub-
core in first sub-cores 1950A-1950N includes at least a
first set of execution units 1952A-1952N and media/tex-
ture samplers 1954A-1954N. In at least one embodiment,
each sub-core in second sub-cores 1960A-1960N in-
cludes at least a second set of execution units 1962A-
1962N and samplers 1964A-1964N. In at least one em-
bodiment, each sub-core 1950A-1950N, 1960A-1960N
shares a set of shared resources 1970A-1970N. In at
least one embodiment, shared resources include shared
cache memory and pixel operation logic. In at least one
embodiment, graphics processor 1900 includes
load/store units in pipeline front-end 1904.
[0177] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associat-
ed with one or more embodiments. In at least one em-
bodiment, inference and/or training logic 115 may be
used in graphics processor 1900 for inferencing or pre-
dicting operations based, at least in part, on weight pa-
rameters calculated using neural network training oper-
ations, neural network functions and/or architectures, or
neural network use cases described herein.
Embodiments presented herein can allow for a hardware-
based rekeying process that does not require significant
downtime or software modification.
[0178] FIG. 20 is a block diagram of a processing sys-
tem, according to at least one embodiment. In at least
one embodiment, system 2000 includes one or more
processors 2002 and one or more graphics processors
2008, and may be a single processor desktop system, a

51 52

EP 4 459 958 A1

28

5

10

15

20

25

30

35

40

45

50

55

multiprocessor workstation system, or a server system
having a large number of processors 2002 or processor
cores 2007. In at least one embodiment, system 2000 is
a processing platform incorporated within a system-on-
a-chip (SoC) integrated circuit for use in mobile, hand-
held, or embedded devices. In at least one embodiment,
one or more graphics processors 2008 include one or
more graphics cores 1500.
[0179] In at least one embodiment, system 2000 can
include, or be incorporated within a server-based gaming
platform, a game console, including a game and media
console, a mobile gaming console, a handheld game
console, or an online game console. In at least one em-
bodiment, system 2000 is a mobile phone, a smart phone,
a tablet computing device or a mobile Internet device. In
at least one embodiment, processing system 2000 can
also include, couple with, or be integrated within a wear-
able device, such as a smart watch wearable device, a
smart eyewear device, an augmented reality device, or
a virtual reality device. In at least one embodiment,
processing system 2000 is a television or set top box
device having one or more processors 2002 and a graph-
ical interface generated by one or more graphics proc-
essors 2008.
[0180] In at least one embodiment, one or more proc-
essors 2002 each include one or more processor cores
2007 to process instructions which, when executed, per-
form operations for system and user software. In at least
one embodiment, each of one or more processor cores
2007 is configured to process a specific instruction se-
quence 2009. In at least one embodiment, instruction
sequence 2009 may facilitate Complex Instruction Set
Computing (CISC), Reduced Instruction Set Computing
(RISC), or computing via a Very Long Instruction Word
(VLIW). In at least one embodiment, processor cores
2007 may each process a different instruction sequence
2009, which may include instructions to facilitate emula-
tion of other instruction sequences. In at least one em-
bodiment, processor core 2007 may also include other
processing devices, such a Digital Signal Processor
(DSP).
[0181] In at least one embodiment, processor 2002 in-
cludes a cache memory 2004. In at least one embodi-
ment, processor 2002 can have a single internal cache
or multiple levels of internal cache. In at least one em-
bodiment, cache memory is shared among various com-
ponents of processor 2002. In at least one embodiment,
processor 2002 also uses an external cache (e.g., a Lev-
el-3 (L3) cache or Last Level Cache (LLC)) (not shown),
which may be shared among processor cores 2007 using
known cache coherency techniques. In at least one em-
bodiment, a register file 2006 is additionally included in
processor 2002, which may include different types of reg-
isters for storing different types of data (e.g., integer reg-
isters, floating point registers, status registers, and an
instruction pointer register). In at least one embodiment,
register file 2006 may include general-purpose registers
or other registers.

[0182] In at least one embodiment, one or more proc-
essor(s) 2002 are coupled with one or more interface
bus(es) 2010 to transmit communication signals such as
address, data, or control signals between processor 2002
and other components in system 2000. In at least one
embodiment, interface bus 2010 can be a processor bus,
such as a version of a Direct Media Interface (DMI) bus.
In at least one embodiment, interface bus 2010 is not
limited to a DMI bus, and may include one or more Pe-
ripheral Component Interconnect buses (e.g., PCI, PCI
Express), memory busses, or other types of interface
busses. In at least one embodiment processor(s) 2002
include an integrated memory controller 2016 and a plat-
form controller hub 2030. In at least one embodiment,
memory controller 2016 facilitates communication be-
tween a memory device and other components of system
2000, while platform controller hub (PCH) 2030 provides
connections to I/O devices via a local I/O bus.
[0183] In at least one embodiment, a memory device
2020 can be a dynamic random access memory (DRAM)
device, a static random access memory (SRAM) device,
flash memory device, phase-change memory device, or
some other memory device having suitable performance
to serve as process memory. In at least one embodiment,
memory device 2020 can operate as system memory for
system 2000, to store data 2022 and instructions 2021
for use when one or more processors 2002 executes an
application or process. In at least one embodiment, mem-
ory controller 2016 also couples with an optional external
graphics processor 2012, which may communicate with
one or more graphics processors 2008 in processors
2002 to perform graphics and media operations. In at
least one embodiment, a display device 2011 can con-
nect to processor(s) 2002. In at least one embodiment,
display device 2011 can include one or more of an inter-
nal display device, as in a mobile electronic device or a
laptop device, or an external display device attached via
a display interface (e.g., DisplayPort, etc.). In at least one
embodiment, display device 2011 can include a head
mounted display (HMD) such as a stereoscopic display
device for use in virtual reality (VR) applications or aug-
mented reality (AR) applications.
[0184] In at least one embodiment, platform controller
hub 2030 enables peripherals to connect to memory de-
vice 2020 and processor 2002 via a high-speed I/O bus.
In at least one embodiment, I/O peripherals include, but
are not limited to, an audio controller 2046, a network
controller 2034, a firmware interface 2028, a wireless
transceiver 2026, touch sensors 2025, a data storage
device 2024 (e.g., hard disk drive, flash memory, etc.).
In at least one embodiment, data storage device 2024
can connect via a storage interface (e.g., SATA) or via a
peripheral bus, such as a Peripheral Component Inter-
connect bus (e.g., PCI, PCI Express). In at least one em-
bodiment, touch sensors 2025 can include touch screen
sensors, pressure sensors, or fingerprint sensors. In at
least one embodiment, wireless transceiver 2026 can be
a Wi-Fi transceiver, a Bluetooth transceiver, or a mobile

