US009990494B2

a2 United States Patent

Thomas et al.

US 9,990,494 B2
*Jun. 5, 2018

(10) Patent No.:
45) Date of Patent:

(54) TECHNIQUES FOR ENABLING
CO-EXISTENCE OF MULTIPLE SECURITY
MEASURES

(52) US.CL
.......... GOGF 21/56 (2013.01); GOGF 12/1408
(2013.01); GOGF 21/6218 (2013.01); GO6F

21/64 (2013.01); GOGF 2212/1052 (2013.01);

(71) Applicant: Intel Corporation, Santa Clara, CA HO4L 63/145 (2013.01)
us) (58) Field of Classification Search
None
(72) Inventors: Ramesh Thomas, Saratoga, CA (US); See application file for complete search history.
Manohar R. Castelino, Sunnyvale, CA .
(US); Kuo-Lang Tseng, Cupertino, CA (56) References Cited
Us) U.S. PATENT DOCUMENTS
(73) Assignee: INTEL CORPORATION, Santa Clara, 2003/0018892 Al* 1/2003 Tello evvoooeeronn, GO6F 21/123
CA (US) 713/164
2005/0268338 Al* 12/2005 Madecccoevenenne GOG6F 21/562
(*) Notice: Subject to any disclaimer, the term of this 726/24
patent is extended or adjusted under 35 2007/0271610 A1* 11/2007 Grobman GO6F 21/53
U.S.C. 154(b) by 0 days. days. 726/22
Continued
This patent is subject to a terminal dis- (Continued)
claimer. Primary Examiner — Benjamin E Lanier
(21) Appl. No.: 15/269,646 &7 ABSTRACT
) Various embodiments are directed enabling anti-malware
(22) Filed: Sep. 19, 2016 software to co-exist with protective features of an operating
. L system. An apparatus may include a processor component
(65) Prior Publication Data including an IDT register storing an indication of size of an
US 2017/0142131 Al May 18, 2017 IDT; a monitoring component to retrieve the indication and
’ compare the indication to a size of a guard IDT in response
to modification of the IDT register to determine whether the
o guard routine is to inspect the IDT and a set of ISRs; and a
Related U.S. Application Data cache component to overwrite the IDT and set of ISRs with
(63) Continuation of application No. 14/494,260, filed on a cached IDT and cached set of ISRs, respectively, based on
Sep. 23, 2014, now Pat. No. 9,449,173. the determination and prior to the inspection to prevent the
guard routine from detecting a modification by an anti-
(51) Imt. CL malware routine, the cached IDT and cached set of ISRs
GO6F 21/56 (2013.01) generated from the IDT and set of ISRs, respectively, prior
GO6F 12/14 (2006.01) to the modification. Other embodiments are described and
GO6F 21/62 (2013.01) claimed.
GO6F 21/64 (2013.01)
HO4L 29/06 (2006.01) 22 Claims, 12 Drawing Sheets
await generation of
IDT and set of ISRs
following initialization
g
‘|' modify at least size
obtain pointer value in IDT register
value to and/or to accommodate
size value of IDT additional ISR(s)
from IDT register added to set of ISRs
2170
use at least pointer modify IDT and/or set
value to retrieve and of ISRs to enable
store copy of IDT in monitoring interrupts
cache area defined and/or to enable use
in storage of security feature(s)
2130
1 T
use pointer values in store copy of pointer
IDT to retrieve and value and/or size value
2100 —* store copy of set of retrieved from IDT

ISRs in cache area
defined in storage

register in cache area
defined in storage

US 9,990,494 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
2012/0054868 Al* 3/2012 Ramalingam GO6F 21/52
726/24
2012/0297057 Al* 11/2012 Ghosh ... GOG6F 21/575
709/224
2013/0167222 Al* 6/2013 Lewis ...ccocevveeenenn. GO6F 21/53
726/17

* cited by examiner

US 9,990,494 B2

Sheet 1 of 12

Jun. §,2018

U.S. Patent

666

9ov 077 005
aeT Boc aoIne
OUED euinal MM_“‘U mmommwum mc::.ac_hooo
Aunoas uoneoidde ' —
009
— — — — Ja|josuoo
9l (A4 viv ¥SS Aunoes
jusuodwioo Juauodwod wsuodwoo jun)
ayoeo abueyo Buuojuow Buuoyuow 755
5% ocp obelols
_ ejep abueyo elep abueyo Tel
0Ly grmvcanoM m._HEw:.;m m“‘_mv 029
aunnolJ 055 aunnol
alemew-jue %44 Ter Jusuodwod Aunoss
elep elep Jossaooud
abueyo ys| sbueyo Q| 059
wsuodwoos
— — — _ Jossaooud
0LE [543 X LGS
sunnol SMSI 1ai Joysibal 750
pJenb pJenb pJenb 1dl (s)aunyeay
Aunoss
e Tee
002 sdSI 14l
waisAs 74 [
Bunesado d — — —
_ A 1ep | ™ S|oUOD Ae|dsip aoBL9UI

L "Old

»—— 000}

0ct
elep

001
S2IASp
slowsal

US 9,990,494 B2

Sheet 2 of 12

Jun. §,2018

U.S. Patent

666

9oF 027 005
ayoed auinol 0El 095 m:m_ﬂww_woo
Kjunoss uonesidde EiEp sbe.oys h
747 Ty viv ¥SS
jusuodwod Juauodwod auodwosn Hun
ayoed abueyo Buuoluow Buloyuow
1773 (01357 0G5
— ejep abueyo ejep abueyo jusuodwoo
0Ly jusuodwoo ainjonuis elep Jossaooud
aunnos
alemjelw-gue wr 1537 750
Elep Biep (s)ainjesy
abueyd 4s| sbueyo 1| faunoss
158
e The Tee Jo)sibal
aunnol sYSI 1ql 1dl
pienb pienb pienb
028
$|04)U0D
e 554 —
575 SYSI 14l 08S
0Z¢ — — Ae|dsip
wayshs ove 0eC
Bunesado sjusuodwos salnonas e
|auiay BlED [SULIOY soeyol

¢ 9OlId

A— 000}

(118
eep

001
20Inap
sjowsl

US 9,990,494 B2

Sheet 3 of 12

Jun. §,2018

¢ 'Old 4—— 000}
(0177 — 009
elep by aoInep
abueyo E1ep Bunndwoo
abueyo yg| —
Jusuodwo 7z
— SHSI
(0154 — 7
eyep abueyod mryww i
alnpnns Vs Y4
e1ep ebueys 1 Q| K—
— % — —
0¥ jusuodwoo ovc 0/¢
aunnou T¥ ayoes viv sjusuodwos | welshs
ajemew-jue | jusuodwod jusuodwod [EIIEY] Bunessdo
abueyd \|_,| Buuoyuow
vor gor
sYSI 1dl K—
payoeo payoeo b
oov [17% 055
ayoeo H1al jusuodwod
Aunoss payoed Buloyuow Jossanoud

U.S. Patent

US 9,990,494 B2

Sheet 4 of 12

Jun. §,2018

U.S. Patent

v Old »— 000}
W ez
Sds| 1dl mc::ano
[J [}
® ®
o o
25910 255 aeve daeee
ainjea) —
AUNoos ¥S| pappe Jajuiod . m_%me
. . 756k uoneordde
065 ° ° Jo)sibau
aoeaUI € _ 14l ore
10¢ 4 4 mNmNQ . jusuodwod
— HS| pPaliipow Jsjulo
089 ¢ _ usuodwod 19uo
Kejdsip _, Jossadsoud
I
— 0¥
y 10 ¢ 0cs aupnol
$|04ju0d alemew-ijue

US 9,990,494 B2

Sheet 5 of 12

Jun. §,2018

U.S. Patent

S Old »— 0001
" i (77 005
" ; i aunnol SOIA8D
= alemeul-jue Bunndwoo
157 Yov
A4 <
SYS| sl
payoed
T2 cov
1qai 1dl
TeToTe] payoes
B90S Q999 = —
sebed sebed — _
99 oLy suodwod weolsAs
%m%ome Emm:rmvamw_oo [ouIs Bunessdo
Sov '
d.1dl TGG
payoes JaysiBau
1dl
% —
EE] 0SS
224 ove T Hun jusuodwiod
weyshs jusuodwoo viv Buuonuow | Josseooud
Bune.sdo [ouIoy jusuodwod
Buuoyiuow

US 9,990,494 B2

Sheet 6 of 12

Jun. §,2018

9 9Ol »—— 0001
008G Ve
aoINap SHSI
Bunndwoos 7
X4
1dl
0/¢ TVE
wajsAs Buneiado SYS|
ove 0% 57 75 pienb | g7g
susuodwoo aunnoJ Jusuodwios suodwoo H aunnhol
e alemjew-jue ayoed fuLioyuow Tce pJenb
14l
pJlenb
¥ov
- SySI — —
oor payoeod yGc LGS
ayoed Hun k- Jo1sibal
Aunoss oy BuLouuow 1al
14l —
psyoeo 0SS
usuodwod Jossaooud

U.S. Patent

US 9,990,494 B2

Sheet 7 of 12

Jun. §,2018

U.S. Patent

L Old »—— 0001
(Vi — 00S
ejep vy 20IASP
abueyd E1eD Bunndwoo
abueyo yg| p—
Jusuodwod K74
— SHSI
ocy — 7=
ejep abueyo ley :
ejep p—
alnnns obuEwd 1 Q| \V, K¥4
elep 1di
0/¢ ==
9/%
waysAs Bunesado T JusLodwos —
ore aunnol Ty ayoeo 3 viv sUNNOJ BIENG
sjusuodwod alemew-nue | jueuodwod _, wusuodwod nno. p
EITEN abueyo K—\ Burioyjuow
oy €97 L 155
SYSI 14l Jajsibal
payoed payoed Y'Y 1al
N
oor Sov ¥SS 0SS
ayoeo o1al jun Jusuodwod
Aunoos payoed Buuoluow Jossaooud

US 9,990,494 B2

Sheet 8 of 12

Jun. §,2018

U.S. Patent

051l¢
abeJols Ul paullep
BaJe aoed ul Jo)sibal
1| wolj peAsial
an|eA 9IS Jo/pue anjeA
Jajuiod Jjo Adod alois

orlc
abeJols ul paulep
Bale ayoed Ul sHS|
0 j8s Jo Adoo alols
pue eAsLlal 0} 1 (I
ul sanjeA Jajuiod asnh

l

T

09lc
(s)ainyeay Ajunoss Jo
ash e|qeusd 0} Jo/pue
sidnuisiul Buuoyuowl
8|qeus 0] SYS| Jo
Jes Jojpue | | Ajpow

0cic
abelojs ul
paulisp eale syoeo
ur]| o Adoo alois
pue aASLal 01 anjeA
Jajuiod 1ses| Je asn

l

T

0/1¢
SHSI JO 198 0} peppe
(s)dS| [euonippe
S)EPOWWOIIE 0]
JsysiBad 1| ul anjea
8215 1sB3| 1B AJIpowl

pua

(4 ¥4
JsysiBal |] wol)

1Q| 1o snjeA azis
1o/pue 0} ahjeA
Jauiod uieyqo

T

orie
uonezIfenIul Buimoljoy

sySliolss pue (]
JO uonelauab yeme

US 9,990,494 B2

Sheet 9 of 12

Jun. §,2018

U.S. Patent

pus

(¥4 6 Old
aunnhoJ alemew-nue Aq
apew suoleslIpow apnjoul

leyl sysijoies o 1Al #— 00ce
JO peajsul ‘syS| 40 1S IO
14| o Adoo 0] ss8220E Yum
Wsuodwod |aulay apirold

ccec
Sl 4o 1dl su
0} uonediipow
a1 jusaaud

0cce
juonelado
showllen

[]%44
usuodwod |aulsy
e g s¥S| 40188 JO

yS|Jo 1] ue Ajipow
0] Jdwape ue 109)9p

US 9,990,494 B2

Sheet 10 of 12

Jun. §,2018

U.S. Patent

ovee
aunnol aiemew-nue Aq
apeuw Jallea sabueyo opun 0] SYS|
J018s pue || o Uoledo| 0} SHS|
10 188 payoed pue | | peyoeo Adoo
(Buiwoo uonoadsul aunnod pienb)

ogee
suoioadsul
Buipuadw! yym uslsisuoo Jsisibal
1Aa1 wous anjea
azIg

0cee
Jaisibal 1 Q|
woJ} anjea
9ZI8 ansllal

T

0rec
(uonoruysur 1|7 “6°8)
Jeisibal 1 Q|
JO sjUsjUCo 03 ebueyos
10 uoneolipul Heme

0l Ol

»—— 00€T

US 9,990,494 B2

Sheet 11 of 12

Jun. §,2018

U.S. Patent

09¥¢C
Jgysibal 1| ol
3}oeg BUNNOJ aJemew
-liue Ag palypous se
1q| Jos anjeA azis peo|

T

0sve (0724 Ll ©Id
aunno.J aJemew SMS| 40 188 payoed
-ue AQ sYSI1018s k— pue 1 Q| payoeo ajelaushb — 00T
pue || 0) epew JalJes 0] sS40 18s pue | Q| Adoo
sSUONBOLIPOW 81BIsuIal) (uaA0 uonoadsul sunnod pJenb)

oeve
&popnpuod

uonpadsul Y)Im 1UsisIsuoo Ja)sibal
1Q| woJy anjea
ozIS

0cve
JoysiBal |]
woJj enjea
9ZIS aAsL)al

1

olve
(uononysul 1|7 “B'9)
JaisiBal 1 Q]
O sjusuod 0} abueyd
10 UoneoIpUI Jieme

US 9,990,494 B2

Sheet 12 of 12

Jun. §,2018

U.S. Patent

¢l 9Old »— 000€
> 066
- soepa 56
= 3596 5566 N
N0 J18||0u0d J18||0U0d
696
abelols aoBla)UI
296 as96 as66 —
sbeio)s |— Jsjonuos 18]|01U0D m\m,m
8|ne|joA-Uou ebelo)s soBalUI HoMied
_ 196 BG06 BG66 T I T I
096 afbelioys |— Jgjjonuoo J9||jou0o EEE _nmu __" _" " " " " " " " " "__
abelois a|ejon sbelo)s 2oBlSUI @ ITTTTITTITITTIT
OO O aoroo
// 026
656
|
056 586
wesuodwoo soelaUl |— — 086
Jossaooud Re|dsip —1 |

US 9,990,494 B2

1

TECHNIQUES FOR ENABLING
CO-EXISTENCE OF MULTIPLE SECURITY
MEASURES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of, claims the benefit of
and priority to previously filed U.S. patent application Ser.
No. 14/494,260 filed Sep. 23, 2014, entitled “TECH-
NIQUES FOR ENABLING CO-EXISTENCE OF MUL-
TIPLE SECURITY MEASURES”, the subject matter of
which is incorporated herein by reference in its entirety.

BACKGROUND

It has become commonplace to use anti-malware routines
to protect computing devices from unauthorized accesses,
takeovers, theft of information and other malicious opera-
tions performed by malicious software (malware) such as
computer “viruses” or “worms.” In recent years, malware
has become so pervasive that purveyors of operating sys-
tems have, of necessity, started to incorporate various pro-
tection measures into those operating systems. Unfortu-
nately, while building in such protections into an operating
system may provide many desirable benefits by effectively
“hardening” an operating system against attack, such an
approach can also have the effect of making the use of
additional security measures with those operating systems
more difficult.

Specifically, anti-malware features built into operating
systems tend to restrict access to components of those
operating systems that ironically need to be accessible to
anti-malware software that may be installed alongside those
operating system to protect those components and/or other
components of those operating systems. By way of example,
anti-malware software (e.g., also commonly referred to as
“anti-virus” or “intrusion protection” software) often
requires access to components of an operating system that
respond to or control responses to hardware and/or software
interrupts employed in context switching, responding to
various events that may arise during the performance of
various functions. Interrupt handling is a core function of
many operating systems, and both the kernel components
and kernel data structures that implement and support inter-
rupt handling may be used as a “choke point” in a flow of
execution of instructions either to perform malicious opera-
tions or to detect and prevent them.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example embodiment of a secured
processing system.

