US012067012B2

a2 United States Patent

Gibson et al.

ao) Patent No.: US 12,067,012 B2
45) Date of Patent: Aug. 20, 2024

(54) CACHE UPDATES THROUGH DISTRIBUTED
MESSAGE QUEUES

(71)

(72)

(73)

")

@

(22)
(86)

87

(65)

(1)

(52)

(58)

Applicant: Hitachi Vantara LLC, Santa Clara, CA

Us)

Inventors: Reobert Gibson, Maynard, MA (US);
Kevin Canuette Grimaldi, Waltham,
MA (US); David Rush, Jr.,
Northborough, MA (US)

Assignee: HITACHI VANTARA LLC, Santa
Clara, CA (US)
Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 18/015,355

PCT Filed: Aug. 3, 2020

PCT No.: PCT/US2020/044705
§ 371 (e)(D),
(2) Date: Jan. 10, 2023

PCT Pub. No.: W02022/031259

PCT Pub. Date: Feb. 10, 2022

Prior Publication Data

US 2023/0289347 Al Sep. 14, 2023

Int. CL.

GO6F 16/00 (2019.01)

GO6F 16/23 (2019.01)
(Continued)

U.S. CL

CPC ... GOG6F 16/24552 (2019.01); GOGF 16/2365
(2019.01); GOGF 16/2471 (2019.01)

Field of Classification Search

CPC GOGF 16/24552; GOG6F 16/2471; GO6F

16/2365

See application file for complete search history.

S

Crient Notes

CuIENT NoDE
42(1

157 SERVICE

COMMUNICATIONS|
214

PRroG. 212
LocAL CACKE
1

E

(56) References Cited
U.S. PATENT DOCUMENTS

7,831,735 B1* 112010 Kabra GO6F 16/1865
709/248
2013/0254484 Al 9/2013 Garg et al.

(Continued)

FOREIGN PATENT DOCUMENTS

JP 2014-052928 A 3/2014

OTHER PUBLICATIONS

International Search Report of PCT/US2020/044705 dated Oct. 23,
2020.

(Continued)

Primary Examiner — Thu Nguyen T Le
(74) Attorney, Agent, or Firm — MATTINGLY &
MALUR, PC

(57) ABSTRACT

In some examples, a first computing device may receive a
first request from a second computing device. For example,
the first computing device may be able to communicate with
a plurality of database nodes, each database node maintain-
ing a portion of a database distributed across the plurality of
database nodes. Further, the first computing device may
maintain a local cache of a subset of information maintained
in the database. The first computing device may send a
second request based on the first request to a first database
node to cause the first database node to change the data in
the database. In addition, the first computing device
receives, from a message queue of a plurality of distributed
message queues, a cache update message based on the
change to the data in the database. The first computing
device may update the local cache based on the cache update
message.

20 Claims, 7 Drawing Sheets

MESSAGING QUELE GRID DisTRIBUTED DATABASE
202 132

CLIENT NoLE

B

157 SERVICE

i 3=
G

g[S

COMMUNICATIONS

COMMUNICATIONS

222

COMMUNICATIONS

224

Pros. 212

LOCAL CACHE

.

Messasie NoDe(s) 204 METADATA GATEWAY
=7 21001
Messack Queue
208(1

>< METADATA GATEWAY
P 21002)

CLiENT NoDE

g

2 SERVICE
PROS. 218

LocaL CACKE

3% SERVICE
PrOG. 220

LocAL CACHE
4

] MEssaGE Quese
208(2)

5 METADATA GATEWAY
21063

\

152
Cache Update
Messages

MESSAGE (QUEUE
208) a—
Vg \
....................... § METADATA GATEWAY
o/

23
Enquele
Instructions

14
Database Nodes

US 12,067,012 B2

Page 2
(51) Imt. ClL
GO6F 16/2455 (2019.01)
GO6F 16/2458 (2019.01)
(56) References Cited
U.S. PATENT DOCUMENTS
2014/0324785 Al 10/2014 Gupta et al.
2015/0264153 Al* 9/2015 Anand HO41 49/90
709/212

2018/0019985 Al 1/2018 Schoof

OTHER PUBLICATIONS

Extended European Search Report received in corresponding Euro-
pean Application No. 20948065.6 dated Feb. 16, 2024.

Japanese Office Action received in corresponding Japanese Appli-
cation No. 2023-507346 dated May 28, 2024.

* cited by examiner

US 12,067,012 B2

Sheet 1 of 7

, 2024

20

Aug.

U.S. Patent

SOPON aseqeleq

oi/

A e

9T

viv(Q 103raQ

70T (S)N3LSAS
JOVHOLS

NHOMLIN

901
(S)r4OMLIN

l 'Old

121"

.
[4
9¢1 1s3anoay 0cl
LWOW
<« (
"ddy "NINGY
01l
30IA3("NINAY
901
SHIMOMLAN .
H
|
VIl
‘ddy ¥3SN
T 301
817 1s3anoay 301A3Q ¥3sN
vivd

[05T wveooug 05T wwiooud || : :
m ONIOVSSIN ONIOVSSI m m ;
Hr T . ot :
|| SPT nvaooud 8FT wvdoodd || ; :
t1{_wow 300N coe o 3aoN ||} m 3HOVD WOOT] |4
NWET ey bl mre | E
1 (s)NolLiLevd 9a (sinoiLitdvd ga || ' g3 LWOW :
il 707 (s)3oinag 701 (s)301A3Q - :
F |NILNdWoD 01N ONILNINOD J0INd3S | | m Nmr_mmmwwa m
R S IR I0IAM3S :
787 (S)39vssap m
31¥adM 3HOV) m ;
il —I : s :
107 . : : '
(s)rd0mLIN H : :
— m 97T '
: 051 ©04d i} | 3HOvQ WooT] |4
ONIOVSSIN m :
0€1 Wvdo0ud 3CT "o0ud M 91} 'dd¥ m
A9VH0LS LS 9a m 83M H3sN m
707 (s)30n3g 707 (8)301A30 t| 207 (s)30na@ :
ONILNINOD ONILNINOD) i1 onNiLndwod |¢
30138 30IA3S ' JOIAN3S :
lllll-l"l\lllll-l'-'ll

S9PON Jusl)

vl

-001

US 12,067,012 B2

Sheet 2 of 7

Aug. 20, 2024

U.S. Patent

SOPON 9seqele(

.\\oi

Woie

AVYMILYD) ViVAVLIW

€)01¢

AYMILYS ViVOVLIIW

@01C

AVMILYS) VIVAVLIIW

[i]¥4

AVMILYD) VIVAVLIW

- -

gl
3gvavLv(d3LnariLsiq

suonoNASU|
ananbu3

¢ Old

sobessay
ajepdn ayoen
esl

(€180C

ININY FovssI

[2180C

N3Ny FovssI

(180¢

IN3INY FOVSSIN

- -

0¢

($)300N ONIBVYSSIN

20C

aidsy 3N3aNYD ONISVYSSA

7l S3IA0N INFID

(212 744
3HOVO WOOT T |snotvonnininog)| g
022 90¥d It
J0INA3S) > m_/w_\\,_mm
L 777
3HOVD 720
9 1901 SNOWYONTHINOD) —mr
817 '90¥d . s—.
N3G o7 | > w__,w_\\,_/mm
(9147
JAON INAND
e T
OV 001 1| fsnowwvomnnmon T
717 '90¥d . s—
30435 s, [> m%m_mwm
Qi
300N IN3ID
mxo@ @.ﬂoo vie
D ¥o0] SNOYOININOD| [~
deooud |{ =) S
JOIAN3G 15} 438N
VA7)
300N IN3ID 0zt il
SJ3SM N3

R0z

US 12,067,012 B2

Sheet 3 of 7

Aug. 20,2024

U.S. Patent

€)01e

AVMILYS) VIVAVLIIN |

¢ old

WI9FT 3HOVD) o0

0¢¢ O0dd IDIAYIS o€

{€)9p] 3HOYD W07

TTZ '90dd I0INAS o

(E)2FT 300N INID

asuodsoy sl
/Sm e

'

