a2 United States Patent
Zhang et al.

US012137257B2

US 12,137,257 B2
Nov. 5, 2024

(10) Patent No.:
45) Date of Patent:

(54) SIGNALING FOR VIDEO BLOCK (52) US. CL
PARTITION MODE CPC ... HO4N 19/96 (2014.11); HO4N 19/119
(2014.11); HO4N 19/12 (2014.11); HO4N
(71) Applicants: Beijing Bytedance Network 197122 (2014.11);
Technology Co., Ltd., Beijing (CN); (Continued)
Bytedance Inc., Los Angeles, CA (US) 59y pjeld of Classification Search
(72) Inventors: Kai Zhang, San Diego, CA (US); Li CPC ... HOAN 19/119; ?;&1199//112 7’ 6H(;?(§I\1191/ ;/292 6’
Zhang, San Diego, CA (US); Hongbin lication file f | ilh'
Liu, Beijing (CN); Jizheng Xu, San See application file for complete search history.
Diego, CA (US); Yue Wang, Beijing (56) References Cited
(CN)
U.S. PATENT DOCUMENTS
(73) Assignees: BEIJING BYTEDANCE NETWORK 204109 B2 62012 Xi Cal
TECHNOLOGY CO., LTD, Beijing gl long et al.
(CN); BYTEDANCE INC., Los 8804816 B2 ¥ Eg” o etd;l'
Angeles, CA (US) ontmue
(*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS
patent is extended or adjusted under 35 CN 104768014 A 72015
U.S.C. 154(b) by 334 days. CN 107431815 A 12/2017
Continued
(21) Appl. No.: 17/389,179 ()
(22) Filed: Jul 29, 2021 OTHER PUBLICATIONS
. A Bross, Benjamin. “Versatile Video Coding (Draft 1)” Joint Video
(65) Prior Publication Data Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC
US 2021/0360244 Al Nov. 18, 2021 29/WG 11, 10th Meeting: San Diego, US, Apr. 10-20, 2018,
Document JVET-J1001, 2018.
Related U.S. Application Data (Continued)
(63) Continuation of application No. Primary Examiner — David N Wernelj)
PCT/CN2020/074217, filed on Feb. 3, 2020. (74) Attorney, Agent, or Firm — Perkins Coie LLP
(30) Foreign Application Priority Data 67 ABSTRACT
A method for processing a video includes determining a
Feb. 3,2019 (WO) ..ccooovrnnn. PCT/CN2019/074701 valid splitting type for a current video block; determining
Mar. 11, 2019 (WO) ..o PCT/CN2019/077620 whether or how to signal a splitting type to be used for the
(Continued) current video block based on the determination of the valid
splitting type; and performing a conversion between the
(51) Int. CL current video block and a bitstream representation of the
04N 19/96 (2014.01) current video block in accordance with the determining
HO4N 19/119 (2014.01) results.
(Continued) 19 Claims, 41 Drawing Sheets
&4,
8 M“"J
S g
B g o7
o e,
Mo cplp/FEP A
o 4 %“‘m
},ﬁ) Hoszenty ﬁE%%“iﬁﬁ
f"}? A j k'Y
0/ % 1 EF %1
i % f kY
% : %
& X i %
H : ; s
of " & ¥
HYY MEY WY VBT

US 12,137,257 B2

Page 2
(30) Foreign Application Priority Data 10,567,799 B2~ 2/2020 Liu et al.
10,587,897 B2 3/2020 Qu et al.
Jun. 5,2019 (WO) oo, PCT/CN2019/090163 10,609,423 B2 3/2020 Chuang et al.
y y 10,708,591 B2 7/2020 Zhang et al.
Aug 20, 2019 (WO) PCT/CN2019/101594 10,812,835 B2 10/2020 Wang et al.
2009/0116558 Al 5/2009 Chen et al.

(51) Imt. CL 2014/0050266 Al* 2/2014 Zhang HO4N 19/122
HO4N 19/12 (2014.01) 375/240.18
HOAN 19/122 (2014.01) 201310354356 A1 55013 Thang et sl

ang et al.
HO4N 1913 (2014.01) 2015/0304662 Al 10/2015 Liu et al.
HO4N 19/132 (2014.01) 2015/0326880 Al 112015 He et al.
HO4N 19136 (2014.01) 2016/0234510 Al 82016 Lin et al.
HO4N 19/157 (2014.01) 2016/0330457 Al 11/2016 Ye et al.
04N 19/172 (2014.01) 2017/0150186 Al 5/2017 Zhang et al.
HO4N 19176 (2014.01) 2017/0272750 Al 9/2017 An
: 2017/0347095 Al* 11/2017 Panusopone HO04N 19/96
HO4N 19/184 (2014.01) 2017/0347128 AL* 11/2017 Panusogone HO4N 19/172
HO4N 19/186 (2014.01) 2018/0014017 Al 1/2018 Li et al.
HO4N 19/46 (2014.01) 2018/0103268 Al 4/2018 Huang et al.
2018/0109812 Al 4/2018 Tsai et al.
HO4N 19/70 (2014.01) 2018/0109814 Al 4/2018 Chuang et al.
(52) US. CL 2018/0139444 Al* 52018 Huang HO4N 19/122
CPC ... HO4N 19/13 (2014.11); HO4N 19/132 2018/0139453 Al 5/2018 Park et al.
(2014.11); HO4N 19/136 (2014.11); HO4N 2018/0199072 Al 7/2018 Li et al.
19/157 (2014.11); HO4N 19/172 (2014.11); 20180242024 AL 82018 Chen
HOIN 197176 (2014 11): HO4N 197184 2018/0288446 Al 10/2018 An et al.
(A1); 2018/0324420 Al 11/2018 Wang et al.
(2014.11); HO4N 19/186 (2014.11); HO4N 2018/0352226 Al 12/2018 An et al.
19/46 (2014.11); HO4N 19/70 (2014.11) 2019/0116374 Al 4/2019 Zhang et al.
2019/0246122 Al 8/2019 Zhang et al.
(56) References Cited 2019/0246143 Al 8/2019 Zhang et al.
2019/0273922 Al 9/2019 Lim et al.
2019/0313129 Al 10/2019 TLee
2019/0379914 Al 12/2019 Misra et al.
9,077,998 B2 7/2015 Wang et al.
od 2019/0387226 Al 12/2019 Lee
9,124,895 B2 9/2015 Wang
0,288,506 B2 3/2016 Chen et al. 2020/0186805 Al 6/2020 Lee
0.432,685 B2 82016 Chon ef al. 2020/0267418 Al 8/2020 Chuang et al.
9,503,702 B2 11/2016 Chen et al. 2020/0304788 Al 9/2020 He et al.
9,544,566 B2 1/2017 Kang et al. 2020/0344475 Al 10/2020 Zhu et al.
9,544,601 B2 1/2017 Zhao et al. 2020/0359024 Al 11/2020 Misra et al.
9,544,612 B2 1/2017 Deng et al. 2021/0006787 Al 1/2021 Zhang et al.
9,584,819 B2 2/2017 Wang et al. 2021/0006788 Al 1/2021 Zhang et al.
9,584,822 B2 2/2017 Deng et al. 2021/0006790 Al 1/2021 Zhang et al.
g,gig,gg g% gggi; %Llanal% et al.1 2021/0006803 Al 1/2021 Zhang et al.
648, paka et al. 2021/0014479 Al 1/2021 Lee
9,667,942 B2 52017 Chen et al. 2021/0029356 Al 1/2021 Zhang et al.
g%g?g; g% ;gg}; ZD}fng ett :11~ 2021/0029366 Al 1/2021 Zhang et al.
) B ao ¢l .
S b ey T AL Lo et
9,794,579 B2 10/2017 asubramonian et al. ’
! 2021/0051324 Al 2/2021 Zhang et al.
9,794,626 B2 10/2017 Ramasubramonian et al.
2021/0051348 Al* 2/2021 Zhang ... HO4N 19/189
9,813,719 B2 11/2017 Wang
0.838712 B2 122017 Lin of al 2021/0051349 Al* 2/2021 Zhang ... HO4N 19/189
9:860:562 B2 1/2018 Zhang ef al. 2021/0058637 Al 2/2021 Zhang et al.
9,883,187 B2 1/2018 Tu et al. 2021/0058647 Al* 2/2021 Zhang HO04N 19/184
9,906,813 B2 2/2018 Zhang et al. 2021/0092377 Al 3/2021 Zhang et al.
9,979,975 B2 5/2018 Rapaka et al. 2021/0092378 AL* 3/2021 Zhang ... HO4N 19/1883
9,086,257 B2 5/2018 Zhang et al. 2021/0092379 Al 3/2021 Zhang et al.
9,092,494 B2 6/2018 Zhang et al. 2021/0092431 Al 3/2021 Zhang et al.
9,998,739 B2 6/2018 Chon et al. 2021/0112248 Al 4/2021 Zhang et al.
10,063,867 B2 82018 Wang 2021/0112284 Al 4/2021 Zhang et al.
10,116,964 B2 10/2018 An et al. 2021/0120243 Al* 4/2021 Zhang HO4N 19/96
10,136,143 B2 11/2018 Zhang et al. 2021/0195189 AL* 6/2021 L€ ..ccooovrrvrrrrrrrnnnn. HO4N 19/70
118,5311‘41‘ g% %8}3 %haftlglet al. 2021/0258618 Al 8/2021 Gao et al.
B B 1 ¢t al.
10244253 B2 372019 Chen et al. 2021020541 A1 102021 Limmoral
10,264,286 B2 4/2019 Ramasybramonian et al. 2021/0337197 Al* 10/2021 Lee HO4N 19/50
10,271,064 B2 4/2019 Chienetal. S fdAISIIT AT S AAL BEE s
2021/0360242 Al 11/2021 Zhang et al.
10,291,923 B2 5/2019 Hendry et al.
103200130 B2 62019 Dong e al. 2021/0360243 Al 11/2021 Zhang et al.
10,375,411 B2 8/2019 Zhao et al. 2022/0046288 Al 2/2022 Rosewarne
10,390,050 B2 8/2019 An et al. 2022/0086439 Al 3/2022 Tsai et al.
10,390,087 B2 8/2019 Ramasubramonian et al. 2022/0141493 Al 5/2022 Leleannec et al.
10,404,999 B2 9/2019 Liu et al. 2022/0150479 Al 5/2022 Rosewarne
10,419,768 B2 9/2019 Hendry et al. 2023/0300351 Al 9/2023 Francois et al.
10,506,246 B2 12/2019 Li et al. 2023/0421788 Al 12/2023 Leannec et al.

US 12,137,257 B2
Page 3

(56) References Cited
U.S. PATENT DOCUMENTS
2024/0040119 A1*

2024/0048701 Al*
2024/0137498 Al*

2/2024 Zhang HO4N 19/119
2/2024 Zhang HO4N 19/70
4/2024 Zhang HO4N 19/70

FOREIGN PATENT DOCUMENTS

CN 108702507 A 10/2018
CN 109151477 A 1/2019
CN 110839161 A 2/2020
KR 20190104032 A 9/2019
WO 2016091161 Al 6/2016
WO 2016148438 A2 9/2016
WO 2018056703 Al 3/2018
WO 2018088805 Al 5/2018
WO 2018092868 Al 5/2018
WO 2018092869 Al 5/2018
WO 2018093184 Al 5/2018
WO 2018142903 Al 8/2018
WO 2018155985 Al 8/2018
WO 2019016287 Al 1/2019
WO 2019059676 Al 3/2019
WO 2019185815 Al 10/2019

OTHER PUBLICATIONS

Chen et al. “Algorithm Description of Joint Exploration Test Model
7 (JEM 7),” Joint Video Exploration Team (JVET) of ITU-T SG 16
WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 7th Meeting: Torino, IT,
Jul. 13-21, 2017, document JVET-G1001, 2017.

Fu et al. “CE4-Related: Quadtree-based Merge Estimation Region
for VVC,” Joint Video Experts Team (JVET) of ITU-T SG 16 WP
3 and ISO/IEC JTC 1/SC 29/WG 11, 13th Meeting, Marrakech,
MA, Jan. 9-18, 2019, document JVET-M0350, 2019.

Gao et al. “CE1-2.0.11: Picture Boundary Handling,” Joint Video
Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC
29/WG 11, 11th Meeting: Ljubljana, SI, Jul. 10-18, 2018, document
JVET-K0287, 2018.

Li et al. “Multi-Type-Tree.” Joint Video Exploration Team (JVET),
of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 4th

Meeting: Chengdu, CN, Oct. 15-21, 2016, document JVET-
DO011711, 2016.

Luthra et al. Overview of the H.264/AVC Video Coding Standard,
Proc. SPIE, 5203, Applications of Digital Image Processing, Nov.
19, 2003, Optical Science and Technology, SPIE 48th annutal
Meeting, San Diego, CA, US, 2003.

Piao et al. “CEl-Related: Split Unit Coding Order,” Joint Video
Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC
29/WG 11, 12th Meeting, Macao, CN, Oct. 3-12, 2018, document
JVET-L0063, 2018.

Sullivan et al. “Overview of the High Efficiency Video Coding
(HEVC) Standard,” IEEE Transactions on Circuits and Systems for
Video Technology, Dec. 2012, 22(12):1649-1668.

Tsai et al. “CE1-Related: Picture Boundary CU Split Satisfying the
VPDU Constraint,” Joint Video Experts Team (JVET) of ITU-T SG
16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 13th Meeting,
Marrakech, MA, Jan. 9-18, 2019, document JVET-M0888, 2019.
International Search Report and Written Opinion from PCT/CN2020/
074215 dated Apr. 22, 2020 (12 pages).

International Search Report and Written Opinion from PCT/CN2020/
074216 dated Apr. 24, 2020 (9 pages).

International Search Report and Written Opinion from PCT/CN2020/
074217 dated Apr. 21, 2020 (14 pages).

Fu et al. “Unsymmetrical Quad-Tree Partitioning for Audio Video
Coding Standard-3 (AVS-3),” 2019 Picture Coding Symposium
(PCS), Nov. 12-15, 2019, Ningbo, China.

Le Leannec et al. “Assymetric Coding Units in QTBT,” Joint Video
Exploration Team (JVET) of ITU-T SG WP 3 and ISO/IEC JTC
1/SC 29/WG 11 4th Meeting, Chengdu, CN, Oct. 15-21, 2016,
document JVET-D0064, 2016.

Wang et al. “Extended Quad-Tree Partitioning for Future Video
Coding,” 2019 Date Compression Conference (DCC), Snowbird,
UT, USA, Mar. 1, 2019, pp. 300-309.

Non-Final Office Action from U.S. Appl. No. 17/389,104 dated Oct.
18, 2023.

Non-Final Office Action from U.S. Appl. No. 17/389,157 dated Jan.
10, 2024.

Ex Parte Quayle Action from U.S. Appl. No. 17/389,104 dated Jan.
31, 2024.

Chinese Office Action from Chinese Patent Application No.
202080008507.5 dated Aug. 20, 2024, 18 pages.

* cited by examiner

U.S. Patent Nov. 5, 2024 Sheet 1 of 41 US 12,137,257 B2

NN \\‘)"“\ R E

XS NN Sy R S
N St 3 e g
st e

S
8 £ R S
R g

Prior Art
FIG. 1

PR N

ot 8

N
"-‘“\‘i et e D]
NN 3
R S\F‘i
&)

FISSY {'&{\

U.S. Patent Nov. 5, 2024 Sheet 2 of 41 US 12,137,257 B2

FIG. 2

U.S. Patent Nov. 5, 2024 Sheet 3 of 41 US 12,137,257 B2

FIG. 3

U.S. Patent Nov. 5, 2024 Sheet 4 of 41 US 12,137,257 B2

FIG. 4

U.S. Patent Nov. 5, 2024 Sheet 5 of 41 US 12,137,257 B2

g 8
§ {
N P
3 i 1 ©
i i
§ i
& g
T
§
§ To!
§) O
§ LL
§
mmmmmmmm§
§
§
§ ———
i
i
g

U.S. Patent Nov. 5, 2024 Sheet 6 of 41 US 12,137,257 B2

FIG. 6B

FIG. 6A

U.S. Patent Nov. 5, 2024 Sheet 7 of 41 US 12,137,257 B2

FIG. 6D

FIG. 6C

U.S. Patent Nov. 5, 2024 Sheet 8 of 41 US 12,137,257 B2

FIG. 6F

FIG. 6E

U.S. Patent Nov. 5, 2024 Sheet 9 of 41 US 12,137,257 B2

FIG. 6G

U.S. Patent Nov. 5, 2024 Sheet 10 of 41 US 12,137,257 B2

FIG. 6H

U.S. Patent Nov. 5, 2024 Sheet 11 of 41 US 12,137,257 B2

FIG. 6l

U.S. Patent Nov. 5, 2024 Sheet 12 of 41 US 12,137,257 B2

M3 M4

12

FIG. 6K

M1

FIG. 6J

U.S. Patent Nov. 5, 2024 Sheet 13 of 41 US 12,137,257 B2

FIG. 7B

FIG. 7A

U.S. Patent Nov. 5, 2024 Sheet 14 of 41 US 12,137,257 B2

FIG. 7D

FIG. 7C

U.S. Patent Nov. 5, 2024 Sheet 15 of 41 US 12,137,257 B2

FIG. 8

(a)

U.S. Patent Nov. 5, 2024 Sheet 16 of 41 US 12,137,257 B2

FIG.9

U.S. Patent Nov. 5, 2024 Sheet 17 of 41 US 12,137,257 B2

FIG. 10A

AE T ;.
F s 2

U.S. Patent Nov. 5, 2024 Sheet 18 of 41 US 12,137,257 B2

FIG. 10B

U.S. Patent Nov. 5, 2024 Sheet 19 of 41 US 12,137,257 B2

FIG. 10C

U.S. Patent Nov. 5, 2024 Sheet 20 of 41 US 12,137,257 B2

s,

R T
MW

FIG. 10D

o s

U.S. Patent Nov. 5, 2024 Sheet 21 of 41 US 12,137,257 B2

FIG. 10E

e i ,f’g o * {f 3 it s ga;*a(% atifpenconseens §4 f,’g%

U.S. Patent Nov. 5, 2024 Sheet 22 of 41 US 12,137,257 B2

FIG. 10F

U.S. Patent Nov. 5, 2024 Sheet 23 of 41 US 12,137,257 B2

FIG. 10G

2
4
]

ifanssonarh i mansoasifi o b4 § St M2

U.S. Patent Nov. 5, 2024 Sheet 24 of 41 US 12,137,257 B2

FIG. 10H

US 12,137,257 B2

Sheet 25 of 41

Nov. 5, 2024

U.S. Patent

Ll "Old

90t} Aowa
Ainosn
Buisseaoid oapip oL
10§$9201d
¢oLiL

0011

U.S. Patent Nov. 5, 2024 Sheet 26 of 41 US 12,137,257 B2

FIG. 12

ﬁ». B 0 i o e e,

k2

i

g e i S e el e e e e

t3
3
i
3
4
3

US 12,137,257 B2

Sheet 27 of 41

Nov. 5, 2024

U.S. Patent

€L 'Old

0lel —n]

suoiod noj oy} Buisn »ooiq
08pIA 1S4} 8Y) Jo Buissasoid Jayuny wiousad

Go0el —]

