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APPLICATION OF FORCE FEEDBACK ON instruments while keeping the instruments bundled together 
AN INPUT DEVICE TO URGE ITS as it guides them toward the work site . 
OPERATOR TO COMMAND AN A number of challenges arise in medical robotic systems 

ARTICULATED INSTRUMENT TO A using such a bundled unit , however , because of the close 
PREFERRED POSE proximity of the articulated camera and tool instruments . 

For example , because the camera instrument has proximal 
CROSS REFERENCE TO RELATED articulations ( e . g . , joints ) that are not visible from the distal 

APPLICATIONS tip camera view , the surgeon can lose track of the current 
state of such articulations when moving the camera and This application is a divisional of U . S . application Ser . 10 consequently , their available range of motion . Also , when 

No . 13 / 292 , 760 ( filed Nov . 9 , 2011 ) , now U . S . Pat . No . the articulations of the camera and tool instruments are out 9 , 492 , 927 , which is a continuation - in - part to U . S . applica of view of the camera and therefore , not visible to the tion Ser . No . 12 / 704 , 669 ( filed Feb . 12 , 2010 ) , now U . S . Pat . surgeon through its captured images , the surgeon may No . 8 , 918 , 211 , each of which is incorporated herein by inadvertently drive links of the tools and / or camera instru reference . 
U . S . application Ser . No . 13 / 292 , 760 ( filed Nov . 9 , 2011 ) ments to crash into one another while telerobotically moving 

is also a continuation - in - part to U . S . application Ser . No . the articulated instruments to perform a medical procedure . 
12 / 613 , 328 ( filed Nov . 5 , 2009 ) , now U . S . Pat . No . 9 , 084 , In either case , the safety of the patient may be jeopardized 
623 , which is a continuation - in - part to U . S . application Ser . and the successful and / or timely completion of the medical 
No . 12 / 541 , 913 ( filed Aug . 15 , 2009 ) , now U . S . Pat . No . 20 procedure may be adversely impacted . 
8 , 903 , 546 , each of which is incorporated herein by refer OBJECTS AND SUMMARY ence . 

15 

FIELD OF THE INVENTION Accordingly , one object of one or more aspects of the 
25 present invention is a medical robotic system , and method 

The present invention generally relates to medical robotic implemented therein , that urges an operator to command a 
systems and in particular , to a method and system applying preferred pose for normal mode operation of an articulated 
force feedback on an input device to urge its operator to instrument , which serves as a biasing point for operator 
command an articulated instrument to a preferred pose . commanded movement of the articulated instrument during 

30 normal operation of the instrument . 
BACKGROUND Another object of one or more aspects of the present 

invention is a medical robotic system , and method imple 
Medical robotic systems such as teleoperative systems mented therein , that applies force feedback on an input 

used in performing minimally invasive surgical procedures device to urge its operator to command the posing of an 
offer many benefits over traditional open surgery techniques , 35 articulated instrument to a preferred pose with smooth 
including less pain , shorter hospital stays , quicker return to transition to the preferred pose . 
normal activities , minimal scarring , reduced recovery time , Another object of one or more aspects of the present 
and less injury to tissue . Consequently , demand for such invention is a medical robotic system , and method imple 
medical robotic systems is strong and growing . mented therein , that applies force feedback on an input 

One example of such a medical robotic system is the DA 40 device to urge its operator to command the posing of an 
VINCI® Surgical System from Intuitive Surgical , Inc . , of articulated instrument to a first preferred pose and then 
Sunnyvale , Calif . , which is a minimally invasive robotic smoothly transition to a second preferred pose according to 
surgical system . The DA VINCI® Surgical System has a an activation signal . 
number of robotic arms that move attached medical devices . These and additional objects are accomplished by the 
such as an image capturing device and Intuitive Surgical ' s 45 various aspects of the present invention , wherein briefly 
proprietary ENDOWRIST® articulating surgical instru - stated , one aspect is a method for urging operator manipu 
ments , in response to movement of input devices by a lation of an input device to command an articulated instru 
surgeon viewing images captured by the image capturing ment to a preferred pose , the method comprising : generating 
device of a surgical site . Each of the medical devices is a commanded pose of the articulated instrument in response 
inserted through its own minimally invasive incision into the 50 to operator manipulation of an input device ; generating first 
patient and positioned to perform a medical procedure at the force commands for a plurality of degrees of freedom of the 
surgical site . The incisions are placed about the patient ' s input device so as to be indicative of a difference between a 
body so that the surgical instruments may be used to first preferred pose and the commanded pose ; and applying 
cooperatively perform the medical procedure and the image the first force commands to the plurality of degrees of 
capturing device may view it without their robotic arms 55 freedom of the input device by phasing in their application 
colliding during the procedure . according to a first activation signal . 

To perform certain medical procedures , it may be advan - Another aspect is a medical robotic system comprising : an 
tageous to use a single entry aperture , such as a minimally input device ; an articulated instrument ; and a processor 
invasive incision or a natural body orifice , to enter a patient configured to generate a commanded pose of the articulated 
to perform a medical procedure . For example , an entry guide 60 instrument in response to operator manipulation of the input 
may first be inserted , positioned , and held in place in the device , generate first force commands for a plurality of 
entry aperture . Articulated instruments such as an articulated degrees of freedom of the input device so as to be indicative 
camera instrument and a plurality of articulated surgical tool of a difference between a first preferred pose and the 
instruments , which are used to perform the medical proce - modified commanded pose , and command application of the 
dure , may then be inserted into a proximal end of the entry 65 first force commands on the plurality of degrees of freedom 
guide so as to extend out of its distal end . Thus , the entry of the input device so as to phase in their application 
guide accommodates a single entry aperture for multiple according to a first activation signal . 



US 10 , 271 , 915 B2 

Additional objects , features and advantages of the various FIG . 17 illustrates a flow diagram of a method for 
aspects of the present invention will become apparent from generating a normal mode deactivation signal usable in a 
the following description of its preferred embodiment , method for urging operator manipulation of an input device 
which description should be taken in conjunction with the to command the articulated instrument to a preferred pose 
accompanying drawings . 5 utilizing aspects of the present invention . 

FIG . 18 illustrates a flow diagram of a first embodiment 
BRIEF DESCRIPTION OF THE DRAWINGS of a method for urging operator manipulation of an input 

device to command an articulated instrument to a preferred 
FIG . 1 illustrates a block diagram of a medical robotic pose utilizing aspects of the present invention . 

system utilizing aspects of the present invention . 10 FIG . 19 illustrates a flow diagram of a second embodi 
FIG . 2 illustrates a perspective view of a distal end of an ment of a method for urging operator manipulation of an 

entry guide with a plurality of articulated instruments input device to command an articulated instrument to a 
extending out of it in a medical robotic system utilizing preferred pose utilizing aspects of the present invention . 
aspects of the present invention . FIG . 20 illustrates a flow diagram of a third embodiment 

FIGS . 3 - 4 respectively illustrate top and right side views 15 of a method for urging operator manipulation of an input 
of articulated instruments extending out of a distal end of an device to command an articulated instrument to a preferred 
entry guide in a medical robotic system utilizing aspects of pose utilizing aspects of the present invention . 
the present invention . FIG . 21 illustrates a flow diagram of a fourth embodiment 

FIG . 5 illustrates a block diagram of interacting compo - of a method for urging operator manipulation of an input 
nents of an articulated instrument manipulator and an articu - 20 device to command an articulated instrument to a preferred 
lated instrument as used in a medical robotic system utiliz - pose utilizing aspects of the present invention . 
ing aspects of the present invention . FIG . 22 illustrates a block diagram of an alternative 

FIG . 6 illustrates a block diagram of an instrument instrument controller for operator commanded movement of 
controller for operator commanded movement of an articu - an articulated instrument in a medical robotic system utiliz 
lated instrument in a medical robotic system utilizing 25 ing aspects of the present invention . 
aspects of the present invention . FIG . 23 illustrates a block diagram of a " phase - in ” 

FIG . 7 illustrates a side view of an articulated instrument nudging block providing a first nudging force command 
extending out of a distal end of an entry guide in a preferred which is to be phased - in as a force to be applied against an 
pose for normal operation as used in a medical robotic input control device , as used in a medical robotic system 
system utilizing aspects of the present invention . 30 utilizing aspects of the present invention . 