(1)9pT 3IHOVD W07

uoneojjdel
0J-0UAS pajgeus | 1950ng
skep (¢ — uonusey
SONILLIS e

wom.\

90¢ «\

R-v0¢

717 "904d 30IAY3S 5]

asuodsay s >
P /rﬁm o o

{T)ZFT 300N INFITD

(199nq mau sjesln)
1s8nbay S

0¢

A0IA3Q 83N

E\N:
O

801

(3919nq mau sjeal))
1senbay s
¢0¢

N-00¢

US 12,067,012 B2

Sheet 4 of 7

Aug. 20, 2024

U.S. Patent

(eyoe) Joxong sjepijenu)
abessay a1epdn syoe)
4

[C180¢C

AN3AND FOVSS3IN

S

$0C 300N ONIOVSSIN

(pajealn 19%ong map)

uononsuj enanbug

(8yoed J9ong ejepiieau|)

¢0 abessa)y aepdn ayoen

(3[]¥4

AYMALYD) VIVAYLIN

uoneoljdal
0J-ouAs pajqeus

skep Qg — uonualey

| 19ong

SONILLAS

JNVYN

80¢ .\

90¢ .\

R0

sl

¥ "Old

(syoeQ Jexong ajepijeaul)
abessayy a1epdn sysen

WI9pT 3HOVD WoOT

022 '904d J0INIS o

€197] 3HovD) w001

Bl¢ 90dd I0IAIS ang

(€)Z%T 300N N3N

TTJOFT 3HOVD oo

7TZ "90Md 0IAAS 15|

TVZFT 300N N3D

33
O

801
30IA3Q ¥3sN

"-0op

US 12,067,012 B2

Sheet 5 of 7

Aug. 20,2024

U.S. Patent

g Old

uoneddal

}

()
O

0T
30IA3Q NINQY

}

0}-oufs pajgeus pioyong M N 95T 3Hov WooT
skep ¢ — UOQUaJe —
P OE o 2¢ '90dd 0IA3S € | [€ 150nbay
SONILLIS INVN 199[00 189
09
voe"" wom\ gm\ EJ9FT 3HOVD 19007
8T¢ "20dd I0INI3S g
asuodsay Jeyong 199 (E1Zy Y 300N N3ND
159nbay
19Y0ng 199
019
L TH9FT 3Hov) oo
() \]¥4 _asuodsay 1oyong 199 | o V
AVMALYE) VIVaYLI | 908 ¢l¢ 90 JONAIS s | [« Jsanbay
N\ m%%cmm Jyong 189 TTIZ7T 300N IN3ID wm%%:m 199
uoneoidel uoneoidal
01-0uAs pajqeuy L Jovong 0}-0UAs pajqeu | Jo30ng
shep (¢ — uojualey shep (¢ — uonualsy
SONILLAS INVYN SONILLAS AN

80¢€ \

@%\ R0

mom.\

oom\ Rh0e

(-
O

801
30IA3Q 438N

/oom

U.S. Patent Aug. 20, 2024 Sheet 6 of 7 US 12,067,012 B2

600—a

PARTITION A DATABASE ACROSS A PLURALITY OF DATABASE NODES TO
PROVIDE MULTIPLE PARTITIONS DISTRIBUTED ACROSS THE PLURALITY OF DATABASE NODES
602

v

EXECUTE A SERVICE AT A CLIENT NODE, THE SERVICE MAINTAINING A LOCAL CACHE OF A
SUBSET OF INFORMATION MAINTAINED IN THE DATABASE

RECEIVE, BY THE CLIENT NODE, FROM A USER COMPUTING DEVICE, A FIRST REQUEST, THE
FIRST REQUEST AFFECTING DATA IN THE DATABASE
SEND, BY THE CLIENT NODE, A SECOND REQUEST BASED ON THE FIRST REQUEST TO A FIRST
DATABASE NODE OF THE PLURALITY OF DATABASE NODES, THE SECOND REQUEST CAUSING

THE FIRST DATABASE NODE TO CHANGE THE DATA IN THE DATABASE
608

v

RECEIVE, BY THE CLIENT NODE, FROM A MESSAGE QUEUE OF A PLURALITY OF DISTRIBUTED
MESSAGE QUEUES, A CACHE UPDATE MESSAGE BASED ON THE CHANGE TO THE DATA IN THE
DATABASE
610

YES MESSAGE
INCLUDES UPDATED DATA?

612

4 y

UPDATE THE LOCAL CACHE TO INCLUDE THE
UPDATED DATA INCLUDED IN THE CACHE INVALIDATE AI(;'CEQELQCZOERT,ON OF THE
UPDATE MESSAGE 616
614 —

YES

A 4

RECEIVE, BY THE CLIENT NODE, FROM A USER COMPUTING DEVICE, A THIRD REQUEST TO
ACCESS DATA CORRESPONDING TO DATA IN THE DATABASE

618
v

SEND A QUERY TO AT LEAST ONE DATABASE NODE OF THE PLURALITY OF DATABASE NODES TO
DETERMINE INFORMATION FROM THE DATABASE RELATED TO THE THIRD REQUEST
620

v

UPDATE THE LOCAL CACHE BASED AT LEAST IN PART ON THE RESPONSE TO THE QUERY
622

FIG. 6

U.S. Patent Aug. 20, 2024 Sheet 7 of 7 US 12,067,012 B2

SERVICE COMPUTING DEVICE(S)

102
PROCESSOR(S)
702
COMMUNICATION INTERFACE(S)
706
COMPUTER-READABLE MEDIA
704
DATABASE NoDE
'\/Fl,ERSOSé\FfA'\TAG MANAGEMENT MANAGEMENT
150 PROGRAM PROGRAM
— 138 148
USER WEB MANAGEMENT WEB
APPLICATION APPLICATION STORAG1E3FE)ROGRAM
16 124 -
DATABASE DB PARTITIONS LOCAL CACHE(S)
132 134 146

FIG. 7

US 12,067,012 B2

1
CACHE UPDATES THROUGH DISTRIBUTED
MESSAGE QUEUES

TECHNICAL FIELD

This disclosure relates to the technical field of data
storage.

BACKGROUND

Multi-partitioned databases may provide horizontal scal-
ability by dividing data services amongst multiple comput-
ing devices, also referred to as “nodes”. For example,
high-availability and fault tolerance of data in the database
may be enabled by replicating the database across multiple
nodes and increasing the number of nodes as needed for
handling increased amounts of data and/or workloads. Client
services may access the database nodes to read or write data
corresponding to the database. In some cases, the client
nodes may maintain local caches that are a subset of the data
from the database to enable the clients to route read and
write requests to the correct database nodes. However,
database routing may change dynamically, or other events
may occur that may cause the clients to have outdated
information in their local caches, which may cause uneven
timing issues among the system resources, slow system
response time, or the like.

SUMMARY

Some implementations include a first computing device
that may receive a first request from a second computing
device. Further, the first computing device may be able to
communicate with a plurality of database nodes, each data-
base node maintaining a portion of a database distributed
across the plurality of database nodes. In addition, the first
computing device may maintain a local cache of a subset of
information maintained in the database. The first computing
device may send a second request based on the first request
to a first database node to cause the first database node to
change the data in the database. In addition, the first com-
puting device receives, from a message queue of a plurality
of distributed message queues, a cache update message
based on the change to the data in the database. The first
computing device may update the local cache based on the
cache update message.

BRIEF DESCRIPTION OF THE DRAWINGS

The detailed description is set forth with reference to the
accompanying figures. In the figures, the left-most digit(s) of
a reference number identifies the figure in which the refer-
ence number first appears. The use of the same reference
numbers in different figures indicates similar or identical
items or features.

FIG. 1 illustrates an example architecture of a system that
employs messaging for local cache updates according to
some implementations.

FIG. 2 is a block diagram illustrating an example logical
configuration of a system according to some implementa-
tions.

FIG. 3 is a block diagram illustrating an example of
creating a new bucket according to some implementations.

FIG. 4 is a block diagram illustrating an example of
invalidating local caches using a distributed messaging
queue according to some implementations.

10

15

20

25

30

35

40

45

50

55

60

2

FIG. 5 is a block diagram illustrating an example of
updating a local cache according to some implementations.

FIG. 6 is a flow diagram illustrating an example process
for updating a local cache using distributed messaging
queues according to some implementations.

FIG. 7 illustrates select example components of the ser-
vice computing device(s) that may be used to implement at
least some of the functionality of the systems described
herein.

DESCRIPTION OF THE EMBODIMENTS

Some implementations herein are directed to techniques
and arrangements for a distributed computing system in
which a distributed messaging queue system is used to
aggregate and deliver cache invalidation messages to rel-
evant targets. For instance, the system may include a dis-
tributed database that may tolerate client services to use
slightly outdated data for some operations in favor of
boosting performance and improving scaling characteristics.
This allows the system to greatly reduce database loads for
read-intensive workloads and also for write-intensive work-
loads, particularly if one or more additional optimizations
are included, as discussed additionally below.