Slo

YT

aje pH pue ‘€H ‘ZH “LH ‘PM ‘€M TM
‘LM Usiaym ‘ZH AN JO uoisuawip e Buiney
uoniod Yunoy B pue ‘CHXSAA O uoisuswip e
Buiney uoniod piiyl B ‘ZHXZAA JO UoISuswIp

e Buiney uoiod puooss B ‘L HXLAA JO
uoisuswip e Buiney uondod isay e Buipnioul
SUOIOd IN0J OlUl ¥D0|q 0BPIA }S1Y B uohilied

00¢€l

US 12,137,257 B2

Sheet 28 of 41

Nov. 5, 2024

U.S. Patent

¥l "Old

Gyl —

10N jo ejels
[euonesado ay) Yiim 20UBpIosde Ul ¥00|q
08PIA }sil} 8Y) JO Buisseo0id Joypn) wiopad

oLyl —n]

pajgesip
JO pajqeus si 91e}s jeuonelado ay) ullaym
‘soljsSuI9IOBIRYD B} JO UOHBUILLLIBIAP 9}
uo paseq (LDN) do4a-penb jeojauwwAsun
Buipsebau a3e1s [RUCKRIDCO UR BUIWLIBISQ

GovlL —no]

300{q O9pIA
151y e Buipiebal sOnSLI9IORIBYD BUILLLIBIBQ

80} 47

US 12,137,257 B2

Sheet 29 of 41

Nov. 5, 2024

U.S. Patent

Gl 'Old

GG} ~—u

H90iq O[PIA IS4y
ay} uoniued 0] MOY UM 90UBPIOID. Ul YO0|]
09pIA 1841} 8Y) jo Buisseooid Jeyun) uloped

0LGL —nu]

sofnsuseIeyd
B} JO UOHBUIULISISP 8y} UO Paseq 300|q
0OPIA JS11f B} uoiled 0} MOY BUILLIBIB(

G0t —u

300[¢ OBPIA
1841 & Buipiefal sonsusloRIRYD BUILLISIE(]

0041

U.S. Patent Nov. 5, 2024 Sheet 30 of 41 US 12,137,257 B2

< BT _VER

£ an example of
LU partitioning

by &7 HOR

o BOY_VER

FIG. 16

3 0
o EOT_HOR

US 12,137,257 B2

Sheet 31 of 41

Nov. 5, 2024

U.S. Patent

ZEIATION P

AT 00 {2

Ll "Old

THOM 1y g

O 100

U.S. Patent Nov. 5, 2024 Sheet 32 of 41 US 12,137,257 B2

Lo

SITPRNTVIRTETCYRIRTRPRFSPRVRISVEVISRVICRUR IR RV IPRPVPIPRVSORVENIGIVIGRVIGHIRIIORI PR 3

PR Re

<
s

i
o
b3

20

»
»
: . :
L e e g e T e T el e e e et et e i e o

o

SIS S S S SEE SR SRR S S S SR S S SHE SIS S S O 2

o0

FIG. 18

1‘%
R u}.-“-gvgnw PR O
BN ER WEI WS WE MR SN BN #h W
x;bévl\igxaaé

S N

12
13
1

1 el T R AT S T e e R e e e

e

US 12,137,257 B2

Sheet 33 of 41

Nov. 5, 2024

U.S. Patent

AT

ZAHET DY

Sor A

EC ey

S e

218

Ly T

Satitt

At &

6L 'Old

s

- —
i

s g

N

P 4]

sy

RAN

US 12,137,257 B2

Sheet 34 of 41

Nov. 5, 2024

U.S. Patent

0¢ 'Olid

4

BR8N 2 it

b

L3R E00 e

and 10g S St

sy

TR 08 o s s

Bk
=

e S INE S

BN

stk yudy

cw Mm

Hinieg

el

¥ 3

US 12,137,257 B2

Sheet 35 of 41

Nov. 5, 2024

U.S. Patent

12 'Old

G0l —

siabajul aie yH pue ‘cH
CH LH "PM EM TM LM UIBIByM “pHXEAN
JO uoisuauwip e Buiaey uopited yunoj e
pue ‘CHXESAA JO uoisuawip e Buiney uoniued
PAIYL B ‘ZHXZM 10 uoisuawip e Buiaey
uonijed puooss B ‘L HXLAA O uoisuauwip
e Buiney uoined 1s1iy B sapnjoul suopiied
inoj ayy uJeym ‘Bumds (LoN) @81 -penb
jeoLewWWASUN ue Buisn suopiued inoj ojul
Hds AjjeorauwiwiAsun st %00jq O9pPIA JUSLIND
AU} UIBJaYM HD0|(OBPIA JUBLIND B} JO
uonejuasaideas WealIs)ig B pue ¥00{q 09pIA
JUBLND B USOM]S(UOISISAUOD B WO

00i¢

US 12,137,257 B2

Sheet 36 of 41

Nov. 5, 2024

U.S. Patent

¢¢ 'Old

GLe¢ ——

Bunuds 1N jo ajels [puonesado
By} U0 PBsSE(Q }D0[q 0BPIA JUSLIND BY] JO
uonejussaidal Wesnsliq 8 pue 3o0jg 09pIA
JUBLIND B} USDM]B(] UOISIBALOD B ULIOMS]

0leC —]

Bunuids Lon ey} Buisn suopied
N0} 01U ¥O0|q 0BPIA JUBLIND 3L Jids
0} MOY S3]EDIPUL JO/pUR PajgeSIP 0 Pajgeus
s1 Bugiids 1 ON 8y} Jeyiaym jey) seleoipuf
2)elS [RUOHRISCO B} UIRIBUM ‘SOSIIBIORIBYD
ay) JO UOIBUILLLISISP 8y} UO paseq
Bumyds (1ON) 924-penb jeouswiwAsun
Buipiebal 91818 jeuolRISdO UB SUILLBISQ

G0 —

NOOIG OBPIA JUBLIND
e Buipiebal sonsusorEeYyd SUiLIBIBg

00¢¢

US 12,137,257 B2

Sheet 37 of 41

Nov. 5, 2024

U.S. Patent

€Z Old

0l€C ——

Buiuiwieep
B} UO paseq UOISISAUOD U} Wiouad

G0€C —]

bumidsion teontea si buids
A-PLON pue Bupyids A-01 DN pue Bunyids
10N leyuozuoy e si Bunyids H-qLON pue
Bunyids H-eLDN UlRIBYM ‘' JO € ‘7 ‘| WOy
uasoyo ale p pue 9 ‘q ‘e ateym ‘Bunuds
A-PLON pue Bupds A-01ON ‘Bunids
H-g1ON ‘Bunyids H-8LDN Wol paos|es
sI poyjaw Bumids sy} ulsiaym Yoo[q
08pIA JuBLIND By} Bunlids Joj pasn poylaw
Bunyds (LON) 8a4-penb jeouawiwAsun
B 00|q 09pPIA JUsLIND a8y} jo uonejussaidal
Weal]sliq B pue 3o0jgq 03PIA Judind
€ US9M]a(UOISIBAUOD B IO} ‘Duiuwislag

00¢¢

US 12,137,257 B2

Sheet 38 of 41

Nov. 5, 2024

U.S. Patent

¥¢ "Old

Sve —u

synsas Builiwisap ey
UUM SOUBRPICOOE Ul YO0|g O8PIA JUSLIND 8Y] JO
uoneussaidel Wesnsiig B pue J00|q 09pIA
JUSLIND B} USBM]S] UOISIBAUOD B ULIOMSd

Cl¥e —no

adA) Bunyyds
pIfEA 8Y} JO UOHBUILLIDIAP Sy} UO Paseq »20iq
OS8PIA JUBND 8Y] 40} pasn g o} adA) Bunyds
e jeubis 0] MOY JO JBYIBYM SUILLIBSIS(]

SO¥e —u-]

300jq O2pIA
JuLUND e J0j 9dA} Bunids plieAa e suluieeQ

00v¢e

US 12,137,257 B2

Sheet 39 of 41

Nov. 5, 2024

U.S. Patent

GZ "Old

0168 ——]

Buiuiwieep
B} UO paseq UOISISAUOD U} Wiouad

G0S9C —|

Bumds
(LO) @041 penb jo suoneosipul jo/pue Bugyds
-uou o Bupyds jo suonesiput Buieubis
Joye uoneuassaidal wesansiq syl ui pajeubis
st adA} Bugnids sy uslaym Ho0jg 08pIA
aLino ay) Bunds 1oy pasn adA} bunyds
B)00|g 09PIA JUSLIND B} Jo uonejuasaidal
poapo2 B pue Y0o0|q O8PIA JUBLND
B US9M}S8Q UOISIBAUOD B J0} ‘DuluLIsla(

00G¢

US 12,137,257 B2

Sheet 40 of 41

Nov. 5, 2024

U.S. Patent

9¢ 'Ol

019¢ ——

Buiuiwieep
B} UO paseq UOISISAUOD U} Wiouad

G09¢ —]

3O0jg 09PIA JUBLIND By} Buiurejuoo ainjoid e

10 901iS e uo paseq ‘paydde si Bunyds 1ON
J1 %00[q 08piA JuaLIng ay} Bumids Joj pesn aq
0} 8dA} 1ON oyoads e pue ‘Bunuids (sLoN)

saaul-penb [eoujawwAsun Ajdde 0y Jayleym

‘¥00jq 03PIA JUBLIND B} JO uoyeuasaldal
Weal1Slg B PUB %00{q 09PIA JUBLIND
B UD9M]aQ UOISIBAUDD B JO} ‘Qulug)a(

009¢

US 12,137,257 B2

Sheet 41 of 41

Nov. 5, 2024

U.S. Patent

LZ "Old

0L —nr]

Buiuiwieep
B} UO paseq UOISISAUOD U} Wiouad

G0LC —]

00| OBPIA JUBLIND

ay} Buiuiejuod aunoid e 10 821js B UO paseq
¥00}q 0apIA JUBLIND By} Bumids Jog pasn aq
0} Bumds (LON) 984-penb jeouswwisun
JO uopeussaldal pajeubis jo suoneiaidiaul

‘¥O0|q 0BPIA JUBLIND Y} JO uopeIussaldal
WEaJISHg B PUB ¥O0[q 09PIA JUBLIND
B UdaM}a(Q UOISIBAUOD B 10} ‘Duiid)ag

004¢

US 12,137,257 B2

1
SIGNALING FOR VIDEO BLOCK
PARTITION MODE

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a continuation of International Appli-
cation No. PCT/CN2020/074217, filed on Feb. 3, 2020,
which claims the benefit of PCT/CN2019/074701, filed on
Feb. 3, 2019, PCT/CN2019/077620, filed on Mar. 11, 2019,
PCT/CN2019/090163, filed on Jun. 5, 2019, and PCT/
CN2019/101594, filed on Aug. 20, 2019. The entire disclo-
sures of the aforementioned applications are incorporated by
reference as part of the disclosure of this application.

TECHNICAL FIELD

This document is related to video and image coding
technologies.

BACKGROUND

Digital video accounts for the largest bandwidth use on
the internet and other digital communication networks. As
the number of connected user devices capable of receiving
and displaying video increases, it is expected that the
bandwidth demand for digital video usage will continue to
Zrow.

SUMMARY

The disclosed techniques may be used by video or image
decoder or encoder embodiments for in which enhanced
coding tree structure is used.

In one example aspect, a method of processing video is
disclosed. The method includes performing a conversion
between a current video block and a bitstream representation
of the current video block, wherein the current video block
is unsymmetrically split into four partitions using an unsym-
metrical quad-Tree (UQT) splitting, wherein the four parti-
tions includes a first partition having a dimension of
W1xH1, a second partition having a dimension of W2xH2,
a third partition having a dimension of W3xH3, and a fourth
partition having a dimension of W4xH4, wherein W1, W2,
W3, W4, H1, H2, H3, and H4 are integers.

In another example aspect, a method of processing video
includes determining characteristics regarding a current
video block; determining an operational state regarding
unsymmetrical quad-tree (UQT) splitting based on the deter-
mination of the characteristics, wherein the operational state
indicates that whether the UQT splitting is enabled or
disabled and/or indicates how to split the current video block
into four partitions using the UQT splitting; and performing
a conversion between the current video block and a bit-
stream representation of the current video block based on the
operational state of UQT splitting.

In another example aspect, a method of processing video
includes determining, for a conversion between a current
video block and a bitstream representation of the current
video block, a unsymmetrical quad-tree (UQT) splitting
method used for splitting the current video block, wherein
the splitting method is selected from UQTa-H splitting,
UQTb-H splitting, UQTc-V splitting and UQTd-V splitting,
where a, b, ¢ and d are chosen from 1, 2, 3 or 4, wherein
UQTa-H splitting and UQTb-H splitting is a horizontal UQT

10

15

20

25

30

35

40

45

50

55

60

65

2
splitting and UQTc-V splitting and UQTd-V splitting is
vertical UQTsplitting; and performing the conversion based
on the determining.

In another example aspect, a method of processing video
includes determining a valid splitting type for a current
video block; determining whether or how to signal a split-
ting type to be used for the current video block based on the
determination of the valid splitting type; and performing a
conversion between the current video block and a bitstream
representation of the current video block in accordance with
the determining results.

In another example aspect, a method of video processing
is disclosed. The method includes determining, for a con-
version between a current video block and a coded repre-
sentation of the current video block, a splitting type used for
splitting the current video block, wherein the splitting type
is signaled in the bitstream representation after signaling
indications of splitting or non-splitting and/or indications of
quad tree (QT) splitting; and performing the conversion
based on the determining.

In another example aspect, a method of video processing
is disclosed. The method includes determining, for a con-
version between a current video block and a bitstream
representation of the current video block, whether to apply
unsymmetrical quad-trees (UQTs) splitting, and a specific
UQT type to be used for splitting the current video block if
UQT splitting is applied, based on a slice or a picture
containing the current video block; and performing the
conversion based on the determining.

In another example aspect, a method of video processing
is disclosed. The method includes determining, for a con-
version between a current video block and a bitstream
representation of the current video block, interpretations of
signaled representation of unsymmetrical quad-tree (UQT)
splitting to be used for splitting the current video block,
based on a slice or a picture containing the current video
block; and performing the conversion based on the deter-
mining.

In another example aspect, the above-described method
may be implemented by a video encoder apparatus that
comprises a processor.

In yet another example aspect, these methods may be
embodied in the form of processor-executable instructions
and stored on a computer-readable program medium.

These, and other, aspects are further described in the
present document.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an example of MB partitions in H.264/AVC.

FIG. 2 shows an example of modes for splitting a CB into
PBs.

FIG. 3 shows an example of subdivision of a CTB into
CBs.

FIG. 4 shows an example of an illustration of a QTBT
structure.

FIG. 5 shows examples of partitioning.

FIG. 6A to 6K show examples of EQT.

FIG. 7A to 7D show examples of FT partitions.

FIG. 8 show examples of GTT partitions.

FIG. 9 shows an example of unchanged syntax and
changed semantic for versatile boundary partition.

FIG. 10A to 10H show examples of UQT.

FIG. 11 is a block diagram of an example of a video
processing apparatus.

FIG. 12 shows a block diagram of an example implemen-
tation of a video encoder.

US 12,137,257 B2

3

FIG. 13 is a flowchart for an example of a video process-
ing method.

FIG. 14 is a flowchart for an example of a video process-
ing method.

FIG. 15 is a flowchart for an example of a video process-
ing method.

FIG. 16 shows examples of partition types.

FIG. 17 shows an example of the proposed extended
quad-tree partitions.

FIG. 18 shows an example of an LCU partition example
with QT+BT+EQT+UQT partitioning.

FIG. 19 shows an example of tree type coding structure
for I slices.

FIG. 20 shows an example of tree type coding structure
for B/P slices.

FIG. 21 is a flowchart for an example of a video process-
ing method.

FIG. 22 is a flowchart for an example of a video process-
ing method.

FIG. 23 is a flowchart for an example of a video process-
ing method.

FIG. 24 is a flowchart for an example of a video process-
ing method.

FIG. 25 is a flowchart for an example of a video process-
ing method.

FIG. 26 is a flowchart for an example of a video process-
ing method.

FIG. 27 is a flowchart for an example of a video process-
ing method.

DETAILED DESCRIPTION

The present document provides various techniques that
can be used by a decoder of image or video bitstreams to
improve the quality of decompressed or decoded digital
video or images. For brevity, the term “video” is used herein
to include both a sequence of pictures (traditionally called
video) and individual images. Furthermore, a video encoder
may also implement these techniques during the process of
encoding in order to reconstruct decoded frames used for
further encoding.

Section headings are used in the present document for
ease of understanding and do not limit the embodiments and
techniques to the corresponding sections. As such, embodi-
ments from one section can be combined with embodiments
from other sections.

1. Summary

This document is related to image/video coding, espe-
cially on the partition structure, i.e., how to split one large
block to smaller blocks. It may be applied to the existing
video coding standard like HEVC, or the standard (Versatile
Video Coding) to be finalized. It may be also applicable to
future video coding standards or video codec.

2. Background

Video coding standards have evolved primarily through
the development of the well-known ITU-T and ISO/IEC
standards. The ITU-T produced H.261 and H.263, ISO/IEC
produced MPEG-1 and MPEG-4 Visual, and the two orga-
nizations jointly produced the H.262/MPEG-2 Video and
H.264/MPEG-4 Advanced Video Coding (AVC) and H.265/
HEVC standards. Since H.262, the video coding standards
are based on the hybrid video coding structure wherein
temporal prediction plus transform coding are utilized.

10

15

25

30

40

45

50

55

4

FIG. 12 is a block diagram of an example implementation
of a video encoder. FIG. 12 shows that the encoder imple-
mentation has a feedback path built in in which the video
encoder also performs video decoding functionality (recon-
structing compressed representation of video data for use in
encoding of next video data).

2.1 Partition Tree Structure in H.264/AVC

The core of the coding layer in previous standards was the
macroblock, containing a 16x16 block of luma samples and,
in the usual case of 4:2:0 color sampling, two corresponding
8x8 blocks of chroma samples.

An intra-coded block uses spatial prediction to exploit
spatial correlation among pixels. Two partitions are defined:
16x16 and 4x4.

An inter-coded block uses temporal prediction, instead of
spatial prediction, by estimating motion among pictures.
Motion can be estimated independently for either 16x16
macroblock or any of its sub-macroblock partitions: 16x8,
8x16, 8x8, 8x4, 4x8, 4x4 (see FIG. 1). Only one motion
vector (MV) per sub-macroblock partition is allowed.

2.2 Partition Tree Structure in HEVC

In HEVC, a CTU is split into CUs by using a quadtree
structure denoted as coding tree to adapt to various local
characteristics. The decision whether to code a picture area
using inter-picture (temporal) or intra-picture (spatial) pre-
diction is made at the CU level. Each CU can be further split
into one, two or four PUs according to the PU splitting type.
Inside one PU, the same prediction process is applied and
the relevant information is transmitted to the decoder on a
PU basis. After obtaining the residual block by applying the
prediction process based on the PU splitting type, a CU can
be partitioned into transform units (TUs) according to
another quadtree structure similar to the coding tree for the
CU. One of key feature of the HEVC structure is that it has
the multiple partition conceptions including CU, PU, and
TU.