53 54

EP 4 459 958 A1

29

5

10

15

20

25

30

35

40

45

50

55

network transceiver such as a 3G, 4G, or Long Term
Evolution (LTE) transceiver. In at least one embodiment,
firmware interface 2028 enables communication with
system firmware, and can be, for example, a unified ex-
tensible firmware interface (UEFI). In at least one em-
bodiment, network controller 2034 can enable a network
connection to a wired network. In at least one embodi-
ment, a high-performance network controller (not shown)
couples with interface bus 2010. In at least one embod-
iment, audio controller 2046 is a multi-channel high def-
inition audio controller. In at least one embodiment, sys-
tem 2000 includes an optional legacy I/O controller 2040
for coupling legacy (e.g., Personal System 2 (PS/2)) de-
vices to system 2000. In at least one embodiment, plat-
form controller hub 2030 can also connect to one or more
Universal Serial Bus (USB) controllers 2042 connect in-
put devices, such as keyboard and mouse 2043 combi-
nations, a camera 2044, or other USB input devices.
[0185] In at least one embodiment, an instance of
memory controller 2016 and platform controller hub 2030
may be integrated into a discreet external graphics proc-
essor, such as external graphics processor 2012. In at
least one embodiment, platform controller hub 2030
and/or memory controller 2016 may be external to one
or more processor(s) 2002. For example, in at least one
embodiment, system 2000 can include an external mem-
ory controller 2016 and platform controller hub 2030,
which may be configured as a memory controller hub and
peripheral controller hub within a system chipset that is
in communication with processor(s) 2002.
[0186] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associat-
ed with one or more embodiments. In at least one em-
bodiment portions or all of inference and/or training logic
115 may be incorporated into graphics processor 2008.
For example, in at least one embodiment, training and/or
inferencing techniques described herein may use one or
more of ALUs embodied in a 3D pipeline. In at least one
embodiment, weight parameters may be stored in on-
chip or off-chip memory and/or registers (shown or not
shown) that configure ALUs of graphics processor 2008
to perform one or more machine learning algorithms,
neural network architectures, use cases, or training tech-
niques described herein.
Embodiments presented herein can allow for a hardware-
based rekeying process that does not require significant
downtime or software modification.
[0187] FIG. 21 is a block diagram of a processor 2100
having one or more processor cores 2102A-2102N, an
integrated memory controller 2114, and an integrated
graphics processor 2108, according to at least one em-
bodiment. In at least one embodiment, processor 2100
can include additional cores up to and including addition-
al core 2102N represented by dashed lined boxes. In at
least one embodiment, each of processor cores 2102A-
2102N includes one or more internal cache units 2104A-
2104N. In at least one embodiment, each processor core
also has access to one or more shared cached units

2106. In at least one embodiment, graphics processor
2108 includes one or more graphics cores 1500.
[0188] In at least one embodiment, internal cache units
2104A-2104N and shared cache units 2106 represent a
cache memory hierarchy within processor 2100. In at
least one embodiment, cache memory units 2104A-
2104N may include at least one level of instruction and
data cache within each processor core and one or more
levels of shared mid-level cache, such as a Level 2 (L2),
Level 3 (L3), Level 4 (L4), or other levels of cache, where
a highest level of cache before external memory is clas-
sified as an LLC. In at least one embodiment, cache co-
herency logic maintains coherency between various
cache units 2106 and 2104A-2104N.
[0189] In at least one embodiment, processor 2100
may also include a set of one or more bus controller units
2116 and a system agent core 2110. In at least one em-
bodiment, bus controller units 2116 manage a set of pe-
ripheral buses, such as one or more PCI or PCI express
busses. In at least one embodiment, system agent core
2110 provides management functionality for various
processor components. In at least one embodiment, sys-
tem agent core 2110 includes one or more integrated
memory controllers 2114 to manage access to various
external memory devices (not shown).
[0190] In at least one embodiment, one or more of proc-
essor cores 2102A-2102N include support for simulta-
neous multi-threading. In at least one embodiment, sys-
tem agent core 2110 includes components for coordinat-
ing and operating cores 2102A-2102N during multi-
threaded processing. In at least one embodiment, system
agent core 2110 may additionally include a power control
unit (PCU), which includes logic and components to reg-
ulate one or more power states of processor cores
2102A-2102N and graphics processor 2108.
[0191] In at least one embodiment, processor 2100 ad-
ditionally includes graphics processor 2108 to execute
graphics processing operations. In at least one embod-
iment, graphics processor 2108 couples with shared
cache units 2106, and system agent core 2110, including
one or more integrated memory controllers 2114. In at
least one embodiment, system agent core 2110 also in-
cludes a display controller 2111 to drive graphics proc-
essor output to one or more coupled displays. In at least
one embodiment, display controller 2111 may also be a
separate module coupled with graphics processor 2108
via at least one interconnect, or may be integrated within
graphics processor 2108.
[0192] In at least one embodiment, a ring-based inter-
connect unit 2112 is used to couple internal components
of processor 2100. In at least one embodiment, an alter-
native interconnect unit may be used, such as a point-
to-point interconnect, a switched interconnect, or other
techniques. In at least one embodiment, graphics proc-
essor 2108 couples with ring interconnect 2112 via an
I/O link 2113.
[0193] In at least one embodiment, I/O link 2113 rep-
resents at least one of multiple varieties of I/O intercon-