Some examples include an innovative distributed cache
able to operate within a heterogeneous cloud (and/or or
multi-cloud) environment. For instance in a heterogenous
cloud environment, a variety of distributed nodes with
different resource characteristics, e.g., compute, memory,
network, etc., may work together. However, standard syn-
chronization techniques such as a chatty publisher/sub-
scriber protocol for synchronizing caches is not able operate
well in such an environment. Accordingly, some implemen-
tations herein employ a plurality of local in-memory caches
on individual client nodes that implement client services for
the system. For example, the local caches may mirror certain
database values used by the client services. In addition, the
system herein may employ message broker queues, such as
by using advanced message queuing protocol (AMQP) to
periodically invalidate and/or synchronize the local caches.

In some cases, each cached data element may be config-
ured to expire after a configurable time, so that the data
element does not become overly outdated. When new values
are written to the database, each client may be notified by an
invalidation message that the corresponding data item has
been invalidated. For additional optimization, the invalida-
tion message may contain information about the new data
value. Thus, in some cases herein, a database read is
executed by a client node only if the client’s local cache has
no record of a specified data item, or if that data item has
become invalidated without any updated value.

Some examples herein use a message broker protocol to
invalidate local caches and achieve local cache synchroni-
zation across a distributed set of local caches. Further, some
implementations employ delayed publishing of messages to
improve performance and scalability in a message-broker-
queueing-based distributed system. For instance, message
queuing is by nature less lossy than some other techniques
due to the ability to persist messages for longer periods of
time before delivery of the message.

In some examples herein, the client nodes route their
respective read and write requests to the respective subset of
database nodes that are appropriate for each request. Further,
the database routing may change dynamically, so the client
devices may maintain current routing information based on
the implementations described herein, even though the com-
puting resources, network resources, and storage resources

US 12,067,012 B2

3

on the database nodes and/or the client nodes may be
different, which, for example, may cause uneven timing
issues between the participating entities in the system. Thus,
some examples herein connect multiple heterogeneous sys-
tems, which may include public cloud storage devices
connected to local or proprietary systems.

Implementations herein solve a caching problem encoun-
tered by scalable cloud storage configurations having a
plurality of distributed database nodes that store and serve
information along with a plurality of client nodes that store
locally a subset of the information stored in the database for
efficient access. Further, some examples herein may include
a distributed system comprised of a set of database nodes
(metadata gateway devices in some examples) and a set of
client services that are executed by client nodes that are
clients of the distributed database provided by the database
nodes. For instance, the database nodes may store and serve
information and the client nodes may access or mirror the
information in the database.

For discussion purposes, some example implementations
are described in the environment of one or more service
computing devices in communication with a cloud storage
system for managing storage and access to data using a
distributed metadata database. However, implementations
herein are not limited to the particular examples provided,
and may be extended to other types of computing system
architectures, other types of databases, other types of storage
environments, other types of client configurations, other
types of data, and so forth, as will be apparent to those of
skill in the art in light of the disclosure herein.

FIG. 1 illustrates an example architecture of a system 100
that employs messaging for local cache updates according to
some implementations. The system 100 includes a plurality
of service computing devices 102 that are able to commu-
nicate with, or otherwise coupled to, at least one network
storage system 104, such as through one or more networks
106. Further, the service computing devices 102 are able to
communicate over the network(s) 106 with one or more user
devices 108 and one or more administrator devices 110,
which may be any of various types of computing devices, as
discussed additionally below.

In some examples, the service computing devices 102
may include one or more servers that may be embodied in
any number of ways. For instance, the programs, other
functional components, and at least a portion of data storage
of the service computing devices 102 may be implemented
on at least one server, such as in a cluster of servers, a server
farm, a data center, a cloud-hosted computing service, and so
forth, although other computer architectures may addition-
ally or alternatively be used. Additional details of the service
computing devices 102 are discussed below with respect to
FIG. 7.

The service computing devices 102 may be configured to
provide storage and data management services to users 112.
As several non-limiting examples, the users 112 may include
users performing functions for businesses, enterprises, orga-
nizations, governmental entities, academic entities, or the
like, and which may include storage of very large quantities
of data in some examples. Nevertheless, implementations
herein are not limited to any particular use or application for
the system 100 and the other systems and arrangements
described herein.

The network storage system(s) 104 may be referred to as
“cloud storage” or “cloud-based storage” in some examples,
and may enable a lower cost storage solution per megabyte/
gigabyte than local storage that may be available at the
service computing devices 102 in some cases. Furthermore,

10

15

20

25

30

35

40

45

50

55

60

65

4

in some examples, the network storage system(s) 104 may
include commercially available cloud storage as is known in
the art, while in other examples, the network storage system
(s) 104 may include private or enterprise storage systems
accessible only by an entity associated with the service
computing devices 102, or combinations thereof.

The one or more networks 106 may include any suitable
network, including a wide area network, such as the Internet;
a local area network (LAN), such as an intranet; a wireless
network, such as a cellular network, a local wireless net-
work, such as Wi-Fi, and/or short-range wireless communi-
cations, such as BLUETOOTH®; a wired network including
Fibre Channel, fiber optics, Ethernet, or any other such
network, a direct wired connection, or any combination
thereof. Accordingly, the one or more networks 106 may
include both wired and/or wireless communication tech-
nologies. Components used for such communications can
depend at least in part upon the type of network, the
environment selected, or both. Protocols for communicating
over such networks are well known and will not be discussed
herein in detail. Accordingly, the service computing devices
102, the network storage system(s) 104, the user devices
108, and the administrative devices 110 are able to commu-
nicate over the one or more networks 106 using wired or
wireless connections, and combinations thereof.

In addition, the service computing devices 102 may be
able to communicate with each other over one or more
networks 107. In some cases, the one or more networks 107
may be a LAN, private network, or the like, while in other
cases, the one or more networks 107 may include any of the
networks 106 discussed above.

Each user device 108 may be any suitable type of com-
puting device such as a desktop, laptop, tablet computing
device, mobile device, smart phone, wearable device, ter-
minal, and/or any other type of computing device able to
send data over a network. Users 112 may be associated with
the user devices 108 such as through a respective user
account, user login credentials, or the like. Furthermore, the
user devices 108 may be able to communicate with the
service computing device(s) 102 through the one or more
networks 106, through separate networks, or through any
other suitable type of communication connection. Numerous
other variations will be apparent to those of skill in the art
having the benefit of the disclosure herein.

Further, each user device 108 may include a respective
instance of a user application 114 that may execute on the
user device 108, such as for communicating with a user web
application 116 executable as a service on one or more of the
service computing device(s) 102, such as for sending user
data for storage on the network storage system(s) 104 and/or
for receiving stored data from the network storage system(s)
104 through a data request 118 or the like. In some cases, the
application 114 may include a browser or may operate
through a browser, while in other cases, the application 114
may include any other type of application having commu-
nication functionality enabling communication with the user
web application 116 over the one or more networks 106.

In the system 100, the users 112 may store data to, and
receive data from, the service computing device(s) 102 with
which their respective user devices 108 are in communica-
tion. Accordingly, the service computing devices 102 may
provide storage services for the users 112 and respective
user devices 108. During steady state operation there may be
users 108 periodically communicating with the service com-
puting devices 102, such as for reading or writing data.

In addition, the administrator device 110 may be any
suitable type of computing device such as a desktop, laptop,

US 12,067,012 B2

5

tablet computing device, mobile device, smart phone, wear-
able device, terminal, and/or any other type of computing
device able to send data over a network. Administrators 120
may be associated with administrator devices 110, such as
through a respective administrator account, administrator
login credentials, or the like. Furthermore, the administrator
device 110 may be able to communicate with the service
computing device(s) 102 through the one or more networks
106, through separate networks, or through any other suit-
able type of communication connection.

Further, each administrator device 110 may include a
respective instance of an administrator application 122 that
may execute on the administrator device 110, such as for
communicating with a management web application 124
executable as a service on one or more of the service
computing device(s) 102. For instance, the administrator
120 may use the administrator application for sending
management instructions for managing the system 100, as
well as for sending management data for storage on the
network storage system(s) 104 and/or for retrieving stored
management data from the network storage system(s) 104,
such as through a management request 126 or the like. In
some cases, the administrator application 122 may include a
browser or may operate through a browser, while in other
cases, the administrator application 122 may include any
other type of application having communication function-
ality enabling communication with the management web
application 124 over the one or more networks 106.

