a2 United States Patent

Liu et al.

US009971330B2

US 9,971,330 B2
*May 15, 2018

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

SAFETY RELAY CONFIGURATION EDITOR

Applicant: Rockwell Automation Technologies,
Inc., Mayfield Heights, OH (US)

Inventors: Zhixuan Liu, Dalian (CN); Bradley A.
Prosak, Bedford, MA (US)

Assignee: Rockwell Automation Technologies,
Inc., Mayfield Heights, OH (US)
Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 551 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/640,564
Filed: Mar. 6, 2015

Prior Publication Data

US 2016/0259313 Al Sep. 8, 2016
Int. CL.
GO05B 19/042 (2006.01)
GO05B 23/02 (2006.01)
(Continued)
U.S. CL
CPC GO05B 19/0428 (2013.01); GO5B 23/0216

(2013.01); GO6F 3/0484 (2013.01); GO6F
8/34 (2013.01); GO5B 2219/24024 (2013.01)
Field of Classification Search
CPC GO5B 19/0428; GO5B 2219/24024; GO5B
23/0216; GOGF 3/0484; GOGF 8/34
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

9,361,073 B2* 6/2016 Prosakc.ccccceeenen. GOGF 8/34
2007/0093917 Al 4/2007 Steinman
(Continued)

FOREIGN PATENT DOCUMENTS

CN 101482736 7/2009
CN 104750063 7/2015
EP 2763062 8/2014

OTHER PUBLICATIONS

Extended European Search Report for EP Patent Application Serial
No. 16158517.9, dated Jun. 30, 2016, 7 pages.

(Continued)

Primary Examiner — Abdelmoniem Elamin
(74) Attorney, Agent, or Firm — Amin, Turocy & Watson,
LLP

(57) ABSTRACT

A safety relay configuration system for configuring safety
functions to be carried out by a safety relay is provided. The
configuration system comprises a number of features that
facilitate intuitive and simplified configuration of an indus-
trial safety relay, including but not limited to features that
guide the user through the configuration process using an
intuitive sequential procedure, enforce design consistency
throughout the configuration project by intelligently limiting
user selections, and visually organize configuration and
status information in a manner that efficiently utilizes dis-
play space and allows the user to quickly evaluate available
configuration options. The configuration system organizes
function blocks into columns according to function block
type and uses pass-through blocks and signal flow line
drawing rules to yield an organized program visualization
that can be easily followed and interpreted.

20 Claims, 24 Drawing Sheets

US 9,971,330 B2

Page 2
(51) Imt. ClL
GO6F 3/0484 (2013.01)
GO6F 9/44 (2018.01)
(56) References Cited
U.S. PATENT DOCUMENTS
2010/0205418 Al 8/2010 Kishan
2015/0045911 A1* 2/2015 Sakamoto GO5B 19/0428
700/11
2015/0185710 Al* 7/2015 Prosak GO5B 9/02
700/79
2015/0187524 Al* 7/2015 Prosak HO1H 50/00
361/160

OTHER PUBLICATIONS

EP Office Action for EP Patent Application No. 16158517.9, dated
Mar. 24, 2017, 6 pages.

Extron: “User Guide DMP 64 Digital Matrix Processor”, Apr. 30,
2013, pp. 1-146, XP055356024, Retrieved from the Internet on Mar.
17, 2017: URL:http://media.extron.comldownload/filesluserman/
68/1790-01_C_DMP64_pdf.

European Office Action for EP Patent Application Serial No.
16158517.9, dated Sep. 12, 2016, 2 pages.

* cited by examiner

US 9,971,330 B2

Sheet 1 of 24

May 15, 2018

U.S. Patent

1 O14

7 up-Bug

1 up-Snd

I

AN

N H
J :

VIvd SALViS

vivd
NOLLVANDIANOD

HANDISHA
INALSAS WHLSAS ALHAVS
NOLLVAODIANOD V2
AVTHY ALAAVS

\z01

US 9,971,330 B2

Sheet 2 of 24

May 15, 2018

U.S. Patent

<Ol

LININOJNOO

A
\

> NOLLVIDIINOD
AVTdd ALFAVS

AJOWHW -

Y

807

At A - | ININOdNOO

NOLLVOINNINIWOD

Y

(SNIOSSID0Yd |-

907

LINANOJWOO
> FOVAIIALNI
TVOIHdVAD

01¢

A
4

INALSAS NOLLVHIDIANOGD AVIZY ALAAVS

b0z

<0l

US 9,971,330 B2

Sheet 3 of 24

May 15, 2018

U.S. Patent

£ "OId

A B

&,nt sy s W g

—P0¢

%0¢

US 9,971,330 B2

Sheet 4 of 24

May 15, 2018

U.S. Patent

v OId

80e—

soziuedi Pafusd 1 0] XoU[oo], 33IAd(]
213 WOIJ BONRNPRE PERUSH N doxg-puv-duig

dqO

MOPUIM HOISTAIY 3II[AS YY) sagouney
X0(j00 [, 991A3(] A} WO PEKASD A4} YPI-d(qnoq

wu™

o n

US 9,971,330 B2

Sheet 5 of 24

May 15, 2018

U.S. Patent

q¢ O BS "OId

XXQT-0ERUSD-XNpY

Kyages

sjruruIa §, nydeany ~—p1g s[eufuLId I dfyde.an

SIALI(J SIALI(]

so[npoyy uorsuedxyy sopnpopy uorsuvdxy |

91¢ i ERET (1 RE1i{ig} 91¢ I S12[[013U0)) :

sdoppie)

........ : .—Q?OUme Bee

80¢

US 9,971,330 B2

Sheet 6 of 24

May 15, 2018

U.S. Patent

AN K |

SUIRDS

sadwayp o

MaTp SULIB[Y

S[IBII(Y JOI0I3U0)) AU}
younej 03 JIZIUBGIQ
aloig oyp w
0£8USD MID-dqno

Sav |,

A4 peuyaq-195}

SAGULIBA ¢
[eqof)

sweadoay

mdmo #

1339{04g

aazpaeda0 1efes

Ol SmOpUIA SUOHEERWWO)) | Sj00§ SNg3Q DURG MAIA NPH oM

imn™

PuaEie Juenodmo) pajoauno)y

US 9,971,330 B2

Sheet 7 of 24

May 15, 2018

U.S. Patent

L™DIA

<&ydmg>
<Aydurg>

sapnpoly ug-8njgq

i { :uondisosaq :
s s | | o poppoaurg
0£gASHAMW meN Suddepy sngpoyy
symey
1009 1uois1A0Y
fyuo)y gy
10300 K)o5es OEGUSD ML HHOTI-0EHI-HOPY edsy 10 S0

Adfperg-udiy

1104 #1408

pamne JoN

ey

poly Aeppy

. QT UonEILIA ﬁ
e

4940TT-HEUD- 0T

duigdngaq

AP 0] 3PRUUOT) ” m

amaag propd proumoq %

0LRASHAw
0£8USD

3 0£8USD

US 9,971,330 B2

Sheet 8 of 24

May 15, 2018

U.S. Patent

S 'O
4 <Aydumyg>
[nPOA Id i
symeq
N uoneamsyue) 41
IFA\O-0807 Hod g
PAO-0807

10 [pLIdg

YAO 080T §....smmsmmmsmsinsnnin. Kdw - sompoy ui-Snig Keppy A19)es |
PIOrOI1-0807
O1-0807 pajme g JoN ey
Sn— uny PO
w08 uwopmmmwmumo) | T . |
Weasodg | I)OUY
= (1] UDHEIYLIIA .
ccol\\

v19

A907-084D- U0

US 9,971,330 B2

Sheet 9 of 24

May 15, 2018

U.S. Patent

6 "Old

£00°¥
YAOYOI-0807
Aslprag-uafy

TUOISTADY ATEMULI]

YAOPOI-080T -

(1 soeye)
aweN I0puap

SO[NPOJA UI-Sn[d

Lpenadg
[easiq
UOHBIUNWIO))

SA[MPOTA] WI-Snjg |
pLLC
uone.ndyuo) qAT:

104 gSN
EUE §4REIN

?—wﬁ b&nw

paymeq 10N ey
unyy DPOJA

1930y

— :qqp wopvaLA Ny

490TT-08ADUOPY

US 9,971,330 B2

Sheet 10 of 24

May 15, 2018

U.S. Patent

01 "OId

e

8001~

OSHI\

=

sindinQ Apojes g _aw‘@:d:.u_mcw_ ”

Jurionuojy Alajes

S1a8(E IANRMIALLY

0.44007) PULH 0Mg,

ndug A13yrg 2

weRang NSy

goarng e

MIDMHY 0PI |

rsnmassnnsnsnsisnsmsmsm s RS OASAA
Qns Auyqons f R

SAAI MABBLNYY 28

T3 IR g~ € 1)
puaEn) g - 1%

X -

XOqEO0g,

s B

ey MR

dpy wopuipy gfoumdmMMe) 50y Sngdq pIRg M3IA P

L3

v
YIIGYI0 M, Juavoduso) padouuoy

2001 9001-"

US 9,971,330 B2

Sheet 11 of 24

May 15, 2018

U.S. Patent

AR K|

e d

C

- QUODMT

LETSW

Agojos

@ onewimyay addy jasay

s3I

SAnLan,

q3auig g,
Nsx g

&:&:O b&aw

d 194977 2130

[4UN!

ydnoagyj,
$864

PAdT NBog

g 430
APANO ¥
4,10 JTIPINIR]

128359y

059y

*
g oMy e w o

FuLioyuoAl A39)eS

30711

[4an!