FIG. 2 illustrates an alternate example embodiment of a
secured processing system.

FIG. 3 illustrates an example of generating an IDT and a
set of ISRs according to an embodiment.

FIG. 4 illustrates example embodiments of using an IDT
and a set of ISRs according to an embodiment.

FIG. 5 illustrates an example embodiment of controlling
modification of an IDT and a set of ISRs by a kernel
component according to an embodiment.

FIG. 6 illustrates an example embodiment of undoing
modifications to an IDT and a set of ISRs in preparation for
an inspection of kernel components according to an embodi-
ment.

15

25

40

45

50

55

60

2

FIG. 7 illustrates an example embodiment of reinstating
modifications to an IDT and a set of ISRs following an
inspection of kernel components according to an embodi-
ment.

FIGS. 8-11 each illustrate a logic flow according to an
embodiment.

FIG. 12 illustrates a processing architecture according to
an embodiment.

DETAILED DESCRIPTION

Various embodiments are generally directed to techniques
for enabling anti-malware software to co-exist with protec-
tive features incorporated into an operating system of a
computing device. A guard routine of the operating system
may recurringly perform an inspection of various kernel
components of the operating system, including an interrupt
descriptor table (IDT) and/or a set of interrupt service
routines (ISRs), to detect unauthorized changes thereto.
Unfortunately, changes made by an anti-malware routine
that co-exists with the operating system may be determined
by the guard routine to be unauthorized changes. To prevent
this response, the anti-malware routine detects the start of
such an inspection by the guard routine and responds by
undoing a multitude of changes earlier made by the anti-
malware routine to at least one or both of the IDT and the
ISRs ahead of the inspection by the guard routine to prevent
the guard routine from detecting those earlier made changes.
The anti-malware routine subsequently detects the end of the
inspection and responds by putting those changes to at least
one or both of the IDT and the ISRs back in place.

A guard routine of an operating system may make use of
a virtual machine component to recurringly stop execution
of most other routines by a processor component of a
computing device to enable the guard routine to have
relatively uninterrupted access to various kernel components
and/or data structures of the operating system for a brief
period of time. During that brief period, the guard routine
may inspect those kernel components and/or kernel data
structures for indications of unauthorized changes. Among
those kernel components may be a set of ISRs that include
executable instructions to respond to interrupts and among
those kernel data structures may be an IDT that includes
pointers to the start of executable instructions for individual
ones of the ISRs. For some kernel components and/or data
structures, it may be that no changes are authorized such that
the guard routine attempts to confirm that those kernel
components and/or kernel data structures are completely
unchanged from an original state. For other kernel compo-
nents and/or data structures, it may be that some limited
changes that may include changes made by other kernel
components may be authorized. By way of example, some
limited degree of change to the IDT and/or the set of ISRs
(e.g., changes to particular entries in the IDT and/or par-
ticular ones of the ISRs) may be authorized and/or expected
to occur such that the guard routine may not determine those
changes to be unauthorized. However, other changes made
to the IDT and/or the set of ISRs (e.g., any change to other
particular entries in the IDT and/or other particular ones of
the ISRs) may be determined by the guard routine to be
unauthorized by the guard routine.

As part of detecting and stopping malicious activity by
malware, an anti-malware routine may modify various ker-
nel components and/or data structures to cause the anti-
malware routine to at least be provided with an indication of
whenever specific actions that may be those of malware are
taking place or are about to take place. By way of example,

US 9,990,494 B2

3

the anti-malware routine may modify one or more of the
ISRs to insert executable instructions to notify the anti-
malware routine when particular ones of the ISRs are called
and/or to cause a flow execution of instructions to jump
away from one or more the ISRs to the anti-malware routine
to enable the anti-malware routine to determine whether
execution of those ISRs should be allowed to proceed.
Alternatively or additionally, the anti-malware routine may
modify one or more of the ISRs by replacing them through
changing pointers within the IDT. The IDT may include a set
of pointers that each point to an address at which the first
executable instruction of an ISR is located in a storage of the
computing device. Instead of modifying the executable
instructions of an ISR, the anti-malware routine may alter
the pointer within the IDT associated with that ISR to point
to the first executable instruction of an alternate version of
that ISR that includes the changes that the anti-malware
routine might otherwise have made directly to the execut-
able instructions of that ISR.

In some embodiments, one or more components of the
computing device may incorporate various security features
that may be deemed desirable to use in cooperation with the
anti-malware routine, or that may require the support of the
anti-malware routine to be used by other software. By way
of example, a processor component and/or other circuitry of
the computing device (e.g., circuitry of a support chipset)
may incorporate an encryption engine, a secure storage in
which security credentials may be stored, a secure data
pathway between two or more components, logic to generate
and/or verify security credentials, etc. The operating system
may not have originally been created to make use of at least
particular implementations of such security features and/or
those security features may otherwise be intended to be
accessible only under control of the anti-malware routine. To
enable use of such security features, the anti-malware rou-
tine may modify one or more of the ISRs as previously
described. Alternatively or additionally, the anti-malware
routine may modify the set of ISRs to add one or more ISRs
to enable use of such security features. Correspondingly, the
anti-malware routine may modify the IDT to add one or
more pointers corresponding to the one or more added ISRs.

In some embodiments, a processor component of the
computing device may incorporate an IDT register (IDTR)
to maintain at least a pointer to the location in the storage of
the IDT. The IDT register may also maintain an indication
of the quantity of the size of the IDT. Such a size value may
either indicate the current size of the IDT or an upper limit
on the size of the IDT. Such a size value within the IDT
register may specify the size of the IDT in terms of a
quantity of bits, bytes, words, doublewords, quadwords, etc.,
or in terms of a quantity of entries within the IDT, each of
which may include a pointer to one of the ISRs. In such
embodiments, and where the anti-malware routine modifies
the IDT to add one or more of such entries that correspond
to one or more ISRs added to the set of ISRs by the
anti-malware routine, the anti-malware routine may modify
the indication of size of the IDT maintained within the IDTR
to reflect the increase in size of the IDT as a result of the
added one or more entries.

As part of preparing to inspect kernel components and/or
data structures, the guard routine may alter the contents of
the IDTR to point to a guard IDT that, in turn, contains
pointers to a set of guard ISRs under the control of the guard
routine. The guard routine and/or other component(s) of the
operating system may provide a greater degree of protection
to the guard IDT and/or set of guard ISRs, including not
permitting any modification of either, including by other

10

15

20

25

30

35

40

45

50

55

60

65

4

components of the operating system. Modifying the IDTR to
point to the guard IDT, and therethrough, to the set of guard
ISRs may be part of a mechanism employed by the guard
routine to prevent at least some other routines from taking
control of the computing device away from the guard routine
in a manner that may thwart the inspections that the guard
routine performs. More specifically, attempts to call an ISR
while the other IDT and other set of ISRs are in place
through modification of the IDTR may ultimately result in a
call back to a portion of the guard routine, instead of to
another routine as part of an attempt to circumvent the guard
routine. Alternatively or additionally, the guard routine may
cooperate with a component of the operating system (or
other routine that accompanies the operating system) imple-
menting virtual machine (VM) support to at least momen-
tarily prevent software executed within one or more other
VMs from executing, while allowing a VM in which at least
the guard routine is executed to continue executing.

The anti-malware routine may receive indications of
attempts to modify the IDTR and/or modifications that have
been made to the IDTR. The anti-malware routine may
respond to those indications by retrieving and analyzing
information concerning those modifications to determine if
the modifications are by the guard routine in preparation for
inspecting kernel components and/or data structures. Upon
determining that the guard routine is about to perform such
an inspection, the anti-malware routine may undo modifi-
cations that it has made to one or more kernel components
or data structures, including one or both of the IDT and the
set of ISRs, the inspection begins. More precisely, the
anti-malware routine may return the IDT and/or the set of
ISRs to the state they were in before the anti-malware
routine made changes to one or both of them. Alternatively,
where one or more kernel components have attempted to
modify the IDT and/or the set of ISRs since the last time the
guard routine inspected one or both of them, the anti-
malware routine may place the IDT and/or the set of ISRs
into a state consistent with the changes by the one or more
kernel components having been made, but not including the
changes made by the anti-malware routine.

Following the inspection of at least the IDT and/or the set
of ISRs by the guard routine, the guard routine may again
alter the contents of the IDTR to once again point to the IDT,
instead of pointing to the guard IDT. Again, the anti-
malware routine may receive indications of such altering of
the IDTR, and may retrieve and analyze information con-
cerning such modifications to the IDTR to determine if the
modifications are by the guard routine in concluding an
inspection. Upon determining that the guard routine has
concluded an inspection from that analysis, the anti-malware
routine may reinstate its modifications to various kernel
components and/or data structures, including the IDT and/or
the set of ISRs.

With general reference to notations and nomenclature
used herein, portions of the detailed description which
follows may be presented in terms of program procedures
executed on a computer or network of computers. These
procedural descriptions and representations are used by
those skilled in the art to most effectively convey the
substance of their work to others skilled in the art. A
procedure is here, and generally, conceived to be a self-
consistent sequence of operations leading to a desired result.
These operations are those requiring physical manipulations
of physical quantities. Usually, though not necessarily, these
quantities take the form of electrical, magnetic or optical
signals capable of being stored, transferred, combined, com-
pared, and otherwise manipulated. It proves convenient at

US 9,990,494 B2

5

times, principally for reasons of common usage, to refer to
these signals as bits, values, elements, symbols, characters,
terms, numbers, or the like. It should be noted, however, that
all of these and similar terms are to be associated with the
appropriate physical quantities and are merely convenient
labels applied to those quantities.

Further, these manipulations are often referred to in terms,
such as adding or comparing, which are commonly associ-
ated with mental operations performed by a human operator.
However, no such capability of a human operator is neces-
sary, or desirable in most cases, in any of the operations
described herein that form part of one or more embodiments.
Rather, these operations are machine operations. Useful
machines for performing operations of various embodiments
include general purpose digital computers as selectively
activated or configured by a computer program stored within
that is written in accordance with the teachings herein,
and/or include apparatus specially constructed for the
required purpose. Various embodiments also relate to appa-
ratus or systems for performing these operations. These
apparatus may be specially constructed for the required
purpose or may include a general purpose computer. The
required structure for a variety of these machines will appear
from the description given.

Reference is now made to the drawings, wherein like
reference numerals are used to refer to like elements
throughout. In the following description, for purposes of
explanation, numerous specific details are set forth in order
to provide a thorough understanding thereof. It may be
evident, however, that the novel embodiments can be prac-
ticed without these specific details. In other instances, well
known structures and devices are shown in block diagram
form in order to facilitate a description thereof. The intention
is to cover all modifications, equivalents, and alternatives
within the scope of the claims.

FIG. 1 illustrates a block diagram of an embodiment of a
secured processing system 1000 incorporating one or more
of a remote device 100 and a computing device 500. The
computing device 500 and the remote device 100 may
exchange data 130 that may be stored by one and/or the
other, and which it may be deemed desirable to keep secure.
An anti-malware routine 470 may cooperate with at least an
operating system 270 of the computing device 500 to
provide security in various ways, including and not limited
to controlling access to the remote device 100, in controlling
access to the data 130 received therefrom, in encrypting the
data 130 for transmission or storage, in employing security
credentials to perform authentication with the remote device
100, etc.

At least as part of initializing the computing device 500,
the operating system 270 may generate an interrupt descrip-
tion table (IDT) 231 and a corresponding set of interrupt
service routines (ISRs) 241 that are pointed to by pointers
maintained within entries within the IDT 231. The operating
system 270 may also modify the contents of an IDT register
(IDTR) 551 of a processor component 550 of the computing
device 500 to point to the IDT 231. As part of monitoring for
malicious activities by malware that may become installed
and/or active within the computing device 500, and/or as
part of enabling one or more security features of the com-
puting device 500, the anti-malware routine 470 may modify
the IDT 231 and/or the set of ISRs 241.

On a recurring basis a guard routine 370 associated with
the operating system 270 may inspect various kernel com-
ponents and/or data structures of the operating system 270,
including one or both of the IDT 231 and the set of ISRs 241.
In so doing, the guard routine 370 may modify the contents

10

15

20

25

30

35

40

45

50

55

60

65

6

of the IDT register 551 to point to a guard IDT 331, which
may include pointers that point to ISRs of a set of guard ISRs
341. In response to an indication that the IDT register 551
has been modified, and in response to determining that the
modification is in preparation for such an inspection, the
anti-malware routine 470 may undo its modifications to the
IDT 231 and/or the set of ISRs 241 prior to their inspection
by the guard routine 370. Upon concluding such an inspec-
tion, the guard routine 370 may modify the contents of the
IDT register 551 to again point to the IDT 231. In response
to an indication that the IDT register 551 has been modified,
and in response to determining that the modification is
associated with concluding such an inspection, the anti-
malware routine 470 may reinstate its modifications to the
IDT 231 and/or the set of ISRs 241.

As depicted, these computing devices 100 and 500
exchange signals conveying data (e.g., the data 130) through
a network 999, and may employ one or more security
features of the computing device 500 in so doing. However,
one or more of these computing devices may exchange other
data entirely unrelated to data that is deemed desirable to
keep secure with each other and/or with still other comput-
ing devices (not shown) via the network 999. In various
embodiments, the network 999 may be a single network
possibly limited to extending within a single building or
other relatively limited area, a combination of connected
networks possibly extending a considerable distance, and/or
may include the Internet. Thus, the network 999 may be
based on any of a variety (or combination) of communica-
tions technologies by which signals may be exchanged,
including without limitation, wired technologies employing
electrically and/or optically conductive cabling, and wireless
technologies employing infrared, radio frequency or other
forms of wireless transmission.

In alternate embodiments, the remote device 100 and the
computing device 500 may be coupled to the computing
device 500 in an entirely different manner In still other
embodiments, one or more of the data 130 may be conveyed
among these computing devices via removable media (e.g.,
a FLASH memory card, optical disk, magnetic disk, etc.).

In various embodiments, the computing device 500 may
incorporate one or more of the processor component 550, a
storage 560, controls 520, a display 580, a security controller
600 and an interface 590 to couple the computing device 500
to the network 999. The processor component 550 may
incorporate one or more of the IDT register 551 and a
monitoring unit 554. The monitoring unit 554 may monitor
at least the IDT register 551 for changes in the contents
thereof, and may be configurable to provide indications of
such changes. The storage 560 stores one or more of the data
130, the operating system 270, the guard routine 370, the
anti-malware routine 470, a security cache 466 and an
application routine 770. The controller 600 incorporates one
or more of a processor component 650, one or more security
features 652 and a storage 660. The storage 660 stores a
security routine 670.

The one or more security features 652 may include any of
a variety of mechanisms to control access to the computing
device 500, to monitor the contents of what is sent or
received via the interface or by other mechanisms of
exchanging data for malware, may encrypt data (e.g., the
data 130) for storage within the storage 560, may provide a
secure pathway for multimedia data received from the
network 999 to be routed to the display 580 for presentation
without being intercepted, etc. More specifically, the secu-
rity features 652 may include hardware logic to enhance
encryption/decryption, to generate and/or match keys and/or

US 9,990,494 B2

7

signatures, to generate and/or use hashes, etc. The security
controller 600 may be incorporated into a support chipset of
the computing device 500 that provides support for the
operation of the processor component 550, such as provid-
ing an interface for the processor component 550 to the
storage 560, providing a coupling to one or more busses
within the computing device 500 and/or extending exter-
nally of the computing device 500, providing one or more
timing clocks, etc.

The security routine 640 incorporates a sequence of
instructions operative on the processor component 650 in its
role as a controller processor component of an operating
environment of the security controller 600 that may isolated
from the operating environment of the processor component
550 of the computing device 500. By way of example, the
storage 660 may be isolated from access by the processor
component 550 such that security credentials (e.g., keys,
hashes, digital signatures, etc.) may be securely stored
therein without the concern that malware executing within
the environment of the processor component 550 will be
able to cause the processor component to access them.
Operating within such an isolated environment, the proces-
sor component 650 may retrieve from the storage 660 and
execute instructions of the security routine 670 to perform
various operations either in support of the security feature(s)
652 or as part of implementing the security feature(s) 652.