The service computing devices 102 may execute a storage
program 130, which may provide a gateway to the network
storage systems(s) 104, such as for sending data to be stored
to the network storage systems(s) 104 and for retrieving
requested data from the network storage systems(s) 104. In
addition, the storage program 130 may manage the data
stored by the system 100, such as for managing data
retention periods, data protection levels, data replication,
and so forth.

The service computing devices 102 may further include a
metadata database (DB) 132, which may be divided into a
plurality of metadata DB partitions 134(1)-134(N) and
which may be distributed across a plurality of the service
computing devices 102. For example, the metadata DB 132
may be used for managing object data 136 stored at the
network storage system(s) 104. The metadata DB 132 may
include numerous metadata about the object data 136, such
as information about individual objects, how to access the
individual objects, storage protection levels for the objects,
storage retention periods, object owner information, object
size, object type, and so forth. Further, a DB management
program 138 may manage and maintain the metadata DB
132 such as for updating the metadata DB 132 as new
objects are stored, old objects are deleted, objects are
migrated, and the like. The service computing devices 102
that include the database partitions 134 may be referred to as
database nodes 140, and may each maintain a portion of the
database 132 corresponding to one or more of the partitions
134.

In addition, the service computing devices 102 that
execute services thereon (examples of services illustrated in
FIG. 1 include the user web app 116 and the management
web app 124), may be referred to as client nodes 142. Each
client node 142 may maintain a respective local cache 146
(also referred to as a “near cache” or “local view” in some
cases), such as a first local cache 146(1) and a second local
cache 146(2) in the illustrated example. The client nodes 142
may operate as clients with respect to the metadata database
132. In some cases, the client nodes 142 may update the

10

15

20

25

30

35

40

45

50

55

60

65

6

local caches 146 that may be maintained on the client nodes
142. For example, the local cache 146 may be periodically
updated based on updates to the database 132 and/or by
other techniques as discussed additionally below. Accord-
ingly, as one example, when the user web application 116
receives a data request 118 from a user device 108, the user
web application 116 may access the local cache 146(1) to
determine a database node 140 to communicate with for
performing the data request 118. Through the use of the local
cache 146(1), the user web application 116 is able to reduce
the number of queries for obtaining desired information
from the metadata DB 132 for performing the data request
118.

Furthermore, some or all of the service computing devices
102 may include a respective instance of a node manage-
ment program 148 that is executed by the respective service
computing device 102 to manage the respective service
computing device 102 as part of the system 100 and to
perform other functions attributed to the service computing
devices 102 herein. In the case that the service computing
device 102 is a database node 140, the node management
program may further manage a configuration of the database
node 140 to perform the actions such as configuring the
database nodes 140 into partition groups and controlling the
operation of the partition groups.

As one non-limiting example, the database nodes 140
may be configured in Raft groups according to the Raft
Consensus Algorithm to ensure data redundancy and con-
sistency of the database partitions 134 of the distributed
metadata database. According to the Raft algorithm, one
database node 140 of each partition group may be elected as
a leader and may be responsible for servicing all read and
write operations for that database partition 134. Accordingly,
the leader nodes may serve as metadata gateways for the
client nodes 142. The other database nodes 140 are follower
nodes that receive copies of all transactions to enable them
to update their own metadata database information. Should
the leader node fail or timeout, one of the follower nodes
may be elected as leader and may take over serving read and
write transactions. Client nodes of the metadata system
herein are able to discover (e.g., by accessing a respective
local cache 146 or sending an inquiry) which database node
140 is the leader of each partition 134 and direct requests to
that database node 140.

Accordingly, the examples herein include a system able to
route requests for a highly-available scalable distributed
metadata database 132. The metadata database 132 herein
may provide high-availability by maintaining strongly con-
sistent copies of the metadata on separate metadata nodes
140. Further, the distributed metadata database 132 provides
scalability by partitioning the metadata and distributing the
metadata across distinct metadata nodes 140. Further, the
solution herein optimizes the ability for a client application
to find the partition leader for a given request.

To enable updating of the local caches in an efficient
manner, at least some of the service computing devices 102
may execute a messaging program 150. For example, the
messaging program 150 may enable creation of cache
update messages 152 for updating the local queues 146
following a change in database data, database configuration,
or the like. In some examples, the messaging program
employed herein may include a message-broker program
that implements one or more of the Advanced Message
Queuing Protocol (AMQP), Streaming Text Oriented Mes-
saging Protocol (STOMP), Message Queuing Telemetry
Transport (MQTT), and/or other suitable messaging proto-
cols. Several non-limiting examples of software that may be

US 12,067,012 B2

7

used in some implementations include APACHE QPID,
JORAM, APACHE ACTIVEMQ, and RABBITMQ. For
example, AMQP is a standard protocol that is able to connect
applications on different platforms.

In some situations, an item in a local cache 146 may
become invalid either through timeout expiration or else
upon receiving a message indicating that the value has been
updated. An invalid item may be effectively removed from
the local cache 146 by the client node 142, e.g., by the
respective service(s) executing on the respective client node
142. For instance, each service that is executed on a client
node may maintain its own local cache 146 that may be used
by the respective service and that may be updated by the
service based on received cache update messages 152.

In some examples, when the value of an item of data is
changed in the database 132, a cache invalidation message
152 providing notification of the change using the AMQP
messaging protocol may be immediately published, such as
based on an instruction from a metadata node 140 having
information regarding the change. The update to the data-
base 132 and the generating of the cache update message
152 may be performed in line, e.g., the cache update
message 152 may be generated immediately after the update
is made to the database, but the update to the database and
generation of the cache update message 152 may be per-
formed asynchronously with respect to each other.

The client nodes 142 may be configured to listen for cache
update messages 152 indicating data-change events that are
relevant to the cache type(s) of their respective local caches
146. For instance, there may be different types of local
caches 146 of different data types, such as for different types
of services executed by the client nodes 142 The cache
update message 152 may be routed separately for each
different cache type, so that client nodes 142 having cache
types different from the cache type to which a particular
cache update message 152 pertains need not process data
they will not use. In addition every local cache instance (of
the appropriate type) receives a cache update message 152
for that data type indicating that the data item is invalid.

In some examples, a node, such as a database node 140,
a client node 142, or other computing node herein, may be
a single physical or virtual machine that may maintain one
or more of the programs, services, or data described herein.
All of the logical components, e.g., the metadata gateways,
as well as the client services, may execute on any physical
service computing devices 102 within the system 100. The
distributed metadata database 132 may use dynamic parti-
tioning in which data stored by the respective metadata
nodes 140 may be partitioned into a set of manageable
chunks (partitions 134) to distribute the data of database 132
across the plurality of metadata nodes 140. As the partitions
134 grow, the system may dynamically split the partitions
134 to form two or more new partitions, and may migrate the
new partitions to metadata nodes 140 that have sufficient
storage capacity to receive them and/or to newly-added
metadata nodes 140.

Communications within the system 100 may slow when
new metadata nodes 140 are added to the system 100, such
as to meet data growth. For example, at least a portion of
information included in the local caches 146 may become
invalid. Similarly the client service nodes may also be scaled
to match incoming workloads by adding new client nodes
142. As mentioned above, the client nodes 142 may each
maintain one or more local caches 146 that are an in-
memory cache that mirrors a subset of the information
stored in the metadata database nodes. The local caches 146
may increase system efficiency by greatly reducing the need

10

15

20

25

30

35

40

45

50

55

60

65

8

for and the frequency of database queries. For instance, in a
highly distributed system, constant accesses from client
nodes directly resulting in database queries (e.g., where the
requested data is stored in a persistent media such as hard
disks) can be expensive and can increase system latency.

In some cases, the data in the distributed database 132
may be updated through user requests and updates might
occur only on specific database nodes 140. Consequently,
when a mirror of the updated data exists in the local cache(s)
146 of one or more client nodes 142, then that data becomes
stale or invalid. Accordingly, some examples herein may
keep the data in the local caches 146 refreshed asynchro-
nously using a distributed invalidation scheme. As one
example, a service may periodically mark the data in the
local cache 146 as invalid. Upon arrival of a new request for
that data, the service may update the local cache 146 by
querying the database 132 for the latest values in the
database 132.

