
United States
US 2013 01984.74A1

(19)

(12) Patent Application Publication (10) Pub. No.: US 2013/0198474 A1
Shaath (43) Pub. Date: Aug. 1, 2013

(54) METHOD AND SYSTEM FOR PROVIDING 7,392.234, which is a continuation-in-part of applica
RESTRICTED ACCESS TO A STORAGE tion No. 09/313,181, filed on May 18, 1999, now Pat.
MEDIUM No. 6,438,642.

(75) Inventor: Kamel Shaath, Kanata (CA) (30) Foreign Application Priority Data

(73) Assignee: KOM Networks Inc., Ontario (CA) Jul. 31, 1998 (CA) 2,244,626
Publication Classification

(21) Appl. No.: 13/562,312
(51) Int. Cl.

(22) Filed: Jul. 31, 2012 G06F 2/14 (2006.01)
(52) U.S. Cl.

Related U.S. Application Data CPC G06F 12/1416 (2013.01)
USPC .. 711A163

(60) Continuation-in-part of application No. 12/431,387.
filed on Apr. 28, 2009, now Pat. No. 8,234,477, which (57) ABSTRACT
is a continuation-in-part of application No. 1 1/482, A system, apparatus, method, or computer program product
115, filed on Jul. 7, 2006, now Pat. No. 7,536,524, of restricting file access is disclosed wherein a set of file write
which is a continuation-in-part of application No. access commands are determined from data stored within a
10/600,540, filed on Jun. 23, 2003, now Pat. No. 7,076, storage medium. The set of file write access commands are for
624, which is a continuation of application No. 10/032, the entire storage medium. Any matching file write access
467, filed on Jan. 2, 2002, now Pat. No. 6,654,864, command provided to the file system for that storage medium
which is a division of application No. 09/267,787, filed results in an error message. Other file write access commands
on Mar. 15, 1999, now Pat. No. 6,336,175, Continua- are, however, passed onto a device driver for the storage
tion-in-part of application No. 12/213,670, filed on medium and are implemented. In this way commands such as
Jun. 23, 2008, which is a division of application No. file delete and file overwrite can be disabled for an entire
09/665,065, filed on Sep. 19, 2000, now Pat. No. storage medium.

Sub system 102

GO return handle open GO
104 and for (file object......"
user m ode NT STATUS request"

kerne m ode look up object name
106 s

/
II O M an age r

............. ." allo cate
n iro

RP C50
to stack N N ..."

gd. cation a
free

R P / . . ." ...
"s.

its. 4.
12

Gd
copy to Status
to sub system
a d dress space

O Status

If O System Services
108

call appropriate
crivers with RP

* 120
file system GO

Y-7 drive rul16.carry out

* object 112
Manager

S. C2)r check a c c e s s rights
S i e curity 114

C3) locate file object.
116 file system

a'
a'

w s file system
w

...." requested
s

es:

complete operation,
return R P with m as s -s to rage dew ice is

Patent Application Publication

US 2013/O1984.74 A1 Aug. 1, 2013 Sheet 3 of 7 Patent Application Publication

909

US 2013/O1984.74 A1 Aug. 1, 2013 Sheet 5 of 7 Patent Application Publication

||SETTOER] WHICJOW

US 2013/O1984.74 A1 Aug. 1, 2013 Sheet 6 of 7 Patent Application Publication

US 2013/O1984.74 A1 Aug. 1, 2013 Sheet 7 of 7 Patent Application Publication

0 || 9

US 2013/O 1984.74 A1

METHOD AND SYSTEM FOR PROVIDING
RESTRICTED ACCESS TO A STORAGE

MEDIUM

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application is a Continuation-in-part of U.S.
patent application Ser. No. 12/431,387, filed Apr. 28, 2009
entitled Method and System for Providing Restricted Access
to a Storage Medium, which is a Continuation-in-part of U.S.
patent application Ser. No. 1 1/482,115 filed on Jul. 7, 2006;
which was a Continuation-in-part of U.S. patent application
Ser. No. 10/600,540, now U.S. Pat. No. 7,076,624 issued Jul.
11, 2006: which was a Continuation application of U.S.
patent application Ser. No. 10/032,467, now U.S. Pat. No.
6,654,864 issued Nov. 25, 2003; which was a Divisional
application of U.S. patent application Ser. No. 09/267,787,
now U.S. Pat. No. 6,336,175 issued Jan. 1, 2002; which
claimed priority to Canadian Application 2.244,626 filed Jul.
31, 1998 and issued Jan. 31, 2000. The application is also a
Continuation-in-part of U.S. patent application Ser. No.
12/213,670, filed Jun. 23, 2008, which is a Divisional of U.S.
patent application Ser. No. 09/665,065, filed Sep. 19, 2000,
itself a continuation-in-part of U.S. patent application Ser.
No. 09/313,181, filed May 18, 1999. The contents of all of the
foregoing, of which are incorporated herein by reference in
their respective entireties.

BACKGROUND OF THE INVENTION

0002 1. Field of the Invention
0003. The present invention relates to data storage and
more particularly to a method of providing restricted write
access on a data storage medium.
0004 2. Related Art
0005. In the past, operating systems restricted file access
based on three criteria. The first criterion relates to the physi
cal limitations of the storage device. For example, a CD-ROM
drive only provides read access and therefore is restricted to
read-only operation. The second relates to limitations of the
storage medium. For example, a CD is a read-only medium, a
CDR is a read/write medium but when a CD is full, the writer
becomes a read-only medium, and so forth. The third relates
to file access privileges. For example, in the UNIX operating
system a file is stored with a set of access privileges including
read and write privileges. Some files are read only and others
are read/write and so forth.
0006 Unfortunately, these access privileges fail to
adequately provide protection for archival storage devices
Such as magnetic tape or removable optical media.
0007 An example of a popular operating system is Win
dows NTR). Using Windows NTR), device drivers are hidden
from applications by a protected Subsystem implementing a
programming and user interface. Devices are visible to user
mode programs, which include protected Subsystems, only as
named file objects controlled by the operating system input/
output (IO) manager. This architecture limits an amount of
knowledge necessary to implement device drivers and appli
cations. In order to provide reasonable performance, the two
separated systems, device drivers and applications, operate
independently.
0008 For example, when a write operation is requested by
an application, the request is made via a file object handle.
The application does not actually communicate with the Stor

Aug. 1, 2013

age device nor does the device driver for that storage device
communicate with the application. Each communicates with
the operating system independently. Thus, when the write
command is issued for writing data to a device, the data is
stored in buffer memory while the destination device is being
accessed. A successful completion status is provided to the
application. When the destination storage device is available,
the stored data is written to the destination storage device.
When the storage device is unavailable or fails to support
write operations, the data is not successfully written. An error
message may result, but will not be directed toward the appli
cation since it is not known to the device driver or is inacces
sible. For example, the application may have terminated
before the error occurs. Alternatively, no error message
results and when the buffer is flushed or when the system is
rebooted, the data is lost. Neither of these results is acceptable
in normal computer use.
0009 Fortunately, most devices are easily verified as to
their capabilities. Read only devices are known as well as are
read/write devices. Because a CD-ROM drive never becomes
a read/write device, it is easily managed. When a device
supports both read/write media and read only media the prob
lem becomes evident.
0010. In order better to highlight the problem, an example

is presented. When a hard disk is full, accessing a file results
in updating of file information relating to a last access date
and so forth, journaling. File access information is updated
each time a file is retrieved. The information requires no extra
memory within the hard disk and therefore, the status of the
hard disk, full or available disk space, is unimportant since the
new file access information overwrites previous file access
information. Thus, the file system writes to storage media
even when full, so long as the capability of doing so exists.
0011 When an archive data store is used with a data store
device, it is often desirable that it not be writtento. Therefore,
accessing a file requires that the file access information is not
updated journaling is not performed. Unfortunately, when
the data store device is accessed via a read/write file object
handle, updating of the file access information is performed
by the file system. As such, the data store is altered even when
this is not desired. Further, since a single data store device
accepts any number of different data stores during a period of
time when the file system is in continuous operation, it is
impractical if not impossible to remount the data store device
with a new data store device driver and a new file object
handle whenever the read/write privileges change. Currently,
there is no adequate Solution to overcome this problem.
0012. In an attempt to overcome these and other limita
tions of the prior art, it is an object of the present invention to
provide a method of limiting access privileges for a storage
medium that supports increased flexibility over those of the
prior art.

BRIEF SUMMARY OF THE INVENTION

0013. In accordance with the invention there is provided a
method of providing restricted access to a storage medium in
communication with a computer comprising the step of
executing a file system layer on the computer, the file system
layer Supporting a plurality of file system commands; execut
ing a trap layer on the computer, the trap layer logically
disposed above the file system layer, providing to the trap
layer at least a disabled file system command relating to the
storage medium and Supported by the file system for the
storage medium; intercepting data provided to the file system

US 2013/O 1984.74 A1

layer including an intercepted file system command; compar
ing the intercepted file system command to each of the at least
a disabled file system command to produce at least a com
parison result, and, when each of the at least a comparison
result is indicative of other than a match, providing the inter
cepted file system command to the file system layer.
0014. In some embodiments an application layer is in
execution logically above the trap layer Such that the trap
layer is logically disposed between the application layer and
the file system layer; and when a comparison result from the
at least a comparison result is indicative of a match, providing
an error indication to the application layer. Preferably, the
error indication is provided from the trap layer.
0.015. In accordance with the invention there is further
provided a method of restricting access to a storage medium
in communication with a computer, the method comprising
the step of executing a file system layer on the computer, the
file system layer Supporting a plurality of file system com
mands; providing to the file system layer at least a disabled
file system command for the storage medium, the disabled file
system command Supported by the file system for the storage
medium, the at least a disabled file system command being
other than all write commands, other than all read commands,
and other than all write commands and all read commands;
comparing file system commands provided to the file system
layer to each of the at least a disabled file system command to
produce at least a comparison result, and, when each of the at
least a comparison result is indicative of other than a match,
executing the file system command.
0016. In an embodiment the method also comprises the
following steps: providing an indication of a data write access
privilege for the entire logical storage medium, the data write
access privilege indicative of a restriction to alteration of a
same portion of each file stored on the logical storage
medium; and restricting file access to the logical storage
medium in accordance with the indication while allowing
access to free space portions of the same logical storage
medium.

0017. In accordance with the invention there is also pro
vided a method of restricting access by a computer to a
storage medium other than a write once medium in commu
nication with the computer, the method comprising the steps
of providing an indication of a data write access privilege for
the entire logical storage medium indicating a disabled opera
tion relating to alteration of a portion of each file stored within
the logical storage medium, the indication other than a read
only indication; and, restricting file access to each file within
the logical storage medium in accordance with the same
indication while allowing access to free space portions of the
same logical storage medium. In an embodiment the indica
tion comprises at least one of the following: write access
without delete, write access without rename; write access
without overwrite, and write access without changing file
access privileges.
0018. In accordance with the invention there is also pro
vided a method of restricting access by a computer to a
storage medium other than a write once medium in commu
nication with the computer, the method comprising the steps
of providing an indication of a data write access privilege for
the entire logical storage medium indicating a disabled opera
tion relating to alteration of data within the logical storage
medium, the indication other than a read only indication, the
disabled operations Supported by the storage medium; and
restricting write access to data within the logical storage

Aug. 1, 2013

medium in accordance with the same indication while allow
ing access to free space portions of the same logical storage
medium. A logical storage medium consists of a single physi
cal storage medium or a single partition within a storage
medium. Typically a disabled operation relates to destruction
of data stored within a storage medium. Operations of this
type include delete file, overwrite file, and rename file.
0019. The present invention is preferably applied to
removable storage media and more preferably to optical Stor
age media Such as removable optical rewritable disks.
0020. According to an exemplary aspect of the present
invention, restricted write access privileges for data stored
within a data storage medium are Supported. Advantageously,
access privileges of this type allow write access to storage
media or data files but limit that access in certain respects.
These restrictions permit some level of control over a storage
medium while providing some write privileges. An exem
plary embodiment of the present invention may include, in an
exemplary embodiment, a method for applying an operation
access privilege to a storage medium, comprising: associating
an access privilege with at least a portion of the storage
medium; intercepting an attempted operation on at least a
portion of the storage medium, wherein intercepting occurs
regardless of an identity of a user attempting the attempted
operation; comparing the attempted operation to the access
privilege; and allowing, or denying the attempted operation
based on comparing the attempted operation to the access
privilege.
0021. According to an exemplary aspect of the present
invention, the method may include allowing or denying
occurs transparently to the user and transparently to a com
puter application invoking the attempted operation.
0022. According to an exemplary aspect of the present
invention, the method may include wherein the storage
medium is a logical storage medium.
0023. According to an exemplary aspect of the present
invention, the method may include, wherein the logical Stor
age medium comprises one or more logical portions.
0024. According to an exemplary aspect of the present
invention, the method wherein the associating an access privi
lege with at least a portion of the storage medium comprises
associating at least one of an enabled operation or a restricted
operation.
0025. According to an exemplary aspect of the present
invention, the method may include where the allowing or
denying the attempted operation further comprises allowing
the attempted operation when the attempted operation
matches one of the enabled operations.
0026. According to an exemplary aspect of the present
invention, the method may include: passing the attempted
operation to a file system containing the storage medium.
0027. According to an exemplary aspect of the present
invention, the method may include where wherein the allow
ing or denying the attempted operation further comprises:
denying the attempted operation when the attempted opera
tion matches one of the restricted operations.
0028. According to an exemplary aspect of the present
invention, the method may further include modifying the
attempted operation when the attempted operation matches
one of the restricted operations, if the attempted operation can
be modified from a restricted operation to an enabled opera
tion.