However, as depicted in FIG. 2, in alternate embodiments,
the computing device 500 may not incorporate such a
security controller, and instead, the processor component
550 itself may incorporate one or more security feature(s)
552. In such alternate embodiments, the security features(s)
552 may include a processing circuit to perform encryption,
decryption, a hash, etc., to augment other processing per-
formed by the processing component 550. As will be
explained in greater detail, in embodiments of both FIGS. 1
and 2, the anti-malware routine 470 may modify at least the
IDT 231 and/or the set of ISRs 241 to enable use of the
security feature(s) 552 and/or 652 by one or more of the
operating system 270, the anti-malware routine 470 and the
application routine 770.

Returning to FIG. 1, one or more of the operating system
270, the guard routine 370, the anti-malware routine 470 and
the application routine 770 may incorporate instructions
operative on the processor component 550 in its role as a
main processor component of the computing device 500 to
implement logic to perform various functions. As depicted,
the operating system 270 may incorporate one or both of
kernel components 240 that may include sequences of
executable instructions that may be executed as the operat-
ing system 270 is executed, and kernel data structures 230
that may include various pieces of configuration information
to control execution of the operating system 270, including
its kernel components 240. The kernel components may
include the set of ISRs 241 and the kernel data structures
may include the IDT 231. As also depicted, the guard routine
370 may incorporate one or both of the set of guard ISRs 341
that may each include a sequence of executable instructions
that may be executed as the guard routine 370 is executed,
and the guard IDT 331. As further depicted, the anti-
malware routine may incorporate one or more of data
structure change data 430, component change data 440, a
change component 471, a monitoring component 474 and a
cache component 476. The component change data 440 may
include ISR change data 441 made up of indications of
changes to be made to the set of ISRs 241 by the anti-
malware routine 470. Correspondingly, the data structure
change data 430 may include IDT change data 431 made up

10

15

20

25

30

35

40

45

50

55

60

65

8

of indications of changes to be made to the IDT 231 by the
anti-malware routine 470. At least the components 471, 474
and 476 may each incorporate a sequence of executable
instructions that may be executed as the anti-malware rou-
tine 470 is executed. In various embodiments, the operating
system 270 may be one numerous versions of the Win-
dows™ operating system offered by Microsoft® Corpora-
tion of Redmond, Wash., and the guard routine 370 may be
a routine found in some versions of the Windows™ oper-
ating system that is sometimes referred to as the “patch-
guard” routine.

FIG. 3 depicts an example embodiment of generation and
preparation of the IDT 231 and the set of ISRs 241 for use
in a manner that includes monitoring by the anti-malware
routine 470. In executing one or more of the kernel com-
ponents 240 of the operating system 270, at least during
initialization of the computing device 500 and/or the pro-
cessor component 550 after a resetting or a powering on of
the computing device 500, the processor component 550
may generate one or both of the IDT 231 and the set of ISRs
241. The processor component 550 may also load the IDT
register 551 with a pointer that points to an address location
within the storage 560 at which the IDT 231 may be stored,
and/or an indication of the size of the IDT 231. In some
embodiments, such loading of the IDT register 551 may
entail the use of a “load IDT” (LIDT) instruction that may
be executable by the processor component 550. Such an
instruction may load both the pointer to the IDT 231 and the
indication of size of the IDT 231 together, or may be capable
of loading each separately, into the IDT register 551.

The value in the IDT register 551 that indicates the size
of the IDT 231 may specify the size as a quantity of bits,
bytes, words, doublewords, quadwords, etc. Alternatively,
the size of the IDT 231 may be specified as a quantity of
entries, each of which may include a pointer to a separate
ISR of the set of ISRs 241. Again, regardless of the manner
in which the size value specifies a size, that specified size
may be the current size of the IDT 231 or may be an upper
limit on the size of the IDT 231. Indeed, during normal
operation of the computing device 500 in which the oper-
ating system 270 and/or the application routine 770 is
executed, and the guard routine 370 is not executed to
perform an inspection, the IDT register 551 may be expected
to store an expected size value that specifies an upper limit
on the size of the IDT 231. The loading and maintaining of
such an upper limit may be deemed a desirable approach to
enabling a selected degree of modification of the IDT 231
that may commonly be required for execution of the oper-
ating system 270 and/or the application 770 within the
computing device 500. As familiar to those skilled in the art,
the loading of a size value representing a maximum size
within the IDT register 551 may also be indicative of an
upper limit on the amount of contiguous storage space
within the storage 560 that may be pre-allocated for the IDT
231. The monitoring unit 554 of the processor component
550 may monitor various other portions of the processor
component 550 for the occurrence of various events that
may include instances of loading values into the IDT register
551.

In executing the anti-malware routine 470, the processor
component 550 may provide the monitoring component 474
with an indication from the monitoring unit 554 that at least
a pointer value has been loaded into the IDT register 551. In
response, the monitoring component 474 may retrieve at
least that pointer value and provide it to the cache compo-
nent 476 to use in accessing the IDT 231 and the set of ISRs
241, making copies of both, and storing those copies within

US 9,990,494 B2

9

the storage 560 as a cached IDT 463 and a cached set of ISRs
464, respectively, of the security cache 466. Again, the IDT
231 includes pointers to the locations of the first executable
instruction of each ISR of the set of ISRs 241, thereby
enabling the cache component to retrieve a copy of each of
those ISRs for storage as part of the cached set of ISRs 464.
The cache component 476 may also store a copy of that
pointer value as a cached IDTR 465 of the security cache
466. In some embodiments, such retrieval of at least the
pointer value from the IDT register 551 may entail the use
of' a “save IDT” (SIDT) instruction that may be executable
by the processor component 550. Such an instruction may
save both the pointer value and a value indicating the size of
the IDT 231 to a location within the storage 560 specified in
that instruction (e.g., the location at which the cached IDTR
465 is stored in the storage 566).

The monitoring component 474 may also provide at least
the pointer value retrieved from the IDT register 551 to the
change component 471 to use in accessing the IDT 231
and/or the set of ISRs 241 to make modifications thereto.
Again, the IDT 231 includes pointers to the locations of the
first executable instruction of each ISR of the set of ISRs
241, thereby enabling the change component to access each
of'the ISRs of the set of ISRs 241 that the change component
471 is to modity. In so doing, the change component 471
may retrieve indications of the modifications to make to the
IDT 231 from the IDT change data 431 of the data structure
change data 430 stored within the storage 560. Correspond-
ingly, the change component 471 may also retrieve indica-
tions of modifications to make to the set of ISRs 241 from
the ISR change data 441 of the component change data 440
stored within the storage 560.

As has been discussed, among the changes that may be
made to the set of ISRs 241 may be modifications to the set
of ISRs 241 to add one or more additional ISRs to provide
support for the use of security features of the computing
device 500, such as the security feature(s) 652 that may be
incorporated into the security controller 600 depicted in
FIG. 1 and/or the security feature(s) 552 that may be
incorporated the processor component 550 as depicted in
FIG. 2. Corresponding to such changes in the set of ISRs 241
may also be modifications to the IDT 231 to add one or more
additional entries to add pointers to the one or more addi-
tional ISRs.

As the cache component 476 copies the IDT 231 and/or
the set of ISRs 241, and/or as the change component 471
modifies the IDT 231 and/or the set of ISRs 241, the
anti-malware routine 470 may cooperate with a kernel
component 240 or another routine otherwise associated with
the operating system to prevent or delay execution of one or
more other routines (e.g., the application routine 770) to
avoid the possibility of at least some interrupt calls being
made. For example, the anti-malware routine 470 may
cooperate with a component or other routine associated with
the operating system 270 that implements virtual machine
(VM) support to at least momentarily prevent software
executed within one or more VMs other than the VM within
which the anti-malware routine 470 executes from executing
to prevent interference with the copying and/or modification
of the IDT 231 and/or the set of ISRs 241.

It should be noted that although the caching of the IDT
231 and/or the set of ISRs 241 by the cache component 476
is specifically depicted, as has been previously discussed,
others of the kernel data structures 230 and/or others of the
kernel components 240 may be also be cached such that
copies thereof are stored within the security cache 486 in
addition to one or both of the IDT 231 and the set of ISRs

20

25

40

45

50

60

10

241. It should also be noted that although the changing of the
IDT 231 and/or the set of ISRs 241 by the change compo-
nent 471 is specifically depicted, as has also been previously
discussed, others of the kernel data structures 230 and/or
others of the kernel components 240 may also be changed in
support of detecting malicious operations by malware and/or
in support of the security feature(s) 552 and/or 652.

Returning to FIG. 1, with the IDT 231 and the set of ISRs
241 generated by the operating system 270 and then altered
by the anti-malware routine 470, other routines may make
use of the set of ISRs 241 to make use of the security
feature(s) 552 and/or 652, and/or may make use of the set of
ISRs 241 with the anti-malware routine 470 monitoring such
use for indications of malicious activity by malware. By way
of example, the application routine 770 may be configured
to make use of the security feature(s) 552 and/or 652, and
may be configured to do so by calling (either directly, or
indirectly through a portion of the operating system 270) one
or more of the additional ISRs added by the anti-malware
routine 470 to the set of ISRs 241. By way of another
example, one or more of the kernel components 240 may
make calls to ISRs of the set of ISRs 241, and the anti-
malware routine 470 may intercept such calls through the
earlier made changes to the set of ISRs 241 to analyze the
calls to determine whether they are made on behalf of
malware or to otherwise perform a malicious operation.

FIG. 4 depicts an example embodiment of the using the
IDT 231 and the set of ISRs 241, as modified by the
anti-malware routine 470, to in handle interrupt calls. As
familiar to those skilled in the art, a call to a particular ISR
must be correlated to an address of a location within the
storage 560 at which the first executable instruction of that
ISR is located. Such correlation may entail retrieving the
pointer value of the IDT register 551 that indicates the base
address of the IDT 231 (e.g., the location of the first entry of
the IDT 231). Using the base address of the IDT 231, the
address at which the first executable instruction of the
particular ISR is retrieved from a pointer to that particular
ISR in an entry within the IDT 231 that correlates to that
particular ISR. As depicted, either a kernel component 240
or the application routine 770 may make a call to a particular
one of the ISRs of the set of ISRs 241, such as a modified
ISR 2424 pointed to by a pointer 232a¢ within the IDT 231
or an added ISR 2425 pointed to by a pointer 2325 added to
the IDT 231.

The modified ISR 2424 may be an ISR generated and/or
otherwise made available for use by a kernel component 240
of the operating system 270. The modified ISR 242a may
then have been modified from that original state by the
change component 471 of the anti-malware routine 470 to
add executable instructions to redirect the flow of execution
from the modified ISR 242a to the anti-malware routine 470
to analyze aspects of the interrupt call to determine whether
the interrupt has been called to perform a malicious opera-
tion. In some embodiments, if the anti-malware routine 470
determines that the interrupt call is to cause a malicious
operation to be performed, then the anti-malware routine
470 may cause the flow of execution that includes that
interrupt call to be stopped. Alternatively, if the anti-mal-
ware routine 470 determines that the interrupt call is not to
cause a malicious operation to be performed, then the
anti-malware routine 470 may redirect the flow of execution
back to the modified ISR 2424 to enable performance of the
modified ISR 242a followed by a return to the routine that
made the interrupt call to the modified ISR 2424 (e.g., one
of the kernel components 240 or the application routine
770).

US 9,990,494 B2

11

The added ISR 2425 may be an ISR added to the set of
ISRs 241 to enable or in another way support the use of a
security feature 552 or 652. The change component 471 of
the anti-malware routine 470 may have modified the set of
ISRs 241 to expand it to add the added ISR 2425 thereto. As
has been discussed, the change component 471 may make
the corresponding addition of another entry in the IDT 231,
including the addition of the pointer 23254 pointing to the
added ISR 242b. Again, the change component 471 may
have also modified the contents of the IDT register 551 to
increase the size of the IDT 231 indicated by a value therein
to reflect the addition of at the entry that includes the pointer
232b to the added ISR 2425b.

As further depicted, a kernel component 240 may make an
interrupt call to cause the execution of one of the ISRs of the
set of ISRs 241 in response receiving an indication of an
occurrence of an event associated with a hardware compo-
nent of the computing device 500, such as the controls 520,
the display 580, the interface 590, and/or one or more of the
security features 552 or 652. Alternatively, and as familiar to
those skilled in the art, the execution of an ISR of the set of
ISRs 241 may be more directly triggered by a hardware-
based interrupt signal generated by a hardware component.
Regardless of the exact manner in which an event associated
with a hardware component brings about execution of an
ISR of the set of ISRs 241, such execution of an ISR may
lead to signaling the same hardware component or another
hardware component to take an action in response to the
event. By way of example, an ISR of the set of ISRs 241 may
be caused to be executed in response to an indication of the
receipt of a signal at the interface 590 from the remote
device 100 that is associated with an exchange of the data
130. The signal may be an indication that a security creden-
tial has been received from the remote device 100, that a
transmission of an encrypted portion of the data 130 to the
remote device 100 has been completed, etc. In response to
this, the executable instructions of the added ISR 2425 may
be caused to be executed to employ one of the security
features 552 or 652 to verify the received credential, to
encrypt another portion of the data 130 for transmission via
the interface 590, etc.

Returning to FIG. 1, as previously discussed, over time,
one or more of the kernel component 240 may attempt to
make modifications to the IDT 231 and/or the set of ISRs
241, and may do so long after both were originally generated
following initialization or a reinitialization of the processor
component 550 and/or the computing device 500. As rec-
ognizable to those skilled in the art, such a change sought to
be made by one of the kernel components 240 may be
deemed authorized by the guard routine, but may conflict
with a change made by the anti-malware routine 470. It may
be deemed desirable to, at least initially, prevent such a
change by a kernel component 240 from taking immediate
effect by providing that kernel component 240 a virtual
version of the IDT 231 and/or the set of ISRs 241 to make
such changes to. Alternatively or additionally, it may be
deemed desirable to enable the anti-malware component 470
to selectively allow or disallow the changes sought to be
made by a kernel component 240.

FIG. 5 depicts an example embodiment of controlling
modification subsequently made by a kernel component 240
to the IDT 231 and/or the set of ISRs 241. As familiar to
those skilled in the art, various ones of the kernel compo-
nents 240 and/or of the kernel data structures 230 may be
protected to at least some degree from unauthorized access
by storing them within the storage 560 within particular
memory pages that are subject to particular access restric-

5

10

15

20

25

30

35

40

45

50

55

60

65

12

tions, such as one or more of pages 566a as depicted.
Further, one or more of the cached IDTR 465, the cached
IDT 463 and the cached ISRs 464 may also be given similar
protection by storing them within the storage 560 within
other particular memory pages that are also subject to
particular access restrictions, such as one or more of the
pages 5665 as depicted. Given the differences in uses to
which the IDT 231 and the set of ISRs 241 are put versus the
uses to which the cached IDTR 465, the cached IDT 463 and
the cached ISRs 464 are put, the particular access restric-
tions imposed on the pages 566a and 5665, respectively,
may be also be different.

As depicted, a kernel component 240 may seek to make
a change to the IDT 231 and/or the set of ISRs 241.
However, given that the IDT 231 and/or the set of ISRs 241
may include multiple modifications made by the change
component 471 of the anti-malware component 470, and
given that the changes sought to be made by the kernel
component 240 may conflict with one or more of those
modifications, it may be deemed undesirable to allow that
kernel component to have access to the IDT 231 or the set
of ISRs 241. Therefore, the cache component 476 of the
anti-malware component 470 may cooperate with another
kernel component 240 associated with managing pages of
storage space within the storage 560 (or with entirely
different routine that is associated with managing such pages
of storage space) to provide access to use a storage page
swapping mechanism to provide the kernel component 240
seeking to make changes with access to the copies made of
the IDT 231 and the set of ISRs 241 prior to modification by
the change component 471. Stated differently, the kernel
component 240 seeking to make changes is provided with a
virtual version of the IDT 231 and the set of ISRs 241 in the
form of the cached IDT 463 and the cached set of ISRs 464
stored within the pages 56654, instead of the IDT 231 and the
set of ISRs 241 stored within the pages 566a.