FIG . 8 illustrates a side view of an articulated instrument FIG . 24 illustrates a block diagram of a " phase - out ” 
extending out of a distal end of an entry guide in a preferred nudging block providing a second nudging force command 
pose for retraction back into the entry guide as used in a which is to be phased - out as a force being applied against an 
medical robotic system utilizing aspects of the present input control device , as used in a medical robotic system 
invention . 35 utilizing aspects of the present invention . 

FIG . 9 illustrates a block diagram of a simulated instru 
ment block of the instrument controller of FIG . 6 as used in DETAILED DESCRIPTION 
a medical robotic system utilizing aspects of the present 
invention . FIG . 1 illustrates a block diagram of a medical robotic 

FIG . 10 illustrates a block diagram of pose data and pose 40 system 100 . An entry guide ( EG ) 200 is configured to be 
nudging blocks of the instrument controller of FIG . 6 as used inserted through an entry aperture such as a minimally 
in a medical robotic system utilizing aspects of the present invasive incision or a natural body orifice in a Patient . 
invention . Articulated instruments such as a first articulated surgical 

FIG . 11 illustrates activation signals for normal mode tool ( TOOL1 ) 231 , second articulated surgical tool 
operation and retraction mode as a function of time as used 45 ( TOOL2 ) 241 , and an articulated stereo camera ( CAM ) 211 
in a medical robotic system utilizing aspects of the present may be inserted through and extend out of a distal end of the 
invention entry guide 200 . As shown in FIG . 2 , the camera 211 has a 

FIG . 12 illustrates a block diagram of the retraction mode stereo pair of image capturing devices 311 , 312 and a fiber 
nudging block of FIG . 10 as used in a medical robotic optic cable 313 ( coupled at its proximal end to a light 
system utilizing aspects of the present invention . 50 source ) housed in its tip . The surgical tools 231 , 241 have 

FIG . 13 illustrates a block diagram of the normal mode end effectors 331 , 341 . Although only two tools 231 , 241 are 
nudging block of FIG . 10 as used in a medical robotic shown , the entry guide 200 may guide additional tools as 
system utilizing aspects of the present invention . required for performing a medical procedure at a work site 

FIG . 14 illustrates a block diagram of the force converter in the patient . Additional details on the articulated instru 
block of FIGS . 12 and 13 as used in a medical robotic system 55 ments 211 , 231 , 241 are provided in reference to FIGS . 3 and 
utilizing aspects of the present invention . 4 below . 

FIG . 15 illustrates a flow diagram of a method for Each of the devices 231 , 241 , 211 , 200 is manipulated and 
modifying a commanded pose of an articulated instrument controlled by its own manipulator and controller . In particu 
by applying a virtual barrier as a constraint as usable in a lar , the articulated camera instrument 211 is manipulated by 
method for urging operator manipulation of an input device 60 a camera manipulator ( ECM ) 212 which is controlled by 
to command the articulated instrument to a preferred pose camera instrument controller ( CTRLC ) 213 , the first articu 
utilizing aspects of the present invention . lated surgical tool 231 is manipulated by a first tool manipu 

FIG . 16 illustrates a flow diagram of a method for lator ( PSM1 ) 232 which is controlled by tool instrument 
generating a retraction mode activation signal usable in a controller ( CTRL1 ) 233 , the second articulated surgical tool 
method for urging operator manipulation of an input device 65 241 is manipulated by a second tool manipulator ( PSM2 ) 
to command the articulated instrument to a preferred pose 242 which is controlled by tool instrument controller 
utilizing aspects of the present invention . ( CTRL2 ) 243 , and the entry guide 200 is manipulated by an 
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entry guide manipulator ( EGM ) 202 which is controlled by entry guide 200 using a third value for the select input so that 
entry guide controller ( CTRLG ) 203 . The controllers 203 , the Surgeon may move the entry guide 200 through its 
233 , 243 , 213 are implemented in processor 102 as master / controller 203 and manipulator 202 . In any case , disassoci 
slave control systems as described in reference to FIG . 6 ated devices are soft - locked in place by its respective 
below . 5 controller . 

Each of the articulated instrument manipulators 232 , 242 , The images captured by the camera instrument 211 are 
212 is a mechanical assembly that carries actuators and processed by an image processor 214 and displayed on a 
provides a mechanical , sterile interface to transmit motion to display screen 104 so as to provide a telepresence experi 
its respective articulated instrument . Each articulated instru - ence to the Surgeon , as described for example in U . S . Pat . 
ment 231 , 241 , 211 is a mechanical assembly that receives 10 No . 6 , 671 , 581 “ Camera Referenced Control in a Minimally 
the motion from its manipulator and , by means of a cable Invasive Surgical Apparatus , " which is incorporated herein 
transmission , propagates it to the distal articulations ( e . g . , by reference . Thus , a Surgeon using the medical robotic 
joints ) . Such joints may be prismatic ( e . g . , linear motion ) or system 100 may perform a medical procedure on the Patient 
rotational ( e . g . , they pivot about a mechanical axis ) . Fur - by manipulating input devices 108 , 109 to cause correspond 
thermore , the instrument may have internal mechanical 15 ing movement of associated surgical tools 231 , 241 while 
constraints ( e . g . , cables , gearing , cams and belts , etc . ) that the Surgeon views images of the work site on the display 
force multiple joints to move together in a pre - determined screen 104 . 
fashion . Each set of mechanically constrained joints imple - Although described as a processor , it is to be appreciated 
ments a specific axis of motion , and constraints may be that the processor 102 may be implemented in practice by 
devised to pair rotational joints ( e . g . , joggle joints ) . Note 20 any combination of hardware , software and firmware . Also , 
also that in this way the instrument may have more joints its functions as described herein may be performed by one 
than the available actuators . unit or divided up among different components , each of 

The entry guide manipulator ( EGM ) 202 is usable to which may be implemented in turn by any combination of 
robotically insert and retract the entry guide 200 into and out hardware , software and firmware distributed throughout the 
of the entry aperture . It may also be used to robotically pivot 25 system . 
the entry guide 200 in pitch , roll and yaw relative to a For additional details on the construction and operation of 
longitudinal axis of the entry guide 200 about a pivot point general aspects of a medical robotic system such as 
( also referred to as a remote center “ RC ” ) . A setup arm may described herein , see , e . g . , U . S . Pat . No . 6 , 493 , 608 “ Aspects 
be used to hold and position the entry guide 200 so that its of a Control System of a Minimally Invasive Surgical 
remote center RC is positioned at the entry aperture . 30 Apparatus , ” and U . S . Pat . Application Pub . No . U . S . 2008 / 