0111

US 9,971,330 B2

Sheet 12 of 24

May 15, 2018

U.S. Patent

<1 DI

mding

el 80¢1

INET N

9071

ySnoxyy,
sseg

yanoayy,
sse g

o 1A 21807

/(ommﬁ

ySnosyy
sseg

8121

v [aaag nfory

POCH 4! 91¢1

US 9,971,330 B2

Sheet 13 of 24

May 15, 2018

U.S. Patent

£l "DId

12091

<0

90¢1

doyg
Aanadowy

Jurropruopy Ayageg

US 9,971,330 B2

Sheet 14 of 24

May 15, 2018

U.S. Patent

|4

POCT c0¢l 9011 0r1

ysnoay y,

v 19497 Moy

ssed

90¢1

STUNIDG PINBAPY +

doig
Asuas.romy L

Supoyuogy Aoyes

US 9,971,330 B2

Sheet 15 of 24

May 15, 2018

U.S. Patent

SI'OIA

TIIRROIILY, Ay 3989y
g
vaoitdiuey

H(sUIQSX)
ArpoQ WYY,

syaeypaRg

ydnoay
sseg

snday 18y STUMIIG PIBNTARY +

sadd, 1m0y

LGP

e ” ydnoayy YNIMY
® agipoway : :)

a2 -
mdyng S8 g propadoy V [aoy niey Sunoyuopy A1ageg

US 9,971,330 B2

Sheet 16 of 24

May 15, 2018

U.S. Patent

91 "OIA

yinoxyy,
sseq

inday 105y

:adi g, 1m0y

mding $ageg | a7 o8|

rOEl (4113 diia!

V [pad] N30y

STUMIIG PATARAPY +

YNNG -
apeny

uE.:E:c I A9pes

90¢T

US 9,971,330 B2

Sheet 17 of 24

May 15, 2018

U.S. Patent

L1 D4

ynday 1950y

odd g 1asayg

oegp

440
ajerpaunuy

12019

mding

0%

‘Ayagu

S

c0el

sfugyag panapy +

gdnoxyy,
sseg

ysaoayy,

€ 427 NFoy V [3A37 8o

90¢1

qoyms
ae0) |

Suponuoey Aages

U.S. Patent May 15, 2018 Sheet 18 of 24 US 9,971,330 B2

FIG. 18

5 Lopicleveld Logiclevel B

&

US 9,971,330 B2

Sheet 19 of 24

May 15, 2018

U.S. Patent

07 "O1d

800¢

sadAy, jasoy

00T

DPEQPIdY

mdyng Spyes

o PAYY o_w,cd

900¢

S80S PRVEAPY +

Surtoglioly S1a5es

[408§ 4O s1o8 [ANS

T 408 U0 5198 | AINS
Jo mdino yo0iq uonouny

00T

US 9,971,330 B2

Sheet 20 of 24

May 15, 2018

U.S. Patent

17O

3UIIS PAJUEAPY +

€l

g A2IN0K 359 |,

4}

V 32008 IS,

mdynQ L9588

q PAdT 80T V [9A9T J1307]

SULIOIIOTA A)d)eS

U.S. Patent May 15, 2018 Sheet 21 of 24 US 9,971,330 B2

RECEIVE CONFIGURATION INPUT THAT ADDS GRAPHICAL
FUNCTION BLOCKS FOR A SAFETY RELAY CONFIGURATION
PROGRAM TO A DEVELOPMENT AREA OF A SAFETY RELAY

CONFIGURATION INTERFACE

ORGANIZE THE GRAPHICAL FUNCTION BLOCKS INTO FOUR
COLUMNS CLASSIFIED ACCORDING TO FUNCTION BLOCK
TYPE

2204

FIG. 22

U.S. Patent May 15, 2018 Sheet 22 of 24 US 9,971,330 B2

RECEIVE CONFIGURATION INPUT THAT ADDS A FIRST
GRAPHICAL FUNCTION BLOCK FOR A SAFETY RELAY /_2302
CONFIGURATION PROGRAM TO A FIRST COLUMN OF A
DEVELOPMENT AREA OF A SAFETY RELAY
CONFIGURATION INTERFACE

|

RECEIVE CONFIGURATION INPUT THAT ADDS A SECOND

GRAPHICAL FUNCTION BLOCK FOR THE SAFETY RELAY |~2304

CONFIGURATION PROGRAM TO A THIRD COLUMN OF THE
DEVELOPMENT AREA

l

RECEIVE CONFIGURATION INPUT THAT LINKS AN OUTPUT
OF THE FIRST GRAPHICAL FUNCTION BLOCK TO AN INPUT
OF THE SECOND GRAPHICAL FUNCTION BLOCK WITHA |,~2306
SIGNAL FLOW LINE, WHEREIN THE SIGNAL FLOW LINE
PROGRAMMATICALLY ASSOCIATES THE FIRST AND
SECOND GRAPHICAL FUNCTION BLOCKS

|

GENERATE A PASS-THROUGH BLOCK IN A SECOND COLUMN} _1130g
OF THE DEVELOPMENT AREA BETWEEN THE FIRST AND 4
SECOND GRAPHICAL FUNCTION BLOCKS

|

ROUTE THE SIGNAL FLOW LINE BETWEEN THE FIRST AND 2310
SECOND GRAPHICAL FUNCTION BLOCKS THROUGH THE 4
PASS-THROUGH BLOCK

FI1G. 23

U.S. Patent

May 15, 2018

Sheet 23 of 24

US 9,971,330 B2

R AT

System
Memory

| Volatile]

Non Volatile

Interface

[
Y

Disk Storage

_—— 2428
i { i
i Operating Syst 2410
o perating System /-
— T 2430
i | Applications |
l Levsvsnsacassetevrvsnnanansvssnnnd
L (. 4%
: Modules :
: 2434
|
i Data | 2412
3~ 2414
. 2442
| -
b | Output ¢ Output
- Adapter(s) Device(s)
2416 C
2438 2440
S~
Interface ¢ Input
2420 Port(s) Device(s)
\- 2436
2422 N 5418
2 / 2450
Network
" aa26 Communication j Interface
Connection(s) A
\ 2448
v
Remote
Computer(s)
2424
Memory

Storage

FIG. 24

U.S. Patent May 15, 2018 Sheet 24 of 24 US 9,971,330 B2

/—2500
2502 2504 ~
CLIENT(S) SERVER(S)
x COMMUNICATION 7
FRAMEWORK
2508 2510
v A 4
2506
CLIENT DATA STORE(S) SERVER DATA STORE(S)

FI1G. 25

US 9,971,330 B2

1
SAFETY RELAY CONFIGURATION EDITOR

BACKGROUND

The subject matter disclosed herein relates generally to
configuration systems and graphical interfaces for configu-
ration and monitoring of an industrial safety relay

BRIEF DESCRIPTION

The following presents a simplified summary in order to
provide a basic understanding of some aspects described
herein. This summary is not an extensive overview nor is
intended to identify key/critical elements or to delineate the
scope of the various aspects described herein. Its sole
purpose is to present some concepts in a simplified form as
a prelude to the more detailed description that is presented
later.

In one or more embodiments, a system for programming
an industrial safety relay is provided, comprising a configu-
ration component configured to create a configuration pro-
gram for a safety relay based on configuration input that
manipulates graphical function blocks and signal flow lines
between the graphical function blocks; and a graphical
interface component configured to receive the configuration
input and to display the graphical function blocks on an
editing area of a configuration interface, wherein the graphi-
cal interface component is configured to organize the graphi-
cal function blocks into four columns of the editing area, and
wherein the four columns are classified according to func-
tion block type.

Also, according to one or more embodiments, a non-
transitory computer-readable medium is provided having
stored thereon instructions that, in response to execution,
cause a system to perform operations, the operations com-
prising displaying graphical function blocks on an editing
area of a configuration interface, wherein the displaying
comprises arranging the graphical function blocks into four
columns according to function block type; receiving con-
figuration input via manipulation of one or more of the
graphical function blocks and signal flow lines between the
graphical function blocks; and generating a configuration
program for a safety relay based on the configuration input.