Alternatively or additionally, the cache component 476
may analyze the changes sought to be made by that kernel
component 240 to selectively allow or disallow those
changes to be made to the cached IDT 463 and/or the cached
set of ISRs 464. In some embodiments, whether to allow or
disallow a change by a kernel component 240 may be based
on whether the change would conflict with a change made by
the change component 471 to the IDT 231 and/or the set of
ISRs 241. In other embodiments, whether to allow or
disallow a change by a kernel component 240 may be based
on an analysis of the change sought to be made to determine
whether the change performs and/or enables performance of
a malicious operation.

If the change sought to be made by a kernel component
would result in the addition of one or more additional ISRs
such that the IDT size indicated within the IDT register 551
is also changed by that kernel component 240, then the
monitoring component 474 may convey an indication of the
fact of such a change and the new value indicating size to the
cache component 476 from the monitoring unit 554. The
cache component 476 may employ such an indication from
the monitoring component 474 as part of determining
whether or not to allow the change sought to be made by that
kernel component 240 and/or may store the altered indica-
tion of size within the cached IDTR 465. If the cache
component 476 determines that a change sought to be made
by a kernel component 240 that would require changing the
indication of size is to be disallowed, then the cache com-
ponent 476 may act to cause the size value stored within the
IDT register 551 to be changed back to the value it had
before that kernel component 240 acted to change it.

US 9,990,494 B2

13

Returning to FIG. 1, regardless of whether any changes to
the IDT 231 or the set of ISRs 241 are ever sought to be
made by a kernel component 240 or any other routine other
than the anti-malware routine 470, as previously discussed,
the anti-malware routine 470 may respond to an indication
that the guard routine 370 is about to inspect one or more of
the kernel components 240 and/or one or more of the kernel
data structures 230 by undoing the changes made by the
anti-malware routine 470 to the IDT 231 and/or the set of
ISRs 241. Again, during one of the recurring inspections of
kernel components 240 and/or kernel data structures 230,
the guard routine 370 is presented with at least the IDT 231
and the set of ISRs 241 in the state that they would be
expected to be in were the anti-malware routine 470 not
present and/or not being executed within the computing
device 500.

FIG. 6 depicts an example embodiment of undoing modi-
fications made to the IDT 231 and/or the set of ISRs 241 in
preparation for an inspection by the guard routine 370. In
executing the guard routine 370 to prepare to perform an
inspection, the processor component 550 may modify the
contents of the IDT register 551 by loading a pointer value
to point to where the guard IDT 331 is stored within the
storage 560, instead of to where the IDT 231 is stored within
the storage 560. The processor component 550 may further
modify the contents of the IDT register 551 by loading a
value indicating the size of the guard IDT 331, instead of the
size of the IDT 231. Again, in so doing, a LIDT instruction
may be used to so modify the contents of the IDT register
551. Not unlike the manner in which the size of the IDT 231
may be specified in the IDT register 551, the size of the
guard IDT 331 may be specified as a quantity of bits, bytes,
words, doublewords, quadwords, etc. Alternatively, the size
of the guard IDT 331 may be specified as a quantity of
entries, each of which may include a pointer to a separate
ISR of the set of guard ISRs 341.

The processor component 550 may then provide the
monitoring component 474 with an indication from the
monitoring unit 554 that a pointer value and a size value
have been loaded into the IDT register 551. In response, the
monitoring component 474 may retrieve that pointer value
and/or that size value, and may analyze at least the size value
to determine whether the loading of these values into the
IDT register 551 was done in preparation for an inspection
of kernel components 240 and/or kernel data structures 230
by the guard routine 370. More specifically, the monitoring
component 474 may compare the size value retrieved from
the IDT register 551 to a known size of at least one version
of the guard IDT 331. As previously discussed, the quantity
of ISRs making up the set of guard ISRs 341 may be
considerably less than the quantity of ISRs making up the set
of ISRs 241. With fewer ISRs making up the set of guard
ISRs 341, the size of the guard IDT 331 may be considerably
less than the size of the IDT 231. It should be noted that over
time, as new versions of the guard routine 370 are made
available for use in computing devices such as the comput-
ing device 500, there may be a new version of the guard IDT
331 with a different size such that there may be more than
one known size for the guard IDT 331. If the size value
retrieved from the IDT register 551 does not match any
known size of any version of the guard IDT 331, then the
monitoring component 474 may determine that the change
made to the contents of the IDT register 551 is not in
preparation for an inspection by the guard routine 370. In
response to thereby determining that an inspection by the
guard routine is not about to occur, the monitoring compo-
nent 474 may refrain from signaling either of the cache

20

25

40

45

14

component 476 or the change component 471 to take any
action. However, if the size value retrieved from the IDT
register 551 matches a known size of at least one version of
the guard IDT 331, then the monitoring component 474 may
determine that the change made to the contents of the IDT
register 551 is in preparation for the guard routine 370
perform an inspection, and thereby determine that an inspec-
tion is about to occur.

As an alternative mechanism to detect an impending
inspection in other embodiments, the monitoring component
474 may compare the size value retrieved from the IDT
register 551 to an expected size value associated with the
IDT 231 to determine if the size value retrieved from the
IDT register 551 is less than that expected size. Again, the
size value within the IDT register 551 may normally be set
to an expected maximum value indicating an upper limit on
the size of the IDT 231 during normal operation of the
computing device 500. Also again, the quantity of ISRs
making up the set of guard ISRs 341 may be considerably
less than the quantity of ISRs making up the set of ISRs 241
such that the size of the guard IDT 331 may be considerably
less than the size of the IDT 231, and thus, the size value
loaded into the IDT register 551 may be far smaller than the
size value normally within the IDT register 551 and asso-
ciated with the IDT 231. If the size value retrieved from the
IDT register 551 is the expect size value that is associated
with the IDT 231 and is normally within the IDT register 551
during normal operation of the computing device 500, then
a determination may be made that there is no impending
inspection, and the monitoring component 474 may refrain
from signaling either of the cache component 476 or the
change component 471 to take any action. However, if the
size value retrieved from the IDT register 551 is less than the
expected size value that is normally loaded therein and
associated with the IDT 231 during normal operation of the
computing device 500, then the monitoring component 474
may determine that an inspection by the guard routine 370
is about to occur.

In response to a determination by the monitoring com-
ponent 474 that an inspection is about to occur, the moni-
toring component 474 may signal the cache component 476
to undo the changes earlier made by the change component
471 to the IDT 231 and/or the set of ISRs 241. The cache
component 476 may do so by copying the cached IDT 463
and the cached set of ISRs 464 back to the locations within
the storage 560 at which the IDT 231 and the set of ISRs
241, respectively, are stored. In so doing, the cache compo-
nent 476 effectively replaces the versions of the IDT 231 and
the set of ISRs 241 that include the modifications earlier
made by the change component 471 with versions of the IDT
231 and the set of ISRs 241 that do not include those
modifications. As a result, the guard routine 370 will not
detect the modifications earlier made by the change com-
ponent 471, which the guard routine 370 might have deter-
mined to be unauthorized. This avoids the possibility that the
guard routine 370 may take an undesirable action in
response to determining that unauthorized changes have
been made to one or both of the IDT 231 and the set of ISRs
241.

As the cache component 476 copies the cached IDT 463
and/or the cached set of ISRs 464 back to the IDT 231 and/or
the set of ISRs 241, respectively, the anti-malware routine
470 may cooperate with a kernel component 240 or another
routine otherwise associated with the operating system to
prevent or delay execution of one or more other routines
(e.g., the application routine 770) to avoid the possibility of
at least some interrupt calls being made. For example, the

US 9,990,494 B2

15

anti-malware routine 470 may cooperate with a component
or other routine associated with the operating system 270
that implements VM support to at least momentarily prevent
software executed within one or more VMs from executing
to prevent interference with the copying operation to undo
the changes made to the IDT 231 and/or the set of ISRs 241
earlier by the change component 471.

As has been previously discussed, there may be occasions
when a kernel component 240 secks to modify one or both
of the IDT 231 and the set of ISRs 241 at times when the
guard routine 370 is not performing an inspection and when
the IDT 231 and/or the set of ISRs 241 have already been
modified by the change component 471. Again, in such
instances, the cache component 476 may cooperate with
another kernel component 240 or some other routine asso-
ciated with the operating system 270 to manage storage
pages of storage space within the storage 560 (as discussed
with regard to FIG. 5) to give the kernel component 240 that
seeks to make such changes access to the cached IDT 463
and/or the cached set of ISRs 464, instead of access to the
IDT 231 and/or the set of ISRs 241. As a result, the changes
sought to be made by that kernel component 240 are made
to the cached IDT 463 and/or the cached set of ISRs 464,
instead of being made to the IDT 231 and/or the set of ISRs
241. Further, the guard routine 370 is subsequently pre-
sented with the changes made by that kernel component 240
when the cached IDT 463 and/or the cached set of ISRs 464
are copied back to the IDT 231 and the set of ISRs 241 to
undo the modifications made by the change component 471,
thereby exposing the changes made by that kernel compo-
nent 240 to the inspection performed by the guard routine
370.

In this way, the anti-malware routine 470 is able to
co-exist with the guard routine 370 within the computing
device 500. The guard routine 370 is still able to perform its
inspections to look for changes made to kernel components
240 and/or kernel data structures 230, including changes
actually made by one or more of the kernel components 240
themselves, but is prevented from detecting the changes
made by the anti-malware routine 470 and/or in support of
using the security feature(s) 552 and/or 652.

It should be noted that although the copying of cached
versions of the IDT 231 and/or the set of ISRs 241 by the
cache component 476 back to the locations at which the IDT
231 and/or the set of ISRs 241 are maintained within the
storage 560 is specifically depicted, cached versions of
others of the kernel data structures 230 and/or others of the
kernel components 240 may be also be copied back to the
locations within the storage 560 from which they were
originally copied. Just as such copying of the cached ver-
sions of the IDT 231 and/or the set of ISRs 241 may be
performed to prevent changes made thereto by the change
component 471 of the anti-malware routine 470 from being
detected by the guard routine 370, such copying of cached
versions of others of the kernel data structures 230 and/or of
the kernel components 240 may also be performed to
similarly prevent changes similarly made thereto from also
being detected by the guard routine 370.

Following completion of an inspection by the guard
routine 370, and presuming that the guard routine does not
identify an unauthorized change made to the IDT 231 and/or
the set of ISRs 241 by another routine, the need for the
anti-malware routine 470 to continue to hide the changes it
makes to the IDT 231 and/or the set of ISRs 241 ends, at
least until the commencement of another such inspection. In
response to an indication of the conclusion of such an

10

15

20

25

30

35

40

45

50

55

60

65

16
inspection, the anti-malware routine 470 may reinstate its
changes to at least the IDT 231 and/or the set of ISRs 241.

FIG. 7 depicts an example embodiment of reinstating
modifications earlier made by the change component 471 to
the IDT 231 and/or the set of ISRs 241 following completion
of an inspection by the guard routine 370. In further execut-
ing the guard routine 370 to conclude an inspection, the
processor component 550 may again modify the contents of
the IDT register 551 by loading the pointer value that points
to where the IDT 231 is stored within the storage 560 back
into the IDT register 551 in place of the pointer value that
points to where the guard IDT 331 is stored within the
storage 560. The processor component 550 may further
modify the contents of the IDT register 551 by loading a
value indicating the size of the IDT 231, instead of the size
of'the guard IDT 331. Again, in so doing, a LIDT instruction
may be used to so modify the contents of the IDT register
551.

The processor component 550 may then provide the
monitoring component 474 with an indication from the
monitoring unit 554 that a pointer value and a size value
have been loaded into the IDT register 551. In response, the
monitoring component 474 may retrieve that pointer value
and/or that size value, and may analyze at least the size value
to determine whether the loading of these values into the
IDT register 551 was done in concluding an inspection of
kernel components 240 and/or kernel data structures 230 by
the guard routine 370.

In some embodiments, the monitoring component 474
may compare the size value retrieved from the IDT register
551 to the size value stored as part of the cached IDTR 465
that indicates the size of the IDT 231 without the modifi-
cations made by the change component 471 to determine if
these size values match. If the size value retrieved from the
IDT register 551 does not match the size value stored as part
of the cached IDTR 465, then the monitoring component
474 may determine that an inspection by the guard routine
370 is still underway. In response to determining that an
inspection by the guard routine is still ongoing, the moni-
toring component 474 may refrain from signaling either of
the cache component 476 or the change component 471 to
take any action. However, if the size value retrieved from the
IDT register 551 matches the size value stored as part of the
IDTR 465, then the monitoring component 474 may deter-
mine that the change made to the contents of the IDT register
551 indicates that the guard routine 370 has concluded its
inspection.

As an alternative mechanism to detect the conclusion of
an inspection in other embodiments, the monitoring com-
ponent 474 may compare the size value retrieved from the
IDT register 551 to known size(s) of one or more versions
of'the guard IDT 331 to determine if the size value retrieved
from the IDT register 551 is larger than any known size of
any version of the guard IDT 331. Again, the quantity of
ISRs making up the set of guard ISRs 341 may be consid-
erably less than the quantity of ISRs making up the set of
ISRs 241 such that the size of the guard IDT 331 may be
considerably less than the size of the IDT 231. If the size
value retrieved from the IDT register 551 still matches a
known size of at least one version of the guard IDT 331, then
the monitoring component 474 may determine that an
inspection by the guard routine 370 is still underway. In
response to determining that an inspection by the guard
routine is still ongoing, the monitoring component 474 may
refrain from signaling either of the cache component 476 or
the change component 471 to take any action. However, if
the size value retrieved from the IDT register 551 is now

US 9,990,494 B2

17

considerably larger than any known size of a version of the
guard IDT 331, then the monitoring component 474 may
determine that the change made to the contents of the IDT
register 551 indicates that the guard routine 370 has con-
cluded its inspection.

As another alternative mechanism to detect conclusion of
an inspection in still other embodiments, the monitoring
component 474 may compare the size value retrieved from
the IDT register 551 to an expected size value associated
with the IDT 231 to determine if the size value retrieved
from the IDT register 551 matches that expected size. Again,
the size value within the IDT register 551 may normally be
set to an expected maximum value indicating an upper limit
on the size of the IDT 231 during normal operation of the
computing device 500. If the size value retrieved from the
IDT register 551 does not match the expect size value that
is associated with the IDT 231 and is normally within the
IDT register 551 during normal operation of the computing
device 500, then the monitoring component 474 may deter-
mine that an inspection by the guard routine 370 is still
underway, and may refrain from signaling either of the cache
component 476 or the change component 471 to take any
action. However, if the size value retrieved from the IDT
register 551 matches the expected size value that is normally
loaded therein and associated with the IDT 231 during
normal operation of the computing device 500, then the
monitoring component 474 may determine that the guard
routine 370 has concluded its inspection.

In response to determining that the inspection that was
underway is now concluded, the monitoring component 474
may provide the pointer value and/or the size value retrieved
from the IDT register 551 to the cache component 476. The
cache component 476 may again make use of at least the
pointer value to access the IDT 231 and the set of ISRs 241,
make copies of both, and store those copies within the
storage 560 as the cached IDT 463 and the cached set of
ISRs 464 of the security cache 466. Again, the IDT 231
includes pointers to the locations of the first executable
instruction of each ISR of the set of ISRs 241, thereby
enabling the cache component to retrieve a copy of each of
those ISRs for storage as part of the cached set of ISRs 464.
The cache component 476 may also store a copy of that
pointer value and/or the size value as a cached IDTR 465 of
the security cache 466.