Two input devices 108 , 109 are provided for manipulation 007129 “ Minimally Invasive Surgical System , ” which are 
by a Surgeon . Each of the input devices 108 , 109 may be incorporated herein by reference . 
selectively associated with one of the devices 211 , 231 , 241 , FIGS . 3 - 4 respectively illustrate , as examples , top and 
200 so that the associated device may be controlled by the right side views of a distal end of the entry guide 200 with 
input device through its controller and manipulator . The 35 the articulated camera instrument 211 and articulated surgi 
Surgeon ( or an Assistant ) may perform such selection in a cal tool instruments 231 , 241 extending outward . The articu 
conventional manner , such as interacting with a menu on a lated camera 211 extends through passage 321 and the 
Graphical User Interface ( GUI ) , providing voice commands articulated surgical tools 231 , 241 respectively extend 
recognized by a voice recognition system , inputting such through passages 431 , 441 of the entry guide 200 . The 
associations into the system 100 using an input device such 40 camera 211 includes a tip 311 , first , second , and third links 
as a touchpad , or interacting with special purpose buttons 322 , 324 , 326 , first and second joint assemblies ( also 
provided on the input devices 108 , 109 . Using any one of referred to herein simply as " joints ” ) 323 , 325 , and a wrist 
such association mechanisms , a select input is generated and assembly 327 . The first joint assembly 323 couples the first 
provided to a multiplexer ( MUX ) 280 , which is imple and second links 322 , 324 and the second joint assembly 325 
mented in the processor 102 . The value of the select input 45 couples the second and third links 324 , 326 so that the 
( e . g . , combination of l ’ s and O ' s ) indicates which associa - second link 324 may pivot about the first joint assembly 323 
tion ( i . e . , cross - switching ) is selected . in pitch and yaw while the first and third links 322 , 326 

For example , a first value for the select input to the remain parallel to each other . 
multiplexer 280 places the left and right input devices 108 , The first and second joints 323 , 325 are referred to as 
109 in " tool following modes ” wherein they are respectively 50 " joggle joints ” , because they cooperatively operate together 
associated with the first and second surgical tools 241 , 231 so that as the second link 324 pivots about the first joint 323 
so the Surgeon may perform a medical procedure on the in pitch and / or yaw , the third link 326 pivots about the 
Patient while the entry guide 200 is locked in place . In this second joint 325 in a complementary fashion so that the first 
configuration , the multiplexer 280 cross - switches to respec - and third links 322 , 326 always remain parallel to each other . 
tively connect output and input 251 , 252 of the input device 55 The first link 322 may also rotate around its longitudinal axis 
108 to input and output 260 , 261 of the tool controller 243 ; in roll as well as move in and out ( e . g . , insertion towards the 
and respectively connect output and input 253 , 254 of the work site and retraction from the worksite ) through the 
input device 109 to input and output 268 , 269 of the tool passage 321 . The wrist assembly 327 also has pitch and yaw 
controller 233 . angular movement capability so that the camera ' s tip 311 
When the camera 211 is to be repositioned by the Sur - 60 may be oriented up or down and to the right or left , and 

geon , either one or both of the left and right input devices combinations thereof . 
108 , 109 may be associated with the camera 211 using a The joints and links of the tools 231 , 241 are similar in 
second value for the select input so that the Surgeon may construction and operation to those of the camera 211 . In 
move the camera 211 through its controller 213 and manipu particular , the tool 231 includes an end effector 331 ( having 
lator 212 . Similarly , when the entry guide 200 is to be 65 jaws 338 , 339 ) , first , second , and third links 332 , 334 , 336 , 
repositioned by the Surgeon , either one or both of the left first and second joint assemblies 333 , 335 , and a wrist 
and right input devices 108 , 109 may be associated with the assembly 337 that are driven by actuators such as described 
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in reference to FIG . 5 ( plus an additional actuator for The instrument manipulator ( e . g . , camera manipulator 
actuating the end effector 331 ) . Likewise , the tool 241 212 ) includes wrist actuators 512 , 513 that actuate through 
includes an end effector 341 ( having jaws 348 , 349 ) , first , wrist coupling 550 pitch and yaw joints 532 , 533 of the wrist 
second , and third links 342 , 344 , 346 , first and second joint assembly ( e . g . , wrist assembly 327 of the articulated camera 
assemblies 343 , 345 , and a wrist assembly 347 that are also 5 211 ) so as to cause the instrument tip ( e . g . , camera tip 311 ) 
driven by actuators such as described in reference to FIG . 5 to controllably pivot in an up - down ( i . e . , pitch ) and side 
( plus an additional actuator for actuating the end effector to - side ( i . e . , yaw ) directions relative to the wrist assembly . 
341 ) . The grip assembly 570 includes the end effector ( e . g . , end FIG . 5 illustrates , as an example , a diagram of interacting effector 331 of the surgical tool 231 ) and interfaces through parts of an articulated instrument ( such as the articulated 10 one or more gears ( i . e . , having the gear ratio 555 ) that couple camera 211 and the articulated surgical tools 231 , 241 ) and the grip actuator 560 to the end effector so as to controllably its corresponding instrument manipulator ( such as the cam actuate the end effector . era manipulator 212 and the tool manipulators 232 , 242 ) . 
Each of the instruments includes a number of actuatable The group of instrument joints 500 is referred to as 
assemblies 521 - 523 , 531 - 533 , 570 for effectuating move - 15 5 “ translational joints ” because by actuation of a combination 
ment of the instrument ( including its end effector ) , and its of these joints , the instrument ' s wrist assembly may be 
corresponding manipulator includes a number of actuators positioned translationally within three - dimensional space 
501 - 503 , 511 - 513 , 560 for actuating the actuatable assem using arc compensation as needed . The group of instrument 
blies . joints 510 is referred to as “ orientational joints ” because by 

In addition , a number of interface mechanisms may also 20 actuation of these joints , the instrument ' s tip may be ori 
be provided . For example , pitch / yaw coupling mechanisms ented about the wrist assembly . 
540 , 550 ( respectively for the joggle joint pitch / yaw and the At various stages before , during , and after the perfor 
wrist pitch / yaw ) and gear ratios 545 , 555 ( respectively form ance of a medical procedure , there may be preferred poses 
the instrument roll and the end effector actuation ) are for the articulated instruments 211 , 231 , 241 to best accom 
provided in a sterile manipulator / instrument interface to 25 plish tasks performed at the time . For example , during 
achieve the required range of motion of the instrument joints normal operation , as shown in FIGS . 3 and 4 , a preferred 
in instrument joint space while both satisfying compactness pose for each of the surgical tools 231 , 241 may be an 
constraints in the manipulator actuator space and preserving " elbow out , wrist in ” pose to provide good range of motion 
accurate transmissions of motion across the interface . while minimizing chances of inadvertent collisions with 
Although shown as a single block 540 , the coupling between 30 other instruments . Likewise , during normal operation , as 
the joggle joint actuators 501 , 502 ( differentiated as # 1 and shown in FIGS . 3 and 4 , a preferred pose for the camera 
# 2 ) and joggle joint pitch / yaw assemblies 521 , 522 may instrument 211 may be a “ cobra ” pose in which a good view 
include a pair of coupling mechanisms one on each side of of the end effectors 331 , 341 of the surgical tool instruments 
the sterile interface ( i . e . , one on the manipulator side of the 231 , 241 is provided at the camera ' s image capturing end . As 
interface and one on the instrument side of the interface ) . 35 another example , when it is desired to retract an instrument 
Likewise , although shown as a single block 550 , the cou back into the entry guide 200 to perform a tool exchange 
pling between the wrist actuators 512 , 513 ( differentiated as ( i . e . , exchange the instrument or its end effector for another 
# 1 and # 2 ) and wrist pitch / yaw joint assemblies 532 , 533 instrument or end effector ) or for reorienting the entry guide 
may also comprise a pair of coupling mechanisms one on 200 by pivoting it about its remote center , a preferred pose 
each side of the sterile interface . 40 for the instrument prior to its retraction into the entry guide 