Also, one or more embodiments provide a method for
constructing a program for an industrial safety relay, com-
prising adding, by a system comprising at least one proces-
sor, graphical function blocks to an editing area of a con-
figuration interface in response to first configuration input,
wherein the adding comprises aligning the graphical func-
tion blocks into four columns classified according to func-
tion block type; adding, by the system, signal flow lines
between at least a subset of the graphical function blocks in
response to receipt of second configuration input, wherein
the signal flow lines programmatically associate the subset
of'the graphical function blocks; and creating, by the system,
a configuration program for a safety relay based on the
graphical function blocks and the signal flow lines.

To the accomplishment of the foregoing and related ends,
certain illustrative aspects are described herein in connection
with the following description and the annexed drawings.
These aspects are indicative of various ways which can be
practiced, all of which are intended to be covered herein.
Other advantages and novel features may become apparent
from the following detailed description when considered in
conjunction with the drawings.

10

15

20

25

30

35

40

45

50

55

60

65

2
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a general overview of the relationship between
a safety relay configuration system and an industrial safety
relay.

FIG. 2 is a block diagram of an example safety relay
configuration system that facilitates configuration, program-
ming, and monitoring of an industrial safety relay.

FIG. 3 is an example screen layout for a device configu-
ration screen of a safety relay configuration system.

FIG. 4 is an example screen layout illustrating selection of
a device from a list of available devices for inclusion in a
project organizer area of the safety relay configuration
system.

FIG. 5a is an example screen layout for the device toolbox
area of the safety relay configuration system.

FIG. 554 is an example screen layout for the device toolbox
area of the safety relay configuration system illustrating
expansion of a device folder.

FIG. 6 is an example screen layout illustrating creation of
a new project for a selected device on the project organizer
area.

FIG. 7 is an example screen layout depicting sections of
a device details area when a project for a selected safety
device is open.

FIG. 8 is an example screen layout illustrating configu-
ration of a plug-in module for a safety relay configuration
project.

FIG. 9 is an example screen layout of a project window
of the safety relay configuration system including a graphi-
cal representation of a plug-in module.

FIG. 10 is an example screen layout of a safety logic
editor screen of the safety relay configuration system.

FIG. 11 is an example screen layout illustrating creation
of an example safety relay logic program.

FIG. 12 is an example screen layout illustrating an
example safety relay logic program.

FIG. 13 is a layout view of a safety logic program in the
process of development.

FIG. 14 is a layout view of a safety logic program
illustrating automatic insertion of a pass-through block.

FIG. 15 is a layout view of a safety logic program in
which an output of a pass-through block has been re-routed
to a different safety output function block.

FIG. 16 is a layout view of a safety logic program in
which an input of a pass-through block has been re-routed to
a different safety monitoring function block.

FIG. 17 is a layout view of a safety logic program in
which a pass-through function block has been automatically
moved to a different row in response to a signal flow line
modification.

FIG. 18 is a diagram illustrating connection of function
block inputs and outputs using signal flow lines.

FIG. 19 is a diagram illustrating an editing environment
that maintains a fixed horizontal distance between function
blocks.

FIG. 20 is a function block diagram illustrating function
block referencing.

FIG. 21 is an example development environment in which
available memory is represented by function block targets.

FIG. 22 is a flowchart of an example methodology for
organizing graphical function blocks of a safety relay pro-
gram on a development area of a safety relay configuration
system interface.

FIG. 23 is a flowchart of an example methodology for
organizing signal flow lines between graphical function

US 9,971,330 B2

3

blocks of a safety relay configuration program on a devel-
opment area of a safety relay configuration system interface.
FIG. 24 is an example computing environment.
FIG. 25 is an example networking environment.

DETAILED DESCRIPTION

Various aspects of this disclosure are now described with
reference to the drawings, wherein like reference numerals
are used to refer to like elements throughout. In the follow-
ing description, for purposes of explanation, numerous spe-
cific details are set forth in order to provide a thorough
understanding of one or more aspects. It should be under-
stood, however, that certain aspects of this disclosure may be
practiced without these specific details, or with other meth-
ods, components, materials, etc. In other instances, well-
known structures and devices are shown in block diagram
form to facilitate describing one or more aspects.

As used in this application, the terms ‘“component,”
“system,” “platform,” “layer,” “controller,” “terminal,” “sta-
tion,” ” g

29 < 29 <.

node,” “interface” are intended to refer to a com-
puter-related entity or an entity related to, or that is part of,
an operational apparatus with one or more specific function-
alities, wherein such entities can be either hardware, a
combination of hardware and software, software, or soft-
ware in execution. For example, a component can be, but is
not limited to being, a process running on a processor, a hard
disk drive, multiple storage drives (of optical or magnetic
storage medium) including affixed (e.g., screwed or bolted)
or removably affixed solid-state storage drives; an object; an
executable; a thread of execution; a computer-executable
program, and/or a computer. By way of illustration, both an
application running on a server and the server can be a
component. One or more components can reside within a
process and/or thread of execution, and a component can be
localized on one computer and/or distributed between two or
more computers. Also, components as described herein can
execute from various computer readable storage media
having various data structures stored thereon. The compo-
nents may communicate via local and/or remote processes
such as in accordance with a signal having one or more data
packets (e.g., data from one component interacting with
another component in a local system, distributed system,
and/or across a network such as the Internet with other
systems via the signal). As another example, a component
can be an apparatus with specific functionality provided by
mechanical parts operated by electric or electronic circuitry
which is operated by a software or a firmware application
executed by a processor, wherein the processor can be
internal or external to the apparatus and executes at least a
part of the software or firmware application. As yet another
example, a component can be an apparatus that provides
specific functionality through electronic components with-
out mechanical parts, the electronic components can include
a processor therein to execute software or firmware that
provides at least in part the functionality of the electronic
components. As further yet another example, interface(s)
can include input/output (I/O) components as well as asso-
ciated processor, application, or Application Programming
Interface (API) components. While the foregoing examples
are directed to aspects of a component, the exemplified
aspects or features also apply to a system, platform, inter-
face, layer, controller, terminal, and the like.

As used herein, the terms “to infer” and “inference” refer
generally to the process of reasoning about or inferring
states of the system, environment, and/or user from a set of
observations as captured via events and/or data. Inference

10

15

20

25

30

35

40

45

50

55

60

65

4

can be employed to identify a specific context or action, or
can generate a probability distribution over states, for
example. The inference can be probabilistic—that is, the
computation of a probability distribution over states of
interest based on a consideration of data and events. Infer-
ence can also refer to techniques employed for composing
higher-level events from a set of events and/or data. Such
inference results in the construction of new events or actions
from a set of observed events and/or stored event data,
whether or not the events are correlated in close temporal
proximity, and whether the events and data come from one
or several event and data sources.

In addition, the term “or” is intended to mean an inclusive
“or” rather than an exclusive “or.” That is, unless specified
otherwise, or clear from the context, the phrase “X employs
A or B” is intended to mean any of the natural inclusive
permutations. That is, the phrase “X employs A or B” is
satisfied by any of the following instances: X employs A; X
employs B; or X employs both A and B. In addition, the
articles “a” and “an” as used in this application and the
appended claims should generally be construed to mean
“one or more” unless specified otherwise or clear from the
context to be directed to a singular form.

Furthermore, the term “set” as employed herein excludes
the empty set; e.g., the set with no elements therein. Thus,
a “set” in the subject disclosure includes one or more
elements or entities. As an illustration, a set of controllers
includes one or more controllers; a set of data resources
includes one or more data resources; etc. Likewise, the term
“group” as utilized herein refers to a collection of one or
more entities; e.g., a group of nodes refers to one or more
nodes.

Various aspects or features will be presented in terms of
systems that may include a number of devices, components,
modules, and the like. It is to be understood and appreciated
that the various systems may include additional devices,
components, modules, etc. and/or may not include all of the
devices, components, modules etc. discussed in connection
with the figures. A combination of these approaches also can
be used.

Industrial system designers typically program the safety
functions to be carried out by an industrial safety relay using
a software development platform that is proprietary to the
safety relay. The workflow for developing a safety relay
program using these development platforms is often com-
plicated, particularly as the number of safety relay terminals
to be used for safety monitoring and output signaling grows
larger. Moreover, the development interface layout of many
safety relay programming platforms often yields a program
visualization that is difficult to interpret and troubleshoot.

The safety relay configuration systems, software, and
graphical interfaces described herein comprise a number of
features that facilitate intuitive and simplified configuration
of an industrial safety relay. These features include, for
example, a programming environment that enforces an orga-
nized layout of function blocks that simplifies program
building and yields an uncluttered program view that is easy
to read and troubleshoot.