The monitoring component 474 may also provide at least
the pointer value retrieved from the IDT register 551 to the
change component 471 to use in accessing the IDT 231
and/or the set of ISRs 241 to reinstate the modifications that
the change component 471 had earlier made thereto. Again,
the IDT 231 includes pointers to the locations of the first
executable instruction of each ISR of the set of ISRs 241,
thereby enabling the change component to access each of the
ISRs of the set of ISRs 241 that the change component 471
is to modify. In so doing, the change component 471 may
again retrieve indications of the modifications to make to the
IDT 231 from the IDT change data 431 of the indications of
data structure change data 430 stored within the storage 560.
Correspondingly, the change component 471 may also
retrieve indications of modifications to make to the set of
ISRs 241 from the ISR change data 441 of the indications of
component change data 440 stored within the storage 560.
Again, the changes that may be made to the set of ISRs 241
may be modifications to add one or more additional ISRs to
provide support for the use of the security feature(s) 552
and/or 652. Correspondingly, there may also be modifica-
tions to the IDT 231 to add one or more additional entries to
add pointers to the one or more additional ISRs.

5

10

15

20

25

30

35

40

45

50

55

60

65

18

Again, although the caching of the IDT 231 and/or the set
of ISRs 241 by the cache component 476 is specifically
depicted, others of the kernel data structures 230 and/or
others of the kernel components 240 may be also be cached
such that copies thereof are stored within the security cache
486 in addition to one or both of the IDT 231 and the set of
ISRs 241. It should also again be noted that although the
changing of the IDT 231 and/or the set of ISRs 241 by the
change component 471 is specifically depicted, others of the
kernel data structures 230 and/or others of the kernel com-
ponents 240 may also be changed in support of detecting
malicious operations by malware and/or in support of the
security feature(s) 552 and/or 652.

Returning to FIG. 1, with the IDT 231 and the set of ISRs
241 again altered by the anti-malware routine 470, other
routines (e.g., the application routine 770) may again make
use of the set of ISRs 241 to make use of the security
feature(s) 552 and/or 652. Alternatively or additionally,
other routines (e.g., the application routine 770) may again
make use of the set of ISRs 241 with the anti-malware
routine 470 monitoring such use for indications of malicious
activity by malware.

Although each of the processor components 550 and 650
may include any of a variety of types of processor, it is
envisioned that the processor component 650 of the con-
troller 600 (if present) may be somewhat specialized and/or
optimized to perform tasks related to graphics and/or video.
More broadly, it is envisioned that the controller 600 embod-
ies a graphics subsystem of the computing device 500 to
enable the performance of tasks related to graphics render-
ing, video compression, image rescaling, etc., using com-
ponents separate and distinct from the processor component
650 and its more closely related components.

In various embodiments, each of the storages 560 and 660
may be based on any of a wide variety of information
storage technologies, possibly including volatile technolo-
gies requiring the uninterrupted provision of electric power,
and possibly including technologies entailing the use of
machine-readable storage media that may or may not be
removable. Thus, each of these storages may include any of
a wide variety of types (or combination of types) of storage
device, including without limitation, read-only memory
(ROM), random-access memory (RAM), dynamic RAM
(DRAM), Double-Data-Rate DRAM (DDR-DRAM), syn-
chronous DRAM (SDRAM), static RAM (SRAM), pro-
grammable ROM (PROM), erasable programmable ROM
(EPROM), electrically erasable programmable ROM (EE-
PROM), flash memory, polymer memory (e.g., ferroelectric
polymer memory), ovonic memory, phase change or ferro-
electric memory, silicon-oxide-nitride-oxide-silicon (SO-
NOS) memory, magnetic or optical cards, one or more
individual ferromagnetic disk drives, or a plurality of stor-
age devices organized into one or more arrays (e.g., multiple
ferromagnetic disk drives organized into a Redundant Array
of Independent Disks array, or RAID array). It should be
noted that although each of these storages is depicted as a
single block, one or more of these may include multiple
storage devices that may be based on differing storage
technologies. Thus, for example, one or more of each of
these depicted storages may represent a combination of an
optical drive or flash memory card reader by which pro-
grams and/or data may be stored and conveyed on some
form of machine-readable storage media, a ferromagnetic
disk drive to store programs and/or data locally for a
relatively extended period, and one or more volatile solid
state memory devices enabling relatively quick access to
programs and/or data (e.g., SRAM or DRAM). It should also

US 9,990,494 B2

19

be noted that each of these storages may be made up of
multiple storage components based on identical storage
technology, but which may be maintained separately as a
result of specialization in use (e.g., some DRAM devices
employed as a main storage while other DRAM devices
employed as a distinct frame buffer of a graphics controller).

In various embodiments, the interface 590 may employ
any of a wide variety of signaling technologies enabling
these computing devices to be coupled to other devices as
has been described. Each of these interfaces includes cir-
cuitry providing at least some of the requisite functionality
to enable such coupling. However, each of these interfaces
may also be at least partially implemented with sequences of
instructions executed by corresponding ones of the proces-
sor components (e.g., to implement a protocol stack or other
features). Where electrically and/or optically conductive
cabling is employed, these interfaces may employ signaling
and/or protocols conforming to any of a variety of industry
standards, including without limitation, RS-232C, RS-422,
USB, Ethernet IEEE-802.3) or IEEE-1394. Where the use
of wireless signal transmission is entailed, these interfaces
may employ signaling and/or protocols conforming to any of
a variety of industry standards, including without limitation,
IEEE 802.11a, 802.11b, 802.11g, 802.16, 802.20 (com-
monly referred to as “Mobile Broadband Wireless Access”™);
Bluetooth; ZigBee; or a cellular radiotelephone service such
as GSM with General Packet Radio Service (GSM/GPRS),
CDMA/1xRTT, Enhanced Data Rates for Global Evolution
(EDGE), Evolution Data Only/Optimized (EV-DO), Evolu-
tion For Data and Voice (EV-DV), High Speed Downlink
Packet Access (HSDPA), High Speed Uplink Packet Access
(HSUPA), 4G LTE, etc.

FIG. 8 illustrates one embodiment of a logic flow 2100.
The logic flow 2100 may be representative of some or all of
the operations executed by one or more embodiments
described herein. More specifically, the logic flow 2100 may
illustrate operations performed by the processor component
550 in executing at least the anti-malware routine 470,
and/or performed by other component(s) of the computing
device 500.

As part of initializing a computing device after either a
resetting of the computing device or a powering on of the
computing device, a processor component of the computing
device (e.g., the processor component 550 of the computing
device 500) may execute various kernel components of an
operating system (e.g., the kernel components 240 of the
operating system 270) to perform various initialization
tasks, including generating an interrupt descriptor table
(IDT) and a set of interrupt service routines (ISRs) for use
during normal operation of the computing device (e.g., the
IDT 231 and the set of ISRs 241). At 2110, the processor
component may await completion of such initialization
tasks, including the generation of the IDT and set of ISRs.

At 2120, upon the generation of the IDT and the set of
ISRs, the processor component, in executing a portion of an
anti-malware routine (e.g., the anti-malware routine 470),
may obtain a pointer value that points to the IDT and/or a
size value that indicates the size of the IDT from an IDT
register of the processor component. Such retrieval may be
triggered by an indication from a monitoring unit of the
processor component that pointer and/or size values have
been loaded into the IDT register (e.g., the monitoring unit
554 and the IDT register 551). Again, the size value may
indicate the current size of the IDT or a maximum permis-
sible size of the IDT.

At 2130, the processor component may use at least the
pointer value to retrieve and store a copy of the IDT in a

20

40

45

50

65

20

cache area defined in a storage accessible to the processor
component (e.g., the security cache 466 defined within the
storage 560) as a cached IDT. At 2140, the processor
component may use the pointer values within the entries of
the IDT to retrieve and store copies of the ISRs making up
the set of ISRs in the cache area as a cached set of ISRs. At
2150, the processor component may store copies of the
pointer and/or size values earlier retrieved from the IDT
register in the cache area as a cached IDTR. Stated differ-
ently, the processor component may store copies of the IDT,
the set of ISRs and the values within the IDT register in the
cache area to preserve their state as originally generated by
one or more kernel components.

At 2160, the processor component may make various
modifications to the IDT and/or the set of ISRs to enable the
anti-malware routine to monitor attempted execution of one
or more of the ISRs for indications of a malicious operation
and/or to add one or more ISRs to the set of ISRs to support
the use of one or more hardware-based security features
built into the processor component and/or into another
circuit of the computing device. As previously discussed,
however, the processor component may also make various
modifications to other kernel data structures and/or kernel
components (e.g., the kernel data structures 230 and/or the
kernel components 240) beyond the IDT and/or the set of
ISRs, respectively, in support of such monitoring and/or
additional security features.

At 2170, the processor component may modify at least the
size value within the IDT register as part of enabling the
addition of one or more entries to the IDT that include
pointer(s) to the one or more ISRs that may be added to the
set of ISRs. However, in some embodiments previously
discussed, there may be an expected size value that is
expected to remain loaded within the IDT register during
normal operation of the computing device. Further, that
expected size value may specify an upper limit on the size
of the IDT that may already accommodate whatever modi-
fications are sought to be made by the anti-malware routine
such that the size value within the IDT register need not be
modified to enable the addition of one or more entries to the
IDT.

FIG. 9 illustrates one embodiment of a logic flow 2200.
The logic flow 2200 may be representative of some or all of
the operations executed by one or more embodiments
described herein. More specifically, the logic flow 2200 may
illustrate operations performed by the processor component
550 in executing at least the anti-malware routine 470,
and/or performed by other component(s) of the computing
device 500.

A processor component of the computing device (e.g., the
processor component 550 of the computing device 500) may
execute various kernel components of an operating system
(e.g., the kernel components 240 of the operating system
270) to perform various tasks in support of executing the
operating system to provide an environment in which to
execute other routines. At 2210, in executing a portion of an
anti-malware routine (e.g., the anti-malware routine 470),
the processor component may detect an attempt by a kernel
component to modify an IDT or set of ISRs (e.g., the IDT
231 and the set of ISRs 241).

At 2220, the processor component may analyze the modi-
fication sought to be made by the kernel component to
determine whether that modification is a malicious operation
being attempted as part of performing a takeover of the
computing device, a theft of data stored therein, or other
malicious act. If it is determined that the modification sought

US 9,990,494 B2

21

to be made is such a malicious operation, then the processor
component may prevent that modification at 2222.

However, if it is determined that the modification sought
to be made is not such a malicious operation, then the
processor component may provide the kernel component
that seeks to make the modification with access to cached
copies of the IDT and/or the set of ISRs to make that
modification to at 2230, instead of the actual IDT and the set
of ISRs that are currently in use. As previously discussed,
the processor component, in executing the anti-malware
routine, may have made various modifications to the IDT
and/or the set of ISRs as part of monitoring for malicious
operations and/or to support the use of hardware-based
security feature(s). As has also been explained, such modi-
fications as a kernel component may seek to make at a later
time from when the IDT and the set of ISRs were originally
generated by one or more kernel components may conflict
with the modifications made to the IDT and the set of ISRs
for the anti-malware routine.

FIG. 10 illustrates one embodiment of a logic flow 2300.
The logic flow 2300 may be representative of some or all of
the operations executed by one or more embodiments
described herein. More specifically, the logic flow 2300 may
illustrate operations performed by the processor component
550 in executing at least the anti-malware routine 470,
and/or performed by other component(s) of the computing
device 500.

A processor component of the computing device (e.g., the
processor component 550 of the computing device 500) may
execute various routines associated with an operating system
including a guard routine (e.g., the guard routine 370 of the
operating system 270) to perform various tasks in support of
protecting the integrity of the operating system. At 2310, the
processor component may await an indication of a change to
the contents of an IDT register of the processor component
(e.g., an indication from the monitoring unit 554 of the IDT
register 551). As has been discussed, such a change to the
IDT register may be effected using a “load IDT” (LIDT)
instruction.

At 2320, in executing a portion of an anti-malware routine
(e.g., the anti-malware routine 470), the processor compo-
nent may retrieve a pointer value that points to the IDT
and/or a size value that indicates the size of the IDT from the
an IDT register of the processor component in response to
the indication of the change to the contents of the IDT
register. As has been discussed, such retrieval of the pointer
and/or size values from the IDT register may be effected
using a “save IDT” (SIDT) instruction.

At 2330, the processor component may check the size
value retrieved from the IDT register to determine whether
the retrieved size value is consistent with an inspection of
kernel data structures and/or kernel components (e.g., the
kernel data structures 230 and/or the kernel components
240) about to be performed by the guard routine. More
specifically, the processor component may check the retrieve
size value to determine whether it is consistent with use of
the IDT or with use of a guard IDT that is employed by the
guard routine in place of the IDT during times when the
guard routine performs an inspection.

As has been discussed, the check at 2330 may entail a
comparison of the size value retrieved from the IDT register
to one or more known sizes of one or more versions of a
guard IDT that the guard routine may use while performing
an inspection to determine whether the guard IDT is about
to be used. If the size value retrieved from the IDT register
matches a known size of one or more versions of the guard
IDT such that a version of the guard IDT is about to be used,

20

25

30

40

45

22

then it may be determined that execution of the guard routine
by the processor component is about to result in an inspec-
tion being performed by the guard routine.

Alternatively, as has also been discussed, the check at
2330 may entail a comparison of the size value retrieved
from the IDT register to an expected size value that is
associated with the IDT and is expected to be loaded into the
IDT register during normal operation of the computing
device, and not during an inspection performed by the guard
routine. If the size value retrieved from the IDT register
matches that expected size value such that the IDT is still
being used, then it may be determined that an inspection by
the guard routine is not about to be performed.

At 2340, in response to the determination that an inspec-
tion by the guard routine is about to be performed, the
processor component may copy cached versions of the IDT
and set of ISRs back to the locations of the IDT and set of
ISRs within a storage accessible to the processor component
(e.g., the storage 560) to overwrite the IDT and set of ISRs
with the cached versions. As previously discussed, versions
of the IDT and the set of ISRs that do not include modifi-
cations by the anti-malware routine may be cached prior to
the IDT and the set of ISRs being modified by the anti-
malware routine to include those modifications. By copying
the cached versions back over the IDT and set of ISRs, the
modifications made by the anti-malware routine are effec-
tively undone and are not detected in the inspection by the
guard routine.

As also previously discussed, there may also be copying
of cached versions of others of the kernel data structures
and/or the kernel components back to the locations within
the storage from which the cached versions were originally
copied before changes were made thereto by the anti-
malware routine. As with the IDT and set of ISRs, this
copying of cached versions of other kernel data structures
and/or components may be also be done to prevent those
changes by the anti-malware routine thereto from being
detected by the guard component during the inspection.

FIG. 11 illustrates one embodiment of a logic flow 2400.
The logic flow 2400 may be representative of some or all of
the operations executed by one or more embodiments
described herein. More specifically, the logic flow 2400 may
illustrate operations performed by the processor component
550 in executing at least the anti-malware routine 470,
and/or performed by other component(s) of the computing
device 500.

Again, a processor component of the computing device
(e.g., the processor component 550 of the computing device
500) may execute various routines associated with an oper-
ating system including a guard routine (e.g., the guard
routine 370 of the operating system 270) to perform various
tasks in support of protecting the integrity of the operating
system. At 2410, with an inspection of kernel components
and/or data structures of the operating system possibly still
underway, the processor component may await an indication
of a change to the contents of an IDT register of the
processor component (e.g., an indication from the monitor-
ing unit 554 of the IDT register 551). At 2420, in executing
a portion of an anti-malware routine (e.g., the anti-malware
routine 470), the processor component may retrieve a
pointer value that points to the IDT and/or a size value that
indicates the size of the IDT from the an IDT register of the
processor component in response to the indication of the
change to the contents of the IDT register.

