a2 United States Patent

Koyuncu et al.

US012056266B2

US 12,056,266 B2
*Aug. 6, 2024

(10) Patent No.:
45) Date of Patent:

(54) SECURE TRANSIENT BUFFER
MANAGEMENT

(71)
(72)

Applicant: Google LL.C, Mountain View, CA (US)

Inventors: Osman Koyuncu, San Diego, CA (US);
William Alexander Drewry, Nashville,
TN (US)

(73)

Assignee: Google PLLC, Mountain View, CA

(US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 4 days.

This patent is subject to a terminal dis-
claimer.
2D 17/654,113

(22)

Appl. No.:
Filed: Mar. 9, 2022

Prior Publication Data

US 2022/0198074 Al Jun. 23, 2022

(65)

Related U.S. Application Data

Continuation of application No. 17/500,819, filed on
Oct. 13, 2021, which is a continuation of application

(Continued)

(63)

Int. CL.
GO6F 21/62
GO6F 12/14

(51)
(2013.01)

(2006.01)
(Continued)
(52) US. CL
CPC GO6F 21/85 (2013.01); GOGF 12/1408

(2013.01); GO6F 12/1441 (2013.01);
(Continued)

300 a

Hardware Unit
304A

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

9,607,177 B2 *
9,911,008 B2

3/2017 Jejurikar
3/2018 Henry et al.

(Continued)

HO4L 9/08

FOREIGN PATENT DOCUMENTS

CN
WO
WO

106383790
2019118203
2020171844

2/2017
6/2019
8/2020

OTHER PUBLICATIONS

“Non-Final Office Action”, U.S. Appl. No. 17/500,819, filed Feb.
10, 2023, 12 pages.
(Continued)

Primary Examiner — Venkat Perungavoor
(74) Attorney, Agent, or Firm — Colby Nipper PLLC

(57) ABSTRACT

Methods and systems are described that secure application
data being maintained in transient data buffers that are
located in a memory that is freely accessible to other
components, regardless as to whether those components
have permission to access the application data. The system
includes an application processor, a memory having a por-
tion configured as a transient data buffer, a hardware unit,
and a secure processor. The hardware unit accesses the
transient data buffer during execution of an application at the
application processor. The secure processor is configured to
manage encryption of the transient data buffer as part of
giving the hardware unit access to the transient data buffer.

20 Claims, 5 Drawing Sheets

Hardware Unit Hardware Unit

2048

Application
N N

Processor RSN
X

Application
303

Memory
Secure Processor 208
310

Data Buffer

306A

Manager
Component

313 Data Buffer

o 3068

US 12,056,266 B2
Page 2

Related U.S. Application Data
No. 16/283,539, filed on Feb. 22, 2019, now Pat. No.

11,188,685.
(51) Int. CL

GOGF 21/60 (2013.01)

GOGF 21/72 (2013.01)

GOGF 21/73 (2013.01)

GOGF 21/78 (2013.01)

GOGF 21/85 (2013.01)

HO4L 9/14 (2006.01)

GOGF 21/79 (2013.01)
(52) US.CL

CPC ... GOGF 21/602 (2013.01); GOGF 21/72

(2013.01); GOGF 21/73 (2013.01); HO4L 9/14
(2013.01); GOGF 2212/1052 (2013.01); GO6F
2212/402 (2013.01)

(56) References Cited
U.S. PATENT DOCUMENTS

4/2019 Shah et al.

11,188,685 B2 11/2021 Koyuncu et al.

11,698,996 B2 7/2023 Koyuncu et al.

11,799,564 B2* 10/2023 Ghozlan HO04B 7/24
2003/0041248 Al 2/2003 Weber et al.
2003/0188178 Al 10/2003 Strongin et al.

10,248,333 Bl

2005/0086497 Al* 4/2005 Nakayama GO6F 21/32
713/185
2006/0095699 Al* 5/2006 Kobayashi GO6F 12/1458
711/164

2007/0226412 Al
2008/0155216 Al
2009/0228714 Al
2009/0259753 Al
2010/0174845 Al
2011/0131470 Al
2012/0147937 Al
2012/0159239 Al
2012/0173817 Al
2013/0086385 Al*

9/2007 Morino et al.

6/2008 Shoham

9/2009 Fiske et al.
10/2009 Hinton et al.

7/2010 Gorobets et al.

6/2011 Kambayashi et al.

6/2012 Goss et al.

6/2012 Chon et al.

7/2012 Jiang et al.

4/2013 Poeluev HO4L 9/0838

726/19

2014/0181520 Al
2015/0161060 Al

6/2014 Wendling et al.
6/2015 Suzuki et al.

2016/0165435 Al 6/2016 Mu
2016/0232105 Al 8/2016 Goss et al.
2017/0161724 Al* 6/2017 Lau ..o GO06Q 20/353

2018/0011802 Al
2018/0217944 Al
2019/0042477 Al

1/2018 Ndu et al.
8/2018 Eperiesi-Beck
2/2019 Chhabra et al.

2019/0050844 Al*
2019/0327242 Al
2020/0272770 Al
2022/0067222 Al
2023/0135699 Al*

2/2019 Pan ... G06Q 20/3227
10/2019 Anderson et al.
8/2020 Koyuncu et al.
3/2022 Koyuncu et al.
5/2023 Lia0 ..occovivviiiiennn HO04W 4/50
370/252

OTHER PUBLICATIONS

“Notice of Allowance”, U.S. Appl. No. 17/500,819, filed Apr. 20,
2023, 5 pages.

Hsu, et al., “Securing Computerized Personal Data During Transit
and At Rest Using Programmable System on Chip (PSoC) Tech-
nology”, May 2009, pp. 415-420.

Kornaros, et al., “Hardware Support for Cost-Effective System-
level Protection in Multi-Core Socs”, Aug. 2015, pp. 41-48.

Lee, et al., “Mobile Platform for Networked RFID Applications”,
Jan. 2010, pp. 625-630.

Yang, et al., “Authenticated Storage Using Small Trusted Hard-
ware”, Nov. 2013, pp. 35-46.

“Final Office Action”, U.S. Appl. No. 16/283,539, filed May 28,
2021, 6 pages.

“First Action Interview Office Action”, U.S. Appl. No. 16/283,539,
filed Apr. 8, 2021, 3 pages.

“International Preliminary Report on Patentability”, Application
No. PCT/US2019/047569, Aug. 10, 2021, 7 pages.

“International Search Report and Written Opinion”, Application No.
PCT/US2019/047569, Nov. 22, 19, 12 pages.

“Notice of Allowance”, U.S. Appl. No. 16/283,539, filed Aug. 2,
2021, 8 pages.

“Pre-Interview First Office Action”, U.S. Appl. No. 16/283,539,
filed Mar. 19, 2021, 13 pages.

Anwar, et al., “Cross-VM Cache-based Side Channel Attacks and
Proposed Prevention Mechanisms: A Survey to Anwar”, Jun. 2017,
21 pages.

Jung, et al., “A Group-Based Wear-Leveling Algorithm for Large-
Capacity Flash Memory Storage Systems”, Oct. 2007, 5 pages.
Kuhn, et al., “Cipher Instruction Search Attack on the Bus-
Encryption Security Microcontroller DS5002FP”, Oct. 1998, 5
pages.

Li, et al., “A Survey of Hardware Trojan Threat and Defense”, Feb.
2016, 13 pages.