FIG. 1 is a general overview of the relationship between
the safety relay configuration system 102 and an industrial
safety relay 108. Safety relay 108 can comprise any suitable
industrial safety relay or similar device configured to moni-
tor an industrial safety system and control the ability of an
industrial system or machine to start or run based on the
monitored statuses of one or more safety devices (e.g.,
emergency stop buttons, safety mats, light curtains, emer-
gency pull cords, etc.). The safety relay can comprise a

US 9,971,330 B2

5

number of input terminals for monitoring the status of one
or more safety devices, and output terminals that control
certain machine states based on the statuses of the safety
devices. In an example configuration, power to selected
control components of the industrial system or machine can
be connected to the machine via the safety relay outputs, and
the safety relay 108 can be programmed to close the outputs
only when the relevant safety devices are in their respective
safe states. To ensure control reliability, the safety relay 108
typically includes a number of integrated self-monitoring
features to reduce the possibility of a relay failure and to
ensure that the industrial system remains safe in the event of
such a relay failure. These integrated safety features can
include, for example, redundant circuits, internal monitoring
to detect short-circuits between contacts, and other such
features.

Safety relay 108 is programmable, allowing the user to
configure the function of each input and output terminal and
to develop logic that controls the behavior of each relay
output based on the states of the safety device inputs.
Accordingly, safety relay configuration system 102 is
designed to communicate with safety relay 108 and to
execute a configuration application that allows the user to
configure and program safety relay 108. Safety relay con-
figuration system 102 can communicate with safety relay
108 using any suitable communication means, including
communication via a local connection between the configu-
ration system and the safety relay 108 (e.g., universal serial
bus, RS232, etc.), or over a networked connection (e.g.,
Ethernet, Modbus, Common Industrial Protocol, Controlnet,
Devicenet, etc.). In one or more embodiments, safety relay
configuration system 102 can also communicate with safety
relay 108 remotely via the Internet.

Once communication between the safety relay configu-
ration system 102 and safety relay 108 is established, the
configuration system can download configuration data 104
to the safety relay based on configuration and programming
input provided to the configuration system by the user. For
example, the user can develop safety relay logic within the
development environment of the configuration application
executed by the configuration system 102, and download the
developed program to safety relay 108. Additionally, safety
relay configuration system 102 can read and display status
data 106 from the safety relay 108. The configuration system
can render status data 106 on a graphical environment
having a similar structure to the development environment
used to create the safety relay logic, allowing the user to
monitor the statuses of the input devices and relay outputs
within the logic environment.

FIG. 2 is a block diagram of an example safety relay
configuration system that can facilitate configuration, pro-
gramming, and monitoring of an industrial safety relay.
Aspects of the systems, apparatuses, or processes explained
in this disclosure can constitute machine-executable com-
ponents embodied within machine(s), e.g., embodied in one
or more computer-readable mediums (or media) associated
with one or more machines. Such components, when
executed by one or more machines, e.g., computer(s), com-
puting device(s), automation device(s), virtual machine(s),
etc., can cause the machine(s) to perform the operations
described.

One or more embodiments of safety relay configuration
system 102 can include a graphical interface component
204, a communication component 206, a safety relay con-
figuration component 208, one or more processors 210, and
memory 212. In various embodiments, one or more of the
components 204-208, the one or more processors 210, and

20

25

30

40

45

55

6

memory 212 can be electrically and/or communicatively
coupled to one another to perform one or more of the
functions of the safety relay configuration system 102. In
some embodiments, components 204-208 can comprise soft-
ware instructions stored on memory 212 and executed by
processor(s) 210. The safety relay configuration system
102 may also interact with other hardware and/or
software components not depicted in FIG. 2. For example,
processor(s) 210 may interact with one or more external user
interface devices, such as a keyboard, a mouse, a display
monitor, a touchscreen, or other such interface devices.

Graphical interface component 204 can be configured to
receive user input and to render output to the user in any
suitable format (e.g., visual, audio, tactile, etc.). User input
can be, for example, safety relay terminal configuration
input, safety device selection input, function block selection
and configuration input, user responses to prompts provided
by the graphical interface component 204, or other such
data. Communication component 206 can be configured to
communicatively interface with the safety relay and
exchange data between the relay and the configuration
system. Communication between the configuration system
and the safety relay can be via a local communication link
such as USB, RS232, or the like, or via a remote connection
over a network or the Internet.

Safety relay configuration component 208 can be config-
ured to execute a safety relay configuration application
having features and graphical interface characteristics to be
described in more detail herein. The one or more processors
210 can perform one or more of the functions described
herein with reference to the systems and/or methods dis-
closed. Memory 212 can be a computer-readable storage
medium storing computer-executable instructions and/or
information for performing the functions described herein
with reference to the systems and/or methods disclosed.

FIG. 3 is an example, non-limiting screen layout 302 for
a device configuration screen of the safety relay configura-
tion system. The example layout 302 includes a device
toolbox area 308, a user menu and toolbar area 306, a project
organizer area 304, and a device details area 310.

The device toolbox area 308 can include a catalog drop-
down window 312. When expanded, catalog drop-down
window 312 can display a list of available devices 316 for
selection by the user for inclusion in the current project. The
list of available devices 316 can be organized according to
device type, with each device type displayed as an expand-
able node. For example, selecting the “Safety” node 314 can
reveal a list of available safety relays. In some embodiments,
hovering a cursor over one of the devices in the list invokes
a pop-up window containing additional information about
the selected device. A device from the list of available
devices 316 can be added to the project organizer arca 304
by double-clicking on the selected device in the list, or by
dragging the selected device to the project organizer area
304. In either case, selection of a device from the list of
available devices 316 causes the selected device to appear in
the project organizer area 304, as shown in FIG. 4. Adding
a device to the project organizer area 304 makes that device
available for creation of a new project.

FIGS. 5a and 55 illustrate the device toolbox area 308 in
more detail. FIG. 5a depicts the list of available devices with
each device category node collapsed. When one of the
category nodes is selected, the available devices under the
selected category are expanded and displayed, as shown in
FIG. 5b.

Turning now to FIG. 6, selection of a safety relay or other
device within the project organizer area 304 (e.g., a safety

US 9,971,330 B2

7

relay or other device previously selected from the device
toolbox area 308 for inclusion in the project organizer area
304) creates a new project for the selected device. In the
illustrated example, a GSR830 safety relay is to be config-
ured and programmed. Accordingly, a device icon corre-
sponding to this type of safety relay is selected from the
project organizer area 304, which launches a “controller
details” view within the device details area 310. In the
present example, a project tab 602 is displayed at the top of
the device details area 310, which corresponds to the new
project.

FIG. 7 illustrates the areas of the device details area 310
when a project for a selected safety device is open. Device
details area 310 includes a device header 702 containing
relevant information about the selected device, including the
safety device’s identity and connection information. Device
toolbar area 704 lists a number of selectable operations and
commands. These can include both common operations that
pertain to all device types (e.g., upload, download, etc.) and
device-specific operations that depend on the type of
selected safety device (e.g., safety configure, validate,
debug, secure, variables). Device toolbar area 704 can also
include flash information, such as a manual for the safety
device or on-line help information.

Device graphic view area 706 displays the name of the
project and a graphical representation 714 of the selected
safety device. If the safety relay configuration system is
currently connected to the safety device, the device graphic
view area 706 can also display operational status informa-
tion for the device, such as the current mode of the device
(program mode, running, etc.), whether the device is cur-
rently faulted, identification of the fault, etc. The user can
also switch the mode of the safety relay between program
mode and running mode from this area. This area also
indicates whether the current project has been verified (e.g.,
the program has been checked for errors or inconsistencies
prior to download), and displays a verification identifier for
verified projects.

The user can also add configurations for any plug-in
modules installed on the safety relay from the device graphic
view area 706. In some embodiments, this can be performed
by right-clicking or otherwise selecting an empty slot on the
graphical representation of the safety relay, as illustrated in
FIG. 8. This invokes a pop-up configuration window 802
that allows the user to select a category of the plug-in
module (e.g., communication module, digital I/O module, or
specialty module), and to select a particular model of the
plug-in module within the selected category. Once selected,
a graphical representation of the plug-in module appears on
the graphical representation of the safety relay, as illustrated
in FIG. 9.

Returning now to FIG. 7, device tree area 612 provides
navigation to various configurable aspects of the selected
safety device, including but not limited to the communica-
tion ports of the safety relay, the devices visual indicators
(e.g., LEDs or other indicators), embedded inputs and out-
puts, and any plug-in modules that are attached to the safety
relay (e.g., expansion I/O modules).

Device configuration property pane 610 allows the user to
view and edit the current configuration of the selected safety
relay. When the user selects an item from the device tree area
612, the device configuration property pane displays
detailed configuration information for the selected item.

Selection of a logic editor button on the device toolbar
area 604 launches a safety logic editor, as illustrated in FIG.
10. In some embodiments, the safety logic editor will be
opened in a new tab 1006. In the illustrated example, a

20

25

30

40

45

50

8

toolbox area 1004 containing selectable safety functions is
located on the left-hand side of the screen, and a safety logic
editor toolbar 1002 is located across the top of the window.
The safety logic editor pane 1010 allows the user to create,
view, and edit safety logic and configuration data for the
safety relay associated with the current project. In FIG. 10,
the safety logic editor pane 1010 is depicted in its blank
state, which is presented to the user when a new project is
created. As will be described in more detail herein, the safety
relay configuration system allows the used to build safety
logic programs for the safety relay by adding function
blocks to available memory spaces 1008 on the safety logic
editor pane 1010.