55 56

EP 4 459 958 A1

30

5

10

15

20

25

30

35

40

45

50

55

nects, including an on package I/O interconnect which
facilitates communication between various processor
components and a high-performance embedded mem-
ory module 2118, such as an eDRAM module. In at least
one embodiment, each of processor cores 2102A-2102N
and graphics processor 2108 use embedded memory
module 2118 as a shared Last Level Cache.
[0194] In at least one embodiment, processor cores
2102A-2102N are homogeneous cores executing a com-
mon instruction set architecture. In at least one embod-
iment, processor cores 2102A-2102N are heterogene-
ous in terms of instruction set architecture (ISA), where
one or more of processor cores 2102A-2102N execute
a common instruction set, while one or more other cores
of processor cores 2102A-2102N executes a subset of
a common instruction set or a different instruction set. In
at least one embodiment, processor cores 2102A-2102N
are heterogeneous in terms of microarchitecture, where
one or more cores having a relatively higher power con-
sumption couple with one or more power cores having a
lower power consumption. In at least one embodiment,
processor 2100 can be implemented on one or more
chips or as an SoC integrated circuit.
[0195] Inference and/or training logic 115 are used to
perform inferencing and/or training operations associat-
ed with one or more embodiments. In at least one em-
bodiment portions or all of inference and/or training logic
115 may be incorporated into graphics processor 2108.
For example, in at least one embodiment, training and/or
inferencing techniques described herein may use one or
more of ALUs embodied in a 3D pipeline, graphics core(s)
2102, shared function logic, or other logic in FIG. 21. In
at least one embodiment, weight parameters may be
stored in on-chip or off-chip memory and/or registers
(shown or not shown) that configure ALUs of processor
2100 to perform one or more machine learning algo-
rithms, neural network architectures, use cases, or train-
ing techniques described herein.
[0196] At least one embodiment of the disclosure can
be described in view of the following clauses:

1. A computer-implemented method, comprising:

receiving an instruction to establish a session-
based remote direct memory access (SRDMA)
connection;
executing a handshake with a recipient for the
SRDMA connection;
creating a SRDMA session group associated
with queue pair (QP);
creating two or more SRDMA sessions for the
SRDMA session group;
determining, for each of the two or more SRDMA
sessions, weights associated with congestion of
the two or more SRDMA sessions;
receiving, from the QP, a packet for transmission
over the SDRMA connection;
selecting, based at least in part on the respective

weights, a selected SRDMA session from the
two or more SRDMA sessions; and
causing the packet to be transmitted using the
selected SRDMA session.

2. The computer-implemented method of clause 1,
wherein each of the two or more SRDMA sessions
has a unique 5-tuple.
3. The computer-implemented method of clause 2,
further comprising:

hashing respective 5-tuples of the two or more
SRDMA sessions; and
applying the respective weights to the hashed
5-tuples.

4. The computer-implemented method of clause 1,
further comprising:

identifying a traffic class in a header of the pack-
et; and
determining the traffic class corresponds to an
adaptive routing class.

5. The computer-implemented method of clause 4,
wherein a base transport header (BTH) of the packet
is unrecognized.
6. The computer-implemented method of clause 4,
wherein the header is an IP type of service (ToS)
header.
7. The computer-implemented method of clause 1,
further comprising:

determining the respective weights for each
SRDMA session exceed a threshold; and
establishing a new SRDMA session associated
with the SRDMA session group.

8. A system, comprising:
one or more processing units to:

determine respective congestion levels for a plu-
rality of session-based remote direct memory
access (SDRMA) sessions of an SRDMA ses-
sion group having a common destination queue
pair (QP);
determine, based at least in part on the respec-
tive congestion levels, respective weights for the
plurality of SRDMA sessions;
receive a packet for transmissions to the com-
mon destination QP;
select, from the plurality of SRDMA sessions, a
selected SRDMA session based, in part, on the
respective weights; and
cause the packet to be transmitted using the se-
lected SRDMA session.

9. The system of clause 8, wherein the one or more

57 58

EP 4 459 958 A1

31

5

10

15

20

25

30

35

40

45

50

55

processing units are further to:

determine a threshold quantity of congestion
levels exceeds a congestion threshold; and
establish a new SRDMA session within the
SRDMA session group.

10. The system of clause 8, wherein the one or more
processing units are further to:

determine a threshold quantity of congestion
levels is below a congestion threshold;
determine a cost for the plurality of SRDMA ses-
sions;
determine the cost exceeds a cost threshold;
and
close one SRDMA sessions of the plurality of
SRDMA sessions.

11. The system of clause 8, wherein the one or more
processing units are further to:
verify a destination QP of the packet correspond to
the common destination QP.
12. The system of clause 8, wherein each SRDMA
sessions has a unique 5-tuple.
13. The system of clause 8, wherein the one or more
processing units are further to:

identify a traffic class in a header of the packet;
and
determine the traffic class corresponds to an
adaptive routing class.