US 2013/O 1984.74 A1

0029. According to an exemplary aspect of the present
invention, the method may include where the operation
access privilege is read-only for the logical storage medium.
0030. According to an exemplary aspect of the present
invention, the method may include where the logical storage
medium may include logical portions and the operation
access privilege comprises multiple operation access privi
leges wherein any number of the operation access privileges
can be associated with each logical portion.
0031. According to an exemplary aspect of the present
invention, the method may include where the operation
access privileges comprise at least one of the following: read,
write, execute, move, rename, append, change permissions,
change attributes, overwrite and/or overwrite Zero length.
0032. According to an exemplary aspect of the present
invention, the method may include where the intercepting
may further include intercepting file input/output attempted
operations.
0033 According to an exemplary aspect of the present
invention, the method may include where attempted opera
tions may include at least one of adding, deleting, converting
and/or modifying.
0034. According to an exemplary aspect of the present
invention, the method may include where, the intercepting
further comprises intercepting one or more logical device
input/output attempted operations.
0035. A method for applying an operation access privilege
between a computer and a storage medium, may include
associating an access privilege with at least a portion of the
storage medium; intercepting an attempted operation on at
least a portion; comparing the attempted operation to the
access privilege; and allowing or denying the attempted
operation, wherein allowing or denying occurs regardless of
an identity of a user attempting the attempted operation.
0036. According to an exemplary aspect of the present
invention, the method may include applying an operation
access privilege to a logical storage medium, comprising:
associating an access privilege with at least a logical portion
of the logical storage medium; intercepting an attempted
operation on at least a logical portion of the logical storage
medium, wherein intercepting occurs regardless of an iden
tity of a user attempting the attempted operation; comparing
the attempted operation to the access privilege; and allowing,
or denying the attempted operation.
0037 According to an exemplary aspect of the present
invention, a method for applying an operation access privi
lege between a computer and a logical storage medium, may
include, associating an access privilege with at least a logical
portion of the logical storage medium; intercepting an
attempted operation on at least a logical portion; comparing
the attempted operation to the access privilege; and allowing
denying the attempted operation, wherein allowing or deny
ing occurs regardless of an identity of a user attempting the
attempted operation.
0038 A method of applying an operation access privilege
to a logical storage medium in a file system, comprising:
providing an operation access privilege indicative of at least
one of an enabled operation and/or a restricted operation to be
performed on at least one portion of the logical storage
medium; associating operation access privilege with at least
one portion of the logical storage medium; intercepting in a
trap layer an attempted operation on at least one portion; and
passing attempted operation to the file system if the attempted
operation matches the enabled operation.

Aug. 1, 2013

0039. According to an exemplary aspect of the present
invention, the method may include where the method may
include modifying the attempted operation if the attempted
operation does not match the enabled operation or the
attempted operation matches the restricted operation; and
passing the modified attempted operate to the file system.
0040. According to an exemplary aspect of the present
invention, the method may include where the method may
include, further comprising denying the attempted operation
at the trap layer if the attempted operation matches the
restricted operation.
0041 According to an exemplary aspect of the present
invention, the method may further include where denying the
attempted operation at the trap layer if the attempted opera
tion does not match the enabled operation.
0042. According to an exemplary aspect of the present
invention, the method may include where a method for apply
ing an operation access privilege to a storage medium, com
prising: associating an access privilege with at least a portion
of the storage medium; intercepting an attempted operation
on at least a portion of the storage medium; determining
whether the attempted operation is an enabled operation or a
restricted operation; and allowing or denying the attempted
operation based on the determining whether the operation is
an enabled operation or a restricted operation.
0043. According to an exemplary aspect of the present
invention, a method for applying operation access privilege to
a logical storage medium based on file type, may comprise:
defining a rule for a logical portion of the logical storage
medium that comprises a data identifier and an access privi
lege; intercepting an attempted operation on the logical por
tion of the logical storage medium, wherein intercepting
occurs regardless of an identity of a user attempting the
attempted operation; comparing a data identifier associated
with the attempted operation to the data identifier of the rule,
and if matching, comparing the attempted operation to the
access privilege; and allowing, or denying the attempted
operation based on the comparing the attempted operation to
the access privilege.
0044 According to an exemplary aspect of the present
invention, a data identifier may include a file type. According
to an exemplary embodiment, the data identifier may include
at least one of the following: a data path, a data mask, and/or
a unique file identifier.
0045. According to an exemplary aspect of the present
invention, a method for applying an operation access privi
lege to a storage medium, may comprise: associating an
access privilege with at least a portion of the storage medium;
intercepting an attempted operation on at least a portion of the
storage medium based on a data identifier associated with the
attempted operation, wherein intercepting occurs regardless
of an identity of a user attempting the attempted operation;
comparing the attempted operation to the access privilege;
and allowing, or denying the attempted operation based on the
comparing the attempted operation to the access privilege.
0046 According to an exemplary aspect of the present
invention, the method may further include allowing, or deny
ing the attempted operation based on a content of a logical file
associated with at least a portion of the storage medium.
0047 According to an exemplary aspect of the present
invention, the method may further include allowing, or can
celling the attempted operation based on the content of the
file.

US 2013/O 1984.74 A1

0048. According to an exemplary aspect of the present
invention, allowing, or denying the attempted operation may
include: (i) allowing a create file operation to create a file
associated with at least a portion of the storage medium; (ii)
evaluating the content of the file; and/or (iii) allowing, or
deleting the file based on evaluating the file.
0049 According to an exemplary aspect of the present
invention, associating the access privilege may include asso
ciating the access privilege with at least a portion of the
storage medium based on a file attribute of a logical file
associated with at least a portion of the storage medium.
0050. According to an exemplary aspect of the present
invention, enforcing a retention policy may include prevent
ing at least a portion of the storage medium in a retained State
from being modified while a retention period of at least a
portion of the storage medium is unexpired.
0051. According to an exemplary aspect of the present
invention, enforcing a retention policy may be enforced for at
least one of: a file name, a file attribute, a file path, or a file
content, of a logical file associated with at least a portion of
the storage medium.
0052 According to an exemplary aspect of the present
invention, enforcing a retention policy may include determin
ing if at least a portion of the storage medium is eligible to
enter the retained State based on a content of at least a portion
of the storage medium.
0053 According to an exemplary aspect of the present
invention, determining may include determining if at least a
portion of the storage medium is eligible to enter the retained
state based on a content group associated with at least a
portion of the storage medium, the content group associated
based on evaluating at least a portion of the storage medium
for pre-defined content.
0054 According to an exemplary aspect of the present
invention, associating the access privilege may include hold
ing the retained state.
0055 According to an exemplary aspect of the present
invention, holding the retained State may include at least one
of: (i) Suspending expiration of a retained state portion of the
storage medium; (ii) Suspending an unexpired retained State
portion of the storage medium from entering an expired
retained State; (iii)Suspending clearing of a read only attribute
of the retained State portion of the storage medium by setting
a temporary attribute of the retained state portion of the stor
age medium; and/or (iv) suspending deletion of an expired
retained State portion of the storage medium.
0056. According to an exemplary aspect of the present
invention, enforcing a retention policy may include triggering
one or more background processes when at least a portion of
the storage medium enters a retained State.
0057 According to an exemplary aspect of the present
invention, one or more background processes may include at
least one of: (i) creating metadata for the retention; (ii) iden
tifying the user retaining at least a portion of the storage
medium; (iii) storing user identification for the user retaining
at least a portion of the storage medium; (iv) identifying the
retention policy retaining at least a portion of the storage
medium, (v) storing the retention policy retaining at least a
portion of the storage medium; (vi) generating a digital sig
nature of the content of at least a portion of the storage
medium; (vii) generating a digital signature comprising a
hash of the content of at least a portion of the storage medium;
(viii) generating a digital signature of the content of at least
one of a default data stream associated with a file associated

Aug. 1, 2013

with at least a portion of the storage medium or one or more
alternate data streams associated with the file associated with
at least a portion of the storage medium; (ix) storing the
digital signature; (X) determining if any other policies apply:
(xi) creating at least one of an alternate data stream or an
extended attribute to store the metadata; (xii) encrypting hash
keys for the metadata; and/or (xiii) storing the hash keys.
0.058 According to an exemplary aspect of the present
invention, enforcing the retention policy may include trigger
ing retention of at least a portion of the storage medium based
on at least one of: (i) the attempted operation; (ii) setting a
read-only attribute of the file; (iii) renaming the file to a file
name; (iv) renaming the file to a particular name; (V) resizing
the file; (vi) resizing the file to a particular size; (vii) creating
an extended attribute associated with the file; and/or (viii)
creating an alternate data stream associated with the file.
0059. According to an exemplary aspect of the present
invention, enforcing the retention policy may include enforc
ing an archive policy including queuing at least a portion of
the storage medium to be copied to an alternate media, when
at least a portion of the storage medium is retained.
0060 According to an exemplary aspect of the present
invention, the method may further include forcing a secure
erasure for a delete operation on at least a portion of the
storage medium, wherein secure erasure comprises at least
one of overwriting the content of at least a portion of the
storage medium or overwriting an alternate data stream asso
ciated with at least a portion of the storage medium.
0061 According to an exemplary aspect of the present
invention, allowing, or denying may include at least one of: (i)
allowing the operation on a directory if the directory is empty;
and/or (ii) denying the operation on the directory if the direc
tory is not empty.
0062 According to an exemplary aspect of the present
invention, allowing, or denying the attempted operation may
be based on at least one of an application or a process attempt
ing the attempted operation. According to an exemplary
aspect of the present invention, allowing, or denying the
attempted operation based on the application may include: (i)
allowing the attempted operation for at least one of a named
or a registered process; (ii) denying the attempted operation
for at least one of the named or the registered process; and/or
(iii) allowing the attempted operation for a privileged appli
cation, the privileged application comprising an application
operable to be authenticated via a digital signature.
0063. According to an exemplary aspect of the present
invention, the method may further include enforcing a policy
based on an application, the policy including at least one of
(i) enforcing application based intercepting of the attempted
operation; (ii) disabling an operation option provided to the
user; (iii) expanding the scope of an operation based on the
application; and/or (iv) allowing, or denying the attempted
operation based on validating a child object of a parent object
of an attempted operation.
0064. According to an exemplary aspect of the present
invention, the method may further include enforcing a secure
time routine, the routine including at least one of: (i) using a
secure clock; (ii) maintaining a system clock comprising
using the secure clock; (iii) accounting for deviations based
on inaccuracies of the secure clock; (iv) verifying operation
of a secure clock or authenticating the secure clock; (V) at
least one of denying at least one attempted operation, pre
venting at least a portion of the storage medium from being
retained, or rendering the storage medium read-only, if the

US 2013/O 1984.74 A1

secure clock can not be at least one of verified or authenti
cated; and/or (vi) running the secure clock independent of a
SeVe.

BRIEF DESCRIPTION OF THE DRAWINGS

0065 Exemplary embodiments of the invention will now
be described in conjunction with the drawings in which:
0066 FIG. 1 is a simplified block diagram of an NTR
operating system architecture during a process of opening a
file is shown;
0067 FIG. 2 is a simplified block diagram of an NTR
operating system architecture during a process of IRP pro
cessing is shown:
0068 FIG.3 is a simplified block diagram of an operating
system according to the invention;
0069 FIG. 4 is a simplified block diagram of a system for
opening a file Such as that shown in FIG.1 modified according
to the invention;
0070 FIG. 5 is a simplified flow diagram of a method of
storing data in a storage medium forming part of a system
such as that of FIG. 1;
0071 FIG. 6 is a simplified flow diagram of a method of
providing software settable access privileges within Win
dows NTR); and,
0072 FIG. 7 is a simplified block diagram of the invention
wherein the file system layer includes means for performing
the functions of the trap layer.

DETAILED DESCRIPTION OF THE INVENTION

0073 Referring to FIG. 1, an exemplary simplified block
diagram of a Windows NTR) (NT) operating system architec
ture during a process of opening a file is shown, though the
present embodiments may be applied to any other operating
system. In the exemplary embodiment, NT drivers are hidden
from end users by an NT protected subsystem 102 that imple
ments an exemplary NT programming interface. Devices may
be visible as named file objects controlled by the NT Input/
Output (IO) Manager 110 to user-mode 104 programs,
including for example protected Subsystems 102.
0074 Exemplary NT protected subsystem 102, such as for
example the Win32R) subsystem, may pass IO requests to the
appropriate kernel-mode 106 driver through the IO System
Services 108. A protected subsystem 102 may insulate its end
users (user mode 104) and applications from having to know
anything about kernel-mode 106 components, including NT
drivers 120, 122. In turn, the NT IO Manager 110 may insu
late protected Subsystems 102 from having to know anything
about machine-specific device configurations or about NT
driver 120, 122 implementations.
0075. In an exemplary embodiment, the NTIO Manager's
(110) layered approach also insulates most NT drivers 120,
122 from having to know anything about the following:
whether an IO request originated in any particular protected
subsystem 102, such as Win32 or POSIX; whether a given
protected subsystem 102 has particular kinds of user-mode
104 drivers; and, the form of any protected subsystems (102)
IO model and interface to drivers.
0076. In an exemplary embodiment, the IO Manager 110
supplies NT drivers 120, 122 with a single IO model, a set of
kernel-mode 106 support routines. These drivers 120, 122
may carry out IO operations, and a consistent interface
between the originator of an IO request and the NT drivers

Aug. 1, 2013

120, 122 that respond to it results. For example, file system
116 requests are a form of IO request.
0077. In an exemplary embodiment, a subsystem 102 and

its native applications access an NT driver's device 122 or a
file on a mass-storage device 118 through file object handles
supplied by the NT IO Manager 110. A subsystem's request
to open such a file object (for example, step 1) and to obtain
a handle for IO to a device or a data file (for example, step 10)
is made by calling the NT IO System Services 108 to open a
named file, which has, for example, a Subsystem-specific
alias (symbolic link) to the kernel-mode 106 name for the file
object (for example, step 2).
(0078. The NT IO Manager 110, which exports these Sys
temServices, may then be responsible for locating or creating
the file object (for example, step 3) that represents the device
or data file and for locating the appropriate NT driver(s) 120,
122.
0079. In an exemplary embodiment, the system follows a
process described below in accordance with FIG. 1 for per
forming a file open operation. The process comprises an
exemplary embodiment only, and any other additional imple
mentations may be used as well in accordance with the
present embodiments.
0080 Beginning with exemplary step 1, the subsystem
102 may call an NT IO System Service 108 to open a named
file. In exemplary step 2, the NT IO Manager 110 may call the
Object Manager 112 to look up the named file and to help it
resolve any symbolic links for the file object. It may also call
the Security Reference Monitor 114 to check that subsystem
102 has the correct access rights to open that file object.
I0081. In exemplary step 3, if the volume (e.g., an area of
stored data) is not yet mounted, the IO Manager may suspend
the open request, calling one or more NT file systems 116
until one of them recognizes the file object as some thing it
has stored on one of the mass storage devices 118 the file
system uses. When the file system has mounted the volume,
the IO Manager may resume the request.
I0082 In exemplary step 4, the IO Manager 110 may allo
cate memory (e.g., a RAM cache) for and initialize an IO
request packet 124 (hereinafter IRP 124) for the open request.
To NT drivers 120, 122, an open request may be equivalent to
a “create” request.
I0083. In exemplary step 5, the IO Manager 110 may call
the file system driver 120, passing it the IRP 124.
I0084. In exemplary step 6, the file system driver 120 may
access its IO stack location 126 in IRP 124 to determine what
operation to carry out, checks parameters, determines if the
requested file is in cache memory, and, if not, set up the next
lower driver's IO Stack location 126 in the IRP 124.
I0085. In an exemplary embodiment, both drivers 120, 122
may process the IRP 124 and complete the requested IO
operation, calling kernel-mode 106 Support routines Supplied
by the IO Manager 110 and by other NT components.
I0086. In exemplary step 7, the drivers 120, 122 may return
the IRP 124 to the IO Manager 110 with the IO status block set
in the IRP 124 to indicate whether the requested operation
succeeded and/or why it failed.
I0087. In exemplary step 8, the IO Manager 110 may get
the IO status from IRP 124, so it can return status information
through the protected Subsystem to the original caller.
I0088. In exemplary step 9, the IO Manager may free the
completed IRP 124.
I0089. In exemplary step 10, the IO Manager may return a
handle for the file object to the subsystem 102 if the open