As illustrated in FIG. 10, the safety logic editor pane 1010
comprises a grid of four columns—Safety Monitoring,
Logic Level A, Logic Level B, and Safety Outputs—with
each column comprising a number of available memory
spaces 1008. Memory spaces 1008 represent pre-defined
positions on which function blocks can be added, and are
arranged in a grid-like manner to enforce an organized
arrangement of function blocks. Function blocks can be
added to the respective memory spaces 1008 by selecting the
function blocks from the toolbox area 1004. Function blocks
can be organized within the toolbox area 1004 according to
device type, logic function, safety monitoring function, or
other suitable categories. The categories can be displayed as
nodes within toolbox area 1004, such that selection of a node
expands the selections available within the selected cat-
egory.

The Safety Monitoring column of the safety logic editor
pane 1010 will typically contain function blocks correspond-
ing to safety input devices to be monitored by the safety
relay (e.g., gate switches, light curtains, safety mats, emer-
gency stop buttons, pull cords, etc.). The Logic Level A and
B columns are used to contain logical operations that act on
the safety inputs in a manner determined by the user in order
to control how the safety inputs control the states of the
safety outputs. The Safety Output column will typically
contain function blocks corresponding to safety outputs of
the safety relay. The safety relay configuration system
allows each function block to be configured directly on the
function block graphic, and allows the user to link function
block inputs and outputs with connection lines (also referred
to as signal flow lines) in order to build a complete safety
relay program that can be downloaded to and executed on
the safety relay. The column-wise classification of function
block types yields an organized program visualization that is
easy to interpret and troubleshoot. Moreover, as will be
described in more detail herein, the use of pass-through
function blocks can allow the user to modify interconnec-
tions between function blocks while minimizing necessary
changes to related interconnections to accommodate the
modified interconnections, thereby reducing development
time and maintaining a readable program view.

An example workflow is now described with reference to
FIG. 11 in order to provide a general overview of the process
for building safety relay programs according to one or more
embodiments. In this example, a gate switch is to be
monitored by the safety relay, and the user is to develop
logic for controlling a safety relay output based on the
monitored status of the gate switch. Accordingly, a Gate
Switch function block 1102 selected from the Safety Moni-
toring Functions tree of the toolbox area and dragged to an
available memory space of the safety monitoring column of
the safety logic editor pane 1010. As will be described in
more detail herein, the safety relay configuration system
automatically assigns to available (unused) input terminal

US 9,971,330 B2

9

addresses 1110 to the Gate Switch function block 1102 when
the function block is added to the program. If desired, these
input terminal addresses can be changed if the user wishes
to assign different input terminals to the Gate Switch func-
tion block 1102. Other configuration settings for the Gate
Switch function block 1102 can be set through interaction
with the Gate Switch function block 1102.

Next, the user selects a Safety Output function block 1108
from the Safety Output Functions tree of the toolbox area
and drags this function block to an available memory space
of the Safety Outputs column of the safety logic editor pane
1010. Similar to the Gate Switch function block 1102, the
safety relay configuration system will automatically assign
two available (unused) safety relay output terminal
addresses 1112 to the Safety Output function block 1108.
These output addresses can be changed by the user if desired
through interaction with the function block on the editor
pane. Other configuration settings for the Safety Output
function block 1108 can be set through interaction with the
function block. For example, the Reset Type for the Safety
Output function block 1108 can be changed from Manual to
Automatic by selecting the appropriate setting from a drop-
down box on the function block.

In this example, no logical operators are to be performed
on the gate switch status, but instead the safety output is to
be directly controlled by the status of the gate switch.
Accordingly, the user can directly connect the output of the
Gate Switch function block 1102 to the input of the Safety
Output function block 1108. This can be performed, for
example, by clicking on the input of the Safety Output
function block 1108 (which is colored blue to indicate that
no connection has yet been made), then clicking on the
output of the Gate Switch function block 1102 (similarly
colored blue when no connection is yet made). In response
to these selections, the safety relay configuration system
automatically creates two pass-through blocks between the
Gate Switch and Safety Output function blocks in the Logic
Level A and B columns, respectively, and draws a connec-
tion line between the two function blocks through the two
pass-through blocks. The pass-through blocks perform no
logical functions, but merely pass status information,
unchanged, from their inputs to their outputs.

Once the logic program is completed, the user can com-
pile and download the program to the safety relay by
selecting appropriate controls on the device toolbar area 604.

FIG. 12 illustrates another example logic program accord-
ing to one or more embodiments. In this example, the safety
monitoring column contains three safety monitoring blocks
corresponding to three safety input devices—a Gate Switch
function block 1202, an Emergency Stop function block
1210, and a Reset function block 1214. Each of the safety
monitoring function blocks have been assigned to selected
input terminals of the safety relay using address windows
1216, 1218, and 1220. The outputs of Gate Switch function
block 1202 and Emergency Stop function block 1210 have
been connected to respective two inputs of an AND function
block 1204 in the Logic Level A column. The AND function
block generates a high signal on its output when the outputs
of the Gate Switch function block 1202 and the Emergency
Stop function block 1210 are both ON. The output of the
AND function block 1204 is connected to the input of an
Immediate OFF function block 1208 in the Safety Output
column, via a pass-through function block 1206. The Safety
Output column controls two output terminals of the safety
relay—designated in address window 1222—based on the
output of the AND function block and the configuration
settings specified by the user on the function block 1208.

10

15

20

25

30

35

40

45

50

55

60

65

10

The output of the Emergency Stop function block 1210 is
also connected to an OFF Delay function block 1212 in the
Safety Output column (via two pass-through function
blocks). By this configuration, the OFF Delay function block
1212 controls the output terminal designated in the address
window 1224 based on the output of the Emergency Stop
function block 1210.

Reset function block 1214 has been designated an avail-
able input terminal address in address window 1220, and has
been linked to the Immediate OFF function block 1208 by
reference using the Reset Input window 1226 on the Imme-
diate OFF function block 1208. In this way, the Reset
function block 1214, controlled by input address specified in
1220, is configured to reset the Immediate OFF function
block 1208.

In addition to development, the safety logic layout
depicted in FIG. 12 can also be used to monitor the safety
relay logic during runtime after the logic has been down-
loaded to the relay. During runtime monitoring, live status
information corresponding to the respective safety monitor-
ing devices and outputs can be overlaid over their respective
function blocks. Additionally, the function blocks can
include color animation that changes the color of the func-
tion blocks based on their respective current statuses.

The use of pass-through function blocks to organize the
program view is now described with reference to FIGS.
13-17. FIG. 13 is a layout view of a safety logic program in
the process of development. In this example, a first safety
output function block 1304 (Immediate OFF) has been
placed in the Safety Output column of the development
environment, and an AND function block 1302 has been
placed in the Logic Level B column in the same row as the
safety output function block 1304. The output of the AND
function block 1302 has been linked to the input of safety
output function block 1304. A safety monitoring function
block 1306 (corresponding to a gate switch) has been placed
in the Safety Monitoring column. The user wishes to connect
the output 1308 of the safety monitoring function block
1306 to an input 1310 of the AND function block 1302, so
that the Immediate OFF function of safety output function
block 1304 will be jointly controlled by the state of safety
monitoring function block 1306 (the gate switch state) and
that of another function block to be determined

Since the output 1308 of safety monitoring function block
1306 will be connected directly to the 1310 input of the
AND function block 1302, there is no need for an operator
function block to be placed in the Logic Level A column
between safety monitoring function block 1306 and AND
function block 1302. However, as illustrated in FIG. 14,
when the user connects the output 1308 of safety monitoring
function block 1306 to the input 1310 of AND function
block 1302 (e.g., by clicking output 1308 and input 1310 in
succession or by another interaction with the function
blocks), the configuration interface inserts a pass-through
block 1402 in the Logic Level A column between safety
monitoring function block 1306 and AND function block
1302 in the same row as those function blocks. The system
then links output 1308 to input 1310 via pass-through block
1402.