Phoenix, “High-Performance Low-Overhead Stochastic Wear Lev-
eling of Flash Memory By Comparing Age of a Block with Age of
a Randomly Selected Block”, Jul. 20, 2020, 16 pages.

Sajeesh, et al., “An Authenticated Encryption based Security Frame-
work for NoC Architectures”, Dec. 2011, pp. 134-139.

Shakya, et al., “Benchmarking of Hardware Trojans and Mali-
ciously Affected Circuits”, Mar. 2017, pp. 87-102.

* cited by examiner

U.S. Patent Aug. 6,2024 Sheet 1 of 5 US 12,056,266 B2
100 ™
Secure Processor
110
*
/
s S
< ~
s ~
s ~
, , y_ SR r ~a
Application ‘
P‘igcessor Hardware Unit 'Y Y) Hardware Unit
104A 104N
102
101
Memory Data Buffer
108 106

FIG.

1

US 12,056,266 B2

Sheet 2 of 5

Aug. 6, 2024

U.S. Patent

60¢
NWvHQ
pivyd S
JET a)i1¥lelg) bm@w_z

NSOZ |
NNO!

N/

N¥0C
waysAsgng
eiewe)

9O

o~ .- — e s o o

i

oy
P
o
- -

acike

[

060¢
NNINOI

| SO

)74
wssAsgng
Josuag
uQ-shempy

.

W

- on e e o

—- o o -

P
- -~
- -

-o

— -

pre—
g2le
03

e———
d50¢

NININGOI

N/

qv0¢
N
Buissaooid
abewy

[11¥4

J0§s2001d

ainoeg

N1] Wiz
(3
) SRR
—— p—
V602 | i__1_ £0¢
- Aol | AW
M’
YH0ce
nin 20¢
Buiuses) J0S$900id
~QUIYOBIN uoneayddy
/loow

US 12,056,266 B2

Sheet 3 of 5

Aug. 6, 2024

U.S. Patent

490¢
Jeyng eleq

V90¢
jeyng e

80¢
Aiouwsiy

NYOE
HuMn lempieH

£ ol

(2%
PI00aY

shayy

€it
euodwo)

Jabeuepy

fraand

01g

10S$9001d 808

gv0¢
HUM iempley

€0¢
uonesiiddy

08¢
J0SS8001d

uonesddy

v¥0¢
JUN |iempie

N 00€

U.S. Patent Aug. 6,2024 Sheet 4 of 5 US 12,056,266 B2

400 a

Hardware Unit
404

E() IOMMU
412 4058

Secure Processor
410

Memory
408

FIG. 4

U.S. Patent Aug. 6,2024 Sheet 5 of 5 US 12,056,266 B2

500 ™

Assign an encryption key to data associated with an
application executing at an application processor
502

Encrypt the data using the encryption key
504

Store the encrypted data at a memory

506
Is a hardware unit with permission to use the encryption NO Secure the
key accessing the data? encryption key
508 510
YES

Decrypt the data using the encryption key
512

FiG. 5

US 12,056,266 B2

1
SECURE TRANSIENT BUFFER
MANAGEMENT

RELATED APPLICATIONS

This application is a continuation application of U.S.
patent application Ser. No. 17/500,819, filed Oct. 13, 2021,
which in turn is a continuation application of U.S. patent
application Ser. No. 16/283,539, filed Feb. 22, 2019, the
disclosures of which are incorporated by reference herein in
their entireties.

BACKGROUND

Some systems rely on data buffers residing in memory to
store transient application data being processed by different
components of the system. For example, many mobile
devices rely on system on chip (SoC) architectures that do
not rely on central processing units (CPUs). Instead, these
mobile devices may use hardware accelerator units for
performing different functions alongside dedicated CPUs or
microcontrollers (e.g., application processors). Each hard-
ware accelerator unit may interface with a respective input
output memory management unit (IOMMU) to interface
with memory and manage information contained within
transient data buffers located in the memory. The data
contained within such transient data buffers may be sensitive
(e.g., personal to a user of an application). With reliance on
a shared memory, a hardware accelerator unit or application
processor of the system that has access to the memory may
further have access to the data contained within the data
buffers regardless if that component should have access to
the data.

SUMMARY

A system is described that secures application data being
maintained in transient data buffers that are located in a
memory that is freely accessible to other components of the
system, regardless as to whether those components have
permission to access the application data. The system
includes an application processor, a memory having a por-
tion configured as a transient data buffer, a hardware unit,
and a secure processor. The hardware unit accesses the
transient data buffer during execution of an application at the
application processor. The secure processor is configured to
manage encryption of data maintained in the transient data
buffer to give the hardware unit access to the transient data
buffer.

In one example, a system includes an application proces-
sor and a memory. The memory has a portion configured as
a transient data buffer. The system further includes a hard-
ware unit. The system further includes a secure processor
configured to manage encryption of the transient data buffer
to give the hardware unit access, during execution of an
application at the application processor, to data associated
with the application that is within the transient data buffer.

In a different example, a method is described for securing
a transient data buffer located in a memory of a system. The
method includes executing, by an application processor of
the system, an application that relies on a hardware unit of
the system to access data associated with the application that
is within the transient data buffer, assigning, by a secure
processor of the system, an encryption key to the transient
data buffer, and managing, by the secure processor, encryp-
tion of the transient data buffer to give the hardware unit

15

30

35

40

45

50

2

access to the data associated with the application that is
within the transient data buffer.

In yet another example, a computer-readable storage
medium includes instructions that, when executed, cause a
secure processor of a system to secure transient data buffers
located in a memory of the system by assigning an encryp-
tion key to a transient data buffer used by a hardware unit of
the system, the transient data buffer stores data associated
with an application, the storage of the data associated with
the application occurs during execution of the application at
an application processor of the system, and managing
encryption of the transient data buffer gives the hardware
unit access to the data associated with the application during
the execution of the application.

In another example, a system for securing a transient data
buffer located in a memory includes means for executing an
application that relies on a hardware unit of the system to
process data associated with the application that is stored in
the transient data buffer during execution of the application.
The system also includes means for assigning an encryption
key to the transient data buffer and means for managing
encryption of the transient data buffer to give the hardware
unit access to the data associated with the application during
the execution of the application.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a conceptual diagram illustrating an example
computing system configured to secure application data
being maintained in transient data buffers.

FIG. 2 is a conceptual diagram illustrating an additional
example computing system configured to secure application
data being maintained in transient data buffers.

FIG. 3 is a conceptual diagram illustrating an example
secure processor configured to secure application data being
maintained in transient data buffers of an example comput-
ing system.

FIG. 4 is a conceptual diagram illustrating an example
input and output memory management architecture of an
example computing system configured to secure application
data being maintained in transient data buffers.

FIG. 5 is a flow-chart illustrating example operations for
securing application data being maintained in transient data
buffers of an example computing system.

DETAILED DESCRIPTION

The present disclosure describes techniques and appara-
tuses to enable a system, such as a system on chip (SoC) for
a mobile device (e.g., a mobile phone), to secure application
data being maintained in transient data buffers that are
located in a memory that is freely accessible to hardware or
processing components of the system. The techniques may
do so regardless of whether those components have permis-
sion to access the application data. The techniques use a
secure processor that is isolated from other processing units
of'the system (e.g., application processors) to independently
manage encryption and decryption of application data being
stored in the transient data buffers.