US 2013/O 1984.74 A1

operation was successful. If there was an error, it may return
appropriate status information to Subsystem 102.
0090. In an exemplary embodiment, after exemplary sub
system 102 successfully opens a file object that represents a
data file, a device, or a Volume, the Subsystem may use the
returned file object handle to request that device for IO opera
tions typically in the form of read, write, or device IO control
requests. These operations may be carried out by calling the
10 System Services 108. The IO Manager 110 may route
these requests as IRPS 124 sent to appropriate NT drivers 120,
122.
0091 Referring to FIG.2, a simplified block diagram of an
NTR operating system architecture during a process of IRP
124 processing is shown, though the present embodiments
may be applied to any other operating system architecture
and/or operating system architecture processing system. In
the exemplary embodiment of FIG. 2, certain support routine
steps corresponding to the above noted Steps of FIG. 1, are set
forth below.
0092. As noted above, in exemplary step 1 an open file
requestis issued. In addition, in exemplary step 1 (as shown in
FIG. 2) in response to an issued read/write request, the IO
Manager 110 may call the file system driver (FSD) 120 with
the IRP 124 it has allocated for the subsystem's read/write
request. The FSD120 may access its IO stack location 126 in
the IRP 124 to determine what operation it should carry out.
In an exemplary embodiment, exemplary steps 2 and 3 may
be carried out as above described.
0.093 Exemplary step 4 comprises a support routine for
allocation of IRP 124. In an exemplary embodiment, FSD120
may sometimes break the originating request into Smaller
requests by calling an IO Support routine, one or more times,
to allocate IRPs 124, which may be returned to the FSD 120,
for example, with Zero-filled IO stack location(s) 126 for
lower-level driver(s). At its discretion, FSD120 may reuse the
original IRP 124, rather than allocating additional IRPs 124
as shown in FIG. 2, by setting up the next-lower driver's IO
allocation 126 in the original IRP 124 and passing it on to
lower drivers.
0094 Exemplary step 5a may comprise a series of support
routines. In an exemplary NT operating system, included, for
example, are Subroutines IoSetCompletionRoutine (e.g., rou
tine that registers an IoCompletion routine, which will be
called when the next-lower-level driver has completed the
requested operation for the given IRP), IoGetNextirpStack
Location (e.g., routine that gives a higher level driver access
to the next-lower driver's I/O stack location in an IRP so the
caller can set it up for the lower driver) and IoCallDriver
(routine that sends an IRP to the driver associated with a
specified device object). Exemplary step 5b may comprise a
series of additional Support routines. These routines may
include IoGetCurrentirpStackLocation (e.g., routine that
returns a pointer to the caller's stack location in the given
IRP), IoMarkIrpPending (e.g., routine that marks the speci
fied IRP. indicating that a driver's dispatch routine subse
quently returned a status pending because further processing
is required by other driver routines), and IoStartPacket (e.g.,
routine that calls the driver's StartIo routine with the given
IRP or inserts the IRP into the device queue associated with
the given device object if the device is already busy).
0095 For example, for each driver-allocated IRP 124, the
FSD120 may call an IO support routine to register an FSD
supplied completion routine so the driver is able to determine
whether a lower driver satisfied the request and free each

Aug. 1, 2013

driver allocated IRP 124 when lower drivers have completed
it. The IO Manager may call the FSD-supplied completion
routine whether each driver-allocated IRP 124 is completed
Successfully, with an error status, or cancelled. A higher-level
NT driver is responsible for freeing any IRP 124 it allocates
and may set up, on its own behalf, for lower-level drivers. The
IO Manager may free the IRPS 124 that it allocates after all
NT drivers have completed them. Next, the FSD120 may call
an IO support routine to access the next lower-level driver's
IO stack location in its FSD-allocated IRP 124 in order to set
up the request for the next-lower driver, which may happen to
be the lowest-level driver in FIG. 2. The FSD 120 may then
call an IO support routine to pass that IRP 124 on to the next
driver.

(0096. When it is called with the IRP 124, the physical
device driver may check its IO stack location to determine
what operation (indicated by the IRPMJXXX 222 function
code) it should carry out on the target device, which may be
represented by the device object in its IO stack location 126
and passed with the IRP 124 to the driver. This driver can
assume that the IO Manager 110 has routed the IRP 124 to an
entry point that the driver defined for the IRP-MJXXX 222
operation (here, for example, IRP MJ READ or IRP MJ
WRITE) and that the higher-level driver has checked the
validity of other parameters for the request.
0097. If there were no higher-level driver(s), such a device
driver may then check whether the input parameters for an
IRP MJ XXX 222 operation are valid. If they are, a device
driver 122 may usually call IO support routines to tell the IO
Manager that a device operation is pending on the IRP 124
and to either queue or pass the IRP 124 on to another driver
Supplied routine that accesses the target device in the form of
a physical or logical device such as a disk or a partition on a
disk. In addition to the major code IRPMJXXX 222, minor
code IRP MN XXX 224, arguments 226, PtrDeviceObject
(e.g., pointer to the device object) 228, and PtrFileObject
(e.g., pointer to the file object) 230 may be provided in the IO
stack location 126 of a given IRP 124.
0.098 Exemplary step 6 may comprise a series of support
routines for starting operation on a device and return. Here,
for example, the IO Manager 110 may determine whether the
device driver is already busy processing another IRP 124 for
an exemplary target device, queues the IRP 124 if it is, and
returns. Otherwise, for example, the IO Manager 110 may
route the IRP 124 to a driver-supplied routine that starts the IO
operation on its device.
0099 Exemplary step 7a may comprise a series of support
routines for a service interrupt. In an exemplary embodiment,
when the device interrupts, in an exemplary embodiment the
driver's interrupt service routine (ISR) does only as much
work as is necessary to stop the device from interrupting and
to save necessary context about the operation. The ISR may
then call an IO support routine with the IRP 124 to queue a
driver-supplied DPC routine to complete the requested opera
tion at a lower hardware priority than the ISR.
0100 Exemplary step 7b may comprise a series of support
routines for completing an interrupt-driven IO operation. For
example, when the driver's DPC gets control, it may use the
context as passed in the ISRs call to IoRequestDpc to com
plete the IO operation. The DPC may call a support routine to
dequeue the next IRP 124 when present and to pass that IRP
124 on to the driver-supplied routine that starts IO operations
on the device. The DPC may then set status about the just

US 2013/O 1984.74 A1

completed operation in the IRPs IO status block and return it
to the IO Manager 110 with IoCompleteRequest.
0101 Exemplary step 7b may comprise a series of support
routines for calling a file system with a completed (FSD
allocated) IRP. For example, in an exemplary embodiment the
IO Manager 110 may Zero the lowest-level driver's IO stack
location in the IRP 124 and call the file systems registered
completion routine with the FSD-allocated IRP 124. This
completion routine may check the IO status block to deter
mine whether to retry the request or to update any internal
state maintained about the original request and to free its
driver-allocated IRP 124. The file system may often collect
status information for all driver-allocated IRPs 124 it sends to
lower-level drivers in order to set IO status and complete the
original IRP 124. In an exemplary embodiment, when it has
completed the original IRP 124, the IO Manager 110 may
return NT status, the subsystems (102) native function, to the
original requestor of the IO operation.
0102. In an exemplary embodiment, FIG. 2 also may
include (as shown) two exemplary IO stack locations 126 in
the original IRP 124 because it may include two NT drivers,
a file system driver 120 and a mass-storage device driver 122.
The IO Manager 110 may give each driver 120, 122 in a chain
of layered NT drivers an IO stack 126 location of its own in
every IRP 124that it sets up. The driver-allocated IRPs 124 do
not necessarily have a stack location 126 for the FSD120 that
created them. Any higher-level driver that allocates IRPs 124
for lower-level drivers may also determine how many IO
stack locations 126 the new IRPs 124 should have, according,
for example, to the StackSize value of the next-lower driver's
device object.
0103) In an exemplary embodiment, an NT file system
driver 120 accesses the file object through its IO stack loca
tion 126 in IRPs 124. Other NT drivers may usually ignore the
file object.
0104. The set of IRP 124 major and minor function codes
that a particular NT driver handles may sometimes be device
type-specific. However, NT device and intermediate drivers
may usually handle the following set of basic requests: IRP
MJCREATE opens the target device object, indicating that
it is present and available for IO operations: IRPMJ READ
transfers data from the device: IRP MJ WRITE transfers
data to the device: IRPMJ DEVICE CONTROL sets up or
resets the device according to a system-defined, device, spe
cific IO control code; and IRPMJCLOSE—about closing the
target device object.
0105. In general, the IO Manager 110 may send IRPs 124
with at least two IO stack locations 126 to device drivers of
mass-storage devices 122 because an NT file system may be
layered over NT drivers for mass-storage devices 118. The IO
Manager 110 may send IRPs 124 with a single stack location
to any physical device driver that has no driver layered above
it.

0106 Referring to FIG. 3, a block diagram of an exem
plary operating system is shown, which may be any type of
operating system, including without limitation the above
noted embodiments.

0107 The block diagram presents a simplified view of
operating system functionality according to certain embodi
ments of the present invention. An exemplary application
layer 302 for Supporting application execution may commu
nicate with an exemplary input/output layer 306 of the com

Aug. 1, 2013

puter. The exemplary input/output layer 306 may include an
exemplary display 308 and an exemplary file system layer
31 O.
0108. The exemplary application layer 302 may commu
nicate with exemplary file system layer 310 for performing
read operations and write operations with storage media.
Disposed between the application layer and the file system
layer may be a trap layer 304, which may also be referred to
as a filter layer.
0109. In an exemplary embodiment, each file system
access request that is transmitted from the application layer
302 to the file system layer 310 may be intercepted by the trap
layer 304. In the trap layer 304, restrictions relating to access
privileges may be implemented.
0110. For example, in an exemplary embodiment, some
requests are blocked and error messages may be returned to
the application layer 302. Other requests may be modified and
the modified requests may be passed onto the file system 310.
0111. When a data store is read only, for example, a
request to open a file for read-write access may be modified to
an open file for read-only access; a request to delete a file may
be blocked, and an error message may be returned.
0112. In an exemplary embodiment, the use of exemplary
trap layer 304 may be applicable when the certain embodi
ments are implemented within an existing operating system
such as Windows NTR). In alternative embodiments, for
example an operating system Supporting restricted write
access may be designed and restrictions relating to access
privileges may be implemented within the file system layer
31 O.
0113 Referring to FIG. 4, a simplified block diagram of
opening a file within Windows NTR) according to certain
embodiments of the present invention is shown, though the
concepts provided in the figure may be applied to any oper
ating systems or related environments, and are in no way
limited thereto.
0114. In an exemplary embodiment, the diagram may be
based on the diagram of FIG.1. For example, in an exemplary
embodiment, an exemplary trap layer filter 402 (illustrated by
a thick black line) may include any of the features and func
tions above described in relation thereto, including prevent
ing one or more file system operations from passing from an
exemplary application layer 302 to an exemplary file system
layer 310.
0115 Accordingly, in an exemplary embodiment a data
store device, Such as mass-storage device 118 for example,
may operate as a read/write device with a single device driver.
The trap layer 304 may prevent write operations or, alterna
tively, other predetermined operations from being performed
on a specific data store. The trap layer 304 may achieve this,
for example, by blocking some requests and by modifying
other requests. In this way, some operations may be prevented
without requiring modifications to existing applications.
Thus, in an exemplary embodiment one data store may be
read only while another is read/write. Unlike certain known
implementations, an application requesting a write operation
to a data store that is read-only, may receive an accurate and
appropriate error message. In an exemplary embodiment,
there is no data lost by the device driver and, in fact, the device
driver may be freed of the trouble of dealing with file system
commands which cannot be completed.
0116. Also, the use of the trap layer 304 may allow for
implementation of more complicated file access privileges
based on data stored within each individual storage medium.

US 2013/O 1984.74 A1

For example, a storage medium may indicate read-write
access but may not Support delete operations. Device drivers
may perform low level commands such as read and write. For
delete, for example, which is a write operation, the device
driver may perform write operations to obfuscate or overwrite
a file. As is evident, the device driver may support delete
operations, as do any read/write data store, for example. How
ever, by indicating to the trap layer 304 that delete operations
are not supported, for example, all delete requests passed
from the application layer 302 for the specific data store may
be intercepted by the trap layer 304 and an error message may
be returned to the application layer 302. Here, for example, no
delete operation for a file is passed to the file system layer 310
and therefore, the device driver does not perform the write
operations for obfuscating or overwriting the file because
none has been received. It is evident that preventing file
deletion may be advantageous for protecting archived data
and data histories.