Although performing no operation on the output of safety
monitoring function block 1306 before passing the output to
AND function block 1302, the pass-through block 1402
assists in organizing and managing the connecting lines
between function blocks to create an orderly arrangement of
function blocks and interconnections. In addition to render-
ing a readable program visualization that can be followed
and understood easily, the use of pass-through blocks to

US 9,971,330 B2

11

minimize the number of interconnection lines that must be
reconfigured when the user modifies a connection. For
example, the user may decide to disconnect the output of
safety monitoring function block 1306 from AND function
block 1302 and reconnect the safety monitoring function
block output to the input of a second safety output function
block 1404 (an OFF Delay function block). The user can
perform this reconnection either by deleting connection line
1406 and creating a new connection line between the output
of' the pass-through block 1402 and the input of safety output
function block 1404, or by dragging the end of connection
line 1406 connected to the input 1310 of AND function
block 1302 to the input of safety output function block 1404.
As shown in FIG. 15, when this reconnection is imple-
mented by the user, the system creates another pass-through
block 1502 in the Logic Level B column, through which
pass-through block 1402 connects to safety output function
block 1404. All connecting lines to the left of pass-through
block 1402 (e.g., connection line 1506) remain unchanged.

If the user subsequently wishes to change the input of
safety output function block 1404 from safety monitoring
function block 1306 to safety monitoring function block
1508, connection line 1506 can be deleted and—as illus-
trated in FIG. 16—a new connection line 1602 can be
created between safety monitoring function block 1508 and
pass-through block 1402. This changes the controlling
safety device for the OFF delay from the gate switch of
function block 1306 to the emergency stop button of func-
tion block 1508. Since connecting pass-through block 1402
to safety monitoring function block 1508 causes the con-
necting lines between function blocks 1508 and 1404 to
unnecessarily jump from the second row to the first row, the
configuration system can automatically create a new pass-
through block 1702 in the second row of the Logic Level A
column in response to the user’s command reconnection, as
shown in FIG. 17. The system then connects safety moni-
toring function block 1508 to pass-through block 1502 via
pass-through block 1702, yielding a more linear connection
between function blocks 1508 and 1404.

Using pass-through blocks to organize connecting lines,
the safety relay configuration interface prevents overlap
between connecting lines, reducing possible confusion and
allowing the program to be read and understood more easily.
The configuration system’s editing environment also sup-
ports signal flow line drawing rules that control routing of
signal flow lines to prevent overlap of signal flow lines
between the function blocks. As illustrated in FIG. 18, a
signal flow line 1802 is typically used to logically tie the
output 1804 of one function block to an input 1806 of
another function block. In one or more embodiments, the
function block columns of the safety relay configuration
system’s editing environment can enforce a fixed horizontal
distance between function blocks, as illustrated in FIG. 19.
When the X,Y coordinate locations of function blocks are
restricted in this fashion, a line drawing rule set can be
designed that results in aesthetically consistent, easily fol-
lowed signal flow lines throughout the project. For example,
the system can enforce a line drawing rule specifying that a
first instance of a line break (that is, a 90 degree bend in
order to connect to an input on a different horizontal level)
within a column must break 90 degrees from horizontal
24/25ths of the horizontal distance between two columns,
while a second instance of a line break in the column must
break 90 degrees from the horizontal 23/25ths of the hori-
zontal distance between the two columns. Such rules will

20

25

40

45

55

12

ensure that no wiring connection from two separate output
pins will share the same vertical line location on the graphi-
cal interface.

In a related aspect, the various organization elements and
their spacing on the function block editing environment can
have respective fixed widths, allowing a full, completed
safety relay configuration to be printable without compres-
sion.

One or more embodiments of the safety relay configura-
tion system can also reduce the number of signal flow lines
on a project by supporting function block references
between function blocks. This aspect allows a first function
block whose output is acting on another function block
located multiple columns adjacent to the first function block
to make an association by a combo box selection rather than
by creating a signal flow wire that spans multiple columns.
FIG. 20 illustrates an example of this type of function block
referencing. In this example, safety output function block
2004 is linked to the Reset function block 2002 by selecting
the name of function block 2002 (“SMF 1,” found in the
name bar 2006 of Reset function block 2002) in the Reset
Input window 2008 of safety output function block 2004.
This name-based referencing mitigates the need to create a
signal flow line between the Reset function block 2002 and
the safety output function block 2004.

One or more embodiments of the safety monitoring
configuration system can also provide a real-time graphical
representation of an amount of memory consumed in the
function block editor against a total available memory. As
illustrated in FIG. 21, this can be achieved using a memory
map in which available memory is represented as individual
blank function block targets 2102. When a function block
(e.g., function block 2104) is assigned to a blank function
target, either by dragging-and-dropping the function block
2104 to the target or through other assignment means, the
blank target disappears and the selected function block is
displayed in its place. The label in the name bar of the
function block (SMF 2) corresponds to the memory location
of the function block. The number of available blank func-
tion block targets 2102 is analogous to the amount of
remaining memory space available for addition of more
function blocks. When all blank function block targets 2102
have received a function block assignments, no more func-
tion blocks can be added to the project. The function block
targets 2102 intuitively convey an amount of available
memory remaining for addition of function blocks to a
project.

FIGS. 22-23 illustrate various methodologies in accor-
dance with one or more embodiments of the subject appli-
cation. While, for purposes of simplicity of explanation, the
one or more methodologies shown herein are shown and
described as a series of acts, it is to be understood and
appreciated that the subject innovation is not limited by the
order of acts, as some acts may, in accordance therewith,
occur in a different order and/or concurrently with other acts
from that shown and described herein. For example, those
skilled in the art will understand and appreciate that a
methodology could alternatively be represented as a series
of interrelated states or events, such as in a state diagram.
Moreover, not all illustrated acts may be required to imple-
ment a methodology in accordance with the innovation.
Furthermore, interaction diagram(s) may represent method-
ologies, or methods, in accordance with the subject disclo-
sure when disparate entities enact disparate portions of the
methodologies. Further yet, two or more of the disclosed

US 9,971,330 B2

13

example methods can be implemented in combination with
each other, to accomplish one or more features or advantages
described herein.

FIG. 22 illustrates an example methodology 2200 for
organizing graphical function blocks of a safety relay pro-
gram on a development area of a safety relay configuration
system interface. Initially, at 2202, configuration input is
received that adds graphical function blocks to a develop-
ment area of a safety relay configuration interface. These can
include, for example, safety monitoring function blocks,
safety output function blocks, and logical operator function
blocks. At 2204, the graphical function blocks are organized
in the development area into four columns classified accord-
ing to function block type. For example, the four columns
can include a first column for safety monitoring function
blocks, second and third columns for logical operator func-
tion blocks and pass-through function blocks, and a fourth
column for safety output function blocks.

FIG. 23 illustrates an example methodology 2300 for
organizing signal flow lines between graphical function
blocks of a safety relay configuration program on a devel-
opment area of a safety relay configuration system interface.
Initially, at 2302, configuration input is received that adds a
first graphical function block for a safety relay configuration
program to a first column of a development area of a safety
relay configuration interface (e.g., a safety monitoring col-
umn). At 2304, configuration input is received that adds a
second graphical function block for the safety relay con-
figuration program to a third column of the development
area (e.g., a logic level column). At 2306, configuration
input is received that links an output of the first graphical
function block to an input of the second graphical function
block with a signal flow line, wherein the signal flow line
programmatically associates the first and second graphical
function blocks.

At 2308, a pass-through block is generated in a second
column of the development area between the first and
second graphical function blocks. This pass-through block is
added automatically by the configuration system when the
configuration input instructing the signal flow line to be
created between the first and second graphical function
blocks is received at step 2306. At 2310, the signal flow line
is routed between the first and second graphical function
blocks through the pass-through block. The pass-through
block performs no logical operation on the output of the first
graphical function block prior to passing the output to the
input of the second graphical function block, but instead is
used only to organize signal flow lines between function
blocks.

Embodiments, systems, and components described
herein, as well as industrial control systems and industrial
automation environments in which various aspects set forth
in the subject specification can be carried out, can include
computer or network components such as servers, clients,
programmable logic controllers (PLCs), communications
modules, mobile computers, wireless components, control
components and so forth which are capable of interacting
across a network. Computers and servers include one or
more processors—electronic integrated circuits that perform
logic operations employing electric signals—configured to
execute instructions stored in media such as random access
memory (RAM), read only memory (ROM), a hard drives,
as well as removable memory devices, which can include
memory sticks, memory cards, flash drives, external hard
drives, and so on.

Similarly, the term PLC as used herein can include
functionality that can be shared across multiple components,

5

10

20

25

30

35

40

45

55

60

65

14

systems, and/or networks. As an example, one or more PLCs
can communicate and cooperate with various network
devices across the network. This can include substantially
any type of control, communications module, computer,
Input/Output (I/O) device, sensor, actuator, and human
machine interface (HMI) that communicate via the network,
which includes control, automation, and/or public networks.
The PLC can also communicate to and control various other
devices such as I/O modules including analog, digital,
programmed/intelligent /O modules, other programmable
controllers, communications modules, sensors, actuators,
output devices, and the like.