The secure processor may interface with encryption
engines that are assigned to the hardware units of the system.
The secure processor may manage a set of encryption keys
and assign a unique encryption key to each transient data
buffer contained in the memory. The secure processor vali-
dates whether a hardware unit has permission to access a
transient data buffer (e.g., as being either a valid consumer
or producer of the data contained within the transient data

US 12,056,266 B2

3

buffer) and depending on the outcome of the validation,
directs or refrains from directing the encryption engines to
encrypt data (e.g., when the data is written to the transient
data buffer) or decrypt the data (e.g., when the data is read
from the transient data buffer).

By controlling access to the encryption keys used to
encrypt and decrypt the data, as opposed to controlling
access to the transient data buffers themselves, the secure
processor protects potentially sensitive application data by
ensuring that data obtained via an unauthorized access to a
transient data buffer at best results in compromised,
encrypted, and seemingly meaningless data. Furthermore,
the secure processor prevents unintended leaks of data
within the transient data buffers, for example, if residual data
in the transient data buffers is not cleared from the memory
when the memory is released back to the system.

In this way, the techniques of this disclosure enable a
system to secure the data contained within its transient data
buffers without having to introduce complex system-level
memory access controls to prevent unauthorized access of
the physical memory that contains the transient data buffers.
As such, even with reliance on a shared memory, the secure
processor prevents hardware accelerator units, application
processors, and other hardware and processing components
of the system from gaining access to a usable form of
application data contained within transient data buffers of
the system.

FIG. 1 is a conceptual diagram illustrating an example
computing system configured to secure application data
being maintained in transient data buffers, in accordance
with the techniques of this disclosure. The computing sys-
tem 100 may form part of any type of mobile or non-mobile
system. Some mobile examples of the computing system
100 include mobile phones, laptop computers, wearable
devices (e.g., watches, eyeglasses, headphones, clothing),
tablets, automotive/vehicular devices, portable gaming
devices, electronic reader devices, and remote-control
devices. Some non-mobile examples of computing system
100 include servers, network devices (e.g., routers, switches,
firewalls), desktop computers, television devices, entertain-
ment set-top devices, thermostat devices, garage door
opener devices, other home devices or appliances, tabletop
assistant devices, speaker devices, non-portable gaming
devices, and business conferencing equipment.

The computing system 100 may be a system-on-chip
(SoC). For example, the computing system 100 may be a
component of a mobile phone that replaces a traditional
central processing unit (CPU) or central controller process-
ing architecture. Rather than cause the mobile phone to
suffer from CPU performance bottlenecks, the distributive
processing architecture of the computing system 100 may
enable the mobile phone to offload work that would other-
wise need to be performed by a CPU to one or more
specialty hardware accelerator units, e.g., hardware units
104, that can perform the work more efficiently.

The computing system 100 of FIG. 1 includes an appli-
cation processor 102. The application processor 102 is a
main processing complex of the computing system 100. The
application processor 102 is configured to execute software
instructions (e.g., portions of applications and operating
systems) associated with the computing system 100. For
example, in cases where the computing system 100 is a SoC
in a mobile phone, the application processor 102 may
execute a mobile operating system, which provides an
operating environment for mobile applications, e.g., execut-
able applications pre-installed on the mobile phone or down-
loaded from an online application store. The application

30

40

45

55

4

processor 102 may include any combination of one or more
microcontrollers, application processors, digital-signal-pro-
cessors, controllers, and the like, or a processor and memory
system (e.g., implemented in a SoC), which process (e.g.,
execute) various computer-executable instructions to control
operation of the computing system 100. In some examples,
the computing system 100 can be implemented with any one
or a combination of hardware, firmware, or fixed logic
circuitry that is implemented in connection with processing
and control circuits, which are generally identified as the
application processor 102.

The computing system 100 further includes the group of
hardware accelerator units 104 including a hardware unit
104 A through a hardware unit 104N. Each of the hardware
units 104 is a specialized unit or component configured to
handle a particular set of one or more inputs and outputs of
the computing system 100. Each of the hardware units 104
is configured to process data on behalf of the application
processor 102.

For example, the hardware unit 104A may be a machine-
learning hardware accelerator unit configured to execute a
machine-learning model associated with the computing sys-
tem 100. The hardware unit 104A may be specifically
designed for executing machine-learning models. Rather
than tie up processing resources of the application processor
102 executing the machine-learning model, the hardware
unit 104A may execute the machine-learning model and
provide an interface from which the application processor
102 and other components of the computing system 100 can
interrogate the machine-learning model.

The other hardware units 104 may be specifically
designed for executing other respective functions of the
computing system 100. For example, the hardware unit
104N may be a specialized image processing hardware unit
configured to preprocesses facial images for their subse-
quent use in performing facial recognition techniques (e.g.,
for authenticating user access to the computing system 100).
Many other examples of the hardware units 104 exist
including camera subsystems, sensor input and output (1/O)
subsystems, graphics or video accelerator units, communi-
cation or radio units, always-on sensor subsystems, always-
on I/O subsystems, and the like.

The hardware units 104 and the application processor 102
exchange data over a link 101. The link 101 represents a
wired or wireless communication bus. The hardware units
104 can receive input data from the application processor
102 and the other hardware units 104 via the link 101. The
hardware units 104 can send output data to the application
processor 102 and the other hardware units 104 via the link
101. For example, the application processor 102 may
execute a mobile operating system and issue commands to
the hardware unit 104N during an unlock operation of the
mobile operating system. The commands direct the hard-
ware unit 104N to process (e.g., format) a facial image
captured during the unlock operation. The application pro-
cessor 102 or the hardware unit 104N issue other commands
to the hardware unit 104A during the unlock operation to
cause the hardware unit 104A to determine whether to
authenticate the unlock operation or invalidate the facial
image processed by the hardware unit 104N and fail the
unlock operation.

The application processor 102 and the hardware units 104
are communicatively coupled, via the link 101, to a memory
108. For example, the application processor 102 and the
hardware units 104 may access the memory 108 via the link
101 by sending read and write requests to a controller of the
memory 108. The link 101 may also be referred to as a

US 12,056,266 B2

5

“system bus 106 and can include any one or combination
of different bus structures, such as a memory bus or memory
controller, a peripheral bus, a universal serial bus, and/or a
processor or local bus that utilizes any of a variety of bus
architectures.

The memory 108 enables persistent and/or non-transitory
data storage (i.e., in contrast to mere signal transmission),
examples of which include random access memory (RAM),
non-volatile memory (e.g., any one or more of a read-only
memory (ROM), flash memory, EPROM, EEPROM), and a
disk storage device. In some examples, the memory 108
represents dynamic random-access memory (DRAM) of the
computing system 100. A disk storage device may be
implemented as any type of magnetic or optical storage
device, such as a hard disk drive, a recordable and/or
rewriteable compact disc (CD), any type of a digital versatile
disc (DVD), and the like. The memory 108 provides data
storage mechanisms to store a data buffer 106, other types of
information and/or data, and various software applications.
For example, an operating system can be maintained as
software instructions within the memory 108 and executed
by the application processor 102.

The memory 108 may be part of, or separate from, the
computing system 100. For example, as a SoC, rather than
include a functional portion that is configured as a non-
transitory memory, the computing system 100 may interface
via the link 101 with the memory 108 on an external chip.
The memory 108 is accessible to software entities executing
at each of the application processor 102, the hardware units
104, and any other component of the computing system 100
or external entity that interfaces with the link 101.