0117. Another operation which may be advantageously
restricted is overwriting of files. When a request is made to
overwrite a file, typically the data within the file may be
overwritten. Overwriting of file data may be a simple work
around to perform a file delete when that operation is blocked.
Alternatively in some devices, the data to overwrite may be
written to an unused portion of a storage medium and an
address of the file data within a file allocation table may be
changed accordingly. The storage locations of the old file data
may then be considered free. Preventing data overwrite may
be performed according to certain embodiments of the
present invention by modifying requests or blocking requests
as necessary. Further, by trapping requests to overwrite file
data according to certain embodiments of the present inven
tion, a user friendly error message may be possible.
0118. According to an exemplary embodiment, when an
application provides a request to overwrite a file, an error
message indicating that overwrite is not permitted and that a
file name is needed to save the data, may be provided. The trap
layer 304, upon receiving the file name from the error mes
sage, may modify the request in accordance therewith and in
accordance with permitted operations, and may pass the
modified request to the file system layer 310. Accordingly,
data integrity may be preserved with minimal inconvenience
to users of the system.
0119. It may also be useful to restrict access to file access
permissions. Permissions may be global across a storage
medium and altering of the permissions may not be desirable.
Still, many operating systems provide for file and storage
medium related access privileges. These may be modifiable,
for example, at any time. Since privileges are generally static,
there are advantages to setting up privileges for a storage
medium Such that during normal operation and with normal
file system operations, the privileges may be static. Prefer
ably, there may be at least a way to modify the global privi
leges in case it is desirable to do so. Preventing alteration of
privileges may prevent, for example, individuals having
access to files from modifying access privileges in any way.
0120 In an exemplary embodiment, another operation
that is usefully restricted is overwriting of Zero length files.
Some operations within Some applications may create a Zero
length file and then overwrite it, thus preventing overwriting
of Zero length files may directly affect those applications. An
example of such an application and operation is the “save as
command in Microsoft Word R. Thus, preventing overwriting

Aug. 1, 2013

of Zero length files may effectively prevent “save as from
functioning on the associated medium.
I0121 Similarly, renaming a file may be useful for obfus
cating data. Preventing renaming of files may prevent hiding
existing files or making them more difficult to locate. For
example, changing a clients information file name from "Cli
ent 101 Information” to “To Do Feb. 18 may make the file
hard to locate. Thus, rename is an operation that may be
desirable to restrict. Reasons for restricting the other listed
operations are evident. Further, restricting other operations
may also be advantageous and the present application may
not be limited to these operations.
0.122 Above mentioned operations which are advanta
geously restricted may include overwriting files, changing
file access permissions and medium access privileges, renam
ing files, formatting a medium and the like. For example, a
medium that does not allow any of the above mentioned
operations may provide a complete archival history of the
medium's content and prevents alteration or deletion of the
data. Such a medium may be very useful forbacking up office
files or electronic mail.
I0123 Referring to FIG. 5, a flow diagram of an exemplary
method of storing data in a storage medium, in accordance
with certain embodiments, for forming part of a system Such
as that of FIG. 3 is shown. An application in execution on the
system may seek to store a data file on a storage medium
within the file system layer 310 of the system. in exemplary
step 502, a request and data for storage within the file may be
transmitted from the application layer 302 to the file system
layer 310. The request may include an operation and data
relating to a destination storage medium on which to store the
data. In exemplary step 504, the trap layer 304 may intercept
the request and the data and determine whether the storage
medium selected Supports the operation.
0.124. In exemplary step 506, when the storage medium
Supports the operation, for example, in step 512 the request
and the data may be passed on to the file system layer 310.
When necessary, the request may be modified (exemplary
steps 508, 514) prior to provision to the file system layer 310
(exemplary step 512). In the file system layer 310, the opera
tion may be conducted according to normal file system layer
310 procedures (exemplary step 512). If in step 506 the stor
age medium does not support the operation in its original or a
modified form (exemplary steps 508, 514), the trap layer 304
may return an indication of this to the application layer 302
(exemplary step 510). The operation and the data may not be
passed onto the file system layer 310. This may provide
additional access privilege functionality.
0.125 Referring to FIG. 6, a simplified flow diagram of an
exemplary method of providing Software settable access
privileges within Windows NTR) is shown. In exemplary step
602, a storage medium is mounted within a computer system.
In exemplary step 604, the storage medium may have stored
thereon data relating to access privileges for the storage
medium. In exemplary step 606, upon mounting the storage
medium, data relating to, for example, physical limitations of
the read/write device may be loaded into the device driver for
that device within the file system layer 310. The limitations
are recognized by the system Software. In exemplary step
608, upon mounting the storage medium, the data relating to
access privileges for the storage medium may be loaded into
the trap layer 304. The trap layer 304 may limit operations
performed on the storage medium to those Supported by the
read/write device by limiting the requests passed onto the file

US 2013/O 1984.74 A1

system layer 310 or, when the trap layer 304 forms part of the
file system layer 310, by filtering and/or modifying the
requests. The data relating to access privileges for the storage
medium may be used to limit those requests provided to the
file system layer 310. In exemplary step 610, the methods of
FIG.5 may be repeated.
0126 When the storage medium is a data store for
archiving purposes, there are evident advantages to treating
the storage medium as a read-only storage medium. For
example, once the data store is full, setting it to read-only
allows its use without risking tampering or accidental modi
fication. Therefore, media specific access privileges are
advantageous.
0127. Referring to FIG. 7, a simplified block diagram of
exemplary embodiment of the present invention wherein the
file system layer 310 includes means for performing the func
tions of the trap layer is shown. Such an embodiment, oper
ates in a similar fashion to those described above. The file
system receives all file access requests and compares them to
those that are not permitted. When an access command is not
permitted on an indicated storage medium, an error message
may be returned to the application layer 302. When an access
command is permitted, it may be performed on the appropri
ate storage medium. The access command may be that
requested or, alternatively, a modified form of the requested
command resulting in a Supported operation.
0128. The term logical storage medium is used herein and
in the claim that follow to designate either a physical storage
medium or a portion of physical storage medium that is
treated by the operating system as a separate storage medium.
Thus, a partitioned hard disk with two partitions consists of
one physical storage medium and two logical storage media.
0129. According to an exemplary embodiment, a trap
layer may be provided, which may intercept requests, and
then may do something with the request. For example, in an
exemplary embodiment, if the request is deemed permissible,
it may be allowed. On the other hand, if the request is deemed
not allowed, then the request may be denied. According to
another exemplary embodiment, in the event that the request
is not allowed, if possible, it may be modified and then per
haps allowed in an exemplary embodiment, as modified. In an
exemplary embodiment, the trap layer may be set to intercept
requests based on a predefined policy or setting.
0130. According to an exemplary embodiment, the trap
layer may be a transparent trap layer. In an exemplary
embodiment, the trap layer may intercept requests transpar
ently to the user. In another exemplary embodiment, the trap
layer may intercept requests transparently to a computer
application invoking the requests. According to another
exemplary embodiment, the trap layer may intercept requests
based on a predefined policy and/or setting.
0131. According to another exemplary embodiment, the
computing environment may be any of various well known
computing environments. For example, the computing envi
ronment may include a WINDOWS(R) environment, in an
exemplary embodiment. In another exemplary embodiment,
the computing environment may include, e.g., but not limited
to, any computer operating environment including, e.g., but
not limited to, a real file system environment, an advanced file
system, an HPFS file system, an NTFS file system, a UNIX
file system, a Solaris file system, an Apple file system, an AIX
file system, an extended file system on Unix, etc.
0132 A file lifecycle may include an entire existence of a

file from the moment of creation through transitions such as

Aug. 1, 2013

moves, renames, retention, preservation or archiving, etc., up
until destruction. File operations may include, e.g., but not be
limited to, creating; storing; moving; protecting; preserving;
archiving; retaining logically or physically, in for example
write-once-read-many (WORM) form; deleting; overwriting:
replicating; preventing the creation of a particular type of file
(for example, an MP3 file) in, for example, a directory; etc.
0.133 According to an exemplary embodiment, the trap
layer may extend the whole concept of data protection and
data preservation into the logical space rather than the tradi
tional physical space. In an exemplary embodiment, the trap
layer may ensure that information that is needed will remain
accessible throughout its existence. The traditional concepts
of archiving and preserving information based on the use of
physical WORMWrite-Once-Read-Many devices and media
realistically is unreasonable. Technology continues to change
and given the continuous evolution, it is impractical to
assume that the same old hardware 50 years in the future will
be able to be connected to newer operating systems and newer
servers and that data will remain accessible. In reality, hard
ware will become obsolete and that in no way minimizes the
need to preserve valuable information. In real life, each day
valuable information and property Such as wallets, keys, cell
phones and PDAs is moved. The fact remains that people may
continue to carry valuable information and/or property as
long as the information and/or property is needed. The fact
that people carry wallets does not dictate that people will
continue to use the same wallets forever, or that people will
maintain the same contents. What may be true is that as long
as the specific contents of a wallet are important, the contents
will be maintained and transferred to newer wallets.
I0134. A concept of data preservation and protection in
exemplary embodiments revolve around providing the pro
tection independent of the physical storage enabling the infra
structure to evolve while preserving and securing the data.
According to an exemplary embodiment, a logical WORM
may be created that may allow the user to utilize the storage
resources of choice, for example, a spinning disk, to achieve
and meet compliance and legislated data preservation and
retention obligations on any storage technology that meets
the business needs and requirements.
0.135 According to an exemplary embodiment, the trap
layer may enforce various policies. According to a first exem
plary embodiment, the creation of a new file may be allowed.
The file may be created in an unrestricted mode, allowing any
and all aspects of the file to be modified Such as size, name,
data attributes and times. Once the file is closed the trap layer
may automatically enforce the restrictions. In other words,
the trap layer may allow Create. In the exemplary embodi
ment, the trap layer may use the privilege to allow the file to
be created. At this point the file may be opened in a read/write
mode allowing all other operations to be allowed. According
to the exemplary embodiment, once the file is closed, the next
operation may be to open an existing file and not a creation
operation. In the exemplary embodiment, at this point the trap
layer may evaluate the operation against the other access
privileges, such as, e.g., but not limited to, overwrite, append,
change attributes, change permissions, overwrite Zero length.
If the operation is not allowed the trap layer may simply deny
it

0.136. According to a second exemplary embodiment, the
creation of a new file may be permitted. The file may be
created in an unrestricted mode, allowing any and/or all
aspects of the file to be modified such as size, name, data

US 2013/O 1984.74 A1

attributes and times. Once the file is closed, in an exemplary
embodiment the restrictions may be automatically enforced
unconditionally, rendering the file effectively archived upon
close operation.
0.137 According to a third exemplary embodiment, the
creation of a new file may be permitted. Here, the file may be
created in an unrestricted mode, allowing any and all aspects
of the file to be modified, such as size, name, data attributes
and times. The file may remain in an unrestricted mode until
an predefined event occurs, upon which the restrictions are
changed to deny modifications and in an exemplary embodi
ment, allow only read operations. According to an exemplary
embodiment, this may be implemented by opening a file. In
an exemplary embodiment, then a change. Such as changing
the file attribute to read-only, may trigger the change in the
access privilege. The actual evaluation of the access privilege
may be evaluated on the file open operation. In an exemplary
embodiment, the intentions of the user and/or application
may have to be declared at the time of the open operation.
0.138. The open file intentions may include whether the file

is opened for read-only or for read-write or opened to change
attributes or opened for changing permissions, or opened for
append or opened for changing file times (creation, last modi
fication or last access times) or opened for rename or opened
for move operations.
0.139. The open operation may be a part of the access
privilege evaluation process.
0140. According to an exemplary embodiment, the trap
layer may enforce policies and/or restrictions on a file based
on the content of the file. In an exemplary embodiment, the
content of the file may determine if the file is eligible to be
created. According to an exemplary embodiment, content
based policies and/or restrictions may apply to the actual file
contents, the file name and the file attributes. In an exemplary
embodiment, specific content may make a file eligible to be
created. According to an exemplary embodiment, specific
content may make a file ineligible to be created.
0141 According to an exemplary embodiment, the trap
layer may associate a file with a content group based on the
content of the file. In an exemplary embodiment, the trap
layer may determine if a file is eligible to be created based on
the content group of the file. In an exemplary embodiment,
predefined content, such as, e.g., but not limited to strings or
specific byte sequences may determine ifa file is a member of
a specific content group.
0142. According to an exemplary embodiment, evaluation
of the content of a file may only be possible once a file is
closed and the contents of the file created. In an exemplary
embodiment, once a file is closed and the content of the file
created, the trap layer may enumerate the file contents, and
determine the content group of the file. According to an
exemplary embodiment, ifa created file is determined to have
been ineligible to be created. Such as, e.g., but not limited to,
the file violates a file creation policy, the trap layer may
automatically delete the file. In an exemplary embodiment,
instead of deleting ineligible files, the trap layer may trigger
other actions, such as, e.g., but not limited to, moving the file
to an alternate location.
0143 According to an exemplary embodiment, the trap
layer may determine if any number of operations are eligible
to be executed on a file based on the content of the file. In an
exemplary embodiment, the trap layer may prevent files con
taining data such as, e.g., but not limited, social security
numbers, credit cards and/or other private personal informa

Aug. 1, 2013

tion, from being deleted, accessed or copied. According to an
exemplary embodiment, the trap layer may determine if a file
is harmful based on the content of a file. In an exemplary
embodiment, the trap layer may determine if the file is a
computer virus, malware, adware, spyware, computer worm,
etc. According to an exemplary embodiment, a content group
may comprise types of harmful and/or malicious files. In an
exemplary embodiment, the trap layer may prevent harmful
files from being created. According to an exemplary embodi
ment, the trap layer may allow a harmful file to be created to
evaluate the contents of the file, and then delete the file if the
file is determined to be harmful.
0144. According to an exemplary embodiment, the trap
layer may enforce policies and restrictions based on the
attributes of the file. In an exemplary embodiment, the
attributes of a file may determine whether the file is eligible to
be created or not. According to an exemplary embodiment,
policies and/or restrictions may apply to the actual file name
and file attributes. Example policies and/or restrictions
include: (i) determining if the file has a specific attribute, such
as a file name that would make the file be eligible to be
created; and/or (ii) determining if the file has a specific
attribute, such as a file name, which would exclude the file
from being created.
0145. In an exemplary embodiment, the trap layer may
enforce policies and/or restrictions based on associating a file
with a file group, such as, e.g., but not limited to, predefined
naming conventions and masks Such as strings or wildcard
sequence that would determine whether a file is a member of
a specific file group or not. According to an exemplary
embodiment, the trap layer may determine if any number of
operations are eligible to be executed on a file based on the file
attributes of the file. According to an exemplary embodiment,
the trap layer may determine if a file is eligible to be created
based on the file group associated with the file. In an exem
plary embodiment, if the file group is allowed then the file
may be created. If some of the evaluation of the eligibility of
the file creation can only be determined upon completion of
the file creation operation, the trap layer may automatically
enumerate the file name and other applicable attributes, deter
mine file group association after completion of the file cre
ation operation, and trigger other actions if necessary, such as,
e.g., but not limited to, automatically deleting or moving the
file.
0146 According to an exemplary embodiment, the poli
cies for access privilege may also enforce retention enforcing
restrictions that prohibit modifications on retained files. In an
exemplary embodiment, these restrictions may encompass
prohibiting all modifications or in Some cases, allowing some
operations that do not affect the integrity of the user data.
According to an exemplary embodiment, the trap layer may
allow file security permissions to be modified for retained
files since file security permissions only affect who can access
the file and do not change the contents of the file.
0147 According to an exemplary embodiment, retained
files may have certain restrictions that cannot be changed
Such as rename, move, overwrite, overwrite Zero length and
delete that will always be denied on a retained file.
0.148. According to an exemplary embodiment, retention
restrictions may apply to the actual file contents and may
apply to the file name, attributes and file path as well. In an
exemplary embodiment, once a file is retained, the file should
remain in the same path. According to an exemplary embodi
ment, allowing a retained file to be renamed or moved to

US 2013/O 1984.74 A1

another directory, or even allowing a directory in the path of
the retained file to be moved or renamed, will in essence
render the file inaccessible by any referencing application or
database.
0149 According to an exemplary embodiment, retained

files may be assigned an expiry time that may be derived
and/or derived from adding a time period to the last modifi
cation date and time of the file.
0150. According to an exemplary embodiment, a file may
be retained for ever and have no expiry time assigned. The
expiry time for a file may be extended. According to an
exemplary embodiment, a file may be retained for an indefi
nite time period allowing an expiry time to be assigned in the
future.
0151. According to an exemplary embodiment, once a file

is retained its contents “user data” may never be modifiable.
An expired file may be either deleted or have the expiry time
extended.
0152. According to an exemplary embodiment, retention
expiry time may be assigned directly by the user using private
IOCTLS or an application. According to an exemplary
embodiment, retention expiry may be derived by setting the
last access time and then triggering the file to be in a retained
State.