The network can include public networks such as the
internet, intranets, and automation networks such as control
and information protocol (CIP) networks including Device-
Net, ControlNet, and Ethernet/IP. Other networks include
Ethernet, DH/DH+, Remote 1/0O, Fieldbus, Modbus, Profi-
bus, CAN, wireless networks, serial protocols, and so forth.
In addition, the network devices can include various possi-
bilities (hardware and/or software components). These
include components such as switches with virtual local area
network (VLAN) capability, LANs, WANSs, proxies, gate-
ways, routers, firewalls, virtual private network (VPN)
devices, servers, clients, computers, configuration tools,
monitoring tools, and/or other devices.

In order to provide a context for the various aspects of the
disclosed subject matter, FIGS. 24 and 25 as well as the
following discussion are intended to provide a brief, general
description of a suitable environment in which the various
aspects of the disclosed subject matter may be implemented.

With reference to FIG. 25, an example environment 2410
for implementing various aspects of the aforementioned
subject matter includes a computer 2412. The computer
2412 includes a processing unit 2414, a system memory
2416, and a system bus 2418. The system bus 2418 couples
system components including, but not limited to, the system
memory 2416 to the processing unit 2414. The processing
unit 2414 can be any of various available processors. Dual
microprocessors and other multiprocessor architectures also
can be employed as the processing unit 2414.

The system bus 2418 can be any of several types of bus
structure(s) including the memory bus or memory controller,
a peripheral bus or external bus, and/or a local bus using any
variety of available bus architectures including, but not
limited to, 8-bit bus, Industrial Standard Architecture (ISA),
Micro-Channel Architecture (MSA), Extended ISA (EISA),
Intelligent Drive Electronics (IDE), VESA Local Bus
(VLB), Peripheral Component Interconnect (PCI), Univer-
sal Serial Bus (USB), Advanced Graphics Port (AGP),
Personal Computer Memory Card International Association
bus (PCMCIA), and Small Computer Systems Interface
(SCSD).

The system memory 2416 includes volatile memory 2420
and nonvolatile memory 2422. The basic input/output sys-
tem (BIOS), containing the basic routines to transfer infor-
mation between elements within the computer 2412, such as
during start-up, is stored in nonvolatile memory 2422. By
way of illustration, and not limitation, nonvolatile memory
2422 can include read only memory (ROM), programmable
ROM (PROM), electrically programmable ROM (EPROM),
electrically erasable PROM (EEPROM), or flash memory.
Volatile memory 2420 includes random access memory
(RAM), which acts as external cache memory. By way of
illustration and not limitation, RAM is available in many
forms such as synchronous RAM (SRAM), dynamic RAM
(DRAM), synchronous DRAM (SDRAM), double data rate

US 9,971,330 B2

15
SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM),
Synchlink DRAM (SLDRAM), and direct Rambus RAM
(DRRAM).

Computer 2412 also includes removable/non-removable,
volatile/nonvolatile computer storage media. FIG. 22 illus-
trates, for example a disk storage 2424. Disk storage 2424
includes, but is not limited to, devices like a magnetic disk
drive, floppy disk drive, tape drive, Jaz drive, Zip drive,
LS-100 drive, flash memory card, or memory stick. In
addition, disk storage 2424 can include storage media sepa-
rately or in combination with other storage media including,
but not limited to, an optical disk drive such as a compact
disk ROM device (CD-ROM), CD recordable drive (CD-R
Drive), CD rewritable drive (CD-RW Drive) or a digital
versatile disk ROM drive (DVD-ROM). To facilitate con-
nection of the disk storage 2424 to the system bus 2418, a
removable or non-removable interface is typically used such
as interface 2426.

It is to be appreciated that FIG. 24 describes software that
acts as an intermediary between users and the basic com-
puter resources described in suitable operating environment
2410. Such software includes an operating system 2428.
Operating system 2428, which can be stored on disk storage
2424, acts to control and allocate resources of the computer
2412. System applications 2430 take advantage of the man-
agement of resources by operating system 2428 through
program modules 2432 and program data 2434 stored either
in system memory 2416 or on disk storage 2424. It is to be
appreciated that one or more embodiments of the subject
disclosure can be implemented with various operating sys-
tems or combinations of operating systems.

A user enters commands or information into the computer
2412 through input device(s) 2436. Input devices 2436
include, but are not limited to, a pointing device such as a
mouse, trackball, stylus, touch pad, keyboard, microphone,
joystick, game pad, satellite dish, scanner, TV tuner card,
digital camera, digital video camera, web camera, and the
like. These and other input devices connect to the processing
unit 2414 through the system bus 2418 via interface port(s)
2438. Interface port(s) 2438 include, for example, a serial
port, a parallel port, a game port, and a universal serial bus
(USB). Output device(s) 2440 use some of the same type of
ports as input device(s) 2436. Thus, for example, a USB port
may be used to provide input to computer 2412, and to
output information from computer 2412 to an output device
2440. Output adapters 2442 are provided to illustrate that
there are some output devices 2440 like monitors, speakers,
and printers, among other output devices 2440, which
require special adapters. The output adapters 2442 include,
by way of illustration and not limitation, video and sound
cards that provide a means of connection between the output
device 2440 and the system bus 2418. It should be noted that
other devices and/or systems of devices provide both input
and output capabilities such as remote computer(s) 2444.

Computer 2412 can operate in a networked environment
using logical connections to one or more remote computers,
such as remote computer(s) 2444. The remote computer(s)
2444 can be a personal computer, a server, a router, a
network PC, a workstation, a microprocessor based appli-
ance, a peer device or other common network node and the
like, and typically includes many or all of the elements
described relative to computer 2412. For purposes of brev-
ity, only a memory storage device 2446 is illustrated with
remote computer(s) 2444. Remote computer(s) 2444 is
logically connected to computer 2412 through a network
interface 2448 and then physically connected via commu-
nication connection 2450. Network interface 2448 encom-

10

15

20

25

30

35

40

45

55

60

16

passes communication networks such as local-area networks
(LAN) and wide-area networks (WAN). LAN technologies
include Fiber Distributed Data Interface (FDDI), Copper
Distributed Data Interface (CDDI), Ethernet/IEEE 802.3,
Token Ring/IEEE 802.5 and the like. WAN technologies
include, but are not limited to, point-to-point links, circuit
switching networks like Integrated Services Digital Net-
works (ISDN) and variations thereon, packet switching
networks, and Digital Subscriber Lines (DSL).

Communication connection(s) 2450 refers to the hard-
ware/software employed to connect the network interface
2448 to the system bus 2418. While communication con-
nection 2450 is shown for illustrative clarity inside computer
2412, it can also be external to computer 2412. The hard-
ware/software necessary for connection to the network inter-
face 2448 includes, for exemplary purposes only, internal
and external technologies such as, modems including regu-
lar telephone grade modems, cable modems and DSL
modems, ISDN adapters, and Ethernet cards.

FIG. 25 is a schematic block diagram of a sample-
computing environment 2500 with which the disclosed
subject matter can interact. The sample-computing environ-
ment 2500 includes one or more client(s) 2502. The client(s)
2502 can be hardware and/or software (e.g., threads, pro-
cesses, computing devices). The sample-computing environ-
ment 2500 also includes one or more server(s) 2504. The
server(s) 2504 can also be hardware and/or software (e.g.,
threads, processes, computing devices). The servers 2504
can house threads to perform transformations by employing
one or more embodiments as described herein, for example.
One possible communication between a client 2502 and
servers 2504 can be in the form of a data packet adapted to
be transmitted between two or more computer processes.
The sample-computing environment 2500 includes a com-
munication framework 2506 that can be employed to facili-
tate communications between the client(s) 2502 and the
server(s) 2504. The client(s) 2502 are operably connected to
one or more client data store(s) 2508 that can be employed
to store information local to the client(s) 2502. Similarly, the
server(s) 2504 are operably connected to one or more server
data store(s) 2510 that can be employed to store information
local to the servers 2504.

What has been described above includes examples of the
subject innovation. It is, of course, not possible to describe
every conceivable combination of components or method-
ologies for purposes of describing the disclosed subject
matter, but one of ordinary skill in the art may recognize that
many further combinations and permutations of the subject
innovation are possible. Accordingly, the disclosed subject
matter is intended to embrace all such alterations, modifi-
cations, and variations that fall within the spirit and scope of
the appended claims.

In particular and in regard to the various functions per-
formed by the above described components, devices, cir-
cuits, systems and the like, the terms (including a reference
to a “means”) used to describe such components are
intended to correspond, unless otherwise indicated, to any
component which performs the specified function of the
described component (e.g., a functional equivalent), even
though not structurally equivalent to the disclosed structure,
which performs the function in the herein illustrated exem-
plary aspects of the disclosed subject matter. In this regard,
it will also be recognized that the disclosed subject matter
includes a system as well as a computer-readable medium
having computer-executable instructions for performing the
acts and/or events of the various methods of the disclosed
subject matter.