In general, the memory 108 is configured to store opera-
tional data associated with applications executing at the
application processor 102 and the hardware units 104. The
memory 108 stores a data buffer 106. The data buffer 106 is
a portion of the memory 108 that is configured as a transient
data buffer. The data buffer 106 represents a transient data
buffer controlled by one or more of the hardware units 104.
For example, the hardware unit 104N may generate a stream
of processed images and store the image stream at the
transient data buffer 106 and the hardware unit 104A may
access the transient data buffer 106 to validate the processed
images in the stream.

The application processor 102 and each of the hardware
units 104 may include respective memory management units
(MMUs). The MMU of the application processor 102 may
manage the mapping of the application processor 102 and
the hardware units 104 into logical address space of the
memory 108. The respective input output memory manage-
ment unit (IOMMU) of each of the hardware units 104 may
rely on the MMU of the application processor 102 to map a
respective input and output buffer space into a respective
portion of the memory 108.

The IOMMUs of the hardware units 104 may write data
to, and read data from, the respective input and output buffer
spaces, e.g., as a way to retain operational data during
execution of an application, as a way to share information or
communicate with other components of the computing sys-
tem 100, and the like. For example, the hardware unit 104A
may generate a stream of facial recognition scores and store
the stream of scores at the transient data buffer 106. Part of
an operating system executing at the application processor
102 may access the transient data buffer 106 to determine
whether, based on the stream of scores, to authenticate or fail
the unlock operation.

Data contained within the memory 108, including tran-
sient data within the transient data buffer 106, may be

10

15

20

25

30

35

40

45

50

55

60

65

6

sensitive (e.g., personal to a user of an application). The user
may not want the data to be shared outside of the computing
system 100, or even outside of specific subsystems of the
computing system 100. For example, a user may not want
images of the user’s face taken during a facial recognition
unlock operation to be shared with other computing systems
or devices beyond that shown in the computing system 100.
In addition, the user may not want the images to be shared
with any component of the computing system 100, other
than the machine-learning unit 104A and hardware unit
104N. Unfortunately, with reliance on memory 108 (e.g., a
shared memory) any hardware unit or processor of comput-
ing system 100 that has access to memory 108 may have
access to information contained within data buffer 106,
regardless if that component should have access to the data
or not.

To secure the transient data buffer 106 stored within the
memory 108, the computing system 100 includes a secure
processor 110. The secure processor 110 manages encryp-
tion of application data generated during execution of appli-
cations that are at least partially executing at the application
processor 102 and directing the hardware units 104 to access
the transient data buffer 106. The secure processor 110
automatically encrypts data stored at the memory 108 and
automatically decrypts the data when an authorized con-
sumer of the data accesses the data from the memory 108.

The secure processor 110 is at least communicatively
isolated from the application processor 102 and may be
operationally isolated from the application processor 102 as
well. Even if secure processor 110 and application processor
102 are not physically separated (e.g., by being connected to
a common ground or power source), the secure processor
110 and the application processor 102 are logically separated
so that the processors 102 and 110 cannot exchange data.
Therefore, an application or portion thereof executing at the
application processor 102 may not have privileges to access
information or affect operations associated with the secure
processor 110.

The secure processor 110 is communicatively coupled to
each of the hardware units 104. In some examples, secure
processor 110 is communicatively coupled to each of the
hardware units 104 via a respective input output memory
management unit (IOMMU). Each of the hardware units 104
may use an IOMMU configured to receive information (e.g.,
an encryption key) from the secure processor 110.

The secure processor 110 manages which of the hardware
units 104 has access to which transient data buffers stored in
the memory 108. The secure processor 110 may be config-
ured to manage the encryption of the data buffer 106 by
automatically directing the data within the data buffer 106 to
be encrypted prior to the data being written to the memory
108. For example, the secure processor 110 may be config-
ured to encrypt a data stream being output by an IOMMU of
the hardware unit 104 A as the data stream is transmitted, via
the link 101, and written to the memory 108. The secure
processor 110 may be configured to manage the encryption
of the data buffer 106 by automatically directing the data
within the data buffer 106 to be decrypted after the data is
read from the memory 108. For example, the secure pro-
cessor 110 may be configured to decrypt the data stream
being input by an IOMMU of the hardware unit 104N as the
data stream is received, via the link 101, and read from the
memory 108.

The secure processor 110 may assign permissions to
transient data buffers, such as data buffer 106, in one of
many ways. In some examples, an application executing at
the application processor 102 (e.g., an operating system, a

US 12,056,266 B2

7

consumer application) may specify any of the hardware
units as being authorized to consume or produce data stored
within a transient data buffer. In some examples, a producer
of data stored within a transient data buffer at the memory
108 may define (e.g., at initialization, at run-time) which of
the other hardware units 104, if any, is an authorized
consumer or producer of data within the transient data
buffer. In some examples, the secure processor 110 may be
preprogrammed with rules specifying authorized consumers
for transient data buffers when the data within the transient
data buffers is generated by certain hardware units 104. The
secure processor 110 may dynamically determine authorized
consumers for transient data buffers when the data within the
transient data buffers is generated by particular hardware
units 104.

No matter what defines access, for each transient data
buffer stored in the memory 108, the secure processor 110
may maintain a record of the authorized producers and
consumers of the data within the transient data buffer. For
example, in response to detecting a read or write access to
a transient data buffer stored in the memory 108, the secure
processor 110 may determine whether the accessor has the
appropriate type of access. If the accessor has write access,
the secure processor 110 may cause data output by the
accessor during the read or write access to be encrypted and
if the accessor has read access, the secure processor 110 may
cause data input by the accessor during the read or write
access to be decrypted.

The secure processor 110 may interface with encryption
engines that are implemented or at least assigned to the
hardware units 104. The secure processor 110 may manage
a set of encryption keys and assign a unique encryption key
to each transient data buffer contained in the memory 108.
The secure processor 110 may validate whether a particular
one of the hardware units 104 has permission to access a
transient data buffer (e.g., as being either a valid consumer
or producer of the data contained within the transient data
buffer) and depending on the outcome of the validation,
directs or refrains from directing the encryption engines to
encrypt data (e.g., when the data is written to the transient
data buffer) or decrypt the data (e.g., when the data is read
from the transient data buffer). For example, the secure
processor 110 may evaluate an accessor of a transient data
buffer based on the permissions assigned to the transient data
buffer. If the accessor has appropriate permissions (e.g., is
either an authorized producer or consumer), the secure
processor 110 may enable the accessor to generate encrypted
data or receive decrypted data by automatically encrypting
or decrypting the data upon write to or read from the
memory 108.

By managing encryption of, as opposed to controlling
access to, the transient data buffers contained in the memory
108, the secure processor 110 protects potentially sensitive
application data contained in the memory 108. The poten-
tially sensitive application data is protected by ensuring that
any data obtained via an unauthorized access to a transient
data buffer at best results in compromised, encrypted, and
seemingly meaningless data. The secure processor 110 pre-
vents unintended leaks of data within the transient data
buffers, for example, if residual data in the transient data
buffers is not cleared from the memory 108 when and if the
portion of the memory 108 that is allocated to the transient
buffer, is released back to the computing system 100.