0153. According to an exemplary embodiment, the reten
tion trigger may be an event such as changing the state of the
read-only attribute, but is not limited to only changing this
specific attribute. According to an exemplary embodiment,
the retention trigger may be a rename operation. In an exem
plary embodiment, an attempt to rename a file to a certain file
name identified in the policy may trigger the file to become
retained. According to an exemplary embodiment, if the
retention is enforced by setting the read-only attribute, then
the attribute may be set. In another embodiment, the retention
may be set by other means such as creating an extended
attribute or an alternate data stream.
0154 An example of why such an operation may be
important is that under certain file sharing protocols and
applications there may be no clear mapping of the read-only
file attribute into other operating systems such as MacOS,
UNIX and LINUX. Setting the read-only attribute in win
dows may be mapped to the UNIX user be a chimod operation
rendering a file practically read-only such as 555 or “r-Xr-Xr
X'. The problem may get compounded when the user attempts
to set the read-only attribute on a file that resides on Windows
OS from UNIX or LINX or MacOS. According to an exem
plary embodiment, the user can perform Such an operation by
using the chmod operation to set the file permissions to 555.
In an exemplary embodiment, under certain circumstances
the behavior of setting the read-only attribute from Windows
may be mapped by Windows services for UNIX to reflect that
the file has 555 permissions. According to an exemplary
embodiment, the mapping may prevent using the read-only
attribute to trigger retention from a client running a variant of
UNIX or one were the read-only attribute is not natively
defined.
0155. In an exemplary embodiment, a trigger may detect
an attempt to change another file attribute, such as, e.g., but
not limited to, file name, would be the actual trigger. Accord
ing to an exemplary embodiment, the attempt to change
another file attribute may not actually change the file attribute.
In an exemplary embodiment, for example, e.g., a rule could
be defined that any attempt to rename a file to “KOM RE
TAINED would be the trigger to retain the file and would not

Aug. 1, 2013

result in the file actually getting renamed. According to an
exemplary embodiment, a policy may be defined where files
that are renamed to a certain naming convention would be
retained. In an exemplary embodiment, another exemplary
retention trigger may be an operation to change the file size to
O-ZO.

0156 According to an exemplary embodiment, the user
can define a number of triggers including the permissions or
who the owner of the file is. In an exemplary embodiment, the
retention policy can include exclusion rules that would
exclude files that meet that criteria from being retained. These
rules may include such parameters as data identifiers like
path, name, mask, extension, size, attribute, permissions, file
creation time and file modification time. According to an
exemplary embodiment, the retention policy may include
inclusion rules that would include files that meet that criteria
to be retained. These rules include Such parameters as data
identifiers like path, name, mask, extension, size, attribute,
permissions, file creation time and file modification time.
0157 According to an exemplary embodiment, in the last
access time may be used to set the file retention expiry. In an
exemplary embodiment, if the last access time is Zero then the
file may be retained for ever and it will never expire. The
user/application may not be able to change the last access
time. According to an exemplary embodiment, if the last
access time is equal to the last file modification time then the
file may be retained indefinitely until it is set to have an expiry
time. To set the expiry time on a file that is retained indefi
nitely, the last access time may be modified to a date and time
that is greater than the last modification time. Once the expiry
time is reached then the file may be expired and may be
deleted. In another exemplary embodiment, if the last access
time is set to a value greater than the last modification date,
then the last access time may be used as the expiry time of the
retention.
0158. According to an exemplary embodiment, an inde
pendent file expiry time may be used to set the file retention
expiry. In an exemplary embodiment, if the expiry time is set
to 0xFFFFFFFFFFFFF then the file may be retained for ever
and may will never expire. The user/application may not be
able to change the expiry time. According to an exemplary
embodiment, if the expiry time is equal to 00:00:00 Thurs.
Jan. 1, 1970, or some other pre-defined time, then the file may
be retained indefinitely. A file that is retained indefinitely may
be assigned an expiry time. Assigning an expiry time may be
the only way to expire an indefinitely retained file.
0159. According to an exemplary embodiment, an indefi
nitely retained file may be expired in a number of ways. In an
exemplary embodiment, to set the expiry time on a file that is
retained indefinitely, the expiry may modified to a date and
time that is greater than Zero or its equivalent, which may be
00:00:00 Thurs. Jan. 1, 1970. Once the expiry time is reached
then the file may be expired and may be deleted or the expiry
time may be extended. According to another exemplary
embodiment, the expiry time may be set to the current time,
meaning that the file will be rendered expired as of the current
time, literally rendering the file expired. If the retention
expiry time is set to a value greater than Zero or its equivalent
00:00:00 Thurs. Jan. 1, 1970 then that may be used as the
expiry time of the retention.
0160 According to an exemplary embodiment, the trap
layer may initiate and trigger other background operations
when a file is retained or when a specific trigger is triggered.
In an exemplary embodiment, these actions may include an

US 2013/O 1984.74 A1

archive policy. Such as, e.g., but not limited to, queuing the file
to create additional copies on an alternate media. In an exem
plary embodiment, the trap layer retention policy may use an
attempt to access a file to trigger the evaluation of other
policies, such as an archive policy. According to an exemplary
embodiment, if additional triggered actions such as the
archive policy are defined, then the file information may be
put on a queue to allow other processes to determine what to
do with the file. In an exemplary embodiment, in the case of
the archive policy, the trap layer may evaluate the archive
policy against the file information and determine whether
additional copies of the file should be created.
0161 According to an exemplary embodiment, the reten
tion policy expiry may be suspended indefinitely in the event
of litigation to prevent valuable files directories and docu
ments from being accidentally destroyed while the litigation
is still ongoing. According to an exemplary embodiment, the
Suspension may be a legal hold. In an exemplary embodi
ment, the legal hold may prohibit and/or inhibit the deletion of
files even if their retention period is expired.
0162 According to an exemplary embodiment, the trap
layer may use a file attribute. Such as, e.g., but not limited to,
the Temporary Attribute to denote the legal hold status of a
retained file. In an exemplary embodiment, a retained file may
be put on legal hold by setting the Temporary Attribute on the
target file. According to an exemplary embodiment, the legal
hold may prevent the file from being eligible for deletion by
preventing the clearing of the read-only attribute until the
Temporary Attribute is cleared first. In an exemplary embodi
ment, the legal hold may suspend the processing of the reten
tion expiry, meaning that a file whose retention is expired
cannot have the read-only attribute cleared until the legal hold
is removed, which may require clearing the temporary
attribute first.
0163 According to an exemplary embodiment, the basic
concept of the legal hold may expand the retention policy to
incorporate restrictions as to prohibit or inhibit the changing
of the retention state of a file if there is another attribute or
state already set. In an exemplary embodiment, the trap layer
may prohibit changing the read-only attribute of a file in the
event the temporary attribute is set. In other words, the trap
layer may not clear or set the read-only attribute if the tem
porary attribute is set.
0164. According to the exemplary embodiment, a file that

is not retained may not get retained if the legal hold state
applies. In an exemplary embodiment, if the temporary
attribute is set and the read-only attribute is not set, then there
may be no way that the read-only attribute can get set unless
the temporary attribute is cleared first. According to an exem
plary embodiment, the legal hold may prohibit a file from
becoming retained no matter what other triggers are defined.
0.165 According to an exemplary embodiment, a file that

is in the retained State may not become un-retained if the legal
hold state applies. In an exemplary embodiment, if the tem
porary attribute is set and the read-only attribute is set, then
there may be no way that the read-only attribute can be
cleared unless the temporary attribute is first cleared. Accord
ing to an exemplary embodiment, the legal hold may prohibit
the retained file from becoming unretained no matter what
other triggers are defined.
0166 According to an exemplary embodiment, the legal
hold may not have any effect on a file that is retained forever
since the retention policy will never allow the file to become
eligible for deletion.

Aug. 1, 2013

0.167 According to an exemplary embodiment, a file that
is retained for a fixed period and has an explicit expiry date
may not expire even if the retention expiration date and time
is reached as long as the legal holds state is set. Once the legal
hold is cleared, then the file expiration may be processed. If
the retention period offile has expired, the file may be deleted.
0168 According to an exemplary embodiment, a file that

is retained indefinitely, i.e., does not have an explicit file
expiration defined, may not have an expiry date assigned if
the legal hold applies. Once the legal hold is cleared the file
retention may be modified and a file expiration assigned.
0169. According to an exemplary embodiment, when a file
legal hold is triggered the trap layer may perform additional
processes to create metadata for the legal hold state. In an
exemplary embodiment, operations may include any one of
(i) identifying the retention state and determining whether the
file can be set on legal hold or not (if the file is retained forever
then the attempt to set legal hold may be failed, otherwise set
the legal hold if the file is already retained); (ii) identifying
and/or storing who put the file on legal hold (identifying
and/or storing the user ID of the user or application that
triggered the file be put on legal hold); (iii) identifying and/or
storing when the file was put on legal hold; (iv) creating one
or more alternate data streams or extended attributes to store
the legal hold information about the retained file; and/or (v)
encrypting and/or creating hash keys for additional file legal
hold information stored with the retained file.
0170 According to an exemplary embodiment, when a file
legal hold is cleared, the trap layer may perform additional
processes to update the metadata for the legal hold state. In an
exemplary embodiment, the operations may include any one
of: (i) identifying the retention state and determining whether
the file legal hold state is being cleared or not (if the file was
is not retained there may be no additional book keeping
required to be updated, otherwise the legal hold state may
need to be cleared and file associated metadata updated); (ii)
identifying and/or storing who cleared the file legal hold
(identifying and/or storing the user ID of the user or applica
tion that triggered the file to be removed from legal hold); (iii)
identifying and/or storing when the legal hold was cleared;
(iv) updating one or more alternate data streams or extended
attributes storing the legal hold information about the retained
file; and/or (V) encrypting and/or creating hash keys for addi
tional file legal hold information stored with the retained file.
0171 According to an exemplary embodiment, the access
privilege policy may be extended to control the type of file
that may be created using a data identifier and other qualifiers
to prohibit the creation of certain types of files or allow them.
The qualifiers include file mask, file name, file extension,
owner and path. This ability is referred to as file screening
where the administrator can define policies that would pro
hibit personal files such as mp3 and mpg files from being
stored on corporate storage resources.
0172 According to an exemplary embodiment, it is con
ceivable with the availability of access to the sources of open
operating systems and file systems to add the trap layer
directly into the file system layer to enforce the protection and
retention of files.
0173 According to an exemplary embodiment, retaining a
file may involve a number of background functions. In an
exemplary embodiment, when retention of a file is triggered,
an internal process may perform additional work to create the
metadata for the retention. According to an exemplary
embodiment, additional work may include, any one of: (i)

US 2013/O 1984.74 A1

identifying and/or storing who retained the file, for example,
e.g., the user ID of the user or application that triggered the
retention of the file; (ii) identifying and/or storing when the
file was retained; (iii) identifying the applicable retention
policy triggering the retention of the file; (iv) determining
what the retention expiry should be set to: (v) setting the
retention expiry (e.g., setting the value of the file last access
date); (vi) generating a digital signature of the file contents,
Such as, e.g., a SHA hash key (according to an exemplary
embodiment, the hash may not be limited to the default data
stream associated with the file, but may also extend to alter
nate data streams of the file); (vii) determining whether there
are any other policies that apply, such as, e.g., an archive that
would queue and create additional copies of the file on alter
nate storage resources; (viii) creating a number of alternate
data streams or extended attributes to store additional infor
mation about the file; and (ix) encrypting and/or creatinghash
keys for additional file information stored with the file.
0.174. According to an exemplary embodiment, the trap
layer may intercept an attempted operation and engage
another component or action. In an exemplary embodiment,
the trap layer may engage another component or action to
request validation for the attempted operation to determine if
the attempted operation may be allowed. In an exemplary
embodiment, the trap layer may do the same for a request.
According to an exemplary embodiment, when the file con
tents of a file matches particular contents, the trap layer may
send a message or communicate with another layer or com
ponent to determine what the trap layer should do. In an
exemplary embodiment, the trap layer may simply notify
another layer or component and the other layer or component
may make an appropriate decision. According to an exem
plary embodiment, the decision of the other layer or compo
nent may also be based on a policy or threat level.
0.175. According to an exemplary embodiment, the trap
layer may validate the contents of a file and/or compare the
digital signature whenever a file is opened to determine if the
file may be opened. In an exemplary embodiment, the trap
layer may evaluate the expiry or retention expiry of a file to
determine if access to the file may be allowed. According to
an exemplary embodiment, the trap layer may extend the
expiration concept to rights management, and may reject file
access to a file once the file has expired. In another embodi
ment, the trap layer may use a policy where the contents of
metadata of a file, or some other source, may determine
appropriate action.
0176 According to an exemplary embodiment, the trap
layer may store the file protection policies with the actual file
in accordance with any of the following: (a) the policy may be
stored as an alternate data stream; (b) the policy may be stored
as an extended attribute; and/or (c) the policy may be stored as
private reparse data. The trap layer may have policies to
manage directory operations such as any of the following: (a)
create Sub-directory, rename Sub-directory, move Sub-direc
tory out, move sub-directory in, delete sub-directory; (b) cre
ate file, rename file, move file in, move file out, rename file,
delete file, change file attributes, change file permissions,
read file; or (c) browse directory—the feature prohibits appli
cations and users that do not know the actual names of the files
and sub-directories from being able to browse the contents of
the managed logical storage medium. According to an exem
plary embodiment, the trap layer may enable users to enforce
privacy requirements by limiting access to contents to pro
cesses that know exactly the name and path of the files they