14. The system of clause 13, wherein the header is
an IP type of service (ToS) header.
15. A system, comprising:
one or more processors to select a session-based
remote direct memory access (SRDMA) session
from a plurality of SRDMA sessions associated with
a session group and a queue pair (QP) based, at
least, on a weighted hash of the SRDMA session
corresponding to a congestion level.
16. The system of clause 15, wherein the one or
more processors further to:
add a new SRDMA session to the SRDMA session
group when respective congestion levels for the plu-
rality of SRDMA sessions exceed a congestion
threshold.
17. The system of clause 15, wherein each SRDMA
sessions has a unique 5-tuple.
18. The system of clause 15, wherein the one or
more processors further:
remove an existing SRDMA session from the SRD-
MA session group when respective congestion lev-
els for the plurality of SRDMA sessions are below a
congestion threshold and when a cost of the plurality
of SRMA sessions exceeds a cost threshold.
19. The system of clause 15, wherein a second QP

is associated with the session group.
20. The system of clause 15, wherein the system is
comprised in at least one of:

a system for performing simulation operations;
a system for performing simulation operations
to test or validate autonomous machine appli-
cations;
a system for rendering graphical output;
a system for performing deep learning opera-
tions;
a system implemented using an edge device;
a system for generating or presenting virtual re-
ality (VR) content;
a system for generating or presenting augment-
ed reality (AR) content;
a system for generating or presenting mixed re-
ality (MR) content;
a system incorporating one or more Virtual Ma-
chines (VMs);
a system implemented at least partially in a data
center;
a system for performing hardware testing using
simulation;
a system for synthetic data generation;
a collaborative content creation platform for 3D
assets; or
a system implemented at least partially using
cloud computing resources.

[0197] In at least one embodiment, a single semicon-
ductor platform may refer to a sole unitary semiconduc-
tor-based integrated circuit or chip. In at least one em-
bodiment, multi-chip modules may be used with in-
creased connectivity which simulate on-chip operation,
and make substantial improvements over utilizing a con-
ventional central processing unit ("CPU") and bus imple-
mentation. In at least one embodiment, various modules
may also be situated separately or in various combina-
tions of semiconductor platforms per desires of user.
[0198] In at least one embodiment, referring back to
FIG. 10, computer programs in form of machine-readable
executable code or computer control logic algorithms are
stored in main memory 1004 and/or secondary storage.
Computer programs, if executed by one or more proces-
sors, enable system 1000 to perform various functions
in accordance with at least one embodiment. In at least
one embodiment, memory 1004, storage, and/or any oth-
er storage are possible examples of computer-readable
media. In at least one embodiment, secondary storage
may refer to any suitable storage device or system such
as a hard disk drive and/or a removable storage drive,
representing a floppy disk drive, a magnetic tape drive,
a compact disk drive, digital versatile disk ("DVD") drive,
recording device, universal serial bus ("USB") flash mem-
ory, etc. In at least one embodiment, architecture and/or
functionality of various previous figures are implemented
in context of CPU 1002, parallel processing system 1012,

59 60

EP 4 459 958 A1

32

5

10

15

20

25

30

35

40

45

50

55

an integrated circuit capable of at least a portion of ca-
pabilities of both CPU 1002, parallel processing system
1012, a chipset (e.g., a group of integrated circuits de-
signed to work and sold as a unit for performing related
functions, etc.), and/or any suitable combination of inte-
grated circuit(s).
[0199] In at least one embodiment, architecture and/or
functionality of various previous figures are implemented
in context of a general computer system, a circuit board
system, a game console system dedicated for entertain-
ment purposes, an application-specific system, and
more. In at least one embodiment, computer system
1000 may take form of a desktop computer, a laptop com-
puter, a tablet computer, servers, supercomputers, a
smart-phone (e.g., a wireless, hand-held device), per-
sonal digital assistant ("PDA"), a digital camera, a vehi-
cle, a head mounted display, a hand-held electronic de-
vice, a mobile phone device, a television, workstation,
game consoles, embedded system, and/or any other
type of logic.
[0200] In at least one embodiment, parallel processing
system 1012 includes, without limitation, a plurality of
parallel processing units ("PPUs") 1014 and associated
memories 1016. In at least one embodiment, PPUs 1014
are connected to a host processor or other peripheral
devices via an interconnect 1018 and a switch 1020 or
multiplexer. In at least one embodiment, parallel process-
ing system 1012 distributes computational tasks across
PPUs 1014 which can be parallelizable - for example, as
part of distribution of computational tasks across multiple
graphics processing unit ("GPU") thread blocks. In at
least one embodiment, memory is shared and accessible
(e.g., for read and/or write access) across some or all of
PPUs 1014, although such shared memory may incur
performance penalties relative to use of local memory
and registers resident to a PPU 1014. In at least one
embodiment, operation of PPUs 1014 is synchronized
through use of a command such as __syncthreads(),
wherein all threads in a block (e.g., executed across mul-
tiple PPUs 1014) to reach a certain point of execution of
code before proceeding.
[0201] In at least one embodiment, one or more tech-
niques described herein utilize a oneAPI programming
model. In at least one embodiment, a oneAPI program-
ming model refers to a programming model for interacting
with various compute accelerator architectures. In at
least one embodiment, oneAPI refers to an application
programming interface (API) designed to interact with
various compute accelerator architectures. In at least one
embodiment, a oneAPI programming model utilizes a
DPC++ programming language. In at least one embod-
iment, a DPC++ programming language refers to a high-
level language for data parallel programming productiv-
ity. In at least one embodiment, a DPC++ programming
language is based at least in part on C and/or C++ pro-
gramming languages. In at least one embodiment, a
oneAPI programming model is a programming model
such as those developed by Intel Corporation of Santa