In the following, the various features involved in hybrid
video coding using HEVC are highlighted as follows.

1) Coding tree units and coding tree block (CTB) struc-
ture: The analogous structure in HEVC is the coding tree
unit (CTU), which has a size selected by the encoder and can
be larger than a traditional macroblock. The CTU consists of
aluma CTB and the corresponding chroma CTBs and syntax
elements. The size LxL of a luma CTB can be chosen as
L=16, 32, or 64 samples, with the larger sizes typically
enabling better compression. HEVC then supports a parti-
tioning of the CTBs into smaller blocks using a tree structure
and quadtree-like signaling.

2) Coding units (CUs) and coding blocks (CBs): The
quadtree syntax of the CTU specifies the size and positions
of its luma and chroma CBs. The root of the quadtree is
associated with the CTU. Hence, the size of the luma CTB
is the largest supported size for a luma CB. The splitting of
a CTU into luma and chroma CBs is signaled jointly. One
luma CB and ordinarily two chroma CBs, together with
associated syntax, form a coding unit (CU). A CTB may
contain only one CU or may be split to form multiple CUs,
and each CU has an associated partitioning into prediction
units (PUs) and a tree of transform units (TUs).

3) Prediction units and prediction blocks (PBs): The
decision whether to code a picture area using inter picture or
intra picture prediction is made at the CU level. A PU
partitioning structure has its root at the CU level. Depending
on the basic prediction-type decision, the luma and chroma
CBs can then be further split in size and predicted from luma
and chroma prediction blocks (PBs). HEVC supports vari-
able PB sizes from 64x64 down to 4x4 samples.

US 12,137,257 B2

5

FIG. 3 shows modes for splitting a CB into PBs.

4) TUs and transform blocks: The prediction residual is
coded using block transforms. A TU tree structure has its
root at the CU level. The luma CB residual may be identical
to the luma transform block (TB) or may be further split into
smaller luma TBs. The same applies to the chroma TBs.
Integer basis functions similar to those of a discrete cosine
transform (DCT) are defined for the square TB sizes 4x4,
8x8, 16x16, and 32x32. For the 4x4 transform of luma intra
picture prediction residuals, an integer transform derived
from a form of discrete sine transform (DST) is alternatively
specified.

FIG. 4 shows subdivision of a CTB into CBs.

2.3 Quadtree Plus Binary Tree Block Structure with Larger
CTUs in JEM

To explore the future video coding technologies beyond
HEVC, Joint Video Exploration Team (JVET) was founded
by VCEG and MPEG jointly in 2015. Since then, many new
methods have been adopted by JVET and put into the
reference software named Joint Exploration Model (JEM).
2.3.1 QTBT Block Partitioning Structure

Different from HEVC, the QTBT structure removes the
concepts of multiple partition types, i.e. it removes the
separation of the CU, PU and TU concepts, and supports
more flexibility for CU partition shapes. In the QTBT block
structure, a CU can have either a square or rectangular
shape. As shown in FIG. 4, a coding tree unit (CTU) is first
partitioned by a quadtree structure. The quadtree leaf nodes
are further partitioned by a binary tree structure. There are
two splitting types, symmetric horizontal splitting and sym-
metric vertical splitting, in the binary tree splitting. The
binary tree leaf nodes are called coding units (CUs), and that
segmentation is used for prediction and transform process-
ing without any further partitioning. This means that the CU,
PU and TU have the same block size in the QTBT coding
block structure. In the JEM, a CU sometimes consists of
coding blocks (CBs) of different colour components, e.g.
one CU contains one luma CB and two chroma CBs in the
case of P and B slices of the 4:2:0 chroma format and
sometimes consists of a CB of a single component, e.g., one
CU contains only one luma CB or just two chroma CBs in
the case of I slices.

The following parameters are defined for the QTBT
partitioning scheme.

CTU size: the root node size of a quadtree, the same

concept as in HEVC

MinQTSize: the minimum allowed quadtree leaf node

size

MaxBTSize: the maximum allowed binary tree root node

size

MaxBTDepth: the maximum allowed binary tree depth

MinBTSize: the minimum allowed binary tree leaf node

size

In one example of the QTBT partitioning structure, the
CTU size is set as 128x128 luma samples with two corre-
sponding 64x64 blocks of chroma samples, the MinQTSize
is set as 16x16, the MaxBTSize is set as 64x64, the
MinBTSize (for both width and height) is set as 4x4, and the
MaxBTDepth is set as 4. The quadtree partitioning is applied
to the CTU first to generate quadtree leaf nodes. The
quadtree leaf nodes may have a size from 16x16 (i.e., the
MinQTSize) to 128x128 (i.e., the CTU size). If the leaf
quadtree node is 128x128, it will not be further split by the
binary tree since the size exceeds the MaxBTSize (i.e.,
64x64). Otherwise, the leaf quadtree node could be further
partitioned by the binary tree. Therefore, the quadtree leaf
node is also the root node for the binary tree and it has the

15

20

30

35

40

45

50

6

binary tree depth as 0. When the binary tree depth reaches
MaxBTDepth (i.e., 4), no further splitting is considered.
When the binary tree node has width equal to MinBTSize
(i.e., 4), no further horizontal splitting is considered. Simi-
larly, when the binary tree node has height equal to MinBT-
Size, no further vertical splitting is considered. The leaf
nodes of the binary tree are further processed by prediction
and transform processing without any further partitioning. In
the JEM, the maximum CTU size is 256x256 luma samples.

FIG. 4 (left) illustrates an example of block partitioning
by using QTBT, and FIG. 4 (right) illustrates the corre-
sponding tree representation. The solid lines indicate
quadtree splitting and dotted lines indicate binary tree split-
ting. In each splitting (i.e., non-leaf) node of the binary tree,
one flag is signalled to indicate which splitting type (i.e.,
horizontal or vertical) is used, where O indicates horizontal
splitting and 1 indicates vertical splitting. For the quadtree
splitting, there is no need to indicate the splitting type since
quadtree splitting always splits a block both horizontally and
vertically to produce 4 sub-blocks with an equal size.

In addition, the QTBT scheme supports the ability for the
luma and chroma to have a separate QTBT structure. Cur-
rently, for P and B slices, the luma and chroma CTBs in one
CTU share the same QTBT structure. However, for I slices,
the luma CTB is partitioned into CUs by a QTBT structure,
and the chroma CTBs are partitioned into chroma CUs by
another QTBT structure. This means that a CU in an I slice
consists of a coding block of the luma component or coding
blocks of two chroma components, and a CU in a P or B slice
consists of coding blocks of all three colour components.

In HEVC, inter prediction for small blocks is restricted to
reduce the memory access of motion compensation, such
that bi-prediction is not supported for 4x8 and 8x4 blocks,
and inter prediction is not supported for 4x4 blocks. In the
QTBT of the JEM, these restrictions are removed.

2.4 Triple-Tree for VVC

Tree types other than quad-tree and binary-tree are sup-
ported. In the implementation, two more triple tree (TT)
partitions, i.e., horizontal and vertical center-side triple-trees
are introduced, as shown in FIGS. 5 (d) and (e).

In FIG. 5: (a) quad-tree partitioning (b) vertical binary-
tree partitioning (c) horizontal binary-tree partitioning (d)
vertical center-side triple-tree partitioning (e) horizontal
center-side triple-tree partitioning.

In the above example, there are two levels of trees, region
tree (quad-tree) and prediction tree (binary-tree or triple-
tree). A CTU is firstly partitioned by region tree (RT). ART
leaf may be further split with prediction tree (PT). A PT leaf
may also be further split with PT until max PT depth is
reached. A PT leaf is the basic coding unit. It is still called
CU for convenience. A CU cannot be further split. Predic-
tion and transform are both applied on CU in the same way
as JEM. The whole partition structure is named ‘multiple-
type-tree’.

Extended Quad Tree

A extended quad tree (EQT) partitioning structure corre-
sponding to a block partitioning process including an
extended quad tree partitioning process for the block of
video data, wherein the extended quad partitioning structure
represents partitioning the block of video data into final
sub-blocks, and when the extended quad tree partitioning
process decides to apply extended quad tree partition to one
given block, said one given block is always split into four
sub-blocks; decoding the final sub-blocks based on the video
bitstream; and decoding the block of video data based on the
final sub-blocks decoded according to the EQT structure
derived.

US 12,137,257 B2

7

The EQT partitioning process can be applied to a given
block recursively to generate EQT leaf nodes. Alternatively,
when EQT is applied to a certain block, for each of the
sub-block due to EQT, it may further be split into BT and/or
QT and/or TT and/or EQT and/or other kinds of partition
trees.

In one example, EQT and QT may share the same depth
increment process and same restrictions of leaf node sizes.
In this case, the partitioning of one node could be implicitly
terminated when the size of the node reaches a minimum
allowed quad tree leaf node size or EQT depth with the node
reaches a maximum allowed quad tree depth.

Alternatively, EQT and QT may share different depth
increment process and/or restrictions of leaf node sizes. The
partitioning of one node by EQT is implicitly terminated
when the size of the node reaches a minimum allowed EQT
leaf node size or EQT depth associated with the node
reaches a maximum allowed EQT depth. In one example,
furthermore, the EQT depth and/or the minimum allowed
EQT leaf node sizes may be signaled in sequences parameter
set (SPS), and/or picture parameter set (PPS), and/or slice
header, and/or CTU, and/or regions, and/or tiles, and/or
CUs.

Instead of using the current quad tree partition applied to
a square block, for a block with MxN (M and N are non-zero
positive integer values, either equal or unequal) size, in
EQT, one block may be split equally into four partitions,
such as M/4xN or MxN/4 (examples are depicted in FIGS.
6 (a) and (b)) or split equally into four partitions and the
partition size is dependent on the maximum and minimum
values of M and N. In one example, one 4x32 block may be
split into four 4x8 sub-blocks while a 32x4 block may be
split into four 8x4 sub-blocks.

Instead of using the current quad tree partition applied to
a square block, for a block with MxN (M and N are non-zero
positive integer values, either equal or unequal) size, in
EQT, one block may be split unequally into four partitions,
such as two partitions are with size equal to (M*w0/w)x
(N*h0/h) and the other two are with (M*(w-w0)/w)x(N*
(h-hO)/h).

For example, wO and w may be equal to 1 and 2,
respectively that is the width is reduced by half while the
height could use other ratios instead of 2:1 to get the
sub-blocks. Examples for this case are depicted in FIGS. 6
(¢) and (e). Alternatively, hO and h may be equal to 1 and 2,
respectively, that is the height is reduced by half while the
width could use other ratios instead of 2:1. Examples for this
case are depicted in FIGS. 6 (d) and ().

FIGS. 6 (g) and (%) show two alternative examples of
quad tree partitioning.

FIG. 6 (i) shows a more general case of quad tree
partitioning with different shapes of partitions.

FIGS. 6 (j) and (k) show general examples of FIGS. 6 (a)
and (b).

A flexible tree (FT) partitioning structure corresponding
to a block partitioning process including an FT partitioning
process for the block of video data, wherein the FT parti-
tioning structure represents partitioning the block of video
data into final sub-blocks, and when FT partitioning process
decides to apply FT partition to one given block, said one
given block is split into K sub-blocks wherein K could be
larger than 4; decoding the final sub-blocks based on the
video bitstream; and decoding the block of video data based
on the final sub-blocks decoded according to the FT struc-
ture derived.

The FT partitioning process can be applied to a given
block recursively to generate FT tree leaf nodes. The parti-

20

25

30

40

45

50

55

65

8

tioning of one node is implicitly terminated when the node
reaches a minimum allowed FT leaf node size or FT depth
associated with the node reaches a maximum allowed FT
depth.

Alternatively, when FT is applied to a certain block, for
each of the sub-block due to FT, it may further be split into
BT, and/or QT, and/or EQT, and/or TT, and/or other kinds of
partition trees.

Alternatively, furthermore, the FT depth or the minimum
allowed FT leaf node sizes or the minimum allowed partition
size for FT may be signaled in sequences parameter set
(SPS), and/or picture parameter set (PPS), and/or slice
header, and/or CTU, and/or regions, and/or tiles, and/or
CUs.

Similarly to the proposed EQT, all of the sub-blocks due
to FT partitions may be with the same size; alternatively, the
sizes of different sub-blocks may be different.

In one example, K is equal to 6 or 8. Some examples are
depicted in FIG. 7.

For the TT, the restriction of splitting along either hori-
zontal or vertical may be removed.

In one example, a generalized TT (GTT) partition pattern
may be defined as splitting for both horizontal and vertical.
An example is shown in FIG. 8.

The proposed methods may be applied under certain
conditions. In other words, when the condition(s) are not
satisfied, there is no need to signal the partition types.

Alternatively, the proposed methods may be used to
replace the existing partition tree types. Alternatively, fur-
thermore, the proposed methods may be only used as a
replacement under certain conditions.

In one example, the condition may include the picture
and/or slice types; and/or block sizes; and/or the coded
modes; and/or whether one block is located at picture/slice/
tile boundary.

In one example, the proposed EQT may be treated in the
same way as QT. In this case, when it is indicated that the
partition tree type is QT, more flags/indications of the
detailed quad-tree partition patterns may be further signaled.
Alternatively, EQT may be treated as additional partition
patterns.

In one example, the signaling of partitioning methods of
EQT or FT or GTT may be conditional, i.e. one or some
EQP/FT/GTT partitioning methods may not be used in some
cases, and the bits corresponding to signal these partitioning
methods are not signaled.

2.6 Border Handling

A boundary handling method is proposed to Versatile
Video Coding (VVC).

Since the forced quadtree boundary partition solution in
VVC is not optimized. JVET-K0287 proposed the boundary
partition method using regular block partition syntax to keep
the continuity CABAC engine as well as matching the
picture boundary.

The versatile boundary partition obtains the following
rules (both encoder and decoder):

Using exactly same partition syntax of the normal block
(non-boundary) (for instance, like FIG. 9) for boundary
located block, the syntax need to be unchanged.

If the no split mode is parsed for the boundary CU, used
forced boundary partition (FBP) to match the picture bound-
ary.

ryAfter forced boundary partition (non-singling boundary
partition), no further partition.

US 12,137,257 B2

9

The forced boundary partition is descripted as follow:

If the size of block is larger than the maximal allowed BT
size, forced QT is used to perform the FBP in the
current forced partition level;

Otherwise, if the bottom-right sample of current CU is
located below the bottom picture boundary, and not
extended the right boundary, forced horizontal BT is
used to perform the FBP in the current forced partition
level,

Otherwise, if the bottom-right sample of current CU is
located at the right side of the right picture boundary,
and not below the bottom boundary, forced vertical BT
is used to perform the FBP in the current forced
partition level;

Otherwise, if the bottom-right sample of current CU is
located at the right side of the right picture boundary
and below the bottom boundary, forced QT is used to
perform the FBP in the current forced partition level.

2.7 Partitioning

AVS Workgroup, short for Audio and Video Coding
Standard Workgroup of China was authorized to be estab-
lished by the Science and Technology Department under the
former Ministry of Industry and Information Technology of
People’s Republic of China in June, 2002. With the mandate
of satisfying the demands from the rapidly growing infor-
mation industry, AVS is committed to producing technical
standards of high quality for compression, decompression,
processing, and representation of digital audio and video,
and thus providing the digital audio-video equipments and
systems with high-efficient and economical coding/decoding
technologies. AVS can be applied in wide variety of signifi-
cant information sectors including high-resolution digital
broadcast, high-density laser-digital storage media, wireless
broad-band multimedia communication and internet broad-
band stream media.

AVS is one of the second generation of source coding/
decoding standards and own independent Chinese intellec-
tual property rights. Source coding technology primarily
addresses the problem of coding and compressing audio&
video mass data viz. initial data and original sources, hence
known as digital video and audio coding technology, and it
is the premise of the subsequent digital transmission, storage
and broadcast and serves as the common standard for digital
video& audio industry.

Quad-tree (QT) partitioning, binary tree (BT) partitioning
and extended quad-tree (EQT) are used to split a LCU into
multiple CUs as shown in FIG. 16. Both QT partitioning, BT
partitioning and EQT partitioning can be used for the root,
internal or leaf nodes of the partitioning tree. However, QT
partitioning is forbidden after any BT or EQT partitioning.

3. Examples of Problems Solved by Embodiments

Although the QT/BT/TT coding tree structure in VVC is
quite flexible, there is still some partitioning patterns that
cannot be attained by QT/BT/TT.

4. Examples of Embodiments

To address the problem, several methods are proposed to
handle the cases for EQT.

The detailed techniques below should be considered as
examples to explain general concepts. These embodiments
should not be interpreted in a narrow way. Furthermore,
these embodiments can be combined in any manner.

5

15

20

25

30

35

40

45

50

55

65

10
In the following discussion, QT, BT, TT or UQT may refer
to “QT split”, “BT split”, “TT split” and “UQT split”,
respectively.

In the following discussion, “split” and “partitioning”

have the same meaning.

1. Unsymmetrical Quad-Tree (UQT) partitioning is pro-
posed. With UQT, a block with dimensions WxH is
split into four partitions with dimensions W1xHI,
W2xH2, W3xH3 and W4xH4, where W1, W2, W3,
W4, H1, H2, H3, H4 are all integers.

a. In one example, and at least one of the partitions has
different block size compared to others.

b. In one example, only two of the four partitions may
have equal size, the other two are different with each
other and different from the two partitions with equal
size.

c. In one example, all the parameters are in the form of
power of 2. For example, W1=2"', W2=2"?
W3=2" W4=2M H1=2M' H2=2™2 H3=23,
H4=2"*,

d. In one example, UQT only splits one partition in
vertical direction, for example, H1=H2=H3=H4=H.
(a) In one example as shown in FIG. 10(a), W1=W/

8, W2=W/2, W3=W/8, Wi4=W/4, HIl=H2=
H3=H4=H. This kind of UQT is vertical split and
named as UQT1-V.

(b) In one example as shown in FIG. 10(6), W1=W/
8, W2=W/2, W3=W/4, W4=W/8, HIl=H2=
H3=H4=H. This kind of UQT is vertical split and
named as UQT2-V.

(c) In one example as shown in FIG. 10(c), W1=W/4,
W2=W/8, W3=W/2, W4=W/8, HI=H2=H3=
H4=H. This kind of UQT is vertical split and
named as UQT3-V.

(d) In one example as shown in FIG. 10(d), W1=W/
8, W2=W/4, W3=W/2, W4=W/8, H1=H2=H3=
H4=H. This kind of UQT is vertical split and
named as UQT4-V.

e. In one example, UQT only splits one partition in

horizontal direction, for example, WI1=W2=

W3=W4=W.

(a) In one example as shown in FIG. 10(e), H1=H/8,
H2=H/2, H3=H/8, H4=H/4, WI1=W2=W3=

W4=W. This kind of UQT is horizontal split and
named as UQT1-H.

