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HARDWARE SENSOR SYSTEM FOR
IMPROVED SLEEP DETECTION

RELATED APPLICATION

The present application is a continuation of U.S. patent
application Ser. No. 16/601,561, filed Oct. 14, 2019, issuing
as U.S. Pat. No. 11,471,097 on Oct. 18, 2022, which
application claims priority to U.S. Provisional Patent Appli-
cation 62/745,976 filed on Oct. 15, 2018. The present
application also claims priority to U.S. Provisional Patent
Application No. 62/745,978 (8689P2327) and U.S. Provi-
sional Application No. 62/745,984 (8689P2337) both filed
on Oct. 15, 2019 and incorporates all three of those appli-
cations by reference in their entirety.

FIELD

The present invention relates to sleep sensors, and more
particularly to an improved sleep detection system including
sensor hardware.

BACKGROUND

An average person spends about one-third of his or her
life asleep. Sleep is the time our bodies undergo repair and
detoxification. Research has shown that poor sleep patterns
is an indication of and often directly correlated to poor
health. Proper, restful and effective sleep has a profound
effect on our mental, emotional and physical well-being.

Every person has a unique circadian rhythm that, without
manipulation, will cause the person to consistently go to
sleep around a certain time and wake up around a certain
time. For most people, a typical night’s sleep is comprised
of five different sleep cycles, each lasting about 90 minutes.
The first four stages of each cycle are often regarded as quiet
sleep or non-rapid eye movement (NREM). The final stage
is often denoted by and referred to as rapid eye movement
(REM). REM sleep is thought to help consolidate memory
and emotion. REM sleep is also the time when blood flow
rises sharply in several areas of the brain that are linked to
processing memories and emotional experiences. During
REM sleep, areas of the brain associated with complex
reasoning and language experience blood flow declines,
whereas areas of the brain associated with processing
memories and emotional experiences exhibit increased
blood flow.

Therefore, it is useful for everyone to know more about
how well they sleep.

BRIEF DESCRIPTION OF THE FIGURES

The present invention is illustrated by way of example,
and not by way of limitation, in the figures of the accom-
panying drawings and in which like reference numerals refer
to similar elements and in which:

FIG. 1 is block diagram of one embodiment of a system
in which the sensor system may be implemented.

FIG. 2 is a block diagram of one embodiment of the
sensor and receiver portion of the sensor system.

FIG. 3 is a block diagram of one embodiment of the first
portion of the receiver and the A-to-D converter.

FIG. 4 is a circuit diagram of one embodiment of the first
portion of the receiver.

FIG. 5 is a circuit diagram of one embodiment of the
A-to-D converter.
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FIG. 6 is a block diagram of one embodiment of the
digital portion of the receiver.

FIG. 7 is a flowchart of one embodiment of data collection
through upload to the server.

DETAILED DESCRIPTION

A sleep monitoring system is described. The system
includes analog and digital elements, which collect data
from a sleeper and provide it for processing and analysis to
a server system. In one embodiment, the sleep monitoring
system includes a sensor which is designed to be placed
under a user’s mattress or mattress topper, or in a user’s
bedframe. In one embodiment, this sensor collects move-
ment data, and sends it through an insulated cable to a
receiver. In another embodiment, the data may be sent
wirelessly. The receiver, which in one embodiment is posi-
tioned in proximity to the bed, receives the insulated cable
or wireless signal, and converts the data to a digital signal.
In one embodiment, the digital signal is uploaded to the
server for further processing and analysis. The server ana-
lyzes the sleep data, and can be used to set the receiver’s
operation, as well as control the user’s sleep environment, in
one embodiment.

The following detailed description of embodiments of the
invention makes reference to the accompanying drawings in
which like references indicate similar elements, showing by
way of illustration specific embodiments of practicing the
invention. Description of these embodiments is in sufficient
detail to enable those skilled in the art to practice the
invention. One skilled in the art understands that other
embodiments may be utilized, and that logical, mechanical,
electrical, functional and other changes may be made with-
out departing from the scope of the present invention. The
following detailed description is, therefore, not to be taken
in a limiting sense, and the scope of the present invention is
defined only by the appended claims.

FIG. 1 is block diagram of one embodiment of a system
in which the sensor system may be implemented. The
system includes a sleep analytics system 100 including
sensors 120, receiver 130, server 160, and analytics engine
170. In one embodiment, the client portion of the sleep
analytics system 100 is located in a user’s home includes the
sensors 120 and receiver 130.