Clara, CA.
[0202] In at least one embodiment, oneAPI and/or
oneAPI programming model is utilized to interact with
various accelerator, GPU, processor, and/or variations
thereof, architectures. In at least one embodiment,
oneAPI includes a set of libraries that implement various
functionalities. In at least one embodiment, oneAPI in-
cludes at least a oneAPI DPC++ library, a oneAPI math
kernel library, a oneAPI data analytics library, a oneAPI
deep neural network library, a oneAPI collective commu-
nications library, a oneAPI threading building blocks li-
brary, a oneAPI video processing library, and/or varia-
tions thereof.
[0203] In at least one embodiment, a oneAPI DPC++
library, also referred to as oneDPL, is a library that im-
plements algorithms and functions to accelerate DPC++
kernel programming. In at least one embodiment, oneD-
PL implements one or more standard template library
(STL) functions. In at least one embodiment, oneDPL
implements one or more parallel STL functions. In at least
one embodiment, oneDPL provides a set of library class-
es and functions such as parallel algorithms, iterators,
function object classes, range-based API, and/or varia-
tions thereof. In at least one embodiment, oneDPL im-
plements one or more classes and/or functions of a C++
standard library. In at least one embodiment, oneDPL
implements one or more random number generator func-
tions.
[0204] In at least one embodiment, a oneAPI math ker-
nel library, also referred to as oneMKL, is a library that
implements various optimized and parallelized routines
for various mathematical functions and/or operations. In
at least one embodiment, oneMKL implements one or
more basic linear algebra subprograms (BLAS) and/or
linear algebra package (LAPACK) dense linear algebra
routines. In at least one embodiment, oneMKL imple-
ments one or more sparse BLAS linear algebra routines.
In at least one embodiment, oneMKL implements one or
more random number generators (RNGs). In at least one
embodiment, oneMKL implements one or more vector
mathematics (VM) routines for mathematical operations
on vectors. In at least one embodiment, oneMKL imple-
ments one or more Fast Fourier Transform (FFT) func-
tions.
[0205] In at least one embodiment, a oneAPI data an-
alytics library, also referred to as oneDAL, is a library that
implements various data analysis applications and dis-
tributed computations. In at least one embodiment,
oneDAL implements various algorithms for preprocess-
ing, transformation, analysis, modeling, validation, and
decision making for data analytics, in batch, online, and
distributed processing modes of computation. In at least
one embodiment, oneDAL implements various C++
and/or Java APIs and various connectors to one or more
data sources. In at least one embodiment, oneDAL im-
plements DPC++ API extensions to a traditional C++ in-
terface and enables GPU usage for various algorithms.
[0206] In at least one embodiment, a oneAPI deep neu-

61 62

EP 4 459 958 A1

33

5

10

15

20

25

30

35

40

45

50

55

ral network library, also referred to as oneDNN, is a library
that implements various deep learning functions. In at
least one embodiment, oneDNN implements various
neural network, machine learning, and deep learning
functions, algorithms, and/or variations thereof.
[0207] In at least one embodiment, a oneAPI collective
communications library, also referred to as oneCCL, is
a library that implements various applications for deep
learning and machine learning workloads. In at least one
embodiment, oneCCL is built upon lower-level commu-
nication middleware, such as message passing interface
(MPI) and libfabrics. In at least one embodiment, oneCCL
enables a set of deep learning specific optimizations,
such as prioritization, persistent operations, out of order
executions, and/or variations thereof. In at least one em-
bodiment, oneCCL implements various CPU and GPU
functions.
[0208] In at least one embodiment, a oneAPI threading
building blocks library, also referred to as oneTBB, is a
library that implements various parallelized processes for
various applications. In at least one embodiment, oneT-
BB is utilized for task-based, shared parallel program-
ming on a host. In at least one embodiment, oneTBB
implements generic parallel algorithms. In at least one
embodiment, oneTBB implements concurrent contain-
ers. In at least one embodiment, oneTBB implements a
scalable memory allocator. In at least one embodiment,
oneTBB implements a work-stealing task scheduler. In
at least one embodiment, oneTBB implements low-level
synchronization primitives. In at least one embodiment,
oneTBB is compiler-independent and usable on various
processors, such as GPUs, PPUs, CPUs, and/or varia-
tions thereof.
[0209] In at least one embodiment, a oneAPI video
processing library, also referred to as oneVPL, is a library
that is utilized for accelerating video processing in one
or more applications. In at least one embodiment, oneV-
PL implements various video decoding, encoding, and
processing functions. In at least one embodiment, oneV-
PL implements various functions for media pipelines on
CPUs, GPUs, and other accelerators. In at least one em-
bodiment, oneVPL implements device discovery and se-
lection in media centric and video analytics workloads.
In at least one embodiment, oneVPL implements API
primitives for zero-copy buffer sharing.
[0210] In at least one embodiment, a oneAPI program-
ming model utilizes a DPC++ programming language. In
at least one embodiment, a DPC++ programming lan-
guage is a programming language that includes, without
limitation, functionally similar versions of CUDA mecha-
nisms to define device code and distinguish between de-
vice code and host code. In at least one embodiment, a
DPC++ programming language may include a subset of
functionality of a CUDA programming language. In at
least one embodiment, one or more CUDA programming
model operations are performed using a oneAPI pro-
gramming model using a DPC++ programming lan-
guage.