US 9,971,330 B2

17

In addition, while a particular feature of the disclosed
subject matter may have been disclosed with respect to only
one of several implementations, such feature may be com-
bined with one or more other features of the other imple-
mentations as may be desired and advantageous for any
given or particular application. Furthermore, to the extent
that the terms “includes,” and “including” and variants
thereof are used in either the detailed description or the
claims, these terms are intended to be inclusive in a manner
similar to the term “comprising.”

In this application, the word “exemplary” is used to mean
serving as an example, instance, or illustration. Any aspect
or design described herein as “exemplary” is not necessarily
to be construed as preferred or advantageous over other
aspects or designs. Rather, use of the word exemplary is
intended to present concepts in a concrete fashion.

Various aspects or features described herein may be
implemented as a method, apparatus, or article of manufac-
ture using standard programming and/or engineering tech-
niques. The term “article of manufacture” as used herein is
intended to encompass a computer program accessible from
any computer-readable device, carrier, or media. For
example, computer readable media can include but are not
limited to magnetic storage devices (e.g., hard disk, floppy
disk, magnetic strips . . .), optical disks [e.g., compact disk
(CD), digital versatile disk (DVD) . . . |, smart cards, and
flash memory devices (e.g., card, stick, key drive . . .).

What is claimed is:
1. A system for programming an industrial safety relay,
comprising:
a memory that stores executable components; and
a processor, operatively coupled to the memory, that
executes the executable components, the executable
components comprising:
a configuration component configured to create a con-
figuration program for a safety relay based on con-
figuration input that manipulates graphical function
blocks and signal flow lines between the graphical
function blocks; and
a graphical interface component configured to receive
the configuration input and to display the graphical
function blocks organized into columns of an editing
area of a configuration interface, the columns com-
prising at least a safety monitoring column, a first
logic column, a second logic column, and a safety
output column
wherein the graphical interface component is further
configured to:
in response to the configuration input instructing cre-
ation of a signal flow line between an output of a first
graphical function block in the safety monitoring
column and an input of a second graphical function
block in one of the second logic column or the safety
output column:
insert a pass-through function block in the first logic
column,

connect the output of the first graphical function
block to an input of the pass-through function
block using a first signal flow line, and

connect an output of the pass-through function block
to the input of the second graphical function block
using a second signal flow line, and

in response to the configuration input instructing dele-
tion of the first signal flow line, delete the first signal
flow line and leave the second signal flow line

10

15

20

25

30

35

40

45

55

60

65

18

connecting the output of the pass-through function
block to the input of the second graphical function
block unchanged.

2. The system of claim 1, wherein the safety monitoring
column contains a first subset of the graphical function
blocks corresponding to safety input devices, the first logic
column contains a second subset of the graphical function
blocks that define first logical operations, the second logic
column contains a third subset of the graphical function
blocks that define second logical operations, and the safety
output column contains a fourth subset of the graphical
function blocks corresponding to safety outputs of the safety
relay.

3. The system of claim 1, wherein a spacing between
adjacent columns of the columns is a fixed distance.

4. The system of claim 1, wherein the pass-through
function block performs no logical operation on an output
signal from the first graphical function block.

5. The system of claim 1, wherein the graphical interface
component is further configured to organize the signal flow
lines on the editing area according to defined line drawing
rules.

6. The system of claim 5, wherein the defined line
drawing rules include a rule specifying that vertical portions
of two signal flow lines from respective two different
function block outputs will not share a same vertical line
location.

7. The system of claim 1, wherein the graphical interface
component is further configured to programmatically asso-
ciate an output of a first function block of the graphical
function blocks with an input of a second function block of
the graphical function blocks in response to a reference
parameter located on the second function block being set to
an identifier of the first function block.

8. The system of claim 1, wherein a width of the graphical
function blocks within one of the columns is fixed for all
rows of the graphical function blocks.

9. A non-transitory computer-readable medium having
stored thereon instructions that, in response to execution,
cause a system comprising a processor to perform opera-
tions, the operations comprising:

displaying graphical function blocks on an editing area of

a configuration interface, wherein the displaying com-
prises arranging the graphical function blocks into
columns according to function block type, and wherein
the columns comprise at least a safety monitoring
column, a first logic column, a second logic column,
and a safety output column;

receiving configuration input via manipulation of one or

more of the graphical function blocks and signal flow
lines between the graphical function blocks;

in response to receiving, as a first portion of the configu-

ration input, an instruction to create a signal flow line

between an output of a first graphical function block in

the safety monitoring column and an input of a second

graphical function block in one of the second logic

column or the safety output column:

creating a pass-through function block in the first logic
column,

connecting the output of the first graphical function
block to an input of the pass-through function block
using a first signal flow line, and

connecting an output of the pass-through function
block to the input of the second graphical function
block using a second signal flow line;

in response to receiving, as a second portion of the

configuration input, an instruction to delete the first

US 9,971,330 B2

19

signal flow line, deleting the first signal flow line and
leaving the second signal flow line connecting the
output of the pass-through function block to the input
of the second graphical function block intact; and

generating a configuration program for a safety relay
based on the configuration input.

10. The non-transitory computer-readable medium of
claim 9, wherein the arranging comprises:

placing a first subset of the graphical function blocks

corresponding to safety input devices in the safety
monitoring column;

placing a second subset of the graphical function blocks

that define first logical operations in the first logic
column;

placing a third subset of the graphical function blocks that

define second logical operations in the second logic
column; and

placing a fourth subset of the graphical function blocks

corresponding to safety outputs of the safety relay in
the safety output column.

11. The non-transitory computer-readable medium of
claim 9, wherein the arranging comprises spacing the col-
umns according to a fixed distance.

12. The non-transitory computer-readable medium of
claim 9, wherein the pass-through function block performs
no operation on an output value of the first graphical
function block.

13. The non-transitory computer-readable medium of
claim 9, wherein the operations further comprise organizing
the signal flow lines according to one or more defined line
drawing rules, and wherein the defined line drawing rules
comprise at least a rule specifying that vertical portions of
two signal flow lines from respective two different function
block outputs will not occupy a same vertical line location.

14. The non-transitory computer-readable medium of
claim 9, wherein the operations further comprise program-
matically linking an output of a first function block of the
graphical function blocks with an input of a second function
block of the graphical function blocks in response to setting
a reference parameter located on the second function block
to an identifier of the first function block.

15. The non-transitory computer-readable medium of
claim 10, wherein the displaying comprises displaying the
graphical function blocks to have a same width for all rows
within one of the columns.

16. A method for constructing a program for an industrial
safety relay, comprising:

adding, by a system comprising at least one processor,

graphical function blocks to an editing area of a con-
figuration interface in response to first configuration
input, wherein the adding comprises aligning the
graphical function blocks into columns classified
according to function block type, and the columns
comprise at least a safety monitoring column, a first
logic column, a second logic column, and a safety
output column;

adding, by the system, signal flow lines between at least

a subset of the graphical function blocks in response to
receipt of second configuration input, wherein the

10

20

25

30

35

40

45

50

55

20

signal flow lines programmatically associate the subset
of the graphical function blocks, wherein the adding
comprises, in response to receiving, as a portion of the
second configuration input, an instruction to create a
signal flow line between an output of a first graphical
function block in the safety monitoring column and an
input of a second graphical function block in one of the
second logic column or the safety output column:
creating a pass-through function block in the first logic
column,
connecting the output of the first graphical function
block to an input of the pass-through function block
using a first signal flow line, and
connecting an output of the pass-through function
block to the input of the second graphical function
block using a second signal flow line;
in response to receiving, as another portion of the second
configuration input, an instruction to delete the first
signal flow line, deleting the first signal flow line and
leaving the second signal flow line connecting the
output of the pass-through function block to the input
of the second graphical function block unchanged; and
creating, by the system, a configuration program for a
safety relay based on the graphical function blocks and
the signal flow lines.

17. The method of claim 16, wherein the aligning com-
prises:

locating a first subset of the graphical function blocks

corresponding to safety input devices in the safety
monitoring column;

locating a second subset of the graphical function blocks

that define first logical operations in the first logic
column;

locating a third subset of the graphical function blocks

that define second logical operations in the second logic
column; and

placing a fourth subset of the graphical function blocks

corresponding to safety outputs of the safety relay in
the safety output column.

18. The method of claim 16, wherein the pass-through
function block performs no operation on an output signal
from the first graphical function block.

19. The system of claim 5, wherein the defined line
drawing rules include a rule specifying that a first 90 degree
break in a first signal flow line within a space between two
of the columns is to occur at a first fraction of a distance
between the two of the columns, and a second 90 degree
break in a second signal flow line in the space between the
two of the columns is to occur at a second fraction of the
distance between the two of the columns.

20. The non-transitory computer-readable medium of
claim 13, wherein the line drawing rules specify that a first
90 degree break in a first signal flow line within a space
between two of the columns is to occur at a first fraction of
a distance between the two of the columns, and a second 90
degree break in a second signal flow line in the space
between the two of the columns is to occur at a second
fraction of the distance between the two of the columns.

#* #* #* #* #*