In one embodiment, the receiver 130 is coupled to sensors
120 via a cable. In another embodiment the connection may
be wireless, such as low power Bluetooth (BLE), Wi-Fi, or
another type of wireless connection. In one embodiment,
receiver 130 also may be coupled to a controller 140, which
controls bed 150. In one embodiment, this connection is a
wired connection. Alternatively, it may be a wireless con-
nection.

In one embodiment, the sensors 120 may include one or
more sensors positioned in bed 150 which are used to
measure the user’s sleep. In one embodiment, sensors 120
may include sensors which are not in bed 150 but positioned
in the room in which the bed 150 is located. In one
embodiment, one or more these additional sensors may be
built into receiver 130. In one embodiment, there may be
external sensors which may be coupled to receiver 130
either via wires or wirelessly. The receiver 130 collects data
from the one or more sensors, for transmission to the server
160.

In one embodiment, the receiver 130 is coupled to the
server 160 via a network 150. The server portion includes
server 160 and analytics engine 170, which in one embodi-
ment are located off-site, removed from the user. In another



US 12,048,529 Bl

3

embodiment, the server may be a local system, such as a
computer system running an application. The network 150
may be the Internet, and the receiver 130 may send data to
the server via a wireless network, such as Wi-Fi or the
cellular network. In one embodiment, server 160 and ana-
Iytics engine 170 may be on the same physical device. In one
embodiment, server and/or analytics engine 170 may
include a plurality of devices. In one embodiment, one or
both of the server 170 and the analytics engine 170 may be
using cloud computing and may be implemented as a
distributed system.

FIG. 2 is a block diagram of one embodiment of the
sensor and receiver portion of the sensor system. In one
embodiment, sleep sensors 210 include two sensors 212,
214, which are designed to be placed underneath a mattress,
mattress topper, or mattress cover. In one embodiment, the
sensors are piezoelectric sensors positioned on a hard foam
surface to provide compressibility and support. In one
embodiment, the sensors are coupled to an audio codec 225
to encode the data, for transmission to the server. By using
audio codec, the data can be encoded in a way that provides
100% accuracy and a reduction in data size. In one embodi-
ment, the receiver further includes additional environmental
sensors 225. In one embodiment, the environmental sensors
225 may include a humidity and temperature sensor and a
volatile organic compounds (VOC) sensor. Other sensors
may also be included in the receiver.

In one embodiment, he encoded data from the sleep
sensors 210 and the data from the environmental sensors 225
(which may also be encoded in some embodiments) are
passed to a processor and Wi-Fi module 230. The processor
and Wi-Fi module 230 sends the data to the server via a
Wi-Fi connection 270. In another embodiment, the proces-
sor and Wi-Fi module 230 may be replaced by a separate
processor and network access element. The Wi-Fi module
may be replaced by a mobile network chip. In one embodi-
ment, the processor and Wi-Fi module 230 includes a
random access memory, such as DDR2, to buffer the data
from the sensors, prior to transmission. In one embodiment,
a flash memory may store the code for the processor 230.

In one embodiment, power subsystem 250 provides
power to the processor 230, codec 225, and environmental
sensors. In one embodiment, the power subsystem 250
provides a 3.3V power to the processor 230. In one embodi-
ment, the power subsystem 250 also provides 1.8V to the
audio codec 225, or other elements of the system. In one
embodiment, the sleep sensors 210 provide their data as
charge data between 2.5V and -2.5V. Thus, in one embodi-
ment, the power subsystem handles voltages between —2.5V
and 5V.

FIG. 3 is a block diagram of one embodiment of the first
portion of the receiver and the A-to-D converter. In one
embodiment, the system includes an insulated sensor 310.
The insulated sensor is a piezo sensor, which is sensitive to
movement. The sensor 310 itself is insulated, to ensure that
it is not impacted by stray signals. Because the sensor 310
provides data as a voltage level, any noise impacting the
sensor 310 may overwhelm the real data. In one embodi-
ment, a ground connection is provided to the sensor 310 to
provide insulation. The sensor 310 is coupled to the receiver
300 via cable 320, in one embodiment. In one embodiment,
the cable 320 is a grounded cable. In one embodiment, the
cable 320 is a custom shielded cable with two conductors.