[0211] In at least one embodiment, any application pro-
gramming interface (API) described herein is compiled
into one or more instructions, operations, or any other
signal by a compiler, interpreter, or other software tool.
In at least one embodiment, compilation comprises gen-
erating one or more machine-executable instructions,
operations, or other signals from source code. In at least
one embodiment, an API compiled into one or more in-
structions, operations, or other signals, when performed,
causes one or more processors such as graphics proc-
essors @22@00, graphics cores 1500, parallel proces-
sor 1700, processor @17@00, processor core
@17@00, or any other logic circuit further described
herein to perform one or more computing operations.
[0212] It should be noted that, while example embod-
iments described herein may relate to a CUDA program-
ming model, techniques described herein can be utilized
with any suitable programming model, such HIP, oneAPI,
and/or variations thereof.
[0213] Other variations are within spirit of present dis-
closure. Thus, while disclosed techniques are suscepti-
ble to various modifications and alternative construc-
tions, certain illustrated embodiments thereof are shown
in drawings and have been described above in detail. It
should be understood, however, that there is no intention
to limit disclosure to specific form or forms disclosed, but
on contrary, intention is to cover all modifications, alter-
native constructions, and equivalents falling within spirit
and scope of disclosure, as defined in appended claims.
[0214] Use of terms "a" and "an" and "the" and similar
referents in context of describing disclosed embodiments
(especially in context of following claims) are to be con-
strued to cover both singular and plural, unless otherwise
indicated herein or clearly contradicted by context, and
not as a definition of a term. Terms "comprising," "hav-
ing," "including," and "containing" are to be construed as
open-ended terms (meaning "including, but not limited
to,") unless otherwise noted. "Connected," when unmodi-
fied and referring to physical connections, is to be con-
strued as partly or wholly contained within, attached to,
or joined together, even if there is something intervening.
Recitation of ranges of values herein are merely intended
to serve as a shorthand method of referring individually
to each separate value falling within range, unless oth-
erwise indicated herein and each separate value is in-
corporated into specification as if it were individually re-
cited herein. In at least one embodiment, use of term
"set" (e.g., "a set of items") or "subset" unless otherwise
noted or contradicted by context, is to be construed as a
nonempty collection comprising one or more members.
Further, unless otherwise noted or contradicted by con-
text, term "subset" of a corresponding set does not nec-
essarily denote a proper subset of corresponding set, but
subset and corresponding set may be equal.
[0215] Conjunctive language, such as phrases of form
"at least one of A, B, and C," or "at least one of A, B and
C," unless specifically stated otherwise or otherwise
clearly contradicted by context, is otherwise understood

63 64

EP 4 459 958 A1

34

5

10

15

20

25

30

35

40

45

50

55

with context as used in general to present that an item,
term, etc., may be either A or B or C, or any nonempty
subset of set of A and B and C. For instance, in illustrative
example of a set having three members, conjunctive
phrases "at least one of A, B, and C" and "at least one
of A, B and C" refer to any of following sets: {A}, {B}, {C},
{A, B}, {A, C}, {B, C}, {A, B, C}. Thus, such conjunctive
language is not generally intended to imply that certain
embodiments require at least one of A, at least one of B
and at least one of C each to be present. In addition,
unless otherwise noted or contradicted by context, term
"plurality" indicates a state of being plural (e.g., "a plurality
of items" indicates multiple items). In at least one em-
bodiment, number of items in a plurality is at least two,
but can be more when so indicated either explicitly or by
context. Further, unless stated otherwise or otherwise
clear from context, phrase "based on" means "based at
least in part on" and not "based solely on."
[0216] Operations of processes described herein can
be performed in any suitable order unless otherwise in-
dicated herein or otherwise clearly contradicted by con-
text. In at least one embodiment, a process such as those
processes described herein (or variations and/or combi-
nations thereof) is performed under control of one or more
computer systems configured with executable instruc-
tions and is implemented as code (e.g., executable in-
structions, one or more computer programs or one or
more applications) executing collectively on one or more
processors, by hardware or combinations thereof. In at
least one embodiment, code is stored on a computer-
readable storage medium, for example, in form of a com-
puter program comprising a plurality of instructions exe-
cutable by one or more processors. In at least one em-
bodiment, a computer-readable storage medium is a
non-transitory computer-readable storage medium that
excludes transitory signals (e.g., a propagating transient
electric or electromagnetic transmission) but includes
non-transitory data storage circuitry (e.g., buffers, cache,
and queues) within transceivers of transitory signals. In
at least one embodiment, code (e.g., executable code or
source code) is stored on a set of one or more non-tran-
sitory computer-readable storage media having stored
thereon executable instructions (or other memory to store
executable instructions) that, when executed (i.e., as a
result of being executed) by one or more processors of
a computer system, cause computer system to perform
operations described herein. In at least one embodiment,
set of non-transitory computer-readable storage media
comprises multiple non-transitory computer-readable
storage media and one or more of individual non-transi-
tory storage media of multiple non-transitory computer-
readable storage media lack all of code while multiple
non-transitory computer-readable storage media collec-
tively store all of code. In at least one embodiment, ex-
ecutable instructions are executed such that different in-
structions are executed by different processors - for ex-
ample, a non-transitory computer-readable storage me-
dium store instructions and a main central processing