(b) In one example as shown in FIG. 10(f), H1=H/8,
H2=H/2, H3=H/4, H4=H/8, WI1=W2=W3=
W4=W. This kind of UQT is horizontal split and
named as UQT2-H.

(¢) In one example as shown in FIG. 10(g), H1=H/4,
H2=H/8, H3=H/2, H4=H/4, WI1=W2=W3=
W4=W. This kind of UQT is horizontal split and
named as UQT3-H.

(d) In one example as shown in FIG. 10(%), H1=H/8,
H2=H/4, H3=H/2, H4=H/8, WI1=W2=W3=
W4=W. This kind of UQT is horizontal split and
named as UQT4-H.

2. A block which is split into child blocks by UQT, may
be split from a parent block by QT or BT or TT or UQT.
a. A block which may allow UQT partitions, may be a

block generated by QT or BT or TT or UQT parti-

tions.

b. A block which may allow UQT partitions, may be a
block generated by QT or EQT or BT partitions.
(a) Alternatively, A block which may allow UQT

partitions, may be a block generated by UQT, QT,
EQT or BT partitions.

US 12,137,257 B2

11

c. For example, the maximum block that allows UQT
partitions, may be the largest coding block (coding
tree block or coding tree unit).

d. For example, the maximum block that allows UQT
partitions, may be the virtual pipeline data unit
(VPDU).

e. For example, a block which allows UQT partitions
may be split from a parent block by one or some
specific kinds of split methods. For example, a block
which is split into child blocks by UQT, can only be
split from a parent block by QT.

f. In one example, the maximunm/minimum block size
that could allow UQT partitions and/or the maximum
depth that could allow UQT partitions may be sig-
nalled in SPS/PPS/VPS/APS/sequence header/pic-
ture header/slice header/tile group header/CTU row/
regions, etc. al.

g. In one example, the maximum/minimum block size
that could allow UQT partitions and/or the maximum
depth that could allow UQT partitions may be depen-
dent of profile/level/tier of a standard.

h. In one example, the maximum/minimum block size
that could allow UQT partitions and/or the maximum
depth that could allow UQT partitions may be
derived, such as to be the same as that allow QT
partitions.

3. Ablock which is split from a parent block by UQT, may

be further split into child blocks by QT and/or BT

and/or TT and/or UQT.

a. For example, a block which is split from a parent
block by UQT, may be further split into child blocks
by BT.

b. For example, a block which is split from a parent
block by UQT, may be further split into child blocks
by TT.

c. For example, a block which is split from a parent
block by UQT, may be further split into child blocks
by UQT and/or QT.

d. For example, a block which is split from a parent
block by UQT, cannot be further split into child
blocks by QT.

e. For example, a block which is split from a parent
block by UQT, may be further split into child blocks
by EQT.

(a) Alternatively, for a block split from a parent block
by UQT, it may be further split into child blocks
by UQT, EQT and BT.

f. For example, a block which is split from a parent
block by UQT, is disallowed to be further split into
child blocks by UQT.

(a) Alternatively, for a block split from a parent block
by UQT, it may be further split into child blocks
by EQT and BT.

. When a parent block is split into child blocks by UQT,
the split depth of the child block may be derived from
the split depth of the parent block.

a. In one example, the splitting due to UQT may be
used to update the QT/BT/TT/UQT/MTT depth.
(a) In one example, the QT depth of one or all of the

child blocks is equal to the QT depth of the parent
block added by 1.

(b) In one example, the BT depth of one or all of the
child blocks is equal to the BT depth of the parent
block added by 1.

(¢) In one example, the TT depth of one or all of the
child blocks is equal to the TT depth of the parent
block added by 1.

10

15

20

25

30

35

40

45

50

55

60

65

12

(d) In one example, the UQT depth of one or all of
the child blocks is equal to the UQT depth of the
parent block added by 1.

(e) In one example, the MTT depth of one or all of
the child block is equal to the MTT depth of the
parent block added by 1.

1. For example, the MTT depth of the child block
is equal to the MTT depth of the parent block
added by 1 if the parent block is split into child
blocks by BT.

2. For example, the MTT depth of the child block
is equal to the MTT depth of the parent block
added by 1 if the parent block is split into child
blocks by TT.

3. Alternatively, the MTT depth of one or all of the
child block is equal to the MTT depth of the
parent block added by K, K>1. For example,
K=2.

a. In one example, K may be different for
different child blocks.

i. In one example, K=log 2 (the size of the
parent block/the size of the child block). For
example as shown in FIG. 10B, Ks for the four
child blocks with WI1=W/8, W2=W/2,
W3=W/4 and W4=W/8 are 3, 1, 2, 3, respec-
tively.

b. In one example, the UQT/BT/TT/QT/MTT depth
increasement for different child block may be dif-
ferent.

(a) The depth increasement is dependent on the ratio
of a child block compared to the parent block.

5. Whether and how to use UQT may depend on color

format (such as 4:4:4 or 4:2:0) and/or color compo-

nents.

a. Whether and how to use UQT may depend on
whether luma and chroma coding trees are separated.

b. In one example, UQT can only be applied on luma
component when luma and chroma coding trees are
separated.

. Whether to apply UQT and/or which kind UQT is

applied may be signaled from encoder to decoder.

a. In one example, it may be signaled in VPS/SPS/PPS/
picture header/slice header/tile group header/tile
header to indicate whether UQT can be applied.

b. In one example, it may be signaled in VPS/SPS/
PPS/picture header/slice header/tile group header/
tile header to indicate which kinds of UQT can be
applied.

c. In one example, it may be signaled in a block to
indicate whether UQT is used to split that block.

d. In one example, it may be signaled in a block to
indicate which kind of UQT is used to split that
block.

e. In one example, an index of partition type may be
signaled in a block to indicate whether a block is split
by QT, or UQT or non-split.

(a) Alternatively, furthermore, the splitting direction
(horizontal/vertical) and/or splitting patterns may
be further signalled.

f. In one example, an index of partition type may be
signaled in a block to indicate whether a block is split
by BT, or TT, or UQT.

(a) For example, this index may be conditionally
signaled, such as only when at least one of BT, TT
and UQT is valid for this block.

US 12,137,257 B2

13

(b) Alternatively, furthermore, the splitting direction
(horizontal/vertical) and/or splitting patterns may
be further signalled.

g. In one example, indication of splitting direction may
be firstly signalled, followed by splitting pattern
(such as QT, TT, UQT).

(a) In one example, a flag is signaled in a block to
indicate whether a block is vertical split or hori-
zontal split. The vertical split may be BT vertical
split, TT vertical split or UQT vertical split. The
horizontal split may be BT horizontal split, TT
horizontal split or UQT horizontal split.

(b) For example, this flag is signaled only when the
block is split by BT, or TT, or UQT.

(c) For example, this flag is signaled only when both
vertical split and horizontal split are valid for this
block.

1. If only vertical split is valid, the flag is not
signaled, and horizontal split is inferred to be
used.

2. If only horizontal split is valid, the flag is not
signaled, and vertical split is inferred to be used.

h. In one example, a binarized code is signaled in a
block to indicate which kind of split (BT, TT, or a
kind of UQT) is used. In following examples, X
represents 0 or 1 and Y=~X (Y=1 if X=0 and Y=0 if
X=1).

(a) In one example, the candidate BT, TT or UQTs to
be signaled are all vertical splits or horizontal
splits depending on previously signaled or derived
information.

(b) In one example, a first flag is signaled to indicate
whether UQT is used. For example, the binarized
codewords orderly to represent BT, TT, UQT1,
UQT2, UQT3 and UQT4 are XX, XY, YXX,
YXY, YYX, YYY.

(¢) In one example, truncated unary code is applied.
For example, the binarized codewords orderly to
represent BT, TT, UQT1, UQT2, UQT3 and
UQT4 are X, YX, YYX, YYYX, YYYYX,
YYYYY.

(d) In one example, a first flag is signaled to indicate
whether BT is used. If BT is not used, then a
second flag is signaled to indicate whether UQT is
used. If UQT is used, which kind of UQT is used
is further signaled. For example, the binarized
codewords orderly to represent BT, TT, UQT1,
UQT2, UQT3 and UQT4 are X, YX, YYXX,
YYXY, YYYX, YYYY.

7. In one example, how to signal which kind of split is

used in a block may depend on which kinds of split are

valid for the block. In following examples, X represents

0 or 1 and Y=-X (Y=1 if X=0 and Y=0 if X=1).

a. In one example, the candidate BT, TT or UQTs to be
signaled are all vertical splits or horizontal splits
depending on previously signaled or derived infor-
mation.

b. For example, the non-allowed or invalid split cannot
be signaled from the encoder to the decoder, i.e. there
is no codeword to represent the non-allowed or
invalid split.

c. In one example, if there is only one kind of split from
BT, TT and UQTs is valid, then the binarized code to
indicate which kind of split (BT, TT, or a kind of
UQT) is used is not signaled.

15

20

40

45

14

d. In one example, if there are only two kinds of split
from BT, TT and UQTs are valid, then a flag is
signaled to indicate which one of the two valid splits
is used.

e. In one example, the code to indicate which kind of
split (BT, TT, or a kind of UQT) is binarized as a
truncated unary code.

(a) For example, the maximum value of the truncated
unary code is N-1, where N is the number of valid
splits (BT, TT and UQTs).

(b) For example, no codeword represents an invalid
split. In other words, the invalid split is skipped
when building the codeword table.

f. In one example, if no UQT is valid, the flag indicating
whether UQT is used is not signaled and inferred to
be false. For example, the binarized codewords
orderly to represent BT and TT are X and Y.

g. In one example, if only one kind of UQT is valid and
UQT is signaled to be used, then no further infor-
mation is signaled to indicate which UQT is used.
The valid UQT is used implicitly.

h. In one example, if only two kinds of UQT are valid
and UQT is signaled to be used, then a flag is
signaled to indicate which UQT is used.

. In one example, if only three kinds of UQT are valid
and UQT is signaled to be used, then a message is
signaled to indicate which UQT is used. For
example, the binarized codewords orderly to repre-
sent the three UQTs are X, YX, YY.

j- In one example, the binarization and/or signaling
method is not changed according to which kinds of
split is valid in the block. An invalid split cannot be
chosen in a conformance bit-stream.

—-

. A bin (bit) of a bin string for indications of split types

can be coded by arithmetic coding with one or multiple

contexts.

a. In one example, only partial bins of a bin string may
be coded with contexts and remaining bins may be
coded with bypass mode (i.e., no context is utilized).

b. Alternatively, all bins of a bin string may be coded
with contexts.

c. Alternatively, all bins of a bin string may be coded
with bypass mode.

d. For a bin coded with context, one or multiple
contexts may be used.

e. The context may depend on:

(a) The position or index of the bin.

(b) The partitioning of spatial/temporal neighbouring
blocks.

(c) The current partition depth (e.g., QT depth/BT
depth/TT depth/UQT depth/MTT depth) of cur-
rent block.

(d) The partition depth (e.g., QT depth/BT depth/TT
depth/UQT depth/MTT depth) of spatial/temporal
neighbouring blocks and/or spatial/temporal non-
adjacent blocks.

(e) The coding modes of spatial/temporal neighbour-
ing blocks.

(H) The width/height of spatial/temporal neighbour-
ing blocks.

(g) The width/height of the current block

(h) Slice types/picture types/tile group type

(1) Color component

(j) Statistical results of partition types from previ-
ously coded blocks

9. UQT is not allowed if a split child block cross more

than one Virtual pipeline data units (VPDUSs).

US 12,137,257 B2

15

10. UQT is not allowed if the width/height of the current
block satisfy some conditions. (Suppose the width and
height of the current block are W and H, T1, T2 and T
are some integers)

a. UQT is not allowed if W>=T1 and H>=T2;

b. UQT is not allowed if W>=T1 or H>=T?2;

c. UQT is not allowed if W<=T1 and H<=T2;

d. UQT is not allowed if W<=T1 or H<=T2;

e. UQT is not allowed if WxH<=T;

f. UQT is not allowed if WxH>=T;

g. Horizontal UQT is not allowed if H<=T; For
example, T=16.

h. Horizontal UQT is not allowed if H>=T; For
example, T=128.

i. Vertical UQT is not allowed if W<=T; For example,
T=16.

j- Vertical UQT is not allowed if W>=T; For example,
T=128.

k. T1, T2 and T may be signaled from the encoder to the
decoder in VPS/SPS/PPS/picture header/slice
header/tile group header/tile header.

1. T1, T2 and T may depend on color components. For
example, T1, T2 and T may be different for luma and
chroma components.

m. T1, T2 and T may depend on whether luma coding
tree and chroma coding tree are separated. For
example, T1, T2 and T may be different for luma and
chroma components if luma coding tree and chroma
coding tree are separated.

n. Alternatively, when the transform is not supported
for at least one child block due to UQT, UQT split is
invalid.

0. Alternatively, when the depth of one block exceeding
the allowed depth for UQT splitting, UQT split is
invalid.

p. Alternatively, when any of a child block size exceed-
ing the allowed block size due to UQT splitting,
UQT split is invalid.

11. UQT is allowed if the width/height of the current
block satisfy some conditions. (Suppose the width and
height of the current block are W and H, T1, T2 and T
are some integers)

a. UQT is allowed if W>=T1 and H>=T2;

b. UQT is allowed if W>=T1 or H>=T2;

c. UQT is allowed if W<=T1 and H<=T2;

d. UQT is allowed if W<=T1 or H<=T2;

e. UQT is allowed if WxH<=T;

f. UQT is allowed if WxH>=T;

g. Horizontal UQT is allowed if H<=T; For example,
T=64.

h. Horizontal UQT is allowed if H>=T; For example,
T=32.

i. Vertical UQT is allowed if W<=T; For example,
T=64.

j- Vertical UQT is allowed if W>=T; For example,
T=32.

k. T1, T2 and T may be signaled from the encoder to the
decoder in VPS/SPS/PPS/picture header/slice
header/tile group header/tile header.

1. T1, T2 and T may depend on color components. For
example, T1, T2 and T may be different for luma and
chroma components.

m. T1, T2 and T may depend on whether luma coding
tree and chroma coding tree are separated. For
example, T1, T2 and T may be different for luma and
chroma components if luma coding tree and chroma
coding tree are separated.

10

15

20

25

30

35

40

45

50

55

60

16

n. In one example, T1, T2 and T may depend on
picture/slice types.

(a) In one example, Horizontal UQT is allowed if
TP1<=H<=TP2 and/or Vertical UQT is allowed if
TP1<=W<=TP2 on a P-slice/P-picture or a
B-slice/B-picture, and Horizontal UQT is allowed
if TI1<=H<=T12 and/or Vertical UQT is allowed if
TI1<=W<=T12 on an I-slice/I-picture, then
1. In one example, TP1 is larger than TI1. For

example, TI1=32, TP1=64, TI2=TP2=64.
2. In one example, TP2 is smaller than TI2. For
example, TI2=64, TP2=32, TI1=TP1=32.

12. UQT is not allowed if the depth of the current block

satisfy some conditions. The depth of the current block

may refer to QT depth, BT depth, TT depth, UQT depth

or MTT depth.

a. UQT is not allowed if the split depth <=T;

b. UQT is not allowed if the split depth >=T;

c. UQT is not allowed if the QT split depth <=T;

d. UQT is not allowed if the QT split depth >=T;

e. UQT is not allowed if the BT split depth >=T;

f. UQT is not allowed if the BT split depth <=T;

g. UQT is not allowed if the TT split depth >=T;

h. UQT is not allowed if the TT split depth >=T;

i. UQT is not allowed if the UQT split depth <=T;

j- UQT is not allowed if the UQT split depth >=T;

k. UQT is not allowed if the MTT split depth <=T;

1. UQT is not allowed if the MTT split depth >=T;

m. T may be signaled from the encoder to the decoder
in VPS/SPS/PPS/picture header/slice header/tile
group header/tile header.

n. T may depend on color components. For example,
T1, T2 and T may be different for luma and chroma
components.

o. T may depend on whether luma coding tree and
chroma coding tree are separated. For example, T1,
T2 and T may be different for luma and chroma
components if luma coding tree and chroma coding
tree are separated.

13. UQT is allowed if the depth of the current block
satisfy some conditions. The depth of the current block
may refer to QT depth, BT depth, TT depth, UQT depth
or MTT depth.

a. UQT is allowed if the split depth <=T;

b. UQT is allowed if the split depth >=T;

c. UQT is allowed if the QT split depth <=T;

d. UQT is allowed if the QT split depth >=T;

e. UQT is allowed if the BT split depth >=T;

f. UQT is allowed if the BT split depth <=T;

g. UQT is allowed if the TT split depth >=T;

h. UQT is allowed if the TT split depth >=T;

i. UQT is allowed if the UQT split depth <=T;

j- UQT is allowed if the UQT split depth >=T;

k. UQT is allowed if the MTT split depth <=T;

1. UQT is allowed if the MTT split depth >=T;

m. T may be signaled from the encoder to the decoder
in VPS/SPS/PPS/picture header/slice header/tile
group header/tile header.

n. T may depend on color components. For example,
T1, T2 and T may be different for luma and chroma
components.

o. T may depend on whether luma coding tree and
chroma coding tree are separated. For example, T1,
T2 and T may be different for luma and chroma
components if luma coding tree and chroma coding
tree are separated.

US 12,137,257 B2

17

14. In one embodiment, whether and how to use UQT
may depend on the position of the current block. For
example, whether and how to use UQT may depend on
the whether the current block crosses the picture/tile/
tile group border or not.

a. In one example, vertical UQT is not allowed if the
current block crosses the picture/tile/tile group bot-
tom border.

b. In one example, horizontal UQT is not allowed if the
current block crosses the picture/tile/tile group bot-
tom border.

c. In one example, vertical UQT is not allowed if the
current block crosses the picture/tile/tile group right
border.

d. In one example, horizontal UQT is not allowed if the
current block crosses the picture/tile/tile group right
border.

e. In one example, if a child block split by UQT is
totally out of the picture/tile/tile group, the child
block may be omitted in the encoding/decoding
process.

f. In one example, if a child block split by UQT is
partially out of the picture/tile/tile group, the follow-
ing may apply
(a) The part out of the picture may be omitted in the

encoding/decoding process.
(b) The part inside the picture may be further split.
(¢) The part inside the picture may be coded as a CU.
1. Whether the part inside the picture is coded as
a CU may depend on the width (w) and height
(h) of the part.
a. In one example, the part inside the picture
may be coded as a CU if w=2"", h=2"", where
nw and nh are integers.

g. In one example, if any child block split by UQT is
partially/fully out of the picture/tile/tile group, UQT
is disallowed.

h. In one example, when UQT or certain UQT patterns
is disallowed, the signalling of indication of the
usage of the patterns is also skipped.