Both the joggle joint pitch assembly 521 and the joggle 200 is a " straightened ” pose wherein the links of the 
joint yaw assembly 522 share the first , second and third links instrument are aligned in a straight line such as shown in 
( e . g . , links 322 , 324 , 326 of the articulated camera 211 ) and FIG . 8 . 
the first and second joints ( e . g . , joints 322 , 325 of the FIG . 6 illustrates , as an example , a block diagram of the 
articulated camera 211 ) . In addition to these shared compo - 45 camera instrument controller ( CTRLC ) 213 , which controls 
nents , the joggle joint pitch and yaw assemblies 521 , 522 the posing ( i . e . , both translationally and orientationally ) of 
also include mechanical couplings that couple the first and the articulated camera instrument 211 as commanded by 
second joints ( through joggle coupling 540 ) to the joggle movement of the input device 108 by the Surgeon , when the 
joint pitch and yaw actuators 501 , 502 so that the second link input device 108 is selectively associated with the camera 
may controllably pivot about a line passing through the first 50 instrument 211 through the multiplexer 280 as previously 
joint and along an axis that is latitudinal to the longitudinal described in reference to FIG . 1 . The input device 108 
axis of the first link ( e . g . , link 322 of the articulated camera includes a number of links connected by joints so as to 
211 ) and the second link may controllably pivot about a line facilitate multiple degrees - of - freedom movement . For 
passing through the first joint and along an axis that is example , as the Surgeon / operator moves the input device 
orthogonal to both the latitudinal and longitudinal axes of 55 108 from one position to another , sensors associated with the 
the first link . joints of the input device 108 sense such movement at 

The in / out ( I / O ) assembly 523 includes the first link ( e . g . , sampling intervals ( appropriate for the processing speed of 
link 322 of the articulated camera 211 ) and interfaces the processor 102 and camera control purposes ) and provide 
through a drive train coupling the in / out ( I / O ) actuator 503 digital information 631 indicating such sampled movement 
to the first link so that the first link is controllably moved 60 in joint space to input processing block 610 . 
linearly along its longitudinal axis by actuation of the I / O Input processing block 610 processes the information 631 
actuator 503 . The roll assembly 531 includes the first link received from the joint sensors of the input device 108 to 
and interfaces through one or more gears ( i . e . , having the transform the information into corresponding desired posi 
gear ratio 545 ) that couple a rotating element of the roll tions and velocities for the camera instrument 211 in its 
actuator 511 ( such as a rotor of a motor ) to the first link so 65 Cartesian space relative to a reference frame associated with 
that the first link is controllably rotated about its longitudinal the position of the Surgeon ' s eyes ( the " eye reference 
axis by actuation of the roll actuator 511 . frame ” ) by computing joint velocities from the joint position 



US 10 , 271 , 915 B2 
10 

626 . 

information and performing the transformation using a Jaco - processing block 601 as well as back to the simulated 
bian matrix and eye related information using well - known instrument block 604 for its internal computational pur 
transformation techniques . poses . 

Scale and offset processing block 601 receives the pro The scale and offset processing block 601 performs 
cessed information 611 from the input processing block 610 5 inverse scale and offset functions on the output 641 of the 
and applies scale and offset adjustments to the information forward kinematics block 606 before passing its output 612 
so that the resulting movement of the camera instrument 211 to the input processing block 610 where an error value is 
and consequently , the image being viewed on the display calculated between its output 611 and input 612 . If no 

limitation or other constraint had been imposed on the input screen 104 appears natural and as expected by the operator 
of the input device 108 . The scale adjustment is useful where 10 621 to the simulated instrument block 604 , then the calcu 

lated error value would be zero . On the other hand , if a small movements of the camera instrument 211 are desired limitation or constraint had been imposed , then the error relative to larger movements of the input device 108 in order value is not zero and it is converted to a torque command to allow more precise movement of the camera instrument 634 that drives actuators in the input device 108 to provide 211 as it views the work site . In addition , offset adjustments 1 , onset adjustments 15 force feedback felt by the hands of the Surgeon . Thus , the are applied for aligning the input device 108 with respect to Surgeon becomes aware that a limitation or constraint is 
the Surgeon ' s eyes as he or she manipulates the input device being imposed by the force that he or she feels resisting his 
108 to command movement of the camera instrument 211 or her movement of the input device 108 in that direction . 
and consequently , its captured image that is being displayed Apose nudging block 625 is included in the controller 213 
at the time on the display screen 104 . 20 to generate a nudging force command 627 which is provided 

A simulated instrument block 604 transforms the com - to the input processing block 610 . The input processing 
manded pose 621 of the camera instrument 211 from its block 610 then converts the nudging force command 627 
Cartesian space to its joint space using inverse kinematics , into motor torques so that the commanded nudging force is 
limiting the commanded joint positions and velocities to felt by the Surgeon on the input device 108 in a manner that 
avoid physical limitations or other constraints such as avoid - 25 urges the Surgeon to command the pose of the camera 
ing harmful contact with tissue or other parts of the Patient , instrument 211 to a preferred pose provided in pose data 
and applying virtual constraints that may be defined to 
improve the performance of a medical procedure being For the camera instrument 211 , there may be at least two 
performed at the time by the Surgeon using the medical preferred poses . During normal mode operation , such as 
robotic system 100 . In particular , as illustrated in FIG . 9 , the 30 CIC . O the 30 when the Surgeon is performing a medical procedure on a 

Patient , the preferred pose for the camera instrument 211 is commanded pose 621 may be modified by virtual barrier the “ cobra " pose shown in FIGS . 3 and 4 . Looking down logic 901 ( described in more detail in reference to FIG . 15 ward at the “ cobra ” pose in FIG . 3 , all links 322 , 324 , 326 below ) which implements a virtual constraint on the com of the camera instrument 211 are aligned with the longitu manded pose 621 to generate a modified commanded pose led pose 35 dinal axis 401 of the first link 322 so that they have 623 . Inverse kinematics and limiting block 902 then con maximum available range of lateral motion and provide a 
verts the modified commanded pose 623 from instrument reference for the main insertion direction of the camera 
Cartesian space to instrument joint space and limits the joint instrument 211 . Further , the joggle joints 323 , 325 are 
position and / or velocity to physical limitations or other “ oggled up ” , as shown in FIG . 4 , so that the third link 326 
constraints associated with or placed on the joints of the 40 is displaced a distance above the longitudinal axis 401 and 
articulated camera instrument 211 . the wrist assembly 327 is rotated at a negative pitch angle so 

The output 622 of the simulated instrument block 604 that the camera tip 311 is oriented downwards at an angle so 
( which includes a commanded value for each joint of the that the camera is preferably viewing the center of a work 
camera instrument 211 ) is provided to a joint control block space for the end effectors 331 and 341 of tool instruments 
605 and a forward kinematics block 606 . The joint controller 45 231 and 241 , which are also extending out of the distal end 
block 605 includes a joint control system for each controlled of the entry guide 200 at the time . In this case , the Surgeon 
joint ( or operatively coupled joints such as “ joggle joints ” ) is preferably allowed to freely move the camera 211 forward 
of the camera instrument 211 . For feedback control pur - and backward in the input / output ( 1 / 0 ) direction along the 
poses , sensors associated with each of the controlled joints longitudinal axis 401 so that the camera 211 may better view 
of the camera instrument 211 provide sensor data 632 back 50 the end effectors 331 , 341 as they move away from and back 
to the joint control block 605 indicating the current position towards the distal end of the entry guide 200 during their 
and / or velocity of each joint of the camera instrument 211 . use . 
The sensors may sense this joint information either directly During retraction mode , the preferred pose for the camera 
( e . g . , from the joint on the camera instrument 211 ) or instrument 211 is the “ straightened ” pose . FIGS . 7 and 8 
indirectly ( e . g . , from the actuator in the camera manipulator 55 respectively illustrate simplified side views of the camera 
212 driving the joint ) . Each joint control system in the joint instrument 211 in the “ cobra ” and “ straightened ” poses . To 
control block 605 then generates torque commands 633 for go from the “ cobra ” pose to the " straightened ” pose , the 
its respective actuator in the camera manipulator 212 so as joggle joints 323 , 325 rotate link 324 until it is aligned with 
to drive the difference between the commanded and sensed the longitudinal axis 401 of the first link 322 . Since the link 
joint values to zero in a conventional feedback control 60 326 is always parallel to the first link 322 due to operation 
system manner . of the joggle joints 323 , 325 , when the link 324 is aligned 