At 2430, the processor component may check the size
value retrieved from the IDT register to determine whether
the retrieved size value is consistent with an inspection of

US 9,990,494 B2

23

kernel data structures and/or kernel components (e.g., the
kernel data structures 230 and/or the kernel components
240) having been concluded. More specifically, the proces-
sor component may check the retrieve size value to deter-
mine whether it is consistent with continued use of the guard
IDT which is used by the guard routine during an inspection,
or with a return to use of the IDT.

As has been discussed, the check at 2430 may entail a
comparison of the size value retrieved from the IDT register
to a cached version of the size value maintained in a cache
area of a storage of the computing device (e.g., the security
cache 466 of the storage 560) at which previously cached
versions of the IDT and/or a set of ISRs may also be stored
to determine whether a version of the guard IDT is still being
used. If the size value retrieved from the IDT register
matches the cached version of the size value such that no
version of the guard IDT is being used anymore, then it may
be determined that execution of the guard routine by the
processor component to perform an inspection is over.

Alternatively, as has also been discussed, the check at
2430 may entail a comparison of the size value retrieved
from the IDT register to an expected size value that is
associated with the IDT and is expected to be loaded into the
IDT register during normal operation of the computing
device, and not during an inspection performed by the guard
routine. If the size value retrieved from the IDT register
matches that expected size value such that the IDT is still
being used, then it may be determined that performance of
an inspection is over.

At 2440, in response to the determination that the inspec-
tion by the guard routine that was underway is now con-
cluded, the processor component may copy the IDT and the
set of ISRs to the cached area as the new cached versions of
the IDT and set of ISRs, thereby overwriting the previous
cached versions of the IDT and set of ISRs. At 2450, the
processor component may then reinstate the modifications
earlier made to the IDT and the set of ISRs by the anti-
malware routine. As also previously discussed, there may
also be a reinstating of modifications made by the anti-
malware routine to others of the kernel data structures and/or
the kernel components.

At 2460, the processor component, in some embodiments,
may load at least a new size value into the IDT register that
may reflect the size of the IDT with the reinstated modifi-
cations. However, in some embodiments previously dis-
cussed, there may be an expected size value that is expected
to remain loaded within the IDT register during normal
operation of the computing device. Further, that expected
size value may specify an upper limit on the size of the IDT
that may already accommodate whatever modifications are
sought to be made by the anti-malware routine such that the
size value within the IDT register need not be modified to
enable the addition of one or more entries to the IDT.

FIG. 12 illustrates an embodiment of an exemplary pro-
cessing architecture 3000 suitable for implementing various
embodiments as previously described. More specifically, the
processing architecture 3000 (or variants thereof) may be
implemented as part of one or more of the computing
devices 100, 300, 500 or 700, and/or as part of the controller
600. It should be noted that components of the processing
architecture 3000 are given reference numbers in which the
last two digits correspond to the last two digits of reference
numbers of at least some of the components earlier depicted
and described as part of the computing devices 100, 300, 500
and 700, as well as the controller 600. This is done as an aid
to correlating components of each.

20

25

30

40

45

55

24

The processing architecture 3000 includes various ele-
ments commonly employed in digital processing, including
without limitation, one or more processors, multi-core pro-
cessors, CO-processors, memory units, chipsets, controllers,
peripherals, interfaces, oscillators, timing devices, video
cards, audio cards, multimedia input/output (I/O) compo-
nents, power supplies, etc. As used in this application, the
terms “system” and “component” are intended to refer to an
entity of a computing device in which digital processing is
carried out, that entity being hardware, a combination of
hardware and software, software, or software in execution,
examples of which are provided by this depicted exemplary
processing architecture. For example, a component can be,
but is not limited to being, a process running on a processor
component, the processor component itself, a storage device
(e.g., a hard disk drive, multiple storage drives in an array,
etc.) that may employ an optical and/or magnetic storage
medium, a software object, an executable sequence of
instructions, a thread of execution, a program, and/or an
entire computing device (e.g., an entire computer). By way
of illustration, both an application running on a server and
the server can be a component. One or more components can
reside within a process and/or thread of execution, and a
component can be localized on one computing device and/or
distributed between two or more computing devices. Fur-
ther, components may be communicatively coupled to each
other by various types of communications media to coordi-
nate operations. The coordination may involve the uni-
directional or bi-directional exchange of information. For
instance, the components may communicate information in
the form of signals communicated over the communications
media. The information can be implemented as signals
allocated to one or more signal lines. A message (including
a command, status, address or data message) may be one of
such signals or may be a plurality of such signals, and may
be transmitted either serially or substantially in parallel
through any of a variety of connections and/or interfaces.

As depicted, in implementing the processing architecture
3000, a computing device includes at least a processor
component 950, a storage 960, an interface 990 to other
devices, and a coupling 959. As will be explained, depend-
ing on various aspects of a computing device implementing
the processing architecture 3000, including its intended use
and/or conditions of use, such a computing device may
further include additional components, such as without
limitation, a display interface 985.

The coupling 959 includes one or more buses, point-to-
point interconnects, transceivers, buffers, crosspoint
switches, and/or other conductors and/or logic that commu-
nicatively couples at least the processor component 950 to
the storage 960. Coupling 959 may further couple the
processor component 950 to one or more of the interface
990, the audio subsystem 970 and the display interface 985
(depending on which of these and/or other components are
also present). With the processor component 950 being so
coupled by couplings 959, the processor component 950 is
able to perform the various ones of the tasks described at
length, above, for whichever one(s) of the aforedescribed
computing devices implement the processing architecture
3000. Coupling 959 may be implemented with any of a
variety of technologies or combinations of technologies by
which signals are optically and/or electrically conveyed.
Further, at least portions of couplings 959 may employ
timings and/or protocols conforming to any of a wide variety
of industry standards, including without limitation, Accel-
erated Graphics Port (AGP), CardBus, Extended Industry
Standard Architecture (E-ISA), Micro Channel Architecture

US 9,990,494 B2

25
(MCA), NuBus, Peripheral Component Interconnect (Ex-
tended) (PCI-X), PCI Express (PCI-E), Personal Computer
Memory Card International Association (PCMCIA) bus,
HyperTransport™, QuickPath, and the like.

As previously discussed, the processor component 950
(corresponding to the processor components 550 and 650)
may include any of a wide variety of commercially available
processors, employing any of a wide variety of technologies
and implemented with one or more cores physically com-
bined in any of a number of ways.

As previously discussed, the storage 960 (corresponding
to the storages 560 and 660) may be made up of one or more
distinct storage devices based on any of a wide variety of
technologies or combinations of technologies. More specifi-
cally, as depicted, the storage 960 may include one or more
of a volatile storage 961 (e.g., solid state storage based on
one or more forms of RAM technology), a non-volatile
storage 962 (e.g., solid state, ferromagnetic or other storage
not requiring a constant provision of electric power to
preserve their contents), and a removable media storage 963
(e.g., removable disc or solid state memory card storage by
which information may be conveyed between computing
devices). This depiction of the storage 960 as possibly
including multiple distinct types of storage is in recognition
of the commonplace use of more than one type of storage
device in computing devices in which one type provides
relatively rapid reading and writing capabilities enabling
more rapid manipulation of data by the processor component
950 (but possibly using a “volatile” technology constantly
requiring electric power) while another type provides rela-
tively high density of non-volatile storage (but likely pro-
vides relatively slow reading and writing capabilities).

Given the often different characteristics of different stor-
age devices employing different technologies, it is also
commonplace for such different storage devices to be
coupled to other portions of a computing device through
different storage controllers coupled to their differing stor-
age devices through different interfaces. By way of example,
where the volatile storage 961 is present and is based on
RAM technology, the volatile storage 961 may be commu-
nicatively coupled to coupling 959 through a storage con-
troller 9654 providing an appropriate interface to the volatile
storage 961 that perhaps employs row and column address-
ing, and where the storage controller 9654 may perform row
refreshing and/or other maintenance tasks to aid in preserv-
ing information stored within the volatile storage 961. By
way of another example, where the non-volatile storage 962
is present and includes one or more ferromagnetic and/or
solid-state disk drives, the non-volatile storage 962 may be
communicatively coupled to coupling 959 through a storage
controller 9655 providing an appropriate interface to the
non-volatile storage 962 that perhaps employs addressing of
blocks of information and/or of cylinders and sectors. By
way of still another example, where the removable media
storage 963 is present and includes one or more optical
and/or solid-state disk drives employing one or more pieces
of machine-readable storage medium 969, the removable
media storage 963 may be communicatively coupled to
coupling 959 through a storage controller 965¢ providing an
appropriate interface to the removable media storage 963
that perhaps employs addressing of blocks of information,
and where the storage controller 965¢ may coordinate read,
erase and write operations in a manner specific to extending
the lifespan of the machine-readable storage medium 969.

One or the other of the volatile storage 961 or the
non-volatile storage 962 may include an article of manufac-
ture in the form of a machine-readable storage media on

10

15

20

25

30

35

40

45

50

55

60

65

26

which a routine including a sequence of instructions execut-
able by the processor component 950 may be stored,
depending on the technologies on which each is based. By
way of example, where the non-volatile storage 962 includes
ferromagnetic-based disk drives (e.g., so-called “hard
drives”), each such disk drive typically employs one or more
rotating platters on which a coating of magnetically respon-
sive particles is deposited and magnetically oriented in
various patterns to store information, such as a sequence of
instructions, in a manner akin to storage medium such as a
floppy diskette. By way of another example, the non-volatile
storage 962 may be made up of banks of solid-state storage
devices to store information, such as sequences of instruc-
tions, in a manner akin to a compact flash card. Again, it is
commonplace to employ differing types of storage devices
in a computing device at different times to store executable
routines and/or data.

Thus, a routine including a sequence of instructions to be
executed by the processor component 950 may initially be
stored on the machine-readable storage medium 969, and the
removable media storage 963 may be subsequently
employed in copying that routine to the non-volatile storage
962 for longer term storage not requiring the continuing
presence of the machine-readable storage medium 969 and/
or the volatile storage 961 to enable more rapid access by the
processor component 950 as that routine is executed.

As previously discussed, the interface 990 (possibly cor-
responding to the interface 590) may employ any of a variety
of signaling technologies corresponding to any of a variety
of communications technologies that may be employed to
communicatively couple a computing device to one or more
other devices. Again, one or both of various forms of wired
or wireless signaling may be employed to enable the pro-
cessor component 950 to interact with input/output devices
(e.g., the depicted example keyboard 920 or printer 925)
and/or other computing devices, possibly through a network
(e.g., the network 999) or an interconnected set of networks.
In recognition of the often greatly different character of
multiple types of signaling and/or protocols that must often
be supported by any one computing device, the interface 990
is depicted as including multiple different interface control-
lers 9954, 9955 and 995¢. The interface controller 995a may
employ any of a variety of types of wired digital serial
interface or radio frequency wireless interface to receive
serially transmitted messages from user input devices, such
as the depicted keyboard 920. The interface controller 9955
may employ any of a variety of cabling-based or wireless
signaling, timings and/or protocols to access other comput-
ing devices through the depicted network 999 (perhaps a
network made up of one or more links, smaller networks, or
perhaps the Internet). The interface 995¢ may employ any of
a variety of electrically conductive cabling enabling the use
of either serial or parallel signal transmission to convey data
to the depicted printer 925. Other examples of devices that
may be communicatively coupled through one or more
interface controllers of the interface 990 include, without
limitation, a microphone to monitor sounds of persons to
accept commands and/or data signaled by those persons via
voice or other sounds they may make, remote controls,
stylus pens, card readers, finger print readers, virtual reality
interaction gloves, graphical input tablets, joysticks, other
keyboards, retina scanners, the touch input component of
touch screens, trackballs, various sensors, a camera or
camera array to monitor movement of persons to accept
commands and/or data signaled by those persons via ges-
tures and/or facial expressions, laser printers, inkjet printers,
mechanical robots, milling machines, etc.

US 9,990,494 B2

27

Where a computing device is communicatively coupled to
(or perhaps, actually incorporates) a display (e.g., the
depicted example display 980), such a computing device
implementing the processing architecture 3000 may also
include the display interface 985. Although more general-
ized types of interface may be employed in communica-
tively coupling to a display, the somewhat specialized addi-
tional processing often required in visually displaying
various forms of content on a display, as well as the
somewhat specialized nature of the cabling-based interfaces
used, often makes the provision of a distinct display inter-
face desirable. Wired and/or wireless signaling technologies
that may be employed by the display interface 985 in a
communicative coupling of the display 980 may make use of
signaling and/or protocols that conform to any of a variety
of industry standards, including without limitation, any of a
variety of analog video interfaces, Digital Video Interface
(DVI), DisplayPort, etc.

More generally, the various elements of the computing
devices described and depicted herein may include various
hardware elements, software elements, or a combination of
both. Examples of hardware elements may include devices,
logic devices, components, processors, microprocessors, cir-
cuits, processor components, circuit elements (e.g., transis-
tors, resistors, capacitors, inductors, and so forth), integrated
circuits, application specific integrated circuits (ASIC), pro-
grammable logic devices (PLD), digital signal processors
(DSP), field programmable gate array (FPGA), memory
units, logic gates, registers, semiconductor device, chips,
microchips, chip sets, and so forth. Examples of software
elements may include software components, programs,
applications, computer programs, application programs, sys-
tem programs, software development programs, machine
programs, operating system software, middleware, firm-
ware, software modules, routines, subroutines, functions,
methods, procedures, software interfaces, application pro-
gram interfaces (API), instruction sets, computing code,
computer code, code segments, computer code segments,
words, values, symbols, or any combination thereof. How-
ever, determining whether an embodiment is implemented
using hardware elements and/or software elements may vary
in accordance with any number of factors, such as desired
computational rate, power levels, heat tolerances, processing
cycle budget, input data rates, output data rates, memory
resources, data bus speeds and other design or performance
constraints, as desired for a given implementation.

Some embodiments may be described using the expres-
sion “one embodiment” or “an embodiment” along with
their derivatives. These terms mean that a particular feature,
structure, or characteristic described in connection with the
embodiment is included in at least one embodiment. The
appearances of the phrase “in one embodiment” in various
places in the specification are not necessarily all referring to
the same embodiment. Further, some embodiments may be
described using the expression “coupled” and “connected”
along with their derivatives. These terms are not necessarily
intended as synonyms for each other. For example, some
embodiments may be described using the terms “connected”
and/or “coupled” to indicate that two or more elements are
in direct physical or electrical contact with each other. The
term “coupled,” however, may also mean that two or more
elements are not in direct contact with each other, but yet
still co-operate or interact with each other. Furthermore,
aspects or elements from different embodiments may be
combined.

It is emphasized that the Abstract of the Disclosure is
provided to allow a reader to quickly ascertain the nature of

25

30

40

45

55

65

28

the technical disclosure. It is submitted with the understand-
ing that it will not be used to interpret or limit the scope or
meaning of the claims. In addition, in the foregoing Detailed
Description, it can be seen that various features are grouped
together in a single embodiment for the purpose of stream-
lining the disclosure. This method of disclosure is not to be
interpreted as reflecting an intention that the claimed
embodiments require more features than are expressly
recited in each claim. Rather, as the following claims reflect,
inventive subject matter lies in less than all features of a
single disclosed embodiment. Thus the following claims are
hereby incorporated into the Detailed Description, with each
claim standing on its own as a separate embodiment. In the
appended claims, the terms “including” and “in which” are
used as the plain-English equivalents of the respective terms
“comprising” and “wherein,” respectively. Moreover, the
terms “first,” “second,” “third,” and so forth, are used
merely as labels, and are not intended to impose numerical
requirements on their objects.

What has been described above includes examples of the
disclosed architecture. It is, of course, not possible to
describe every conceivable combination of components and/
or methodologies, but one of ordinary skill in the art may
recognize that many further combinations and permutations
are possible. Accordingly, the novel architecture is intended
to embrace all such alterations, modifications and variations
that fall within the spirit and scope of the appended claims.
The detailed disclosure now turns to providing examples
that pertain to further embodiments. The examples provided
below are not intended to be limiting.