An example algorithm for invalidating and updating the
local caches 146 includes the following. (1) Each client node
142 maintains a local cache 146 of data that the client node
142 has previously retrieved from the database 132 on an
as-needed basis. (2) A client node 142 may have multiple
local caches 146, each holding a different type of data and
configured with different, optimized parameters, such as for
use by one or more services executed on the client node 142.
(3) Each item of data in a local cache 146 may expire after
a configurable amount of time. For instance, the expiration
time may be chosen to minimize database accesses, while
also preventing data in the local cache 146 from going far
out of date. (4) When the value of an item of data is changed
in the database 132, a cache update message 152 advertising
the change using a messaging protocol such as AMQP, may
be immediately generated and published. The update in the
database 132 and the generation of the message may be
performed in line. (5) Each service listens for cache update
messages 152 indicating data-change events for a respective
type of cache used by the service. In some examples, the
cache update messages 152 may be routed separately for
each cache type, so that client nodes 142 and services
managing local caches need not process data they will not
use. (6) Every local cache instance (of the specified type)
receives a cache update message 152 for that data type
indicating that the data item is invalid. (7) An item may
become invalid through at least one of expiration of a
timeout, or upon receiving a cache update message 152
indicating that the item value has been updated. An invalid
item is effectively removed from the local cache, such as by
marking the item as deleted or otherwise allowing the
storage location of the item to be overwritten in due course.
(8) When a client needs to access a data item, the cache
returns any value it has stored immediately. If there is no
stored value, or if that value has been invalidated, the
program managing the local cache 146 may request the
current value from the database 132. (9) Cache update
messages 152 may be configured with a “time-to-live” value
so they do not survive past their useful lifetime. For
example, items in the local caches 146 may be automatically
expired after a certain time. (10) As an additional optimi-
zation, in some examples, the cache update message 152
may contain a partial or full value for the updated data. This
raises the possibility that multiple client nodes may update
a value simultaneously. In that case, a distributed tick
counter may be used by the programs managing the respec-
tive local caches 146 to identify which value is most recent.
This optimization may reduce the database load even further
for write-heavy workloads.

US 12,067,012 B2

9

With the architecture and algorithm discussed above, the
amount of accesses to the database 132 by the client nodes
142 may be greatly reduced for read-intensive workloads.
Furthermore, the system 100 may be configured with an
expiration threshold that prevents the local caches 146 from
becoming out of date beyond the threshold. A separate
expiration threshold may be configured for each different
type of local cache 146 and/or for individual local caches of
the same type on different client nodes 142. For example, a
local cache 146 may be configured to expire least-recently-
used data to enforce memory usage limits.

Furthermore, the local caches 146 may be updated due to
internal events. For example, a local cache 146 may be
configured to store all system metadata except for user
object metadata that could grow to trillions of pieces of
metadata. In this case, the system metadata that is mirrored
in the local cache 146 may be user driven or internal system
metadata such as a metadata partition map. The metadata
partition map is a table or other data structure that includes
partition identifiers (IDs) and the IDs of the database nodes
140 on which the respective partitions reside. All user
requests related to object management such as putObject and
getObject requests may cause a service (e.g., the user web
app 116) to look up at least four different metadata types,
such as user information, bucket information, partition infor-
mation, and object information. Thus, in some cases, it is
possible that all four types of metadata may get refreshed
due to a single user request. To avoid such a situation, some
examples herein may employ a dynamic metadata partition-
ing technique that involves dividing all the metadata types
and tables into the partitions 134. The partitions 134 are
distributed across the database nodes 140 to provide uniform
load management. Partition map invalidation may occur
when a metadata partition is split into two or more partitions.
While the partition split may not be driven by user requests,
the invalidation and further refresh procedure may be similar
to the refresh resulting from user operations such as the
putObject and getObject requests discussed above.

Furthermore, to achieve better response times for end
users, the cache updates herein may be performed asynchro-
nously with respect to user write requests. Hence, there may
be a small delay before which the local caches 146 of the
services distributed across the system 100 on the client
nodes will be invalidated or otherwise updated. For instance,
the actual time to invalidate or otherwise update a local
cache 146 may be variable based on network and system
activity. The AMQP messaging protocol that may be used
herein is inherently robust since cache update messages 152
may be queued before delivery. Accordingly, cache update
messages 152 may be aggregated across multiple database
updates. For example, suppose that a bucket, user, and
partition map update all occurred and are enqueued concur-
rently, then there may be only one cache update message 152
actually sent to the respective services on the client nodes
142. Nevertheless, cache update messages 152 via AMQP
may still be lost in some situations, such as due to temporary
network failure, or the like. Accordingly, implementations
herein may include a mechanism to retry delivering mes-
sages up to a specific threshold of attempts.

Further, in the case where the delivery of the cache update
message 152 from queueing fails, the local caches 146 may
perform invalidation or other cache updates based on a time
threshold being exceeded. For instance, when the last update
for a given cache value exceeds a certain timeout value, the
local cache 146 may be configured to automatically invali-
date that entry. The timeout threshold employed for invali-

10

15

20

25

30

35

40

45

50

55

60

65

10

dation herein may be configurable so that the timeout
threshold may be adjusted based on system workload
dynamics, or the like.

In some cases, the service computing devices 102 may be
arranged into one or more groups, clusters, systems, or the
like, at a site 154. In some cases a plurality of sites 154 may
be geographically dispersed from each other such as for
providing data replication, disaster recovery protection, or
the like. Further, in some cases, the service computing
devices 102 at a plurality of different sites 154 may be
configured for securely communicating with each other,
such as for providing a federation of a plurality of sites 154.

FIG. 2 is a block diagram illustrating an example logical
configuration of a system 200 according to some implemen-
tations. In some examples, the system 200 may correspond
to the system 100 discussed above or any of various other
possible computing system architectures, as will be apparent
to those of skill in the art having the benefit of the disclosure
herein. The system 200 may enable distributed object stor-
age and may include the use of web applications as front end
services for users and administrators. In some cases, the
system 200 may store objects on the network storage (not
shown in FIG. 2) in buckets that may be created by the end
users 112, 120. The system 200 may enable complex man-
agement and storage of data using resources distributed
across on-premises and cloud systems. In the system 200,
scalability may be provided by logically partitioning the
stored metadata that is stored in the distributed database 132.

The system 200 of FIG. 2 may include a distributed
system of client nodes 142 and database nodes 140 able to
tolerate client nodes 142 using outdated cache data for some
operations, which can improve system performance and
scaling characteristics. This provides reduced database loads
for read-intensive workloads, and also for write-intensive
workloads in some examples. For example, when new
values are written to the distributed database 132, individual
client nodes 142 having respective local caches 146 may
receive cache update messages 152 indicating that the
corresponding data item has been invalidated. For additional
optimization, the cache update message 152 may contain
information about the new data value. Furthermore, a data-
base read may be executed when a local cache 146 has no
record of a data item, or that data item has become invalid
without any updated value.

In this example, the system 200 incorporates a messaging
queue grid 202 for queueing and routing the cache update
message 152 to the services executing on the client nodes
142. For instance, the messaging queue grid 202 may be
provided by the messaging program 150 discussed above
with respect to FIG. 1, and may be hosted on one or more
messaging nodes 204. The messaging nodes 204 may cor-
respond to one or more of the service computing devices 102
discussed above, which may execute the messaging program
150. In some cases, the messaging program 150 may be
executed on the same service computing devices 102 that
serve as the database nodes 140, and/or on the service
computing devices 102 that serve as the client nodes 142,
and/or on other service computing devices 102 in the system
100 discussed above with respect to FIG. 1. The messaging
queue grid 202 may include a plurality of message queues
such as message queue 208(1), message queue 208(2), and
message queue 208(3), each of which may be maintained in
a separate virtual container, such as a DOCKER container or
the like. In some examples, the message queues 208(1)-208
(3) may be maintained on separate physical or virtual
machines.

US 12,067,012 B2

11

In this example, the distributed database 132 includes a
plurality of metadata gateways 210, which may correspond
to the database nodes 140. For instance, as discussed above,
in some examples, each database partition 134 may be
maintained by a partition group of two or more database
nodes 140. Each partition group may have a leader node that
responds to user read and write requests to that respective
partition 134. Accordingly, the partition leader for each
partition group may serve as the metadata gateway 210 for
that partition 134. In this example, four metadata gateways
210(1)-210(4) are illustrated for explanation purposes; how-
ever, in actual implementations, some examples of the
systems herein may include a much larger number of meta-
data gateways 210, depending on the number of database
partitions 134.