Aug. 1, 2013

are trying to access. In an exemplary embodiment, any
attempt to browse the contents in an application like Windows
explorer may fail regardless of the user and or application.
According to an exemplary embodiment, the trap layer may
enable third party applications to provide more realistic logs
that would reflect the fact that all access to secure content is
restricted to the third party application's own applications and
context. In an exemplary embodiment, logs may be used for
legislation like HIPAA (US) and PIPEDA (Canada).
0177 According to an exemplary embodiment, the trap
layer may intercept directory operations to determine pos
sible additional behavior or trigger additional background
operations. In an exemplary embodiment, the trap layer may
control operations on directories, such as, e.g., but not limited
to, deletion operations, rename operations and/or move
operations. According to an exemplary embodiment, the trap
layer may consider a directory a special kind of file.
0178. In an exemplary embodiment, the trap layer may
intercept operations to determine the target of the operations.
According to an exemplary embodiment, if the target of a
delete operation is determined to be a directory, the trap layer
may then determine whether the directory is empty. In an
exemplary embodiment, the directory may be considered
empty if the directory does not have any child objects, such as,
e.g., but not limited to, files or Sub-directories. According to
an exemplary embodiment, if the directory is empty, the trap
layer may allow the directory to be deleted. In an exemplary
embodiment, if the directory is not empty, the trap layer may
prevent the directory from being deleted. According to an
exemplary embodiment, the trap layer may use similar meth
odologies in governing rename operations on a directory and/
or move operations on a directory.
0179 According to an exemplary embodiment, the trap
layer may create hash keys that will be used to validate the
authenticity of the retained files. For example, (a) the trap
layer may be configured to validate the hash key on every
open operation and failing the operation if the hash key does
not match; and/or (b) the trap layer may be invoked to validate
any file on demand by an external operation triggered by the
user and/or application. In an exemplary embodiment, the
trap layer may create hash keys for all files that are created in
managed logical and/or physical storage mediums
0180. In an exemplary embodiment, the trap layer may
automatically encrypt files that are created in managed logi
cal and/or physical storage mediums. The encryption and
decryption may, for example, happen independently of the
user and/or application. This may enforce security require
ments that would prohibit protected files from being accessed
outside the context and control of the trap layer.
0181. According to an exemplary embodiment, the trap
layer may intercept file deletion operations to perform addi
tional background tasks. Such as, e.g., but not limited to,
secure erasure. In most secure deployments, regulations such
as DOD 5015.2 dictate that deleted files or records must be
destroyed and overwritten to insure that the data cannot be
restored in any way shape or form. Typically secure erasure
may be executed by overwriting the contents of a file with
random patterns. Secure erasure requirements extend from
privacy legislation as well as defense and military standards,
and even extend to corporate governance to reduce liabilities.
In an exemplary embodiment, using the trap layer, a user or
application may use a simple delete operation, and if the
operation is allowed, then secure erasure may be performed

US 2013/O 1984.74 A1

transparently without forcing the user or application to per
formany additional operations beyond what they are familiar
with.
0182 Some exemplary example of the flow of determin
ing if a file should be securely erased is outlined below.
According to an exemplary embodiment, when a file deletion
operation is attempted, the trap layer may intercept the opera
tion and determine whether the file is retained. If the file is
retained, then the trap layer may determine whether the file is
eligible for deletion. Eligibility may be determined by the trap
layer by comparing the file expiry date and time to determine
what kind of file retention is set on the file. Such as, e.g., but
not limited to, retained forever, retained indefinitely or
retained for a fixed period. According to an exemplary
embodiment, if the file is retained the trap layer may prevent
the deletion of the file. If the file is not retained, then the trap
layer may allow the file to be deleted and may perform a
number of background operations such as, e.g., but not lim
ited to: (i) overwrite the contents of all the file streams, which
may include a default data stream and an alternate data
stream, with a pattern that may be either dynamically gener
ated or simply predefined; or (ii) repeat the overwrite opera
tion several times, such as, e.g., but not limited to, seven or
fifteen times, depending on the applicable rules and regula
tions.
0183. According to an exemplary embodiment, the trap
layer may obfuscate the user data by storing it in alternate data
streams or alternate locations rendering the files unreadable
and even as far as inaccessible outside the context of the trap
layer.
0184. According to an exemplary embodiment, the term
outside the context of the trap layer may mean that the trap
layer was somehow disabled, the trap layer was de-installed,
or the storage device was moved and connected to another
server that did not have the trap layer installed.
0185. According to an exemplary embodiment, the trap
layer may have a private interface that would also protect and
prohibit the trap layer from being de-installed or deleted if the
case that there are retained files under its control. The private
interface may allow the trap layer to be upgraded but not
disabled.
0186. According to an exemplary embodiment, the trap
layer may use a secure clock mechanism. In an exemplary
embodiment, to enforce the retention expiry times, the trap
layer may utilize a secure clock to maintain the system clock
Current.

0187. According to an exemplary embodiment, the algo
rithm utilized to secure the system time may be based on the
fact that the secure clock is synchronized with GMT. Accord
ing to an exemplary embodiment, regardless of the time Zone
the server time may always be represented as a variation of
GMT. That means that if the server time Zone is EST which is
equal to GMT-5, then the server time will have to always
maintain the same time difference. To achieve this goal there
may be a process monitoring the server time and comparing
the server time to the secure clock and resetting the server
time to always maintain the same time difference.
0188 The secure time mechanism may authenticate the
clock to ensure that it is a sanctioned or authorized clock so
that the system cannot be spoofed.
0189 According to an exemplary embodiment, the secure
clock may be able to sustain itself independent of the server
power to eliminate any time lapses. In an exemplary embodi
ment, even if the server is shutdown for a long duration or

Aug. 1, 2013

even if the motherboard is replaced or reset, when the server
is booted up again the time may be reset in accordance with
the difference from the secure clock time, which in this par
ticular example is GMT-5.
0190. According to an exemplary embodiment, the secure
clock mechanism may monitor changes in the system time. In
an exemplary embodiment, the secure clock mechanism may
monitor changes by intercepting attempts to change the time
or polling. According to an exemplary embodiment, the
secure clock mechanism may initialize a system clock based
ona system independent time source and automatically deter
mine what the correct time should be. In an exemplary
embodiment the secure clock mechanism may need to adjust
the system clock back to the projected time if the system clock
changes from the expected time each time the time is polled.
0191). According to an exemplary embodiment, the secure
clock mechanism may need to account for potential devia
tions that may occur based on the inaccuracy of the external
time source. According to an exemplary embodiment, the
technique to determine the accurate projected time may
depend on a number of factors. In an exemplary embodiment,
the mechanism may determine how long the external clock
has been running and determining what the accurate projec
tion of deviation would be. The clock may typically have a
certain deviation that is based on the manufacturer specifica
tions. These deviations may only apply to the clock since the
time the clock was started. According to an exemplary
embodiment, the mechanism may determine a projected time
based on a deviation average accumulated over the duration
of the life of the clock running time since the clock was first
started. In an exemplary embodiment, the average may need
to be to maintained over system restarts and protected to
prohibit tampering. According to an exemplary embodiment,
the secure clock mechanism may need to determine if the
system time is accurate at System startup as well as when the
system is running. In an exemplary embodiment, the retention
mechanism may need to ensure that the system is valid and
that all the associated retention expirations are valid as well.
0.192 According to an exemplary embodiment, the trap
layer may need to monitor the secure clock mechanism for
secure system time violations. In an exemplary embodiment,
the trap layer may enforce restrictions in the event the system
time is modified and the underlying security mechanism is
unable to restore the time to the correct value. According to an
exemplary embodiment, restrictions enforced due to time
violations may include an number of actions, such as, but not
limited to, prohibiting the creation of new files and directo
ries, literally rendering the storage medium as a read-only
device, prohibiting and inhibiting the ability to trigger the
retention of the file, preventing files from expiring and/or
preventing files from being deleted even if they appear to have
expired their retention period.
0193 According to an exemplary embodiment, restric
tions and/or policies may be defined to allow or disallow
certain applications or processes from performing specific
operations. In an exemplary embodiment, certain operations
which may be normally restricted may be allowed by certain
named and/or registered processes. According to an exem
plary embodiment, the opposite may be true, certain opera
tions which may be normally allowed may be disallowed for
certain named and/or registered processes. In an exemplary
embodiment, the trap layer may identify a process belonging
to a computer virus and may disallow the process from per
forming any operation. In an exemplary embodiment, the trap

US 2013/O 1984.74 A1

layer may identify to process to be any other type of process
and may disallow and/or allow specific operations based on
the type of process.
0194 According to an exemplary embodiment, the appli
cation and/or process based restrictions and/or policies may
function with content based restrictions and/or policies. In an
exemplary embodiment, a restriction and/or policy for a pro
cess may be based on the contents of one or more files Sup
porting a process. In an exemplary embodiment, the trap layer
may evaluate the content of a file launching a process to
determine the restrictions and/or policies for the process.
According to an exemplary embodiment, the trap layer may
disable all operations for a harmful process after determining
the harmful process belongs to a virus based on the file
launching the process.
0.195 According to an exemplary embodiment, a restric
tion and/or policy for a process may additionally allow and/or
disallow operations based on the content of a file the process
is attempting to act upon. In an exemplary embodiment, the
trap layer may evaluate the content of a file to determine if a
particular process may act upon the file. According to an
exemplary embodiment, the trap layer may allow a particular
process to delete a file containing serial codes but not delete a
file containing Social security numbers.
0196. In an exemplary embodiment, privileged applica
tions may be created and/or defined. In an exemplary embodi
ment, a privileged application may be governed by restric
tions and/or policies specifically defined for the privileged
application. According to an exemplary embodiment, privi
leged applications may have a digital signature they may use
to authenticate themselves with the trap layer.
0.197 According to an exemplary embodiment, the trap
layer may be created in the context of an application. In an
exemplary embodiment, the trap layer may be an application
specific trap layer that may trap operations performed by the
specific application. According to an exemplary embodiment,
the application specific trap layer may enforce restrictions on
operations initiated by the specific application. For example,
e.g., an application specific trap layer may be able to restrict
the operations a specific application may attempt to perform
against a retained file.
0198 In an exemplary embodiment, an application spe

cific trap layer may allow the specific application to fail
gracefully and/or prohibit attempts by the user to initiate
operations that would be failed by other trap layers. The
benefit of this approach is that the user interaction with the
application is streamlined and the application would be pro
hibited from initiating operations that would be failed in the
first place. For example, e.g., the application specific trap
layer may disable the delete operation from being initiated if
the file cannot be deleted, e.g., such as when the file may be on
legal hold, the file may be retained and the expiry has not been
reached, the file may be retained indefinitely and has no
defined expiry (“cannot expire'), or the file is retained for ever
and cannot expire.
0199 According to an exemplary embodiment, there may
be a significant risk when the underlying file that is referenced
by an application fails to be deleted or modified. In an exem
plary embodiment, applications are supposed to handle Such
conditions on their own. However, in reality there is no stan
dard and some applications will handle such errors better than
others. The best solution may be to take pre-emptive mea
Sures by intercepting the requests and validating the policies
and whether the operation can be performed and creating a

Aug. 1, 2013

complete transaction that would perform all the background
processes and cleanup and then complete the operation all in
one step as far as the user interaction is concerned.
0200. According to an exemplary embodiment, the trap
layer may expand the scope of operations, making applica
tions more storage and retention aware. In an exemplary
embodiment, the trap layer may only allow an operation, Such
as, e.g., but not limited to, delete, move, execute, rename or
append, etc., on an object, such as, e.g., but not limited to, a
Microsoft SharePoint, a specific site, a document library, a
folder, a leaf, or a file, etc., if the operation may be completed
for all of the child objects of the object. According to an
exemplary embodiment, the trap layer may intercept opera
tion requests, validate policies and if an operation may be
performed, create a complete transaction performing all the
background processes and cleanup, and complete the opera
tion. In an exemplary embodiment, the trap layer may deter
mine ifan operation may be conducted on an object in a single
step from the user's perspective. According to an exemplary
embodiment, the trap layer may disable the user from
attempting and/or selecting an operation if the operation is
pre-determined to be unable to be performed.

Worm Hard Disk Drive or Other Storage Device Exemplary
Embodiments

0201 According to an exemplary embodiment, a WORM
hard drive device may be provided, which may include an
exemplary encrypted hard disk drive or other storage device.
According to an exemplary embodiment, a storage device
may be provided which when encrypted, the contents may not
be accessible without decryption access. According to an
exemplary embodiment, technology may be provided accord
ing to exemplary embodiments to place an exemplary storage
device in a read only status. According to an exemplary
embodiment, the device may include exemplary intelligence
on outside of the storage device which may be used to manage
a process. According to an exemplary embodiment, the Stor
age device may include a fixed disk, a hard disk device
(HDD), a solid state memory device, SDRAM memory,
NAND memory, magnetic, magneto-optical, Solid State, or
other type memory and/or storage device, etc. According to
an exemplary embodiment, the device may include Software
or other firmware to autolaunch up, e.g., but not limited to,
coupling to a device (such as, e.g., but not limited to, by an
interface coupling such as by a USB device. The exemplary
autolaunch or executed application, program, etc. may
prompt to have the user enter a password or other authentica
tion/validation information, and upon receiving Such infor
mation may either provide access to the device in read only or
tamperproof fashion, according to an exemplary embodi
ment, and may be locked down. In an exemplary embodi
ment, the device may be further ruggedized. According to an
exemplary embodiment, a storage device may be used and at
least two partitions may be placed on the device, according to
an exemplary embodiment. A first partition may be used to
control access to a second of at least two partitions. According
to an exemplary embodiment, the device may further be made
portable. According to an exemplary embodiment, upon cou
pling the device to an exemplary computing device. Such as,
e.g., but not limited to, a writable server device, then the
exemplary storage device may appear to the server device as
a WORM device, such as, e.g., but not limited to, a CD-ROM.
According to an exemplary embodiment, a Software, hard
ware or firmware application may enforce access controls

US 2013/O 1984.74 A1 Aug. 1, 2013
16

over the exemplary storage device making a normally read/
write device behave as a write once read many (WORM)
device, according to an exemplary embodiment.

ment. This may allow the exemplary Volumes to
become writable provided all the components are
there that may protect the system after a system reboot
operation, according to an exemplary embodiment.

Create Exemplary Secure WORM Volumes 0213 b. On an exemplary non-secure system where the
0202 According to an exemplary embodiment, vol
umes that can be created according to exemplary
embodiments, may be usually encrypted to enforce
security on the exemplary Volume and may protect data
at-rest, according to an exemplary embodiment.

0203 a. The contents of an exemplary volume may
remain protected and may be completely concealed
unless there are secure system components in place per
mitting access, according to an exemplary embodiment.