The forward kinematics block 606 transforms the output with the longitudinal axis 401 , the link 326 also is aligned 
622 of the simulated instrument block 604 from the camera with the longitudinal axis 401 . Meanwhile , the wrist joint 
instrument ' s joint space back to Cartesian space relative to 327 also rotates the camera tip 311 until its central axis also 
the eye reference frame using forward kinematics of the 65 aligns with the longitudinal axis 401 . 
camera instrument 211 . The output 641 of the forward FIG . 10 illustrates , as an example , a block diagram of the 
kinematics block 606 is provided to the scale and offset pose nudging block 625 and its coupling to the pose data 
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block 626 . In this example , the pose data block 626 com pose . In block 1505 , a determination is then made whether 
prises data stored in a non - volatile memory which is acces the current pose of the camera instrument 211 is the pre 
sible to the processor 102 . The stored data for the camera ferred pose ( i . e . , " straightened ” pose in this case ) . If the 
instrument 211 includes data for the " straightened ” pose determination in block 1505 is YES , then the virtual barrier 
1001 which is used for retraction of the camera instrument 5 logic 901 doesn ' t modify the commanded pose ( XCMD ) and 
211 and data for the “ cobra ” pose 1002 which is used during jumps back to block 1501 to process data for a next process 
normal mode operation of the camera instrument 211 . cycle . On the other hand , if the determination n block 1505 

The pose nudging block 625 comprises a retraction mode is NO , then commanded pose ( XCMD ) is modified by 
nudging block 1003 , a normal mode nudging block 1004 , applying the virtual barrier as constraint so that the camera 
and a summing node 1005 . A key feature of the retraction 10 instrument 211 is prevented from moving further in the first 
and normal mode nudging blocks 1003 and 1004 is that direction . The method then loops back to block 1501 to 
nudging force commands from one is phased in while process data for the next process cycle . Thus , the camera 
nudging force commands from the other is being phased out instrument 211 is prevented in this way from moving beyond 
during a transition period . A more detailed description of the the virtual barrier position until the current pose is the 
retraction mode nudging block 1003 is described in refer - 15 preferred retraction pose of the camera instrument 211 . 
ence to FIG . 12 below and a more detailed description of the Referring back to FIG . 12 , in block 1202 , non - nudging 
normal mode nudging block 1004 is described in reference components of the calculated difference ( XERR , VERR ) are 
to FIG . 13 . removed . In particular , translational components along the 

FIG . 12 illustrates , as an example , a block diagram of the first direction and the roll rotational component about the tip 
retraction mode nudging block 1003 which continually 20 310 are removed since neither of these components affects 
processes incoming data . A summing node 1201 computes a the preferred pose ( i . e . , regardless of their values , the camera 
difference ( XERR , VERR ) between the preferred " straight - instrument may be placed in a " straightened ” pose as shown 
ened ” pose 1001 ( i . e . , the retraction configuration for the in FIG . 8 ) . In block 1203 , the modified difference ( XERR ' , 
camera instrument 211 ) and the modified commanded pose VERR ' ) generated in block 1202 is converted to generate a 
( XSLV , VSLV ) 623 which is generated by the virtual barrier 25 force command that would result in one or more forces being 
logic 901 of the simulated instrument block 608 of the applied to the input device 108 so that the Surgeon is urged 
instrument controller 213 . As used herein , the term “ pose " to command the camera instrument 211 to the preferred 
means both position and orientation of the instrument as pose . Preferably such force command is a visco - elastic six 
well as their positional and rotational velocities , so that the degree - of - freedom force that would be applied to corre 
commanded pose may include both positional ( XCMD ) and 30 sponding degrees - of - freedom of the input device 108 . 
velocity ( VCMD ) components , the modified commanded An example of the force converter block 1203 is illus 
pose may include both positional ( XSLV ) and velocity trated in FIG . 14 by a block diagram of a Proportional 
( VSLV ) components , the preferred pose may include both Derivative ( PD ) open loop system . In this PD system , the 
positional ( XPP ) and velocity ( VPP ) components , and the modified position difference ( XERR ' ) is multiplied by a 
computed difference between the preferred pose and the 35 position gain ( KP ) 1401 and limited by limiter 1402 to a first 
modified commanded pose may include both positional saturation value ( SATP ) to generate a first force command 
( XERR ) and velocity ( VERR ) components . In the compu - contribution . At the same time , the modified velocity dif 
tation performed in summing node 1201 , however , the ference ( VERR ' ) is multiplied by a derivative gain ( KD ) 
velocity ( VPP ) components of the preferred pose ( VPP ) are 1403 to generate a second force command contribution . A 
all presumed to be zero . 40 summing node 1404 calculates a difference between second 

To explain how the modified commanded pose ( XSLV , and first force command contributions and a limiter 1405 
VSLV ) is generated , an example of the virtual barrier logic limits to the difference to a second saturation value ( SATF ) . 
901 is described in reference to FIG . 15 . In block 1501 , the The thus limited difference between the second and first 
logic 901 receives the commanded pose ( XCMD ) 621 from force command contributions results in a visco - elastic six 
the scale and offset block 621 and in block 1502 , it deter - 45 degree - of - freedom Cartesian force for nudging the Surgeon 
mines the projection of the commanded pose 621 in a first to move the input device 108 so as to command the preferred 
direction , which in the present example is the instrument pose . Values for the first and second saturation values are 
retraction direction along the longitudinal axis 401 of the selected so as to ensure that commanded motor torques on 
first link 322 of the camera instrument 211 . In block 1503 , the motors of the input device 108 do not exceed their rated 
a determination is made whether the projection along the 50 maximum values . 
first direction would command the camera instrument 211 to Referring back to FIG . 12 , modulator 1207 amplitude 
move beyond a virtual barrier position . The virtual barrier modulates the visco - elastic six degree - of - freedom Cartesian 
position in this case is a position along the longitudinal axis force generated by the force converter block 1203 with a 
401 which is a threshold distance or safety margin from the retraction activation signal which resembles curve 1101 in 
distal end of the entry guide 200 . As described in US 55 FIG . 11 . To generate the retraction activation signal , a 
2011 / 0040305 A1 , the purpose of the safety margin is to summing node 1204 calculates a difference between the 
prevent damage from occurring to either or both the entry commanded pose ( XCMD ) and the modified commanded 
guide 200 and the articulated instrument 211 when attempt pose ( XSLV ) , ignoring velocity contributions , modulation 
ing to force the articulated instrument 211 back into the entry coefficients generator 1205 generates a stream of modulation 
guide 200 while it is in a configuration in which it physically 60 coefficients using the calculated difference , and a low - pass 
will not fit at the time . If the determination in block 1503 is filter 1206 filters the stream of modulation coefficients . 
NO , then the virtual barrier logic 901 jumps back to block An example of the generation of the retraction mode 
1501 to process data for a next process cycle . On the other activation signal is provided in a flow diagram illustrated in 
hand , if the determination in block 1503 is YES , then in FIG . 16 . Blocks 1601 and 1602 describe actions taken by the 
block 1504 , the current pose of the camera instrument 211 65 summing node 1204 . In particular , in block 1601 , the 
is determined sensing its joint positions and applying for commanded pose ( XCMD ) and modified commanded pose 
ward kinematics to determine their corresponding Cartesian ( XSLV ) are received , and in block 1602 , a difference 