The message queues 208 are configured to deliver cache
update messages 152 to services executing on the client
nodes 142. In this example, a first service program 212 may
correspond to the user web application 116 discussed above
that may provide a user device 108 data access services. For
example, the first service program 212 may maintain a local
cache 146(1) containing information that may be used to
access the metadata gateways 210. For example, the first
service program 212 may provide client functionality for
enabling the client node 142(1) to interact with the metadata
gateways 210 for retrieving metadata. In addition, the first
service program 212 may provide functionality for receiving
the cache update messages 152 for updating the associated
local cache 146(1). Further, the first service program 212
may interact with the storage program 130 (not shown in
FIG. 2), such as for retrieving object data 136 based on
retrieved metadata and/or metadata maintained in the local
cache 146(1), such as discussed above with respect to FIG.
1. Further, the first service program 212 may exchange
communications 214 with a user device 108, such as for
sending or receiving user data.

In this example, a second client node 142(2) may also
execute an instance of the first service program 212, may
maintain a local cache 146(2), and may exchange commu-
nications 216 with another user device 108. In addition, in
this example, a third client node 142(3) executes two ser-
vices, namely a second service program 218 and a third
service program 220. For example, the second service
program may correspond to the management web applica-
tion 124 discussed above with respect to FIG. 1 that provides
management services to the administrators. For example, the
second service program 218 may include client functionality
for interacting with other nodes in the system 200, including
the client nodes 142, the messaging nodes 204, and/or the
database nodes 140. The second service program 218 may
exchange communications 222 with an administrator device
110, such as for receiving management instructions, provid-
ing status updates, and so forth. The second service program
218 may maintain a local cache 146(3) that, in some
examples, may contain one or more data types that are
different from the data types maintained in the local caches
146(1) and 146(2), or vice versa.

In addition, the third service program 220 may provide
another type of service that is different from the services
provided by the first serviced program 212 and the second
service program 218. As several non-limiting examples, the
third service may include garbage collection, object data
management, or the like. The third service program 220 may
exchange communications 224 with an administrator device
110, such as for receiving management instructions, provid-
ing status updates, and so forth. The third service program
220 may maintain a local cache 146(4) that, in some

10

15

20

25

30

40

45

50

55

60

65

12

examples, may include one or more data types that are
different from the data types maintained by the local caches
146(1), 146(2) and 146(3), or vice versa.

When a metadata gateway 210 changes the value of an
item of data in the distributed database 132, or otherwise
makes a change to the database 132, the metadata gateway
210 may send an enqueue instruction 230, which may
include information about the changed value to one of the
message queues 208. In some examples, the message queue
208 may be selected at random, although other selection
techniques may alternatively be used.

Receipt of the enqueue instruction may cause the mes-
saging program 150 at the respective messaging node 204 to
generate a cache update message 152 and add the cache
update message 152 to the respective message queues 208.
For example, the cache update message 152 may be gener-
ated, queued and distributed according to the AMQP mes-
saging protocol. As mentioned above, the cache update
messages 152 may be advertised or otherwise routed to the
respective service programs 212, 218, 220 executing on the
client nodes 142.

As one example, the cache update messages 152 may be
routed separately for each different type of local cache 146,
depending on the data types included therein and the data
type affected by the update to the database 132. For instance,
if the local caches 146(1) and 146(2) have one or more data
types corresponding to the update, and the local caches
146(3) and 146(4) do not include these one or more data
types, the cache update messages 152 directed to the first
service program 112 are not routed to the second service
program 218 or the third service program 220 based on
identification of the data type affected by the change, an
indication of which may be provided, e.g., by the metadata
gateway 210 that made the change to the database 132.
Accordingly, the service programs whose caches are not
affected by a change to the database 132 may not receive or
process cache update messages 152 that are not relevant to
their respective local caches 146.

FIGS. 3-5 illustrate an example of creating a new bucket
in the database 132; invalidating, due to the change in the
database, existing local caches 146 of several services that
include bucket information in their local caches; and sub-
sequently updating several local caches to include the
updated database information. The example of FIGS. 3-5
may correspond in part to example system 200 of FIG. 2
discussed above; however, the client node 142(2) is omitted
for clarity of illustration. Other non-participating compo-
nents are also excluded.

FIG. 3 is a block diagram illustrating an example 300 of
creating a new bucket according to some implementations.
In this example, suppose that the user 112 of the user device
108 sends a write request 302 to cause creation of a new
bucket at the network storage system(s) 104 (not shown in
FIG. 3). The first service program 212 may receive the write
request 302 and, in response, may send a write request 303
to the metadata gateway 210(3), such as based on routing
information currently included in the local cache 146(1). In
response, the metadata gateway 210(3) may update the
metadata in the database 132, such as by creating a new
record 304 for the new bucket. In this example, suppose that
the record 304 includes a name 306 of the bucket (i.e.,
“Bucket 17) and settings 308 for the bucket, which include
a retention period of 30 days and synchronization settings.
The bucket may also be created at the network storage
systems 104 (not shown in FIG. 3). The metadata gateway
210(3) returns a write response 310 to the first service

US 12,067,012 B2

13

program 212. In turn, the first service program 212 returns
a write response 312 to the user device 108 indicating that
the bucket has been created.

FIG. 4 is a block diagram illustrating an example 400 of
invalidating local caches using a distributed messaging
queue according to some implementations. In this example,
in association with creation of the new bucket, as discussed
above with respect to FIG. 3, the metadata gateway 210(3)
may send an enqueue instruction 402 to one of the messag-
ing nodes 204 that include one of the message queues, i.e.,
message queue 208(2) in this example. As mentioned above,
in some examples, the message queue 208(2) and/or mes-
saging node 204 may be selected by the metadata gateway
210(3) at random. In other examples, the metadata gateway
210(3) may employ any other suitable technique for select-
ing one of the message queues 208(2)/messaging nodes 204
to receive the enqueue instruction 402. In some examples,
the metadata gateway 210(3) may include the record 304
created in the database with the enqueue instruction 402;
however, in this example, suppose that the metadata gateway
210(3) merely identifies the data type of the metadata record
affected by the change made to the database (i.e., a bucket).

Based on receiving the enqueue instruction 402, the
messaging node 204 may create a cache update message 152
to send to the services that maintain local caches with bucket
information. In this example, suppose that all of the first
service program 212, the second service program 218, and
the third service program 220 include bucket information in
their local caches 146(1), 146(3), and 146(4), respectively.
The messaging node 204 may add the cache update message
152 to the message queue 208 to distribute the cache update
message 152 to the services. For example, the messaging
node may determine the types of local caches maintained by
each of the services for correctly routing the cache update
messages 152. Thus, the messaging node 204 may use the
message queue 208-2 to deliver the cache update message
152 to the first service program 212, the second service
program 218, and the third service program 220. In
response, the first service program 212 may invalidate or
otherwise update the bucket portion of the local cache
146(1); the second service program 218 may invalidate
otherwise update the bucket portion of the local cache
146(3); and the third service program 220 may invalidate or
otherwise update the bucket portion of the local cache
146(4).

FIG. 5 is a block diagram illustrating an example 500 of
updating a local cache according to some implementations.
In this example, suppose that the user 112 uses the user
device to submit a get bucket request 502 to the first service
program 212. In response, the first service program 212
determines that the bucket portion of the local cache 146 has
been invalidated and sends a get bucket request 504 for the
bucket information. In response, the metadata gateway 210
(3) may provide a get bucket response 506 that includes a
copy of the record 304 from the database 132 that may be
added to the local cache 146(1) by the first service program
212.

Similarly, suppose that the administrator 120 uses the
administrator device 110 to send a get object request 508 to
the third service program 220. The third service program
220 may send a get bucket request 510 to query the metadata
gateway 210(3) to request information related to the bucket
(bucket 1) that contains the requested object. In response,
the metadata gateway 210(3) may send a get bucket
response 512 to the third service program 220 may include
a copy of the metadata record 304 that the third service

20

25

40

45

55

14

program 220 may add to the local cache 146(4) to refresh the
bucket portion of the local cache 146(4).