Transient data buffers may become fragmented across
memory, particularly when the transient data buffers are
accessed by multiple different hardware units or processors.
Traditional systems require each of the multiple hardware

10

15

20

25

30

35

40

45

50

55

60

65

8

units or processors that access the transient data buffers to
execute dedicated memory management logic at the direc-
tion of an operating system or supervisor thread (e.g., a
hypervisor) executing at an application processor. As such,
these traditional systems may be susceptible to attack from
software entities that otherwise appear to manage memory
but instead perform malicious operations as part of an attack.
The techniques of this disclosure may enable a computing
system to secure data contained within transient data buffers
without having to introduce complex system-level memory
access controls to prevent unauthorized access of the
memory that contains the transient data buffers. The tech-
niques involve adding encryption functionality to IOMMU’s
of hardware units of a computing system, so that, for
dedicated data streams, transient data buffers are encrypted
with a key at the source (e.g., at the producer) such that only
legitimate or authorized consumers with access to the key
may obtain unencrypted access to the data. As such, even
with reliance on a shared memory, the secure processor
secures transient data buffers by preventing unauthorized
access to a usable form of their data.

FIG. 2 is a conceptual diagram illustrating an additional
example computing system configured to secure application
data being maintained in transient data buffers, in accor-
dance with the techniques of this disclosure. Computing
system 200 is an example of the computing system 100 of
FIG. 1 and is described in the context of the computing
system 100. The computing system 200 may be part of a
SoC, e.g., for a mobile device, that is communicatively
coupled to a memory 208.

The memory 208 is an example of the memory 108 of the
computing system 100. The memory 208 includes a con-
troller 207 and a dynamic random-access memory (DRAM)
209. The controller 207 is a processing unit configured to
interface with the computing system 200 via a link 201. The
controller 207 may process write commands and fulfill read
commands received via the link 201. For example, the
controller 207 may receive a write instruction via the link
101. The write instruction may specify data or a pointer to
the data and a logical location of the DRAM 209 at which
to write the data. The controller 207 may translate the logical
location to a physical location of the DRAM 209 and cause
a copy of the data to be written at the physical location. In
reverse, the controller 207 may receive a read instruction via
the link 101. The read instruction may specify a logical
location of the DRAM 209 from which to read the data. The
controller 207 may translate the logical location to a physi-
cal location of the DRAM 209 and cause the output of a copy
of the data written at the physical location. The controller
207 may perform other operations, besides responding to
read and write commands received via the link 201. For
instance, the controller 207 may perform maintenance
operations for maintaining integrity of the data stored in the
DRAM 209.

The computing system 200 includes an application pro-
cessor 202 and hardware units 204A through 204N (e.g.,
machine-learning hardware accelerator unit 204A, image
processing hardware accelerator unit 204B, always-on sen-
sor subsystem 204C, camera subsystem 204N, as well as any
quantity of additional or fewer hardware units or subsys-
tems, collectively “the hardware units 204”) all communi-
catively coupled to the memory 208 via the link 201. Other
types of the hardware units 204 may be used by other
examples of the computing system 200, for example, in
applications areas other than for mobile phones. For
example, in an automotive setting, the hardware units 204

US 12,056,266 B2

9

may include a radar or lidar hardware accelerator unit to
perform navigation and obstacle avoidance.

The application processor 202 includes a memory man-
agement unit (MMU) 203. The MMU 203 is in command of
IOMMUs 205A through 205N (collectively “the IOMMUSs”
205) of the computing system 200. Each of the IOMMUSs
205 is assigned to a respective different one of the hardware
units 204. For example, the IOMMU 205A may receive a
location of a respective input and output buffer space that
has been mapped by the application processor 202, to a
respective portion of the memory 208. The IOMMU 205A
may write data to, and read data from, the respective input
and output buffer spaces (e.g., to retain operational data
during execution of an application, to share information or
communicate with other components of the computing sys-
tem 200).

The computing system 200 includes encryption engines
212A through 212N (collectively “the encryption engines
212”). In some examples, the encryption engines 212 are
paired with multiple of the IOMMUs 205. In other
examples, each of the encryption engines 212 corresponds to
a different one of the IOMMUSs 205. The encryption engines
212 may be similar or different types of encryption engines.
For example, an encryption engine 212A may be a stream-
cypher type engine that cryptographically encrypts data. The
encryption engines 212 may perform advanced encryption
standard (AES) in counter mode (CTR) encryption tech-
niques. In other examples, the encryption engine 212A may
be a mangling engine, such as an XOR function, that
performs byte level encryption of data. The computing
system 200 may use a different combination of the encryp-
tion engines 212 depending on a desired level of security and
a desired level of performance.

Each of the encryption engines 212 is coupled to a
different corresponding one of the IOMMUSs 205 and is
therefore further coupled to a different corresponding one of
the hardware units 204. Each of the encryption engines 212
receives as input an encryption key from the secure proces-
sor 210.

The secure processor 210 is an example of the secure
processor 110 of FIG. 1. The secure processor 210 is
configured to selectively enable each of the encryption
engines 212 to encrypt or decrypt data being maintained in
transient data buffers at the memory 208. For example, the
secure processor 210 may be isolated from the link 201. The
secure processor 210 may communicate encryption keys
needed by the encryption engines 212 to cryptographically
scramble data written to the memory 208 and further needed
by the encryption engines 212 to unscramble data read from
the memory 208.

For each transient data buffer being managed by the
secure processor 210, the secure processor 210 may main-
tain a set of permissions that indicate any authorized pro-
ducer from the hardware units 204 and any authorized
consumer from the hardware units 204. When an authorized
producer or consumer from the hardware units 204 accesses
a transient data buffer, the secure processor 210 may ensure
that the data within the transient data buffer is encrypted or
decrypted automatically.

The secure processor 210 can determine the set of per-
missions for a particular transient data buffer in various
ways. The secure processor 210 may execute prepro-
grammed logic to assign a set of permissions. For example,
the secure processor 210 is configured to always grant read
permission to the image processing hardware accelerator
unit 204B, for any transient data buffer created or modified
by the camera subsystem 204N. As another example, the

30

40

45

50

10

secure processor 210 is configured to always grant read
permission to the machine-learning hardware accelerator
unit 204 A, for any transient data buffer created or modified
by the camera subsystem 204N.

The secure processor 210 may execute preprogrammed
logic to determine a set of permissions. For example, the
secure processor 210 may determine parameters of a tran-
sient data buffer (e.g., size, name, offset, address, type,
owner), and based on the parameters, infer which of the
hardware units 204 is a valid consumer or producer of data
with a transient data buffer. As one example, the secure
processor 210 may determine that a transient data buffer
created by the image processing hardware accelerator unit
204B with a first size or at a first location in memory 208 is
shared with the machine-learning hardware accelerator unit
204A and a transient data buffer created by the image
processing hardware accelerator unit 204B with a second
size (e.g., different than the first size) or at a second location
in memory 208 (e.g., different than the first location) is
shared with the camera subsystem 204N.

The secure processor 210 may determine a set of permis-
sions that apply to multiple of the hardware units 204. For
example, the secure processor 210 may determine that a
transient data buffer created by the always-on sensor sub-
system 204C is typically shared with other one of the
hardware units 204. The secure processor 210 may deter-
mine that a transient data buffer created by the always-on
sensor subsystem 204C is typically shared with other of the
hardware units 204.