15. In one example, only UQTa-H, UQTb-H, UQTc-V
and UQTd-V as shown in FIG. 11 can be used. For
example, a=c=2 and b=d=4.

a. In one example, one bin possibly with one or more
contexts is signaled to indicate whether a block is
split or not, when the block can be non-split, and at
least one of QT, BT-H, BT-V, TT-H, TT-V, UQTa-H,
UQTb-H, UQTc-V and UQTd-V is applicable in this
block.

b. In one example, one bin possibly with one or more
contexts is signaled to indicate whether a block is
split with QT or other splits, when the block is split,
and it can be QT split, and at least one of BT-H,
BT-V, TT-H, TT-V, UQTa-H, UQTb-H, UQTc-V and
UQTd-V is applicable in this block.

c. In one example, one bin possibly with one or more
contexts is signaled to indicate whether a block is
split with vertical or horizontal split, when the block
is split other than QT, at least one of BT-H, TT-H,
UQTa-H, UQTb-H is applicable in this block, and at
least one of BT-V, TT-V, UQTc-V and UQTd-V is
applicable in this block.

d. In one example, one bin possibly with one or more
contexts is signaled to indicate whether a block is
split with UQT or not,

10

15

20

25

30

35

40

45

50

55

60

65

18

(a) when the block is horizontal split other than QT,
and at least one of BT-H, TT-H are available, and
at least one of UQTa-H, UQTb-H is applicable in
this block.

(b) when the block is vertical split other than QT, and
at least one of BT-V, TT-V are available, and at
least one of UQTc-V, UQTd-V is applicable in this
block.

e. In one example, one bin possibly with one or more
contexts is signaled to indicate whether a block is
split with,

(a) UQTa-H or UQTb-H, when the block is horizon-
tal split with UQT and both UQTa-H, UQTb-H is
applicable in this block.

(b) UQTec-V or UQTd-V, when the block is vertical
split with UQT and both UQTe-V, UQTd-V is
applicable in this block.

f. In one example, one or multiple child block of
UQTa-H is not allowed to be further split with TT-H.
For example, the child block with height equal to H/2
is not allowed to be further split with TT-H.

g. In one example, one or multiple child block of
UQTb-H is not allowed to be further split with TT-H.
For example, the child block with height equal to H/2
is not allowed to be further split with TT-H.

h. In one example, one or multiple child block of
UQTc-V is not allowed to be further split with TT-V.
For example, the child block with width equal to W/2
is not allowed to be further split with TT-V.

i. In one example, one or multiple child block of
UQTd-V is not allowed to be further split with TT-V.
For example, the child block with width equal to W/2
is not allowed to be further split with TT-V.

j- In one example, one or multiple child block of
UQTa-H is not allowed to be further split with BT-H.

k. In one example, one or multiple child block of
UQTb-H is not allowed to be further split with BT-H.

l. In one example, one or multiple child block of
UQTc-V is not allowed to be further split with BT-V.

m. In one example, one or multiple child block of
UQTd-V is not allowed to be further split with BT-V.

n. In one example, one or multiple child block of
UQTa-H is not allowed to be further split with
UQT-H.

0. In one example, one or multiple child block of
UQTb-H is not allowed to be further split with
UQT-H.

p- In one example, one or multiple child block of
UQTc-V is not allowed to be further split with
UQT-V.

q. In one example, one or multiple child block of
UQTd-V is not allowed to be further split with
UQT-V.

r. In one example, one or multiple child block of
UQTa-H is not allowed to be further split.

s. In one example, one or multiple child block of
UQTb-H is not allowed to be further split.

t. In one example, one or multiple child block of
UQTc-V is not allowed to be further split.

u. In one example, one or multiple child block of
UQTd-V is not allowed to be further split.

v. In one example, one of UQTa-H and UQTb-H is not
allowed to be further split.

w. In one example, one of UQTa-H and UQTb-H is not
allowed to be further horizontal split.

x. In one example, one of UQTc-V and UQTd-V is not
allowed to be further split.

US 12,137,257 B2

19

y. In one example, one of UQTc-V and UQTd-V is not
allowed to be further vertical split.

7. In one example, one or multiple child block of
UQTa-H is not allowed to be further split with
EQT-H.

aa. In one example, one or multiple child block of
UQTb-H is not allowed to be further split with
EQT-H.

bb. In one example, one or multiple child block of
UQTc-V is not allowed to be further split with
EQT-H.

cc. In one example, one or multiple child block of
UQTd-V is not allowed to be further split with
EQT-H.

dd. In one example, one or multiple child block of
UQTa-H is not allowed to be further split with
EQT-V.

ee. In one example, one or multiple child block of
UQTb-H is not allowed to be further split with
EQT-V.

ff. In one example, one or multiple child block of
UQTc-V is not allowed to be further split with
EQT-V.

gg. In one example, one or multiple child block of
UQTd-V is not allowed to be further split with
EQT-V.

hh. The term “child block of UQT” may refer to a block
split from a parent block with UQT, or it may refer
to a block, whose parent block or any ancestor block
(e.g. the parent block of the parent block) is split
from an ancestor block with UQT.

16. In one example, only UQTa-H and UQTc-V as shown

in FIG. 11 can be used. For example, a=2. In another

example, a=c=4.

a. In one example, one bin possibly with one or more
contexts is signaled to indicate whether a block is
split or not, when the block can be non-split, and at
least one of QT, BT-H, BT-V, TT-H, TT-V, UQTa-H
and UQTc-V is applicable in this block.

b. In one example, one bin possibly with one or more
contexts is signaled to indicate whether a block is
split with QT or other splits, when the block is split,
and it can be QT split, and at least one of BT-H,
BT-V, TT-H, TT-V, UQTa-H and UQTc-V is appli-
cable in this block.

c. In one example, one bin possibly with one or more
contexts is signaled to indicate whether a block is
split with vertical or horizontal split, when the block
is split other than QT, at least one of BT-H, TT-H and
UQTa-H is applicable in this block, and at least one
of BT-V, TT-V and UQTc-V is applicable in this
block.

d. In one example, one bin possibly with one or more
contexts is signaled to indicate whether a block is
split with UQT or not,

(a) when the block is horizontal split other than QT,
and at least one of BT-H, TT-H are available, and
UQTa-H is applicable in this block.

(b) when the block is vertical split other than QT, and
at least one of BT-V, TT-V are available, and
UQTc-V is applicable in this block.

e. In one example, one or multiple child block of
UQTa-H is not allowed to be further split with TT-H.
For example, the child block with height equal to H/2
is not allowed to be further split with TT-H.

f. In one example, one or multiple child block of
UQTc-V is not allowed to be further split with TT-V.

20

35

40

45

50

55

20
For example, the child block with width equal to W/2
is not allowed to be further split with TT-V.
g. In one example, one or multiple child block of
UQTa-H is not allowed to be further split with BT-H.
h. In one example, one or multiple child block of
UQTc-V is not allowed to be further split with BT-V.
i. In one example, one or multiple child block of
UQTa-H is not allowed to be further split with
UQT-H.

j- In one example, one or multiple child block of

UQTc-V is not allowed to be further split with
UQT-V.

17. Indications of splitting types (including EQT/BT/

UQT) may be signaled after the indications of splitting

or non-splitting, and/or the indications of QT.

a. In one example, a flag may be signaled to indicate
whether the block is split with a first set of UQT and
BT or with a second set of UQT and EQT, wherein
the UQT patterns in the first and second set are
different.

(a) Alternatively, furthermore, one flag may be sig-
naled to indicate whether a certain kind of UQTs
is applied or a certain kind of BTs is applied on a
block.

1. For example, one flag may be signaled to
indicate whether UQT2-V/UQT2-H defined in
bullet 1 is applied, or BT-V/BT-H is applied on
a block.

(b) Alternatively, furthermore, one flag may be sig-
naled to indicate whether a certain kind of UQTs
is applied or a certain kind of EQTs is applied on
a block.

1. For example, one flag may be signaled to
indicate whether UQT4-V/UQT4-H defined in
bullet 1 is applied, or EQT-V/EQT-H is applied
on a block.

2. For example, one flag may be signaled to
indicate whether UQT2-V/UQT2-H defined in
bullet 1 is applied, or EQT-V/EQT-H is applied
on a block.

(c) Alternatively, furthermore, the splitting direction
may be further signalled (e.g., horizontal split or
vertical split).

(d) The above bullets may be utilized for coding
blocks in I slices/pictures.

b. In one example, a flag may be signaled to indicate
whether the block is split with BT or with a second
set of UQT and EQT.

(a) Alternatively, furthermore, if the block is not split
from BT, another flag may be further signaled to
indicate the usage of UQT or EQT.

1. Alternatively, furthermore, the splitting direc-
tion (e.g., horizontal split or vertical split) may
be further signaled.

(b) Alternatively, furthermore, another flag may be
further signaled to indicate the splitting direction
(e.g., horizontal split or vertical split).

1. Alternatively, furthermore, the splitting pattern
(e.g., EQT or UQT) may be further signaled.

(c) The above bullets may be utilized for coding
blocks in P/B slices/pictures.

c. Alternatively, furthermore, the signaling of above-
mentioned flags may be skipped when current block
is not split or split according to QT.

US 12,137,257 B2

21

(a) Alternatively, only when the current block needs
to be further split and/or not split according to QT,
the above-mentioned flags may be further sig-
naled.

18. In one example, whether and/or how to apply UQT
split for a slice/picture may depend on the slice/picture
type.

a. In one example, M kinds of UQTs can be applied on
a P-slice/P-picture or a B-slice/B-picture, and N
kinds of UQTs can be applied on an I-slice/I-picture.
(a) In one example, M is smaller than N. For

example, M is equal to 2 and N is equal to 4.

(b) In one example, M is equal to N, however, the
allowed UQTs may be different.

(¢) For example, UQT2-V/UQT2-H/UQT4-V/
UQT4-H defined in bullet 1 can be applied on an
I-slice/I-picture.

(d) For example, UQT2-V/UQT2-H defined in bullet
1 can be applied on a P-slice/P-picture or a
B-slice/B-picture.

19. Interpretation of the signaled representation of UQT
split may depend on the slice/picture type.

a. In one example, the signaled representation of UQT
split in an I-slice/I-picture may be different to that in
a P-slice/P-picture or a B-slice/B-picture.

b. In one example, bullet 17.a and bullet 18.a.(c) may
be applied on an I-slice/I-picture.

c. In one example, bullet 17.b and 18.a.(d) may be
applied on a P-slice/P-picture or a B-slice/B-picture.

20. In one example, whether and/or how to apply UQT
split for a slice/picture may depend on the temporal
layer of the slice/picture.

a. In one example, UQT is not applied if the temporal
layer is larger than a threshold, such as 2.

b. In one example, M kinds of UQTs can be applied on
a picture/slice with temporal layer larger than T and
N kinds of UQTs can be applied on a picture/slice
with temporal layer smaller than or equal to T,
wherein M is smaller than N. For example, T is equal
to 2, M is equal to 2 and N is equal to 4.

21. In one example, whether and/or how to apply UQT
split for a slice/picture may depend on the whether the
slice/picture can be referred by other slices/pictures.
a. In one example, UQT is not applied on a slice/picture

if it is not a reference picture for other slices/pictures.

22. If one kind of UQT is not allowed, such as in cases
disclosed in bullet 17-21, the indication for it is not
signaled.

a. In one example, If no kind of UQT is allowed, such
as in cases disclosed in bullet 17-21, the indication
for UQT is not signaled.

23. How to signal the partitioning method may depend on
the picture/slice type.

a. In one example, the flag to indicate whether UQT is
applied is signaled before the flag to indicate whether
BT/EQT is applied in an I picture/slice, while the
flag to indicate whether UQT is applied is signaled
after the flag to indicate whether BT/EQT is applied
in non-I picture/slice (e.g. a P/B picture/slice).

b. Alternatively, the flag to indicate whether UQT is
applied is signaled after the flag to indicate whether
BT/EQT is applied in an I picture/slice, while the
flag to indicate whether UQT is applied is signaled
before the flag to indicate whether BT/EQT is
applied in a non-I picture/slice (e.g. a P/B picture/
slice).

10

15

20

25

30

35

40

45

50

55

60

22

24. In one example, a flag is signaled to indicate the
partitioning direction of more than one partitioning
methods, including UQT. For example, a flag is sig-
naled to indicate whether vertical or horizontal parti-
tioning is applied for UQT, EQT and BT.

25. In one example, the flag to indicate whether UQT is
applied (denoted as UQT_flag) may be coded by arith-
metic coding with context model(s).

a. In one example, the context model selection may
depend on the picture/slice type (such as I-picture or
P/B-picture).

b. In one example, a context model is used if the current
picture is I-picture. Otherwise (not I-picture), a con-
text model is selected from several candidate context
models.

c. In one example, the context model selection may
depend on the existence of one or multiple neigh-
boring blocks.

d. In one example, the context model selection may
depend on dimensions of one or multiple neighbor-
ing blocks.

e. In the above bullets, the neighbouring blocks may
include a left neighboring block and/or a above
neighbouring block.

f. In one example, the context may depend on dimen-
sions of the current block.

5. Embodiments

5.1 an Embodiment of UQT Based on AVS-3.0

UQT partitioning is proposed wherein a parent CU is split
into four CUs asymmetrically. a parent block is split into
four sub-blocks with a 1:4:2:1 or a 1:2:4:1 ratio. As shown
in FIG. 17, there are 4 splitting types for the UQT partition.
With the horizontal UQT, a WxH parent CU is divided into
two WxH/8 CUs, one WxH/4 CU and one WxH/2 CU as
shown in FIGS. 17 (A) and 17 (B). Homoplastically, a WxH
parent CU is divided into two W/8xH CUs, one W/4xH CU
and one W/2xH CU with the vertical UQT as shown in
FIGS. 17 (C) and 17 (D).

Different from QT partitioning which cannot be used after
BT and EQT partitioning, UQT partitioning can be used
after BT and EQT partitioning. UQT can be applied to a
direction if the length of the block along the direction is 32
to 64. An example is shown in FIG. 18.

Similar to BT and EQT partitioning, UQT partitioning is
valid after QT/BT/EQT partitioning while its sub-blocks are
forbidden to split with QT partition. For B/P slices, the
horizontal UQT partitioning can only be applied when the
height of current block is 64 and the vertical UQT parti-
tioning can only be applied when the width of current block
is 64. Furthermore, only UQT partitioning with 1:2:4:1 ratio
is allowed in B/P slices. Besides, UQT partitioning is not
allowed in the B/P frames not referenced by other frames.
One bit is used to signal whether the splitting mode is UQT
or not. For I slices, the tree type coding structure is illus-
trated in FIG. 19 and the tree type coding structure for B/P
slices is illustrated in FIG. 20.

An Embodiment of UQT Based on AVS-3.0-Phase 2

coding unit_ tree(x0, y0, split, width, height, qt, mode,
parent_split, ugt_sub__block,) {
isBoundary = ((x0+width) > PicWidthInLuma) |
((yO+height) > PicHeightInL.uma)
rightBoundary = ((x0+width) > PicWidthInLuma) &&
((yO+height) <= PicHeightInLuma)

US
23

-continued

12,137,257 B2

24

-continued

bottomBoundary = ((x0 + width) <= PicWidthInLuma) &&
((yO + height) > PicHeightInuma)
allowNoSplit = 0
allowSplitQt = 0
allowSplitBtVer = 0
allowSplitBtHor = 0
allowSplitEqtVer = 0
allowSplitEqtHor = 0
allowSplitUqtVerl = 0
allowSplitUqgtHorl = 0
allowSplitUqtVer2 = 0
allowSplitUqtHor2 = 0
if (isBoundary) {
allowNoSplit = 0
if ((PictureType == 0) && (width > 64) &&
(height > 64)) {
allowSplitQt = 1
allowNoSplit = 1

}
else if ((width == 64 && height > 64) || (height == 64
&& width > 64)) {

allowSplitBtHor = 1

allowSplitBtVer = 1

else if (! rightBoundary && ! bottomBoundary) {
allowSplitQt = 1

else if (rightBoundary) {
allowSplitBtVer = 1

else if (bottomBoundary) {
allowSplitBtHor = 1
¥

else {
if (((width == 64) && (height > 64)) || ((height == 64)
&& (width > 64))) {
allowSplitBtHor = 1
allowSplitBtVer = 1
allowNoSplit = 1

}
else if (split >= MaxSplitTimes) {
allowNoSplit = 1

}
else if ((PictureType == 0) && (width == 128) &&
(height == 128)) {

allowSplitQt = 1

allowNoSplit = 1

else {
if ((width <= height * MaxPartRatio) && (height <=
width * MaxPartRatio))
allowNoSplit = 1
if ((width > MinQtSize) && qt)
allowSplitQt = 1
if ((width <= MaxBtSize) && (height <=
MaxBtSize) && (width > MinBtSize) && (height <
MaxPartRatio*width))
allowSplitBtVer = 1
if ((width <= MaxBtSize) && (height <=
MaxBtSize) && (height > MinBtSize) && (width <
MaxPartRatio*height))
allowSplitBtHor = 1
if ((width <= MaxEqtSize) && (height <=
MaxEqtSize) && (height >= MinEqtSize*2) && (width >=
MinEqtSize*4) && (height*4 <= MaxPartRatio*width))
allowSplitEqtVer = 1
if ((width <= MaxEqtSize) && (height <=
MaxEqtSize) && (width >= MinEqtSize*2) && (height >=
MinEqtSize*4) && (width *4 <= MaxPartRatio*height))
allowSplitEqtHor = 1
if (luqt_disable_ flag){
if(PictureType == 0){
if (height == 64 || (height == 32 &&
width != 64)){
allowSplitUqgtHorl = 1
allowSplitUqtHor2 = 1

10

15

20

25

30

35

40

45

50

55

60

65

if (weight == 64 || (width == 32 &&
height 1= 64)){
allowSplitUqtVerl = 1
allowSplitUqtVer2 = 1

}

¥
else if (tugt_sub__block){
if (height == 64){
allowSplitUqtHorl = 1
if (weight == 64){
allowSplitUqtVerl = 1

if (ugt_sub_ block && (parent_split ==
‘SPLIT_UQT_VERI" || parent_split ==
*SPLIT__UQT_HOR1)){
allowSplitEqtVer = 0
allowSplitEqtHor = 0

}

allowSplitBt = allowSplitBtVer || allowSplitBtHor
allowSplitEqt = allowSplitEqtVer || allowSplitEqtHor
allowSplitFirstUqt = allowSplitUqtVerl | allowSplitUqtHorl
allowSplitSecondUqt = allowSplitUqtVer2 ||
allowSplitUqgtHor2
allowSplitUqt = allowSplitFirstUqt || allowSplitSecondUqt
if (allowSplitQt && (allowNoSplit || allowSplitBt ||
allowSplitEqt)) {

qt_split_flag

else {
QtSplitFlag = allowSplitQt

)
if (! QtSplitFlag) {
if (allowNoSplit && (allowSplitBt || allowSplitEqt)) {
beut_split_flag