Furthermore, while in this example, the services queried
the metadata gateway to obtain the updated information for
the new bucket from the database 132, in other examples, as
mentioned above, the record 304 may have been included in
the cache update message 152 previously sent to the services
to invalidate the associated local caches 146. Accordingly, in
this alternative example, it would have been unnecessary for
the first service 212 and the third service 220 to query the
metadata gateway 210 for the bucket record 304, as this
information would have already been in included in the
respective local caches 146(1) and 146(4).

FIG. 6 is a flow diagram illustrating an example process
for updating a local cache using distributed messaging
queues according to some implementations. The process is
illustrated as a collection of blocks in a logical flow diagram,
which represents a sequence of operations, some or all of
which may be implemented in hardware, software or a
combination thereof. In the context of software, the blocks
may represent computer-executable instructions stored on
one or more computer-readable media that, when executed
by one or more processors, program the processors to
perform the recited operations. Generally, computer-execut-
able instructions include routines, programs, objects, com-
ponents, data structures and the like that perform particular
functions or implement particular data types. The order in
which the blocks are described should not be construed as a
limitation. Any number of the described blocks can be
combined in any order and/or in parallel to implement the
process, or alternative processes, and not all of the blocks
need be executed. For discussion purposes, the process is
described with reference to the environments, frameworks,
and systems described in the examples herein, although the
process may be implemented in a wide variety of other
environments, frameworks, and systems. In FIG. 6, the
process 600 may be executed at least in part by a client node
executing one or more of the services programs 212, 218 or
220.

At 602, a service computing device may partition a
database across a plurality of database nodes to provide
multiple partitions distributed across the plurality of data-
base nodes.

At 604, a client node may execute a service, the service
maintaining a local cache of a subset of information main-
tained in the database.

At 606, the client node may receive, from a user com-
puting device, a first request, the first request affecting data
in the database. For example, the client node may receive a
write request or other request that will change the data in the
database.

At 608, the client node may send a second request based
on the first request to a first database node of the plurality of
database nodes, the second request causing the first database
node to change the data in the database.

At 610, the client node may receive, from a message
queue of a plurality of distributed message queues, a cache
update message based on the change to the data in the
database.

At 612, the client node may determine whether the
received cache update message included the updated data. If
so, the process goes to 614. If not, the process goes to 616.

At 614, the client node may update the local cache to
include the updated data included in the cache update
message.

At 616, the client node may invalidate at least a portion
of the local cache in response to the cache update message.

US 12,067,012 B2

15

At 618, the client node may receive, from a user com-
puting device, a third request to access data corresponding
to data in the database.

At 620, the client node may send a query to at least one
database node of the plurality of database nodes to deter-
mine information from the database related to the third
request.

At 622, the client node may update the local cache based
at least in part on the response to the query received from the
database node.

The example processes described herein are only
examples of processes provided for discussion purposes.
Numerous other variations will be apparent to those of skill
in the art in light of the disclosure herein. Further, while the
disclosure herein sets forth several examples of suitable
frameworks, architectures and environments for executing
the processes, the implementations herein are not limited to
the particular examples shown and discussed. Furthermore,
this disclosure provides various example implementations,
as described and as illustrated in the drawings. However, this
disclosure is not limited to the implementations described
and illustrated herein, but can extend to other implementa-
tions, as would be known or as would become known to
those skilled in the art.

FIG. 7 illustrates select example components of the ser-
vice computing device(s) 102 that may be used to implement
at least some of the functionality of the systems described
herein. The service computing device(s) 102 may include
one or more servers or other types of computing devices that
may be embodied in any number of ways. For instance, in
the case of a server, the programs, other functional compo-
nents, and data may be implemented on a single server, a
cluster of servers, a server farm or data center, a cloud-
hosted computing service, and so forth, although other
computer architectures may additionally or alternatively be
used. Multiple service computing devices 102 may be
located together or separately, and organized, for example,
as virtual servers, server banks, and/or server farms. The
described functionality may be provided by the servers of a
single entity or enterprise, or may be provided by the servers
and/or services of multiple different entities or enterprises.

In the illustrated example, the service computing device
(s) 102 includes, or may have associated therewith, one or
more processors 702, one or more computer-readable media
704, and one or more communication interfaces 706. Each
processor 702 may be a single processing unit or a number
of processing units, and may include single or multiple
computing units, or multiple processing cores. The proces-
sor(s) 702 can be implemented as one or more central
processing units, microprocessors, microcomputers, micro-
controllers, digital signal processors, state machines, logic
circuitries, and/or any devices that manipulate signals based
on operational instructions. As one example, the processor
(s) 702 may include one or more hardware processors and/or
logic circuits of any suitable type specifically programmed
or configured to execute the algorithms and processes
described herein. The processor(s) 702 may be configured to
fetch and execute computer-readable instructions stored in
the computer-readable media 704, which may program the
processor(s) 702 to perform the functions described herein.

The computer-readable media 704 may include volatile
and nonvolatile memory and/or removable and non-remov-
able media implemented in any type of technology for
storage of information, such as computer-readable instruc-
tions, data structures, program modules, or other data. For
example, the computer-readable media 704 may include, but
is not limited to, RAM, ROM, EEPROM, flash memory or

10

15

20

25

30

35

40

45

50

55

60

65

16

other memory technology, optical storage, solid state stor-
age, magnetic tape, magnetic disk storage, storage arrays,
network attached storage, storage area networks, cloud
storage, or any other medium that can be used to store the
desired information and that can be accessed by a computing
device. Depending on the configuration of the service com-
puting device(s) 102, the computer-readable media 704 may
be a tangible non-transitory medium to the extent that, when
mentioned, non-transitory computer-readable media exclude
media such as energy, carrier signals, electromagnetic
waves, and/or signals per se. In some cases, the computer-
readable media 704 may be at the same location as the
service computing device 102, while in other examples, the
computer-readable media 704 may be partially remote from
the service computing device 102. For instance, in some
cases, the computer-readable media 704 may include a
portion of storage in the network storage system(s) 104
discussed above with respect to FIG. 1.

The computer-readable media 704 may be used to store
any number of functional components that are executable by
the processor(s) 702. In many implementations, these func-
tional components comprise instructions or programs that
are executable by the processor(s) 702 and that, when
executed, specifically program the processor(s) 702 to per-
form the actions attributed herein to the service computing
device 102. Functional components stored in the computer-
readable media 704 may include the user web application
116, the management web application 124, the storage
program 130, the database management program 138, the
node management program 148, and messaging program
150, each of which may include one or more computer
programs, applications, executable code, or portions thereof.
Further, while these programs are illustrated together in this
example, during use, some or all of these programs may be
executed on separate service computing devices 102.

In addition, the computer-readable media 704 may store
data, data structures, and other information used for per-
forming the functions and services described herein. For
example, the computer-readable media 704 may store the
metadata database 132 including the database partitions 134.
In addition, the computer-readable media may store the local
cache(s) 146. Further, while these data structures are illus-
trated together in this example, during use, some or all of
these data structures may be stored on separate service
computing devices 102. The service computing device 102
may also include or maintain other functional components
and data, which may include programs, drivers, etc., and the
data used or generated by the functional components. Fur-
ther, the service computing device 102 may include many
other logical, programmatic, and physical components, of
which those described above are merely examples that are
related to the discussion herein.

The one or more communication interfaces 706 may
include one or more software and hardware components for
enabling communication with various other devices, such as
over the one or more network(s) 106. For example, the
communication interface(s) 706 may enable communication
through one or more of'a LAN, the Internet, cable networks,
cellular networks, wireless networks (e.g., Wi-Fi) and wired
networks (e.g., Fibre Channel, fiber optic, Ethernet), direct
connections, as well as close-range communications such as
BLUETOOTH®, and the like, as additionally enumerated
elsewhere herein.

Various instructions, methods, and techniques described
herein may be considered in the general context of com-
puter-executable instructions, such as computer programs
and applications stored on computer-readable media, and

US 12,067,012 B2

17

executed by the processor(s) herein. Generally, the terms
program and application may be used interchangeably, and
may include instructions, routines, modules, objects, com-
ponents, data structures, executable code, etc., for perform-
ing particular tasks or implementing particular data types.
These programs, applications, and the like, may be executed
as native code or may be downloaded and executed, such as
in a virtual machine or other just-in-time compilation execu-
tion environment. Typically, the functionality of the pro-
grams and applications may be combined or distributed as
desired in various implementations. An implementation of
these programs, applications, and techniques may be stored
on computer storage media or transmitted across some form
of communication media.

Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, it is to be understood that the subject matter defined in
the appended claims is not necessarily limited to the specific
features or acts described. Rather, the specific features and
acts are disclosed as example forms of implementing the
claims.