0204 b. These exemplary software components that
may be used to access the exemplary Volume may
include several exemplary components to, e.g., but not
limited to, decrypt the exemplary embodiment of the
exemplary Volume and others to enforce data protection
on the individual files that may be stored within the
Volume, according to an exemplary embodiment.

0205 c. Stored within the exemplary encrypted Vol
ume, according to an exemplary embodiment, may be a
password (or other means of authentication/validation,
etc.), according to an exemplary embodiment. Accord
ing to an exemplary embodiment, e.g., if the password is
set, then the password may be required to be entered to
unlock the exemplary Volume, even for just read-only
access, according to an exemplary embodiment.

0206. These exemplary volumes, according to an exem
plary embodiment, can be created on any media whether
removable or not; including, e.g., but not limited to,
HDD, SSD, NAND, FLASH, storage devices, solid state
or otherwise, etc.

0207. The exemplary volumes may have an exemplary
at least two (2) modes of operation:

0208 a. On an exemplary secure system: where all
exemplary components may have been installed, then
the system time may be protected, according to an exem
plary embodiment.
0209 i. In this environment one can be certain that
the data retention enforcement can be processed since
the system time may be maintained securely, accord
ing to an exemplary embodiment. So the Volume may
be made Writable in this configuration, according to
an exemplary embodiment.

0210 ii. The fact the exemplary volume may be writ
able, according to an exemplary embodiment, does
not necessarily imply that all files are made writable
but rather that files that are not retained, and files
whose retention has expired, and are not under legal
hold, may be, e.g., but not limited to, deleted if the
policies allow Such exemplary operations, according
to an exemplary embodiment.

0211 iii. According to an exemplary embodiment,
there must be available space on the exemplary vol
ume to create new files, according to an exemplary
embodiment.

0212 iv. According to an exemplary embodiment, if
the exemplary Volume is protected with a password
then the password may be saved on the exemplary
encrypted portion of the disk and an encrypted ver
sion of the password may be saved on the exemplary
system registry, according to an exemplary embodi

system time and other security is not secure, or may not
have been installed, according to another exemplary
embodiment.
0214 i. In this environment, according to an exem
plary embodiment, one cannot be certain that the data
retention enforcement can be processed since the sys
tem time may not be secure. So the exemplary Volume
may be only available in read-only mode in this con
figuration, according to an exemplary embodiment.

0215 ii. According to another exemplary embodi
ment, in this exemplary mode, one may be certain that
the exemplary Volume must remain read-only.
According to an exemplary embodiment, the device
may be adapted to be accessible in a similar fashion to
having a writable CD or DVD being accessed in a
reader, but not a writer device. No files can be deleted,
and none of the contents can be modified, according to
an exemplary embodiment.

0216 iii. If the volume is protected with a password,
according to an exemplary embodiment, then the
password may be required to be entered to be pro
vided access to the exemplary Volume contents and
may be adapted to mount the exemplary file system on
the exemplary Volume. The password in this configu
ration may be never saved on the system and each time
the system is rebooted or the volume is removed and
re-inserted then a prompt may be displayed to the user
to provide the password, or authentication, which
may be required to be re-entered to provide any access
to the exemplary contents, according to an exemplary
embodiment.

Create Exemplary Portable Secure WORM Volumes
0217. To facilitate portability then in one exemplary
embodiment, it may be ensured that some components
be provided on the exemplary system to ensure access to
the exemplary Volume contents even when not in a
totally secure environment, according to an exemplary
embodiment.

0218 Ideally an exemplary embodiment may include
installing some of these exemplary components, accord
ing to an exemplary embodiment.

0219. To address exemplary portability, according to
one exemplary embodiment, a reserved area on a physi
cal Volume may be reserved. This area, according to an
exemplary embodiment, may be setup with an exem
plary standard file system and simplified setup that may
be automatically launched, may be included, according
to an exemplary embodiment. Once the exemplary setup
application may be launched, the application may setup
the exemplary minimal portable software components
that may enable the exemplary remainder of the exem
plary volume to be unlocked for exemplary read-only
access, according to an exemplary embodiment.

0220. In this mode, according to an exemplary embodi
ment, the exemplary secure Volume may be only acces
sible in an exemplary read-only mode and could never be
accessed in a writable mode, according to an exemplary
embodiment.

US 2013/O 1984.74 A1

0221) If the exemplary volume may be protected with
an exemplary password authentication then the pass
word must be entered to access the exemplary Volume
contents and according to an exemplary embodiment,
may mount the exemplary file system on the exemplary
Volume. The exemplary password in this exemplary con
figuration may never be saved on the exemplary system
and each time the exemplary system is rebooted or the
exemplary Volume is removed and re-inserted, for
example, then the exemplary password must be re-en
tered to enable access to the exemplary contents, accord
ing to an exemplary embodiment.

0222. In another exemplary embodiment, an exemplary
removable storage device or drive may be preformatted
before sale with an exemplary 2 (or more) partitions, one that
has the Software and the other that has an exemplary secure
encrypted Volume, according to an exemplary embodiment.
0223) If you connect the exemplary storage device or drive
to an exemplary writer system then the exemplary volume
may be writable and otherwise the exemplary device may be
accessible only in a read-only manner. Given that exemplary
control components may not be natively available on an
exemplary storage device, the exemplary components may be
installed on an exemplary reader system from an exemplary
non-secure partition, according to an exemplary embodi
ment.

0224. According to an exemplary embodiment, an exem
plary storage device Such as, e.g., but not limited to, a flash
universal serial bus (USB) stick, such as, e.g., but not limited
to, those available from companies like SANDISK, etc., may
according to an exemplary embodiment be made secure and
read-only, so as to appear to an exemplary interfacing com
puter system as a normal WORM, (e.g., CD-ROM drive)
device. According to an exemplary embodiment, an exem
plary interfacing computing system may be used to launch
and install exemplary components on an exemplary reader
environment.
0225. Numerous other embodiments of the invention may
be envisaged without departing from the spirit and scope of
the invention.
What is claimed is:
1. A method for applying an operation access privilege to a

storage medium, comprises:
associating an access privilege with at least a portion of the

storage medium;
intercepting an attempted operation on said at least a por

tion of the storage medium,
wherein said intercepting occurs regardless of an iden

tity of a user attempting the attempted operation;
comparing the attempted operation to the access privilege;

and
allowing, or denying the attempted operation based on

comparing the attempted operation to the access privi
lege

wherein at least one of said associating, said allowing, or
said denying is based on enforcing a policy.

2. The method according to claim 1, wherein said allowing
or said denying comprises at least one of allowing, or denying
the attempted operation based on a content of a logical file
associated with said at least a portion of the storage medium.

3. The method according to claim 2, wherein said allowing,
or said denying comprises at least one of allowing, or cancel
ling the attempted operation based on the content of the file.

17
Aug. 1, 2013

4. The method according to claim 1, wherein said allowing,
or said denying the attempted operation comprises:

allowing a create file operation to create a file associated
with said at least a portion of the storage medium;

evaluating a content of the file; and
at least one of allowing, or deleting the file based on said

evaluating.
5. The method according to claim 1, wherein said associ

ating the access privilege comprises associating the access
privilege with said at least a portion of the storage medium
based on a file attribute of a logical file associated with said at
least a portion of the storage medium.

6. The method according to claim 1, wherein said enforcing
the policy comprises enforcing a retention policy comprising
preventing said a least a portion of the storage medium in a
retained state from being modified while a retention period of
said at least a portion of the storage medium is unexpired.

7. The method according to claim 6, wherein said enforcing
a retention policy is enforced for at least one of a file name,
a file attribute, a file path, or a file content, of a logical file
associated with said at least a portion of the storage medium.

8. The method according to claim 6, wherein said enforcing
a retention policy comprises determining if said at least a
portion of the storage medium is eligible to enter the retained
state based on a content of said at least a portion of the storage
medium.

9. The method according to claim 8, wherein said deter
mining comprises determining if said at least a portion of the
storage medium is eligible to enter the retained State based on
a content group associated with said at least a portion of the
storage medium, the content group associated based on evalu
ating said at least a portion of the storage medium for pre
defined content.

10. The method according to claim 6, wherein said associ
ating the access privilege comprises holding the retained
State.

11. The method according to claim 10, wherein said hold
ing the retained state comprises at least one of:

Suspending expiration of a retained State portion of the
storage medium;

Suspending an unexpired retained State portion of the Stor
age medium from entering an expired retained state;

Suspending clearing of a read only attribute of the retained
state portion of the storage medium by setting a tempo
rary attribute of the retained state portion of the storage
medium; or

Suspending deletion of an expired retained State portion of
the storage medium.

12. The method according to claim 1, wherein said enforc
ing the policy comprises enforcing a retention policy com
prising triggering one or more background processes when
said at least a portion of the storage medium enters a retained
State.

13. The method according to claim 12, wherein the one or
more background processes comprises at least one of

creating metadata for the retention;
identifying the user retaining said at least a portion of the

storage medium;
storing user identification for the user retaining said at least

a portion of the storage medium;
identifying the retention policy retaining said at least a

portion of the storage medium;
storing the retention policy retaining said at least a portion

of the storage medium;

US 2013/O 1984.74 A1

generating a digital signature of the content of said at least
a portion of the storage medium;

generating a digital signature comprising a hash of the
content of said at least a portion of the storage medium;

generating a digital signature of the content of at least one
of a default data stream associated with a file associated
with said at least a portion of the storage medium or one
or more alternate data streams associated with the file
associated with said at least a portion of the storage
medium;

storing the digital signature;
determining if any other policies apply:
creating at least one of an alternate data stream or an

extended attribute to store the metadata;
encrypting hash keys for the metadata; or
storing the hash keys.
14. The method according to claim 6, wherein said enforc

ing the retention policy comprises triggering retention of said
at least a portion of the storage medium based on at least one
of:

the attempted operation;
setting a read-only attribute of the file;
renaming the file to a file name:
renaming the file to a particular name:
resizing the file;
resizing the file to a particular size;
creating an extended attribute associated with the file; or
creating an alternate data stream associated with the file.
15. The method according to claim 6, wherein said enforc

ing the retention policy comprises enforcing an archive policy
comprising queuing said at least a portion of the storage
medium to be copied to an alternate media, when said at least
a portion of the storage medium is retained.

16. The method according to claim 1, wherein said allow
ing, or said denying the attempted operation comprises forc
ing a secure erasure for a delete operation on said at least a
portion of the storage medium, wherein the secure erasure
comprises at least one of overwriting the content of said at
least a portion of the storage medium or overwriting an alter
nate data stream associated with said at least a portion of the
storage medium.

17. The method according to claim 1, wherein said allow
ing, or said denying comprises at least one of:

allowing the operation on a directory if the directory is
empty; or

denying the operation on the directory if the directory is not
empty.

18. The method according to claim 1, wherein said allow
ing, or said denying comprises at least one of allowing, or
denying the attempted operation based on at least one of an
application or a process attempting the attempted operation.

19. The method according to claim 18, wherein said allow
ing, or said denying the attempted operation based on at least
one of the application or the process comprises at least one of

allowing the attempted operation for at least one of a
named or a registered process;

denying the attempted operation for at least one of the
named or the registered process; or

allowing the attempted operation for a privileged applica
tion, the privileged application comprising an applica
tion operable to be authenticated via a digital signature.

20. The method according to claim 1, wherein said enforc
ing the policy comprises enforcing a policy based on an
application, the policy comprising at least one of

18
Aug. 1, 2013

enforcing application based intercepting of the attempted
operation;

disabling an operation option provided to the user,
expanding the scope of an operation based on the applica

tion; or
at least one of allowing, or denying the attempted operation

based on validating a child object of a parent object of an
attempted operation.

21. The method according to claim 1, wherein said enforc
ing the policy comprises enforcing a secure time routine, the
routine comprising at least one of:

using a secure clock;
maintaining a system clock comprising using the secure

clock;
accounting for deviations based on inaccuracies of the

secure clock;
verifying operation of a secure clock or authenticating the

secure clock;
at least one of:

denying at least one attempted operation,
preventing said at least a portion of the storage medium

from being retained, or
rendering the storage medium read-only, if the secure

clock can not be at least one of verified or authenti
cated; or

running the secure clock independent of a server.
22. A method for intercepting attempted access to at least a

portion of a storage medium, comprises:
receiving at least one of an attempted access operation to

gain access to or from, oranattempted write operation to
write datato, the at least a portion of the storage medium;

intercepting at least one of said attempted access operation
or said attempted write operation, prior to permitting or
not permitting said operation on the at least a portion of
the storage medium,
wherein said intercepting occurs regardless of an iden

tity of a user attempting the attempted operation;
determining whether the attempted operation is permitted

based upon at least one of a privilege, a policy, a rule, or
a determination; and

permitting, or not permitting the attempted operation based
on said determining whether the attempted operation is
permitted
wherein said at least one permitting or not permitting is

based on enforcing said at least one privilege, policy,
rule or determination.

23. The method according to claim 22, wherein said at least
one privilege, policy, rule or determination comprises analyZ
ing content of said data.

24. The method according to claim 23, wherein said ana
lyzing content comprises determining whether access or Stor
age of said content is permitted based on said at least one
privilege, policy, rule, or determination.

25. The method according to claim 23, wherein said deter
mination comprises:

determining if an operation is eligible to be executed on a
file, based on the content of the file.

26. The method according to claim 25, wherein said con
tent is analyzed for existence of at least one of:

a social security number,
a credit card number,

US 2013/O 1984.74 A1

other private personal information,
a type of content,
inappropriate content, or
harmful content.
27. The method according to claim 26, wherein said harm

ful content comprises at least one of
a computer virus,
malware,
adware,
spyware,
a computer worm,
a harmful file, or
a malicious file.
28. The method according to claim 27, wherein the method

further comprises:
preventing said harmful content from at least one of being

created, or being stored.
29. The method according to claim 27, wherein the method

further comprises:
allowing a file of said harmful content to be created to

evaluate the contents of the harmful file, and
deleting the harmful file if the file is determined to be

harmful.
30. The method according to claim 22, further comprising:
receiving at least one of a restriction or a policy to at least

one of allow or disallow, at least one of an application or
a process, from performing at least one operation.

31. The method according to claim 22, further comprising
receiving a rule, wherein at least one operation normally
restricted is allowed by at least one named or registered pro
CCSS,

32. The method according to claim 22, further comprising
receiving a rule, wherein at least one operation normally
allowed is disallowed by at least one named or registered
process.

33. The method according to claim 22, wherein the method
comprises:

identifying a process belonging to a computer virus, and
disallowing the process belonging to the computer virus

from performing any operation.
34. The method according to claim 22, wherein the method

comprises:
identifying a particular type of a process, and
at least one of:

allowing the process to perform at least one operation, or
disallowing the process from performing at least one

operation, based on the particular type of the process
identified.