¥
else {

BeutSplitFlag = ! allowNoSplit
¥

if (BeutSplitFlag) {
if (PictureType == 0){
if (allowSplitUqt && (allowSplitBt ||
allowSplitEqt))
uqt_split_ flag
if (UqtSplitFlag && allowSplitFirsrtUqt &&
allowSplitSecondUqt) I (1UqtSplitFlag && allowSplitBt &&
allowSplitEqt))
beut_split_type_ flag
if (UqtSplitFlag && !BeutSplitTypeFlag &&
allowSplitUqtHorl && allowSplitUqtVerl) Il (UqtSplitFlag &&
BeutSplitTypeFlag && allowSplitUqtHor2 &&
allowSplitUqtVer2) |l (1UqtSplitFlag && !BeutSplitTypeFlag
&& allowSplitBtHor && allowSplitBtVer) || ({UqtSplitFlag
&& BeutSplitTypeFlag && allowSplitEqtHor &&
allowSplitEqtVer))
beut_split_dir_ flag
}
else {
if (allowSplitBt && (allowSplitEqt ||
allowSplitFirstUqt))
beut__split_type_ flag
if ((BeutSplitTypeFlag && allowSplitEqt &&
allowSplitFirstUqt) Il (!BeutSplitTypeFlag && allowSplitEqtHor
&& allowSplitEqtVer))
uqt_split_ flag
if ((BeutSplitTypeFlag && UqtSplitFlag &&
allowSplitUqtHorl && allowSplitUqtVerl) Il (BeutSplitTypeFlag
&& 'UqtSplitFlag && allowSplitEqtHor && allowSplitEqtVer) |1
(!BeutSplitTypeFlag && allowSplitBtHor && allowSplitBtVer))
beut_split_dir_ flag

}

ae(v)

ae(v)

ae(v)

ae(v)

ae(v)

ae(v)

ae(v)

ae(v)

US 12,137,257 B2

26

-continued

-continued
i fallowSplitBt &8 alowSalitEat)
AS L3 L 7
00 BetSplitTuneblas&dealowSplitRad
NS Lif JF L3

5 \
—allewSplitEatlor && allowSplithgtier),

, —SpHdir—

if ((PictureType !=0) && ((((BeutSplitFlag && !
BeutSplitTypeFlag) | QtSplitFlag) && (width * height == 64)) ||
(BeutSplitTypeFlag && (width * height == 128)))) {
root__cu__mode
modeChild = root_cu_mode ? 'PRED_ Intra_ Only' :
'PRED_ Inter_ Only’

else {
modeChild = mode

¥
if (ChildSizeOccur4) {
if (Component == 0) {
LumaWidth = width
LumaHeight = height
Component = 1

}

¥

if (parent__split == ‘SPLIT_UQT_VERI’ || parent_split ==
‘SPLIT_UQT_VER2’ || parent_ split ==
‘SPLIT_UQT_HORI" || parent_split ==
*SPLIT_UQT_HOR2"){

ugt_sub_ block_child =1

else {
ugt_sub_ block_child = uqt_sub_ block

if (BlockSplitMode == 'SPLIT_QT") {
QtWidth = width / 2
QtHeight = height / 2
x1 = x0 + QtWidth
y1 = y0 + QtHeight
coding_ unit_ tree(x0, y0, split+1, QtWidth, QtHeight, 1,
modeChild, BlockSplitMode, uqt_sub__block_ child)
if (x1 < PicWidthInLuma)
coding_ unit_ tree(x1, y0, split+1, QtWidth,
QtHeight, 1, modeChild, BlockSplitMode, uqt_sub_ block_ child)
if (y1 < PicHeightInLuma)
coding_ unit_ tree(x0, y1, split+1, QtWidth,
QtHeight, 1, modeChild, BlockSplitMode, uqt_sub_ block_ child)
if ((x1 < PicWidthInLuma) && (y1 <
PicHeightInLuma))
coding_ unit_ tree(x1, y1, split+1, QtWidth,
QtHeight, 1, modeChild, BlockSplitMode, uqt_sub_ block_ child)
if (LumaWidth == width) && (LumaHeight = height)
&& ChildSizeOccurd) {
coding_ unit(x0, y0, width, height,
'PRED_ No_ Constraint’, 'COMPONENT__Chroma')
Component = 0

}

¥
else if (BlockSplitMode == 'SPLIT_BT__VER') {
x1 = x0 + width / 2
coding_ unit_ tree(x0, y0, split+1, width/2, height, 0,
modeChild, BlockSplitMode, uqt_sub__block_ child)
if (x1 < PicWidthInLuma)
coding_ unit_ tree(x1, yO, split+1, width/2, height,
0, modeChild, BlockSplitMode, uqt_sub__block_ child)
if (LumaWidth == width) && (LumaHeight = height)
&& ChildSizeOccurd) {
coding_ unit (x0, y0, width, height,
'PRED_ No__Constraint’, 'COMPONENT__Chroma')
Component = 0

}

¥
else if (BlockSplitMode == 'SPLIT_BT__HOR') {
y1 = y0 + height / 2
coding_ unit_ tree(x0, y0, split+1, width, height/2, 0,
modeChild, BlockSplitMode, uqt_sub_block_ child)
if (y1 < PicHeightInLuma)
coding_ unit_ tree(x0, y1, split+1, width, height/2,

a8

aefvr

ae(v)

15

20

25

30

35

40

45

50

55

60

65

0, modeChild, BlockSplitMode, uqt__sub__block_ child)
if ((LumaWidth == width) && (LumaHeight = height)
&& ChildSizeOccurd) {
coding_ unit(x0, y0, width, height,
'PRED_ No_ Constraint’, 'COMPONENT__Chroma')
Component = 0

}

¥
else if (BlockSplitMode == "SPLIT__EQT_VER') {
x1 = x0 + width / 4
x2 =x0 + (3 * width / 4)
y1 = y0 + height / 2
coding_ unit_ tree(x0, y0, split+1, width/4, height, 0,
modeChild, BlockSplitMode, uqt_sub__block_ child)
coding_unit_ tree(x1, y0, split+1, width/2, height/2, 0,
modeChild, BlockSplitMode, uqt_sub__block_ child)
coding_ unit_ tree(x1, y1, split+1, width/2, height/2, 0,
modeChild, BlockSplitMode, uqt_sub__block_ child)
coding_ unit_tree(x2, y0, split+ 1, width/4, height, 0,
modeChild, BlockSplitMode, uqt_sub__block_ child)
if ((LumaWidth == width) && (LumaHeight = height)
&& ChildSizeOccurd) {
coding_ unit(x0, y0, width, height,
'PRED_ No_ Constraint’, 'COMPONENT__Chroma')
Component = 0

ilse if (BlockSplitMode == 'SPLIT__EQT_HOR") {
x1 = x0 + width / 2
y1 = y0O + height / 4
y2 =y0 + (3 * height / 4)
coding_ unit_ tree(x0, yO0, split+1, width, height/4, 0,
modeChild, BlockSplitMode, uqt_sub__block_ child)
coding_ unit_ tree(x0, y1, split+1, width/2, height/2, 0,
modeChild, BlockSplitMode, uqt_sub__block_ child)
coding_ unit_ tree(x1, y1, split+1, width/2, height/2, 0,
modeChild, BlockSplitMode, uqt_sub__block_ child)
coding_ unit_ tree(x0, y2, split+1, width, height/4, 0,
modeChild, BlockSplitMode, uqt_sub__block_ child)
if ((LumaWidth == width) && (LumaHeight = height)
&& ChildSizeOccurd) {
coding_ unit(x0, y0, width, height,
'PRED_ No_ Constraint’, 'COMPONENT__Chroma')
Component = 0

}

¥
else if (BlockSplitMode == 'SPLIT__UQT_HORL!' ||
BlockSplitMode == 'SPLIT_UQT__HOR?2' ||
BlockSplitMode 'SPLIT_UQT_VERLI' ||
BlockSplitMode == 'SPLIT_UQT__VER2") {
ugt_idx = BlockSplitMode == 'SPLIT_UQT_HOR1'? 0 :
(BlockSplitMode == 'SPLIT_UQT_HOR2' 2?1 :
(BlockSplitMode == 'SPLIT_UQT_VERI1'? 2 : 3))
x__tab[4][4] = {[0, 0, 0, 0], [0, 0, 0, 0], [0, 1/8, 1/2, 1/4],
[0, 1/8, 1/4, 1/2]}
y__tab[4][4] = {[0, 1/8, 1/2, 1/4], [0, 1/8, 1/4, 1/2] ,
[0, 0, 0, 0], [0, 0, 0, 0]}
w__tab[4][4] = {[0, 0, 0, 0], [0, O, 0, 0], [1/8, 1/2, 1/4, 1/8],
[1/8, 1/4, 1/2, 1/8]}
h_tab[4][4] = {[1/8, 1/2, 1/4, 1/8], [1/8, 1/4, 1/2, 1/8],
[0, 0, 0, 0], [0, 0,0, 0] }
coding_ unit_ tree(x0+x__tab[uqt__idx][0],
yO+y__tabuqt_idx][0], split+1, width*w__tab[uqt_idx][0],
height*h_ tab[uqt_idx][0], 0, modeChild, BlockSplitMode,
uqt_sub__block_ child)
coding_unit_ tree(x0+x__tab[uqt_idx][1],
yO+y__tabuqt__idx][1], split+1, width*w__tab[uqt__idx][1],
height*h_ tab[uqt_idx][1], 0, modeChild, BlockSplitMode,
uqt_sub_ block_ child)
coding_ unit_ tree(x0+x__tab[uqt_idx][2],
yO+y__tabuqt__idx][2], split+1, width*w__tab[uqt__idx][2],
height*h_ tab[uqt_idx][2], 0, modeChild, BlockSplitMode,
uqt_sub__block_ child)
coding_ unit_ tree(x0+x__tab[uqt_idx][3],
yO+y__tabuqt_idx][3], split+1, width*w__tab[uqt_idx][3],
height*h_ tab[uqt_idx][3], 0, modeChild, BlockSplitMode,
uqt_sub__block_ child)

US 12,137,257 B2

27

-continued

if (LumaWidth == width) && (LumaHeight = height)
&& ChildSizeOccurd) {
coding_ unit(x0, y0, width, height,
'PRED_ No__Constraint’, 'COMPONENT__Chroma')
Component = 0

}

else {
if (Component == 0) {
coding_ unit(x0, y0, width, height, mode,
'COMPONENT_ LUMACHROMA")

else if (Component == 1) {
coding_ unit(x0, y0, width, height, mode,
'COMPONENT__LUMA")
¥
¥
¥

5.3 An Embodiment of Context Derivation
A variable ctxIdxInc is defined to indicate the context model
for uqt_split_flag.
Block A represents a left neighbouring block with dimen-
sions Wa*Ha.
Block B represents an above neighbouring block with
dimensions Wb*Hb.
Block E represents the current block with dimensions
We*He.
ctxldxInc is derived as below:

If the current block is I-picture, ctxIdxInc is set equal to

0.
Otherwise, ctxIdxInc is derived as below:
If (Block A exists and Ha<He) and (Block B exists and
Wb<We), then ctxlIdxInc is set equal to 2.
Otherwise, If (Block A exists and Ha<He) or (Block B
exists and Wbh<We), then ctxIdxInc is set equal to 1.
Then ctxIdxInc is further revised as below:

If We*He>1024, ctxIdxInc is unchanged;

Otherwise, if We*He>256, ctxIdxInc is increased by 3;

Otherwise, ctxIdxInc is increased by 6.

FIG. 11 is a block diagram of a video processing appa-
ratus 1100. The apparatus 1100 may be used to implement
one or more of the methods described herein. The apparatus
1100 may be embodied in a smartphone, tablet, computer,
Internet of Things (IoT) receiver, and so on. The apparatus
1100 may include one or more processors 1102, one or more
memories 1104 and video processing hardware 1106. The
processor(s) 1102 may be configured to implement one or
more methods described in the present document. The
memory (memories) 1104 may be used for storing data and
code used for implementing the methods and techniques
described herein. The video processing hardware 1106 may
be used to implement, in hardware circuitry, some tech-
niques described in the present document.

FIG. 13 is a flowchart for a method 1300 of processing a
video. The method 1300 includes partitioning (1305) a first
video block into four portions including into a first portion
having a dimension of W1xH1, a second portion having a
dimension of W2xH2, a third portion having a dimension of
W3xH3, and a fourth portion having a dimension of W4 Hz,
wherein W1, W2, W3, W4, H1, H2, H3, and H4 are integers,
and performing (1310) further processing of the first video
block using the four portions.

FIG. 14 is a flowchart for a method 1400 of processing a
video. The method 1400 includes determining (1405) char-
acteristics regarding a first video block, determining (1410)
an operational state regarding unsymmetrical quad-tree
(UQT) based on the determination of the characteristics,

10

15

20

25

30

35

40

45

50

55

60

65

28

wherein the operational state is enabled or disabled, and
performing (1415) further processing of the first video block
in accordance with the operational state of UQT.

FIG. 15 is a flowchart for a method 1500 of processing a
video. The method 1500 includes determining (1505) char-
acteristics regarding a first video block, determining (1510)
how to partition the first video block based on the determi-
nation of the characteristics, and performing (1515) further
processing of the first video block in accordance with how
to partition the first video block.

With reference to methods 1300, 1400, and 1500, some
examples of enhanced coding tree structures for encoding
and their use are described in Section 4 of the present
document.

With reference to methods 1300, 1400, and 1500, a video
block may be encoded in the video bitstream in which bit
efficiency may be achieved by using a bitstream generation
rule related to enhanced coding tree structures.

The methods can include wherein the dimension of first
portion is different than the dimension of one or more of the
second portion, the third portion, and the fourth portion.

The methods can include wherein the dimension of the
first portion and the dimension of the second portion are
equal, the dimension of the third portion and the dimension
of the fourth portion are not equal, and the dimension of the
third portion and the dimension of the fourth portion are not
equal to the dimension of the first portion and the dimension
of the second portion.

The methods can include wherein W1, W2, W3, W4, HI1,
H2, H3, and H4 are in a form of a power of 2.

The methods can include wherein H1, H2, H3, and H4 are
the same.

The methods can include wherein W1, W2, W3, and W4
are the same.

The methods can include wherein the first video block is
a portion of a second video block that is partitioned using
quad tree (QT), binary tree (BT), triple tree (TT), or unsym-
metrical quad-tree (UQT).

The methods can include wherein the partitioning is in
accordance with UQT, and a maximum or minimum block
size for UQT or a maximum depth for UQT is signaled in a
sequence parameter set (SPS), a view parameter set (VPS),
a picture parameter set (PPS), an APS, a sequence header, a
picture header, a slice header, a tile group header, a tile, a
coding tree unit (CTU) row, or a region.

The methods can include wherein the partitioning is in
accordance with UQT, and a maximum or minimum block
size for UQT or a maximum depth for UQT is based on a
profile, a level, or a tier of a standard.

The methods can include wherein the partitioning is in
accordance with UQT, and a maximum or minimum block
size for UQT or a maximum depth for UQT is the same as
QT.
The methods can include wherein the partitioning is in
accordance with UQT, and the first portion is further parti-
tioned in accordance with QT, BT, TT, or UQT.

The methods can include wherein the partitioning is in
accordance with UQT, and the split depth of the first, second,
third, and fourth portions are based on a split depth of the
first video block.

The methods can include wherein the characteristics
includes information regarding how luma and chroma cod-
ing trees are separated.

The methods can include wherein the characteristics
includes a determination that luma and chrome coding trees
are separated, and the operational state is enabled.

US 12,137,257 B2

29

The methods can include wherein the operational state is
signaled from an encoder to a decoder.

The methods can include wherein the operational state is
signaled in a sequence parameter set (SPS), a view param-
eter set (VPS), a picture parameter set (PPS), a picture
header, a slice header, a tile group header, or a tile header.

The methods can include wherein a type of UQT to be
applied is signaled in a sequence parameter set (SPS), a view
parameter set (VPS), a picture parameter set (PPS), a picture
header, a slice header, a tile group header, or a tile header.

The methods can include wherein the operational state is
signaled in the first video block.

The methods can include wherein a type of UQT to be
applied is signaled in the first video block.

The methods can include wherein the first video block
signals an index of partition type indicating that UQT, QT,
or no partitioning is to be performed.

The methods can include wherein the first video block
signals an index of partition type indicating that BT, or TT,
or UQT are to be performed.

The methods can include receiving a signal indicating a
direction related to partitioning; and receiving information
indicative of a splitting pattern indicating QT, TT, or UQT.

The methods can include wherein the characteristics
include valid types of splitting.

The methods can include wherein the determination
regarding how to partition the first video block includes
signaling BT, TT, or UQT having all vertical splits or all
horizontal splits.

The methods can include wherein one of BT, TT, or UQT
is a valid technique for how to partition the first video block,
and the valid technique is not signaled using a binary code.

The methods can include wherein two or more of BT, TT,
or UQT is a valid technique for how to partition the first
video block, and a flag indicates one of the valid techniques
to determine how to partition the first video block.

The methods can include wherein UQT is not valid, and
a flag indicating whether UQT is used is not signaled and
inferred to be false.

The methods can include wherein determining how to
partition the first video block is also based on a bit of a bin
string coded by arithmetic coding with contexts.

The methods can include wherein partial bins of the bin
string are coded with contexts and other bins are coded with
bypass mode without contexts.

The methods can include wherein bins of the bin string are
coded with contexts.

The methods can include wherein bins of the bin string are
coded with bypass mode.

The methods can include wherein the context is based on
a position or index of the bin, a partitioning of neighboring
blocks, a current partition depth of the first video block, a
partition depth of neighboring blocks, coding modes of
neighboring blocks, a width or height of neighboring blocks,
a width or height of the first video block, a slice type, a
picture type, a tile group type, a color component, or
statistics results of partition types from previously coded
video blocks.

The methods can include wherein UQT is not allowed
based on a width or height of the first video block being
determined to satisty a condition related to the width or the
height.

The methods can include wherein UQT is allowed based
on a width or height of the first video block being deter-
mined to satisfy a condition related to the width or the
height.

15

20

30

40

45

50

30

The methods can include wherein UQT is not allowed
based on a depth of the first video block being determined
to satisfy a condition related to the depth.

The methods can include wherein the depth is QT depth,
BT depth, TT depth, UQT depth, or MTT depth.

The methods can include wherein UQT is allowed based
on a depth of the first video block being determined to
satisfy a condition related to the depth.

The methods can include wherein the depth is QT depth,
BT depth, TT depth, UQT depth, or MTT depth.

The methods can include wherein one or both of an
operational state or operational characteristics of using UQT
is based on a position of the first video block.

The methods can include wherein the operational state is
disabled based on the position indicating that the first video
block crosses a bottom border of a picture, a tile, or a tile
group.

The methods can include wherein vertical UQT is dis-
abled based on the position indicating that the first video
block crosses a bottom border of a picture, a tile, or a tile
group.

The methods can include wherein horizontal UQT is
disabled based on the position indicating that the first video
block crosses a bottom border of a picture, a tile, or a tile
group.

The methods can include wherein vertical UQT is dis-
abled based on the position indicating that the first video
block crosses a right border of a picture, a tile, or a tile
group.

The methods can include wherein horizontal UQT is
disabled based on the position indicating that the first video
block crosses a right border of a picture, a tile, or a tile
group.

Also disclosed is another video for processing video. The
method can include determining to use, based on a width or
a height of the first video block satisfying one or more
conditions related to the width or the height, partitioning of
the first video block; and performing further processing of
the first video block in accordance with the determining.