In Example 1, an apparatus to secure a computing device
includes a processor component comprising an interrupt
descriptor table (IDT) register to store an indication of size
of'an IDT, the IDT comprising at least one pointer to at least
one interrupt service routine (ISR) of a set of ISRs; a
monitoring component to retrieve the indication of size from
the IDT register and to compare the indication of size to a
size of a guard IDT of a guard routine in response to
modification of the IDT register to determine whether the
guard routine is to inspect the IDT and the set of ISRs based
on the comparison; and a cache component to overwrite the
IDT with a cached IDT and to overwrite the set of ISRs with
a cached set of ISRs based on the determination and prior to
the inspection to prevent the guard routine from detecting a
modification made to at least one of the IDT and the set of
ISRs by an anti-malware routine, the cache component to
copy the IDT to generate the cached IDT and to copy the set
of ISRs to generate the cached set of ISRs prior to the
modification by the anti-malware routine.

In Example 2, which includes the subject matter of
Example 1, the processor component may include a moni-
toring unit to monitor the IDT register for an indication of
modification of the IDT register, the monitoring component
to retrieve the indication of size from the IDT register in
response to receiving an indication of modification of the
IDT register from the monitoring unit.

In Example 3, which includes the subject matter of any of
Examples 1-2, the processor component may include a
security feature; and the modification by the anti-malware
routine may include an additional ISR added to the set of
ISRs by the anti-malware routine to enable use of the
security feature and an additional entry added to the IDT by
the anti-malware routine to add a pointer to the additional
ISR to the IDT.

In Example 4, which includes the subject matter of any of
Examples 1-3, the security feature may include circuitry to
enhance performance of at least one of encrypting data,

US 9,990,494 B2

29

decrypting data, generating a security credential, verifying a
security credential or generating a hash

In Example 5, which includes the subject matter of any of
Examples 1-4, the modification by the anti-malware routine
may include a modification to an ISR of the set of ISRs, the
ISR may handle an interrupt associated with a hardware
component accessible to the processor component, the
modification to the ISR may cause a flow of execution by the
processor component to jump from the ISR to the anti-
malware routine to enable the anti-malware routine to ana-
lyze a call to the ISR in the flow of execution to determine
whether the call is to perform a malicious operation, and the
anti-malware routine may prevent execution of the ISR by
the processor component based on the determination of
whether the call is to perform a malicious operation

In Example 6, which includes the subject matter of any of
Examples 1-5, the apparatus may include the hardware
component, and the hardware component may include at
least one of a display, a manually operable control or an
interface to a network.

In Example 7, which includes the subject matter of any of
Examples 1-6, the apparatus may include an interface cou-
pling the processor component to a network and a security
feature implemented with circuitry accessible to the proces-
sor component to secure an exchange of data between the
processor component and a remote device coupled to the
network; and the modification by the anti-malware routine
may include an additional ISR added to the set of ISRs by
the anti-malware routine to enable use of the security feature
and an additional entry added to the IDT by the anti-malware
routine to add a pointer to the additional ISR to the IDT to
enable a call to the additional ISR.

In Example 8, which includes the subject matter of any of
Examples 1-7, the apparatus may include at least one of an
encryption engine to encrypt the data prior to transmission
of the data to the remote device, an encryption engine to
encrypt the data prior to storage of the data within a storage
accessible to the processor component to prevent reading of
the data by malware executed by the processor component,
or a secure pathway between the interface and a display to
prevent interception of the data between the interface and
the display by malware executed by the processor compo-
nent

In Example 9, which includes the subject matter of any of
Examples 1-8, the apparatus may include a change compo-
nent to modify the IDT and the set of ISRs to reinstate the
modification by the anti-malware routine based on another
determination that the inspection by the guard routine is
concluded, the monitoring component may retrieve another
indication of size from the IDT register and to compare the
other indication of size to a size of the IDT prior to the
modification by the anti-malware routine to make the other
determination, and the cache component may copy the IDT
to again generate the cached IDT and to copy the set of ISRs
to again generate the cached set of ISRs based on the other
determination.

In Example 10, which includes the subject matter of any
of Examples 1-9, the apparatus may include the anti-mal-
ware routine; and the anti-malware routine may include the
monitoring component, the cache component, and a change
component to make the modification to the at least one of the
IDT or the set of ISRs following the generation of the cached
IDT and the cached set of ISRs by the cache routine.

In Example 11, which includes the subject matter of any
of Examples 1-10, the apparatus may include an operating
system executed by the processor component; and the oper-
ating system may include at least one kernel component that

20

30

40

45

30

comprises the set of ISRs and at least one kernel data
structure that comprises the IDT.

In Example 12, which includes the subject matter of any
of Examples 1-11, the apparatus may include the guard
routine executed by the processor component and associated
with the guard IDT, and the guard IDT may include at least
one pointer to a guard ISR of a set of guard ISRs.

In Example 13, an apparatus to secure a computing device
includes a processor component comprising an interrupt
descriptor table (IDT) register to store an indication of size
of'an IDT, the IDT comprising at least one pointer to at least
one interrupt service routine (ISR) of a set of ISRs; a cache
component to store a copy of the IDT as a cached IDT in a
storage accessible to the processor component and to store
a copy of the set of ISRs as a cached set of ISRs in the
storage based on a determination that an inspection of the
IDT and the set of ISRs by a guard routine is concluded and
that a pointer value within the IDT register no longer points
to a guard IDT associated with the guard routine; a change
component to modify at least one of the IDT or the set of
ISRs to enable security against malware based on the
determination; and a monitoring component to retrieve the
indication of size from the IDT register and to compare the
indication of size to a size of the IDT prior to the modifi-
cation by the change component to make the determination
based on the comparison.

In Example 14, which includes the subject matter of
Example 13, the apparatus may include the processor com-
ponent may include a monitoring unit to monitor the IDT
register for an indication of modification of the IDT register,
and the monitoring component may retrieve the indication of
size from the IDT register in response to receiving an
indication of modification of the IDT register from the
monitoring unit.

In Example 15, which includes the subject matter of any
of Examples 13-14, the processor component may include a
security feature, and the modification by the anti-malware
routine may include an additional ISR added to the set of
ISRs by the anti-malware routine to enable use of the
security feature and an additional entry added to the IDT by
the anti-malware routine to add a pointer to the additional
ISR to the IDT.

In Example 16, which includes the subject matter of any
of Examples 13-15, the security feature may include cir-
cuitry to enhance performance of at least one of encrypting
data, decrypting data, generating a security credential, veri-
fying a security credential or generating a hash.

In Example 17, which includes the subject matter of any
of Examples 13-16, the modification by the anti-malware
routine may include a modification to an ISR of the set of
ISRs, the ISR may handle an interrupt associated with a
hardware component accessible to the processor component,
the modification to the ISR may cause a flow of execution
by the processor component to jump from the ISR to the
anti-malware routine to enable the anti-malware routine to
analyze a call to the ISR in the flow of execution to
determine whether the call is to perform a malicious opera-
tion, and the anti-malware routine may prevent execution of
the ISR by the processor component based on the determi-
nation of whether the call is to perform a malicious opera-
tion.

In Example 18, which includes the subject matter of any
of Examples 13-17, the apparatus may include the hardware
component, and the hardware component may include at
least one of a display, a manually operable control or an
interface to a network.

US 9,990,494 B2

31

In Example 19, which includes the subject matter of any
of Examples 13-18, the apparatus may include an interface
coupling the processor component to a network and a
security feature implemented with circuitry accessible to the
processor component to secure an exchange of data between
the processor component and a remote device coupled to the
network; and the modification by the anti-malware routine
may include an additional ISR added to the set of ISRs by
the anti-malware routine to enable use of the security feature
and an additional entry added to the IDT by the anti-malware
routine to add a pointer to the additional ISR to the IDT to
enable a call to the additional ISR.

In Example 20, which includes the subject matter of any
of Examples 13-19, the security feature may include at least
one of an encryption engine to encrypt the data prior to
transmission of the data to the remote device, an encryption
engine to encrypt the data prior to storage of the data within
a storage accessible to the processor component to prevent
reading of the data by malware executed by the processor
component, or a secure pathway between the interface and
a display to prevent interception of the data between the
interface and the display by malware executed by the
processor component.

In Example 21, which includes the subject matter of any
of Examples 13-20, the apparatus may include a monitoring
component to retrieve another indication of size from the
IDT register and to compare the other indication of size to
a size of the guard IDT in response to another modification
of the IDT register and to make another determination of
whether the guard routine is to perform another inspection of
the IDT and of the set of ISRs; and the cache component to
overwrite the IDT with the cached IDT and to overwrite the
set of ISRs with the cached set of ISRs based on the other
determination to prevent the guard routine from detecting
the modification by the change component.

In Example 22, which includes the subject matter of any
of Examples 13-21, the apparatus may include the anti-
malware routine; and the anti-malware routine may include
the cache component, the change component and the moni-
toring component.

In Example 23, which includes the subject matter of any
of Examples 13-22, the apparatus may include an operating
system executed by the processor component; and the oper-
ating system may include at least one kernel component that
comprises the set of ISRs and at least one kernel data
structure that comprises the IDT.

In Example 24, which includes the subject matter of any
of Examples 13-23, the guard routine may be executed by
the processor component and the guard IDT comprising at
least one pointer to a guard ISR of a set of guard ISRs.

In Example 25, a computing-implemented method for
securing a computing device includes retrieving an indica-
tion of size of an interrupt descriptor table (IDT) from an
IDT register of a processor component in response to
modification of the IDT register, the IDT comprising at least
one pointer to at least one interrupt service routine (ISR) of
a set of ISRs; comparing the indication of size to a size of
a guard IDT of a guard routine to determine whether the
guard routine is to inspect the IDT and the set of ISRs based
on the comparison; and overwriting the IDT and the set of
ISRs with a cached IDT and a cached set of ISRs, respec-
tively, based on the determination and prior to the inspection
to prevent the guard routine from detecting a modification
made to at least one of the IDT and the set of ISRs by an
anti-malware routine, the cached IDT and the cached set of
ISRs copied from the IDT and the set of ISRs, respectively,
prior to the modification by the anti-malware routine.

10

15

20

25

30

35

40

45

50

55

60

32

In Example 26, which includes the subject matter of
Example 25, the method may include receiving an indication
from a monitoring unit of the processor component of
modification of the IDT register.

In Example 27, which includes the subject matter of any
of Examples 25-26, the method may include comparing the
indication of size to each of multiple sizes of the guard IDT,
and each size of the multiple size may correspond to a
different version of the guard IDT.

In Example 28, which includes the subject matter of any
of Examples 25-27, the method may include copying the
IDT and the set of ISRs to generate the cached IDT and the
cached set of ISRs, respectively, prior to the modification by
the anti-malware routine; storing the cached IDT and the
cached set of ISRs within a first set of storage pages of a
storage accessible the processor component, the first set of
storage pages differing from a second set of storage pages of
the storage in which the IDT and the set of ISRs are stored;
detecting an attempt by a kernel component of an operating
system executed by the processor component to access the
second set of storage pages modify the IDT and the set of
ISRs; and providing the kernel component access to the first
set of storage pages to allow the kernel component to modify
the cached IDT and the cached set of ISRs in the manner in
which the kernel component attempted to modify the IDT
and the set of ISRs, respectively.

In Example 29, which includes the subject matter of any
of Examples 25-28, the method may include retrieving
another indication of size from the IDT register in response
to another modification of the IDT register; comparing the
other indication of size to a size of the IDT prior to the
modification by the anti-malware routine to make another
determination that the inspection by the guard routine is
concluded; copying the IDT and the set of ISRs to again
generate the cached IDT and the cached set of ISRs, respec-
tively, based on the other determination; and modifying the
IDT and the set of ISRs to reinstate the modification by the
anti-malware routine based on the other determination.

In Example 30, which includes the subject matter of any
of Examples 25-29, the method may include making the
modification to the at least one of the IDT and the set of
ISRs, and the modification may include executable instruc-
tions added to an ISR of the set of ISRs to cause a flow of
execution by the processor component to jump from execut-
able instructions of the ISR to executable instructions of the
anti-malware routine.

In Example 31, which includes the subject matter of any
of Examples 25-30, the ISR may handle an interrupt asso-
ciated with a hardware component accessible to the proces-
sor component; and the method may include analyzing an
aspect of the flow of execution in response to the jump to
determine whether the flow of execution is to perform a
malicious operation and allowing the flow of execution to
return to executing the executable instructions of the ISR
based on the determination of whether the flow of execution
is to perform a malicious operation.

In Example 32, which includes the subject matter of any
of Examples 25-31, the hardware component may include at
least one of a display, a manually operable control or an
interface to a network.

In Example 33, which includes the subject matter of any
of Examples 25-32; the method may include making the
modification to the at least one of the IDT and the set of
ISRs; and the modification may include an additional ISR
added to the set of ISRs by the anti-malware routine to
enable use of a security feature of the processor component
and an additional entry added to the IDT by the anti-malware

US 9,990,494 B2

33

routine to add a pointer to the additional ISR to the IDT to
enable a call to the additional ISR.

In Example 34, which includes the subject matter of any
of Examples 25-33, the security feature may include cir-
cuitry to enhance performance of at least one of encrypting
data, decrypting data, generating a security credential, veri-
fying a security credential or generating a hash.

In Example 35, which includes the subject matter of any
of Examples 25-34, the security feature may be imple-
mented with circuitry accessible to the processor component
to secure an exchange of data between the processor com-
ponent and a remote device coupled to the network; and the
security feature may include at least one of an encryption
engine to encrypt the data prior to transmission of the data
to the remote device, an encryption engine to encrypt the
data prior to storage of the data within a storage accessible
to the processor component to prevent reading of the data by
malware executed by the processor component, or a secure
pathway between the interface and a display to prevent
interception of the data between the interface and the display
by malware executed by the processor component.

In Example 36, a computing-implemented method for
securing a computing device includes retrieving an indica-
tion of size of an interrupt descriptor table (IDT) from an
IDT register of a processor component in response to
modification of the IDT register, the IDT comprising at least
one pointer to at least one interrupt service routine (ISR) of
a set of ISRs; comparing the indication of size to a size of
the IDT prior to a modification of at least one of the IDT or
the set of ISRs by an anti-malware routine to determine
whether an inspection of the IDT and the set of ISRs by a
guard routine is concluded and that a pointer value within
the IDT register no longer points to a guard IDT associated
with the guard routine based on the comparison; and storing
copies of the IDT and the set of ISRs as a cached IDT and
a cached set of ISRs, respectively, in a storage accessible to
the processor component based on the determination.

In Example 37, which includes the subject matter of
Example 36, the method may include receiving an indication
from a monitoring unit of the processor component of
modification of the IDT register.

In Example 38, which includes the subject matter of any
of Examples 36-37, the method may include storing the
cached IDT and the cached set of ISRs within a first set of
storage pages of the storage accessible the processor com-
ponent, the first set of storage pages differing from a second
set of storage pages of the storage in which the IDT and the
set of ISRs are stored; detecting an attempt by a kernel
component of an operating system executed by the processor
component to access the second set of storage pages modify
the IDT and the set of ISRs; and providing the kernel
component access to the first set of storage pages to allow
the kernel component to modify the cached IDT and the
cached set of ISRs in the manner in which the kernel
component attempted to modify the IDT and the set of ISRs,
respectively.

In Example 39, which includes the subject matter of any
of Examples 36-38, the method may include retrieving
another indication of size from the IDT register in response
to another modification of the IDT register; comparing the
other indication of size to a size of the guard IDT to make
another determination of whether the guard routine is to
again inspect the IDT and the set of ISRs; and overwriting
the IDT and the set of ISRs with the cached IDT and the
cached set of ISRs, respectively, based on the other deter-

40

45

34

mination and prior to the other inspection to prevent the
guard routine from detecting the modification made by the
anti-malware routine.

In Example 40, which includes the subject matter of any
of Examples 36-39, the method may include comparing the
indication of size to each of multiple sizes of the guard IDT,
each size of the multiple size corresponding to a different
version of the guard IDT.