The cable 320 connects to a plug 330 in receiver. In one
embodiment, the plug is an insulated plug, to shield the data
from the sensor from noise. In one embodiment, an electro-
static discharge protector (EDS) 340 is coupled to the line as
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well. A charge to voltage converter 350 converts the output
of the sensors 310, which is charge data, into a voltage. The
plug 330, EDS protector 340, and charge to voltage con-
verter 350 all are on an insulated portion 220 of the receiver.
In one embodiment, a custom metal enclosure provides the
insulation. In one embodiment, the custom metal enclosure
is grounded. In one embodiment, the receiver utilizes a
three-prong plug, to request a grounded outlet. In one
embodiment, the receiver verifies that the wall connection
provides a proper ground. In one embodiment, the user may
be alerted if the receiver is plugged into an ungrounded
outlet. However, in one embodiment, the metal enclosure
provides protection/insulation even when not properly
grounded.

The output of the charge to voltage converter 350 is
passed to an input conditioner, in one embodiment. The
input conditioner 360 adjusts the voltage range of the signal.
The voltage is then passed to an analog to digital converter
370, in one embodiment. This converts the analog sensor
data into a digital signal. The output of the analog to digital
converter 370 is encoded and sent to the server for analysis.
In one embodiment, the digital signal is encoded to ensure
error correction. The signal may also be compressed.

For simplicity this figure, and others, illustrate a single
sensor and connection. In one embodiment, the system may
include two sensors when configured to detect two sleepers.
In one embodiment, the system may include more than two
sensors. When additional sensors are used, they may be
separately handled. In one embodiment, each sensor has a
separate and substantially identical path. In another embodi-
ment, multiple sensors may send their data to the receive
through a shared path.

FIG. 4 is a circuit diagram of one embodiment of the first
portion of the receiver. The receiver includes the sensor
connector 410 to which the cable is coupled. ESD protection
diode 420 is tied to ground and protects against electrostatic
discharge.

The charge mode amplifier 430 provides a charge to
voltage conversion for the signal from the sensors. The
charge mode amplifier is an op-amp with a negative feed-
back capacitor and a large resistor 435, converting the
charge signal to a voltage output.

The voltage output from the charge mode amplifier 430 is
passed to an input conditioning amplifier 440. The input
conditioning amplifier is 440 an op-amp that adjusts the
voltage range of the signal, for the analog-to-digital con-
verter. In one embodiment, the input to the input condition-
ing amplifier a voltage value between -2.5V and 2.5V and
adjusts it to OV to 1.8V. In one embodiment, this element
may be skipped if the Analog-to-Digital converter can
handle the voltage range output by the charge mode ampli-
fier 430.

FIG. 5 is a circuit diagram of one embodiment of the
A-t0-D converter. In one embodiment, for simplicity and to
ensure that the two signals are processed in a synchronized
manner, the A-to-D converter 510 is an Audio CODEC,
which provides concurrent sampling of two channels, at 24
bits. This maintains time alignment between data from the
two sensors. Of course, another type of analog-to-digital
converter may be used. In one embodiment, the A-to-D
converter used should provide at least two channels, and at
least an 18-bit rate sampling. This is the last portion of the
receive which is analog. The output of the A-to-D converter
is digital and is passed to the digital portion of the receiver.
In one embodiment, the analog portion of the receiver and
the digital portion are on separate substrates.
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FIG. 6 is a block diagram of one embodiment of the
digital portion of the receiver. The data from the A-to-D
converter in one embodiment is 24-bit two channel data.

This is input into a downsampler 610, in one embodiment.
In one embodiment, the receiver selects which downsampler
to utilize. In one embodiment, the server controls the receiv-
er’s selection. In one embodiment, the selection is based on
the data received and analyzed by the server.

The reason for sample rate selection is to optimize the
upload based on a current state of the sleep monitor. In one
embodiment, the sleep monitor states may include: not in
use (no one on bed), in use for limited analysis, and in full
use. For example, in one embodiment, if no one is on the
bed, the rate can be downsampled to a lowest sample rate,
for example between 0.5 and 5 Hz. In one embodiment, the
lowest sample rate is 1-Hz. If only sleep-states and HR/BR
measurements are being utilized, the sample rate can be
reduced to a mid-range frequency, for example 30 to 100 Hz.
In one embodiment, the midrange frequency is 80 Hz.
80-Hz. Whereas, if sleep states, HR/BR, snore detection,
respiratory events, HRV, etc., are being measured, a higher
rate, for example 100 Hz to 500 Hz may be used. In one
embodiment, the higher rate is a 320-Hz rate. In one
embodiment, the sample mode selector 620 determines the
sampling rate. In one embodiment, software services run-
ning on the cloud determine and remotely set the sample rate
selection 620.