The method can include wherein the one or more condi-
tions are associated with a position of the first video block
relative to crossing a bottom border of a picture, a tile, or a
tile group.

The method can include wherein the partitioning of the
first video block is based on a bit of a bin string coded
according to one or more contexts.

The method can include wherein the one or more contexts
indicate whether the first video block is split or not, when the
first block can be non-split, and at least one of QT, BT-H,
BT-V, TT-H, TT-V, UQTa-H, UQTb-H, UQTc-V and
UQTd-V partitioning types applicable to the first video
block.

The method can include wherein the one or more contexts
indicate whether the first video block is QT split or not,
when the first block can be split, and at least one of BT-H,
BT-V, TT-H, TT-V, UQTa-H, UQTb-H, UQTc-V and
UQTd-V partitioning types applicable to the first video
block.

The method can include wherein the one or more contexts
indicate whether the first video block is split with vertical or
horizontal split, when the first block can be split, and at least
one of BT-H, TT-H, UQTa-H, UQTb-H partitioning types
applicable to the first video block.

It will be appreciated that the disclosed techniques may be
embodied in video encoders or decoders to improve com-
pression efficiency using enhanced coding tree structures.

US 12,137,257 B2

31

The following listing of solutions further defines various
embodiments listed in the previous sections, e.g., items 23 to
25.

A method of video processing, comprising: determining,
for a conversion between a video block and a coded repre-
sentation of the video block, a partitioning method used for
partitioning the video block, wherein the partitioning
method is signaled in the coded representation using a
signaling scheme that depends on a slice or a picture
containing the video block; and performing the conversion
based on the determining.

The above method, wherein a first flag is included in the
coded representation indicating whether unsymmetrical
quad tree splitting is used and a second flag is included in the
coded representation indicating whether binary tree or
enhanced quad tree is used.

The above method, wherein the first flag occurs in the
coded representation before the second flag.

The above methods, wherein the first flag occurs in the
coded representation after the second flag.

The above methods, wherein a field in the coded repre-
sentation signals a partitioning direction.

The above methods, wherein the conversion includes
generating pixels of the video block from the coded repre-
sentation.

The above methods, wherein the conversion includes
generating the coded representation from the video block.

FIG. 21 is a flowchart for a method 2100 of processing a
video. The method 2100 includes performing (2105) a
conversion between a current video block and a bitstream
representation of the current video block, wherein the cur-
rent video block is unsymmetrically split into four partitions
using an unsymmetrical quad-Tree (UQT) splitting, wherein
the four partitions includes a first partition having a dimen-
sion of W1xH1, a second partition having a dimension of
W2xH2, a third partition having a dimension of W3xH3,
and a fourth partition having a dimension of W4xH4,
wherein W1, W2, W3, W4, H1, H2, H3, and H4 are integers.

FIG. 22 is a flowchart for a method 2200 of processing a
video. The method 2200 includes determining (2205) char-
acteristics regarding a current video block; determining
(2210) an operational state regarding unsymmetrical quad-
tree (UQT) splitting based on the determination of the
characteristics, wherein the operational state indicates that
whether the UQT splitting is enabled or disabled and/or
indicates how to split the current video block into four
partitions using the UQT splitting; and performing (2215) a
conversion between the current video block and a bitstream
representation of the current video block based on the
operational state of UQT splitting.

FIG. 23 is a flowchart for a method 2300 of processing a
video. The method 2300 includes determining (2305), for a
conversion between a current video block and a bitstream
representation of the current video block, a unsymmetrical
quad-tree (UQT) splitting method used for splitting the
current video block, wherein the splitting method is selected
from UQTa-H splitting, UQTb-H splitting, UQTc-V split-
ting and UQTd-V splitting, where a, b, ¢ and d are chosen
from 1, 2, 3 or 4, wherein UQTa-H splitting and UQTb-H
splitting is a horizontal UQT splitting and UQTc-V splitting
and UQTd-V splitting is vertical UQTsplitting; and perform-
ing (2310) the conversion based on the determining.

FIG. 24 is a flowchart for a method 2400 of processing a
video. The method 2400 includes determining (2405) a valid
splitting type for a current video block; determining (2410)
whether or how to signal a splitting type to be used for the
current video block based on the determination of the valid

10

15

20

25

30

35

40

45

50

55

60

65

32

splitting type; and performing (2415) a conversion between
the current video block and a bitstream representation of the
current video block in accordance with the determining
results.

FIG. 25 is a flowchart for a method 2500 of processing a
video. The method 2500 includes determining (2505), for a
conversion between a current video block and a coded
representation of the current video block, a splitting type
used for splitting the current video block, wherein the
splitting type is signaled in the bitstream representation after
signaling indications of splitting or non-splitting and/or
indications of quad tree (QT) splitting; and performing
(2510) the conversion based on the determining.

FIG. 26 is a flowchart for a method 2600 of processing a
video. The method 2600 includes determining (2605), for a
conversion between a current video block and a bitstream
representation of the current video block, whether to apply
unsymmetrical quad-trees (UQTs) splitting, and a specific
UQT type to be used for splitting the current video block if
UQT splitting is applied, based on a slice or a picture
containing the current video block; and performing (2610)
the conversion based on the determining.

FIG. 27 is a flowchart for a method 2700 of processing a
video. The method 2700 includes determining (2705), for a
conversion between a current video block and a bitstream
representation of the current video block, interpretations of
signaled representation of unsymmetrical quad-tree (UQT)
splitting to be used for splitting the current video block,
based on a slice or a picture containing the current video
block; and performing (2710) the conversion based on the
determining.

The following examples are provided in the present
disclosure.

1. A method for processing video, further comprising:
determining a valid splitting type for a current video block;
determining whether or how to signal a splitting type to be
used for the current video block based on the determination
of the valid splitting type; and performing a conversion
between the current video block and a bitstream represen-
tation of the current video block in accordance with the
determining results.

2. The method of example 1, wherein candidates of the
splitting type to be signaled includes binary tree (BT)
splitting, triple tree (TT) splitting or unsymmetrical quad-
trees (UQTs) splitting, and the candidates are all vertical
splitting or horizontal splitting depending on previously
signaled or derived information during the conversion.

3. The method of example 2, wherein invalid splitting
types are not signaled from an encoder to a decoder, and
wherein there is no codeword to represent the invalid
splitting types.

4. The method of any of examples 1-3, further compris-
ing: if there is only one splitting type among BT splitting, TT
splitting and UQT splitting is valid, refraining from signal-
ing any binarized code to indicate the splitting type used for
the current video block.

5. The method of any of examples 1-3, further compris-
ing: if there are only two splitting types among BTsplitting,
TTsplitting and UQTsplitting are valid, signaling a flag to
indicate which one of the two valid splitting types is used.

6. The method of any of examples 1-5, wherein a code to
indicate a splitting type to be used is binarized as a truncated
unary code.

7. The method of example 6, wherein a maximum value
of the truncated unary code is N-1, where N is an integer
and represents a number of valid splitting types.

US 12,137,257 B2

33

8. The method of example 6, wherein there is no code-
word to represent an invalid splitting type, and wherein the
invalid splitting type is skipped when building a codeword
table.

9. The method of any of examples 1-8, further compris-
ing: if no UQTsplitting is valid, refraining from signaling a
flag indicating whether UQTsplitting is used, and the flag
being inferred to be false.

10. The method of example 9, wherein binarized code-
words used to represent BT splitting and TT splitting are X
and Y, respectively, where X represents O or 1, Y represents
Oor 1 and Y is different from X.

11. The method of any of examples 1-8, further compris-
ing: if only one kind of UQT splitting is valid and UQT
splitting is signaled to be used, refraining from signaling
further information to indicate which kind of UQT splitting
is used.

12. The method of any of examples 1-8, further compris-
ing: if only two kinds of UQT splitting are valid and UQT
splitting is signaled to be used, signaling a flag to indicate
which kind of UQT splitting is used.

13. The method of any of examples 1-8, further compris-
ing: if only three kinds of UQT splitting are valid and UQT
splitting is signaled to be used, signaling a message to
indicate which kind of UQT splitting is used.

14. The method of example 13, wherein binarized code-
words used to represent the three kinds of UQT splitting are
X, YX, YY, respectively, where X represents 0 or 1, Y
represents 0 or 1 and Y is different from X.

15. The method of example 1, wherein preset binarized
codewords and/or signaling method are used regardless of
valid splitting types in the current video block, and wherein
an invalid splitting type is refrained to be chosen in a
conformance bit-stream.

16. The method of example 2, wherein determining the
splitting type used for the current video block is based on
bins of a bin string coded by arithmetic coding.

17. The method of example 16, wherein partial bins of the
bin string are coded with contexts and other bins are coded
with bypass mode without contexts.

18. The method of example 16, wherein all bins of the bin
string are coded with contexts.

19. The method of example 16, wherein all bins of the bin
string are coded with bypass mode.

20. The method of any of examples 16-18, wherein one or
multiple contexts are utilized for a bin coded with contexts.

21. The method of example 20, wherein the context is
based on and least one of: a position or index of the bin,
splitting of neighboring blocks of the current video block, a
current split depth of the current video block, a split depth
of neighboring blocks, coding modes of neighboring blocks,
a width or height of neighboring blocks, a width or height of
the current video block, a slice type, a picture type, a tile
group type, a color component, or statistics results of
splitting types from previously coded video blocks.

22. A method for processing video, comprising: determin-
ing, for a conversion between a current video block and a
coded representation of the current video block, a splitting
type used for splitting the current video block, wherein the
splitting type is signaled in the bitstream representation after
signaling indications of splitting or non-splitting and/or
indications of quad tree (QT) splitting; and performing the
conversion based on the determining.

23. The method of example 22, wherein the splitting type
is selected from extended quad-tree (EQT) splitting, binary
tree (BT) splitting and unsymmetrical quad-trees (UQT)
splitting.

20

25

40

45

55

34

24. The method of example 23, wherein in UQT splitting
in which the current video block is split into four partitions
including a first partition having a dimension of W1xH1, a
second partition having a dimension of W2xH2, a third
partition having a dimension of W3xH3, and a fourth
partition having a dimension of W4xH4, wherein W1, W2,
W3, W4, H1, H2, H3, and H4 are integers, when H1, H2,
H3, and H4 are equal to each other, and H1=H2=H3=H4=H,
H being a power-of-two number, the splitting being a
vertical splitting, wherein when WI1=W/8, W2=W/2,
W3=W/8, W4=W/4, W being a power-of-two number, the
splitting type is named as UQT1-V; when W1=W/8, W2=W/
2, W3=W/4, W4=W/8, the splitting type is named as UQT2-
V; when W1=W/4, W2=W/8, W3=W/2, W4=W/8, the split-
ting type is named as UQT3-V; and when W1=W/8, W2=W/
4, W3=W/2, W4=W/8, the splitting type is named as UQT4-
V; when W1, W2, W3, and W4 are equal to each other,
W1=W2=W3=W4=W, W being a power-of-two number, the
splitting being a horizontal split, and wherein when H1=H/8,
H2=H/2, H3=H/8, H4=H/4, H being a power-of-two num-
ber, the splitting type is named as UQT1-H; when H1=H/S,
H2=H/2, H3=H/4, H4=H/8, the splitting type is named as
UQT2-H; when H1=H/4, H2=H/8, H3=H/2, H4=H/8, the
splitting type is named as UQT3-H; and when H1=H/8,
H2=H/4, H3=H/2, H4=H/8, the splitting type is named as
UQT4-H.

25. The method of any of examples 22-24, wherein a first
flag is signaled to indicate whether the current video block
is split with a first set of UQT splitting and BT splitting or
with a second set of UQT splitting and EQT splitting,
wherein the UQT splitting type in the first and second set are
different.

26. The method of example 25, wherein if the first flag
indicates that the current video block is split with the first
set, a second flag is further signaled to indicate whether a
certain kind of UQT splitting is applied or a certain kind of
BT splitting is applied on the current video block.

27. The method of example 26, wherein the second flag is
signaled to indicate whether UQT2-V/UQT2-H splitting is
applied, or BT-V/BT-H splitting is applied on the current
video block.

28. The method of example 25, wherein if the first flag
indicates that the current video block is split with the second
set, a second flag is further signaled to indicate whether a
certain kind of UQT splitting is applied or a certain kind of
EQT splitting is applied on the current video block.

29. The method of example 28, wherein the second flag is
signaled to indicate whether UQT4-V/UQT4-H splitting is
applied, or EQT-V/EQT-H splitting is applied on the current
video block.

30. The method of example 28, wherein the second flag is
signaled to indicate whether UQT2-V/UQT2-H splitting is
applied, or EQT-V/EQT-H splitting is applied on the current
video block.

31. The method of any of examples 22-30, wherein a
splitting direction is further signalled, the splitting direction
being selected from horizontal splitting or vertical splitting.

32. The method of any of examples 22-31, wherein the
method is utilized for coding video blocks in I slices or I
pictures.

33. The method of any of examples 22-24, wherein a first
flag is signaled to indicate whether the current video block
is split with BT splitting or with a second set of UQT
splitting and EQT splitting.

34. The method of example 33, wherein if the first flag
indicates that the current video block is not split with BT

US 12,137,257 B2

35

splitting, a second flag is further signaled to indicate whether
UQT splitting is applied or EQT splitting is applied on the
current video block.

35. The method of example 34, wherein a splitting direc-
tion is further signalled, the splitting direction being selected
from horizontal splitting or vertical splitting.

36. The method of example 34, wherein a third flag to
indicate a splitting direction is further signaled, the splitting
direction being selected from horizontal splitting or vertical
splitting.

37. The method of example 36, wherein a splitting pattern
is further signaled, the splitting pattern being selected from
EQT splitting and UQT splitting.

38. The method of any of examples 33-37, wherein the
method is utilized for coding video blocks in P slices/
pictures or B slices/pictures.

39. The method of any of examples 25-38, further com-
prising skipping signaling of the flags when the current
video block is non-split or split with QT splitting.

40. The method of any of examples 25-38, wherein only
when the current block needs to be further split and/or not
split according to QT splitting, the flags are further signaled.

41. A method of video processing, comprising: determin-
ing, for a conversion between a current video block and a
bitstream representation of the current video block, whether
to apply unsymmetrical quad-trees (UQTs) splitting, and a
specific UQT type to be used for splitting the current video
block if UQT splitting is applied, based on a slice or a
picture containing the current video block; and performing
the conversion based on the determining.

42. The method of example 41, wherein when the slice or
picture containing the current video block is a P-slice/P-
picture or B-slice/B-picture, M kinds of UQT splitting are
applied; and when the slice or picture containing the current
video block is an I-slice/I-picture, N kinds of UQT splitting
are applied, where M and N are integers.

43. The method of example 42, wherein M is smaller than
N.

44. The method of example 43, wherein M is equal to 2
and N is equal to 4.

45. The method of example 42, wherein M is equal to N,
and the UQT splitting to be applied are different for the
P-slice/P-picture or B-slice/B-picture and the I-slice/I-pic-
ture.

46. The method of any of examples 40-44, wherein in
UQT splitting in which the current video block is split into
four partitions including a first partition having a dimension
of W1xH1, a second partition having a dimension of
W2xH2, a third partition having a dimension of W3xH3,
and a fourth partition having a dimension of W4xH4,
wherein W1, W2, W3, W4, H1, H2, H3, and H4 are integers,
when H1, H2, H3, and H4 are equal to each other, and
H1=H2=H3=H4=H, H being a power-of-two number, the
splitting being a vertical splitting, wherein when W1=W/8,
W2=W/2, W3=W/8, W4=W/4, W being a power-of-two
number, the splitting type is named as UQT1-V splitting;
when W1=W/8, W2=W/2, W3=W/4, W4=W/8, the splitting
type is named as UQT2-V splitting; when W1=W/4, W2=W/
8, W3=W/2, W4=W/8, the splitting type is named as
UQT3-V splitting; and when W1=W/8, W2=W/4, W3=W/2,
W4=W/8, the splitting type is named as UQT4-V splitting;
when W1, W2, W3, and W4 are equal to each other,
W1=W2=W3=W4=W, W being a power-of-two number, the
splitting being a horizontal split, and wherein when H1=H/8,
H2=H/2, H3=H/8, H4=H/4, H being a power-of-two num-
ber, the splitting type is named as UQT1-H splitting; when
H1=H/8, H2=H/2, H3=H/4, H4=H/8, the splitting type is

10

15

20

25

30

35

40

45

50

55

60

65

36
named as UQT2-H splitting; when H1=H/4, H2=H/S,
H3=H/2, H4=H/8, the splitting type is named as UQT3-H
splitting; and when H1=H/8, H2=H/4, H3=H/2, H4=H/8, the
splitting type is named as UQT4-H splitting.

47. The method of any of examples 40-46, wherein
UQT2-V splitting, UQT2-H splitting, UQT4-V splitting, or
UQT4-H splitting is applied on the I-slice/I-picture.

48. The method of any of examples 40-46, wherein
UQT2-V splitting and UQT2-H splitting are applied on the
P-slice/P-picture or the B-slice/B-picture.

49. A method of video processing, comprising: determin-
ing, for a conversion between a current video block and a
bitstream representation of the current video block, inter-
pretations of signaled representation of unsymmetrical
quad-tree (UQT) splitting to be used for splitting the current
video block, based on a slice or a picture containing the
current video block; and performing the conversion based on
the determining.

50. The method of example 49, wherein the signaled
presentation of UQT splitting in an I-slice/I-picture is dif-
ferent to that in a P-slice/P-picture or a B-slice/B-picture.

51. The method of example 49 or example 50, wherein in
UQT splitting in which the current video block is split into
four partitions including a first partition having a dimension
of Wi1xHI1, a second partition having a dimension of
W2xH2, a third partition having a dimension of W3xH3,
and a fourth partition having a dimension of W4xH4,
wherein W1, W2, W3, W4, H1, H2, H3, and H4 are integers,
when H1, H2, H3, and H4 are equal to each other, and
H1=H2=H3=H4=H, H being a power-of-two number, the
splitting being a vertical split, wherein when W1=W/8,
W2=W/2, W3=W/8, W4=W/4, W being a power-of-two
number, the splitting type is named as UQT1-V splitting;
when W1=W/8, W2=W/2, W3=W/4, W4=W/8, the splitting
type is named as UQT2-V splitting; when W1=W/4, W2=W/
8, W3=W/2, W4=W/8, the splitting type is named as
UQT3-V splitting; and when W1=W/8, W2=W/4, W3=W/2,
W4=W/8, the splitting type is named as UQT4-V splitting;
when W1, W2, W3, and W4 are equal to each other,
W1=W2=W3=W4=W, W being a power-of-two number, the
splitting being a horizontal split, and wherein when H1=H/8,
H2=H/2, H3=H/8, H4=H/4, H being a power-of-two num-
ber, the splitting type is named as UQT1-H splitting; when
H1=H/8, H2=H/2, H3=H/4, H4=H/8, the splitting type is
named as UQT2-H splitting; when H1=H/4, H2=H/S,
H3=H/2, H4=H/8, the splitting type is named as UQT3-H
splitting; and when H1=H/8, H2=H/4, H3=H/2, H4=H/8, the
splitting type is named as UQT4-H splitting.