FIG. 3 is a conceptual diagram illustrating an example
secure processor configured to secure application data being
maintained in transient data buffers of an example comput-
ing system, in accordance with the techniques of this dis-
closure.

The computing system 300 of FIG. 3 includes a secure
processor 310 communicating encryption keys 316A and
316B to hardware units 304 A through 304N (collectively
“the hardware units 304”). The computing system 300 also
includes a memory 308 as well as an application processor
302. The secure processor 310 includes a manager compo-
nent 313 and a keys record 314 and the application processor
302 includes an application 303. Transient data buffers 306 A
and 3068 (collectively “the transient data buffers” 306) are
located in the memory 308 and encrypted using an encryp-
tion key 316A or 316B.

The manager component 313 configures the secure pro-
cessor 310 to manage encryption of data maintained in
transient data buffers 306 by managing multiple encryption
keys at the keys record 314. The manager component 313
may be implemented as hardware, software, firmware, or
any combination thereof.

The manager component 313 updates the keys record 314
to indicate which of the hardware units 304 have access to
which of the transient data buffers 306. For example, the
keys record 314 may include an entry in a table for each of
the transient data buffers 306A and 306B. Associated with
each entry may be a respective encryption key 316A or
316B. Further associated with each entry may be a list of
authorized consumers (e.g., one or more of the hardware
units 304 authorized to read from the transient data buffers
106) and a list of authorized producers or sources (e.g., the
one or more of the hardware units 304 authorized to write to
the transient data buffers 106). In some examples, an autho-
rized producer or source may also be an authorized con-
sumer.

The manager component 313 may assign a unique key
316A or 316B from the keys record 314 to each of the

US 12,056,266 B2

11

transient data buffers 306A and 306B. For example, the
manager component 313 may assign the key 316A from the
keys record 314 to the data buffer 306A, and may further
assign the unique key 316B from the keys record 314 to the
data buffer 306B, in the memory 308. The manager com-
ponent 313 may assign different, unique keys from the keys
record 314 to each transient data buffer being secured by the
secure processor 310.

The manager component 313 may assign a unique key
316A from the keys record 314 to each of the hardware units
304 that has access to the transient data buffer 306A. For
example, the manager component 313 may assign the
unique key 316A from the keys record 314 to the hardware
units 304A and 304N so that the hardware unit 304A can
read what the hardware unit 304N writes to the data buffer
306A, and vice versa. The manager component 313 may
perform similar operations to assign the unique key 316B
from the keys record 314 to each one of the hardware units
304 (e.g., the hardware unit 304A and the hardware unit
304B) that has access to the transient data buffer 306B.

In some examples, the secure processor 310 may cause a
first encryption engine of one of the hardware units 304 to
automatically encrypt or decrypt data using an encryption
key that is also used by a second encryption engine of a
different one of the hardware units 304 to automatically
encrypt or decrypt the same data. In other words, the
manager component 313 may assign unique encryption keys
to multiples of the hardware units 304 so the multiples of the
hardware units 304 can securely share data within transient
data buffers that may be located in a memory that is
otherwise accessible to other components of computing
system 300. For example, the manager component 313 may
assign the encryption key 316A to the transient data buffer
306A which is shared between the hardware units 304A and
304B and may assign the encryption key 316B to the
transient data buffer 306B which is shared between the
hardware units 304A and 304N.

The manager component 313 may preserve associations
with the encryption keys 316A and 316B and the hardware
units 304 at the keys record 314. For example, the keys
record 314 may include one or more rules or logic that
specify which of the hardware units 304 are authorized
consumers of the transient data buffers 306 A and 306B. The
rules may specify different hardware units 304 as being
authorized consumers depending on various conditions.

The manager component 313 may monitor requested read
and writes from the IOMMU s of the hardware units 304. In
cases where a requested read or write references transient
data buffer 306A, which is shared between hardware units
304A and 304B, secure processor 310 may withhold encryp-
tion key 316A unless the access is initiated by one of
hardware units 304A and 304B. In cases where a read or
write attempts to access the transient data buffer shared
between hardware units 304A and 304B, secure processor
310 may share encryption key 316A with the encryption
engine of the one of hardware units 304A and 304B that
initiated the access. Similar operations may be performed
with regards to attempted writes or reads of the transient data
buffer shared between hardware units 304A and 304N.

The manager component 313 may interface with MMUs
and IOMMUs of the computing system 300 to segregate
data in the transient data buffers 306A and 306B and secure
the data within the transient data buffers 306A and 306B to
prevent unauthorized access. By enabling the hardware units
304 to automatically encrypt and decrypt the data within the
transient data buffers 306A and 306B, the manager compo-
nent 313 secures the data within the transient data buffers

20

30

40

45

55

12

306A and 306B without preventing physical access to the
transient data buffers 306A and 306B in the memory 308.
Automatic encryption and decryption of the data within the
transient data buffers 306A and 306B may segregate and
protect the transient data buffers 306A and 3068 by making
them indistinguishable from other random data in the
memory 308.

In some examples, the manager component 313 may
rotate keys defined in the keys record 314. Rotating the keys
in the keys record 314 may enable the manager component
313 to use a fresh key during each instantiation of a transient
data buffer. Using fresh keys, as opposed to reusing old keys,
enables the manager component 313 to prevent a malicious
entity from replaying a data transfer within the transient data
buffer during any future instantiations of the transient data
buffer if an old key is compromised. As such, any residual
data remaining in a decommissioned transient data buffer,
cannot be inadvertently leaked as any data remaining is
encrypted by an encryption key and, a transient data buffer
location that is no longer preserved.

FIG. 4 is a conceptual diagram illustrating an example
input and output memory management architecture of an
example computing system configured to secure application
data being maintained in transient data buffers, in accor-
dance with the techniques of this disclosure. Computing
system 400 is described in the contexts of the computing
system 100 of FIG. 1, the computing system 200 of FIG. 2,
and the computing system 300 of FIG. 3.

The computing system 400 of FIG. 4 includes a secure
processor 410 communicating with an encryption engine
412. The encryption engine 412 is assigned to a hardware
unit 404. The hardware unit 404 includes or is associated
with IOMMUs 405A and 405B (collectively “IOMMUs
405”). Hardware unit 404 is communicatively coupled to the
memory 408 via a link 401.

The IOMMUs 405 and the encryption engine 412 repre-
sent an alternative IOMMU architecture that may be used in
some instances, for example, to avoid latency issues that
might otherwise arise from having to enable or disable
encryption engine 412 during every access to a transient data
buffer, regardless whether the data within the transient data
buffer is sensitive or not. The IOMMU 405A represents a
first-level IOMMU stage.

During the first-level IOMMU stage, a determination is
made by the IOMMU 405A as to whether the data being
accessed in the memory 408 is sensitive or not. In cases
where the data is not sensitive, the IOMMU 405A engages
the IOMMU 405B to implement the second-level IOMMU
stage and access the data from the memory 408 without
encrypting or decrypting the data. In cases where the data is
sensitive, the IOMMU 405A engages the encryption engine
412 (e.g., which has already received an encryption key
assigned to the transient data buffer) to decrypt or encrypt
the data to fulfill the data access in the memory 408.

The IOMMU 405A may determine whether data is sen-
sitive and therefore needs encryption, in one of several
ways. The IOMMU 405A may be preprogrammed with rules
that define when to encrypt or refrain from encrypting data.
A producer or consumer of the data may indicate to the
IOMMU 405A via a message or variable flag whether the
producer or consumer expects the data to be encrypted.