In one embodiment, a DC offset measurement 630 allows
DC offset removal 640 (shown as an element labeled with a
Greek letter sigma). The DC offset removal 620 is to allow
the compander 650 to be as efficient as possible. In one
embodiment, the DC offset is recorded with the FLAC data,
as meta data 670, so that the server can re-add the DC offset
after expanding (un-companding) the data.

The compander 650 is used to reduce the uploaded data
size, removing non-essential values from the data stream.

The compressed data is then encoded, in one embodiment.
In one embodiment, free lossless audio codec (FLAC)
encoder 660 is used to encode the data. In another embodi-
ment, another lossless compression algorithm may be used,
such as MPEG-4 ALS. In other embodiments, alternative
encoding may be used. In one embodiment a lossy com-
pression, such as a variant of MP3 may be used. In such an
embodiment, the compression may be tuned for the data
content so that the loss is minimal.

The FLAC data is stored in a memory 680 and then
uploaded by uploader 690, to server via a network 695. In
one embodiment, the uploader 690 uploads bursts of data. In
one embodiment, the upload interval is specified by the
cloud servers. In another embodiment, the uploader 690
uploads data when a certain amount of data is accumulated.
This may result in slower uploads for data with a lower
sample rate.

In one embodiment, the digital portion of the system runs
in firmware on a processor.

FIG. 7 is a flowchart of one embodiment of data collection
through upload to the server. The process starts at block 710.
At block 715, insulated piezoelectric sensors are used to
capture charge corresponding to motion. This data recording
is sufficiently sensitive so that the data reflects not only body
movements, but also the movement of the chest in breathing,
as well as the movement of the rib cage in heart beats. The
sensor is sensitive enough that it can record, and the Al-
enabled system can identity, snoring based on the vibration
of the user’s throat, which is detected by the sensor.

The system, at block 720, uses an insulated cable to send
the charge data to the receiver, in one embodiment. Because
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the data is very precise even a small amount of noise can
reduce the precision sufficiently to create an issue. There-
fore, the data from the time the sensor detects it, until it is
converted to a voltage, is run through an insulated system.

The insulated cable connects the data to insulated plugs,
where the data is received at block 725, in one embodiment.

A charge-to-voltage converter is used to obtain a voltage
corresponding to the charge data, reflecting the motion
sensed by the sensors, at block 730. Optionally, at block 735,
a conditioning amplifier may be used to adjust the voltage
range for the A-to-D converter.

At block 740, the A-to-D converter converts the voltages
to a digital signal. In one embodiment, the insulation may
extend to the A-to-D converter. In another embodiment,
once the signal is converted to a voltage, the signal is more
robust, and the path need no longer be fully insulated.

At block 745, the data is compandered, in one embodi-
ment.

At block 750, the data is encoded for transmission. In one
embodiment, the encoding uses a lossless encoding algo-
rithm. In one embodiment, a FLAC encoding is used. In one
embodiment, this allows the use of an audio CODEC for the
encoding.

At block 755, in one embodiment the data is stored in
buffer. In one embodiment, at block 760 the data is sent in
bursts to the server. In another embodiment, the data may be
sent continuously. In another embodiment, the data may be
sent periodically. The process then ends at block 770.

Of course, though this is shown as a flowchart, in one
embodiment it is implemented as an interrupt-driven system,
such that the device state is changed when a state detection
system identifies a change of the state. Additionally, the
ordering of state checking is arbitrary.

In the foregoing specification, the invention has been
described with reference to specific exemplary embodiments
thereof. It will, however, be evident that various modifica-
tions and changes may be made thereto without departing
from the broader spirit and scope of the invention as set forth
in the appended claims. The specification and drawings are,
accordingly, to be regarded in an illustrative rather than a
restrictive sense.

We claim:

1. A hardware sleep sensor system comprising:

a sensor outputting sensor data corresponding to a motion;

a converter to convert the sensor data to digital data;

a downsampler configured to receive a down-sampling
rate calculated based on a level of use of the sleep
sensor system, wherein the level of use is one of: not in
use level, limited analysis use level, and full use level;

the downsampler further configured to down-sample an
output of the converter using the down-sampling rate;
and

an uploader to upload the down-sampled digital data to a
server for processing.

2. The system of claim 1, wherein the sensor is a piezo

sensor outputting charge data corresponding to the motion.

3. The system of claim 1, further comprising:

an insulated portion of the hardware sleep sensor system,
the insulated portion including the sensor, a plug, and
the converter.

4. The system of claim 3, wherein the insulated portion is

insulated using a metal enclosure.