The invention claimed is:
1. A system comprising:
a first client computing device able to communicate with
a plurality of metadata database nodes and at least one
messaging node,
each metadata database node maintaining a portion of a
metadata database based on partitioning of the meta-
data database into a plurality of partitions to distribute
the metadata database across the plurality of metadata
database nodes, the plurality of metadata database
nodes further in communication with a second client
computing device,
the at least one messaging node providing a plurality of
message queues configured to receive instructions from
the metadata database nodes,
the first client computing device maintaining a first local
cache of a first cache type having a first subset of
metadata maintained in the metadata database, the
second client computing device maintaining a second
local cache of a second cache type having a second
subset of the metadata maintained in the metadata
database, the first cache type corresponding to a first
data type and the second cache type corresponding to a
second data type that is different from the first data
type, the first client computing device being configured
by executable instructions to perform operations com-
prising:
receiving, by the first client computing device, from a
user computing device, a first data request, the first
data request corresponding to first metadata in the
metadata database;

sending, by the first client computing device, a second
data request based on the first data request to a first
metadata database node of the plurality of metadata
database nodes, the second data request causing the
first metadata database node to change the metadata
in the metadata database;

receiving, by the first client computing device, from a
message queue of the plurality of message queues, a
cache update message from one of the metadata
database nodes and directed to the first cache type
based on the change to the metadata in the metadata
database, wherein cache update messages for the first
cache type are routed separately from cache update
messages for the second cache type; and

10

15

20

25

30

35

40

45

50

55

60

65

18

updating, by the first client computing device, the first
local cache of the first cache type based on the cache
update message.
2. The system as recited in claim 1, wherein:
receiving the cache update message includes receiving
updated metadata added to the metadata database as the
change to the metadata in the metadata database; and

updating the first local cache based on the cache update
message comprises updating the first local cache to
include the updated metadata added to the metadata
database.

3. The system as recited in claim 1, wherein updating the
first local cache based on the cache update message com-
prises invalidating at least a portion of the first local cache.

4. The system as recited in claim 1, the operations further
comprising receiving the cache update message according to
the Advance Message Queuing Protocol.

5. The system as recited in claim 1, wherein the system
includes a plurality of the messaging nodes and the plurality
of message queues are provided by the plurality of messag-
ing nodes, respectively, wherein each message queue is
provided in a respective virtual container.

6. The system as recited in claim 1, wherein the first client
computing device executes a first service on the first client
computing device, the first service maintaining the first local
cache, wherein the first service enables the user computing
device to access object data stored in a storage system and
corresponding to the metadata maintained in the metadata
database.

7. The system as recited in claim 6, wherein the first
service is one of:

a user web application; or

a management web application.

8. The system as recited in claim 1, wherein the first data
request is a data write request for storing data at a storage
system associated with the metadata database.

9. The system as recited in claim 1, wherein updating the
first local cache based on the cache update message com-
prises invalidating at least a portion of the first local cache,
the operations further comprising:

receiving a third request from the user computing device;

determining that at least the portion of the first local cache

is invalidated; and

sending a query to at least one metadata database node of

the plurality of metadata database nodes to determine
information from the metadata database related to the
third data request.

10. The system as recited in claim 9, further comprising
based on receiving a response from the at least one metadata
database node, sending metadata information to another
computing device associated with a storage system to obtain
data over a network from the storage system.

11. A method comprising:

receiving, by a first client computing device, from a user

computing device, a first data request, wherein the first
client computing device is able to communicate with a
plurality of metadata database nodes and at least one
messaging node, each metadata database node main-
taining a portion of a metadata database based on
partitioning of the metadata database into a plurality of
partitions to distribute the metadata database across the
plurality of metadata database nodes, the plurality of
metadata database nodes further in communication
with a second client computing device, the at least one
messaging node providing a plurality of message
queues configured to receive instructions from the
metadata database nodes, the first client computing

US 12,067,012 B2

19

device maintaining a first local cache of a first cache
type having a first subset of metadata maintained in the
metadata database, the second client computing device
maintaining a second local cache of a second cache
type having a second subset of the metadata maintained
in the metadata database, the first cache type corre-
sponding to a first data type and the second cache type
corresponding to a second data type that is different
from the first data type;

sending, by the first client computing device, a second

data request based on the first data request to a first
metadata database node of the plurality of metadata
database nodes, the second data request causing the
first metadata database node to change the metadata in
the metadata database;

receiving, by the first client computing device, from a

message queue of the plurality of message queues, a
cache update message from one of the metadata data-
base nodes and directed to the first cache type based on
the change to the metadata in the metadata database,
wherein cache update messages for the first cache type
are routed separately from cache update messages for
the second cache type; and

updating, by the first client computing device, the first

local cache of the first cache type based on the cache
update message.
12. The method as recited in claim 11, wherein:
receiving the cache update message includes receiving
updated metadata added to the metadata database as the
change to the metadata in the metadata database; and

updating the first local cache based on the cache update
message comprises updating the first local cache to
include the updated metadata added to the metadata
database.

13. The method as recited in claim 11, wherein there are
a plurality of the messaging nodes and the plurality of
message queues are provided by the plurality of messaging
nodes, respectively, wherein each message queue is pro-
vided in a respective virtual container.

14. The method as recited in claim 11, wherein the first
client computing device executes a first service on the first
client computing device, the first service maintaining the
first local cache, wherein the first service enables the user
computing device to access object data stored in a storage
system and corresponding to the metadata maintained in the
metadata database.

15. The method as recited in claim 11, wherein the first
local cache is maintained by a first service program execut-
ing on the first client computing device, and the second local
cache is maintained by a second service program executing
on the second client computing devices, wherein the second
service program provides a service that is different from a
service provided by the first service program.

16. One or more non-transitory computer-readable media
storing instructions that, when executed by one or more
processors, configure the one or more processors to perform
operations comprising:

receiving, by a first client computing device, from a user

computing device, a first data request, wherein the first
client computing device is able to communicate with a
plurality of metadata database nodes and at least one
messaging node, each metadata database node main-
taining a portion of a metadata database based on
partitioning of the metadata database into a plurality of
partitions to distribute the metadata database across the

20

plurality of metadata database nodes, the plurality of
metadata database nodes further in communication
with a second client computing device, the at least one
messaging node providing a plurality of message
5 queues configured to receive instructions from the
metadata database nodes, the first client computing
device maintaining a first local cache of a first cache
type having a first subset of metadata maintained in the
metadata database, the second client computing device
maintaining a second local cache of a second cache
type having a second subset of the metadata maintained
in the metadata database, the first cache type corre-
sponding to a first data type and the second cache type
corresponding to a second data type that is different
from the first data type;

sending, by the first client computing device, a second

data request based on the first data request to a first
metadata database node of the plurality of metadata
database nodes, the second data request causing the
first metadata database node to change the metadata in
the metadata database;

receiving, by the first client computing device, from a

message queue of the plurality of message queues, a
cache update message from one of the metadata data-
base nodes and directed to the first cache type based on
the change to the metadata in the metadata database,
wherein cache update messages for the first cache type
are routed separately from cache update messages for
the second cache type; and

updating, by the first client computing device, the first

local cache of the first cache type based on the cache
update message.
17. The one or more non-transitory computer-readable
media as recited in claim 16, wherein:
receiving the cache update message includes receiving
updated metadata added to the metadata database as the
change to the metadata in the metadata database; and

updating the first local cache based on the cache update
message comprises updating the first local cache to
include the updated metadata added to the metadata
database.

18. The one or more non-transitory computer-readable
media as recited in claim 16, wherein there are a plurality of
the messaging nodes and the plurality of message queues are
provided by the plurality of messaging nodes, respectively,
wherein each message queue is provided in a respective
virtual container.

19. The one or more non-transitory computer-readable
media as recited in claim 16, wherein the first client com-
puting device executes a first service on the first client
computing device, the first service maintaining the first local
cache, wherein the first service enables the user computing
device to access object data stored in a storage system and
corresponding to the metadata maintained in the metadata
database.

20. The one or more non-transitory computer-readable
media as recited in claim 16, wherein the first local cache is
maintained by a first service program executing on the first
client computing device, and the second local cache is
maintained by a second service program executing on the
second client computing devices, wherein the second service
program provides a service that is different from a service
provided by the first service program.

15

30

35

40

45

50

55

60

#* #* #* #* #*