FIG. 5 is a flow-chart illustrating example operations for
securing application data being maintained in transient data
buffers of an example computing system, in accordance with
the techniques of this disclosure. The operations 500 include
the steps 502 through 512. A secure processor, such as the
secure processor 110, 210, 310, or 410 of FIGS. 1 through

US 12,056,266 B2

13

4 may perform the operations 500. For ease of description,
FIG. 5 is described in the context of the secure processor
310. The secure processor 310 may perform the operations
500 in any order with additional or fewer steps than what is
shown in FIG. 5. The operations 500 may constitute a
method for securing a transient data buffer located in a
memory of a system, such as the transient data buffer 306A
or the transient data buffer 306B located in the memory 308
of the computing system 300.

The application 303 may execute at the application pro-
cessor 302. The application 303 may rely on one of the
hardware units 304 to process data associated with the
application 303 that is maintained at the transient data
buffers 306 A and 306B. The data in the transient data buffers
306A and 306B may be personal, user-sensitive data that a
user of the computing system 300 may wish to remain
private, at least from the application processor 302 and
entities that execute there.

In operation, the secure processor 310 assigns an encryp-
tion key to data associated with an application partially
executing at an application processor (502). For example,
the application 303 may rely on the hardware unit 304A to
perform a particular function using the data within the
transient data buffer 306A. The hardware unit 304B may
generate the data within the transient data buffer 306A and
the hardware unit 304A may consume the data within the
transient data buffer 306 A. The manager component 313 of
the secure processor 310 may maintain the keys record 314.
Within the keys record 314, the manager component 313
may include an entry that assigns the encryption key 316A
to the transient data buffer 306A. The manager component
313 may further indicate within the keys record 314 that, as
is typical with the transient data buffer 306A, the hardware
unit 3048 is an authorized producer and the hardware unit
304A is an authorized consumer of the transient data buffer
306A.

The secure processor 310 manages encryption of the data
associated with the application being maintained in the
transient data buffer by encrypting the data using the encryp-
tion key (504) and storing the encrypted data at a memory
(506). For example, whenever an IOMMU of the hardware
unit 304B writes to the transient data buffer 306A, the
manager component 313 may automatically cause the data
to be encrypted using the encryption key 316A before the
data is received by the memory 308 for storage at the
transient data buffer 306A. In other words, the secure
processor 310 may interrupt the data path between the
memory 308 and the hardware units 304 so that any data
headed for one of the transient data buffers 306 is encrypted
automatically.

Once the data is written to a transient data buffer, the
secure processor 310 determines whether a hardware unit
with permission to use the encryption key assigned to the
transient data buffer is accessing the data (508). For
example, whenever an IOMMU of any one of the hardware
units 304 attempts to read from the transient data buffer
306A, the manager component 313 may evaluate whether
one of the hardware units 304 has consumer privileges
associated with the transient data buffer 306 A. The manager
component 313 may query the keys record 314 for an
identifier of a requested consumer or requested producer.

In response to determining that a hardware unit without
permission to use the encryption key assigned to the tran-
sient data buffer is accessing the data (508, No branch), the
secure processor 310 secures the encryption key (510) so at
worst, the hardware unit can only obtain an encrypted form
of the transient data. For example, whenever an [IOMMU of

30

40

45

50

55

14

any one of the hardware units 304 without access to the
encryption key 316A attempts to read from the transient data
buffer 306A, at worst the IOMMU merely receives an
encrypted form of the data within the transient data buffer
306A.

In response to determining that a hardware unit with
permission to use the encryption key assigned to the tran-
sient data buffer is accessing the data (508, Yes branch), the
secure processor 310 automatically causes the data to be
decrypted using the encryption key assigned to the transient
data buffer when the data is read from the transient data
buffer (512). For example, whenever an IOMMU of the
hardware unit 304A reads from the transient data buffer
306 A, the manager component 313 may automatically cause
the data to be decrypted using the encryption key 316A
before the data reaches the hardware unit 304A. In other
words, the secure processor 310 may interrupt the data path
between the memory 308 and the hardware units 304 so that
any data originating from one of the transient data buffers
306 is decrypted, automatically.

As such, the secure processor 310 is configured to validate
whether each one of the hardware units 304 is an authorized
producer of the transient data buffer 306 A prior to automati-
cally directing the data associated with the application 303
that is within the transient data buffer 306A, to be encrypted
with the encryption key 316A. Likewise, the secure proces-
sor 310 is configured to validate whether each one of the
hardware units 304 is an authorized consumer of the tran-
sient data buffer 306 A prior to automatically directing the
data associated with the application 303 within the transient
data buffer 306 A, to be decrypted using the encryption key
316A. Manager component 313 may validate or vet, poten-
tial producers and consumers of data within the transient
data buffers 306A and 3068 automatically so that the data
contained within the transient data buffers 306A and 306B
can be secured, automatically, despite being freely acces-
sible to other components of the computing system 300.

For example, responsive to validating the hardware unit
304N as an authorized producer of the transient data buffer
306B, the secure processor 310 may automatically cause
data associated with the application 303 to be encrypted. The
secure processor 310 encrypts the data associated with the
application 303 using the encryption key 316B that is
assigned to the transient data buffer 306B when the hardware
unit 304N causes the data associated with the application
303 to be stored in the transient data buffer 306B. Likewise,
responsive to validating the hardware unit 304A as an
authorized consumer of the transient data buffer 3068, the
secure processor 310 may automatically cause the data
associated with the application 303 to be decrypted. The
secure processor 310 decrypts the data associated with the
application 303 using the encryption key 316B that is
assigned to the transient data buffer 306B when the hardware
unit 304A causes the data associated with the application
303 to be read from the transient data buffer 306B.

While various preferred embodiments of the disclosure
are described in the foregoing description and shown in the
drawings, it is to be distinctly understood that this disclosure
is not limited thereto but may be variously embodied to
practice within the scope of the following claims. From the
foregoing description, it will be apparent that various
changes may be made without departing from the spirit and
scope of the disclosure as defined by the following claims.

US 12,056,266 B2

15

What is claimed is:

1. A method for a system-on-chip (SoC) for a mobile
device, the method comprising:

managing, by a secure processor of the SoC, access by

hardware units of a plurality of hardware units of the
SoC, with the plurality of hardware units being internal
to the mobile device, to data stored in a transient data
buffer of a memory of the SoC by:
maintaining a record of the hardware units authorized
to access the data in the transient data buffer as an
authorized producer or an authorized consumer of
the data in the transient data buffer;
assigning permissions to access the transient data buffer
to the authorized hardware units;
dynamically managing encryption keys to selectively
enable encryption or decryption of the data in the
transient data buffer based on the record and the
permissions; and
at least one of:
automatically directing the data of the transient data
buffer to be encrypted prior to the data being
written to the memory; or
automatically directing the data of the transient data
buffer to be decrypted after the data is read from
the memory.

2. The method of claim 1, wherein assigning permissions
to access the transient data buffer to the authorized hardware
units further comprises:

assigning a permission to access the transient data buffer

to an authorized hardware unit responsive to receiving,

from an authorized producer, an indication of at least

one of:

another authorized producer of the data in the transient
data buffer; or

an authorized consumer of the data in the transient data
buffer.