In Example 41, which includes the subject matter of any
of Examples 36-40, the method may include making the
modification to the at least one of the IDT and the set of
ISRs, and the modification may include executable instruc-
tions added to an ISR of the set of ISRs to cause a flow of
execution by the processor component to jump from execut-
able instructions of the ISR to executable instructions of the
anti-malware routine.

In Example 42, which includes the subject matter of any
of Examples 36-41, the ISR may handle an interrupt asso-
ciated with a hardware component accessible to the proces-
sor component; and the method may include analyzing an
aspect of the flow of execution in response to the jump to
determine whether the flow of execution is to perform a
malicious operation and allowing the flow of execution to
return to executing the executable instructions of the ISR
based on the determination of whether the flow of execution
is to perform a malicious operation.

In Example 43, which includes the subject matter of any
of Examples 36-42, the hardware component may include at
least one of a display, a manually operable control or an
interface to a network.

In Example 44, which includes the subject matter of any
of Examples 36-43, the method may include making the
modification to the at least one of the IDT and the set of
ISRs; and the modification may include an additional ISR
added to the set of ISRs by the anti-malware routine to
enable use of a security feature of the processor component
and an additional entry added to the IDT by the anti-malware
routine to add a pointer to the additional ISR to the IDT to
enable a call to the additional ISR.

In Example 45, which includes the subject matter of any
of Examples 36-44, the security feature may include cir-
cuitry to enhance performance of at least one of encrypting
data, decrypting data, generating a security credential, veri-
fying a security credential or generating a hash.

In Example 46, which includes the subject matter of any
of Examples 36-45, the security feature may be imple-
mented with circuitry accessible to the processor component
to secure an exchange of data between the processor com-
ponent and a remote device coupled to the network; and the
security feature comprising at least one of an encryption
engine to encrypt the data prior to transmission of the data
to the remote device, an encryption engine to encrypt the
data prior to storage of the data within a storage accessible
to the processor component to prevent reading of the data by
malware executed by the processor component, or a secure
pathway between the interface and a display to prevent
interception of the data between the interface and the display
by malware executed by the processor component.

In Example 47, at least one machine-readable storage
medium includes instructions that when executed by a
computing device, cause the computing device to retrieve an
indication of size of an interrupt descriptor table (IDT) from
an IDT register of a processor component of the computing
device in response to modification of the IDT register, the
IDT comprising at least one pointer to at least one interrupt
service routine (ISR) of a set of ISRs; compare the indication
of size to a size of a guard IDT of a guard routine to

US 9,990,494 B2

35

determine whether the guard routine is to inspect the IDT
and the set of ISRs based on the comparison; and overwrite
the IDT and the set of ISRs with a cached IDT and a cached
set of ISRs, respectively, based on the determination and
prior to the inspection to prevent the guard routine from
detecting a modification made to at least one of the IDT and
the set of ISRs by an anti-malware routine, the cached IDT
and the cached set of ISRs copied from the IDT and the set
of ISRs, respectively, prior to the modification by the
anti-malware routine.

In Example 48, which includes the subject matter of
Example 47, the computing device may be caused to com-
pare the indication of size to each of multiple sizes of the
guard IDT, each size of the multiple size corresponding to a
different version of the guard IDT.

In Example 49, which includes the subject matter of any
of Examples 47-48, the computing device may be caused to
copy the IDT and the set of ISRs to generate the cached IDT
and the cached set of ISRs, respectively, prior to the modi-
fication by the anti-malware routine; store the cached IDT
and the cached set of ISRs within a first set of storage pages
of a storage of the computing device accessible the proces-
sor component, the first set of storage pages differing from
a second set of storage pages of the storage in which the IDT
and the set of ISRs are stored; detect an attempt by a kernel
component of an operating system executed by the processor
component to access the second set of storage pages modify
the IDT and the set of ISRs; and provide the kernel com-
ponent access to the first set of storage pages to allow the
kernel component to modify the cached IDT and the cached
set of ISRs in the manner in which the kernel component
attempted to modify the IDT and the set of ISRs, respec-
tively.

In Example 50, which includes the subject matter of any
of Examples 47-49, the computing device may be caused to
retrieve another indication of size from the IDT register in
response to another modification of the IDT register; com-
pare the other indication of size to a size of the IDT prior to
the modification by the anti-malware routine to make
another determination that the inspection by the guard
routine is concluded; copy the IDT and the set of ISRs to
again generate the cached IDT and the cached set of ISRs,
respectively, based on the other determination; and modify
the IDT and the set of ISRs to reinstate the modification by
the anti-malware routine based on the other determination.

In Example 51, which includes the subject matter of any
of Examples 47-50, the computing device may be caused to
make the modification to the at least one of the IDT and the
set of ISRs, and the modification may include executable
instructions added to an ISR of the set of ISRs to cause a
flow of execution by the processor component to jump from
executable instructions of the ISR to executable instructions
of the anti-malware routine.

In Example 52, which includes the subject matter of any
of Examples 47-51, the ISR may handle an interrupt asso-
ciated with a hardware component accessible to the proces-
sor component, and the computing device may be caused to
analyze an aspect of the flow of execution in response to the
jump to determine whether the flow of execution is to
perform a malicious operation and allow the flow of execu-
tion to return to executing the executable instructions of the
ISR based on the determination of whether the flow of
execution is to perform a malicious operation.

In Example 53, which includes the subject matter of any
of Examples 47-52, the hardware component may include at
least one of a display, a manually operable control or an
interface to a network.

10

15

20

30

40

45

55

36

In Example 54, which includes the subject matter of any
of Examples 47-53, the computing device may be caused to
make the modification to the at least one of the IDT and the
set of ISRs; and the modification may include an additional
ISR added to the set of ISRs by the anti-malware routine to
enable use of a security feature of the processor component
and an additional entry added to the IDT by the anti-malware
routine to add a pointer to the additional ISR to the IDT to
enable a call to the additional ISR.

In Example 55, which includes the subject matter of any
of Examples 47-54, the security feature may include cir-
cuitry to enhance performance of at least one of encrypting
data, decrypting data, generating a security credential, veri-
fying a security credential or generating a hash.

In Example 56, which includes the subject matter of any
of Examples 47-55, the security feature may be imple-
mented with circuitry accessible to the processor component
to secure an exchange of data between the processor com-
ponent and a remote device coupled to the network; and the
security feature may include at least one of an encryption
engine to encrypt the data prior to transmission of the data
to the remote device, an encryption engine to encrypt the
data prior to storage of the data within a storage accessible
to the processor component to prevent reading of the data by
malware executed by the processor component, or a secure
pathway between the interface and a display to prevent
interception of the data between the interface and the display
by malware executed by the processor component.

In Example 57, at least one machine-readable storage
medium includes instructions that when executed by a
computing device, cause the computing device to retrieve an
indication of size of an interrupt descriptor table (IDT) from
an IDT register of a processor component of the computing
device in response to modification of the IDT register, the
IDT comprising at least one pointer to at least one interrupt
service routine (ISR) of a set of ISRs; compare the indication
of size to a size of the IDT prior to a modification of at least
one of the IDT or the set of ISRs by an anti-malware routine
to determine whether an inspection of the IDT and the set of
ISRs by a guard routine is concluded and that a pointer value
within the IDT register no longer points to a guard IDT
associated with the guard routine based on the comparison;
and store copies of the IDT and the set of ISRs as a cached
IDT and a cached set of ISRs, respectively, based on the
determination in a storage of the computing device that is
accessible to the processor component.

In Example 58, which includes the subject matter of
Example 57, the computing device may be caused to store
the cached IDT and the cached set of ISRs within a first set
of storage pages of the storage accessible the processor
component, the first set of storage pages differing from a
second set of storage pages of the storage in which the IDT
and the set of ISRs are stored; detecting an attempt by a
kernel component of an operating system executed by the
processor component to access the second set of storage
pages modify the IDT and the set of ISRs; and providing the
kernel component access to the first set of storage pages to
allow the kernel component to modify the cached IDT and
the cached set of ISRs in the manner in which the kernel
component attempted to modify the IDT and the set of ISRs,
respectively.

In Example 59, which includes the subject matter of any
of Examples 57-58, the computing device may be caused to
retrieve another indication of size from the IDT register in
response to another modification of the IDT register; com-
pare the other indication of size to a size of the guard IDT
to make another determination of whether the guard routine

US 9,990,494 B2

37
is to again inspect the IDT and the set of ISRs; and overwrite
the IDT and the set of ISRs with the cached IDT and the
cached set of ISRs, respectively, based on the other deter-
mination and prior to the other inspection to prevent the
guard routine from detecting the modification made by the
anti-malware routine.

In Example 60, which includes the subject matter of any
of Examples 57-59, the computing device may be caused to
compare the indication of size to each of multiple sizes of
the guard IDT, each size of the multiple size corresponding
to a different version of the guard IDT.

In Example 61, which includes the subject matter of any
of Examples 57-60, the computing device may be caused to
make the modification to the at least one of the IDT and the
set of ISRs, and the modification may include executable
instructions added to an ISR of the set of ISRs to cause a
flow of execution by the processor component to jump from
executable instructions of the ISR to executable instructions
of the anti-malware routine.

In Example 62, which includes the subject matter of any
of Examples 57-61, the ISR may handle an interrupt asso-
ciated with a hardware component accessible to the proces-
sor component; and the computing device may be caused to
analyze an aspect of the flow of execution in response to the
jump to determine whether the flow of execution is to
perform a malicious operation, and allow the flow of execu-
tion to return to executing the executable instructions of the
ISR based on the determination of whether the flow of
execution is to perform a malicious operation.

In Example 63, which includes the subject matter of any
of Examples 57-62, the hardware component may include at
least one of a display, a manually operable control or an
interface to a network.

In Example 64, which includes the subject matter of any
of Examples 57-63, the computing device may be caused to
make the modification to the at least one of the IDT and the
set of ISRs; and the modification may include an additional
ISR added to the set of ISRs by the anti-malware routine to
enable use of a security feature of the processor component
and an additional entry added to the IDT by the anti-malware
routine to add a pointer to the additional ISR to the IDT to
enable a call to the additional ISR.

In Example 65, which includes the subject matter of any
of Examples 57-64, the security feature may include cir-
cuitry to enhance performance of at least one of encrypting
data, decrypting data, generating a security credential, veri-
fying a security credential or generating a hash.

In Example 66, which includes the subject matter of any
of Examples 57-65, the security feature implemented with
circuitry accessible to the processor component to secure an
exchange of data between the processor component and a
remote device coupled to the network; and the security
feature may include at least one of an encryption engine to
encrypt the data prior to transmission of the data to the
remote device, an encryption engine to encrypt the data prior
to storage of the data within a storage accessible to the
processor component to prevent reading of the data by
malware executed by the processor component, or a secure
pathway between the interface and a display to prevent
interception of the data between the interface and the display
by malware executed by the processor component.

In Example 67, at least one machine-readable storage
medium may include instructions that when executed by a
computing device, cause the computing device to perform
any of the above.

In Example 68, an apparatus to monitor interactions may
include means for performing any of the above.

10

15

20

25

30

35

40

45

50

55

60

65

38

The invention claimed is:

1. An apparatus, comprising:

a memory; and

logic comprised in circuitry coupled to the memory, the

logic to:

detect a preparation for a guard routine to perform an
inspection;

perform a first modification to an interrupt descriptor
table (IDT) based on detection of the preparation for
the guard routine, the first modification to the IDT to
replace a pointer to a first interrupt service routine
(ISR) with a pointer to a second ISR;

detect a completion of the inspection by the guard
routine; and

perform a second modification to the IDT based on
detection of the completion of the guard routine, the
second modification to the IDT to replace the pointer
to the second ISR with a pointer to the first ISR.

2. The apparatus of claim 1, comprising an IDT register
(IDTR), the IDTR to include one or more of a pointer to a
location in the memory of the IDT, an indication a current
size of the IDT, and an indication of the maximum size of the
IDT.

3. The apparatus of claim 2, the logic to detect the
preparation for the guard routine to perform the inspection
based on a modification of or attempt to modify the IDTR.

4. The apparatus of claim 2, the logic to detect the
completion of the inspection by the guard routine based on
a modification of the IDTR.

5. The apparatus of claim 2, the logic to:

perform a first modification to the IDTR based on detec-

tion of the preparation for the guard routine to perform
the inspection; and

perform a second modification to the IDTR based on

detection of the completion of the guard routine.

6. The apparatus of claim 1, the IDT to include a set of
pointers, each pointer to identify an address in the memory
of a first executable instruction of an ISR.

7. The apparatus of claim 1, the logic to:

perform a first modification to an ISR based on detection

of the preparation for the guard routine; and

perform a second modification to the ISR based on

detection of the completion of the guard routine.

8. The apparatus of claim 7, the second modification to the
ISR to insert executable instructions to notify an anti-
malware routine when the ISR is called.

9. The apparatus of claim 7, the second modification to the
ISR to insert executable instructions to transfer a flow of the
ISR to an anti-malware routine.

10. The apparatus of claim 9, the anti-malware routine to
determine to allow execution of the ISR in response to the
transfer of the flow of the ISR to the anti-malware routine.

11. A computer-implemented method, comprising:

detecting a preparation for a guard routine to perform an

inspection;
performing a first modification to an interrupt descriptor
table (IDT) based on detection of the preparation for
the guard routine, the first modification to the IDT
comprising replacing a pointer to a first interrupt ser-
vice routine (ISR) with a pointer to a second ISR;

detecting a completion of the inspection by the guard
routine; and

performing a second modification to the IDT based on

detection of the completion of the guard routine, the
second modification to the IDT comprising replacing
the pointer to the second ISR with a pointer to the first
ISR.

US 9,990,494 B2

39

12. The computer-implemented method of claim 11, com-
prising an IDT register (IDTR), the IDTR including one or
more of a pointer to a location of the IDT, an indication a
current size of the IDT, and an indication of the maximum
size of the IDT.

13. The computer-implemented method of claim 12, com-
prising detecting the preparation for the guard routine to
perform the inspection based on a modification of or attempt
to modify the IDTR.

14. The computer-implemented method of claim 12, com-
prising detecting the completion of the inspection by the
guard routine based on a modification of the IDTR.

15. The computer-implemented method of claim 12, com-
prising:

performing a first modification to the IDTR based on

detection of the preparation for the guard routine to
perform the inspection; and

performing a second modification to the IDTR based on

detection of the completion of the guard routine.

16. The computer-implemented method of claim 11, com-
prising:

performing a first modification to an ISR based on detec-

tion of the preparation for the guard routine; and
performing a second modification to the ISR based on
detection of the completion of the guard routine.

17. The computer-implemented method of claim 16, the
second modification to the ISR comprising inserting execut-
able instructions to notify an anti-malware routine when the
ISR is called.

18. An article comprising a non-transitory computer-
readable storage medium comprising instructions that when
executed enable the computing device to:

detect a preparation for a guard routine to perform an

inspection;

5

15

20

25

30

40

perform a first modification to an interrupt descriptor table
(IDT) based on detection of the preparation for the
guard routine, the first modification to the IDT to
replace a pointer to a first interrupt service routine
(ISR) with a pointer to a second ISR;

detect a completion of the inspection by the guard routine;

and

perform a second modification to the IDT based on

detection of the completion of the guard routine, the
second modification to the IDT to replace the pointer to
the second ISR with a pointer to the first ISR.

19. The article of claim 18, comprising instructions that
when executed enable the computing device to identify a
modification to or attempt to modify an IDT register (IDTR)
to detect the preparation for the guard routine to perform the
inspection.

20. The article of claim 18, comprising instructions that
when executed enable the computing device to identify a
modification to an IDT register (IDTR) to detect the comple-
tion of the inspection by the guard routine.

21. The article of claim 18, comprising instructions that
when executed enable the computing device to:

perform a first modification to an ISR based on detection

of the preparation for the guard routine; and

perform a second modification to the ISR based on

detection of the completion of the guard routine.

22. The article of claim 21, comprising instructions that
when executed enable the computing device to insert execut-
able instructions to transfer a flow of the ISR to an anti-
malware routine to perform the second modification to the
ISR.