unit ("CPU") executes some of instructions while a graph-
ics processing unit ("GPU") executes other instructions.
In at least one embodiment, different components of a
computer system have separate processors and different
processors execute different subsets of instructions.
[0217] In at least one embodiment, an arithmetic logic
unit is a set of combinational logic circuitry that takes one
or more inputs to produce a result. In at least one em-
bodiment, an arithmetic logic unit is used by a processor
to implement mathematical operation such as addition,
subtraction, or multiplication. In at least one embodiment,
an arithmetic logic unit is used to implement logical op-
erations such as logical AND/OR or XOR. In at least one
embodiment, an arithmetic logic unit is stateless, and
made from physical switching components such as sem-
iconductor transistors arranged to form logical gates. In
at least one embodiment, an arithmetic logic unit may
operate internally as a stateful logic circuit with an asso-
ciated clock. In at least one embodiment, an arithmetic
logic unit may be constructed as an asynchronous logic
circuit with an internal state not maintained in an associ-
ated register set. In at least one embodiment, an arith-
metic logic unit is used by a processor to combine oper-
ands stored in one or more registers of the processor
and produce an output that can be stored by the proces-
sor in another register or a memory location.
[0218] In at least one embodiment, as a result of
processing an instruction retrieved by the processor, the
processor presents one or more inputs or operands to
an arithmetic logic unit, causing the arithmetic logic unit
to produce a result based at least in part on an instruction
code provided to inputs of the arithmetic logic unit. In at
least one embodiment, the instruction codes provided by
the processor to the ALU are based at least in part on
the instruction executed by the processor. In at least one
embodiment combinational logic in the ALU processes
the inputs and produces an output which is placed on a
bus within the processor. In at least one embodiment,
the processor selects a destination register, memory lo-
cation, output device, or output storage location on the
output bus so that clocking the processor causes the re-
sults produced by the ALU to be sent to the desired lo-
cation.
[0219] In the scope of this application, the term arith-
metic logic unit, or ALU, is used to refer to any compu-
tational logic circuit that processes operands to produce
a result. For example, in the present document, the term
ALU can refer to a floating point unit, a DSP, a tensor
core, a shader core, a coprocessor, or a CPU.
[0220] Accordingly, in at least one embodiment, com-
puter systems are configured to implement one or more
services that singly or collectively perform operations of
processes described herein and such computer systems
are configured with applicable hardware and/or software
that enable performance of operations. Further, a com-
puter system that implements at least one embodiment
of present disclosure is a single device and, in another
embodiment, is a distributed computer system compris-

65 66

EP 4 459 958 A1

35

5

10

15

20

25

30

35

40

45

50

55

ing multiple devices that operate differently such that dis-
tributed computer system performs operations described
herein and such that a single device does not perform all
operations.
[0221] Use of any and all examples, or exemplary lan-
guage (e.g., "such as") provided herein, is intended mere-
ly to better illuminate embodiments of disclosure and
does not pose a limitation on scope of disclosure unless
otherwise claimed. No language in specification should
be construed as indicating any non-claimed element as
essential to practice of disclosure.
[0222] All references, including publications, patent
applications, and patents, cited herein are hereby incor-
porated by reference to same extent as if each reference
were individually and specifically indicated to be incor-
porated by reference and were set forth in its entirety
herein.
[0223] In description and claims, terms "coupled" and
"connected," along with their derivatives, may be used.
It should be understood that these terms may be not in-
tended as synonyms for each other. Rather, in particular
examples, "connected" or "coupled" may be used to in-
dicate that two or more elements are in direct or indirect
physical or electrical contact with each other. "Coupled"
may also mean that two or more elements are not in direct
contact with each other, but yet still co-operate or interact
with each other.
[0224] Unless specifically stated otherwise, it may be
appreciated that throughout specification terms such as
"processing," "computing," "calculating," "determining,"
or like, refer to action and/or processes of a computer or
computing system, or similar electronic computing de-
vice, that manipulate and/or transform data represented
as physical, such as electronic, quantities within comput-
ing system’s registers and/or memories into other data
similarly represented as physical quantities within com-
puting system’s memories, registers or other such infor-
mation storage, transmission or display devices.
[0225] In a similar manner, term "processor" may refer
to any device or portion of a device that processes elec-
tronic data from registers and/or memory and transform
that electronic data into other electronic data that may
be stored in registers and/or memory. As non-limiting ex-
amples, "processor" may be a CPU or a GPU. A "com-
puting platform" may comprise one or more processors.
As used herein, "software" processes may include, for
example, software and/or hardware entities that perform
work over time, such as tasks, threads, and intelligent
agents. Also, each process may refer to multiple proc-
esses, for carrying out instructions in sequence or in par-
allel, continuously or intermittently. In at least one em-
bodiment, terms "system" and "method" are used herein
interchangeably insofar as system may embody one or
more methods and methods may be considered a sys-
tem.
[0226] In present document, references may be made
to obtaining, acquiring, receiving, or inputting analog or
digital data into a subsystem, computer system, or com-

puter-implemented machine. In at least one embodi-
ment, process of obtaining, acquiring, receiving, or input-
ting analog and digital data can be accomplished in a
variety of ways such as by receiving data as a parameter
of a function call or a call to an application programming
interface. In at least one embodiment, processes of ob-
taining, acquiring, receiving, or inputting analog or digital
data can be accomplished by transferring data via a serial
or parallel interface. In at least one embodiment, proc-
esses of obtaining, acquiring, receiving, or inputting an-
alog or digital data can be accomplished by transferring
data via a computer network from providing entity to ac-
quiring entity. In at least one embodiment, references
may also be made to providing, outputting, transmitting,
sending, or presenting analog or digital data. In various
examples, processes of providing, outputting, transmit-
ting, sending, or presenting analog or digital data can be
accomplished by transferring data as an input or output
parameter of a function call, a parameter of an application
programming interface or interprocess communication
mechanism.
[0227] Although descriptions herein set forth example
implementations of described techniques, other architec-
tures may be used to implement described functionality,
and are intended to be within scope of this disclosure.
Furthermore, although specific distributions of responsi-
bilities may be defined above for purposes of description,
various functions and responsibilities might be distribut-
ed and divided in different ways, depending on circum-
stances.
[0228] Furthermore, although subject matter has been
described in language specific to structural features
and/or methodological acts, it is to be understood that
subject matter claimed in appended claims is not neces-
sarily limited to specific features or acts described. Rath-
er, specific features and acts are disclosed as exemplary
forms of implementing the claims.
[0229] It will be understood that aspects and embodi-
ments are described above purely by way of example,
and that modifications of detail can be made within the
scope of the claims.
[0230] Each apparatus, method, and feature disclosed
in the description, and (where appropriate) the claims
and drawings may be provided independently or in any
appropriate combination.
[0231] Reference numerals appearing in the claims
are by way of illustration only and shall have no limiting
effect on the scope of the claims.