3. The method of claim 1, wherein at least one of:

automatically directing the data of the transient data

buffer to be encrypted prior to the data being written to

the memory further comprises:

interrupting a data path between the memory and the
authorized hardware units so that the data headed for
the transient data buffer is encrypted; or

automatically directing the data of the transient data
buffer to be decrypted after the data is read from the
memory further comprises:
interrupting the data path between the memory and the
authorized hardware units so that the data originating
from the transient data buffer is decrypted.
4. The method of claim 1, wherein assigning permissions
to access the transient data buffer to the authorized hardware
units further comprises at least one of:
assigning a permission to access the transient data buffer
to a first hardware unit responsive to receiving, from an
application executing at an application processor, an
indication of the first hardware unit as an authorized
producer of the data in the transient data buffer; or

assigning a permission to access the transient data buffer
to the first hardware unit responsive to receiving, from
a hardware unit producing data stored within the tran-
sient data buffer, an indication of the first hardware unit
as an authorized producer of the data in the transient
data buffer.

5. The method of claim 1, wherein assigning permissions
to access the transient data buffer to the authorized hardware
units further comprises at least one of:

20

25

40

45

50

55

16

preprogramming the secure processor with rules specify-
ing authorized consumers of the data in the transient
data buffer based on the data within the transient data
buffer being generated by a first set of hardware units;
or
the secure processor dynamically determining authorized
consumers of the data in the transient data buffer based
on the data within the transient data buffer being
generated in accordance with the first set of hardware
units.
6. The method of claim 1, wherein the transient data
buffer includes a plurality of transient data buffers in the
memory,
wherein maintaining a record of the authorized hardware
units further comprises:
maintaining a record of authorized producers and
authorized consumers of the data within the transient
data buffer for each transient data buffer of the
plurality of transient data buffers.
7. The method of claim 1, further comprising:
detecting, by the secure processor, at least one of a read
access or a write access to the transient data buffer by
a hardware unit; and

responsive to detecting the read access or the write access,
determining, by the secure processor, whether the
accessing hardware unit is at least one of an authorized
producer or an authorized consumer of the data in the
transient data buffer.

8. The method of claim 7, further comprising at least one
of:

wherein responsive to determining the write access by the

authorized producer of the data in the transient data
buffer, causing, by the secure processor, a data output
by the accessing hardware unit during the write access
to be encrypted; and

wherein responsive to determining the read access by the

authorized consumer of the data in the transient data
buffer, causing, by the secure processor, a data input by
the accessing hardware unit during the read access to be
decrypted.

9. The method of claim 1, further comprising at least one
of:

interfacing, by the secure processor, with an encryption

engine implemented on a hardware unit of the autho-
rized hardware units; or

interfacing, by the secure processor, with an encryption

engine assigned to the hardware unit of the authorized
hardware units.

10. The method of claim 1, further comprising:

managing, by the secure processor, a set of encryption

keys; and

assigning, by the secure processor, a unique encryption

key of the set of encryption keys to each transient data
buffer contained in the memory.
11. The method of claim 1, further comprising:
validating, by the secure processor, whether a first hard-
ware unit is an authorized producer or an authorized
consumer of the data in the transient data buffer;

responsive to validating that the first hardware unit is an
authorized producer or an authorized consumer of the
data in the transient data buffer, directing, by the secure
processor, an encryption engine to encrypt the data or
decrypt the data; and

responsive to not validating that the first hardware unit is

an authorized producer or an authorized consumer of
the data in the transient data buffer, refraining from

US 12,056,266 B2

17

directing, by the secure processor, the encryption
engine to encrypt the data or decrypt the data.

12. The method of claim 11, wherein validating whether
the first hardware unit is an authorized producer or an
authorized consumer of the data in the transient data buffer
further comprises:

evaluating the first hardware unit based on the percussions

assigned to the transient data buffer; and

responsive to determining that the first hardware unit has

one or more appropriate percussions to access the
transient data buffer, enabling the first hardware unit to
generate encrypted data or receive decrypted data by
automatically encrypting or decrypting the data upon a
write to or a read from the memory.

13. The method of claim 1, further comprising:

determining, by the secure processor, a set of the permis-

sions to access the transient data buffer by executing

preprogrammed logic, wherein executing prepro-

grammed logic further comprises:

determining parameters of the transient data buffer; and

based on the determined parameters, inferring which of
the authorized hardware units are an authorized
consumer or an authorized producer of data of the
transient data buffer.

14. The method of claim 1, further comprising:

determining, by the secure processor, a set of permissions

that apply to multiple hardware units of the authorized
hardware units; and

determining, by the secure processor, that a transient data

buffer created by an always-on sensor subsystem is
shared with the multiple hardware units of the autho-
rized hardware units.

15. The method of claim 1, wherein the transient data
buffer includes a plurality of transient data buffers in the
memory, the method further comprising:

updating, by the secure processor, a keys record to indi-

cate which of the authorized hardware units have
access to which of the plurality of transient data buffers.

16. The method of claim 15, further comprising at least
one of:

preserving, by the secure processor, associations with the

encryption keys and the authorized hardware units at
the keys record; or

monitoring, by the secure processor, requested read and

writes from an input output memory management unit
of the authorized hardware units.

17. The method of claim 1, wherein at least one of
automatically directing the data of the transient data buffer
to be encrypted prior to the data being written to the memory
or automatically directing the data of the transient data
buffer to be decrypted after the data is read from the memory
further comprises:

10

15

20

25

30

35

40

45

50

18

securing the data within the transient data buffer without
preventing physical access to the transient data buffer
in the memory by the plurality of hardware units.
18. A system-on-chip for a mobile device comprising:
an application processor configured to process computer-
executable instructions to control operation of the sys-
tem-on-chip (SoC);
a plurality of hardware units of the SoC, with the plurality
of hardware units being internal to the mobile device,
the plurality of hardware units comprising processors
and configured to process data on behalf of the appli-
cation processor, a first hardware unit of the plurality of
hardware units configured to generate first data respon-
sive to a command from the application processor; and
a secure processor of the SoC configured to:
manage access by the plurality of hardware units to a
transient data buffer that is shared by at least the first
hardware unit and a second hardware unit of the
plurality of hardware units;

set a first key to encrypt the first data for storage of
encrypted first data in the transient data buffer; and

provide the first key based on permissions to enable
decryption of the encrypted first data from the tran-
sient data buffer to produce decrypted first data from
the transient data buffer, wherein:

the second hardware unit is configured to generate an
output based on the decrypted first data from the
transient data buffer, and

the application processor is further configured to execute
at least one operation of the SoC based on the decrypted
first data from the transient data buffer and based on the
output of the second hardware unit.

19. The system-on-chip of claim 18,

wherein the first hardware unit is further configured to
generate second data for processing by a third hardware
unit of the plurality of hardware units responsive to the
application processor;

wherein the secure processor is further configured to set
a second key to enable encryption of the second data for
storage of encrypted second data in the transient data
buffer; and

wherein the secure processor is further configured to
selectively provide the second key to enable decryption
of the encrypted second data to produce decrypted
second data from the transient data buffer for use by the
third hardware unit.

20. The system-on-chip of claim 19,

wherein the third hardware unit is configured to generate
an output based on the decrypted second data from the
transient data buffer; and

wherein the application processor is further configured to
execute at least one second operation of the SoC based
on the output of the third hardware unit.

#* #* #* #* #*