US 10 , 271 , 915 B2 
13 14 

between the commanded pose ( XCMD ) and the modified commanded pose ( XSLV ) is calculated . Blocks 1703 to 
commanded pose ( XSLV ) is calculated . Blocks 1603 to 1707 next describe actions taken by the modulation coeffi 
1607 next describe actions taken by the modulation coeffi cients generator 1305 . In block 1703 , a projection of the 
cients generator 1205 . In block 1603 , a projection of the calculated difference in a first direction ( i . e . , the retraction 
calculated difference in a first direction ( i . e . , the retraction 5 direction along the longitudinal axis 401 ) is determined and 
direction along the longitudinal axis 401 ) is determined and in block 1704 , a determination is made whether the projec 
in block 1604 , a determination is made whether the projec - tion exceeds a threshold value . The threshold value in this 
tion exceeds a threshold value . The threshold value in this case should be large enough to ensure that the Surgeon really 
case should be large enough to ensure that the Surgeon really intends to retract the camera instrument 211 and that it is not 
intends to retract the camera instrument 211 and that it is not 10 inadvertent action such as may result from hand tremor . If 
an inadvertent action such as may result from hand tremor . the determination in block 1704 is YES , then in block 1705 , 
If the determination in block 1604 is YES , then in block the current modulation coefficient is set to an integer value 
1605 , the current modulation coefficient is set to an integer “ O ” . On the other hand , if the determination in block 1704 
value “ 1 ” . On the other hand , if the determination in block is NO , then in block 1706 , the current modulation coefficient 
1604 is NO , then in block 1606 , the current modulation 15 is set to an integer value of “ 1 ” . Note that the modulation 
coefficient is set to an integer value of “ 0 ” . In block 1607 , coefficient value assignments are opposite to those used in 
the current modulation coefficient is then appended to a the generation of the retraction activation signal , which 
stream of modulation coefficients generated in prior process results in one of the retraction and normal mode activation 
periods . Block 1608 describes action taken by the low - pass signals phasing in while the other is phasing out . In block 
filter 1206 . In particular , in block 1608 , the retraction 20 1707 , the current modulation coefficient is then appended to 
activation signal is generated by passing the stream of a stream of modulation coefficients generated in prior pro 
modulation coefficients through the low - pass filter 1206 and cess periods . Block 1708 finally describes action taken by 
the process then jumps back to block 1601 to process data the low - pass filter 1306 . In particular , in block 1708 , the 
for the next process cycle . normal mode deactivation signal is generated by passing 

FIG . 13 illustrates , as an example , a block diagram of the 25 stream of modulation coefficients through the low - pass filter 
normal mode nudging block 1004 which also continually 1306 . The process then jumps back to block 1701 to process 
processes incoming data . A summing node 1301 computes a data for the next process cycle . 
difference ( XERR , VERR ) between the preferred “ cobra ” The time constants for the low - pass filter 1206 in the 
pose 1002 ( i . e . , the normal mode configuration for the retraction mode nudging block 1003 and the low - pass filter 
camera instrument 211 ) and the modified commanded pose 30 1306 in the normal mode nudging block 1004 are preferably 
( XSLV , VSLV ) 623 which is generated by the virtual barrier the same so that the phasing in and phasing out match during 
logic 901 of the simulated instrument block 608 of the the transition period such as shown in FIG . 11 , where time 
instrument controller 213 . “ t ( k ) ” represents the time that the threshold value determi 

In block 1302 , non - nudging components of the calculated nations in blocks 1804 and 1704 first result in a YES 
difference ( XERR , VERR ) are removed . In particular , trans - 35 determination , time “ t ( k - m ) ” represents a time prior to “ t ( k ) " 
lational components along the first direction and the roll when the threshold value determinations in blocks 1804 and 
rotational component about the tip 311 are removed since 1704 resulted in a NO determination , and time “ t ( k + m ) ” 
neither of these components affects the preferred pose ( i . e . , represents a time after “ t ( k ) ” when the threshold value 
regardless of their values , the camera instrument may be determinations in blocks 1804 and 1704 still result in a YES 
placed in a “ cobra ” pose as shown in FIG . 7 ) . In block 1303 , 40 determination . 
the modified difference ( XERR ' , VERR ' ) generated in block FIG . 18 illustrates a flow diagram summarizing the first 
1302 is converted to generate a force command that would embodiment of the invention as described in detail above . In 
result in one or more forces being applied to the input device block 1801 , a commanded pose ( XCMD ) is received from 
108 so that the Surgeon is urged to command the camera an input device associated at the time with the articulated 
instrument 211 to the preferred pose . Preferably such force 45 instrument whose pose is being commanded . In block 1802 , 
command is a visco - elastic six degree - of - freedom force that the commanded pose is modified using virtual constraints 
would be applied to corresponding degrees - of - freedom of ( such as described in reference to FIG . 15 ) . In blocks 
the input device 108 , whose generation is similar to that 1803 - 1807 , a first force command is generated which is to 
previously described in reference to FIG . 14 . be phased in to nudge the operator of the input device to 
Modulator 1307 then amplitude modulates the visco - 50 command a first ( new ) preferred pose ( such as described in 

elastic six degree - of - freedom Cartesian force generated by reference to FIG . 12 ) while concurrently in blocks 1808 
the force converter block 1303 with a normal mode deacti - 1812 , a second force command is generated which is to be 
vation signal which resembles curve 1102 in FIG . 11 . To phased out to nudge the operator of the input device to 
generate the normal mode deactivation signal , a summing command a second ( incumbent ) preferred pose ( such as 
node 1304 calculates a difference between the commanded 55 described in reference to FIG . 13 ) . In block 1813 , the first 
pose ( XCMD ) and the modified commanded pose ( XSLV ) , and second force commands are applied to the input device 
ignoring velocity contributions , modulation coefficients so that initially the operator of the input device is urged to 
generator 1305 generates a stream of modulation coefficients command the second preferred pose then subsequently after 
using the calculated difference , and a low - pass filter 1306 a phasing in and phasing out transition period the operator 
filters the stream of modulation coefficients . 60 is urged to command the first preferred pose . 
An example of the generation of the normal mode deac - FIGS . 19 - 21 illustrate additional embodiments of the 

tivation signal is provided in a flow diagram illustrated in invention which include various combinations of some , but 
FIG . 17 . Blocks 1701 and 1702 describe actions taken by the not all of the blocks described in reference to FIG . 18 . In 
summing node 1304 . In particular , in block 1701 , the particular , FIG . 19 illustrates a second embodiment that is a 
commanded pose ( XCMD ) and modified commanded pose 65 modification to the first embodiment , wherein the com 
( XSLV ) are received , and in block 1702 , a difference manded pose is not modified using virtual constraints by 
between the commanded pose ( XCMD ) and the modified deleting block 1802 , but performing all other blocks of the 
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16 
first embodiment . FIG . 20 illustrates a third embodiment that preferred pose for the articulated camera instrument 211 
is a modification to the first embodiment , wherein a second may dynamically be changed from the static preferred pose 
( incumbent ) preferred pose is not active by deleting blocks as conditions , such as the poses of other tool instruments 
808 - 812 , but performing all other blocks of the first embodi - 231 , 241 around it , change . As one example , the preferred 
ment with block 813 modified since there is no second force 5 pose for the camera instrument 211 may dynamically change 
command to be phased out . FIG . 21 illustrates a fourth during normal operating mode to avoid collisions with the 
embodiment that is a modification to the third embodiment , tool instruments 231 , 241 , which are being used and there 
wherein the commanded pose is not modified using virtual fore , moving at the time to perform a medical procedure on 
constraints by deleting block 1802 , but performing all other a patient anatomy . To dynamically generate one or more 
blocks of the third embodiment . 10 preferred poses to be phased in ( such as preferred poses 