Claims

1. A computer-implemented method, comprising:

receiving an instruction to establish a session-
based remote direct memory access (SRDMA)
connection;
executing a handshake with a recipient for the

67 68

EP 4 459 958 A1

36

5

10

15

20

25

30

35

40

45

50

55

SRDMA connection;
creating a SRDMA session group associated
with queue pair (QP);
creating two or more SRDMA sessions for the
SRDMA session group;
determining, for each of the two or more SRDMA
sessions, weights associated with congestion of
the two or more SRDMA sessions;
receiving, from the QP, a packet for transmission
over the SDRMA connection;
selecting, based at least in part on the respective
weights, a selected SRDMA session from the
two or more SRDMA sessions; and
causing the packet to be transmitted using the
selected SRDMA session.

2. The computer-implemented method of claim 1,
wherein each of the two or more SRDMA sessions
has a unique 5-tuple.

3. The computer-implemented method of claim 2, fur-
ther comprising:

hashing respective 5-tuples of the two or more
SRDMA sessions; and
applying the respective weights to the hashed
5-tuples.

4. The computer-implemented method of any preced-
ing claim, further comprising:

identifying a traffic class in a header of the pack-
et; and
determining the traffic class corresponds to an
adaptive routing class.

5. The computer-implemented method of claim 4,
wherein a base transport header (BTH) of the packet
is unrecognized.

6. The computer-implemented method of claim 4,
wherein the header is an IP type of service (ToS)
header.

7. The computer-implemented method of any preced-
ing claim, further comprising:

determining the respective weights for each
SRDMA session exceed a threshold; and
establishing a new SRDMA session associated
with the SRDMA session group.

8. A system, comprising:
one or more processing units to:

determine respective congestion levels for a plu-
rality of session-based remote direct memory
access (SDRMA) sessions of an SRDMA ses-

sion group having a common destination queue
pair (QP);
determine, based at least in part on the respec-
tive congestion levels, respective weights for the
plurality of SRDMA sessions;
receive a packet for transmissions to the com-
mon destination QP;
select, from the plurality of SRDMA sessions, a
selected SRDMA session based, in part, on the
respective weights; and
cause the packet to be transmitted using the se-
lected SRDMA session.

9. The system of claim 8, wherein the one or more
processing units are further to:

determine a threshold quantity of congestion
levels exceeds a congestion threshold; and
establish a new SRDMA session within the
SRDMA session group.

10. The system of claim 8, wherein the one or more
processing units are further to:

determine a threshold quantity of congestion
levels is below a congestion threshold;
determine a cost for the plurality of SRDMA ses-
sions;
determine the cost exceeds a cost threshold;
and
close one SRDMA sessions of the plurality of
SRDMA sessions.

11. The system of claim 8, 9, or 10, wherein the one or
more processing units are further to:
verify a destination QP of the packet correspond to
the common destination QP.

12. A system, comprising:
one or more processors to select a session-based
remote direct memory access (SRDMA) session
from a plurality of SRDMA sessions associated with
a session group and a queue pair (QP) based, at
least, on a weighted hash of the SRDMA session
corresponding to a congestion level.

13. The system of claim 12, wherein the one or more
processors further:
remove an existing SRDMA session from the SRD-
MA session group when respective congestion lev-
els for the plurality of SRDMA sessions are below a
congestion threshold and when a cost of the plurality
of SRMA sessions exceeds a cost threshold.

14. The system of claim 12 or 13, wherein a second QP
is associated with the session group.

15. The system of claim 14, wherein the system is com-

69 70

EP 4 459 958 A1

37

5

10

15

20

25

30

35

40

45

50

55

prised in at least one of:

a system for performing simulation operations;
a system for performing simulation operations
to test or validate autonomous machine appli-
cations;
a system for rendering graphical output;
a system for performing deep learning opera-
tions;
a system implemented using an edge device;
a system for generating or presenting virtual re-
ality (VR) content;
a system for generating or presenting augment-
ed reality (AR) content;
a system for generating or presenting mixed re-
ality (MR) content;
a system incorporating one or more Virtual Ma-
chines (VMs);
a system implemented at least partially in a data
center;
a system for performing hardware testing using
simulation;
a system for synthetic data generation;
a collaborative content creation platform for 3D
assets; or
a system implemented at least partially using
cloud computing resources.

71 72

EP 4 459 958 A1

38

EP 4 459 958 A1

39

EP 4 459 958 A1

40

EP 4 459 958 A1

41

EP 4 459 958 A1

42

EP 4 459 958 A1

43

EP 4 459 958 A1

44

EP 4 459 958 A1

45

EP 4 459 958 A1

46

EP 4 459 958 A1

47

EP 4 459 958 A1

48

EP 4 459 958 A1

49

EP 4 459 958 A1

50

EP 4 459 958 A1

51

EP 4 459 958 A1

52

EP 4 459 958 A1

53

EP 4 459 958 A1

54

EP 4 459 958 A1

55

EP 4 459 958 A1

56

EP 4 459 958 A1

57

EP 4 459 958 A1

58

EP 4 459 958 A1

59

EP 4 459 958 A1

60

EP 4 459 958 A1

61

EP 4 459 958 A1

62

EP 4 459 958 A1

63

EP 4 459 958 A1

64

EP 4 459 958 A1

65

EP 4 459 958 A1

66

EP 4 459 958 A1

67

EP 4 459 958 A1

68

EP 4 459 958 A1

69

5

10

15

20

25

30

35

40

45

50

55

EP 4 459 958 A1

70

5

10

15

20

25

30

35

40

45

50

55

	bibliography
	abstract
	description
	claims
	drawings
	search report