5. The system of claim 1, wherein the sensor is a piezo

sensor, and the system further comprising:

an electrostatic discharge protector coupled to a cable
coupling the piezo sensor to a receiver.
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6. The system of claim 1, wherein the converter is an
analog-to-digital converter that a lossless algorithm to con-
vert the sensor data to the digital data.

7. The system of claim 6, wherein the sensor data is
charge data, and the system further comprising:

a charge to voltage converter to convert the charge data

from the sensor into voltage data; and

the analog-to-digital converter to convert the voltage data

to the digital data.

8. The system of claim 7, wherein the lossless algorithm
is FLAC (free lossless compression), and the analog-to-
digital converter is an audio codec.

9. The system of claim 1, comprising:

the sensor comprising two piezo sensors; and

a two-channel analog-to-digital converter to provide con-

current sampling of data from the two piezo sensors.

10. The system of claim 1, wherein:

the not in use level is defined as no user data being

measured,;

the limited analysis use level is defined as measuring:

sleep state, heart rate and breathing rate; and

the full use level is defined as measuring the sleep state,

the heart rate, and the breathing rate, and further
measuring one or more of: snore detection, respiratory
events, and heart rate variability.

11. The system of claim 1, wherein the down-sampling
rate is 0.5 Hz to 5 Hz for the not in use level; is 30 Hz to 100
Hz for the limited analysis use level; and is 100 Hz to 500
Hz for the full use level.

12. The hardware sleep sensor system of claim 1, wherein:

the sensor outputting sensor data comprises two piezo

sensors outputting charge data corresponding to the
motion on a sleep surface;

an insulated portion of a receiver to receive the charge

data from the two piezo sensors, the insulated portion
coupled to the two piezo sensors via an insulated cable,
and an insulated plug, the insulated cable including an
electrostatic discharge protector;

the converter to convert sensor data comprises a charge to

voltage converter for converting the charge data to
voltage data, the charge to voltage converter on the
insulated portion of the receiver, and a two-channel
audio codec digital-to-analog converter to concurrently
sample the charge data from the two piezo sensors, and
to convert the voltage data to digital data using a
lossless algorithm;

the downsampler further configured to down-sample an

output of the converter using the down-sampling rate.

13. A method of monitoring a user with a sleep sensor
system, the method comprising:

receiving sensor data from a sensor, the sensor data

corresponding to a motion of the user;

converting the sensor data to digital data;

receiving a down-sampling rate calculated based on a

level of use of the sleep sensor system, wherein the
level of use is one of: not in use, limited analysis use,
and full use;
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down-sampling the digital data using the down-sampling
rate; and

uploading the down-sampled digital data to a server for
processing.

14. The method of claim 13, wherein the sensor data is
received from a piezo sensor outputting charge data corre-
sponding to the motion.

15. The method of claim 13, wherein a lossless algorithm
is used to convert the sensor data to the digital data.

16. The method of claim 15, wherein the sensor data is
charge data, and the method further comprises:

converting the charge data from the sensor into voltage
data; and

converting the voltage data to the digital data.

17. The method of claim 15, wherein the lossless algo-
rithm is an audio codec.

18. The method of claim 13, further comprising:

receiving sensor data an additional sensor; and

using a two-channel analog-to-digital converter to pro-
vide concurrent sampling of the data from the sensor
and the additional sensor.

19. The method of claim 13, wherein:

the not in use level is defined as no user data being
measured;

the limited analysis use level is defined as measuring:
sleep state, heart rate and breathing rate; and

the full use level is defined as measuring the sleep state,
the heart rate, and the breathing rate, and further
measuring one or more of: snore detection, respiratory
events, and heart rate variability.

20. The method of claim 13, wherein the down-sampling
rate is 0.5 Hz to 5 Hz for the not in use level; is 30 Hz to 100
Hz for the limited analysis use level; and is 100 Hz to 500
Hz for the full use level.

21. A hardware sleep sensor system comprising:

two piezo sensors for outputting charge data correspond-
ing to motion on a sleep surface;

an insulated portion of a receiver to receive the charge
data from the two piezo sensors, the insulated portion
coupled to the two piezo sensors via an insulated cable,
and an insulated plug, the insulated cable including an
electrostatic discharge protector;

a charge to voltage converter for converting the charge
data to voltage data, the charge to voltage converter on
the insulated portion of the receiver;

a two-channel audio codec digital-to-analog converter to
concurrently sample the charge data from the two piezo
sensors, and to convert the voltage data to digital data
using a lossless algorithm;

a downsampler to down-sample an output of the digital-
to-analog converter; and

an uploader to upload the down-sampled output to a
server for processing.

#* #* #* #* #*