FIGS . 22 - 24 illustrate still other embodiments of the 2301 , 2303 , 2305 of FIG . 23 ) and one or more preferred 
invention which expand upon some of the previously dis - poses to be phased out ( such as preferred poses 2401 , 2403 , 
closed embodiments . In particular , whereas prior embodi - 2405 ) , the pose generator block 2202 may use a different 
ments disclose a single preferred pose being active at a time function of one or more states of the system for each of the 
( outside a transition period ) , the embodiments shown in 15 preferred poses to be dynamically changed . The system state 
FIGS . 22 - 24 contemplate the possibility of multiple pre - information in this case is provided by system data 2203 . As 
ferred poses being active at a time with the active preferred one example , the system data 2203 may comprise the 
poses being weighted so that one or some may be more commanded poses of other instruments 231 , 241 in the 
dominant than others . Further , the weightings provide an system 100 . As another example , the system data 2203 may 
additional mechanism through which preferred poses may 20 comprise the actual poses of the other instruments 231 , 241 
be transitioned in and out by making their respective weight - as determined by applying forward kinematics to their 
ings dynamically alterable ( e . g . , progressively changing sensed joint positions . 
from a weighting of “ O ” to a weighting of “ 1 ” to phase the The pose nudging block 2201 includes “ phase - in ” and 
corresponding preferred pose in and conversely , progres - “ phase - out ” nudging blocks which respectively generate 
sively changing from a weighting of “ 1 ” to a weighting of 25 nudging forces that are to be phased - in and phased - out on 
“ O ” to phase the corresponding preferred pose out ) . Also , the input device 108 in a similar manner as previously 
whereas prior embodiments disclose fixed preferred poses described with respect to the retraction mode and normal 
for different operating modes , the embodiments shown in mode nudging blocks , 1003 and 1004 , of FIG . 10 . 
FIGS . 22 - 24 contemplate the possibility of dynamically FIG . 23 illustrates , as an example , a block diagram of the 
changing preferred poses based upon system data such as the 30 “ phase - in ” nudging block . A preferred pose 2320 is gener 
current or commanded poses of other articulated instru - ated by a weighted average of a plurality of preferred poses 
ments . For example , the preferred pose for the camera ( e . g . , preferred poses 2301 , 2303 , 2305 ) so that each of the 
instrument 211 may dynamically change as the poses of the preferred poses is multiplied by a corresponding weight 
end effectors 331 , 341 of the tool instruments 231 , 241 ( e . g . , weights 2302 , 2304 , 2306 ) with the sum of the weights 
change so that the end effectors 331 , 341 remain well 35 equal to “ 1 ” . The weights may be fixed values or preferably 
positioned in a field of view of the camera instrument 211 . dynamic values so one or more of the preferred poses may 
As another example , the preferred poses of each of the be dominant at different times , in different operating modes 
articulated instruments 211 , 231 , 241 may dynamically or under different system conditions . A difference between 
change to avoid collisions with others of the articulated the preferred pose 2320 and the modified commanded pose 
instruments 211 , 231 , 241 during the performance of a 40 2205 is computed by summing node 2314 . Non - nudging 
medical procedure using the articulated instruments 211 , components of the difference are removed in block 2315 and 
231 , 241 . the result provided to force converter block 2316 which 

FIG . 22 illustrates , for example , a block diagram of an generates a force command such as described in reference to 
alternative instrument controller for operator commanded block 1203 of FIG . 12 . A phase - in activation signal is 
movement of an articulated instrument . Although the 45 generated by phase - in signal generator block 2317 so as to 
example is for the camera controller 213 , it is to be appre - resemble the retraction mode activation signal 1101 in FIG . 
ciated that the same general structure may be used for other 11 . An amplitude modulated force command , which is to be 
device controllers 203 , 233 , 243 in the medical robotic phased - in on the input device 108 , is then generated by 
system 100 . The functions of blocks 610 , 601 , 605 , 606 are amplitude modulator 2318 by amplitude modulating the 
the same as previously described in reference to FIG . 6 . The 50 force command generated by the force converter block 2316 
function of the simulated instrument block 2204 is generally with the phase - in activation signal . 
the same as block 604 of FIG . 6 with regards to inverse Using a similar construction , FIG . 24 illustrates , as an 
kinematics and limiting , but may differ in regards to virtual example , a block diagram of the “ phase - out ” nudging block . 
constraints imposed on the commanded pose 621 to generate A preferred pose 2420 in this case is generated by a weighted 
a modified commanded pose 2205 , because of different 55 average of a plurality of preferred poses ( e . g . , preferred 
operating modes and / or preferred poses . Likewise , the func poses 2401 , 2403 , 2405 ) so that each of the preferred poses 
tion of pose nudging block 2201 is generally the same as is multiplied by a corresponding weight ( e . g . , weights 2402 , 
block 625 with regards to summing together two pose 2404 , 2406 ) with the sum of the weights equal to “ 1 ” . The 
nudging contributions wherein a first ( new ) preferred pose is weights may be fixed values or preferably dynamic values so 
to be phased in while a second ( incumbent ) preferred pose 60 one or more of the preferred poses may be dominant at 
is to be phased out according to respective activation signals . different times , in different operating modes or under dif 

A pose generator block 2202 is included in the controller ferent system conditions . A difference between the preferred 
213 to dynamically generate one or more preferred poses pose 2420 and the modified commanded pose 2205 is 
that are provided to the pose nudging block 2201 , as well as computed by summing node 2414 . Non - nudging compo 
pass through static preferred poses when appropriate . In 65 nents of the difference are removed in block 2415 and the 
particular , although a static preferred pose provided by the result provided to force converter block 2416 which gener 
pose data block 626 may be normally passed through , the ates a force command such as described in reference to block 
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1203 of FIG . 12 . A phase - out activation signal is generated comparing the first preferred pose to the modified 
by phase - out signal generator block 2417 so as to resemble commanded pose to generate Cartesian position and 
the normal mode activation signal 1102 in FIG . 11 . An velocity errors ; 
amplitude modulated force command , which is provided to modifying the Cartesian position and velocity errors by 
and is to be phased - out on the input device 108 , is then 5 removing components along the first direction and 
generated by amplitude modulator 2418 by amplitude modu about an axis of a pivotable tip of the articulated 
lating the force command generated by the force converter instrument ; and 
block 2416 with the phase - out activation signal . generating a visco - elastic six degree - of - freedom force 

In addition to the embodiments described herein , it is to command using the modified Cartesian position and 
be appreciated that other embodiments may be constructed , 10 velocity errors 
and are fully contemplated to be within the scope of the 5 . The method of claim 4 , 
present invention , through different combinations of their wherein generating of the visco - elastic six degree - of 
various teachings . In particular , although the various aspects freedom force command comprises : 
of the present invention have been described with respect to amplifying the modified Cartesian position error by a 
preferred and alternative embodiments , it will be understood 15 position gain to generate a first result and limiting the 
that the invention is entitled to full protection within the full first result to a position saturation limit to generate a 
scope of the appended claims . second result ; 

amplifying the modified Cartesian velocity error by a 
What is claimed is : velocity gain to generate a third result ; 
1 . A method for urging operator manipulation of an input 20 generating an interim visco - elastic six - degree - of - free 

device to command an articulated instrument to a preferred dom force command by subtracting the third result 
pose , the method comprising : from the second result ; and 

generating a commanded pose of the articulated instru generating the visco - elastic six degree - of - freedom 
ment in response to operator manipulation of the input force command by limiting the interim visco - elastic 
device ; 25 six - degree - of - freedom force command to a force 

modifying the commanded pose by applying a virtual saturation limit . 
barrier as a constraint to prevent the articulated instru - 6 . The method of claim 4 , wherein applying the first force 
ment from being commanded to move beyond the commands to the first plurality of degrees of freedom of the 
virtual barrier until at least a portion of the articulated input device by phasing in their application according to the 
instrument which is closest to , but has not yet encoun - 30 first activation signal comprises : 
tered the virtual barrier conforms with a first preferred amplitude modulating the visco - elastic six degree - of 
pose ; freedom force command with the first activation signal . 