52. The method of example 51, wherein for the I-slice/I-
picture, a flag is signaled to indicate whether UQT2-V/
UQT2-H splitting is applied, or BT-V/BT-H splitting is
applied.

53. The method of example 51, wherein for the I-slice/I-
picture, a flag is signaled to indicate whether UQT4-V/
UQT4-H splitting is applied, or EQT-V/EQT-H splitting is
applied.

54. The method of example 51, wherein for the I-slice/I-
picture, a flag is signaled to indicate whether UQT2-V/
UQT2-H splitting is applied, or EQT-V/EQT-H splitting is
applied.

55. The method of example 51, wherein for the I-slice/I-
picture, a flag is signaled to indicate whether UQT2-V
splitting, UQT2-H splitting, UQT4-V splitting, or UQT4-H
splitting is applied.

56. The method of any of examples 52-55, wherein a
splitting direction is further signalled, the splitting direction
being selected from horizontal splitting or vertical splitting.

US 12,137,257 B2

37

57. The method of example 51, wherein for the P-slice/
P-picture or the B-slice/B-picture, a flag is signaled to
indicate whether BT or a second set of UQT splitting and
EQT splitting is applied.

58. The method of example 57, wherein if the flag
indicates that the current video block is not split with BT
splitting, a second flag is further signaled to indicate whether
UQT splitting is applied or EQT splitting is applied on
P-slice/P-picture or the B-slice/B-picture.

59. The method of example 57 or example 58, wherein a
splitting direction is further signaled, the splitting direction
being selected from horizontal splitting or vertical splitting.

60. The method of example 57 or example 58, wherein a
third flag to indicate a splitting direction is further signaled,
the splitting direction being selected from horizontal split-
ting or vertical splitting.

61. The method of example 60, wherein a splitting type is
further signaled, the splitting type being selected from EQT
splitting and UQT splitting.

62. The method of example 51, wherein for the P-slice/
P-picture or the B-slice/B-picture, a flag is signaled to
indicate UQT2-V splitting and UQT2-H splitting to be
applied on the P-slice/P-picture or the B-slice/B-picture.

63. The method of any of examples 50-62, wherein
whether and/or how to apply UQT splitting for a slice/
picture are determined based on a temporal layer of the
slice/picture.

64. The method of example 63, wherein it is determined
that UQT splitting is not applied if the temporal layer of the
slice/picture is larger than a threshold.

65. The method of example 64, wherein the threshold is
2.

66. The method of example 63, wherein there are M kinds
of UQT splitting allowed to be applied on a picture/slice
with temporal layer larger than T and N kinds of UQT
splitting allowed to be applied on a picture/slice with
temporal layer smaller than or equal to T, wherein T, M and
N are integers and M is smaller than N.

67. The method of example 66, wherein T is equal to 2,
M is equal to 2, and N is equal to 4.

68. The method of any of examples 50-62, wherein
whether and/or how to apply UQT splitting for a slice/
picture are determined based on whether the slice/picture
can be a reference picture for other slices/pictures.

69. The method of example 68, wherein UQT splitting is
not applied on a slice/picture if it is not a reference picture
for other slices/pictures.

70. The method of any of examples 49-69, wherein if one
kind of UQT splitting is not allowed, refraining from sig-
naling any indication for the one kind of UQT splitting.

71. The method of example 70, wherein if no kind of UQT
splitting is allowed, refraining from signaling any indication
for UQT splitting.

72. The method of any of examples 50-71, wherein how
to signal the splitting type depends on a picture/slice type
containing the current video block.

73. The method of example 72, wherein a UQT flag to
indicate whether UQT splitting is applied is signaled before
a BT/EQT flag to indicate whether BT/EQT splitting is
applied in an I picture/slice, and the UQT flag to indicate
whether UQT splitting is applied is signaled after the
BT/EQT flag to indicate whether BT/EQT splitting is
applied in a P picture/slice or B picture/slice.

74. The method of example 72, wherein a UQT flag to
indicate whether UQT splitting is applied is signaled after a
BT/EQT flag to indicate whether BT/EQT splitting is
applied in an I picture/slice, and the UQT flag to indicate

10

15

20

25

30

35

40

45

50

55

60

65

38

whether UQT splitting is applied is signaled before the
BT/EQT flag to indicate whether BT/EQT splitting is
applied in a P picture/slice or B picture/slice.

75. The method of any of examples 50-74, wherein a flag
is signaled to indicate the splitting direction of more than
one splitting types including UQT splitting.

76. The method of example 75, wherein the flag is
signaled to indicate whether vertical or horizontal splitting is
applied for UQT splitting, EQT splitting and BT splitting.

77. The method of example 73 or example 74, wherein the
UQT flag to indicate whether UQT splitting is applied is
coded by arithmetic coding with context models.

78. The method of example 77, wherein the context model
is selected based on the picture/slice type, wherein the
picture/slice type includes I picture/slice and P/B picture/
slice.

79. The method of example 77, wherein one context
model is used if the current picture is I-picture, and a context
model is selected from candidate context models if the
current picture is P/B picture/slice.

80. The method of example 79, wherein the context model
is selected based on whether there is one or multiple
neighboring blocks.

81. The method of example 80, wherein the context model
is selected based on dimensions of one or multiple neigh-
boring blocks.

82. The method of example 79 or example 80, wherein the
one or multiple neighbouring blocks include a left neigh-
boring block and/or an above neighbouring block.

83. The method of any of examples 77-80, wherein the
context model depends on dimensions of the current block.

84. The method of examples 1-83, wherein W and H
represent the width and height of the current video block,
respectively.

85. The method of any of examples 1-84, wherein the
conversion includes generating pixels of the current video
block from the bitstream representation.

86. The method of any of examples 1-84, wherein the
conversion includes generating the bitstream representation
from the current video block.

87. A video decoding apparatus comprising a processor
configured to implement a method recited in one or more of
examples 1 to 84.

88. A video encoding apparatus comprising a processor
configured to implement a method recited in one or more of
examples 1 to 84.

89. A computer program product having computer code
stored thereon, the code, when executed by a processor,
causes the processor to implement a method recited in any
of examples 1 to 84.

The disclosed and other solutions, examples, embodi-
ments, modules and the functional operations described in
this document can be implemented in digital electronic
circuitry, or in computer software, firmware, or hardware,
including the structures disclosed in this document and their
structural equivalents, or in combinations of one or more of
them. The disclosed and other embodiments can be imple-
mented as one or more computer program products, i.e., one
or more modules of computer program instructions encoded
on a computer readable medium for execution by, or to
control the operation of, data processing apparatus. The
computer readable medium can be a machine-readable stor-
age device, a machine-readable storage substrate, a memory
device, a composition of matter effecting a machine-read-
able propagated signal, or a combination of one or more
them. The term “data processing apparatus” encompasses all
apparatus, devices, and machines for processing data,

US 12,137,257 B2

39

including by way of example a programmable processor, a
computer, or multiple processors or computers. The appa-
ratus can include, in addition to hardware, code that creates
an execution environment for the computer program in
question, e.g., code that constitutes processor firmware, a
protocol stack, a database management system, an operating
system, or a combination of one or more of them. A
propagated signal is an artificially generated signal, e.g., a
machine-generated electrical, optical, or electromagnetic
signal, that is generated to encode information for transmis-
sion to suitable receiver apparatus.

A computer program (also known as a program, software,
software application, script, or code) can be written in any
form of programming language, including compiled or
interpreted languages, and it can be deployed in any form,
including as a stand-alone program or as a module, compo-
nent, subroutine, or other unit suitable for use in a computing
environment. A computer program does not necessarily
correspond to a file in a file system. A program can be stored
in a portion of a file that holds other programs or data (e.g.,
one or more scripts stored in a markup language document),
in a single file dedicated to the program in question, or in
multiple coordinated files (e.g., files that store one or more
modules, sub programs, or portions of code). A computer
program can be deployed to be executed on one computer or
on multiple computers that are located at one site or dis-
tributed across multiple sites and interconnected by a com-
munication network.

The processes and logic flows described in this document
can be performed by one or more programmable processors
executing one or more computer programs to perform func-
tions by operating on input data and generating output. The
processes and logic flows can also be performed by, and
apparatus can also be implemented as, special purpose logic
circuitry, e.g., an FPGA (field programmable gate array) or
an ASIC (application specific integrated circuit).

Processors suitable for the execution of a computer pro-
gram include, by way of example, both general and special
purpose microprocessors, and any one or more processors of
any kind of digital computer. Generally, a processor will
receive instructions and data from a read only memory or a
random-access memory or both. The essential elements of a
computer are a processor for performing instructions and
one or more memory devices for storing instructions and
data. Generally, a computer will also include, or be opera-
tively coupled to receive data from or transfer data to, or
both, one or more mass storage devices for storing data, e.g.,
magnetic, magneto optical disks, or optical disks. However,
a computer need not have such devices. Computer readable
media suitable for storing computer program instructions
and data include all forms of non-volatile memory, media
and memory devices, including by way of example semi-
conductor memory devices, e.g., EPROM, EEPROM, and
flash memory devices; magnetic disks, e.g., internal hard
disks or removable disks; magneto optical disks; and CD
ROM and DVD-ROM disks. The processor and the memory
can be supplemented by, or incorporated in, special purpose
logic circuitry.

While this patent document contains many specifics, these
should not be construed as limitations on the scope of any
subject matter or of what may be claimed, but rather as
descriptions of features that may be specific to particular
embodiments of particular techniques. Certain features that
are described in this patent document in the context of
separate embodiments can also be implemented in combi-
nation in a single embodiment. Conversely, various features
that are described in the context of a single embodiment can

10

15

20

25

30

35

40

45

50

55

60

65

40

also be implemented in multiple embodiments separately or
in any suitable subcombination. Moreover, although features
may be described above as acting in certain combinations
and even initially claimed as such, one or more features from
a claimed combination can in some cases be excised from
the combination, and the claimed combination may be
directed to a subcombination or variation of a subcombina-
tion.

Similarly, while operations are depicted in the drawings in
a particular order, this should not be understood as requiring
that such operations be performed in the particular order
shown or in sequential order, or that all illustrated operations
be performed, to achieve desirable results. Moreover, the
separation of various system components in the embodi-
ments described in this patent document should not be
understood as requiring such separation in all embodiments.

Only a few implementations and examples are described
and other implementations, enhancements and variations
can be made based on what is described and illustrated in
this patent document.

The invention claimed is:

1. A method of processing video data, further comprising:

determining a valid splitting type for a current video block

from candidates of splitting types;

determining whether or how to signal a splitting type to be

used for the current video block based on a determi-
nation of the valid splitting type; and

performing a conversion between the current video block

and a bitstream of the current video block in accor-
dance with results of the determining,

wherein the candidates of the splitting types at least

include unsymmetrical quad-trees (UQTs) splitting,
and
wherein, in the unsymmetrical quad-Trees (UQTs) split-
ting, the current video block is unsymmetrically split
into four partitions, and at least one of the four parti-
tions has a block size different from block sizes of other
partitions of the four partitions,
wherein, when only one kind of UQT splitting is valid and
UQT splitting is signaled to be used, refraining from
signaling further information to indicate which kind of
UQT splitting is used,
wherein, when only two kinds of UQT splitting are valid
and UQT splitting is signaled to be used, signaling a
flag to indicate which kind of UQT splitting is used, and

wherein, when only three kinds of UQT splitting are valid
and UQT splitting is signaled to be used, signaling a
message to indicate which kind of UQT splitting is
used.

2. The method of claim 1, wherein candidates of the
splitting types to be signaled include binary tree (BT)
splitting, triple tree (TT) splitting or unsymmetrical quad-
trees (UQTs) splitting, and the candidates are all vertical
splitting or horizontal splitting depending on previously
signaled or derived information during the conversion.

3. The method of claim 2, wherein determining the
splitting type used for the current video block is based on
bins of a bin string coded by arithmetic coding.

4. The method of claim 3, wherein partial bins of the bin
string are coded with contexts and other bins are coded with
bypass mode without contexts; or

wherein all bins of the bin string are coded with contexts;

or

wherein all bins of the bin string are coded with bypass

mode, and

wherein one or multiple contexts are utilized for a bin

coded with contexts, and

US 12,137,257 B2

41

wherein a context of the contexts is based on at least one
of: a position or index of the bin, splitting of neigh-
boring blocks of the current video block, a current split
depth of the current video block, a split depth of
neighboring blocks, coding modes of neighboring
blocks, a width or height of neighboring blocks, a width
or height of the current video block, a slice type, a
picture type, a tile group type, a color component, or
statistics results of splitting types from previously
coded video blocks.

5. The method of claim 1,

wherein, when there is only one splitting type among BT

splitting, TT splitting, and UQT splitting that is valid,
refraining from signaling any binarized code to indicate
the splitting type used for the current video block; and
wherein, when there are only two splitting types among
BT splitting, TT splitting, and UQT splitting that are
valid, signaling a flag to indicate which one of two
valid splitting types is used, wherein a code to indicate
the splitting type to be used is binarized as a truncated
unary code, and wherein a maximum value of the
truncated unary code is N-1, where N is an integer and
represents a number of valid splitting types.

6. The method of claim 1, wherein there is no codeword
to represent an invalid splitting type in the bitstream, and
wherein the invalid splitting type is skipped when building
a codeword table.

7. The method of claim 1, wherein indications of candi-
dates of splitting types are signaled in the bitstream after
signaling at least one of indications of splitting or non-
splitting and indications of quad tree (QT) splitting, wherein
the candidates of splitting types include: extended quad-tree
(EQT) splitting, binary tree (BT) splitting and unsymmetri-
cal quad-trees (UQT) splitting.

8. The method of claim 7, wherein in UQT splitting in
which the current video block is split into four partitions
including a first partition having a dimension of W1xH1, a
second partition having a dimension of W2xH2, a third
partition having a dimension of W3xH3, and a fourth
partition having a dimension of W4xH4, wherein W1, W2,
W3, W4, H1, H2, H3, and H4 are integers.

9. The method of claim 8, wherein a first flag is signaled
to indicate whether the current video block is split with a
first set comprising UQT splitting and BT splitting or a
second set comprising UQT splitting and EQT splitting,
wherein a UQT splitting type in the first set and the second
set are different, and

wherein, when the first flag indicates that the current

video block is split with the first set, a second flag is
further signaled to indicate whether a certain kind of
UQT splitting is applied or a certain kind of BT
splitting is applied on the current video block, and
wherein the second flag is signaled to indicate whether
UQT2-V/UQT2-H splitting is applied, or BT-V/BT-H
splitting is applied on the current video block.

10. The method of claim 1, further comprising:

determining, for a conversion between a current video

block and a bitstream of the current video block,
interpretations of a signaled representation of unsym-
metrical quad-tree (UQT) splitting to be used for split-
ting the current video block, based on a slice or a
picture containing the current video block, wherein the
signaled representation of UQT splitting in an I-slice/
I-picture is different to that in a P-slice/P-picture or a
B-slice/B-picture.

10

20

25

30

35

40

45

65

42

11. The method of claim 1, wherein how to signal the
splitting type depends on a picture/slice type containing the
current video block.

12. The method of claim 11, wherein a UQT flag to
indicate whether UQT splitting is applied is signaled before
a BT/EQT flag to indicate whether BT/EQT splitting is
applied in an I picture/slice, and the UQT flag to indicate
whether UQT splitting is applied is signaled after the
BT/EQT flag to indicate whether BT/EQT splitting is
applied in a P picture/slice or B picture/slice; or alterna-
tively,

wherein a UQT flag to indicate whether UQT splitting is

applied is signaled after a BT/EQT flag to indicate
whether BT/EQT splitting is applied in an I picture/
slice, and the UQT flag to indicate whether UQT
splitting is applied is signaled before the BT/EQT flag
to indicate whether BT/EQT splitting is applied in a P
picture/slice or B picture/slice.

13. The method of claim 12, wherein the UQT flag to
indicate whether UQT splitting is applied is coded by
arithmetic coding with one or more context models.

14. The method of claim 13, wherein the one or more
context models are selected based on the picture/slice type,
wherein the picture/slice type includes I picture/slice and
P/B picture/slice; or

wherein the one or more context models are selected

based on whether there is one or multiple neighboring
blocks; or

wherein the one or more context models are selected

based on dimensions of one or multiple neighboring
blocks.

15. The method of claim 1, wherein a flag is signaled to
indicate a splitting direction of more than one splitting types
including UQT splitting, and wherein the flag is signaled to
indicate whether vertical or horizontal splitting is applied for
UQT splitting, EQT splitting and BT splitting.

16. The method of claim 1, wherein the conversion
includes encoding the current video block into the bitstream.

17. The method of claim 1, wherein the conversion
includes decoding the current video block from the bit-
stream.

18. An apparatus for processing video data comprising a
processor and a non-transitory memory with instructions
thereon, wherein the instructions upon execution by the
processor, cause the processor to:

determine a valid splitting type for a current video block

from candidates of splitting types;

determine whether or how to signal a splitting type to be

used for the current video block based on a determi-
nation of the valid splitting type; and

perform a conversion between the current video block and

a bitstream of the current video block in accordance
with results of the determining,

wherein the candidates of the splitting types at least

include unsymmetrical quad-trees (UQTs) splitting,
and

wherein in the unsymmetrical quad-Trees (UQTs) split-

ting, the current video block is unsymmetrically split
into four partitions, and at least one of the four parti-
tions has a block size different from block sizes of other
partitions of the four partitions,

wherein, when only one kind of UQT splitting is valid and

UQT splitting is signaled to be used, refraining from
signaling further information to indicate which kind of
UQT splitting is used,

US 12,137,257 B2

43

wherein, when only two kinds of UQT splitting are valid
and UQT splitting is signaled to be used, signaling a
flag to indicate which kind of UQT splitting is used, and

wherein, when only three kinds of UQT splitting are valid
and UQT splitting is signaled to be used, signaling a
message to indicate which kind of UQT splitting is
used.

19. A method of storing a bitstream of a video, compris-

ing:

determining a valid splitting type for a current video block
from candidates of splitting types;

determining whether or how to signal a splitting type to be
used for the current video block based on a determi-
nation of the valid splitting type;

generating the bitstream in accordance with results of the
determining; and

storing the bitstream in a non-transitory computer-read-
able recording medium,

5

10

15

44

wherein the candidates of the splitting types at least
include unsymmetrical quad-trees (UQTs) splitting,
and

wherein in the unsymmetrical quad-Trees (UQTs) split-
ting, the current video block is unsymmetrically split
into four partitions, and at least one of the four parti-
tions has a block size different from block sizes of other
partitions of the four partitions,

wherein, when only one kind of UQT splitting is valid and
UQT splitting is signaled to be used, refraining from
signaling further information to indicate which kind of
UQT splitting is used,

wherein, when only two kinds of UQT splitting are valid
and UQT splitting is signaled to be used, signaling a
flag to indicate which kind of UQT splitting is used, and

wherein, when only three kinds of UQT splitting are valid
and UQT splitting is signaled to be used, signaling a
message to indicate which kind of UQT splitting is
used.