35. The method according to claim 22, wherein the method
comprises at least one trap layer.

36. The method according to claim 35, wherein said at least
one trap layer comprises at least one of:

a file system layer,
a software layer,
an application layer,
an operating system layer, or
a hardware layer.
37. The method according to claim35, wherein the method

comprises executing a trap layer on at least one of:
a hardware device,
a device running a Windows OS,
a device running a UNIX OS,
a device running a Mac OS,
a device running an OS,

Aug. 1, 2013

a file system,
a Windows file system,
an NTFS file system,
a UNIX file system,
a Solaris file system,
an Apple file system,
a UNIX file system,
a physical device,
a physical medium device,
a storage medium device,
a network device,
a computing device,
a cell phone,
a communications device,
a handheld device,
a computer,
a wireless phone device,
a telephony device,
a phone, or
a personal digital assistant (PDA).
38. The method according to claim 22, wherein said deter

mining comprises at least one of an application based restric
tion, an application based policy, a process based restriction,
a process based policy, a content based restriction, or a con
tent based policy.

39. The method according to claim 22, wherein a restric
tion or policy for a process may be based on content of one or
more files supporting a process.

40. The method according to claim 22, comprising:
evaluating content of a file wherein said file launches a

process; and
launching the process to determine at least one restriction

or policy for the process.
41. The method according to claim 40, comprising:
determining a harmful process belongs to a virus based on

said launching; and disabling at least one operation for
said harmful process.

42. A method for intercepting an attempted download of
data to at least a portion of a storage medium, comprising:

receiving at least one attempted download operation to
receive the data to store the data on the at least a portion
of the storage medium;

intercepting the at least one attempted download operation,
prior to permitting the at least one attempted download
operation on the at least a portion of the storage medium,
wherein said intercepting occurs regardless of an iden

tity of a user attempting the attempted operation;
determining whether the at least one attempted download

operation is permitted based upon analysis of the content
of the data,
wherein the analysis identifies harmful content compris

ing at least one of
a computer virus,
malware,
adware,
spyware,
a computer worm,
a harmful file,
inappropriate content, or
a malicious file; and

permitting, or not permitting the at least one attempted
download operation based on said determining.

US 2013/O 1984.74 A1

43. The method of claim 42, wherein the analysis is per
formed on at least one of a same or a different device than the
device comprising the storage device.

44. A method for intercepting an attempted operation on at
least a portion of a storage medium, comprising:

receiving at least one attempted operation to operate on
data with respect to the at least a portion of the storage
medium;

intercepting said at least one attempted operation, prior to
permitting said at least one attempted operation with
respect to the at least a portion of the storage medium,
wherein said intercepting occurs regardless of an iden

tity of a user attempting the attempted operation;
determining whether the at least one attempted operation is

permitted based upon analysis of the content of the data,
wherein the analysis identifies content comprising at

least one of:
a social security number,
a credit card number,
other private personal information,
harmful content,
a computer virus,
malware,
adware,
spyware,
a computer worm,
a harmful file,
inappropriate content, or
a malicious file; and

permitting, or not permitting the attempted operation
based on said determining.

45. The method of claim 44, wherein the analysis is per
formed on at least one of a same or a different device than the
device comprising the storage device.

46. The method of claim 44, wherein the attempted opera
tion comprises at least one of

reading from,
accessing,
writing to,
sending to, or
receiving from, the at least a portion of the storage device.
47. The method of claim 44, wherein said intercepting

comprises:
intercepting a request for said at least one attempted opera

tion, and
at least one of:

waiting for a user intervention, or
waiting for a determination whether the operation

should be allowed.
48. The method of claim 44, wherein said intercepting

comprises:
determining or validating at least one of a signature or

another identifier of a file comprising:
determining if said file is one of known origin, or
unknown.

49. The method of claim 48, wherein said intercepting
comprises:

intercepting all operations on the unknown files; and
depending on a policy, determining an action to be taken

comprising at least one of
Suspending operation until at least one of a user inter

vention, or an administrator intervention; or
denying and rejecting at least one of said attempted

operations on unknown files.

20
Aug. 1, 2013

50. The method of claim 44, wherein said intercepting
comprises:

intercepting said at least one attempted operation; and
depending on at least one policy, at least one of:

modifying said at least one attempted operation to at
least one of:
prevent modification,
triggering an action; or
triggering a delete on file close;

modifying a privilege on a file open operation to at least
one of:
removing write access, or
prohibiting write access; or

marking a file for deletion, and upon file close automati
cally deleting the file if the file violates the at least one
policy.

51. The method of claim 22, wherein said intercepting is
performed by a file system.

52. The method of claim 22, further comprising at least one
of:

receiving at least one of said privilege, said policy, said
rule, or said determination relating to a given file;

assigning metadata to a given file relating to operations
permitted on said given file;

assigning metadata to a given file relating to validating
contents of a given file; or

confirming contents have not been modified or tampered
comprising at least one of a hash, a hash key, an SHA
hash, an encryption key, or a digital signature.

53. The method of claim 22, wherein said intercepting is
performed by a trap layer further comprising at least one of

interacting between said trap layer and at least one other
component;

retrieving additional information by said trap layer, or
determining a role said trap layer will perform comprising

whether to at least one of allow, reject, or modify a
request.

54. The method of claim 22, wherein said intercepting is
performed by a trap layer further comprising:

triggering by said trap layer initiating other actions com
prising at least one of
performing a secure erasure,
instructing to shred physical file,
deleting a given file if said given file can be deleted, or
performing additional operations comprising at least

one of:
initiating shredding physical contents of a file if file

can be deleted,
initiating shredding on all delete operations, or
initiating shredding conditional on Some files or some

Volumes, depending on policies.
55. The method of claim 22, wherein said intercepting is

performed by a trap layer further comprising:
triggering by said trap layer initiating other actions com

prising at least one of
intercepting a delete operation, and
determining when to actually erase contents with a spe

cific pattern,
wherein, at least one of:
an erasure comprises overwriting at least one of a

physical content or segment of a file more than once
with a predetermined pattern;

an erasure is triggered immediately; or

US 2013/O 1984.74 A1

an erasure is tagged when the file is marked for dele
tion and at least one of:
the actual erasure takes place once the file is closed,

depending on file system; or
the erasure is performed on file cleanup after the

file is closed, and all handles or channels are
closed.

56. The method of claim 22, wherein said intercepting is
performed by a trap layer further comprising:

triggering by said trap layer initiating other actions com
prising at least one of
creating file signatures upon certain conditions compris

ing when the file retention is triggered comprising at
least one of:
creating said file signature when the file is finally

closed and is no longer modified;
creating said file signature triggered immediately; or
creating said file signature when the file is in final

cleanup and all handles or channels are closed, or
contents are flushed from the cache.

57. The method of claim 22, wherein said intercepting is
performed by a trap layer further comprising at least one of

triggering by said trap layer initiating other actions com
prising at least one of
intercepting at least one of a plurality of file types; at

least one directory; or alternate data streams;
interrogating contents of at least one directory to enable

additional operations comprising at least one of
determining if said at least one directory is empty, or

not,
determining whether to allow at least one of rename,

or delete operations,
determining if the at least one directory is not empty

and if not empty, then at least one of:
rejecting all delete operations,
rejecting all rename operations, or
rejecting all move operations, or

determining if the at least one directory is not empty,
and if not empty, then at least one of:
allowing all operations, or
allowing certain operations;

intercepting an open directory for enumeration opera
tion to prevent browsing of at least one directory
contents comprising at least one of
allowing file and directory operations that are for a

specific file or directory name to Succeed, but mak
ing operations enumerating contents fail;

intercepting similar operations comprising at least one
of modifying security, adding or removing files,
changing attributes, or adding or removing directo
ries;

intercepting operations to the default data stream portion
of a file, or alternate data streams, and conditionally
allowing, disallowing, or modifying Such requests
depending on policies; or

determining policies dynamically by at least one of:
querying a parent directory, querying a parent Vol
ume, querying associated policies, defining policies
at an individual object level, forcing additional opera
tions, or triggering other operations.

58. The method of claim 22, wherein said intercepting is
performed by a trap layer at a level wherein said trap layer
automatically encrypts or decrypts contents of a logical Stor
age Volume or medium, and at least one of:

Aug. 1, 2013

wherein if the trap layer is unavailable then contents are
obscured by the encryption of the contents on the physi
cal Volume;

wherein if the trap layer determines conditions are normal,
then the trap layer allows access to the Volume and
decrypts contents allowing the actual files to be accessed
as a normal file system; or

wherein if the trap layer determines that conditions are
abnormal, then the trap layer rejects all access requests.

59. The method of claim 22, wherein said intercepting is
performed by a trap layer further comprising at least one of

triggering by said trap layer initiating other actions com
prising at least one of
intercepting an additional partition, or Volume manage
ment operations, and

depending on the protection policies, at least one of
allows or disallows said Volume management opera
tions, or modifies said Volume management opera
tions to prohibit any anomalies comprising at least
one of:
preventing delete or format operations on protected

partitions; or
intercepting other operations comprising at least one

of Snapshot creation, or dismount operations, or
partition resizing (comprising shrinking or expan
sion).

60. The method of claim 22, wherein said intercepting is
performed by a trap layer further comprising at least one of

wherein said trap layer is implemented in a hardware layer
below the file system to at least one of validate and
compare byte streams, or look for digital signatures;

wherein said trap layer interacts with additional compo
nents on the hardware level to at least one of determine
additional operations or restrictions, or to trigger addi
tional actions within the trap layer, or to trigger addi
tional actions at the hardware layer,

wherein said trap layer triggers additional actions on a
physical storage device comprising at least one of trig
gering certain logical, or physical sectors of the storage
medium to become un-readable, un-writable; or
un-modifiable;

wherein said trap layer enables defining a type of storage
technology where certain deficiencies or shortcomings
of a given physical medium is exploited to achieve a
secure, tamper proof, type of storage medium compris
ing at least one of
triggering such media with known limitations on the
number of re-writes to mark certain sectors as perma
nently un-modifiable as if the number re-writes have
been exhausted;

triggering such media with known limitations on the
number of re-writes to mark certain sectors as perma
nently unreadable or corrupt as if the number re
writes have been exhausted or it is physically corrupt;

applying to various media types comprising at least one
of flash drives or NAND; or

marking physical media as destroyed and permanently
unreadable at the physical hardware level;

wherein said trap layer interacts with other components
comprising control of system time, comprising at least
one of:

a. controlling incorporating the use of monitoring tools or
components that intercept or poll the system time and

US 2013/O 1984.74 A1

determine whether system time is within an allowed
range or not, comprising at least one of:

i. providing a time source that is used that is external or
internal to the system to validate the system time relative
to at least one of GMT or universal time, or

ii. allowing for a small deviation by the algorithm, based on
the actual time source that allows for variance in time
based on how long the clock has been running;

b. wherein if the system time is changed beyond an allowed
deviation, then external tools provide for at least one of:

i. attempting to reset time and date according to average
deviation time applied to how long the clock has been
running, or
if such attempt fails, then triggering trap layer to at least
one of locking down at least one storage Volume or
repository, or preventing any modifications, or prevent
ing all access; or

... wherein time management system is self learning com
prising: monitoring average deviation or maintaining an
average on an ongoing basis at a regular interval result
ing in an average number of seconds per period and at
least one of:

i. when the system starts up, the time management compo
nent gets the system time and compares it to the time
Source (clock) and applies the average deviation to how
long the clock has been running to determine whether it
is within the allowable range or not;
when if the external clock or time source is unavailable
at boot time then the system is considered unsecure and
the time is considered unverifiable and hence the system
is locked down and all Volumes are at least one of set to
read-only, or prevented from access by triggering Such
states on the trap layer associated with Such volumes and
partitions;

iii. when the system is running, the time management
establishes a reference time and polls the system time at
a regular interval, knowing what time to expect and
hence it not necessarily having to query the time source
for any additional time, and in this case any attempt to
alter the time outside what is projected is reset accord
ingly and if the reset fails, then the system is set in an
unsecure state and the trap layer is notified accordingly
which triggers locking the Volume, or taking the Volume
offline;

iv. when in the event the system is set to sleep, and then is
woken up, then the time management tools detect that
state and take the appropriate action to determine what
the correct time is and reset accordingly, and failure to
reset triggers an unsecure state and the associated lock
ing of Volumes in read-only or preventing all access;
when in Some cases it is necessary to poll the physical
external source to validate what the time is regardless of
the projected time just in case the time management
monitoring tools are unable to determine whether the
system was asleep or not; and applies the same algorithm
to reset the time accordingly;

vi. when in the event the secure time source or clock cannot
be validated or queried then the unsecure State is trig
gered;

ii.

ii.

22
Aug. 1, 2013

vii. when under a condition, if the time management tools
are shutdown or the system locks down, and the trap
layer prevents any access or modification of the Vol
umes;

viii. when time management cannot be overridden, then
changing the system motherboard, or BIOS battery can
not overrule the secure time; or

ix. when the secure time source incorporates additional
secure signatures or validation to determine that it is a
trusted source, the system cannot be bluffed or spoofed,
and Such signatures and identifiers incorporate combi
nations of at least one of a hash code, an encryption, or
a unique identified time on the time source itself, or

d. wherein time management is incorporated as whole or
partially within the trap layer; or

e. wherein the system further comprises retention integra
tion comprising secure communication with authorized
applications at least one of external to the data manage
ment system, or in a partner application, wherein at least
one of:

wherein, with these definitions, trusted and secure compo
nents can have certain privileges that allow the setting of
the state of the individual files and directories under
certain state and allow exclusive access to managing
Such state to the trusted applications; or

wherein, these controls limit what operations comprising
at least one of file retention manipulation can be per
formed, when files can be retained, when the retention
can be extended, when the file can be excluded from
retention, or when the file is to be deleted, or eventually
erased by the trap layers.

61. An apparatus for providing a write once read many
(WORM) storage device comprising:

a storage device comprising at least two partitions;
a first of said at least two partitions comprising control

components; and
a second of said at least two partitions comprising

encrypted data; wherein said storage device is adapted to
be coupled via an interface to a system, wherein said
system is adapted to apply an operation access privilege
to said storage medium, comprising:
being adapted to associate an access privilege with at

least a portion of the storage medium;
being adapted to intercept an attempted operation on

said at least a portion of the storage medium,
wherein said being adapted to intercept occurs regard

less of an identity of a user attempting the
attempted operation;

being adapted to compare the attempted operation to the
access privilege; and

being adapted to allow, or deny the attempted operation
based on comparing the attempted operation to the
access privilege

wherein at least one of said being adapted to associate,
to allow, or to deny is based on enforcing a policy.

k k k k k