generating a stream of modulation coefficients indicative 7 . The method of claim 1 , further comprising : 
of a difference between the commanded pose and the generating second force commands for a second plurality 
modified commanded pose ; 35 of degrees of freedom of the input device so as to be 

generating a first activation signal by processing the indicative of a difference between a second preferred 
stream of modulation coefficients ; pose and the commanded pose ; 

generating first force commands for a first plurality of applying the second force commands to the second plu 
degrees of freedom of the input device so as to be rality of degrees of freedom of the input device prior to 
indicative of a difference between the first preferred 40 phasing in the application of the first force commands 
pose and the commanded pose ; and according to the first activation signal ; and 

applying the first force commands to the first plurality of phasing out application of the second force commands 
degrees of freedom of the input device by phasing in according to a second activation signal . 
their application according to the first activation signal . 8 . The method of claim 7 , wherein the constraint prevents 

2 . The method of claim 1 , wherein generating the first 45 the articulated instrument from being commanded to move 
activation signal comprises filtering the stream of modula - beyond the virtual barrier in a first direction , the method 
tion coefficients by using a low pass filter . further comprising : 

3 . The method of claim 1 , generating a second stream of modulation coefficients by 
wherein the constraint prevents the articulated instrument determining a difference between the commanded pose 

from being commanded to move beyond the virtual 50 and modified commanded pose , projecting the differ 
barrier in a first direction , and ence along the first direction , and binary coding the 

wherein generating the stream of modulation coefficients projected difference by setting a current modulation 
comprises : coefficient to a second value when the projected dif 
determining a difference between the commanded pose ference is greater than a threshold value and setting the 

and the modified commanded pose , 55 current modulation coefficient to a first value when the 
projecting the difference along the first direction , and projected difference is less than or equal to the thresh 
binary coding the projected difference by setting a old value ; and 

current modulation coefficient to a first value when generating the second activation signal by filtering the 
the projected difference is greater than a threshold second stream of modulation coefficients . 
value and setting the current modulation coefficient 60 9 . The method of claim 7 , wherein the first and second 
to a second value when the projected difference is activation signals are complementary signals so that the first 
less than or equal to the threshold value . activation signal is phased in as the second activation signal 

4 . The method of claim 1 , is phased out . 
wherein the constraint prevents the articulated instrument 10 . A robotic system comprising : 

from being commanded to move beyond the virtual 65 an input device ; 
barrier in a first direction , and an articulated instrument ; and 

wherein generating the first force commands comprises : a processor programmed to : 
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generate a commanded pose of the articulated instru generating an interim visco - elastic six - degree - of - freedom 
ment in response to operator manipulation of the force command by subtracting the third result from the 
input device , second result , and 

modify the commanded pose by applying a virtual generating the visco - elastic six degree - of - freedom force 
barrier as a constraint to prevent the articulated 5 command by limiting the interim visco - elastic six 
instrument from being commanded to move beyond degree - of - freedom force command to a force saturation 
the virtual barrier until at least a portion of the limit . 
articulated instrument which is closest to , but has not 15 . The system of claim 13 , wherein the processor is 
yet encountered the virtual barrier conforms with a programmed to command application of the first force 
first preferred pose , 10 commands on the plurality of degrees of freedom of the 

generate a stream of modulation coefficients indicative input device so as to phase in their application according to 
of a difference between the commanded pose and the the first activation signal by generating an amplitude modu 
modified commanded pose , lated force by amplitude modulating the visco - elastic six 

generate a first activation signal by processing the degree of freedom force with the first activation signal and 
stream of modulation coefficients , 15 commanding application of the amplitude modulated force 

generate first force commands for a plurality of degrees on input device . 
of freedom of the input device so as to be indicative 16 . The system of claim 10 , wherein the processor is 
of a difference between the first preferred pose and programmed to generate second force commands for a 
the commanded pose , and plurality of degrees of freedom of the input device so as to 

command application of the first force commands on 20 be indicative of a difference between a second preferred pose 
the plurality of degrees of freedom of the input and the commanded pose ; apply the second force commands 
device so as to phase in their application according to the plurality of degrees of freedom of the input device 
to the first activation signal . prior to phasing in the application of the first force com 

11 . The system of claim 10 , wherein the processor is mands according to the first activation signal ; and phase out 
programmed to generate the first activation signal by filter - 25 application of the second force commands according to a 
ing the stream of modulation coefficients by using a low pass second activation signal . 
filter . 17 . The system of claim 16 , 

12 . The system of claim 10 , wherein the constraint prevents the articulated instrument 
wherein the constraint prevents the articulated instrument from being commanded to move beyond the virtual 

from being commanded to move beyond the virtual 30 barrier in a first direction , 
barrier in a first direction , and wherein the processor is programmed to generate a sec 

wherein the processor is programmed to generate the ond stream of modulation coefficients by determining a 
stream of modulation coefficients by : difference between the commanded pose and the modi 
determining a difference between the commanded pose fied commanded pose , projecting the difference along 
and the modified commanded pose , 35 the first direction , and binary coding the projected 

projecting the difference along the first direction , and difference by setting a current modulation coefficient to 
binary coding the projected difference by setting a a second value when the projected difference is greater 

current modulation coefficient to a first value when than a threshold value and setting the current modula 
the projected difference is greater than a threshold tion coefficient to a first value when the projected 
value and setting the current modulation coefficient 40 difference is less than or equal to the threshold value , 
to a second value when the projected difference is and 
less than or equal to the threshold value . wherein the processor is programmed to generate the 

13 . The system of claim 10 , second activation signal by filtering the second stream 
wherein the constraint prevents the articulated instrument of modulation coefficients . 

from being commanded to move beyond the virtual 45 18 . The system of claim 17 , wherein the first and second 
barrier in a first direction , and activation signals are complementary signals so that the first 

wherein the processor is programmed to generate the first activation is phased in as the second activation signal is 
force commands by : phased out . 
comparing the first preferred pose to the modified 19 . The system of claim 10 , 
commanded pose to generate Cartesian position and 50 wherein the processor is programmed to generate the first 
velocity errors , preferred pose by using a weighted average of a first 

modifying the Cartesian position and velocity errors by plurality of preferred poses , and 
removing components along the first direction and wherein at least one of the first plurality of preferred poses 
about an axis of a pivotable tip of the articulated is a function of at least one state of the system . 
instrument , and 55 20 . Anon - transient computer readable medium containing 

generating a visco - elastic six degree - of - freedom force program instructions for causing a computer to perform the 
command using the modified Cartesian position and method of : 
velocity errors . generating a commanded pose of an articulated instru 

14 . The system of claim 13 , wherein the processor is ment in response to operator manipulation of an input 
programmed to generate the visco - elastic six degree - of - 60 device ; 
freedom force command by : modifying the commanded pose by applying a virtual 

amplifying the modified Cartesian position error by a barrier as a constraint to prevent the articulated instru 
position gain to generate a first result and limiting the ment from being commanded to move beyond the 
first result to a position saturation limit to generate a virtual barrier until at least a portion of the articulated 
second result , 65 instrument which is closest to , but has not yet encoun 

amplifying the modified Cartesian velocity error by a tered the virtual barrier conforms with a first preferred 
velocity gain to generate a third result , pose ; 
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generating a stream of modulation coefficients indicative 
of a difference between the commanded pose and the 
modified commanded pose ; 

generating a first activation signal by processing the 
stream of modulation coefficients ; 

generating first force commands so as to be indicative of 
a difference between the first preferred pose and the 
commanded pose ; and 

applying the first force commands to the input device by 
phasing in their application according to the first acti - 10 
vation signal . 


